WorldWideScience

Sample records for marine sponge haliclona

  1. Diversity of culturable actinobacteria isolated from marine sponge Haliclona sp.

    Science.gov (United States)

    Jiang, Shumei; Sun, Wei; Chen, Minjie; Dai, Shikun; Zhang, Long; Liu, Yonghong; Lee, Kyung Jin; Li, Xiang

    2007-11-01

    This study describes actinobacteria isolated from the marine sponge Haliclona sp. collected in shallow water of the South China Sea. A total of 54 actinobacteria were isolated using media selective for actinobacteria. Species diversity and natural product diversity of isolates from marine sponge Haliclona sp. were analysed. Twenty-four isolates were selected on the basis of their morphology on different media and assigned to the phylum Actinobacteria by a combination of 16S rRNA gene based restriction enzymes digestion and 16S rRNA gene sequence analysis. The 16S rRNA genes of 24 isolates were digested by restriction enzymes TaqI and MspI and assigned to different groups according to their restriction enzyme pattern. The phylogenetic analysis based on 16S rRNA gene sequencing showed that the isolates belonged to the genera Streptomyces, Nocardiopsis, Micromonospora and Verrucosispora; one other isolate was recovered that does not belong to known genera based on its unique 16S rRNA gene sequence. To our knowledge, this is the first report of a bacterium classified as Verrucosispora sp. that has been isolated from a marine sponge. The majority of the strains tested belong to the genus Streptomyces and three isolates may be new species. All of the 24 isolates were screened for genes encoding polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). PKS and NRPS sequences were detected in more than half of the isolates and the different "PKS-I-PKS-II-NRPS" combinations in different isolates belonging to the same species are indicators of their potential natural product diversity and divergent genetic evolution.

  2. Bioactive polyhydroxylated sterols from the marine sponge Haliclona crassiloba.

    Science.gov (United States)

    Cheng, Zhong-Bin; Xiao, Han; Fan, Cheng-Qi; Lu, Ya-Nan; Zhang, Ge; Yin, Sheng

    2013-12-20

    Four new polyhydroxylated sterols, named halicrasterols A-D (1-4), together with six known analogs (5-10) were isolated from the marine sponge Haliclona crassiloba. Compounds 1 and 2 represented rare examples of steroids featuring 17(20)E-double bonds. The structures of 1-10 were elucidated by spectroscopic analysis and comparison with reported data. This is the first report of a steroid profile for this species. The antimicrobial activities of 1-10 were evaluated against a panel of bacterial and fungal strains in vitro, and compounds 4 and 9 showed moderate activity against some of the Gram-positive strains with MICs ranging from 4 to 32 μg/mL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp

    NARCIS (Netherlands)

    Sipkema, D.; Schippers, K.J.; Maalcke, W.J.; Yang, Y.; Salim, S.; Blanch, H.W.

    2011-01-01

    Three methods were examined to cultivate bacteria associated with the marine sponge Haliclona (gellius) sp.: agar plate cultures, liquid cultures, and floating filter cultures. A variety of oligotrophic media were employed, including media with aqueous and organic sponge extracts, bacterial signal m

  4. Antiamoebic activity of marine sponge Haliclona exigua (Krikpatrick

    Directory of Open Access Journals (Sweden)

    V Lakshmi

    2009-03-01

    Full Text Available The methanol and methanol-chloroform (1:1 extracts of the freshly collected Haliclona exigua showed minumim inhibitory concentration (MIC of 125 ug/ml and 250 ug/ml respectively in in vitro studies, but when both of these were tested in vivo in rats, only methanol-chloroform showed 80% inhibition of trophozoites at the dose of 900 mg/kg body weight against Entamoeba histolytica. Therefore only methanol-chloroform extract was further fractionated into four fractions (hexane, chloroform, n-butanol soluble and n-butanol insoluble fractions. Out of these, only hexane and n-butanol soluble fractions showed 80% inhibition of trophozoites at 900 mg/kg dose. Further the chromatography of the n-butanol fraction yielded araguspongin-C which showed promising results at different doses.

  5. Antileishmanial potential of a marine spongeHaliclona oculataagainst experimental visceral leishmaniasis

    Institute of Scientific and Technical Information of China (English)

    Vijai Lakshmi; Prashant Khare; Pragya Misra; Mahendra Nath Srivastava; Anuradha Dube

    2015-01-01

    Objective:To evaluate the antileishmanial activity of a marine spongeHaliclona oculata. Methods:The crude methanol extract was prepared from the freshly collected sponge and its three fractions were also prepared by maceration method. The antileishmanial activity of these extract and fractions was tested againstLeishmania donovani. Results:The antileishmanial activity was tested bothin vitroand in vivo. The crude methanol extract exerted almost complete inhibition of promastigotes (81.0%±6.9%) and 78.8%±5.2% inhibition of intracellular amastigotes at 100 μg/mL with IC50 values of 29.5 μg/mL and 40.6 μg/mL, respectively. The treatment of 500 mg/kg(p.o.) of the crude methanol extract for 5 d for Leishmania donovani infected hamsters resulted in 78.35%±10.20% inhibition of intracellular amastigotes. At a lower dose (250 mg/kg), it exhibited poor efficacy. Among the fractions, highestin vitro(>75%) and in vivo (84.3%±10.2%) antileishmanial activity was observed in n-chloroform fraction with IC50 values of 54.2 μg/mL and 61 μg/mL against promastigotes and intracellular amastigotes, respectively. Hexane fraction andn-butanol (both insoluble and soluble) fractions were found inactivein vitroand in vivo. Conclusions:Our findings indicate that this marine sponge has the potential to provide new insight toward development of an effective antileishmanial agent and, hence, more exhaustive studies are needed for exploiting the vast marine resources of the world to combat the scourge of several parasitic diseases.

  6. Identification and Antibacterial Activity of Bacteria Isolated from Marine Sponge Haliclona (Reniera) sp. against Multi-Drug Resistant Human Pathogen

    Science.gov (United States)

    Ardhanu Asagabaldan, Meezan; Ayuningrum, D.; Kristiana, R.; Sabdono, A.; Radjasa, O. K.; Trianto, A.

    2017-02-01

    The marine sponge Haliclona (Reniera) sp. was a potential source of natural bioactive compounds. This sponge widely distributed along the coast of Panjang Island, Jepara, Indonesia. The aims of this research were to isolate the associated bacteria with Haliclona (Reniera) sp. and to screen the antibacterial activity against Multi-Drug Resistant (MDR) bacteria. Amount five bacteria were isolated using media selective for bacteria. The antibacterial activities of bacteria were performed by overlay methods. The bacteria strain PSP. 39-04 had the best activity against Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, and Enterobacter cloaceae. Based on colony morphology and phylogenetic characterization using 16S rRNA gene sequencing, PSP 39-04 was closely related with Chromohalobacter salixigens strain DSM3043.

  7. A novel erythromycin resistance plasmid from Bacillus sp. strain HS24, isolated from the marine sponge Haliclona simulans.

    Directory of Open Access Journals (Sweden)

    Teresa M Barbosa

    Full Text Available A better understanding of the origin and natural reservoirs of resistance determinants is fundamental to efficiently tackle antibiotic resistance. This paper reports the identification of a novel 5.8 kb erythromycin resistance plasmid, from Bacillus sp. HS24 isolated from the marine sponge Haliclona simulans. pBHS24B has a mosaic structure and carries the erythromycin resistance gene erm(T. This is the first report of an erythromycin resistance plasmid from a sponge associated bacteria and of the Erm(T determinant in the genus Bacillus.

  8. Apoptosis-Inducing Activity of Marine Sponge Haliclona sp. Extracts Collected from Kosrae in Nonsmall Cell Lung Cancer A549 Cells

    Directory of Open Access Journals (Sweden)

    Woori Bae

    2015-01-01

    Full Text Available Although various anticancer drugs have been developed for the treatment of nonsmall cell lung cancer, chemotherapeutic efficacy is still limited. Natural products such as phytochemicals have been screened as novel alternative materials, but alternative funds such as marine bioresources remain largely untapped. Of these resources, marine sponges have undergone the most scrutiny for their biological activities, including antiinflammatory, antiviral, and anticancer properties. However, the biological mechanisms of the activities of these marine sponges are still unclear. We investigated the anticancer activity of marine sponges collected from Kosrae in Micronesia and examined their mechanisms of action using nonsmall cell lung cancer A549 cells as a model system. Of 20 specimens, the Haliclona sp. (KO1304-328 showed both dose- and time-dependent cytotoxicity. Further, methanol extracts of Haliclona sp. significantly inhibited cell proliferation and cell viability. A549 cells treated with Haliclona sp. demonstrated induced expression of c-Jun N-terminal kinase (JNK, p53, p21, caspase-8, and caspase-3. The percentage of apoptotic cells significantly increased in A549 cultures treated with Haliclona sp. These results indicate that Haliclona sp. induces apoptosis via the JNK-p53 pathway and caspase-8, suggesting that this marine sponge is a good resource for the development of drugs for treatment of nonsmall cell lung cancer.

  9. SUSPENSION-FEEDING IN MARINE SPONGES HALICHONDRIA-PANICEA AND HALICLONA-URCEOLUS - EFFECTS OF TEMPERATURE ON FILTRATION-RATE AND ENERGY-COST OF PUMPING

    DEFF Research Database (Denmark)

    Riisgård, H.U.; Thomassen, S.; Jakobsen, H.

    1993-01-01

    Filtration rate (measured as clearance of algal cells) was measured at different temperatures in the sponge Halichondria panicea. An increase in water temperature from 6 to 12-degrees-C caused the mean filtration rate to increase 4.3 +/- 2.3 times. This value was higher than previously found...... for other marine ciliary suspension-feeding animals. Filtration rate at 12-degrees-C was also measured in Haliclona urceolus by means of an indirect clearance method in addition to a direct technique for measuring pumping rate. It was found that the 2 sponge species had near-identical filtration rates......, with maximum rates of approximately 60 ml min-1 (g dry weight)-1 at 12-degrees-C. The normal pump pressure, or operating point O(p), of a standard sponge (based on our own measurements and calculations from literature data for a 0.1 g dry weight Haliclona sp.) was estimated as the sum of main contributions...

  10. A tendem mass spectrometric approach for determining the structure of molecular species of ceramide in the marine sponge, Haliclona cribricutis

    Digital Repository Service at National Institute of Oceanography (India)

    Tilvi, S.; Majik, M.; Naik, C.G.

    -retention proper- ties of the stratum corneum: induction and recovery study of surfactant dry skin”, Arch Dermatol. Res. 281, 45 (1989). 7. P.S. Parameswaran, B. Das and S.Y. Kamat, “Lipid contents of the sponge Haliclona Sp.”, Indian J. Chem. 33B, 99 (1994). 8...

  11. Subtilomycin: A New Lantibiotic from Bacillus subtilis Strain MMA7 Isolated from the Marine Sponge Haliclona simulans

    Directory of Open Access Journals (Sweden)

    Teresa M. Barbosa

    2013-06-01

    Full Text Available Bacteriocins are attracting increased attention as an alternative to classic antibiotics in the fight against infectious disease and multidrug resistant pathogens. Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans displays a broad spectrum antimicrobial activity, which includes Gram-positive and Gram-negative pathogens, as well as several pathogenic Candida species. This activity is in part associated with a newly identified lantibiotic, herein named as subtilomycin. The proposed biosynthetic cluster is composed of six genes, including protein-coding genes for LanB-like dehydratase and LanC-like cyclase modification enzymes, characteristic of the class I lantibiotics. The subtilomycin biosynthetic cluster in B. subtilis strain MMA7 is found in place of the sporulation killing factor (skf operon, reported in many B. subtilis isolates and involved in a bacterial cannibalistic behaviour intended to delay sporulation. The presence of the subtilomycin biosynthetic cluster appears to be widespread amongst B. subtilis strains isolated from different shallow and deep water marine sponges. Subtilomycin possesses several desirable industrial and pharmaceutical physicochemical properties, including activity over a wide pH range, thermal resistance and water solubility. Additionally, the production of the lantibiotic subtilomycin could be a desirable property should B. subtilis strain MMA7 be employed as a probiotic in aquaculture applications.

  12. Subtilomycin: a new lantibiotic from Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans.

    Science.gov (United States)

    Phelan, Robert W; Barret, Matthieu; Cotter, Paul D; O'Connor, Paula M; Chen, Rui; Morrissey, John P; Dobson, Alan D W; O'Gara, Fergal; Barbosa, Teresa M

    2013-06-03

    Bacteriocins are attracting increased attention as an alternative to classic antibiotics in the fight against infectious disease and multidrug resistant pathogens. Bacillus subtilis strain MMA7 isolated from the marine sponge Haliclona simulans displays a broad spectrum antimicrobial activity, which includes Gram-positive and Gram-negative pathogens, as well as several pathogenic Candida species. This activity is in part associated with a newly identified lantibiotic, herein named as subtilomycin. The proposed biosynthetic cluster is composed of six genes, including protein-coding genes for LanB-like dehydratase and LanC-like cyclase modification enzymes, characteristic of the class I lantibiotics. The subtilomycin biosynthetic cluster in B. subtilis strain MMA7 is found in place of the sporulation killing factor (skf) operon, reported in many B. subtilis isolates and involved in a bacterial cannibalistic behaviour intended to delay sporulation. The presence of the subtilomycin biosynthetic cluster appears to be widespread amongst B. subtilis strains isolated from different shallow and deep water marine sponges. Subtilomycin possesses several desirable industrial and pharmaceutical physicochemical properties, including activity over a wide pH range, thermal resistance and water solubility. Additionally, the production of the lantibiotic subtilomycin could be a desirable property should B. subtilis strain MMA7 be employed as a probiotic in aquaculture applications.

  13. Lipid contents of the sponge Haliclona sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Das, B.; Kamat, S.Y.

    Several fatty acids, sterols, batyl alcohol and its analogs and an N-acylated sphingosine (ceramide) have been isolated from the lipid fraction of the extract of the sponge Haliclona sp. The major sterol is found to be cholesterol (54%), followed...

  14. Biological characterisation of Haliclona (?gellius) sp.: sponge and associated microorganisms.

    NARCIS (Netherlands)

    Sipkema, D.; Holmes, B.; Nichols, S.A.; Blanch, H.W.

    2009-01-01

    We have characterised the northern Pacific undescribed sponge Haliclona (?gellius) sp. based on rDNA of the sponge and its associated microorganisms. The sponge is closely related to Amphimedon queenslandica from the Great Barrier Reef as the near-complete 18S rDNA sequences of both sponges were ide

  15. Anti-bacterial compounds from the sponge Haliclona sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Kamat, S.Y.; Chandramohan, D.; Nair, S.; Das, B.

    The crude methanolic extract of the sponge Haliclona sp., collected off Gujarat coast exhibited promising anti-viral (in vitro, 75%) and anti-bacterial properties Partitioning of the extract between various organic solvents, monitored by bioassay...

  16. Haliclona (Haliclona) Epiphytica n. sp. (Porifera, Demospongiae, Haplosclerida), a seaweed-dwelling sponge from the Colombian Caribbean

    NARCIS (Netherlands)

    Zea, Sven; Weerdt, de Wallie H.

    1999-01-01

    Haliclona (Haliclona) epiphytica n.sp., a new species of seaweed-dwelling sponge of the family Chalinidae (Porifera, Demospongiae, Haplosclerida) from the Colombian Caribbean, is described. As the only member of the subgenus Haliclona (hitherto referred to as the ‘oculata’ group by De Weerdt, 1989)

  17. In vitro antiplasmodial activity of bacterium RJAUTHB 14 associated with marine sponge Haliclona Grant against Plasmodium falciparum.

    Science.gov (United States)

    Jacob Inbaneson, Samuel; Ravikumar, Sundaram

    2012-06-01

    Malaria is the most important parasitic disease, leading to annual death of about one million people, and the Plasmodium falciparum develops resistance to well-established antimalarial drugs. The newest antiplasmodial drug from a marine microorganism helps in addressing this problem. In the present study, Haliclona Grant were collected and subjected for enumeration and isolation of associated bacteria. The count of bacterial isolates was maximum in November 2007 (18 × 10(4) colony-forming units (CFU) g(-1), and the average count was maximum during the monsoon season (117 × 10(3) CFU g(-1)). Thirty-three morphologically different bacterial isolates were isolated from Haliclona Grant, and the extracellular ethyl acetate extracts were screened for antiplasmodial activity against P. falciparum. The antiplasmodial activity of bacterium RJAUTHB 14 (11.98 μg[Symbol: see text]ml(-1)) is highly comparable with the positive control chloroquine (IC(50) 19.59 μg[Symbol: see text]ml(-1)), but the other 21 bacterial extracts showed an IC(50) value of more than 100 μg[Symbol: see text]ml(-1). Statistical analysis reveals that significant in vitro antiplasmodial activity (P < 0.05) was observed between the concentrations and time of exposure. The chemical injury to erythrocytes showed no morphological changes in erythrocytes by the ethyl acetate extract of bacterial isolates after 48 h of incubation. The in vitro antiplasmodial activity might be due to the presence of reducing sugars and alkaloids in the ethyl acetate extracts of bacterium RJAUTHB 14. The 16S rRNA gene partial sequence of bacterium RJAUTHB 14 is deposited in NCBI (GenBank accession no. GU269569). It is concluded from the present study that the ethyl acetate extracts of bacterium RJAUTHB 14 possess lead compounds for the development of antiplasmodial drugs.

  18. Ultrastructure of the ciliated cells of the free-swimming larva, and sessile stages, of the marine sponge Haliclona indistincta (Demospongiae: Haplosclerida).

    Science.gov (United States)

    Stephens, Kelly M; Ereskovsky, Alexander; Lalor, Pierce; McCormack, Grace P

    2013-11-01

    We provide a detailed, comparative study of the ciliated cells of the marine haplosclerid sponge Haliclona indistincta, in order to make data available for future phylogenetic comparisons at the ultrastructural level. Our study focuses on the description and analysis of the larval epithelial cells, and choanocytes of the metamorphosed juvenile sponge. The ultrastructure of the two cell types is sufficiently different to prevent our ability to conclusively determine the origin of the choanocytes from the larval ciliated cells. However, ciliated, epithelial cells were observed in a migratory position within the inner cell mass of the larval stages. Some cilia were observed within the cell's cytoplasm, which is indicative of the ciliated epithelial cell undergoing transdifferentiation into a choanocyte; while traces of other ciliated epithelial cells were contained within phagosomes, suggesting they are phagocytosed. We compared our data with other species described in the literature. However, any phylogenetic inference must wait until further detailed comparisons can be made with species whose phylogenetic position has been determined by other means, such as phylogenomics, in order to more closely link genomic, and morphological information.

  19. Seasonal growth rate of the sponge Haliclona oculata (Demospongiae: Haplosclerida).

    Science.gov (United States)

    Koopmans, Marieke; Wijffels, René H

    2008-01-01

    The interest in sponges has increased rapidly since the discovery of potential new pharmaceutical compounds produced by many sponges. A good method to produce these compounds by using aquaculture of sponges is not yet available, because there is insufficient knowledge about the nutritional needs of sponges. To gain more insight in the nutritional needs for growth, we studied the growth rate of Haliclona oculata in its natural environment and monitored environmental parameters in parallel. A stereo photogrammetry approach was used for measuring growth rates. Stereo pictures were taken and used to measure volumetric changes monthly during 1 year. Volumetric growth rate of Haliclona oculata showed a seasonal trend with the highest average specific growth rate measured in May: 0.012 +/- 0.004 day(-1). In our study a strong positive correlation (p rate with temperature, algal biomass (measured as chlorophyll a), and carbon and nitrogen content in suspended particulate matter. A negative correlation (p rate with salinity, ammonium, nitrate, nitrite, and phosphate. No correlation was found with dissolved organic carbon, suggesting that Haliclona oculata is more dependent on particulate organic carbon.

  20. Primmorphs from seven marine sponges : formation and structure

    NARCIS (Netherlands)

    Sipkema, D.; Wielink, van R.; Lammeren, van A.A.M.; Tramper, J.; Osinga, R.; Wijffels, R.H.

    2003-01-01

    Primmorphs were obtained from seven different marine sponges: Stylissa massa, Suberites domuncula, Pseudosuberites aff. andrewsi, Geodia cydonium, Axinella polypoides, Halichondria panicea and Haliclona oculata. The formation process and the ultra structure of primmorphs were studied. A positive

  1. Primmorphs from seven marine sponges : formation and structure

    NARCIS (Netherlands)

    Sipkema, D.; Wielink, van R.; Lammeren, van A.A.M.; Tramper, J.; Osinga, R.; Wijffels, R.H.

    2003-01-01

    Primmorphs were obtained from seven different marine sponges: Stylissa massa, Suberites domuncula, Pseudosuberites aff. andrewsi, Geodia cydonium, Axinella polypoides, Halichondria panicea and Haliclona oculata. The formation process and the ultra structure of primmorphs were studied. A positive cor

  2. Isolation and Identification of Antitrypanosomal and Antimycobacterial Active Steroids from the Sponge Haliclona simulans

    Directory of Open Access Journals (Sweden)

    Christina Viegelmann

    2014-05-01

    Full Text Available The marine sponge Haliclona simulans collected from the Irish Sea yielded two new steroids: 24-vinyl-cholest-9-ene-3β,24-diol and 20-methyl-pregn-6-en-3β-ol,5a,8a-epidioxy, along with the widely distributed 24-methylenecholesterol. One of the steroids possesses an unusually short hydrocarbon side chain. The structures were elucidated using nuclear magnetic resonance spectroscopy and confirmed using electron impact- and high resolution electrospray-mass spectrometry. All three steroids possess antitrypanosomal and anti-mycobacterial activity. All the steroids were found to possess low cytotoxicity against Hs27 which was above their detected antitrypanosomal potent concentrations.

  3. Carbon conversion and metabolic rate in two marine sponges

    NARCIS (Netherlands)

    Koopmans, M.; Van Rijswijk, P.; Martens, D.; Egorova-Zachernyuk, T.A.; Middelburg, J.J.; Wijffels, R.H.

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a 13C isotope pulse-chase approach. The sponges were fed 13C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total

  4. Biosynthesis of Silver Nanoparticles Using Marine Sponge

    Directory of Open Access Journals (Sweden)

    Mahta Rezazaeh Hamed

    2015-12-01

    Full Text Available Biosynthesis of silver nanoparticles using marine sponge extract Haliclona was carried out. Marine sponges' extracts are responsible for the reduction of silver nitrate solution. Silver nanoparticles synthesized using fresh and dry marine sponge. Experimental factors including, time duration, pH, temperature were optimized. Silver nanoparticles were characterized by UV-Visible spectrophotometry. The sizes of synthesis silver nanoparticles were 27-46 nm and confirmed by scanning electron microscopy (SEM. X-ray diffraction (XRD crystallography indicated the silver nanoparticles crystalline nature. Fourier transform infrared spectroscopy (FT-IR was revealed the functional groups of extract of Haliclona, which are capable of reduction of silver nanoparticles. This method is a cost-effective, eco-friendly and nontoxic procedure..

  5. Effect of Copper Treatment on the Composition and Function of the Bacterial Community in the Sponge Haliclona cymaeformis

    KAUST Repository

    Tian, R.-M.

    2014-11-04

    Marine sponges are the most primitive metazoan and host symbiotic microorganisms. They are crucial components of the marine ecological system and play an essential role in pelagic processes. Copper pollution is currently a widespread problem and poses a threat to marine organisms. Here, we examined the effects of copper treatment on the composition of the sponge-associated bacterial community and the genetic features that facilitate the survival of enriched bacteria under copper stress. The 16S rRNA gene sequencing results showed that the sponge Haliclona cymaeformis harbored symbiotic sulfur-oxidizing Ectothiorhodospiraceae and photosynthetic Cyanobacteria as dominant species. However, these autotrophic bacteria decreased substantially after treatment with a high copper concentration, which enriched for a heterotrophic-bacterium-dominated community. Metagenomic comparison revealed a varied profile of functional genes and enriched functions, including bacterial motility and chemotaxis, extracellular polysaccharide and capsule synthesis, virulence-associated genes, and genes involved in cell signaling and regulation, suggesting short-period mechanisms of the enriched bacterial community for surviving copper stress in the microenvironment of the sponge. Microscopic observation and comparison revealed dynamic bacterial aggregation within the matrix and lysis of sponge cells. The bacteriophage community was also enriched, and the complete genome of a dominant phage was determined, implying that a lytic phage cycle was stimulated by the high copper concentration. This study demonstrated a copper-induced shift in the composition of functional genes of the sponge-associated bacterial community, revealing the selective effect of copper treatment on the functions of the bacterial community in the microenvironment of the sponge. IMPORTANCE This study determined the bacterial community structure of the common sponge Haliclona cymaeformis and examined the effect of copper

  6. Haliclona (Halichoclona) vansoesti n. sp., a new chalinid sponge species (Porifera, Demospongiae, Haplosclerida) from the Caribbean

    NARCIS (Netherlands)

    Weerdt, de Wallie H.; Kluijver, de Mario J.; Gomez, Raquel

    1999-01-01

    A new sponge species, Haliclona (Halichoclona) vansoesti n.sp., belonging to the family Chalinidae of the order Haplosclerida, is described from Curaçao and other Caribbean localities. The subgenus name Halichoclona de Laubenfels is for the first time applied to a species of the “fistulosa” group (

  7. Ceratodictyols, 1-Glyceryl Ethers from the Red Alga-Sponge Association Ceratodictyon spongiosum/Haliclona cymaeformis

    NARCIS (Netherlands)

    Akiyama, T.; Ueoka, R.; van Soest, R.W.M.; Matsunaga, S.

    2009-01-01

    Six 1-glyceryl ethers (1−6) were isolated from the red alga−sponge assemblage Ceratodictyon spongiosum/Haliclona cymaeformis. Structural assignments were conducted by interpretation of spectroscopic data and the modified Mosher’s method. Four allylic alcohols were obtained as a pair of epimeric

  8. Antibacterial Activity of Metabolites Products of Vibrio Alginolyticus Isolated from Sponge Haliclona sp. Against Staphylococcus Aureus

    Science.gov (United States)

    Nursyam, Happy

    2017-01-01

    The objective of this study was to investigate the antibacterial activity of primary and secondary metabolites from Vibrio alginoliticus isolated from sponge Haliclona sp. against Staphylococcus aureus. A descriptive method was used in this research. The antibacterial activity was analysed by paper disk method. The results showed that the primary metabolites produced by Vibrio alginoliticus that is in symbiosis with sponge Haliclona sp. were able to effectively inhibit Staphylococcus aureus growth with an inhibition zone diameter of 12.9 mm, while the secondary metabolites of 9.9 mm. Electrophoresis analysis of the primary metabolites showed that there were 11 protein bands which were not found in secondary metabolites. Protein bands with low molecular weights presumably had an inhibiting effect on the growth of Staphylococcus aureus.

  9. Cultivation of marine sponges

    Institute of Scientific and Technical Information of China (English)

    QU Yi; ZHANG Wei; LI Hua; YU Xingju; JIN Meifang

    2005-01-01

    Sponges are the most primitive of multicellular animals, and are major pharmaceutical sources of marine secondary metabolites. A wide variety of new compounds have been isolated from sponges. In order to produce sufficient amounts of the compounds of the needed, it is necessary to obtain large amount of sponges.The production of sponge biomass has become a focus of marine biotechnology.

  10. Cyclic Bis-1,3-dialkylpyridiniums from the Sponge Haliclona sp.

    Directory of Open Access Journals (Sweden)

    Jongheon Shin

    2012-09-01

    Full Text Available Eight novel cyclic bis-1,3-dialkylpyridiniums, as well as two known compounds from the cyclostellettamine class, were isolated from the sponge Haliclona sp. from Korea. Structures of these novel compounds were determined using combined NMR and FAB-MS/MS analyses. Several of these compounds exhibited moderate cytotoxic and antibacterial activities against A549 cell-line and Gram-positive strains, respectively. The structure-activity relationships of cyclostellettamines are discussed based on their bioactivities.

  11. Long-Chain Acetylenic Ketones from the Micronesian Sponge Haliclona sp. Importance of the 1-yn-3-ol Group for Antitumor Activity

    Directory of Open Access Journals (Sweden)

    Guang-Xiong Zhou

    2003-11-01

    Full Text Available Abstract: Two new long-chain C33 polyacetylenic compounds, halicynones A and B were isolated from the marine sponge Haliclona sp. along with known analogs. The known compound pellynol A possessing a 1-yn-3-ol terminus, exhibited strong antitumor activity against the human colon tumor cell line HCT-116 (IC50 0.026 μg/mL, however, the corresponding 1-yn-3-one, halicynone A, was inactive, which suggests an important role for the terminal 1-yn-3-ol functional group in mediating cytotoxic activity.

  12. Marine sponges as pharmacy

    NARCIS (Netherlands)

    Sipkema, D.; Franssen, M.C.R.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2005-01-01

    Marine sponges have been considered as a gold mine during the past 50 years, with respect to the diversity of their secondary metabolites. The biological effects of new metabolites from sponges have been reported in hundreds of scientific papers, and they are reviewed here. Sponges have the

  13. Studies on the Red Sea Sponge Haliclona sp. for its Chemical and Cytotoxic Properties

    Science.gov (United States)

    Al-Massarani, Shaza Mohamed; El-Gamal, Ali Ali; Al-Said, Mansour Sulaiman; Abdel-Kader, Maged S.; Ashour, Abdelkader E.; Kumar, Ashok; Abdel-Mageed, Wael M.; Al-Rehaily, Adnan Jathlan; Ghabbour, Hazem A.; Fun, Hoong-Kun

    2016-01-01

    Background: A great number of novel compounds with rich chemical diversity and significant bioactivity have been reported from Red Sea sponges. Objective: To isolate, identify, and evaluate the cytotoxic activity of the chemical constituents of a sponge belonging to genus Haliclona collected from the Eastern coast of the Red Sea. Materials and Methods: The total ethanolic extract of the titled sponge was subjected to intensive chromatographic fractionation and purification guided by cytotoxic bioassay toward various cancer cell lines. The structures of the isolated compounds were elucidated using spectroscopic techniques including one-dimension and two-dimension nuclear magnetic resonance, mass spectrometry, ultraviolet, and infrared data, as well as comparison with the reported spectral data for the known compounds. X-ray single-crystal structure determination was performed to determine the absolute configuration of compound 4. The screening of antiproliferative activity of the compounds was carried on three tumor cell lines, namely the human cervical cancer (HeLa), human hepatocellular carcinoma (HepG2), and human medulloblastoma (Daoy) cells using MTT assay. Results: This investigation resulted in the isolation of a new indole alkaloid, 1-(1H-indol-3-yloxy) propan-2-ol (1), with the previously synthesized pyrrolidine alkaloid, (2R, 3S, 4R, 5R) pyrrolidine-(1-hydroxyethyl)-3,4-diol hydrochloride (4), isolated here from a natural source for the first time. In addition, six known compounds tetillapyrone (2), nortetillapyrone (3), 2-methyl maleimide-5-oxime (5), maleimide-5-oxime (6), 5-(hydroxymethyl) dihydrofuran-2 (3H)-one (7), and ergosta-5,24 (28)-dien-3-ol (8) were also identified. Most of the isolated compounds exhibited weak cytotoxic activity against HepG-2, Daoy, and HeLa cancer cell lines. Conclusion: This is the first report of the occurrence of the indole and pyrrolidine alkaloids, 1-(1H-indol-2-yloxy) propan-2-ol (1), and the - (1-hydroxyethyl)-3

  14. Cultivation of marine sponges

    NARCIS (Netherlands)

    Osinga, R.; Tramper, J.; Wijffels, R.H.

    1999-01-01

    There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly

  15. Effect of polybrominated diphenyl ether (PBDE) treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis.

    KAUST Repository

    Tian, Ren-Mao

    2014-01-01

    Marine sponges play important roles in benthic environments and are sensitive to environmental stresses. Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants since the 1970s and are cytotoxic and genotoxic to organisms. In the present study, we studied the short-period effect of PBDE-47 (2,2\\',4,4\\'-tetrabromodiphenyl ether) treatment on the community structure and functional gene composition of the bacterial community inhabiting the marine sponge Haliclona cymaeformis. Our results showed that the bacterial community shifted from an autotrophic bacteria-dominated community to a heterotrophic bacteria-dominated community in response to PBDE-47 in a time- and concentration-dependent manner. A potentially symbiotic sulfur-oxidizing bacterium (SOB) was dominant (>80% in abundance) in the untreated sponge. However, exposure to a high concentration (1 μg/L) of PBDE-47 caused a substantial decrease in the potential symbiont and an enrichment of heterotrophic bacteria like Clostridium. A metagenomic analysis showed a selective effect of the high concentration treatment on the functional gene composition of the enriched heterotrophic bacteria, revealing an enrichment for the functions responsible for DNA repair, multidrug efflux pumping, and bacterial chemotaxis and motility. This study demonstrated that PBDE-47 induced a shift in the composition of the community and functional genes in the sponge-associated bacterial community, revealing the selective effect of PBDE-47 treatment on the functions of the bacterial community in the microenvironment of the sponge.

  16. Effect of polybrominated diphenyl ether (PBDE treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis

    Directory of Open Access Journals (Sweden)

    Renmao eTian

    2015-01-01

    Full Text Available Marine sponges play important roles in benthic environments and are sensitive to environmental stresses. Polybrominated diphenyl ethers (PBDEs have been widely used as flame retardants since the 1970s and are cytotoxic and genotoxic to organisms. In the present study, we studied the short-period effect of PBDE-47 (2,2',4,4'-tetrabromodiphenyl ether treatment on the community structure and functional gene composition of the bacterial community inhabiting the marine sponge Haliclona cymaeformis. Our results showed that the bacterial community shifted from an autotrophic bacteria-dominated community to a heterotrophic bacteria-dominated community in response to PBDE-47 in a time- and concentration-dependent manner. A potentially symbiotic sulfur-oxidizing bacterium (SOB was dominant (>80% in abundance in the untreated sponge. However, exposure to a high concentration (1 µg/L of PBDE-47 caused a substantial decrease in the potential symbiont and an enrichment of heterotrophic bacteria like Clostridium. A metagenomic analysis showed a selective effect of the high concentration treatment on the functional gene composition of the enriched heterotrophic bacteria, revealing an enrichment for the functions responsible for DNA repair, multidrug efflux pumping, and bacterial chemotaxis and motility. This study demonstrated that PBDE-47 induced a shift in the composition of the community and functional genes in the sponge-associated bacterial community, revealing the selective effect of PBDE-47 treatment on the functions of the bacterial community in the microenvironment of the sponge.

  17. Effect of polybrominated diphenyl ether (PBDE) treatment on the composition and function of the bacterial community in the sponge Haliclona cymaeformis.

    Science.gov (United States)

    Tian, Ren-Mao; Lee, On On; Wang, Yong; Cai, Lin; Bougouffa, Salim; Chiu, Jill Man Ying; Wu, Rudolf Shiu Sun; Qian, Pei-Yuan

    2014-01-01

    Marine sponges play important roles in benthic environments and are sensitive to environmental stresses. Polybrominated diphenyl ethers (PBDEs) have been widely used as flame retardants since the 1970s and are cytotoxic and genotoxic to organisms. In the present study, we studied the short-period effect of PBDE-47 (2,2',4,4'-tetrabromodiphenyl ether) treatment on the community structure and functional gene composition of the bacterial community inhabiting the marine sponge Haliclona cymaeformis. Our results showed that the bacterial community shifted from an autotrophic bacteria-dominated community to a heterotrophic bacteria-dominated community in response to PBDE-47 in a time- and concentration-dependent manner. A potentially symbiotic sulfur-oxidizing bacterium (SOB) was dominant (>80% in abundance) in the untreated sponge. However, exposure to a high concentration (1 μg/L) of PBDE-47 caused a substantial decrease in the potential symbiont and an enrichment of heterotrophic bacteria like Clostridium. A metagenomic analysis showed a selective effect of the high concentration treatment on the functional gene composition of the enriched heterotrophic bacteria, revealing an enrichment for the functions responsible for DNA repair, multidrug efflux pumping, and bacterial chemotaxis and motility. This study demonstrated that PBDE-47 induced a shift in the composition of the community and functional genes in the sponge-associated bacterial community, revealing the selective effect of PBDE-47 treatment on the functions of the bacterial community in the microenvironment of the sponge.

  18. Cultivation of Marine Sponges.

    Science.gov (United States)

    Osinga; Tramper; Wijffels

    1999-11-01

    There is increasing interest in biotechnological production of marine sponge biomass owing to the discovery of many commercially important secondary metabolites in this group of animals. In this article, different approaches to producing sponge biomass are reviewed, and several factors that possibly influence culture success are evaluated. In situ sponge aquacultures, based on old methods for producing commercial bath sponges, are still the easiest and least expensive way to obtain sponge biomass in bulk. However, success of cultivation with this method strongly depends on the unpredictable and often suboptimal natural environment. Hence, a better-defined production system would be desirable. Some progress has been made with culturing sponges in semicontrolled systems, but these still use unfiltered natural seawater. Cultivation of sponges under completely controlled conditions has remained a problem. When designing an in vitro cultivation method, it is important to determine both qualitatively and quantitatively the nutritional demands of the species that is to be cultured. An adequate supply of food seems to be the key to successful sponge culture. Recently, some progress has been made with sponge cell cultures. The advantage of cell cultures is that they are completely controlled and can easily be manipulated for optimal production of the target metabolites. However, this technique is still in its infancy: a continuous cell line has yet to be established. Axenic cultures of sponge aggregates (primmorphs) may provide an alternative to cell culture. Some sponge metabolites are, in fact, produced by endosymbiotic bacteria or algae that live in the sponge tissue. Only a few of these endosymbionts have been cultivated so far. The biotechnology for the production of sponge metabolites needs further development. Research efforts should be continued to enable commercial exploitation of this valuable natural resource in the near future.

  19. Selective Toxicity of Persian Gulf Sea Cucumber (Holothuria parva and Sponge (Haliclona oculata Methanolic Extracts on Liver Mitochondria Isolated from an Animal Model of Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Seydi

    2015-12-01

    Full Text Available Background Natural products isolated from marine environments are well known for their pharmacodynamic potential in diverse disease treatments, such as for cancer or inflammatory conditions. Sea cucumbers are marine animals of the phylum Echinoderm and the class Holothuroidea, with leathery skin and gelatinous bodies. Sponges are important components of Persian Gulf animal communities, and the marine sponges of the genus Haliclona have been known to display broad-spectrum biological activity. Many studies have shown that sea cucumbers and sponges contain antioxidants and anti-cancer compounds. Objectives This study was designed to determine the selective toxicity of Persian Gulf sea cucumber (Holothuria parva and sponge (Haliclona oculata methanolic extracts on liver mitochondria isolated from an animal model of hepatocellular carcinoma, as part of a national project that hopes to identify novel potential anticancer candidates among Iranian Persian Gulf flora and fauna. Materials and Methods To induce hepatocarcinogenesis, rats were given diethylnitrosamine (DEN injections (200 mg/kg i.p. by a single dose, and then the cancer was promoted with 2-acetylaminofluorene (2-AAF (0.02 w/w for two weeks. Histopathological evaluations were performed, and levels of liver injury markers and a specific liver cancer marker (alpha-fetoprotein, were determined for confirmation of hepatocellular carcinoma induction. Finally, mitochondria were isolated from cancerous and non-cancerous hepatocytes. Results Our results showed that H. parva methanolic extracts (250, 500, and 1000 µg/mL and H. oculata methanolic extracts (200, 400, and 800 µg/mL increased reactive oxygen species (ROS formation, mitochondrial membrane potential (MMP, mitochondrial swelling, and cytochrome c release in the mitochondria obtained from cancerous hepatocytes, but not in mitochondria obtained from non-cancerous liver hepatocytes. These extracts also induced caspase-3 activation, which is

  20. Apodomyzon n. gen., a highly transformed siphonostome cyclopoid copepod, parasitic in the sponge Haliclona from Roscoff

    NARCIS (Netherlands)

    Stock, Jan H.

    1970-01-01

    Description d’un nouveau genre, Apodomyzon, et de deux espèces nouvelles, A. brevicorne et A. longicorne, de Copépodes cyclopoïdes siphonostomes, endoparasites d’une éponge intercôtidale, Haliclona indistincta, à Roscoff (Bretagne, France). Quoique les appendices céphaliques de la femelle ressemblen

  1. Bacterial Diversity Associated with Cinachyra cavernosa and Haliclona pigmentifera, Cohabiting Sponges in the Coral Reef Ecosystem of Gulf of Mannar, Southeast Coast of India.

    Directory of Open Access Journals (Sweden)

    C Jasmin

    Full Text Available Sponges are abundant, diverse and functionally important organisms of coral reef ecosystems. Sponge-associated microorganisms have been receiving greater attention because of their significant contribution to sponge biomass, biogeochemical cycles and biotechnological potentials. However, our understanding of the sponge microbiome is limited to a few species of sponges from restricted geographical locations. Here, we report for the first time the bacterial diversity of two cohabiting sponges, viz. Cinachyra cavernosa and Haliclona pigmentifera, as well as that in the ambient water from the coral reef ecosystems of the Gulf of Mannar, located along the southeast coast of India. Two hundred and fifty two clones in the 16S rRNA gene library of these sponges were grouped into eight distinct phyla, of which four belonged to the core group that are associated only with sponges. Phylogenetic analysis of the core bacteria showed close affinity to other sponge-associated bacteria from different geographical locations. γ-Proteobacteria, Chloroflexi, Planctomycetes and Deferribacter were the core groups in C. cavernosa while β and δ-Proteobacteria performed this role in H. pigmentifera. We observed greater OTU diversity for C. cavernosa (Hǀ 2.07 compared to H. pigmentifera (Hǀ 1.97. UniFrac analysis confirmed the difference in bacterial diversity of the two sponge species and also between the sponges and the reef water (p<0.001. The results of our study restate the existence of a host driven force in shaping the sponge microbiome.

  2. Cytotoxicity evaluation of extracts and fractions of ifve marine sponges from the Persian Gulf and HPLC ifngerprint analysis of cytotoxic extracts

    Institute of Scientific and Technical Information of China (English)

    Davood Mahdian; Milad Iranshahy; Abolfazl Shakeri; Azar Hoseini; Hoda Yavari; Melika Nazemi; Mehrdad Iranshahi

    2015-01-01

    Objective:To screen the cytotoxic effects of some marine sponges extracts on HeLa and PC12 cells. Methods: Five marine sponges including Ircinia echinata (I. echinata), Dysidea avara, Axinella sinoxea, Haliclona tubifera and Haliclona violacea were collected from the Persian Gulf (Hengam Island). The cytotoxic effect of these sponges was evaluated by using MTT assay. The metabolic high performance liquid chromatography fingerprint of I. echinata was also carried out at two wavelengths (254 and 280 nm). Results:Among the sponges tested in this study, the extracts of I. echinata and Dysidea avara possessed the cytotoxic effect on HeLa and PC12 cells. The obtained fractions from high performance liquid chromatography were evaluated for their cytotoxic properties against the cell lines. The isolated fractions did not show significant cytotoxic properties. Conclusions:I. echinata could be considered as a potential extract for chemotherapy. Further investigation is needed to determine the accuracy of mechanism.

  3. Cytotoxicity evaluation of extracts and fractions of five marine sponges from the Persian Gulf and HPLC fingerprint analysis of cytotoxic extracts

    Institute of Scientific and Technical Information of China (English)

    Davood; Mahdian; Milad; Iranshahy; Abolfazl; Shakeri; Azar; Hoseini; Hoda; Yavari; Melika; Nazemi; Mehrdad; Iranshahi

    2015-01-01

    Objective: To screen the cytotoxic effects of some marine sponges extracts on HeLa and PC12 cells.Methods: Five marine sponges including Ircinia echinata(I. echinata), Dysidea avara,Axinella sinoxea, Haliclona tubifera and Haliclona violacea were collected from the Persian Gulf(Hengam Island). The cytotoxic effect of these sponges was evaluated by using MTT assay. The metabolic high performance liquid chromatography fingerprint of I. echinata was also carried out at two wavelengths(254 and 280 nm).Results: Among the sponges tested in this study, the extracts of I. echinata and Dysidea avara possessed the cytotoxic effect on HeLa and PC12 cells. The obtained fractions from high performance liquid chromatography were evaluated for their cytotoxic properties against the cell lines. The isolated fractions did not show significant cytotoxic properties.Conclusions: I. echinata could be considered as a potential extract for chemotherapy.Further investigation is needed to determine the accuracy of mechanism.

  4. Heavy metal distribution in organic and siliceous marine sponge tissues measured by square wave anodic stripping voltammetry.

    Science.gov (United States)

    Illuminati, S; Annibaldi, A; Truzzi, C; Scarponi, G

    2016-10-15

    May sponge spicules represent a "tank" to accumulate heavy metals? In this study we test this hypothesis determining the distribution of Cd, Pb and Cu concentrations between organic and siliceous tissues in Antarctic Demospongia (Sphaerotylus antarcticus, Kirkpatrikia coulmani and Haliclona sp.) and in the Mediterranean species Petrosia ficiformis. Results show that although, in these sponges, spicules represent about 80% of the mass content, the accumulation of pollutant is lower in the spicules than in the corresponding organic fraction. The contribution of tissues to the total sponge content of Cd, Pb and Cu is respectively 99%, 82% and 97% for Antarctic sponges and 96%, 95% and 96% for P. ficiformis, similar in polar and temperate organisms. These results pave the way to a better understanding of the role of marine sponges in uptaking heavy metals and to their possible use as monitor of marine ecosystems, recommend by the Water Framework Directive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Sponge epizoism in the Caribbean and the discovery of new Plakortis and Haliclona species, and polymorphism of Xestospongia deweerdtae (Porifera).

    Science.gov (United States)

    Vicente, Jan; Zea, Sven; Hill, Russell T

    2016-10-24

    The new discovery by Vicente et al. (2014) of specialized epizoic symbioses between sponges of the genera Plakortis and Xestospongia revealed the obligate interaction of two new Plakortis spp. associating with Xestospongia deweerdtae and a new Xestospongia sp. In this study we formally describe the two new Plakortis spp. as Plakortis deweerdtaephila sp. nov. (previously reported as Plakortis sp. 1), Plakortis symbiotica sp. nov. (previously reported as Plakortis sp. 2) and describe the new Xestospongia sp. epibiont as Haliclona (Halichoclona) plakophila sp. nov.  Plakortis deweerdtaephila associates only with X. deweerdtae, and has very small to large straight diods (24.2-233.7 μm long) and triods (26.4-102.6 μm long) that form large ectosomal circular meshes (114-329 μm diameter). P. symbiotica associates with both X. deweerdtae and H. plakophila, has larger curved diods (71.9-141.8 μm long) and triods (20.4-70.6 μm long) that form smaller ectosomal circular meshes (43-121 μm diameter) than P. deweerdtaephila. Phylogenetic analysis of cox1 and cob gene fragments revealed a strongly supported clade that grouped both Plakortis spp. nov. distantly from any other known Plakortis spp. H. plakophila is described as a thin encrusting veneer of tissue with occasional papillae, so far only found associated with P. symbiotica in La Parguera, Puerto Rico. Phylogenetic analysis of 18S rRNA and cox1 gene fragments place it distantly from any known clade of Haplosclerida. We found a new associated morphotype of X. deweerdtae from Bocas del Toro Panama, which completely overgrew P. deweerdtaephila. In addition, free-living morphotypes from Panama produce larger S-shaped and round bracket shaped strongyles never before observed for this species, leading us to redescribe X. deweerdtae. All X. deweerdtae morphotypes shared >99% sequence homology of cox1, 18S rRNA and 28S rRNA genes with the holotype of X. deweerdtae. This study highlights the highly variable morphological

  6. [Bioactive compounds from marine sponges and cell culture of marine sponges].

    Science.gov (United States)

    Zhang, Xiao-Ying; Zhao, Quan-Yu; Xue, Song; Zhang, Wei

    2002-01-01

    Presented a survey of bioactive compounds discovered from marine sponges in the recent five years, including the classes, distribution and their potential pharmaceutical uses. In particular, the compounds with antitumor, antivirus and antibacteria activity were discussed with their originating marine sponge species. Whereas the "Supply Problems" were identified to hinder the clinical tests and commercial applications of most of the sponge bioactive compounds. In vitro cell culture of marine sponges is one of the most promising approaches to solve this problem. The state-of-the art of marine sponge cell culture and the challenging areas were discussed. A brief summary of the R&D status was also given on the bioactive compounds from marine sponges in Chinese oceans. It is crucial to invest more efforts on studying marine sponges and their bioactive compounds in our country in order to develop new marine drugs of independent intellectual property.

  7. Genomic insights into the marine sponge microbiome.

    Science.gov (United States)

    Hentschel, Ute; Piel, Jörn; Degnan, Sandie M; Taylor, Michael W

    2012-09-01

    Marine sponges (phylum Porifera) often contain dense and diverse microbial communities, which can constitute up to 35% of the sponge biomass. The genome of one sponge, Amphimedon queenslandica, was recently sequenced, and this has provided new insights into the origins of animal evolution. Complementary efforts to sequence the genomes of uncultivated sponge symbionts have yielded the first glimpse of how these intimate partnerships are formed. The remarkable microbial and chemical diversity of the sponge-microorganism association, coupled with its postulated antiquity, makes sponges important model systems for the study of metazoan host-microorganism interactions, and their evolution, as well as for enabling access to biotechnologically important symbiont-derived natural products. In this Review, we discuss our current understanding of the interactions between marine sponges and their microbial symbiotic consortia, and highlight recent insights into these relationships from genomic studies.

  8. New terpenoids from two Indonesian marine sponges

    NARCIS (Netherlands)

    Salmoun, M.; Breakman, J.C.; Dewelle, J.; Darro, F.; Kiss, R.; de Voogd, N.J.; van Soest, R.W.M.

    2007-01-01

    A C16 norsesterterpenoid (euplectellodiol, 1) and a norditerpenoid (2) have been isolated from the marine sponges Mycale euplectelloides and Diacarnus megaspinorhabdosa, respectively. Their structures have been determined by spectroscopic methods. Compounds 1 and 2 are new natural products.

  9. Polycyclic Guanidine Alkaloids from Poecilosclerida Marine Sponges.

    Science.gov (United States)

    Sfecci, Estelle; Lacour, Thierry; Amade, Philippe; Mehiri, Mohamed

    2016-04-09

    Sessile marine sponges provide an abundance of unique and diversified scaffolds. In particular, marine guanidine alkaloids display a very wide range of biological applications. A large number of cyclic guanidine alkaloids, including crambines, crambescins, crambescidins, batzelladines or netamins have been isolated from Poecilosclerida marine sponges. In this review, we will explore the chemodiversity of tri- and pentacyclic guanidine alkaloids. NMR and MS data tools will also be provided, and an overview of the wide range of bioactivities of crambescidins and batzelladines derivatives will be given.

  10. Isolation and cultivation of fungal strains from in vitro cell cultures of two marine sponges (Porifera: Halichondrida and Haplosclerida)

    Science.gov (United States)

    Rozas, Enrique E.; Albano, Rodolpho M.; Lôbo-Hajdu, Gisele; Müller, Werner E.G.; Schröder, Heinz-C.; Custódio, Márcio R.

    2011-01-01

    Despite the large number of reports describing sponge-microbe associations, limited knowledge is available about associated fungi and their relationships with the hosts. In this work, specific fungal strains were obtained directly from in vitro sponge cell cultures (primmorphs) and single sponge cells (cytospins) and compared with those obtained from whole tissue preparations. A total of 27 fungal strains were isolated from the marine sponges Hymeniacidon heliophila and Haliclona melana. Fifteen strains, nine from H. heliophila and six from H. melana, were obtained from whole tissue and were considered as possible mesohyl associated or transient fungi. Twelve strains were isolated from in vitro sponge cell cultures (primmorphs) and were, therefore, considered as cell associated. From these, five different strains were obtained from H. heliophila isolated cells, while five were identified from cytospins and two from primmorphs of H. melana. The fungal strains obtained from cell cultures from both sponge species were different, and none of them were detected in the whole tissue preparations of the same species. Nine H. heliophila and seven H. melana strains shows low similarity with the sequences available in public databases and belong to potentially new species. This is the first report of fungi isolated directly from sponge cells, which allowed the observation and selection of specific strains that probably would not be obtained by usual culture dependent techniques. PMID:24031790

  11. Isolation and cultivation of fungal strains from in vitro cell cultures of two marine sponges (Porifera: Halichondrida and Haplosclerida

    Directory of Open Access Journals (Sweden)

    Enrique E. Rozas

    2011-12-01

    Full Text Available Despite the large number of reports describing sponge-microbe associations, limited knowledge is available about associated fungi and their relationships with the hosts. In this work, specific fungal strains were obtained directly from in vitro sponge cell cultures (primmorphs and single sponge cells (cytospins and compared with those obtained from whole tissue preparations. A total of 27 fungal strains were isolated from the marine sponges Hymeniacidon heliophila and Haliclona melana. Fifteen strains, nine from H. heliophila and six from H. melana, were obtained from whole tissue and were considered as possible mesohyl associated or transient fungi. Twelve strains were isolated from in vitro sponge cell cultures (primmorphs and were, therefore, considered as cell associated. From these, five different strains were obtained from H. heliophila isolated cells, while five were identified from cytospins and two from primmorphs of H. melana. The fungal strains obtained from cell cultures from both sponge species were different, and none of them were detected in the whole tissue preparations of the same species. Nine H. heliophila and seven H. melana strains shows low similarity with the sequences available in public databases and belong to potentially new species. This is the first report of fungi isolated directly from sponge cells, which allowed the observation and selection of specific strains that probably would not be obtained by usual culture dependent techniques.

  12. Haliclona (Halichoclona) vanderlandi spec. nov. (Porifera: Demospongiae: Haplosclerida) from Indonesia

    NARCIS (Netherlands)

    Weerdt, de W.H.; Soest, van R.W.M.

    2001-01-01

    A new sponge species, Haliclona (Halichoclona) vanderlandi is described from three Indonesian localities: Take Bone Rata, Kapoposang (SW Sulawesi) and Manadotua Island (NE Sulawesi). The species belongs to the family Chalinidae and is assigned to the subgenus Halichoclona of the genus Haliclona, hit

  13. Antagonistic activity of marine sponges associated Actinobacteria

    Institute of Scientific and Technical Information of China (English)

    Selvakumar Dharmaraj; Dhevendaran Kandasamy

    2016-01-01

    Objective: To focus on the isolation and preliminary characterization of marine sponges associated Actinobacteria particularly Streptomyces species and also their antagonistic activities against bacterial and fungal pathogens. Methods: The sponges were collected from Kovalam and Vizhinjam port of south-west coast of Kerala, India. Isolation of strains was carried out from sponge extracts using international Streptomyces project media. For preliminary identification of the strains, morphological (mycelial colouration, soluble pigments, melanoid pigmentation, spore morphology), nutritional uptake (carbon utilisation, amonoacids influence, sodium chloride tolerance), physiological (pH, temperature) and chemotaxonomical characterization were done. Antimicrobial studies were also carried out for the selected strains. Results: With the help of the spicule structures, the collected marine sponges were identified as Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Nearly 94 strains were primarily isolated from these sponges and further they were sub-cultured using international Streptomyces project media. The strains exhibited different mycelial colouration (aerial and substrate), soluble and melanoid pigmentations. The strains possessed three types of sporophore morphology namely rectus flexibilis, spiral and retinaculiaperti. Among the 94 isolates, seven exhibited antibacterial and antifungal activities with maximal zone of inhibition of 30 mm. The nutritional, physiological and chemotaxonomical characteristic study helped in the conventional identification of the seven strains and they all suggest that the strains to be grouped under the genus Streptomyces. Conclusions: The present study clearly helps in the preliminary identification of the isolates associated with marine sponges. Antagonistic activities prove the production of antimicrobial metabolites against the pathogens. Marine sponges associated Streptomyces are universally well

  14. Antagonistic activity of marine sponges associated Actinobacteria

    Directory of Open Access Journals (Sweden)

    Selvakumar Dharmaraj

    2016-06-01

    Full Text Available Objective: To focus on the isolation and preliminary characterization of marine sponges associated Actinobacteria particularly Streptomyces species and also their antagonistic activities against bacterial and fungal pathogens. Methods: The sponges were collected from Kovalam and Vizhinjam port of south-west coast of Kerala, India. Isolation of strains was carried out from sponge extracts using international Streptomyces project media. For preliminary identification of the strains, morphological (mycelial colouration, soluble pigments, melanoid pigmentation, spore morphology, nutritional uptake (carbon utilisation, amonoacids influence, sodium chloride tolerance, physiological (pH, temperature and chemotaxonomical characterization were done. Antimicrobial studies were also carried out for the selected strains. Results: With the help of the spicule structures, the collected marine sponges were identified as Callyspongia diffusa, Mycale mytilorum, Tedania anhelans and Dysidea fragilis. Nearly 94 strains were primarily isolated from these sponges and further they were sub-cultured using international Streptomyces project media. The strains exhibited different mycelial colouration (aerial and substrate, soluble and melanoid pigmentations. The strains possessed three types of sporophore morphology namely rectus flexibilis, spiral and retinaculiaperti. Among the 94 isolates, seven exhibited antibacterial and antifungal activities with maximal zone of inhibition of 30 mm. The nutritional, physiological and chemotaxonomical characteristic study helped in the conventional identification of the seven strains and they all suggest that the strains to be grouped under the genus Streptomyces. Conclusions: The present study clearly helps in the preliminary identification of the isolates associated with marine sponges. Antagonistic activities prove the production of antimicrobial metabolites against the pathogens. Marine sponges associated Streptomyces are

  15. Novel actinobacteria from marine sponges.

    Science.gov (United States)

    Montalvo, Naomi F; Mohamed, Naglaa M; Enticknap, Julie J; Hill, Russell T

    2005-01-01

    Actinobacteria exclusively within the sub-class Acidimicrobidae were shown by 16S rDNA community analysis to be major components of the bacterial community associated with two sponge species in the genus Xestospongia. Four groups of Actinobacteria were identified in Xestospongia spp., with three of these four groups being found in both Xestospongia muta from Key Largo, Florida and Xestospongia testudinaria from Manado, Indonesia. This suggests that these groups are true symbionts in these sponges and may play a common role in both the Pacific and Atlantic sponge species. The fourth group was found only in X. testudinaria and was a novel assemblage distantly related to any previously sequenced actinobacterial clones. The only actinobacteria that were obtained in initial culturing attempts were Gordonia, Micrococcus and Brachybacterium spp., none of which were represented in the clone libraries. The closest cultured actinobacteria to all the Acidimicrobidae clones from Xestospongia spp. are 'Microthrix parvicella' and Acidimicrobium spp. Xestospongia spp. can now be targeted as source material from which to culture novel Acidimicrobidae to investigate their potential as producers of bioactive compounds. Isolation of sponge-associated Acidimicrobidae will also make it possible to elucidate their role as sponge symbionts.

  16. Polyketides from the marine sponge Plakortis angulospiculatus

    Energy Technology Data Exchange (ETDEWEB)

    Epifanio, Rosangela de A.; Pinheiro, Leandro S.; Alves, Natalia C. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Inst. de Quimica. Dept. de Quimica Organica]. E-mail: rosangela@rmn.uff.br

    2005-11-15

    Organic extracts of the marine sponge Plakortis angulospiculatus were studied from two different collections from Pernambuco State, Brazil. Bioautography with opportunistic marine pathogens, with results from the brine shrimp lethality assay, were used to guide the purification of the known furanylidenic methyl ester 1 and two new derivatives 2 and 3. The structures were elucidated by spectroscopic methods and by selective reduction of 3 into 2. (author)

  17. Screening of marine sponge-associated bacteria from ...

    African Journals Online (AJOL)

    Screening of marine sponge-associated bacteria from Echinodictyum gorgonoides and its bioactivity. ... The sponge Echinodictyum gorgonoides associated bacterial strain MB2 was tested for its action against various human ... Article Metrics.

  18. Antiviral Lead Compounds from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Kenneth P. Minneman

    2010-10-01

    Full Text Available Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV and herpes simplex virus (HSV. The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed.

  19. Antiviral lead compounds from marine sponges

    KAUST Repository

    Sagar, Sunil

    2010-10-11

    Marine sponges are currently one of the richest sources of pharmacologically active compounds found in the marine environment. These bioactive molecules are often secondary metabolites, whose main function is to enable and/or modulate cellular communication and defense. They are usually produced by functional enzyme clusters in sponges and/or their associated symbiotic microorganisms. Natural product lead compounds from sponges have often been found to be promising pharmaceutical agents. Several of them have successfully been approved as antiviral agents for clinical use or have been advanced to the late stages of clinical trials. Most of these drugs are used for the treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The most important antiviral lead of marine origin reported thus far is nucleoside Ara-A (vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the discovery of new types of viruses and emergence of drug resistant strains, it is necessary to develop new antiviral lead compounds continuously. Several sponge derived antiviral lead compounds which are hopedto be developed as future drugs are discussed in this review. Supply problems are usually the major bottleneck to the development of these compounds as drugs during clinical trials. However advances in the field of metagenomics and high throughput microbial cultivation has raised the possibility that these techniques could lead to the cost-effective large scale production of such compounds. Perspectives on biotechnological methods with respect to marine drug development are also discussed. 2010 by the authors; licensee MDPI.

  20. Cryptic species obscure introduction pathway of the blue Caribbean sponge (Haliclona (Soestella) caerulea), (order: Haplosclerida) to Palmyra Atoll, Central Pacific.

    Science.gov (United States)

    Knapp, Ingrid S; Forsman, Zac H; Williams, Gareth J; Toonen, Robert J; Bell, James J

    2015-01-01

    Cryptic species are widespread across the phylum Porifera making the identification of non-indigenous species difficult, an issue not easily resolved by the use of morphological characteristics. The widespread order Haplosclerida is a prime example due to limited and plastic morphological features. Here, we study the reported introduction of Haliclona (Soestella) caerulea from the Caribbean to Palmyra Atoll via Hawai'i using morphological characteristics and genetic analyses based on one nuclear (18s rDNA) and three mitochondrial (COI, the barcoding COI extension (COI ext.) and rnl rDNA) markers. Despite no clear division in lengths of the oxea spicules between the samples, both mtDNA and nDNA phylogenetic trees supported similar topologies resolving two distinct clades. Across the two clades, the concatenated mtDNA tree resolved twelve subclades, with the COI ext. yielding most of the variability between the samples. Low sequence divergence values (0.68%) between two of the subclades indicate that the same species is likely to occur at Palmyra, Hawai'i and the Caribbean, supporting the hypothesis that H. caerulea was introduced to Palmyra from the Caribbean, although whether species came directly from the Caribbean to Palmyra or from Hawai'i remains unresolved. Conversely, the pattern of highly divergent cryptic species supports the notion that traditionally used spicule measurements are taxonomically unreliable in this group. This study illustrates how understanding the scale of within- as opposed to between-species level genetic variation is critical for interpreting biogeographic patterns and inferring the origins of introduced organisms.

  1. Cryptic species obscure introduction pathway of the blue Caribbean sponge (Haliclona (Soestella caerulea, (order: Haplosclerida to Palmyra Atoll, Central Pacific

    Directory of Open Access Journals (Sweden)

    Ingrid S. Knapp

    2015-08-01

    Full Text Available Cryptic species are widespread across the phylum Porifera making the identification of non-indigenous species difficult, an issue not easily resolved by the use of morphological characteristics. The widespread order Haplosclerida is a prime example due to limited and plastic morphological features. Here, we study the reported introduction of Haliclona (Soestella caerulea from the Caribbean to Palmyra Atoll via Hawaiʻi using morphological characteristics and genetic analyses based on one nuclear (18s rDNA and three mitochondrial (COI, the barcoding COI extension (COI ext. and rnl rDNA markers. Despite no clear division in lengths of the oxea spicules between the samples, both mtDNA and nDNA phylogenetic trees supported similar topologies resolving two distinct clades. Across the two clades, the concatenated mtDNA tree resolved twelve subclades, with the COI ext. yielding most of the variability between the samples. Low sequence divergence values (0.68% between two of the subclades indicate that the same species is likely to occur at Palmyra, Hawaiʻi and the Caribbean, supporting the hypothesis that H. caerulea was introduced to Palmyra from the Caribbean, although whether species came directly from the Caribbean to Palmyra or from Hawaiʻi remains unresolved. Conversely, the pattern of highly divergent cryptic species supports the notion that traditionally used spicule measurements are taxonomically unreliable in this group. This study illustrates how understanding the scale of within- as opposed to between-species level genetic variation is critical for interpreting biogeographic patterns and inferring the origins of introduced organisms.

  2. Bioactive alkaloids from marine sponges

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; Majik, M.S.

    to their special environmental and oceanographic condition. Combination of knowledge of multidisciplinary sciences such as natural product chemistry, ecology, biology and medicinal chemistry has inspired researchers for the development of many of the most... successful medicines in particular from marine resources. In ocean, water pressure, temperature, light salt contents etc. play an important role in ad- aptation of flora and fauna. As a result, species inhabiting these depths adapt their biochemical ma...

  3. Bacteria from marine sponges: A source of new drugs.

    Science.gov (United States)

    Bibi, Fehmida; Faheem, Muhammad; Azhar, Esam I; Yasir, Muhammad; Alvi, Sana Akhter; Kamal, Mohammad A; Ullah, Ikram; Nasser, Muhammad I

    2016-10-12

    Sponges are rich source of bioactive natural products synthesized by the symbiotic bacteria belonging to different phyla. Due to a competition for space and nutrients the marine bacteria associated with sponges could produce more antibiotic substances. To explore the proactive potential of marine microbes extensive research has been done. These bioactive metabolites have some unique properties that are pharmaceutically important. To date, majority of these metabolites have been identified from marine invertebrates of which sponges predominate. Sponges harbor abundant and diverse microorganisms, which are the sources of a range of marine bioactive metabolites. From sponges and their associated microorganisms, approximately 5,300 different natural compounds are known. Current research on sponge-microbe interaction and their active metabolites has become a focal point for many researchers. Various active metabolites derived from sponges are now known to be produced by their symbiotic microflora. In this review, we attempt to report the latest studies regarding capability of bacteria from sponges as producers of bioactive metabolite. Moreover, these sponge associated bacteria are an important source of different enzymes of industrial significance. In present review, we will address some novel approaches for discovering marine metabolites from bacteria that have the greatest potential to be used in clinical treatments.

  4. Mesoscale elastic properties of marine sponge spicules.

    Science.gov (United States)

    Zhang, Yaqi; Reed, Bryan W; Chung, Frank R; Koski, Kristie J

    2016-01-01

    Marine sponge spicules are silicate fibers with an unusual combination of fracture toughness and optical light propagation properties due to their micro- and nano-scale hierarchical structure. We present optical measurements of the elastic properties of Tethya aurantia and Euplectella aspergillum marine sponge spicules using non-invasive Brillouin and Raman laser light scattering, thus probing the hierarchical structure on two very different scales. On the scale of single bonds, as probed by Raman scattering, the spicules resemble a combination of pure silica and mixed organic content. On the mesoscopic scale probed by Brillouin scattering, we show that while some properties (Young's moduli, shear moduli, one of the anisotropic Poisson ratios and refractive index) are nearly the same as those of artificial optical fiber, other properties (uniaxial moduli, bulk modulus and a distinctive anisotropic Poisson ratio) are significantly smaller. Thus this natural composite of largely isotropic materials yields anisotropic elastic properties on the mesoscale. We show that the spicules' optical waveguide properties lead to pronounced spontaneous Brillouin backscattering, a process related to the stimulated Brillouin backscattering process well known in artificial glass fibers. These measurements provide a clearer picture of the interplay of flexibility, strength, and material microstructure for future functional biomimicry.

  5. Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Christina Viegelmann

    2014-06-01

    Full Text Available Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8 isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1, 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2, and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3 that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont.

  6. Cell Turnover and Detritus Production in Marine Sponges from Tropical and Temperate Benthic Ecosystems

    Science.gov (United States)

    Alexander, Brittany E.; Liebrand, Kevin; Osinga, Ronald; van der Geest, Harm G.; Admiraal, Wim; Cleutjens, Jack P. M.; Schutte, Bert; Verheyen, Fons; Ribes, Marta; van Loon, Emiel; de Goeij, Jasper M.

    2014-01-01

    This study describes in vivo cell turnover (the balance between cell proliferation and cell loss) in eight marine sponge species from tropical coral reef, mangrove and temperate Mediterranean reef ecosystems. Cell proliferation was determined through the incorporation of 5-bromo-2′-deoxyuridine (BrdU) and measuring the percentage of BrdU-positive cells after 6 h of continuous labeling (10 h for Chondrosia reniformis). Apoptosis was identified using an antibody against active caspase-3. Cell loss through shedding was studied quantitatively by collecting and weighing sponge-expelled detritus and qualitatively by light microscopy of sponge tissue and detritus. All species investigated displayed substantial cell proliferation, predominantly in the choanoderm, but also in the mesohyl. The majority of coral reef species (five) showed between 16.1±15.9% and 19.0±2.0% choanocyte proliferation (mean±SD) after 6 h and the Mediterranean species, C. reniformis, showed 16.6±3.2% after 10 h BrdU-labeling. Monanchora arbuscula showed lower choanocyte proliferation (8.1±3.7%), whereas the mangrove species Mycale microsigmatosa showed relatively higher levels of choanocyte proliferation (70.5±6.6%). Choanocyte proliferation in Haliclona vansoesti was variable (2.8–73.1%). Apoptosis was negligible and not the primary mechanism of cell loss involved in cell turnover. All species investigated produced significant amounts of detritus (2.5–18% detritus bodyweight−1·d−1) and cell shedding was observed in seven out of eight species. The amount of shed cells observed in histological sections may be related to differences in residence time of detritus within canals. Detritus production could not be directly linked to cell shedding due to the degraded nature of expelled cellular debris. We have demonstrated that under steady-state conditions, cell turnover through cell proliferation and cell shedding are common processes to maintain tissue homeostasis in a variety of sponge

  7. Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick)

    Digital Repository Service at National Institute of Oceanography (India)

    LimnaMol, V.P.; Raveendran, T.V.; Parameswaran, P.S.

    partially characterize the active metabolites. 2. Materials and methods 2.1. Collection, Extraction and Purification H. exigua was collected from the Gulf of Mannar (Lat 9°5’ N; Long 79°5’ E) during March 2005 from a depth of 2 m by skin diving...

  8. New bromotyrosine alkaloids from the marine sponge Psammaplysilla purpurea

    Digital Repository Service at National Institute of Oceanography (India)

    Tilvi, S.; Rodrigues, C; Naik, C; Parameswaran, P.S.; Wahidullah, S.

    Seven new bromotyrosine alkaloids Purpurealidin A, B, C, D, F, G, H and the known compounds Purealidin Q, Purpurealidin E, 16-Debromoaplysamine-4 and Purpuramine I have been isolated from the marine sponge Psammaplysilla purpurea. Their structure...

  9. Cultivation of Marine Sponges: From Sea to Cell

    NARCIS (Netherlands)

    Sipkema, D.

    2004-01-01

    Marine sponges are one of the richest natural sources of secondary metabolites with a potential pharmaceutical application. A plethora of chemical compounds, with widely varying carbon skeletons, possessing among other anticancer, antiviral, antibiotic, antiinflammatory and antimalaria activity has

  10. Cultivation of Marine Sponges: From Sea to Cell

    NARCIS (Netherlands)

    Sipkema, D.

    2004-01-01

    Marine sponges are one of the richest natural sources of secondary metabolites with a potential pharmaceutical application. A plethora of chemical compounds, with widely varying carbon skeletons, possessing among other anticancer, antiviral, antibiotic, antiinflammatory and antimalaria activity has

  11. Sphingosines Derived from Marine Sponge as Potential Multi-Target Drug Related to Disorders in Cancer Development

    Science.gov (United States)

    Biegelmeyer, Renata; Schröder, Rafael; Rambo, Douglas F.; Dresch, Roger R.; Carraro, João L. F.; Mothes, Beatriz; Moreira, José Cláudio F.; da Frota Junior, Mário L. C.; Henriques, Amélia T.

    2015-01-01

    Haliclona tubifera, marine sponge species abundant in Brazilian coastline, presents only a few papers published in the literature. Recently, we have reported the isolation of two modified C18 sphingoid bases: (2R,3R,6R,7Z)-2-aminooctadec-7-ene-1,3,6-triol and and (2R,3R,6R)-2-aminooctadec-1,3,6-triol. In order to continue our research, in this work aimed at the biological investigation of fractions that led to the isolation of these compounds. We evaluated the cytotoxic effect of marine sponge H. tubifera fractions in glioma (U87) and neuroblastoma (SH-SY5Y) human cell lines. In addition, considering the link between cancer, imbalance of reactive oxygen species and coagulation disorders, we also investigated the in vitro effects on blood coagulation and their redox properties. We showed that the ethyl acetate (EtOAc) fraction, rich in sphingoid bases, had important cytotoxic effects in both cancer cell lines with an IC50 < 15 μg/mL and also can inhibit the production of peroxyl radicals. Interestingly, this fraction increased the recalcification time of human blood, showing anticoagulant properties. The present study indicates the sphingosines fraction as a promising source of chemical prototypes, especially multifunctional drugs in cancer therapy. PMID:26308014

  12. Sphingosines Derived from Marine Sponge as Potential Multi-Target Drug Related to Disorders in Cancer Development

    Directory of Open Access Journals (Sweden)

    Renata Biegelmeyer

    2015-08-01

    Full Text Available Haliclona tubifera, marine sponge species abundant in Brazilian coastline, presents only a few papers published in the literature. Recently, we have reported the isolation of two modified C18 sphingoid bases: (2R,3R,6R,7Z-2-aminooctadec-7-ene-1,3, 6-triol and and (2R,3R,6R-2-aminooctadec-1,3,6-triol. In order to continue our research, in this work aimed at the biological investigation of fractions that led to the isolation of these compounds. We evaluated the cytotoxic effect of marine sponge H. tubifera fractions in glioma (U87 and neuroblastoma (SH-SY5Y human cell lines. In addition, considering the link between cancer, imbalance of reactive oxygen species and coagulation disorders, we also investigated the in vitro effects on blood coagulation and their redox properties. We showed that the ethyl acetate (EtOAc fraction, rich in sphingoid bases, had important cytotoxic effects in both cancer cell lines with an IC50 < 15 μg/mL and also can inhibit the production of peroxyl radicals. Interestingly, this fraction increased the recalcification time of human blood, showing anticoagulant properties. The present study indicates the sphingosines fraction as a promising source of chemical prototypes, especially multifunctional drugs in cancer therapy.

  13. Sphingosines Derived from Marine Sponge as Potential Multi-Target Drug Related to Disorders in Cancer Development.

    Science.gov (United States)

    Biegelmeyer, Renata; Schröder, Rafael; Rambo, Douglas F; Dresch, Roger R; Carraro, João L F; Mothes, Beatriz; Moreira, José Cláudio F; Junior, Mário L C da Frota; Henriques, Amélia T

    2015-08-25

    Haliclona tubifera, marine sponge species abundant in Brazilian coastline, presents only a few papers published in the literature. Recently, we have reported the isolation of two modified C18 sphingoid bases: (2R,3R,6R,7Z)-2-aminooctadec-7-ene-1,3, 6-triol and and (2R,3R,6R)-2-aminooctadec-1,3,6-triol. In order to continue our research, in this work aimed at the biological investigation of fractions that led to the isolation of these compounds. We evaluated the cytotoxic effect of marine sponge H. tubifera fractions in glioma (U87) and neuroblastoma (SH-SY5Y) human cell lines. In addition, considering the link between cancer, imbalance of reactive oxygen species and coagulation disorders, we also investigated the in vitro effects on blood coagulation and their redox properties. We showed that the ethyl acetate (EtOAc) fraction, rich in sphingoid bases, had important cytotoxic effects in both cancer cell lines with an IC50 < 15 μg/mL and also can inhibit the production of peroxyl radicals. Interestingly, this fraction increased the recalcification time of human blood, showing anticoagulant properties. The present study indicates the sphingosines fraction as a promising source of chemical prototypes, especially multifunctional drugs in cancer therapy.

  14. Phylogenetically and Spatially Close Marine Sponges Harbour Divergent Bacterial Communities

    Science.gov (United States)

    Hardoim, Cristiane C. P.; Esteves, Ana I. S.; Pires, Francisco R.; Gonçalves, Jorge M. S.; Cox, Cymon J.; Xavier, Joana R.; Costa, Rodrigo

    2012-01-01

    Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family - Sarcotragus spinosulus and Ircinia variabilis – in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiles of S. spinosulus and I. variabilis differed markedly from each other – with higher number of ribotypes observed in S. spinosulus – and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria). Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria), respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis. These

  15. Phylogenetically and spatially close marine sponges harbour divergent bacterial communities.

    Directory of Open Access Journals (Sweden)

    Cristiane C P Hardoim

    Full Text Available Recent studies have unravelled the diversity of sponge-associated bacteria that may play essential roles in sponge health and metabolism. Nevertheless, our understanding of this microbiota remains limited to a few host species found in restricted geographical localities, and the extent to which the sponge host determines the composition of its own microbiome remains a matter of debate. We address bacterial abundance and diversity of two temperate marine sponges belonging to the Irciniidae family--Sarcotragus spinosulus and Ircinia variabilis--in the Northeast Atlantic. Epifluorescence microscopy revealed that S. spinosulus hosted significantly more prokaryotic cells than I. variabilis and that prokaryotic abundance in both species was about 4 orders of magnitude higher than in seawater. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE profiles of S. spinosulus and I. variabilis differed markedly from each other--with higher number of ribotypes observed in S. spinosulus--and from those of seawater. Four PCR-DGGE bands, two specific to S. spinosulus, one specific to I. variabilis, and one present in both sponge species, affiliated with an uncultured sponge-specific phylogenetic cluster in the order Acidimicrobiales (Actinobacteria. Two PCR-DGGE bands present exclusively in S. spinosulus fingerprints affiliated with one sponge-specific phylogenetic cluster in the phylum Chloroflexi and with sponge-derived sequences in the order Chromatiales (Gammaproteobacteria, respectively. One Alphaproteobacteria band specific to S. spinosulus was placed in an uncultured sponge-specific phylogenetic cluster with a close relationship to the genus Rhodovulum. Our results confirm the hypothesized host-specific composition of bacterial communities between phylogenetically and spatially close sponge species in the Irciniidae family, with S. spinosulus displaying higher bacterial community diversity and distinctiveness than I. variabilis

  16. Superoxide dismutase in the marine sponge Cliona celata

    NARCIS (Netherlands)

    Marques, D.; Esteves, A.I.; Almeida, M.; Xavier, J.; Humanes, M.

    2008-01-01

    The aim of this work is to investigate the activity of the antioxidant enzyme superoxide dismutase in the cosmopolitan sponge Cliona celata (Grant, 1826), since this enzyme has been described as a useful biomarker for marine pollution in other marine invertebrates. The quantification of the catalyti

  17. Superoxide dismutase in the marine sponge Cliona celata

    NARCIS (Netherlands)

    Marques, D.; Esteves, A.I.; Almeida, M.; Xavier, J.; Humanes, M.

    2008-01-01

    The aim of this work is to investigate the activity of the antioxidant enzyme superoxide dismutase in the cosmopolitan sponge Cliona celata (Grant, 1826), since this enzyme has been described as a useful biomarker for marine pollution in other marine invertebrates. The quantification of the

  18. Potential of sponges and microalgae for marine biotechnology

    NARCIS (Netherlands)

    Wijffels, R.H.

    2008-01-01

    Marine organisms can be used to produce several novel products that have applications in new medical technologies, in food and feed ingredients and as biofuels. In this paper two examples are described: the development of marine drugs from sponges and the use of microalgae to produce bulk chemicals

  19. Cultivation of marine sponges for metabolite production: applications for biotechnology?

    NARCIS (Netherlands)

    Osinga, R.; Tramper, J.; Wijffels, R.H.

    1998-01-01

    The world's oceans harbour a large diversity of living organisms. As tropical rainforests have been searched for natural drugs, these marine organisms are being screened for useful products, and a number have been found in marine sponges. These are often produced only in trace amounts, and so a

  20. Potential of sponges and microalgae for marine biotechnology

    NARCIS (Netherlands)

    Wijffels, R.H.

    2008-01-01

    Marine organisms can be used to produce several novel products that have applications in new medical technologies, in food and feed ingredients and as biofuels. In this paper two examples are described: the development of marine drugs from sponges and the use of microalgae to produce bulk chemicals

  1. The Shallow Water Marine Sponges (Porifera of Cebu, Philippines

    Directory of Open Access Journals (Sweden)

    Ma. Belinda Longakit

    2005-12-01

    Full Text Available Thirty-three (33 species of marine sponge were identified in this study. Four were identified as possiblynew to science; a short description of these species is given here. In addition, one species has potentialfor bath sponge culture. Percent similarity of species is low between stations suggesting a highly diversesponge assemblage around the island. Clustering of the stations appears to be related to distancebetween stations.

  2. In situ natural product discovery via an artificial marine sponge.

    Directory of Open Access Journals (Sweden)

    James J La Clair

    Full Text Available There is continuing international interest in exploring and developing the therapeutic potential of marine-derived small molecules. Balancing the strategies for ocean based sampling of source organisms versus the potential to endanger fragile ecosystems poses a substantial challenge. In order to mitigate such environmental impacts, we have developed a deployable artificial sponge. This report provides details on its design followed by evidence that it faithfully recapitulates traditional natural product collection protocols. Retrieving this artificial sponge from a tropical ecosystem after deployment for 320 hours afforded three actin-targeting jasplakinolide depsipeptides that had been discovered two decades earlier using traditional sponge specimen collection and isolation procedures. The successful outcome achieved here could reinvigorate marine natural products research, by producing new environmentally innocuous sources of natural products and providing a means to probe the true biosynthetic origins of complex marine-derived scaffolds.

  3. Marine sponges and their microbial symbionts: love and other relationships.

    Science.gov (United States)

    Webster, Nicole S; Taylor, Michael W

    2012-02-01

    Many marine sponges harbour dense and diverse microbial communities of considerable ecological and biotechnological importance. While the past decade has seen tremendous advances in our understanding of the phylogenetic diversity of sponge-associated microorganisms (more than 25 bacterial phyla have now been reported from sponges), it is only in the past 3-4 years that the in situ activity and function of these microbes has become a major research focus. Already the rewards of this new emphasis are evident, with genomics and experimental approaches yielding novel insights into symbiont function. Key steps in the nitrogen cycle [denitrification, anaerobic ammonium oxidation (Anammox)] have recently been demonstrated in sponges for the first time, with diverse bacteria - including the sponge-associated candidate phylum 'Poribacteria'- being implicated in these processes. In this minireview we examine recent major developments in the microbiology of sponges, and identify several research areas (e.g. biology of viruses in sponges, effects of environmental stress) that we believe are deserving of increased attention. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Bioactive natural products from Papua New Guinea marine sponges.

    Science.gov (United States)

    Noro, Jeffery C; Kalaitzis, John A; Neilan, Brett A

    2012-10-01

    The discovery of novel natural products for drug development relies heavily upon a rich biodiversity, of which the marine environment is an obvious example. Marine natural product research has spawned several drugs and many other candidates, some of which are the focus of current clinical trials. The sponge megadiversity of Papua New Guinea is a rich but underexplored source of bioactive natural products. Here, we review some of the many natural products derived from PNG sponges with an emphasis on those with interesting biological activity and, therefore, drug potential. Many bioactive natural products discussed here appear to be derived from non-ribosomal peptide and polyketide biosynthesis pathways, strongly suggesting a microbial origin of these compounds. With this in mind, we also explore the notion of sponge-symbiont biosynthesis of these bioactive compounds and present examples to support the working hypothesis.

  5. Inter- and Intraspecific Variations of Bacterial Communities Associated with Marine Sponges from San Juan Island, Washington

    KAUST Repository

    Lee, O. O.

    2009-04-10

    This study attempted to assess whether conspecific or congeneric sponges around San Juan Island, Washington, harbor specific bacterial communities. We used a combination of culture-independent DNA fingerprinting techniques (terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis [DGGE]) and culture-dependent approaches. The results indicated that the bacterial communities in the water column consisted of more diverse bacterial ribotypes than and were drastically different from those associated with the sponges. High levels of similarity in sponge-associated bacterial communities were found only in Myxilla incrustans and Haliclona rufescens, while the bacterial communities in Halichondria panicea varied substantially among sites. Certain terminal restriction fragments or DGGE bands were consistently obtained for different individuals of M. incrustans and H. rufescens collected from different sites, suggesting that there are stable or even specific associations of certain bacteria in these two sponges. However, no specific bacterial associations were found for H. panicea or for any one sponge genus. Sequencing of nine DGGE bands resulted in recovery of seven sequences that best matched the sequences of uncultured Proteobacteria. Three of these sequences fell into the sponge-specific sequence clusters previously suggested. An uncultured alphaproteobacterium and a culturable Bacillus sp. were found exclusively in all M. incrustans sponges, while an uncultured gammaproteobacterium was unique to H. rufescens. In contrast, the cultivation approach indicated that sponges contained a large proportion of Firmicutes, especially Bacillus, and revealed large variations in the culturable bacterial communities associated with congeneric and conspecific sponges. This study revealed sponge species-specific but not genus- or site-specific associations between sponges and bacterial communities and emphasized the importance of using a combination

  6. Inter- and Intraspecific Variations of Bacterial Communities Associated with Marine Sponges from San Juan Island, Washington▿

    Science.gov (United States)

    Lee, On On; Wong, Yue Him; Qian, Pei-Yuan

    2009-01-01

    This study attempted to assess whether conspecific or congeneric sponges around San Juan Island, Washington, harbor specific bacterial communities. We used a combination of culture-independent DNA fingerprinting techniques (terminal restriction fragment length polymorphism and denaturing gradient gel electrophoresis [DGGE]) and culture-dependent approaches. The results indicated that the bacterial communities in the water column consisted of more diverse bacterial ribotypes than and were drastically different from those associated with the sponges. High levels of similarity in sponge-associated bacterial communities were found only in Myxilla incrustans and Haliclona rufescens, while the bacterial communities in Halichondria panicea varied substantially among sites. Certain terminal restriction fragments or DGGE bands were consistently obtained for different individuals of M. incrustans and H. rufescens collected from different sites, suggesting that there are stable or even specific associations of certain bacteria in these two sponges. However, no specific bacterial associations were found for H. panicea or for any one sponge genus. Sequencing of nine DGGE bands resulted in recovery of seven sequences that best matched the sequences of uncultured Proteobacteria. Three of these sequences fell into the sponge-specific sequence clusters previously suggested. An uncultured alphaproteobacterium and a culturable Bacillus sp. were found exclusively in all M. incrustans sponges, while an uncultured gammaproteobacterium was unique to H. rufescens. In contrast, the cultivation approach indicated that sponges contained a large proportion of Firmicutes, especially Bacillus, and revealed large variations in the culturable bacterial communities associated with congeneric and conspecific sponges. This study revealed sponge species-specific but not genus- or site-specific associations between sponges and bacterial communities and emphasized the importance of using a combination

  7. Two Phaeophytin Type Analogues from Marine Sponge Dysidea sp

    Institute of Scientific and Technical Information of China (English)

    Peng Fei JIN; Zhi Wei DENG; Yue Hu PEI; Wen Han LIN

    2005-01-01

    A new compound named 13b (S)-hydroxy-17c-ethoxypheaophorbide a (2) together with a known compound 17c-ethoxypheaophorbide a (1) were isolated from marine sponge Dysidea sp.collected in South China sea. The structures were elucidated by spectroscopic analysis as well as comparison with those reported in literatures.

  8. Secondary Metabolites from the Marine Sponge Genus Phyllospongia

    Science.gov (United States)

    Zhang, Huawei; Dong, Menglian; Wang, Hong; Crews, Phillip

    2017-01-01

    Phyllospongia, one of the most common marine sponges in tropical and subtropical oceans, has been shown to be a prolific producer of natural products with a broad spectrum of biological activities. This review for the first time provides a comprehensive overview of secondary metabolites produced by Phyllospongia spp. over the 37 years from 1980 to 2016. PMID:28067826

  9. Bromopyrrole Alkaloids from Okinawan Marine Sponges Agelas spp.

    Science.gov (United States)

    Tanaka, Naonobu; Kusama, Taishi; Kashiwada, Yoshiki; Kobayashi, Jun'ichi

    2016-01-01

    In our continuing study for structurally and biogenetically interesting natural products from marine organisms, Okinawan marine sponges Agelas spp. were investigated, resulting in the isolation of 18 unique alkaloids including five dimeric bromopyrrole alkaloids (1-5), ten monomeric bromopyrrole alkaloids (6-15), and three conjugates of monomeric bromopyrrole alkaloid and hydroxykynurenine (16-18). In this mini-review, the isolation, structure elucidation, and antimicrobial activities of these alkaloids are summarized.

  10. Cytotoxic Natural Products from Marine Sponge-Derived Microorganisms

    Directory of Open Access Journals (Sweden)

    Huawei Zhang

    2017-03-01

    Full Text Available A growing body of evidence indicates that marine sponge-derived microbes possess the potential ability to make prolific natural products with therapeutic effects. This review for the first time provides a comprehensive overview of new cytotoxic agents from these marine microbes over the last 62 years from 1955 to 2016, which are assorted into seven types: terpenes, alkaloids, peptides, aromatics, lactones, steroids, and miscellaneous compounds.

  11. Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts.

    Science.gov (United States)

    Beesoo, Rima; Bhagooli, Ranjeet; Neergheen-Bhujun, Vidushi S; Li, Wen-Wu; Kagansky, Alexander; Bahorun, Theeshan

    2017-06-01

    Increasing prevalence of antibiotic resistance has led research to focus on discovering new antimicrobial agents derived from the marine biome. Although ample studies have investigated sponges for their bioactive metabolites with promising prospects in drug discovery, the potentiating effects of sponge extracts on antibiotics still remains to be expounded. The present study aimed to investigate the antibacterial capacity of seven tropical sponges collected from Mauritian waters and their modulatory effect in association with three conventional antibiotics namely chloramphenicol, ampicillin and tetracycline. Disc diffusion assay was used to determine the inhibition zone diameter (IZD) of the sponge total crude extracts (CE), hexane (HF), ethyl acetate (EAF) and aqueous (AF) fractions against nine standard bacterial isolates whereas broth microdilution method was used to determine their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and antibiotic potentiating activity of the most active sponge extract. MIC values of the sponge extracts ranged from 0.039 to 1.25mg/mL. Extracts from Neopetrosia exigua rich in beta-sitosterol and cholesterol displayed the widest activity spectrum against the 9 tested bacterial isolates whilst the best antibacterial profile was observed by its EAF particularly against Staphylococcus aureus and Bacillus cereus with MIC and MBC values of 0.039mg/mL and 0.078mg/mL, respectively. The greatest antibiotic potentiating effect was obtained with the EAF of N. exigua (MIC/2) and ampicillin combination against S. aureus. These findings suggest that the antibacterial properties of the tested marine sponge extracts may provide an alternative and complementary strategy to manage bacterial infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Skin Delivery of Hydrophilic Biomacromolecules Using Marine Sponge Spicules.

    Science.gov (United States)

    Zhang, Saiman; Ou, Huilong; Liu, Chunyun; Zhang, Yuan; Mitragotri, Samir; Wang, Dexiang; Chen, Ming

    2017-09-05

    We report the development of sponge Haliclona sp. spicules, referred to as SHS, and its topical application in skin delivery of hydrophilic biomacromolecules, a series of fluorescein isothiocyanate-dextrans (FDs). SHS are silicious oxeas which are sharp-edged and rod-shaped (∼120 μm in length and ∼7 μm in diameter). SHS can physically disrupt skin in a dose-dependent manner and retain within the skin over at least 72 h, which allows sustained skin penetration of hydrophilic biomacromolecules. The magnitude of enhancement of FD delivery into skin induced by SHS treatment was dependent on its molecular weight. Specifically, SHS topical application enhanced FD-10 (MW: 10 kDa) penetration into porcine skin in vitro by 33.09 ± 7.16-fold compared to control group (p < 0.01). SHS dramatically increased the accumulation of FD-10 into and across the dermis by 62.32 ± 13.48-fold compared to the control group (p < 0.01). In vivo experiments performed using BALB/c mice also confirmed the effectiveness of SHS topical application; the skin absorption of FD-10 with SHS topical application was 72.14 ± 48.75-fold (p < 0.05) and 15.39 ± 9.91-fold (p < 0.05) higher than those from the PBS and Dermaroller microneedling, respectively. Further, skin irritation study and transepidermal water loss (TEWL) measurement using guinea pig skin in vivo indicated that skin disruption induced by SHS treatment is self-limited and can be recovered with time and efficiently. SHS can offer a safe, effective, and sustained skin delivery of hydrophilic biomacromolecules and presents a promising platform technology for a wide range of cosmetic and medical applications.

  13. Taxonomy Icon Data: Haliclona permollis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Haliclona permollis Haliclona permollis Porifera Haliclona_permollis_L.png Haliclona_permollis_NL.png Hali...clona_permollis_S.png Haliclona_permollis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Hali...clona+permollis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Haliclona+permollis&t=...NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Haliclona+permollis&t=S http:...//biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Haliclona+permollis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=194 ...

  14. Bioactive Natural Products of Marine Sponges from the Genus Hyrtios

    Directory of Open Access Journals (Sweden)

    Nourhan Hisham Shady

    2017-05-01

    Full Text Available Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios communis, and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable.

  15. Seasonal Variation of Fatty Acids and Stable Carbon Isotopes in Sponges as Indicators for Nutrition: Biomarkers in Sponges Identified

    NARCIS (Netherlands)

    Koopmans, M.; van Rijswijk, P.; Boschker, H.T.S.; Houtekamer, M.; Martens, D.; Wijffels, R.H.

    2015-01-01

    To get a better understanding of sponge feeding biology and efficiencies, the fatty acid (FA) composition and 13C natural abundance of sponges and of suspended particulate matter (SPM) from surrounding seawater was studied in different seasons at three locations. Haliclona oculata and Haliclona xena

  16. Dragon exploration system on marine sponge compounds interactions.

    Science.gov (United States)

    Sagar, Sunil; Kaur, Mandeep; Radovanovic, Aleksandar; Bajic, Vladimir B

    2013-02-16

    Natural products are considered a rich source of new chemical structures that may lead to the therapeutic agents in all major disease areas. About 50% of the drugs introduced in the market in the last 20 years were natural products/derivatives or natural products mimics, which clearly shows the influence of natural products in drug discovery. In an effort to further support the research in this field, we have developed an integrative knowledge base on Marine Sponge Compounds Interactions (Dragon Exploration System on Marine Sponge Compounds Interactions - DESMSCI) as a web resource. This knowledge base provides information about the associations of the sponge compounds with different biological concepts such as human genes or proteins, diseases, as well as pathways, based on the literature information available in PubMed and information deposited in several other databases. As such, DESMSCI is aimed as a research support resource for problems on the utilization of marine sponge compounds. DESMSCI allows visualization of relationships between different chemical compounds and biological concepts through textual and tabular views, graphs and relational networks. In addition, DESMSCI has built in hypotheses discovery module that generates potentially new/interesting associations among different biomedical concepts. We also present a case study derived from the hypotheses generated by DESMSCI which provides a possible novel mode of action for variolins in Alzheimer's disease. DESMSCI is the first publicly available (http://www.cbrc.kaust.edu.sa/desmsci) comprehensive resource where users can explore information, compiled by text- and data-mining approaches, on biological and chemical data related to sponge compounds.

  17. Symbiotic Fungus of Marine Sponge Axinella sp. Producing Antibacterial Agent

    Science.gov (United States)

    Trianto, A.; Widyaningsih, S.; Radjasa, OK; Pribadi, R.

    2017-02-01

    The emerging of multidrug resistance pathogenic bacteria cause the treatment of the diseaseshave become ineffective. There for, invention of a new drug with novel mode of action is an essential for curing the disease caused by an MDR pathogen. Marine fungi is prolific source of bioactive compound that has not been well explored. This study aim to obtain the marine sponges-associated fungus that producing anti-MDR bacteria substaces. We collected the sponge from Riung water, NTT, Indonesia. The fungus was isolated with affixed method, followed with purification with streak method. The overlay and disk diffusion agar methods were applied for bioactivity test for the isolate and the extract, respectively. Molecular analysis was employed for identification of the isolate. The sponge was identified based on morphological and spicular analysis. The ovelay test showed that the isolate KN15-3 active against the MDR Staphylococcus aureus and Eschericia coli. The extract of the cultured KN15-3 was also inhibited the S. aureus and E. coli with inhibition zone 2.95 mm and 4.13 mm, respectively. Based on the molecular analysis, the fungus was identified as Aspergillus sydowii. While the sponge was identified as Axinella sp.

  18. Comparative bioaccumulation kinetics of trace elements in Mediterranean marine sponges.

    Science.gov (United States)

    Genta-Jouve, Grégory; Cachet, Nadja; Oberhänsli, François; Noyer, Charlotte; Teyssié, Jean-Louis; Thomas, Olivier P; Lacoue-Labarthe, Thomas

    2012-09-01

    While marine organisms such as bivalves, seagrasses and macroalgae are commonly used as biomonitors for the environment pollution assessment, widely distributed sponges received little attention as potential helpful species for monitoring programmes. In this study, the trace element and radionuclide bioaccumulation and retention capacities of some marine sponges were estimated in a species-comparative study using radiotracers technique. Six Mediterranean species were exposed to background dissolved concentrations of (110m)Ag, (241)Am, (109)Cd, (60)Co, (134)Cs, (54)Mn, (75)Se and (65)Zn allowing the assessment of the uptake and depuration kinetics for selected elements. Globally, massive demosponges Agelas oroides, Chondrosia reniformis and Ircinia variabilis displayed higher concentration factor (CF) than the erectile ones (Acanthella acuta, Cymbaxinella damicornis, Cymbaxinella verrucosa) at the end of exposure, suggesting that the morphology is a key factor in the metal bioaccumulation efficiency. Considering this observation, two exceptions were noted: (1) A. acuta reached the highest CF for (110m)Ag and strongly retained the accumulated metal without significant Ag loss when placed in depuration conditions and (2) C. reniformis did not accumulate Se as much as A. oroides and I. variabilis. These results suggest that peculiar metal uptake properties in sponges could be driven by specific metabolites or contrasting biosilification processes between species, respectively. This study demonstrated that sponges could be considered as valuable candidate for biomonitoring metal contamination but also that there is a need to experimentally highlight metal-dependant characteristic among species.

  19. Marine Bifunctional Sphingolipids from the Sponge Oceanapia ramsayi

    Directory of Open Access Journals (Sweden)

    Emile M. Gaydou

    2008-04-01

    Full Text Available During the course of our continuing studies on marine natural lipid products,two known sphingolipids have been isolated for the first time from a specimen of themarine sponge Oceanapia ramsayi collected at Itampolo on the west coast of Madagascarin the Indian Ocean. The structures were elucidated using NMR data and by comparisonwith literature data. The occurrence of these sphingolipids within other Oceanapia spp. isdiscussed.

  20. Bacterial diversity associated with Cinachyra cavernosa and Haliclona pigmentifera, cohabiting sponges in the coral reef ecosystem of Gulf of Mannar, southeast coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Jasmin, C.; Anas, A.; Nair, S.

    supported by the associated microorganisms [5–7] that com- prise up to 40% of the total tissue volume of sponges, a density several orders of magnitude higher than that of the surrounding seawater. Therefore, understanding the diversity of micro- organisms... in TE buffer and stored at -20°C until used. Integrity of the isolated DNA were assessed on 0.8% agarose gel, and the purity was analyzed spectrophoto- metrically by measuring the ratio of absorbance at 260/280 nm in a ND-1000 spectrophotome- ter (Nano...

  1. Diversity of the candidate phylum Poribacteria in the marine sponge Aplysina fulva

    Science.gov (United States)

    Hardoim, C.C.P.; Cox, C.J.; Peixoto, R.S.; Rosado, A.S.; Costa, R.; van Elsas, J.D.

    2013-01-01

    Poribacterial clone libraries constructed for Aplysina fulva sponge specimens were analysed with respect to diversity and phylogeny. Results imply the coexistence of several, prevalently “intra-specific” poribacterial genotypes in a single sponge host, and suggest quantitative analysis as a desirable approach in studies of the diversity and distribution of poribacterial cohorts in marine sponges. PMID:24159324

  2. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters

    NARCIS (Netherlands)

    Hardoim, C.C.P.; Costa, R.; Araujo, F. V.; Hajdu, E.; Peixoto, R.; Lins, U.; Rosado, A. S.; van Elsas, J. D.

    2009-01-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To

  3. Diversity of bacteria in the marine sponge Aplysina fulva in Brazilian coastal waters

    NARCIS (Netherlands)

    Hardoim, C.C.P.; Costa, R.; Araujo, F. V.; Hajdu, E.; Peixoto, R.; Lins, U.; Rosado, A. S.; van Elsas, J. D.

    2009-01-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To

  4. Five new discodermolide analogues from the marine sponge Discodermia species.

    Science.gov (United States)

    Gunasekera, Sarath P; Paul, Gopal K; Longley, Ross E; Isbrucker, Richard A; Pomponi, Shirley A

    2002-11-01

    Discodermolide (1) and five new discodermolide analogues trivially named 2-epi-discodermolide (2), 2-des-methyldiscodermolide (3), 5-hydroxymethyldiscodermolate (4), 19-des-aminocarbonyldiscodermolide (5), and 9(13)-cyclodiscodermolide (6) have been isolated from marine sponges belonging to the genus Discodermia collected from the Caribbean Sea. The isolation, structure elucidation, and biological activities of 2-6 are described. The natural analogues, which were isolated in trace amounts, exhibited significant variation of cytotoxicity against the cultured murine P-388 leukemia and A-549 human adenocarcinoma cells and suggested the importance of the C(7) through C(17) moiety for potency against cultured tumor cell lines.

  5. Sterol Ring System Oxidation Pattern in Marine Sponges

    Directory of Open Access Journals (Sweden)

    S. Ramakrishna Rao

    2005-06-01

    Full Text Available Abstract: The marine sponges (Porifera are a unique group of sedentary organisms from which several novel natural products are reported, many of which have useful biological activities. In producing unusual sterols, they occupy a preeminent position among the various groups of organisms. The polar sterols of sponges reported as at the end of the year 2002 number about 250; their ring structure changing a hundred times. The oxidation pattern in the sterol ring system, from the point of view of biogenesis seems to be mainly of four types. Each sponge species is able to produce sterols fitting into one of the four main biogenetic pathways viz., (i 3β-hydroxy-Δ5-sterol pathway, (ii 3β-hydroxy-Δ7-sterol pathway, (iii 3β-hydroxy-Δ5,7-sterol pathway, and (iv 3α-hydroxy sterol pathway.

  6. Steroids from marine sponges Suberites vestigium and Chrotella australiensis

    Digital Repository Service at National Institute of Oceanography (India)

    Mishra, P.D.; Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    The sponges Suberites vestigium and Chrotella australiensis have been examined for steriods. Both the sponges contain C sub(27-29) mono and diunsaturated sterols, in addition sponge C. australiensis contains cholest-4-ene-3-one and 24-ethyl cholest...

  7. Anti-Biofilm Compounds Derived from Marine Sponges

    Directory of Open Access Journals (Sweden)

    Christian Melander

    2011-10-01

    Full Text Available Bacterial biofilms are surface-attached communities of microorganisms that are protected by an extracellular matrix of biomolecules. In the biofilm state, bacteria are significantly more resistant to external assault, including attack by antibiotics. In their native environment, bacterial biofilms underpin costly biofouling that wreaks havoc on shipping, utilities, and offshore industry. Within a host environment, they are insensitive to antiseptics and basic host immune responses. It is estimated that up to 80% of all microbial infections are biofilm-based. Biofilm infections of indwelling medical devices are of particular concern, since once the device is colonized, infection is almost impossible to eliminate. Given the prominence of biofilms in infectious diseases, there is a notable effort towards developing small, synthetically available molecules that will modulate bacterial biofilm development and maintenance. Here, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms specifically through non-microbicidal mechanisms. Importantly, we discuss several sets of compounds derived from marine sponges that we are developing in our labs to address the persistent biofilm problem. We will discuss: discovery/synthesis of natural products and their analogues—including our marine sponge-derived compounds and initial adjuvant activity and toxicological screening of our novel anti-biofilm compounds.

  8. Cyclodipeptides from metagenomic library of a japanese marine sponge

    Energy Technology Data Exchange (ETDEWEB)

    He, Rui; Wang, Bochu; Zhub, Liancai, E-mail: wangbc2000@126.com [Bioengineering College, Chongqing University, Chongqing, (China); Wang, Manyuan [School of Traditional Chinese Medicine, Capital University of Medical Sciences, Beijing (China); Wakimoto, Toshiyuki; Abe, Ikuro, E-mail: abei@mol.f.u-tokyo.ac.jp [Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo (Japan)

    2013-12-01

    Culture-independent metagenomics is an attractive and promising approach to explore unique bioactive small molecules from marine sponges harboring uncultured symbiotic microbes. Therefore, we conducted functional screening of the metagenomic library constructed from the Japanese marine sponge Discodermia calyx. Bioassay-guided fractionation of plate culture extract of antibacterial clone pDC113 afforded eleven cyclodipeptides: Cyclo(l-Thr-l-Leu) (1), Cyclo(l-Val-d-Pro) (2), Cyclo(l-Ile-d-Pro) (3), Cyclo(l-Leu-l-Pro) (4), Cyclo(l-Val-l-Leu) (5), Cyclo(l-Leu-l-Ile) (6), Cyclo(l-Leu-l-Leu) (7), Cyclo(l-Phe-l-Tyr) (8), Cyclo(l-Trp-l-Pro) (9), Cyclo(l-Val-l-Trp) (10) and Cyclo(l-Ile-l-Trp) (11). To the best of our knowledge, these are first cyclodepeptides isolated from metagenomic library. Sequence analysis suggested that isolated cyclodipeptides were not synthesized by nonribosomal peptide synthetases and there was no significant indication of cyclodipeptide synthetases. (author)

  9. Culturable heterotrophic bacteria from the marine sponge Dendrilla nigra: isolation and phylogenetic diversity of actinobacteria

    Science.gov (United States)

    Selvin, Joseph; Gandhimathi, R.; Kiran, G. Seghal; Priya, S. Shanmugha; Ravji, T. Rajeetha; Hema, T. A.

    2009-09-01

    Culturable heterotrophic bacterial composition of marine sponge Dendrilla nigra was analysed using different enrichments. Five media compositions including without enrichment (control), enriched with sponge extract, with growth regulator (antibiotics), with autoinducers, and complete enrichment containing sponge extract, antibiotics, and autoinducers were developed. DNA hybridization assay was performed to explore host specific bacteria and ecotypes of culturable sponge-associated bacteria. Enrichment with selective inducers (AHLs and sponge extract) and regulators (antibiotics) considerably enhanced the cultivation potential of sponge-associated bacteria. It was found that Marinobacter (MSI032), Micromonospora (MSI033), Streptomyces (MSI051), and Pseudomonas (MSI057) were sponge-associated obligate symbionts. The present findings envisaged that “ Micromonospora-Saccharomonospora-Streptomyces” group was the major culturable actinobacteria in the marine sponge D. nigra. The DNA hybridization assay was a reliable method for the analysis of culturable bacterial community in marine sponges. Based on the culturable community structure, the sponge-associated bacteria can be grouped (ecotypes) as general symbionts, specific symbionts, habitat flora, and antagonists.

  10. Marine sponge-associated bacteria as a potential source for polyhydroxyalkanoates.

    Science.gov (United States)

    Sathiyanarayanan, Ganesan; Saibaba, Ganesan; Kiran, George Seghal; Yang, Yung-Hun; Selvin, Joseph

    2017-05-01

    Marine sponges are filter feeding porous animals and usually harbor a remarkable array of microorganisms in their mesohyl tissues as transient and resident endosymbionts. The marine sponge-microbial interactions are highly complex and, in some cases, the relationships are thought to be truly symbiotic or mutualistic rather than temporary associations resulting from sponge filter-feeding activity. The marine sponge-associated bacteria are fascinating source for various biomolecules that are of potential interest to several biotechnological industries. In recent times, a particular attention has been devoted to bacterial biopolymer (polyesters) such as intracellular polyhydroxyalkanoates (PHAs) produced by sponge-associated bacteria. Bacterial PHAs act as an internal reserve for carbon and energy and also are a tremendous alternative for fossil fuel-based polymers mainly due to their eco-friendliness. In addition, PHAs are produced when the microorganisms are under stressful conditions and this biopolymer synthesis might be exhibited as one of the survival mechanisms of sponge-associated or endosymbiotic bacteria which exist in a highly competitive and stressful sponge-mesohyl microenvironment. In this review, we have emphasized the industrial prospects of marine bacteria for the commercial production of PHAs and special importance has been given to marine sponge-associated bacteria as a potential resource for PHAs.

  11. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review

    OpenAIRE

    Hardoim, Cristiane C. P.; Rodrigo Costa

    2014-01-01

    Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is ...

  12. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review

    OpenAIRE

    Hardoim, Cristiane C. P.; Rodrigo Costa

    2014-01-01

    Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is ...

  13. Comparisons of the fungal and protistan communities among different marine sponge holobionts by pyrosequencing.

    Science.gov (United States)

    He, Liming; Liu, Fang; Karuppiah, Valliappan; Ren, Yi; Li, Zhiyong

    2014-05-01

    To date, the knowledge of eukaryotic communities associated with sponges remains limited compared with prokaryotic communities. In a manner similar to prokaryotes, it could be hypothesized that sponge holobionts have phylogenetically diverse eukaryotic symbionts, and the eukaryotic community structures in different sponge holobionts were probably different. In order to test this hypothesis, the communities of eukaryota associated with 11 species of South China Sea sponges were compared with the V4 region of 18S ribosomal ribonucleic acid gene using 454 pyrosequencing. Consequently, 135 and 721 unique operational taxonomic units (OTUs) of fungi and protists were obtained at 97 % sequence similarity, respectively. These sequences were assigned to 2 phyla of fungi (Ascomycota and Basidiomycota) and 9 phyla of protists including 5 algal phyla (Chlorophyta, Haptophyta, Streptophyta, Rhodophyta, and Stramenopiles) and 4 protozoal phyla (Alveolata, Cercozoa, Haplosporidia, and Radiolaria) including 47 orders (12 fungi, 35 protists). Entorrhizales of fungi and 18 orders of protists were detected in marine sponges for the first time. Particularly, Tilletiales of fungi and Chlorocystidales of protists were detected for the first time in marine habitats. Though Ascomycota, Alveolata, and Radiolaria were detected in all the 11 sponge species, sponge holobionts have different fungi and protistan communities according to OTU comparison and principal component analysis at the order level. This study provided the first insights into the fungal and protistan communities associated with different marine sponge holobionts using pyrosequencing, thus further extending the knowledge on sponge-associated eukaryotic diversity.

  14. Sponge species composition, abundance, and cover in marine lakes and coastal mangroves in Berau, Indonesia

    NARCIS (Netherlands)

    Becking, L.E.; Cleary, D.F.R.; Voogd, de N.J.

    2013-01-01

    We compared the species composition, abundance, and cover of sponges in 2 marine lakes (Kakaban Lake and Haji Buang Lake) and adjacent coastal mangroves on the islands of Kakaban and Maratua in the Berau region of Indonesia. We recorded a total of 115 sponge species, 33 of which were restricted to

  15. Alcalóides alquilpiridínicos de esponjas marinhas Alkylpyridine alkaloids from marine sponges

    Directory of Open Access Journals (Sweden)

    Adaíla M. P. Almeida

    1997-04-01

    Full Text Available The chemistry of alkylpyridine alkaloids originating from marine sponges is comprehensively reviewed, with emphasis on their natural occurrence, methods for their isolation, spectroscopic characterization, biological activities e chemical synthesis. A likely chemotaxonomic role is suggested, as markers for sponges of the Order Haplosclerida (Demospongiae.

  16. Draft Genome Sequence of Marine Sponge Symbiont Pseudoalteromonas luteoviolacea IPB1, Isolated from Hilo, Hawaii.

    Science.gov (United States)

    Sakai-Kawada, Francis E; Yakym, Christopher J; Helmkampf, Martin; Hagiwara, Kehau; Ip, Courtney G; Antonio, Brandi J; Armstrong, Ellie; Ulloa, Wesley J; Awaya, Jonathan D

    2016-09-22

    We report here the 6.0-Mb draft genome assembly of Pseudoalteromonas luteoviolacea strain IPB1 that was isolated from the Hawaiian marine sponge Iotrochota protea Genome mining complemented with bioassay studies will elucidate secondary metabolite biosynthetic pathways and will help explain the ecological interaction between host sponge and microorganism.

  17. Draft Genome Sequence of Marine Sponge Symbiont Pseudoalteromonas luteoviolacea IPB1, Isolated from Hilo, Hawaii

    Science.gov (United States)

    Yakym, Christopher J.; Helmkampf, Martin; Hagiwara, Kehau; Ip, Courtney G.; Antonio, Brandi J.; Armstrong, Ellie; Ulloa, Wesley J.; Awaya, Jonathan D.

    2016-01-01

    We report here the 6.0-Mb draft genome assembly of Pseudoalteromonas luteoviolacea strain IPB1 that was isolated from the Hawaiian marine sponge Iotrochota protea. Genome mining complemented with bioassay studies will elucidate secondary metabolite biosynthetic pathways and will help explain the ecological interaction between host sponge and microorganism. PMID:27660784

  18. Sponge species composition, abundance, and cover in marine lakes and coastal mangroves in Berau, Indonesia

    NARCIS (Netherlands)

    Becking, L.E.; Cleary, D.F.R.; Voogd, de N.J.

    2013-01-01

    We compared the species composition, abundance, and cover of sponges in 2 marine lakes (Kakaban Lake and Haji Buang Lake) and adjacent coastal mangroves on the islands of Kakaban and Maratua in the Berau region of Indonesia. We recorded a total of 115 sponge species, 33 of which were restricted to K

  19. Antiparasitic bromotyrosine derivatives from the marine sponge Verongula rigida.

    Science.gov (United States)

    Galeano, Elkin; Thomas, Olivier P; Robledo, Sara; Munoz, Diana; Martinez, Alejandro

    2011-01-01

    Nine bromotyrosine-derived compounds were isolated from the Caribbean marine sponge Verongula rigida. Two of them, aeroplysinin-1 (1) and dihydroxyaerothionin (2), are known compounds for this species, and the other seven are unknown compounds for this species, namely: 3,5-dibromo-N,N,N-trimethyltyraminium (3), 3,5-dibromo-N,N,N, O-tetramethyltyraminium (4), purealidin R (5), 19-deoxyfistularin 3 (6), purealidin B (7), 11-hydroxyaerothionin (8) and fistularin-3 (9). Structural determination of the isolated compounds was performed using one- and two-dimensional NMR, MS and other spectroscopy data. All isolated compounds were screened for their in vitro activity against three parasitic protozoa: Leishmania panamensis, Plasmodium falciparum and Trypanosoma cruzi. Compounds 7 and 8 showed selective antiparasitic activity at 10 and 5 μM against Leishmania and Plasmodium parasites, respectively. Cytotoxicity of these compounds on a human promonocytic cell line was also assessed.

  20. Chemical and bioactive diversities of marine sponge Neopetrosia

    Directory of Open Access Journals (Sweden)

    Haitham Qaralleh

    2016-06-01

    Full Text Available The marine sponge Neopetrosia contains about 27 species that is highly distributed in Indian Ocean, Atlantic Ocean (Caribbean Sea and Pacific Ocean. It has proven to be valuable to the discovery of medicinal products due to the presence of various types of compounds with variable bio-activities. More than 85 compounds including alkaloids, quinones, sterols and terpenoids were isolated from this genus. Moreover, the crude extracts and the isolated compounds revealed activities such as antimicrobial, anti-fouling, anti-HIV, cytotoxic, anti-tumor, anti-oxidant, anti-protozoal, anti-inflammatory. Because only 9 out of 27 species of the genus Neopetrosia have been chemically studied thus far, there are significant opportunities to find out new chemical constituents from this genus.

  1. A Norsesterterpene Peroxide from a Marine Sponge Hippospongia sp.

    Science.gov (United States)

    Su, Ching-chyuan; Su, Huey-jen; Liang, Kai-ju; Tsaif, Su-june; Su, Jui-hsin

    2016-04-01

    One new norsesterterpene peroxide, rhopaloic acid H (1), along with two known related metabolites 2 and 3, were isolated from a marine sponge Hippospongia sp. The structures of compounds were elucidated by means of IR, MS, and NMR techniques and comparison of the NMR data with those of known analogues. Evaluation of the cytotoxicities revealed that compound 2 exhibited significant cytotoxicity against DLD-1, Molt 4, T47D and K-562 cell lines, with IC50 values of 3.18, 0.69, 2.22 and 1.06 µg/mL, respectively. Moreover, compound 3 also showed significant K562 inhibitory activity, with IC50 value of 3.65 µg/mL.

  2. New polyhydroxy sterols from the marine sponge Callyspongia fibrosa (Ridley & Dendly)

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, T.S.P.; Sarma, N.S.; Murthy, Y.L.N.; Kantamreddi, V.S.S.N.; Wright, C.W.; Parameswaran, P.S.

    sensitive strain. Marine sponges retain their importance as one of the choicest class of organisms for isolating new and novel biologically active molecules despite several new classes of organisms like bacteria, tunicates, microalgae, bryozoans etc...

  3. Merobatzelladines A and B, Anti-Infective Tricyclic Guanidines from a Marine Sponge Monanchora sp.

    NARCIS (Netherlands)

    Takishima, S.; Ishiyama, A.; Iwatsuki, M.; Otoguro, K.; Yamada, H.; Omura, S.; Kobayashi, H.; van Soest, R.W.M.; Matsunaga, S.

    2009-01-01

    Merobatzelladines A (1) and B (2) have been isolated from a marine sponge Monanchora sp. as antibacterial constituents. Their structures including relative stereochemistry were determined by interpretation of spectral data. The absolute stereochemistry of merobatzelladine B (2) was elucidated after

  4. Ent-untenospongin A, a New C21 Furanoterpene from the Indian Marine Sponge Hippospongia sp

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new C21 furanoterpene, ent-untenospongin A (2), together with a known related compound, tetradehydrofurospongin-1 (1), has been isolated from the Indian marine sponge Hippospongia sp. And its structure was determined on the basis of spectroscopic data.

  5. In vitro Evaluation of Natural Marine Sponge Collagen as a Scaffold for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Zhen Lin, Kellie L. Solomon, Xiaoling Zhang, Nathan J. Pavlos, Tamara Abel, Craig Willers, Kerong Dai, Jiake Xu, Qiujian Zheng, Minghao Zheng

    2011-01-01

    Full Text Available The selection of a suitable scaffold matrix is critical for cell-based bone tissue engineering. This study aimed to identify and characterize natural marine sponges as potential bioscaffolds for osteogenesis. Callyspongiidae marine sponge samples were collected from the Fremantle coast of Western Australia. The sponge structure was assessed using scanning electron microscopy (SEM and Hematoxylin and eosin. Mouse primary osteoblasts were seeded onto the sponge scaffold and immunostained with F-actin to assess cell attachment and aggregation. Alkaline phosphatase expression, von Kossa staining and real-time PCR were performed to examine the osteogenic potential of sponge samples. SEM revealed that the sponge skeleton possessed a collagenous fibrous network consisting of interconnecting channels and a porous structure that support cellular adhesion, aggregation and growth. The average pore size of the sponge skeleton was measured 100 to 300 μm in diameter. F-actin staining demonstrated that osteoblasts were able to anchor onto the surface of collagen fibres. Alkaline phosphatase expression, a marker of early osteoblast differentiation, was evident at 7 days although expression decreased steadily with long term culture. Using von Kossa staining, mineralisation nodules were evident after 21 days. Gene expression of osteoblast markers, osteocalcin and osteopontin, was also observed at 7, 14 and 21 days of culture. Together, these results suggest that the natural marine sponge is promising as a new scaffold for use in bone tissue engineering.

  6. Marine Drugs from Sponge-Microbe Association—A Review

    Directory of Open Access Journals (Sweden)

    Tresa Remya A. Thomas

    2010-04-01

    Full Text Available The subject of this review is the biodiversity of marine sponges and associated microbes which have been reported to produce therapeutically important compounds, along with the contextual information on their geographic distribution. Class Demospongiae and the orders Halichondrida, Poecilosclerida and Dictyoceratida are the richest sources of these compounds. Among the microbial associates, members of the bacterial phylum Actinobacteria and fungal division Ascomycota have been identified to be the dominant producers of therapeutics. Though the number of bacterial associates outnumber the fungal associates, the documented potential of fungi to produce clinically active compounds is currently more important than that of bacteria. Interestingly, production of a few identical compounds by entirely different host-microbial associations has been detected in both terrestrial and marine environments. In the Demospongiae, microbial association is highly specific and so to the production of compounds. Besides, persistent production of bioactive compounds has also been encountered in highly specific host-symbiont associations. Though spatial and temporal variations are known to have a marked effect on the quality and quantity of bioactive compounds, only a few studies have covered these dimensions. The need to augment production of these compounds through tissue culture and mariculture has also been stressed. The reviewed database of these compounds is available at www.niobioinformatics.in/drug.php.

  7. Implications of Sponge Biodiversity Patterns for the Management of a Marine Reserve in Northern Australia.

    Science.gov (United States)

    Przeslawski, Rachel; Alvarez, Belinda; Kool, Johnathan; Bridge, Tom; Caley, M Julian; Nichol, Scott

    2015-01-01

    Marine reserves are becoming progressively more important as anthropogenic impacts continue to increase, but we have little baseline information for most marine environments. In this study, we focus on the Oceanic Shoals Commonwealth Marine Reserve (CMR) in northern Australia, particularly the carbonate banks and terraces of the Sahul Shelf and Van Diemen Rise which have been designated a Key Ecological Feature (KEF). We use a species-level inventory compiled from three marine surveys to the CMR to address several questions relevant to marine management: 1) Are carbonate banks and other raised geomorphic features associated with biodiversity hotspots? 2) Can environmental (depth, substrate hardness, slope) or biogeographic (east vs west) variables help explain local and regional differences in community structure? 3) Do sponge communities differ among individual raised geomorphic features? Approximately 750 sponge specimens were collected in the Oceanic Shoals CMR and assigned to 348 species, of which only 18% included taxonomically described species. Between eastern and western areas of the CMR, there was no difference between sponge species richness or assemblages on raised geomorphic features. Among individual raised geomorphic features, sponge assemblages were significantly different, but species richness was not. Species richness showed no linear relationships with measured environmental factors, but sponge assemblages were weakly associated with several environmental variables including mean depth and mean backscatter (east and west) and mean slope (east only). These patterns of sponge diversity are applied to support the future management and monitoring of this region, particularly noting the importance of spatial scale in biodiversity assessments and associated management strategies.

  8. Evidence of unique and generalist microbes in distantly related sympatric intertidal marine sponges (Porifera: Demospongiae).

    Science.gov (United States)

    Alex, Anoop; Silva, Vitor; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    The diversity and specificity of microbial communities in marine environments is a key aspect of the ecology and evolution of both the eukaryotic hosts and their associated prokaryotes. Marine sponges harbor phylogenetically diverse and complex microbial lineages. Here, we investigated the sponge bacterial community and distribution patterns of microbes in three sympatric intertidal marine demosponges, Hymeniacidon perlevis, Ophlitaspongia papilla and Polymastia penicillus, from the Atlantic coast of Portugal using classical isolation techniques and 16S rRNA gene clone libraries. Microbial composition assessment, with nearly full-length 16S rRNA gene sequences (ca. 1400 bp) from the isolates (n = 31) and partial sequences (ca. 280 bp) from clone libraries (n = 349), revealed diverse bacterial communities and other sponge-associated microbes. The majority of the bacterial isolates were members of the order Vibrionales and other symbiotic bacteria like Pseudovibrio ascidiaceiocola, Roseobacter sp., Hahellaceae sp. and Cobetia sp. Extended analyses using ecological metrics comprising 142 OTUs supported the clear differentiation of bacterial community profiles among the sponge hosts and their ambient seawater. Phylogenetic analyses were insightful in defining clades representing shared bacterial communities, particularly between H. perlevis and the geographically distantly-related H. heliophila, but also among other sponges. Furthermore, we also observed three distinct and unique bacterial groups, Betaproteobactria (~81%), Spirochaetes (~7%) and Chloroflexi (~3%), which are strictly maintained in low-microbial-abundance host species O. papilla and P. penicillus. Our study revealed the largely generalist nature of microbial associations among these co-occurring intertidal marine sponges.

  9. First evidence of the presence of chitin in skeletons of marine sponges. Part II. Glass sponges (Hexactinellida: Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Krautter, Manfred; Hanke, Thomas; Simon, Paul; Knieb, Christiane; Heinemann, Sascha; Worch, Hartmut

    2007-07-15

    Sponges (Porifera) are presently gaining increased scientific attention because of their secondary metabolites and specific skeleton structures. In contrast to demosponges, whose skeletons are formed from biopolymer spongin, glass sponges (hexactinellids) possess silica-organic composites as the main natural material for their skeletal fibres. Chitin has a crystalline structure and it constitutes a network of organized fibres. This structure confers rigidity and resistance to organisms that contain it, including monocellular (yeast, amoeba, diatoms) and multicellular (higher fungi, arthropods, nematodes, molluscs) organisms. In contrast to different marine invertebrates whose exoskeletons are built of chitin, this polysaccharide has not been found previously as an endogenous biopolymer within glass sponges (Hexactinellida). We hypothesized that glass sponges, which are considered to be the most basal lineage of multicellular animals, must possess chitin. Here, we present a detailed study of the structural and physico-chemical properties of skeletal fragments of the glass sponge Farrea occa. We show that these fibres have a layered design with specific compositional variations in the chitin/silica composite. We applied an effective approach for the demineralization of glass sponge skeletal formations based on an etching procedure using alkali solutions. The results show unambiguously that alpha-chitin is an essential component of the skeletal structures of Hexactinellida. This is the first report of a silica-chitin's composite biomaterial found in nature. From this perspective, the view that silica-chitin scaffolds may be key templates for skeleton formation also in ancestral unicellular organisms, rather than silica-protein composites, emerges as a viable alternative hypothesis.

  10. Unusual symbiotic cyanobacteria association in the genetically diverse intertidal marine sponge Hymeniacidon perlevis (Demospongiae, Halichondrida.

    Directory of Open Access Journals (Sweden)

    Anoop Alex

    Full Text Available Cyanobacteria represent one of the most common members of the sponge-associated bacterial community and are abundant symbionts of coral reef ecosystems. In this study we used Transmission Electron Microscopy (TEM and molecular techniques (16S rRNA gene marker to characterize the spatial distribution of cyanobionts in the widely dispersed marine intertidal sponge Hymeniacidon perlevis along the coast of Portugal (Atlantic Ocean. We described new sponge associated cyanobacterial morphotypes (Xenococcus-like and we further observed Acaryochloris sp. as a sponge symbiont, previously only reported in association with ascidians. Besides these two unique cyanobacteria, H. perlevis predominantly harbored Synechococcus sp. and uncultured marine cyanobacteria. Our study supports the hypothesis that the community of sponge cyanobionts varies irrespective of the geographical location and is likely influenced by seasonal fluctuations. The observed multiple cyanobacterial association among sponges of the same host species over a large distance may be attributed to horizontal transfer of symbionts. This may explain the absence of a co-evolutionary pattern between the sponge host and its symbionts. Finally, in spite of the short geographic sampling distance covered, we observed an unexpected high intra-specific genetic diversity in H. perlevis using the mitochondrial genes ATP6 (π = 0.00177, COI (π = 0.00241 and intergenic spacer SP1 (π = 0.00277 relative to the levels of genetic variation of marine sponges elsewhere. Our study suggests that genotypic variation among the sponge host H. perlevis and the associated symbiotic cyanobacteria diversity may be larger than previously recognized.

  11. Characterisation of Non-Autoinducing Tropodithietic Acid (TDA) Production from Marine Sponge Pseudovibrio Species

    DEFF Research Database (Denmark)

    Harrington, Catriona; Reen, F. Jerry; Mooij, Marlies J.

    2014-01-01

    is the antibacterial compound tropodithietic acid (TDA). The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent...

  12. Mariculture and natural production of the antitumoural (+)-discodermolide by the Caribbean marine sponge Discodermia dissoluta.

    Science.gov (United States)

    Ruiz, Cesar; Valderrama, Katherine; Zea, Sven; Castellanos, Leonardo

    2013-10-01

    Biotechnological research on marine organisms, such as ex situ or in situ aquaculture and in vitro cell culture, is being conducted to produce bioactive metabolites for biomedical and industrial uses. The Caribbean marine sponge Discodermia dissoluta is the source of (+)-discodermolide, a potent antitumoural polyketide that has reached clinical trials. This sponge usually lives at depths greater than 30 m, but at Santa Marta (Colombia) there is a shallower population, which has made it logistically possible to investigate for the first time, on ways to supply discodermolide. We thus performed in situ, 6-month fragment culture trials to assess the performance of this sponge in terms of growth and additional discodermolide production and studied possible factors that influence the variability of discodermolide concentrations in the wild. Sponge fragments cultured in soft mesh bags suspended from horizontal lines showed high survivorship (93 %), moderate growth (28 % increase in volume) and an overall rise (33 %) in the discodermolide concentration, equivalent to average additional production of 8 μg of compound per millilitre of sponge. The concentration of discodermolide in wild sponges ranged from 8 to 40 μg mL(-1). Locality was the only factor related to discodermolide variation in the wild, and there were greater concentrations in peripheral vs. basal portions of the sponge, and in clean vs. fouled individuals. As natural growth and regeneration rates can be higher than culture growth rates, there is room for improving techniques to sustainably produce discodermolide.

  13. Diversity, abundance and natural products of marine sponge-associated actinomycetes.

    Science.gov (United States)

    Abdelmohsen, Usama Ramadan; Bayer, Kristina; Hentschel, Ute

    2014-03-01

    Actinomycetes are known for their unprecedented ability to produce novel lead compounds of clinical and pharmaceutical importance. This review focuses on the diversity, abundance and methodological approaches targeting marine sponge-associated actinomycetes. Additionally, novel qPCR data on actinomycete abundances in different sponge species and other environmental sources are presented. The natural products literature is covered, and we are here reporting on their chemical structures, their biological activities, as well as the source organisms from which they were isolated.

  14. Onnamide F: a new nematocide from a southern Australian marine sponge, Trachycladus laevispirulifer.

    Science.gov (United States)

    Vuong, D; Capon, R J; Lacey, E; Gill, J H; Heiland, K; Friedel, T

    2001-05-01

    A southern Australian marine sponge, Trachycladus laevispirulifer, has yielded a potent new nematocide with antifungal activity which has been identified as onnamide F (1). The structure for 1 was assigned by detailed spectroscopic analysis and chemical conversion to the methyl ester 2. Onnamide F contains a common structural motif previously described in a number of natural products exhibiting interesting pharmacological activities, including the insect chemical defense agent pederin (3), and the sponge metabolites the onnamides, mycalamides, and theopederins.

  15. PRIMARY CHARACTERIZATION OF SPONGE ASSOCIATED BACTERIA OF MARINE SPONGES- HALICHONDRIA GLABRATA, CLIONA LOBATA, SPIRASTRELLA PACHYSPIRA AND THEIR ANTIMICROBIAL PROPERTIES

    Directory of Open Access Journals (Sweden)

    Maushmi Kumar

    2014-10-01

    Full Text Available Marine sponge associated bacterias have been recognized as an important and untapped resource for novel bioactive compounds. In the present study four strains of microorganisms were isolated from three different varieties of marine sponge viz. Halichondria glabrata, Cliona lobata and Spirastrella pachyspira. They showed broad spectrum antimicrobial activity against both Gram positive and Gram negative indicator organisms. From the biochemical tests and cetrimide agar test, it was concluded that the Strain B isolated from Cliona lobata is a Pseudomonas species. Strain A (gram negative culture product isolated from Halichondria glabrata showed the antibiotic activity against Gram positive (B. subtillis and Gram negative (S. typhi, P. vulgaris, E.coli organisms. The minimum inhibitory concentration for showing antibacterial activity on all the standard strain was found to be 40 µL of culture broth supernatant. This strain was further identified by ABIS software based on biochemical tests and confirmation of the strain was done after 16S r RNA gene sequencing. The strain showed close similarity with E. coli and Enterobacteria strains and most of the uncultured bacterium from different hosts, which confirmed its nature of being it a symbiont from sponge Halichondria glabrata with antimicrobial activity.

  16. New records of five sponge species (Porifera) for the Black Sea.

    Science.gov (United States)

    Evcen, Alper; Çinar, Melih Ertan; Zengin, Mustafa; Süer, Serdar; Rüzgar, Melih

    2016-04-13

    The present study deals with five sponge species [Chalinula renieroides, Haliclona (Halichoclona) fulva, H. (Rhizoniera) rosea, Hymedesmia (Hymedesmia) pansa and Ircinia variabilis] belonging to 3 families (Chalinidae, Hymedesmiidae, and Irciniidae) found at one locality (near the opening of Kızılırmak River) on the Black Sea coast of Turkey. All these species are new records for the Black Sea. Three species (Chalinula renieroides, H. (R.) rosea and H. (H.) pansa] are also new records for the marine fauna of Turkey. All these species were previously reported from Mediterranean Sea and the eastern Atlantic Ocean. The morphological and distributional features of these species are presented.

  17. Chiral alkynylcarbinols from marine sponges: asymmetric synthesis and biological relevance.

    Science.gov (United States)

    Listunov, Dymytrii; Maraval, Valérie; Chauvin, Remi; Génisson, Yves

    2015-01-01

    Covering: up to March 2014. Previous review on the topic: B. W. Gung, C. R. Chim., 2009, 12, 489-505. Chiral α-functional lipidic propargylic alcohols extracted from marine sponges, in particular of the pacific genus Petrosia, constitute a class of acetylenic natural products exhibiting remarkable in vitro biological activities, especially anti-tumoral cytotoxicity. These properties, associated to functionalities that are uncommon among natural products, have prompted recent projects on asymmetric total synthesis. On the basis of a three-sector structural typology, three main sub-types of secondary alkynylcarbinols (with either alkyl, alkenyl, or alkynyl as the second substituent) can be identified as the minimal pharmacophoric units. Selected natural products containing these functionalities have been targeted using previously known or on purpose-designed procedures, where the stereo-determining step can be: (i) a C-C bond forming reaction (e.g. the Zn-mediated addition of alkynyl nucleophiles to aldehydes in the presence of chiral aminoalcohols), (ii) a functional layout (e.g. the asymmetric organo- or metallo-catalytic reduction of ynones), or (iii) an enantiomeric resolution (e.g. a lipase-mediated kinetic resolution via acetylation). The promising medicinal importance of these targets is finally surveyed, and future investigation prospects are proposed, such as: (i) further total synthesis of known or future extraction products; (ii) the synthesis of non-natural analogues, with simpler lipophilic environments of the alkynylcarbinol-based pharmacophoric units; (iii) the variation and optimization of both the pharmacophoric units and their lipophilic environment; and (iv) investigations into the biological mode of action of these unique structures.

  18. Efficient bioremediation of total organic carbon (TOC) in integrated aquaculture system by marine sponge Hymeniacidon perleve.

    Science.gov (United States)

    Fu, Wantao; Wu, Yichun; Sun, Liming; Zhang, Wei

    2007-08-15

    The aim of this study is to investigate the potential of using marine sponge Hymeniacidon perleve to remove total organic carbon (TOC) in integrated aquaculture ecosystems. In sterilized natural seawater (SNSW) with different concentrations of TOC, H. perleve removed approximately 44-61% TOC during 24 h, with retention rates of ca. 0.19-1.06 mg/h .g-fresh sponge, however no particulate selectivity was observed. The highest initial TOC concentration, in which about 2.7 g fresh sponges could remove TOC effectively in 0.5-L SNSW, is 214.3-256.9 mg/L. The highest capacity of TOC removal and clearance rate (CR) by H. perleve is ca. 25.50 mg-TOC/g-fresh sponge and 7.64 mL/h . g-fresh sponge within 24 h, respectively. Until reaching the highest TOC removal capacity, the TOC removal capacity and clearance rate of H. perleve increased with initial TOC concentration, and dropped dramatically thereafter. After reaching the highest removal capacity, H. perleve could only remove relatively lower TOC concentration in seawater in subsequent run. The TOC removal kinetics in SNSW by H. perleve fitted very well with a S-shaped curve and a Logistic model equation (R(2) = 0.999). In different volumes of SNSW with a fixed initial TOC concentration, the weight/volume ratio of sponge biomass and SFNSW was optimized at 1.46 g-fresh sponge/1-L SNSW to achieve the maximum TOC removal. When co-cultured with marine fish Fugu rubripes for 15 days, H. perleve removed TOC excreted by F. rubripes with similar retention rates of ca. 0.15 mg/h . g-fresh sponge, and the sponge biomass increased by 22.8%.

  19. Phylogenetic Diversity of Bacteria Associated with the Marine Sponge Rhopaloeides odorabile†

    Science.gov (United States)

    Webster, Nicole S.; Wilson, Kate J.; Blackall, Linda L.; Hill, Russell T.

    2001-01-01

    Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge. PMID:11133476

  20. Genomic mining for novel FADH₂-dependent halogenases in marine sponge-associated microbial consortia.

    Science.gov (United States)

    Bayer, Kristina; Scheuermayer, Matthias; Fieseler, Lars; Hentschel, Ute

    2013-02-01

    Many marine sponges (Porifera) are known to contain large amounts of phylogenetically diverse microorganisms. Sponges are also known for their large arsenal of natural products, many of which are halogenated. In this study, 36 different FADH₂-dependent halogenase gene fragments were amplified from various Caribbean and Mediterranean sponges using newly designed degenerate PCR primers. Four unique halogenase-positive fosmid clones, all containing the highly conserved amino acid motif "GxGxxG", were identified in the microbial metagenome of Aplysina aerophoba. Sequence analysis of one halogenase-bearing fosmid revealed notably two open reading frames with high homologies to efflux and multidrug resistance proteins. Single cell genomic analysis allowed for a taxonomic assignment of the halogenase genes to specific symbiotic lineages. Specifically, the halogenase cluster S1 is predicted to be produced by a deltaproteobacterial symbiont and halogenase cluster S2 by a poribacterial sponge symbiont. An additional halogenase gene is possibly produced by an actinobacterial symbiont of marine sponges. The identification of three novel, phylogenetically, and possibly also functionally distinct halogenase gene clusters indicates that the microbial consortia of sponges are a valuable resource for novel enzymes involved in halogenation reactions.

  1. Diversity of Nonribosomal Peptide Synthetase Genes in the Microbial Metagenomes of Marine Sponges

    Directory of Open Access Journals (Sweden)

    Ute Hentschel

    2012-05-01

    Full Text Available Genomic mining revealed one major nonribosomal peptide synthetase (NRPS phylogenetic cluster in 12 marine sponge species, one ascidian, an actinobacterial isolate and seawater. Phylogenetic analysis predicts its taxonomic affiliation to the actinomycetes and hydroxy-phenyl-glycine as a likely substrate. Additionally, a phylogenetically distinct NRPS gene cluster was discovered in the microbial metagenome of the sponge Aplysina aerophoba, which shows highest similarities to NRPS genes that were previously assigned, by ways of single cell genomics, to a Chloroflexi sponge symbiont. Genomic mining studies such as the one presented here for NRPS genes, contribute to on-going efforts to characterize the genomic potential of sponge-associated microbiota for secondary metabolite biosynthesis.

  2. Implications of Sponge Biodiversity Patterns for the Management of a Marine Reserve in Northern Australia.

    Directory of Open Access Journals (Sweden)

    Rachel Przeslawski

    Full Text Available Marine reserves are becoming progressively more important as anthropogenic impacts continue to increase, but we have little baseline information for most marine environments. In this study, we focus on the Oceanic Shoals Commonwealth Marine Reserve (CMR in northern Australia, particularly the carbonate banks and terraces of the Sahul Shelf and Van Diemen Rise which have been designated a Key Ecological Feature (KEF. We use a species-level inventory compiled from three marine surveys to the CMR to address several questions relevant to marine management: 1 Are carbonate banks and other raised geomorphic features associated with biodiversity hotspots? 2 Can environmental (depth, substrate hardness, slope or biogeographic (east vs west variables help explain local and regional differences in community structure? 3 Do sponge communities differ among individual raised geomorphic features? Approximately 750 sponge specimens were collected in the Oceanic Shoals CMR and assigned to 348 species, of which only 18% included taxonomically described species. Between eastern and western areas of the CMR, there was no difference between sponge species richness or assemblages on raised geomorphic features. Among individual raised geomorphic features, sponge assemblages were significantly different, but species richness was not. Species richness showed no linear relationships with measured environmental factors, but sponge assemblages were weakly associated with several environmental variables including mean depth and mean backscatter (east and west and mean slope (east only. These patterns of sponge diversity are applied to support the future management and monitoring of this region, particularly noting the importance of spatial scale in biodiversity assessments and associated management strategies.

  3. PROSPECTS FOR APPLICATION OF Aplysinidae FAMILY MARINE SPONGE SKELETONS AND MESENCHYMAL STROMAL CELLS IN TISSUE ENGINEERING

    Directory of Open Access Journals (Sweden)

    О. Yu. Rogulska

    2011-10-01

    Full Text Available Development of the new types of tissue engineered structures is one of the promising trends of current biotechnology. The study was directed to the assessment of prospects for the application of chitin-based skeletons derived from marine sponges of Aplysinidae family (Aplysina fulva and Aplysina aerophoba for creation of bioengineered constructs based on human mesenchymal stromal cells. After cleaning and demineralization procedures, sponge skeletons appeared as three-dimensional macroporous matrices formed by intersecting chitin fibrils. After seeding into chitin-based matrices the cells were attached to the surface of the fibrils and were able to spread and proliferate. Mesenchymal stromal cells within Aplysina fulva differentiated into osteogenic and adipogenic directions under the influence of appropriate inductors. Demineralized skeletons derived from marine sponges of Aplysinidae family could be used as scaffolds for mesenchymal stromal cells which provides new opportunities for the creation of adipose and bone tissue engineered structures.

  4. Diversity and antimicrobial potential of culturable heterotrophic bacteria associated with the endemic marine sponge Arenosclera brasiliensis

    Directory of Open Access Journals (Sweden)

    Cintia P.J. Rua

    2014-06-01

    Full Text Available Marine sponges are the oldest Metazoa, very often presenting a complex microbial consortium. Such is the case of the marine sponge Arenosclera brasiliensis, endemic to Rio de Janeiro State, Brazil. In this investigation we characterized the diversity of some of the culturable heterotrophic bacteria living in association with A. brasiliensis and determined their antimicrobial activity. The genera Endozoicomonas (N = 32, Bacillus (N = 26, Shewanella (N = 17, Pseudovibrio (N = 12, and Ruegeria (N = 8 were dominant among the recovered isolates, corresponding to 97% of all isolates. Approximately one third of the isolates living in association with A. brasiliensis produced antibiotics that inhibited the growth of Bacillus subtilis, suggesting that bacteria associated with this sponge play a role in its health.

  5. Sulfated polysaccharides from marine sponges (Porifera): an ancestor cell-cell adhesion event based on the carbohydrate-carbohydrate interaction.

    Science.gov (United States)

    Vilanova, Eduardo; Coutinho, Cristiano C; Mourão, Paulo A S

    2009-08-01

    Marine sponges (Porifera) are ancient and simple eumetazoans. They constitute key organisms in the evolution from unicellular to multicellular animals. We now demonstrated that pure sulfated polysaccharides from marine sponges are responsible for the species-specific cell-cell interaction in these invertebrates. This conclusion was based on the following observations: (1) each species of marine sponge has a single population of sulfated polysaccharide, which differ among the species in their sugar composition and sulfate content; (2) sulfated polysaccharides from sponge interact with each other in a species-specific way, as indicated by an affinity chromatography assay, and this interaction requires calcium; (3) homologous, but not heterologous, sulfated polysaccharide inhibits aggregation of dissociated sponge cells; (4) we also observed a parallel between synthesis of the sulfated polysaccharide and formation of large aggregates of sponge cells, known as primmorphs. Once aggregation reached a plateau, the demand for the de novo synthesis of sulfated polysaccharides ceased. Heparin can mimic the homologous sulfated polysaccharide on the in vitro interaction and also as an inhibitor of aggregation of the dissociated sponge cells. However, this observation is not relevant for the biology of the sponge since heparin is not found in the invertebrate. In conclusion, marine sponges display an ancestor event of cell-cell adhesion, based on the calcium-dependent carbohydrate-carbohydrate interaction.

  6. Evidence of unique and generalist microbes in distantly related sympatric intertidal marine sponges (Porifera: Demospongiae.

    Directory of Open Access Journals (Sweden)

    Anoop Alex

    Full Text Available The diversity and specificity of microbial communities in marine environments is a key aspect of the ecology and evolution of both the eukaryotic hosts and their associated prokaryotes. Marine sponges harbor phylogenetically diverse and complex microbial lineages. Here, we investigated the sponge bacterial community and distribution patterns of microbes in three sympatric intertidal marine demosponges, Hymeniacidon perlevis, Ophlitaspongia papilla and Polymastia penicillus, from the Atlantic coast of Portugal using classical isolation techniques and 16S rRNA gene clone libraries. Microbial composition assessment, with nearly full-length 16S rRNA gene sequences (ca. 1400 bp from the isolates (n = 31 and partial sequences (ca. 280 bp from clone libraries (n = 349, revealed diverse bacterial communities and other sponge-associated microbes. The majority of the bacterial isolates were members of the order Vibrionales and other symbiotic bacteria like Pseudovibrio ascidiaceiocola, Roseobacter sp., Hahellaceae sp. and Cobetia sp. Extended analyses using ecological metrics comprising 142 OTUs supported the clear differentiation of bacterial community profiles among the sponge hosts and their ambient seawater. Phylogenetic analyses were insightful in defining clades representing shared bacterial communities, particularly between H. perlevis and the geographically distantly-related H. heliophila, but also among other sponges. Furthermore, we also observed three distinct and unique bacterial groups, Betaproteobactria (~81%, Spirochaetes (~7% and Chloroflexi (~3%, which are strictly maintained in low-microbial-abundance host species O. papilla and P. penicillus. Our study revealed the largely generalist nature of microbial associations among these co-occurring intertidal marine sponges.

  7. 1,5-Diazacyclohenicosane, a New Cytotoxic Metabolite from the Marine Sponge Mycale sp

    Science.gov (United States)

    Coello, Laura; Martín, María Jesús; Reyes, Fernando

    2009-01-01

    A new cyclic diamine, 1,5-diazacyclohenicosane (1), was isolated from samples of the marine sponge Mycale sp. collected at Lamu Island (Kenya). Its structure was determined by a combination of spectroscopic techniques, including (+)-HRESIMS and 1D and 2D NMR spectroscopy. The compound displayed cytotoxicity at the μM level against three human tumor cell lines. PMID:19841724

  8. Taxonomic and Functional Microbial Signatures of the Endemic Marine Sponge Arenosclera brasiliensis.

    NARCIS (Netherlands)

    Trindade-Silva, A.E.; Rua, C. de la; Silva, G.G.; Dutilh, B.E.; Moreira, A.P.; Edwards, R.A.; Hajdu, E.; Lobo-Hajdu, G.; Vasconcelos, A.T.; Berlinck, R.G.; Thompson, F.L.

    2012-01-01

    The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this

  9. Molecular diversity of fungal and bacterial communities in the marine sponge Dragmacidon reticulatum.

    Science.gov (United States)

    Passarini, Michel R Z; Miqueletto, Paula B; de Oliveira, Valéria M; Sette, Lara D

    2015-02-01

    The present work aimed to investigate the diversity of bacteria and filamentous fungi of southern Atlantic Ocean marine sponge Dragmacidon reticulatum using cultivation-independent approaches. Fungal ITS rDNA and 18S gene analyses (DGGE and direct sequencing approaches) showed the presence of representatives of three order (Polyporales, Malasseziales, and Agaricales) from the phylum Basidiomycota and seven orders belonging to the phylum Ascomycota (Arthoniales, Capnodiales, Dothideales, Eurotiales, Hypocreales, Pleosporales, and Saccharomycetales). On the other hand, bacterial 16S rDNA gene analyses by direct sequencing approach revealed the presence of representatives of seven bacterial phyla (Cyanobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Lentisphaerae, Chloroflexi, and Planctomycetes). Results from statistical analyses (rarefaction curves) suggested that the sampled clones covered the fungal diversity in the sponge samples studied, while for the bacterial community additional sampling would be necessary for saturation. This is the first report related to the molecular analyses of fungal and bacterial communities by cultivation-independent approaches in the marine sponges D. reticulatum. Additionally, the present work broadening the knowledge of microbial diversity associated to marine sponges and reports innovative data on the presence of some fungal genera in marine samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Taxonomic and functional microbial signatures of the endemic marine sponge Arenosclera brasiliensis.

    Directory of Open Access Journals (Sweden)

    Amaro E Trindade-Silva

    Full Text Available The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb. Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome.

  11. Sterols from Thai Marine Sponge Petrosia (Strongylophora) sp. and Their Cytotoxicity.

    Science.gov (United States)

    Pailee, Phanruethai; Mahidol, Chulabhorn; Ruchirawat, Somsak; Prachyawarakorn, Vilailak

    2017-02-23

    Eight new sterols (1-5 and 11-13), together with eight known compounds (6-10 and 14-16) were isolated from marine sponge Petrosia sp. The structures of these compounds were elucidated on the basis of extensive spectroscopic analysis. The cytotoxicity of some compounds against a panel of human cancer cell lines is also reported.

  12. Taxonomic and Functional Microbial Signatures of the Endemic Marine Sponge Arenosclera brasiliensis

    Science.gov (United States)

    Trindade-Silva, Amaro E.; Rua, Cintia; Silva, Genivaldo G. Z.; Dutilh, Bas E.; Moreira, Ana Paula B.; Edwards, Robert A.; Hajdu, Eduardo; Lobo-Hajdu, Gisele; Vasconcelos, Ana Tereza; Berlinck, Roberto G. S.; Thompson, Fabiano L.

    2012-01-01

    The endemic marine sponge Arenosclera brasiliensis (Porifera, Demospongiae, Haplosclerida) is a known source of secondary metabolites such as arenosclerins A-C. In the present study, we established the composition of the A. brasiliensis microbiome and the metabolic pathways associated with this community. We used 454 shotgun pyrosequencing to generate approximately 640,000 high-quality sponge-derived sequences (∼150 Mb). Clustering analysis including sponge, seawater and twenty-three other metagenomes derived from marine animal microbiomes shows that A. brasiliensis contains a specific microbiome. Fourteen bacterial phyla (including Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Cloroflexi) were consistently found in the A. brasiliensis metagenomes. The A. brasiliensis microbiome is enriched for Betaproteobacteria (e.g., Burkholderia) and Gammaproteobacteria (e.g., Pseudomonas and Alteromonas) compared with the surrounding planktonic microbial communities. Functional analysis based on Rapid Annotation using Subsystem Technology (RAST) indicated that the A. brasiliensis microbiome is enriched for sequences associated with membrane transport and one-carbon metabolism. In addition, there was an overrepresentation of sequences associated with aerobic and anaerobic metabolism as well as the synthesis and degradation of secondary metabolites. This study represents the first analysis of sponge-associated microbial communities via shotgun pyrosequencing, a strategy commonly applied in similar analyses in other marine invertebrate hosts, such as corals and algae. We demonstrate that A. brasiliensis has a unique microbiome that is distinct from that of the surrounding planktonic microbes and from other marine organisms, indicating a species-specific microbiome. PMID:22768320

  13. Nine acetylenic alcohols isolated from the Okinawan marine sponge of the genus Petrosia (Strongylophora).

    NARCIS (Netherlands)

    K. Watanabe; G. Mori; K. Iguchi; M. Suzuki; R.W.M. van Soest

    2007-01-01

    Nine new acetylenic alcohols 1-9 were isolated from a marine sponge belonging to the genus Petrosia (Strongylophora). The structures were elucidated mainly based on the analysis of one-and two-dimensional NMR spectral data. To determine the position of the central double bonds in 1-8, each compound

  14. Inconspicamide, New N-Acylated Serinol from the Marine Sponge Stelletta inconspicuqa

    NARCIS (Netherlands)

    Ueoka, R.; Fujita, T.; Iwashita, T.; van Soest, R.W.M.; Matsunaga, S.

    2009-01-01

    A new N-acylated serinol, inconspicamide (1), was isolated from the marine sponge, Stelletta inconspicua, together with a glyceryl ether (2). Their structures were determined on the basis of spectroscopic data and the modified Mosher analysis. They exhibited moderate cytotoxic activity against HeLa

  15. 1,5-Diazacyclohenicosane, a New Cytotoxic Metabolite from the Marine Sponge Mycale sp.

    Directory of Open Access Journals (Sweden)

    María Jesús Martín

    2009-09-01

    Full Text Available A new cyclic diamine, 1,5-diazacyclohenicosane (1, was isolated from samples of the marine sponge Mycale sp. collected at Lamu Island (Kenya. Its structure was determined by a combination of spectroscopic techniques, including (+-HRESIMS and 1D and 2D NMR spectroscopy. The compound displayed cytotoxicity at the μM level against three human tumor cell lines.

  16. Isolation of azaspiracid-2 from a marine sponge Echinoclathria sp. as a potent cytotoxin

    NARCIS (Netherlands)

    Ueoka, R.; Ito, A.; Izumikawa, M.; Maeda, S.; Takagi, M.; Shin-ya, K.; Yoshida, M.; van Soest, R.W.M.; Matsunaga, S.

    2009-01-01

    Azaspiracid-2 was isolated from a marine sponge Echinoclathria sp. collected off Amami-Oshima as the predominant cytotoxic constituent. A combination of HPLC using ODS, GS320, and Phenylhexyl stationary phases permitted the purification without using acid or inorganic additives in the mobile phase.

  17. Progress towards a controlled culture of the marine sponge Pseudosuberites andrewsi in a bioreactor

    NARCIS (Netherlands)

    Osinga, R.; Belarbi, El H.; Molina Grima, E.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Explants of the tropical sponge Pseudosuberites andrewsi were fed with the marine diatom Phaeodactylum tricornotum. The food was supplied either as intact algae or as a filtered crude extract. Growth (measured as an increase in underwater weight) was found in both experiments. The explants fed with

  18. Secomycalolide A: A New Proteasome Inhibitor Isolated from a Marine Sponge of the Genus Mycale

    Directory of Open Access Journals (Sweden)

    Sachiko Tsukamoto

    2005-06-01

    Full Text Available A new oxazole-containing proteasome inhibitor, secomycalolide A, together with known mycalolide A and 30-hydroxymycalolide A, was isolated from a marine sponge of the genus Mycale. They showed proteasome inhibitory activities with IC50 values of 11-45 μg/mL.

  19. Nepheliosyne B, a New Polyacetylenic Acid from the New Caledonian Marine Sponge Niphates sp.

    Directory of Open Access Journals (Sweden)

    Patrick Auberger

    2013-06-01

    Full Text Available A new C47 polyoxygenated acetylenic acid, nepheliosyne B (2, along with the previously described nepheliosyne A (1, have been isolated from the New Caledonian marine sponge Niphates sp. Their structures have been elucidated on the basis of extensive spectroscopic analyses. These metabolites exhibited a moderate cytotoxicity against K562, U266, SKM1, and Kasumi cancer cell lines.

  20. Rhabdastrellins A-F, isomalabaricane triterpenes from the marine sponge Rhabdastrella aff. distincta

    NARCIS (Netherlands)

    Lv, F.; Xu, M.; Deng, Z.; de Voogd, N.J.; van Soest, R.W.M.; Proksch, P.; Lin, W.

    2008-01-01

    Chemical examination of the marine sponge Rhabdastrella aff. distincta resulted in the isolation of six new isomalabaricane triterpenes, rhabdastrellins A−F (1−6), which were present as minor components, along with stellettins L and M. Their structures were elucidated on the basis of extensive spect

  1. An enrichment of CRISPR and other defense-related features in marine sponge-associated microbial metagenomes

    Directory of Open Access Journals (Sweden)

    Hannes Horn

    2016-11-01

    Full Text Available Many marine sponges are populated by dense and taxonomically diverse microbial consortia. We employed a metagenomics approach to unravel the differences in the functional gene repertoire among three Mediterranean sponge species, Petrosia ficiformis, Sarcotragus foetidus, Aplysina aerophoba and seawater. Different signatures were observed between sponge and seawater metagenomes with regard to microbial community composition, GC content, and estimated bacterial genome size. Our analysis showed further a pronounced repertoire for defense systems in sponge metagenomes. Specifically, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR, restriction modification, DNA phosphorothioation and phage growth limitation systems were enriched in sponge metagenomes. These data suggest that defense is an important functional trait for an existence within sponges that requires mechanisms to defend against foreign DNA from microorganisms and viruses. This study contributes to an understanding of the evolutionary arms race between viruses/phages and bacterial genomes and it sheds light on the bacterial defenses that have evolved in the context of the sponge holobiont.

  2. Carbohydrate self-recognition mediates marine sponge cellular adhesion

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Haseley, S.R.; Vermeer, H.J.; Kamerling, J.P.

    2001-01-01

    Sponges (Porifera), the simplest and earliest multicellular organisms, are thought to have evolved from their unicellular ancestors about 1 billion years ago by developing cell-recognition and adhesion mechanisms to discriminate against 'non-self.' Consequently, they are used as models for investiga

  3. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei

    OpenAIRE

    Piel, Jörn; Hui, Dequan; Wen, Gaiping; Butzke, Daniel; Platzer, Matthias; Fusetani, Nobuhiro; Matsunaga, Shigeki

    2004-01-01

    Bacterial symbionts have long been suspected to be the true producers of many drug candidates isolated from marine invertebrates. Sponges, the most important marine source of biologically active natural products, have been frequently hypothesized to contain compounds of bacterial origin. This symbiont hypothesis, however, remained unproven because of a general inability to cultivate the suspected producers. However, we have recently identified an uncultured Pseudomonas sp. symbiont as the mos...

  4. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges

    Science.gov (United States)

    Kamke, Janine; Sczyrba, Alexander; Ivanova, Natalia; Schwientek, Patrick; Rinke, Christian; Mavromatis, Kostas; Woyke, Tanja; Hentschel, Ute

    2013-01-01

    Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems. PMID:23842652

  5. Single-cell genomics reveals complex carbohydrate degradation patterns in poribacterial symbionts of marine sponges.

    Science.gov (United States)

    Kamke, Janine; Sczyrba, Alexander; Ivanova, Natalia; Schwientek, Patrick; Rinke, Christian; Mavromatis, Kostas; Woyke, Tanja; Hentschel, Ute

    2013-12-01

    Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems.

  6. Diversity and biosynthetic potential of culturable actinomycetes associated with marine sponges in the China Seas.

    Science.gov (United States)

    Xi, Lijun; Ruan, Jisheng; Huang, Ying

    2012-01-01

    The diversity and secondary metabolite potential of culturable actinomycetes associated with eight different marine sponges collected from the South China Sea and the Yellow sea were investigated. A total of 327 strains were isolated and 108 representative isolates were selected for phylogenetic analysis. Ten families and 13 genera of Actinomycetales were detected, among which five genera represent first records isolated from marine sponges. Oligotrophic medium M5 (water agar) proved to be efficient for selective isolation, and "Micromonospora-Streptomyces" was proposed as the major distribution group of sponge-associated actinomycetes from the China Seas. Ten isolates are likely to represent novel species. Sponge Hymeniacidon perleve was found to contain the highest genus diversity (seven genera) of actinomycetes. Housekeeping gene phylogenetic analyses of the isolates indicated one ubiquitous Micromonospora species, one unique Streptomyces species and one unique Verrucosispora phylogroup. Of the isolates, 27.5% displayed antimicrobial activity, and 91% contained polyketide synthase and/or nonribosomal peptide synthetase genes, indicating that these isolates had a high potential to produce secondary metabolites. The isolates from sponge Axinella sp. contained the highest presence of both antimicrobial activity and NRPS genes, while those from isolation medium DNBA showed the highest presence of antimicrobial activity and PKS I genes.

  7. Diversity and Biosynthetic Potential of Culturable Actinomycetes Associated with Marine Sponges in the China Seas

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2012-05-01

    Full Text Available The diversity and secondary metabolite potential of culturable actinomycetes associated with eight different marine sponges collected from the South China Sea and the Yellow sea were investigated. A total of 327 strains were isolated and 108 representative isolates were selected for phylogenetic analysis. Ten families and 13 genera of Actinomycetales were detected, among which five genera represent first records isolated from marine sponges. Oligotrophic medium M5 (water agar proved to be efficient for selective isolation, and “MicromonosporaStreptomyces” was proposed as the major distribution group of sponge-associated actinomycetes from the China Seas. Ten isolates are likely to represent novel species. Sponge Hymeniacidon perleve was found to contain the highest genus diversity (seven genera of actinomycetes. Housekeeping gene phylogenetic analyses of the isolates indicated one ubiquitous Micromonospora species, one unique Streptomyces species and one unique Verrucosispora phylogroup. Of the isolates, 27.5% displayed antimicrobial activity, and 91% contained polyketide synthase and/or nonribosomal peptide synthetase genes, indicating that these isolates had a high potential to produce secondary metabolites. The isolates from sponge Axinella sp. contained the highest presence of both antimicrobial activity and NRPS genes, while those from isolation medium DNBA showed the highest presence of antimicrobial activity and PKS I genes.

  8. [Phylogenetic diversity of the culturable rare actinomycetes in marine sponge Hymeniacidon perlevis by improved isolation media].

    Science.gov (United States)

    Xin, Yanjuan; Wu, Peichun; Deng, Maicun; Zhang, Wei

    2009-07-01

    Based on the molecular diversity information, seven actinomycete-selective culture media and isolation conditions were modified to isolate and cultivate diverse rare actinomycetes from Hymeniacidon perlevis. Modified, selective cultivation and enrichment media were used, with the addition of an elemental solution of simulating the elemental composition of marine sponge H. perlevis. Restriction Fragment Length Polymorphism (RFLP) analysis of 16S rDNA sequence was used to reveal the diversity of culturable rare actinomycetes. A total of 59 actinomycete strains were isolated from the marine sponge H. perlevis. A total of 27 representative actinomycetes were selected according to their morphological feature, color and pigments. They gave 15 different RFLP patterns after digesting their PCR products of 16s rDNA with Hha I. The results showed that these isolates belonged to 10 genera: Streptomyces, Nocardiopsis, Micromonospora, Cellulosimicrobium, Gordonia, Nocardia, Prauseria, Pseudonocardia , Saccharomonospora and Microbacterium. The modified isolation media and selective cultivation procedures are highly effective in the recovery of culturable actinomycetes from the marine sponge H. perlevis, resulting in the highest diversity of culturable rare actinomycetes from any sponges.

  9. In vitro antiplasmodial activity of marine sponge Clathria vulpina extract against chloroquine sensitive Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Sundaram Prasanna Kumar

    2014-02-01

    Full Text Available Objective: To explore the antiplasmodial potential of marine sponge Clathria vulpina (C. vulpina against chloroquine sensitive Plasmodium falciparum (P. falciparum. Methods: The marine sponge C. vulpina was collected from Thondi coast, authenticated and subjected for extraction by soaking in ethanol:water mixture (3:1 ratio. The percentage of extract was calculated. Filter sterilized extracts (100, 50, 25, 12.5, 6.25, 3.125 μg/mL were screened for antiplasmodial activity against chloroquine sensitive P. falciparum. The extract was also tested for its hemolytic activity. Results: The percentage yield of extract of C. vulpina was found to be 4.8%. The crude extract of C. vulpina showed excellent antiplasmodial activity (IC 50=14.75 μg/mL which was highly comparable to the positive control chloroquine (IC50=7 μg/mL. Statistical analysis reveals that the significant antiplasmodial activity (P<0.05 was observed between the concentrations and the time of exposure. The chemical injury to erythrocytes was also carried out, which showed that there were no morphological changes in erythrocytes by the ethanolic extracts of sponges after 48 h of incubation. The extract showed slight hemolytic activity which almost equal to chloroquine at 100 μg/mL concentration (1.023%. Conclusions: The marine sponge C. vulpina can be used as a putative antiplasmodial drug after completing successful clinical trials.

  10. Antimicrobial activities of novel cultivable bacteria isolated from marine sponge Tedania anhelans

    Institute of Scientific and Technical Information of China (English)

    ZENG Zhen; ZHAO Jing; KE Caihuan; WANG Dexiang

    2013-01-01

    Marine sponge Tedania anhelans distributes throughout the intertidal zone of Fujian,southeastern China,and is a potential source of natural bioactive products.The sponge harbors a large number of bacterial groups that have been identified using various techniques,including fluorescent in situ hybridization (FISH).Fractionation of dissociated sponge allowed isolation of 25 bacterial species.Based on 16S rRNA gene sequencing,phylogenetic analysis attributed most of these eubacteria to a-Proteobacteria,γ-Proteobacteria,Cytophaga/Flavobacterium/Bacteroidetes (CFB group),and the family Bacillaceae of Gram-positive bacteria.In sequence similarity,five putatively novel species were identified with less than 98% similarity to other strains in the NCBI database.Tests for antimicrobial activities were performed against Gram-positive bacteria,Gram-negative bacteria,fungi,antitumor indicators Escherichia coli 343/591 (with DNA repair deficiency),regular E.coli 343/636 (with different DNA repair capacity),and 10 bacterial isolates exhibited inhibitory bioactivities.Among these strains,three isolates were detected involving function gene NRPS-A domains,which were most closely related to the amino acid sequences of linear gramicidin synthetase and pyoverdine synthetase.These results contribute to our knowledge of the microbes associated with marine sponges and further reveal novel bacterial resources for the screening of bioactive marine natural products.

  11. Isolation strategies of marine-derived actinomycetes from sponge and sediment samples.

    Science.gov (United States)

    Hameş-Kocabaş, E Esin; Uzel, Ataç

    2012-03-01

    During the last two decades, discoveries of new members of actinomycetes and novel metabolites from marine environments have drawn attention to such environments, such as sediment and sponge. For the successful isolation of actinomycetes from marine environments, many factors including the use of enrichment and pre-treatment techniques, and the selection of growth media and antibiotic supplements should be taken into account. High-throughput cultivation is an innovative technique that mimics nature, eliminates undesired, fast-growing bacteria and creates suitable conditions for rare, slow-growing actinomycetes. This review comprehensively evaluates the traditional and innovative techniques and strategies used for the isolation of actinomycetes from marine sponge and sediment samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Two peptides, cycloaspeptide A and nazumamide A from a sponge associated marine actinobacterium Salinispora sp.

    Science.gov (United States)

    Bose, Utpal; Hodson, Mark P; Shaw, P Nicholas; Fuerst, John A; Hewavitharana, Amitha K

    2014-04-01

    Marine sponges are a major component of benthic communities and act as a reservoir for microbial species. In terms of biomass, they are the richest source of secondary metabolite production, with the potential to influence both benthic and pelagic systems. In most cases it is the sponge-associated microbes that account for many of the secondary metabolites assigned to the host. Here we report the occurrence of cycloaspeptide A, a fungus-derived cyclic peptide, in a culturable bacterium Salinispora arenicola. We have also identified nazumamide A, a sponge-derived linear tetrapeptide currently used as a thrombin inhibitor, in Salinispora pacifica. Their structures were determined using an integrated approach consisting of: (1) HPLC-UV-Vis-QToF-MS analysis with multimode ionization (ESI and APCI) and fast polarity switching; (2) database searching and matching of monoisotopic masses, retention times, mass spectra of the precursor and product ions of the compounds of interest and the authentic reference standards thereof.

  13. α-Glucosidase inhibitory activity of marine sponges collected in Mauritius waters.

    Science.gov (United States)

    Ramanjooloo, Avin; Cresteil, Thierry; Lebrasse, Cindy; Beedessee, Girish; Oogarah, Preeti; van Soest, Rob W M; Marie, Daniel E P

    2015-01-01

    This report describes the use of α-glucosidase to evaluate the anti-diabetic potential of extracts from marine sponges collected in the Mauritius waters. Initial screening at 1.0 mg/mL of 141 extracts obtained from 47 sponge species revealed 10 extracts with inhibitory activity greater than 85%. Seven of the 10 extracts were further tested at 0.1 and 0.01 mg/mL and only the methanol extract of two sponges namely Acanthostylotella sp. (ASSM) and Echinodictyum pykei (EPM) showed inhibition activity greater than 60% at 0.1 mg/mL with an IC50 value of 0.16 ± 0.02 and 0.04 ± 0.01 mg/mL, respectively, while being inactive at 0.01 mg/mL.

  14. Surviving in a marine desert: the sponge loop retains resources within coral reefs.

    Science.gov (United States)

    de Goeij, Jasper M; van Oevelen, Dick; Vermeij, Mark J A; Osinga, Ronald; Middelburg, Jack J; de Goeij, Anton F P M; Admiraal, Wim

    2013-10-04

    Ever since Darwin's early descriptions of coral reefs, scientists have debated how one of the world's most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is transferred to higher trophic levels. Here we show that sponges make DOM available to fauna by rapidly expelling filter cells as detritus that is subsequently consumed by reef fauna. This "sponge loop" was confirmed in aquarium and in situ food web experiments, using (13)C- and (15)N-enriched DOM. The DOM-sponge-fauna pathway explains why biological hot spots such as coral reefs persist in oligotrophic seas--the reef's paradox--and has implications for reef ecosystem functioning and conservation strategies.

  15. Affinities of the Aphanocapsa feldmanni-like cyanobacteria from the marine sponge Xestospongia muta based on genetic and morphological analyses

    NARCIS (Netherlands)

    Gomez, R.; Erpenbeck, D.J.G.; Richelle-Maurer, E.; van Dijk, T.R.; Woldringh, C.L.; van Soest, R.W.M.

    2004-01-01

    The marine sponge Xestospongia muta (Porifera: Demospongiae: Haplosclerida) harbours cyanobacteria in its peripheral tissue that have been described as having an Aphanocapsa feldmanni-type appearance. Through subsequent cell fractionation steps we obtained a virtually pure cell suspension of the

  16. Polyketide Synthases in the Microbiome of the Marine Sponge Plakortis halichondrioides: A Metagenomic Update

    Directory of Open Access Journals (Sweden)

    Gerardo Della Sala

    2014-11-01

    Full Text Available Sponge-associated microorganisms are able to assemble the complex machinery for the production of secondary metabolites such as polyketides, the most important class of marine natural products from a drug discovery perspective. A comprehensive overview of polyketide biosynthetic genes of the sponge Plakortis halichondrioides and its symbionts was obtained in the present study by massively parallel 454 pyrosequencing of complex and heterogeneous PCR (Polymerase Chain Reaction products amplified from the metagenomic DNA of a specimen of P. halichondrioides collected in the Caribbean Sea. This was accompanied by a survey of the bacterial diversity within the sponge. In line with previous studies, sequences belonging to supA and swfA, two widespread sponge-specific groups of polyketide synthase (PKS genes were dominant. While they have been previously reported as belonging to Poribacteria (a novel bacterial phylum found exclusively in sponges, re-examination of current genomic sequencing data showed supA and swfA not to be present in the poribacterial genome. Several non-supA, non-swfA type-I PKS fragments were also identified. A significant portion of these fragments resembled type-I PKSs from protists, suggesting that bacteria may not be the only source of polyketides from P. halichondrioides, and that protistan PKSs should receive further investigation as a source of novel polyketides.

  17. Anti-dermatophytic activity of marine sponge, Sigmadocia carnosa (Dendy) on clinically isolated fungi

    Institute of Scientific and Technical Information of China (English)

    NB Dhayanithi; TT Ajith Kumar; M Kalaiselvam; T Balasubramanian; N Sivakumar

    2012-01-01

    Objective: To screen the anti-fungal effects and find out the active metabolites from sponge,Sigmadocia carnosa (S. carnosa) against four dermatophytic fungi. Methods: The methanol, ethyl acetate and acetone extract of marine sponge, S. carnosa was examined against Trichophytonmentagrophytes (T. mentagrophytes), Trichophyton rubrum (T. rubrum), Epidermophyton floccosum (E. floccosum) and Microsporum gypseum (M. gypseum) and qualitative analysed to find out the active molecules. Results: The methanol extract of sponge was expressed significant activity than ethyl acetate and acetone. The minimum inhibitory concentration (MIC) of methanol extract of sponge that resulted in complete growth inhibition of T. mentagrophytes, T. rubrum, E. floccosum and M. gypseum were found to 125, 250, 250 and 250 μg/mL respectively. But, 100 % inhibition of fungal spore germination was observed in T. mentagrophytes at 500 μg/mL concentration followed by T. rubrum, E. floccosum and M. gypseum at 1 000 μg/mL concentration. Other two extracts showed weak anti spore germination activity against the tested dermatophytic fungi. Methanol extracts showed presence of terpenoids, steroids, alkaloids, saponins and glycosides. Conclusion: Based on the literature, this is the first study which has conducted to inhibit the growth and spore germination of dermatophytic fungi with S. carnosa. Further research also needs to purify and characterize the secondary metabolites from the sponge, S. carnosa for the valuable source of novel substances for future drug discovery.

  18. Isolation, Identification And Screening Antibacterial Activity from Marine Sponge-Associated Fungi Against Multidrug-Resistant (MDR) Escherichia coli

    Science.gov (United States)

    Triandala Sibero, Mada; Sabdaningsih, Aninditia; Cristianawati, Olvi; Nuryadi, Handung; Karna Radjasa, Ocky; Sabdono, Agus; Trianto, Agus

    2017-02-01

    Irrational used of antibiotic in several decades ago causing resistant in bacteria and decreasing the cure rate of infectious diseases. Multidrug-resistant (MDR) Escherichia coli is known to cause various of infectious diseases such as urinary tract infection, nosocomial bloodstream infection, meningitis, bacteraemia, and gastrointestinal disease. Marine sponge-associated fungi have potential as source of new compound to combat MDR E. coli. The aims of this research were to isolate marine sponge-assosiated fungi, to screen potential fungi against MDR E. coli, to identify the potential fungi and its host sponge. There were 29 marine sponge-associated fungi successfully isolated from 9 sponges. Among 29 sponge-associated fungi screened, there were 7 isolates showed antibacterial activity against MDR E. coli. The best inhibition zone produced by MPS 14.1/MT 02 and MPS 14.3/MT 04 from sponge PP.SP.16.14. According to fungi identification result fungus MPS 14.1/MT 02 was identified as Trichoderma asperellum while MPS 14.3/MT 04 was identified as Trichoderma reesei. Sponge identification leaded the PP.SP.16.14 as Cinachyrella sp.

  19. Hologenome analysis of two marine sponges with different microbiomes

    KAUST Repository

    Ryu, Tae Woo

    2016-02-29

    Background Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. Results Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR)-like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. Conclusions Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses.

  20. Preliminary study on swarming marine bacteria isolated from Pulau Tinggi's sponges

    Science.gov (United States)

    Sairi, Fareed; Idris, Hamidah; Zakaria, Nur Syuhana; Usup, Gires; Ahmad, Asmat

    2015-09-01

    Marine sponges were known to produce novel bioactive compounds that have anti-bacterial, anti-viral, anti-cancer and anti-fungal activities. Most of the bioactive compounds were secreted from the bacteria that lives on the sponges. The bacterial communities also produced biofilm, toxin or biosurfactant that protect the sponges from disease or in-coming predator. In this study, twenty nine marine bacteria with swarming motility characteristic was isolated from 2 different sponge samples collected in Pulau Tinggi These isolates were grown and their genome were extracted for molecular identification using the 16S rRNA approach. Sequence comparison using BLASTn and multiple alignments using MEGA4 was performed to produce a phylogenetic tree. The phylogenetic tree revealed that 20 of the isolates were grouped under α-Proteobacteria that comprised of 19 isolates in the Vibrionaceae family and one belongs to Aeromonadaceae family. Furthermore, six isolates from Actinobacteria family and three isolates from Firmicutes were also detected. The swarming characteristic indicates the possible production of biosurfactant.

  1. Bioactive Sesterterpenes and Triterpenes from Marine Sponges: Occurrence and Pharmacological Significance

    Science.gov (United States)

    Ebada, Sherif S.; Lin, WenHan; Proksch, Peter

    2010-01-01

    Marine ecosystems (>70% of the planet’s surface) comprise a continuous resource of immeasurable biological activities and immense chemical entities. This diversity has provided a unique source of chemical compounds with potential bioactivities that could lead to potential new drug candidates. Many marine-living organisms are soft bodied and/or sessile. Consequently, they have developed toxic secondary metabolites or obtained them from microorganisms to defend themselves against predators [1]. For the last 30–40 years, marine invertebrates have been an attractive research topic for scientists all over the world. A relatively small number of marine plants, animals and microbes have yielded more than 15,000 natural products including numerous compounds with potential pharmaceutical potential. Some of these have already been launched on the pharmaceutical market such as Prialt® (ziconotide; potent analgesic) and Yondelis® (trabectedin or ET-743; antitumor) while others have entered clinical trials, e.g., alpidin and kahalalide F. Amongst the vast array of marine natural products, the terpenoids are one of the more commonly reported and discovered to date. Sesterterpenoids (C25) and triterpenoids (C30) are of frequent occurrence, particularly in marine sponges, and they show prominent bioactivities. In this review, we survey sesterterpenoids and triterpenoids obtained from marine sponges and highlight their bioactivities. PMID:20390108

  2. A New Diketopiperazine from the Marine Sponge Callyspongia Species

    Directory of Open Access Journals (Sweden)

    Bin Yang

    2015-08-01

    Full Text Available Chemical investigation of the sponge Callyspongia sp . from the South China Sea afforded one new diketopiperazine , cyclo-(R-Pro-6-hydroxyl-S -Ile (1, along with six known d iketopiperazines : staphyloamide A (2, cyclo- (S-Pro-S-Phe (3, cyclo-(R-Pro-R-Phe (4, cyclo- (S-Pro-R-Leu (5 , cyclo-(S-Pro-R-Ala (6, cyclo-(R-Tyr-R-Phe (7,and three known tryptophan-derived alkaloids: C 2-α-D-mannosylpyranosyl-tryptophan (8, (1 R , 3 S -1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid (9, and (1R,3R-1-methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole-3-carboxylic acid (10 . The structures were determined on the basis of NMR and MS analysis , and the absolute configuration was determined by comparison of the optical rotation with the known compounds. This is the first report of compounds 1, 2 , 8–10 from the sponge Callyspongia . Cyclo- (S-Pro-R-Leu (5 , and cyclo-(S-Pro-R-Ala (6 exhibited antifouling activity against cyprid larvae of the barnacle with the LC 50 values of 3.5 μg/cm 2 and 6.0 μg/cm 2, respectively .

  3. Bioinspired enzymatic synthesis of silica nanocrystals provided by recombinant silicatein from the marine sponge Latrunculia oparinae.

    Science.gov (United States)

    Shkryl, Yury N; Bulgakov, Victor P; Veremeichik, Galina N; Kovalchuk, Svetlana N; Kozhemyako, Valery B; Kamenev, Dmitrii G; Semiletova, Irina V; Timofeeva, Yana O; Shchipunov, Yury A; Kulchin, Yury N

    2016-01-01

    The process of silica formation in marine sponges is thought to be mediated by a family of catalytically active structure-directing enzymes called silicateins. It has been demonstrated in biomimicking syntheses that silicateins facilitated the formation of amorphous SiO2. Here, we present evidence that the silicatein LoSiLA1 from the marine sponge Latrunculia oparinae catalyzes the in vitro synthesis of hexa-tetrahedral SiO2 crystals of 200–300 nm. This was possible in the presence of the silica precursor tetrakis-(2-hydroxyethyl)-orthosilicate that is completely soluble in water and biocompatible, experiences hydrolysis–condensation at neutral pH and ambient conditions.

  4. Novel Chromone Derivatives from Marine Fungus Aspergillus versicolor Isolated from the Sponge Xestospongia exigua

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    From the marine sponge Xestospongia exigua, fungal isolates of Aspergillus versicolor (Vuill)Triab were obtained. Isolation and purification of ethyl acetate extracts from culture filtrates of the fungus led to yield six new chromone derivatives namely aspergione A, aspergione B, aspergione C, aspergione D, aspergione E, aspergione F. The structures of all the new compounds were established on the basis of extensive spectroscopy (UV, MS, 1H and 13C NMR, COSY, HMQC and HMBC) analysis.

  5. Actinobacteria associated with the marine sponges Cinachyra sp., Petrosia sp., and Ulosa sp. and their culturability.

    Science.gov (United States)

    Khan, Shams Tabrez; Takagi, Motoki; Shin-ya, Kazuo

    2012-01-01

    Actinobacteria associated with 3 marine sponges, Cinachyra sp., Petrosia sp., and Ulosa sp., were investigated. Analyses of 16S rRNA gene clone libraries revealed that actinobacterial diversity varied greatly and that Ulosa sp. was most diverse, while Cinachyra sp. was least diverse. Culture-based approaches failed to isolate actinobacteria from Petrosia sp. or Ulosa sp., but strains belonging to 10 different genera and 3 novel species were isolated from Cinachyra sp.

  6. Isolation of azaspiracid-2 from a marine sponge Echinoclathria sp. as a potent cytotoxin.

    Science.gov (United States)

    Ueoka, Reiko; Ito, Akihiro; Izumikawa, Miho; Maeda, Satoko; Takagi, Motoki; Shin-ya, Kazuo; Yoshida, Minoru; van Soest, Rob W M; Matsunaga, Shigeki

    2009-05-01

    Azaspiracid-2 was isolated from a marine sponge Echinoclathria sp. collected off Amami-Oshima as the predominant cytotoxic constituent. A combination of HPLC using ODS, GS320, and Phenylhexyl stationary phases permitted the purification without using acid or inorganic additives in the mobile phase. Azaspiracid-2 exhibited potent cytotoxicity against P388 cells with an IC50 value of 0.72 ng/mL and caused S phase arrest on the cell cycle.

  7. An Overview on Marine Sponge-Symbiotic Bacteria as Unexhausted Sources for Natural Product Discovery

    Directory of Open Access Journals (Sweden)

    Candice M. Brinkmann

    2017-09-01

    Full Text Available Microbial symbiotic communities of marine macro-organisms carry functional metabolic profiles different to the ones found terrestrially and within surrounding marine environments. These symbiotic bacteria have increasingly been a focus of microbiologists working in marine environments due to a wide array of reported bioactive compounds of therapeutic importance resulting in various patent registrations. Revelations of symbiont-directed host specific functions and the true nature of host-symbiont interactions, combined with metagenomic advances detecting functional gene clusters, will inevitably open new avenues for identification and discovery of novel bioactive compounds of biotechnological value from marine resources. This review article provides an overview on bioactive marine symbiotic organisms with specific emphasis placed on the sponge-associated ones and invites the international scientific community to contribute towards establishment of in-depth information of the environmental parameters defining selection and acquisition of true symbionts by the host organisms.

  8. Isolation, phylogenetic analysis and anti-infective activity screening of marine sponge-associated actinomycetes.

    Science.gov (United States)

    Abdelmohsen, Usama Ramadan; Pimentel-Elardo, Sheila M; Hanora, Amro; Radwan, Mona; Abou-El-Ela, Soad H; Ahmed, Safwat; Hentschel, Ute

    2010-02-26

    Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt) and from Rovinj (Croatia). Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, fungi (Candida albicans) and human parasites (Leishmania major, Trypanosoma brucei). Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents.

  9. Isolation, Phylogenetic Analysis and Anti-infective Activity Screening of Marine Sponge-Associated Actinomycetes

    Directory of Open Access Journals (Sweden)

    Safwat Ahmed

    2010-02-01

    Full Text Available Terrestrial actinomycetes are noteworthy producers of a multitude of antibiotics, however the marine representatives are much less studied in this regard. In this study, 90 actinomycetes were isolated from 11 different species of marine sponges that had been collected from offshore Ras Mohamed (Egypt and from Rovinj (Croatia. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 18 different actinomycete genera representing seven different suborders. Fourteen putatively novel species were identified based on sequence similarity values below 98.2% to other strains in the NCBI database. A putative new genus related to Rubrobacter was isolated on M1 agar that had been amended with sponge extract, thus highlighting the need for innovative cultivation protocols. Testing for anti-infective activities was performed against clinically relevant, Gram-positive (Enterococcus faecalis, Staphylococcus aureus and Gram-negative (Escherichia coli, Pseudomonas aeruginosa bacteria, fungi (Candida albicans and human parasites (Leishmania major, Trypanosoma brucei. Bioactivities against these pathogens were documented for 10 actinomycete isolates. These results show a high diversity of actinomycetes associated with marine sponges as well as highlight their potential to produce anti-infective agents.

  10. Cytotoxic and antioxidant activity of selected marine sponges

    Directory of Open Access Journals (Sweden)

    Chairman K

    2012-06-01

    Full Text Available Objective: To evaluate the anticancer activity of the crude extracts of Rhabdastrella globostellata (R. globostellata and Spirastrella inconstans (S. inconstans var. moeandrina Dendy. Methods: Soxhlet extraction method was used to extract the secondary metabolites and various assays antioxidant, anticancer and various assays were carried out. The extract were tested anticancer activity against a HeLa, Raw 264.7 and Hek-293. Results: The sponge extracts tested exhibited from median to high toxicity in at least one of the toxicity bioassays performed. The antioxidant activity of the isolated metabolite in ethylacetate solution was assessed by SOD and GTH assays and compared with that of other known natural antioxidants. Conclusions: Potent antioxidants have been detected among both phenolic metabolites and alkaloids. Antioxidant effects of tested compounds have been attributed to their action as chain-breaking antioxidants and/or as scavengers of radicals

  11. Diversity of Bacteria in the Marine Sponge Aplysina fulva in Brazilian Coastal Waters▿ †

    Science.gov (United States)

    Hardoim, C. C. P.; Costa, R.; Araújo, F. V.; Hajdu, E.; Peixoto, R.; Lins, U.; Rosado, A. S.; van Elsas, J. D.

    2009-01-01

    Microorganisms can account for up to 60% of the fresh weight of marine sponges. Marine sponges have been hypothesized to serve as accumulation spots of particular microbial communities, but it is unknown to what extent these communities are directed by the organism or the site or occur randomly. To address this question, we assessed the composition of specific bacterial communities associated with Aplysina fulva, one of the prevalent sponge species inhabiting Brazilian waters. Specimens of A. fulva and surrounding seawater were collected in triplicate in shallow water at two sites, Caboclo Island and Tartaruga beach, Búzios, Brazil. Total community DNA was extracted from the samples using “direct” and “indirect” approaches. 16S rRNA-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) analyses of the total bacterial community and of specific bacterial groups—Pseudomonas and Actinobacteria—revealed that the structure of these assemblages in A. fulva differed drastically from that observed in seawater. The DNA extraction methodology and sampling site were determinative for the composition of actinobacterial communities in A. fulva. However, no such effects could be gleaned from total bacterial and Pseudomonas PCR-DGGE profiles. Bacterial 16S rRNA gene clone libraries constructed from directly and indirectly extracted DNA did not differ significantly with respect to diversity and composition. Altogether, the libraries encompassed 15 bacterial phyla and the candidate division TM7. Clone sequences affiliated with the Cyanobacteria, Chloroflexi, Gamma- and Alphaproteobacteria, Actinobacteria, Bacteroidetes, and Acidobacteria were, in this order, most abundant. The bacterial communities associated with the A. fulva specimens were distinct and differed from those described in studies of sponge-associated microbiota performed with other sponge species. PMID:19304829

  12. A heteroaromatic acid from marine sponge Suberites vestigium

    Digital Repository Service at National Institute of Oceanography (India)

    Mishra, P.D.; Wahidullah, S.; Kamat, S.Y.

    as synthetic products are widely used as medicine, however, organic compounds containing pyrazole nucleus have not been reported from marine flora and fauna. Structure elucidation of the compound is based on spectral evidences....

  13. Antibiotic resistance genes detected in the marine sponge Petromica citrina from Brazilian coast

    Directory of Open Access Journals (Sweden)

    Marinella Silva Laport

    Full Text Available ABSTRACT Although antibiotic-resistant pathogens pose a significant threat to human health, the environmental reservoirs of the resistance determinants are still poorly understood. This study reports the detection of resistance genes (ermB, mecA, mupA, qnrA, qnrB and tetL to antibiotics among certain culturable and unculturable bacteria associated with the marine sponge Petromica citrina. The antimicrobial activities elicited by P. citrina and its associated bacteria are also described. The results indicate that the marine environment could play an important role in the development of antibiotic resistance and the dissemination of resistance genes among bacteria.

  14. A comparative study on the phylogenetic diversity of culturable actinobacteria isolated from five marine sponge species.

    Science.gov (United States)

    Zhang, Haitao; Zhang, Wei; Jin, Yan; Jin, Meifang; Yu, Xingju

    2008-03-01

    A cultivation-based approach was employed to compare the culturable actinobacterial diversity associated with five marine sponge species (Craniella australiensis, Halichondria rugosa, Reniochalina sp., Sponge sp., and Stelletta tenuis). The phylogenetic affiliation of the actinobacterial isolates was assessed by 16S rDNA-RFLP analysis. A total of 181 actinobacterial strains were isolated using five different culture media (denoted as M1-M5). The type of medium exhibited significant effects on the number of actinobacteria recovered, with the highest number of isolates on M3 (63 isolates) and the lowest on M1 (12 isolates). The genera isolated were also different, with the recovery of three genera on M2 and M3, and only a single genus on M1. The number of actinobacteria isolated from the five sponge species was significantly different, with a count of 83, 36, 30, 17, and 15 isolates from S. tenuis, H. rugosa, Sponge sp., Reniochalina sp., and C. australiensis, respectively. M3 was the best isolation medium for recovery of actinobacteria from S. tenuis, H. rugosa, and Sponge sp., while no specific medium preference was observed for the recovery of actinobacteria from Reniochalina sp., and C. australiensis. The RFLP fingerprinting of 16S rDNA genes digested with HhaI revealed six different patterns, in which 16 representative 16S rDNAs were fully sequenced. Phylogenetic analysis indicated that 12 strains belong to the group Streptomyces, three strains belong to Pseudonocardia, and one strain belongs to Nocardia. Two strains C14 (from C. australiensis) and N13 (from Sponge sp.) have only 96.26% and 96.27% similarity to earlier published sequences, and are therefore potential candidates for new species. The highest diversity of three actinobacteria genera was obtained from Sponge sp., though the number of isolates was low. Two genera of actinobacteria, Streptomyces, and Pseudonocardia, were isolated from both S. tenuis and C. australiensis. Only the genus of Streptomyces

  15. Signal Recognition Particle 54 kD Protein (SRP54 from the Marine Sponge Geodia cydonium

    Directory of Open Access Journals (Sweden)

    Sonja Durajlija-Žinić

    2002-01-01

    Full Text Available In the systematic search for phylogenetically conserved proteins in the simplest and most ancient extant metazoan phylum – Porifera, we have identified and analyzed a cDNA encoding the signal recognition particle 54 kD protein (SRP54 from the marine sponge Geodia cydonium (Demospongiae. The signal recognition particle (SRP is a universally conserved ribonucleoprotein complex of a very ancient origin, comprising SRP RNA and several proteins (six in mammals. The nucleotide sequence of the sponge cDNA predicts a protein of 499 amino acid residues with a calculated Mr of 55175. G. cydonium SRP54 displays unusually high overall similarity (90 % with human/mammalian SRP54 proteins, higher than with Drosophila melanogaster (88 %, or Caenorhabditis elegans (82 %. The same was found for the majority of known and phylogenetically conserved proteins from sponges, indicating that the molecular evolutionary rates in protein coding genes in Porifera as well as in highly developed mammals (vertebrates are slower, when compared with the rates in homologous genes from invertebrates (insects, nematodes. Therefore, genes/proteins from sponges might be the best candidates for the reconstruction of ancient structures of proteins and genome/proteome complexity in the ancestral organism, common to all multicellular animals.

  16. Microbial Communities and Bioactive Compounds in Marine Sponges of the Family Irciniidae—A Review

    Directory of Open Access Journals (Sweden)

    Cristiane C. P. Hardoim

    2014-09-01

    Full Text Available Marine sponges harbour complex microbial communities of ecological and biotechnological importance. Here, we propose the application of the widespread sponge family Irciniidae as an appropriate model in microbiology and biochemistry research. Half a gram of one Irciniidae specimen hosts hundreds of bacterial species—the vast majority of which are difficult to cultivate—and dozens of fungal and archaeal species. The structure of these symbiont assemblages is shaped by the sponge host and is highly stable over space and time. Two types of quorum-sensing molecules have been detected in these animals, hinting at microbe-microbe and host-microbe signalling being important processes governing the dynamics of the Irciniidae holobiont. Irciniids are vulnerable to disease outbreaks, and concerns have emerged about their conservation in a changing climate. They are nevertheless amenable to mariculture and laboratory maintenance, being attractive targets for metabolite harvesting and experimental biology endeavours. Several bioactive terpenoids and polyketides have been retrieved from Irciniidae sponges, but the actual producer (host or symbiont of these compounds has rarely been clarified. To tackle this, and further pertinent questions concerning the functioning, resilience and physiology of these organisms, truly multi-layered approaches integrating cutting-edge microbiology, biochemistry, genetics and zoology research are needed.

  17. Bioactivity Screening of the Selected Turkish Marine Sponges and Three Compounds from Agelas oroides

    Directory of Open Access Journals (Sweden)

    Ilkay Erdogan Orhan

    2012-07-01

    Full Text Available The extracts of various marine sponges (Agelas oroides and Axinella damicornis, Axinella cannabina, Ircinia spinulosa, I. fasciculata, and I. variabilis, Dysidea avara, and Sarcotragus spinulosus collected from different spots of the Turkish cost of the Mediterranean Sea have been evaluated for their antibacterial, antifungal, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging, and acetylcholinesterase (AChE inhibitory activities. Three compounds (oroidin, 4,5-dibromopyrrol-2-carboxylic acid, and 25-hydroxy-24-methylcholesterol were isolated from A. oroides and tested in the same manner. The sponge extracts showed notable antimicrobial and anti-AChE activity and low DPPH scavenging activity. Oroidin was found to have moderate anti-AChE and strong radical scavenging activities. The results demonstrated that the sponge extracts exerted a variable degree of antibacterial, anti-radical, and anti-AChE activity, whereas they seemed to have similar antifungal effect. Our findings point out to the fact that the collection site has an important influence on bioactivity of the sponges.

  18. Marine caves of the Mediterranean Sea: a sponge biodiversity reservoir within a biodiversity hotspot.

    Directory of Open Access Journals (Sweden)

    Vasilis Gerovasileiou

    Full Text Available Marine caves are widely acknowledged for their unique biodiversity and constitute a typical feature of the Mediterranean coastline. Herein an attempt was made to evaluate the ecological significance of this particular ecosystem in the Mediterranean Sea, which is considered a biodiversity hotspot. This was accomplished by using Porifera, which dominate the rocky sublittoral substrata, as a reference group in a meta-analytical approach, combining primary research data from the Aegean Sea (eastern Mediterranean with data derived from the literature. In total 311 species from all poriferan classes were recorded, representing 45.7% of the Mediterranean Porifera. Demospongiae and Homoscleromorpha are highly represented in marine caves at the family (88%, generic (70%, and species level (47.5%, the latter being the most favored group along with Dictyoceratida and Lithistida. Several rare and cave-exclusive species were reported from only one or few caves, indicating the fragmentation and peculiarity of this unique ecosystem. Species richness and phylogenetic diversity varied among Mediterranean areas; the former was positively correlated with research effort, being higher in the northern Mediterranean, while the latter was generally higher in caves than in the overall sponge assemblages of each area. Resemblance analysis among areas revealed that cavernicolous sponge assemblages followed a pattern quite similar to that of the overall Mediterranean assemblages. The same pattern was exhibited by the zoogeographic affinities of cave sponges: species with Atlanto-Mediterranean distribution and Mediterranean endemics prevailed (more than 40% each, 70% of them having warm-water affinities, since most caves were studied in shallow waters. According to our findings, Mediterranean marine caves appear to be important sponge biodiversity reservoirs of high representativeness and great scientific interest, deserving further detailed study and protection.

  19. Antagonistic activity of marine sponge associated Streptomyces sp. against isolated fish pathogens

    Directory of Open Access Journals (Sweden)

    G. Palani Selvan

    2012-10-01

    Full Text Available Objective: To investigate the antibacterial potential of the marine actinomycetes isolated from sponge samples. Methods: Thirty six marine sponge samples were collected from Palk Strait and further used for actinomycetes isolation by using serial dilution. The antibacterial activity was carried out by using cross streak assay method. Moreover, most potential strain also subjected to MIC and MBC techniques and the isolated potential strain was identified by molecular tools. Results: The maximum counts (26 x 102 CFU/g were observed in the month of May and minimum counts (1 x 102 CFU/g were noticed in April. A total of 21 actinomycetes were isolated and their antibacterial potential was assessed by using cross streak method. Among the 21 actinomycetes, the ACT-21 showed sensitivity against all the isolated fish pathogens. Further, the MIC and MBC results reveal that, the ACT-21 showed sensitivity at the concentration ranged between 500 毺 g/ mL-1 500 毺 g/mL. The phylogenetic analysis suggested that, the potential isolate ACT-21 (accession no: JF899543 showed maximum similarity index (>98% with Streptomyces sp. Conclusions: It is concluded from present study that, the crude extracts of sponge associated actinomycetes could be used as an effective antibacterial agent for the management of disease free fish culture system.

  20. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei.

    Science.gov (United States)

    Piel, Jörn; Hui, Dequan; Wen, Gaiping; Butzke, Daniel; Platzer, Matthias; Fusetani, Nobuhiro; Matsunaga, Shigeki

    2004-11-16

    Bacterial symbionts have long been suspected to be the true producers of many drug candidates isolated from marine invertebrates. Sponges, the most important marine source of biologically active natural products, have been frequently hypothesized to contain compounds of bacterial origin. This symbiont hypothesis, however, remained unproven because of a general inability to cultivate the suspected producers. However, we have recently identified an uncultured Pseudomonas sp. symbiont as the most likely producer of the defensive antitumor polyketide pederin in Paederus fuscipes beetles by cloning the putative biosynthesis genes. Here we report closely related genes isolated from the highly complex metagenome of the marine sponge Theonella swinhoei, which is the source of the onnamides and theopederins, a group of polyketides that structurally resemble pederin. Sequence features of the isolated genes clearly indicate that it belongs to a prokaryotic genome and should be responsible for the biosynthesis of almost the entire portion of the polyketide structure that is correlated with antitumor activity. Besides providing further proof for the role of the related beetle symbiont-derived genes, these findings raise intriguing ecological and evolutionary questions and have important general implications for the sustainable production of otherwise inaccessible marine drugs by using biotechnological strategies.

  1. Njaoaminiums A, B, and C: Cyclic 3-Alkylpyridinium Salts from the Marine Sponge Reniera sp.

    Directory of Open Access Journals (Sweden)

    Philippe Amade

    2009-11-01

    Full Text Available Three novel cyclic 3-alkylpyridinium salts, named njaoaminiums A, B, and C (1-3, were isolated from the marine sponge Reniera sp., collected off the coasts of Pemba Island, Tanzania. The structural determination of the compounds was based on 1D and 2D NMR studies and mass spectral determinations. Njaoaminiums B (2 and C (3 are the first examples of cyclic 3-alkylpyridinium salts bearing a methyl substituent on the alkyl chains. These compounds are assumed to be biosynthetic precursors of the njaoamines, previously isolated from the same sponge. The absolute configurations of the methyls of 2 and 3 were assigned by comparison between experimental and TDDFT calculated circular dichroism spectra on the most stable conformer. Compound 2 showed weak cytotoxicity against the three human tumor cell lines MDA-MB-231, A549, and HT29.

  2. A Solid State NMR Investigation of Recent Marine Siliceous Sponge Spicules

    Directory of Open Access Journals (Sweden)

    Sylvie Masse

    2016-03-01

    Full Text Available The composition of four recent siliceous marine sponge spicules was studied and compared. In particular, multinuclear (29Si, 13C, 31P solid state nuclear magnetic resonance (NMR allowed the characterization of both the mineral and organic constituents in a non-destructive manner. The silica network condensation was similar for all samples. The organic matter showed a similar pattern but varied in abundance as a function of the sponge group (Hexactinellida or Demospongiae and sampling conditions (living or dead organisms. This indicates that the striking morphological differences observed at the macroscale for the various samples do not lead to significant fingerprints in the spectroscopic signatures of the mineral and organic constituents.

  3. Pachymoside A - a novel glycolipid isolated from the marine sponge Pachymatisma johnstonia

    Energy Technology Data Exchange (ETDEWEB)

    Warabi, K.; Zimmerman, W.T.; Shen, J. [Univ. of British Columbia, Departments of Chemistry, Earth and Ocean Sciences, Vancouver, British Columbia (Canada); Gauthier, A.; Robertson, M.; Finlay, B.B. [Univ. of British Columbia, Departments of Biochemistry and Microbiology, Vancouver, British Columbia (Canada); Van Soest, R. [Univ. of Amsterdam, Dept. of Coelenterates and Porifera, Zoologisch Museum, Amsterdam (Netherlands); Andersen, R.J. [Univ. of British Columbia, Departments of Chemistry, Earth and Ocean Sciences, Vancouver, British Columbia (Canada)]. E-mail: randersn@interchange.ubc.ca

    2004-02-01

    Crude extracts of the North Sea marine sponge Pachymatisma johnstonia showed promising activity in a new assay for inhibitors of bacterial type III secretion. Bioassay-guided fractionation resulted in the isolation of the pachymosides, a new family of sponge glycolipids. A major part of the structural diversity in this family of glycolipids involves increasing degrees of acetylation and differing positions of acetylation on a common pachymoside glycolipid template. All of the metabolites with these variations in acetylation pattern were converted into the same peracetyl-pachymoside methyl ester (2) for purification and spectroscopic analysis. Pachymoside A (1) is the component of the mixture that has natural acetylation at the eight galactose hydroxyls and at the C-6 hydroxyls of glucose-B and glucose-D. Chemical degradation and transformation in conjunction with extensive analysis of 800 MHz NMR data was used to elucidate the structure of pachymoside A (1). (author)

  4. Marine Sponge Dysidea herbacea revisited: Another Brominated Diphenyl Ether

    Directory of Open Access Journals (Sweden)

    Bruce F. Bowden

    2005-03-01

    Full Text Available Abstract: A pentabrominated phenolic diphenyl ether (1 that has not previously been reported from marine sources has been isolated from Dysidea herbacea collected at Pelorus Island, Great Barrier Reef, Australia. The structure was determined by comparison of NMR data with those of known structurally-related metabolites. NMR spectral assignments for (1 are discussed in context with those of three previously reported isomeric pentabrominated phenolic diphenyl ethers.

  5. Biotechnological Applications of Marine Enzymes From Algae, Bacteria, Fungi, and Sponges.

    Science.gov (United States)

    Parte, S; Sirisha, V L; D'Souza, J S

    Diversity is the hallmark of all life forms that inhabit the soil, air, water, and land. All these habitats pose their unique inherent challenges so as to breed the "fittest" creatures. Similarly, the biodiversity from the marine ecosystem has evolved unique properties due to challenging environment. These challenges include permafrost regions to hydrothermal vents, oceanic trenches to abyssal plains, fluctuating saline conditions, pH, temperature, light, atmospheric pressure, and the availability of nutrients. Oceans occupy 75% of the earth's surface and harbor most ancient and diverse forms of organisms (algae, bacteria, fungi, sponges, etc.), serving as an excellent source of natural bioactive molecules, novel therapeutic compounds, and enzymes. In this chapter, we introduce enzyme technology, its current state of the art, unique enzyme properties, and the biocatalytic potential of marine algal, bacterial, fungal, and sponge enzymes that have indeed boosted the Marine Biotechnology Industry. Researchers began exploring marine enzymes, and today they are preferred over the chemical catalysts for biotechnological applications and functions, encompassing various sectors, namely, domestic, industrial, commercial, and healthcare. Next, we summarize the plausible pros and cons: the challenges encountered in the process of discovery of the potent compounds and bioactive metabolites such as biocatalysts/enzymes of biomedical, therapeutic, biotechnological, and industrial significance. The field of Marine Enzyme Technology has recently assumed importance, and if it receives further boost, it could successfully substitute other chemical sources of enzymes useful for industrial and commercial purposes and may prove as a beneficial and ecofriendly option. With appropriate directions and encouragement, marine enzyme technology can sustain the rising demand for enzyme production while maintaining the ecological balance, provided any undesired exploitation of the marine

  6. Evaluation of Marine Brown Algae and Sponges from Brazil as Anticoagulant and Antiplatelet Products

    Directory of Open Access Journals (Sweden)

    Suzi Meneses Ribeiro

    2011-08-01

    Full Text Available The ischemic disorders, in which platelet aggregation and blood coagulation are involved, represent a major cause of disability and death worldwide. The antithrombotic therapy has unsatisfactory performance and may produce side effects. So, there is a need to seek molecules with antithrombotic properties. Marine organisms produce substances with different well defined ecological functions. Moreover, some of these molecules also exhibit pharmacological properties such as antiviral, anticancer, antiophidic and anticoagulant properties. The aim of this study was to evaluate, through in vitro tests, the effect of two extracts of brown algae and ten marine sponges from Brazil on platelet aggregation and blood coagulation. Our results revealed that most of the extracts were capable of inhibiting platelet aggregation and clotting measured by plasma recalcification tests, prothrombin time, activated partial thromboplastin time, and fibrinogenolytic activity. On the other hand, five of ten species of sponges induced platelet aggregation. Thus, the marine organisms studied here may have molecules with antithrombotic properties, presenting biotechnological potential to antithrombotic therapy. Further chemical investigation should be conducted on the active species to discover useful molecules for the development of new drugs to treat clotting disorders.

  7. Bioaccumulation of metallic trace elements and organic pollutants in marine sponges from the South Brittany Coast, France.

    Science.gov (United States)

    Gentric, Charline; Rehel, Karine; Dufour, Alain; Sauleau, Pierre

    2016-01-01

    The purpose of this study was to compare the accumulation of metallic and organic pollutants in marine sponges with the oyster Crassostrea gigas used as sentinel species. The concentrations of 12 Metallic Trace Elements (MTEs), 16 Polycyclic Aromatic Hydrocarbons (PAHs), 7 PolyChlorinated Biphenyls (PCBs), and 3 organotin derivatives were measured in 7 marine sponges collected in the Etel River (South Brittany, France). Results indicated Al, Co, Cr, Fe, Pb, and Ti particularly accumulated in marine sponges such as Hymeniacidon perlevis and Raspailia ramosa at higher levels compared to oysters. At the opposite, Cu and Zn accumulated significantly at higher concentrations in oysters. Among PAHs analyzed, benzo(a)pyrene bioaccumulated in H. perlevis at levels up to 17-fold higher than in oysters. In contrast, PCBs bioaccumulated preferentially in oysters. Significant differences exist in the abilities of marine phyla and sponge species to accumulate organic and metallic pollutants however, among the few sponge species studied, H. perlevis showed impressive bioaccumulation properties. The use of this species as bioindicator and/or bioremediator near shellfish farming areas is also discussed.

  8. Iotroridoside-A, a Novel Cytotoxic Glycosphingolipid from the Marine Sponge Iotrochota ridley

    Institute of Scientific and Technical Information of China (English)

    DENG,Song-Zhi; TIAN, Chun-Lei; XIAO, Ding-Jun; WU, Hou-Ming

    2001-01-01

    A new cytotoxic glycosphingolipid, Iotroridoside-A, was isolated from the marine sponge Iotrochota ridey collected from the South China Sea near Hainan Island, China. On the basis of chemical degradation method and IR, MS, 1H NMR, 13C NMR and 2D NMR spectrometry, its structure was assigned as 1-O-β-D-glucopyranosyl-2-[( 4′Z )-2′-hydroxytetracosene amido]-4-tetradecy1-1, 3, 4-butantriol. The new compound exhibits strong cytotoxicity against L1210 murine leukemia cells in vitro (ED50=0.08 μg/mL).

  9. Sulfated Steroid–Amino Acid Conjugates from the Irish Marine Sponge Polymastia boletiformis

    Directory of Open Access Journals (Sweden)

    Vangelis Smyrniotopoulos

    2015-03-01

    Full Text Available Antifungal bioactivity-guided fractionation of the organic extract of the sponge Polymastia boletiformis, collected from the west coast of Ireland, led to the isolation of two new sulfated steroid-amino acid conjugates (1 and 2. Extensive 1D and 2D NMR analyses in combination with quantum mechanical calculations of the electronic circular dichroism (ECD spectra, optical rotation, and 13C chemical shifts were used to establish the chemical structures of 1 and 2. Both compounds exhibited moderate antifungal activity against Cladosporium cucumerinum, while compound 2 was also active against Candida albicans. Marine natural products containing steroidal and amino acid constituents are extremely rare in nature.

  10. Antimicrobial activity of heterotrophic bacterial communities from the marine sponge Erylus discophorus (Astrophorida, Geodiidae.

    Directory of Open Access Journals (Sweden)

    Ana Patrícia Graça

    Full Text Available Heterotrophic bacteria associated with two specimens of the marine sponge Erylus discophorus were screened for their capacity to produce bioactive compounds against a panel of human pathogens (Staphylococcus aureus wild type and methicillin-resistant S. aureus (MRSA, Bacillus subtilis, Pseudomonas aeruginosa, Acinetobacter baumanii, Candida albicans and Aspergillus fumigatus, fish pathogen (Aliivibrio fischeri and environmentally relevant bacteria (Vibrio harveyi. The sponges were collected in Berlengas Islands, Portugal. Of the 212 isolated heterotrophic bacteria belonging to Alpha- and Gammaproteobacteria, Actinobacteria and Firmicutes, 31% produced antimicrobial metabolites. Bioactivity was found against both Gram positive and Gram negative and clinically and environmentally relevant target microorganisms. Bioactivity was found mainly against B. subtilis and some bioactivity against S. aureus MRSA, V. harveyi and A. fisheri. No antifungal activity was detected. The three most bioactive genera were Pseudovibrio (47.0%, Vibrio (22.7% and Bacillus (7.6%. Other less bioactive genera were Labrenzia, Acinetobacter, Microbulbifer, Pseudomonas, Gordonia, Microbacterium, Micrococcus and Mycobacterium, Paenibacillus and Staphylococcus. The search of polyketide I synthases (PKS-I and nonribosomal peptide synthetases (NRPSs genes in 59 of the bioactive bacteria suggested the presence of PKS-I in 12 strains, NRPS in 3 strains and both genes in 3 strains. Our results show the potential of the bacterial community associated with Erylus discophorus sponges as producers of bioactive compounds.

  11. Bioactive Hydantoin Alkaloids from the Red Sea Marine Sponge Hemimycale arabica

    Directory of Open Access Journals (Sweden)

    Diaa T. A. Youssef

    2015-10-01

    Full Text Available In the course of our continuing efforts to identify bioactive secondary metabolites from Red Sea marine invertebrates, we have investigated the sponge Hemimycale arabica. The antimicrobial fraction of an organic extract of the sponge afforded two new hydantoin alkaloids, hemimycalins A and B (2 and 3, together with the previously reported compound (Z-5-(4-hydroxybenzylideneimidazolidine-2,4-dione (1. The structures of the compounds were determined by extensive 1D and 2D NMR (COSY, HSQC and HMBC studies and high-resolution mass spectral determinations. Hemimycalins A (2 and B (3 represent the first examples of the natural N-alkylated hydantoins from the sponge Hemimycale arabica. Compounds 1–3 displayed variable antimicrobial activities against E. coli, S. aureus, and C. albicans. In addition, compound 1 displayed moderate antiproliferative activity against the human cervical carcinoma (HeLa cell line. These findings provide further insight into the chemical diversity as well as the biological activity of this class of compounds.

  12. Bioactive Hydantoin Alkaloids from the Red Sea Marine Sponge Hemimycale arabica.

    Science.gov (United States)

    Youssef, Diaa T A; Shaala, Lamiaa A; Alshali, Khalid Z

    2015-10-28

    In the course of our continuing efforts to identify bioactive secondary metabolites from Red Sea marine invertebrates, we have investigated the sponge Hemimycale arabica. The antimicrobial fraction of an organic extract of the sponge afforded two new hydantoin alkaloids, hemimycalins A and B (2 and 3), together with the previously reported compound (Z)-5-(4-hydroxybenzylidene)imidazolidine-2,4-dione (1). The structures of the compounds were determined by extensive 1D and 2D NMR (COSY, HSQC and HMBC) studies and high-resolution mass spectral determinations. Hemimycalins A (2) and B (3) represent the first examples of the natural N-alkylated hydantoins from the sponge Hemimycale arabica. Compounds 1-3 displayed variable antimicrobial activities against E. coli, S. aureus, and C. albicans. In addition, compound 1 displayed moderate antiproliferative activity against the human cervical carcinoma (HeLa) cell line. These findings provide further insight into the chemical diversity as well as the biological activity of this class of compounds.

  13. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges

    Directory of Open Access Journals (Sweden)

    Cole G Easson

    2014-10-01

    Full Text Available Sponges (Porifera can host diverse and abundant communities of microbial symbionts that make crucial contributions to host metabolism. Although these communities are often host-specific and hypothesized to co-evolve with their hosts, correlations between host phylogeny and microbiome community structure are rarely tested. As part of the Earth Microbiome Project, we surveyed the microbiomes associated with 20 species of tropical marine sponges collected over a narrow geographic range. We tested whether (1 univariate metrics of microbiome diversity displayed significant phylogenetic signal across the host phylogeny; (2 host identity and host phylogeny were significant factors in multivariate analyses of taxonomic and phylogenetic dissimilarity; and (3 different minimum read thresholds impacted these results. We observed significant differences in univariate metrics of diversity among host species for all read thresholds, with strong phylogenetic signal in the inverse Simpson’s index of diversity (D. We observed a surprisingly wide range of variability in community dissimilarity within host species (4% to 73%; this variability was not related to microbial abundance within a host species. Taxonomic and phylogenetic dissimilarity were significantly impacted by host identity and host phylogeny when these factors were considered individually; when tested together, the effect of host phylogeny was reduced, but remained significant. In our dataset, this outcome is largely due to closely related host sponges harboring distinct microbial taxa. Although the identity of specific microbial taxa varied substantially among host sponges, closely related hosts tended to harbor microbial communities with similar patterns of relative abundance. We hypothesize that microbiomes with low D might be structured by regulation of the microbial community by the host or by the presence of competitively dominant symbionts that are themselves under selection for host

  14. Phylogeography of the sponge Suberites diversicolor in Indonesia: insights into the evolution of marine lake populations.

    Directory of Open Access Journals (Sweden)

    Leontine E Becking

    Full Text Available The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through narrow submarine connections to the sea and could be regarded as the marine equivalents of terrestrial islands. The sponge Suberites diversicolor (Porifera: Demospongiae: Suberitidae is typical of marine lake habitats in the Indo-Australian Archipelago. Four molecular markers (two mitochondrial and two nuclear were employed to study genetic structure of populations within and between marine lakes in Indonesia and three coastal locations in Indonesia, Singapore and Australia. Within populations of S. diversicolor two strongly divergent lineages (A & B (COI: p = 0.4% and ITS: p = 7.3% were found, that may constitute cryptic species. Lineage A only occurred in Kakaban lake (East Kalimantan, while lineage B was present in all sampled populations. Within lineage B, we found low levels of genetic diversity in lakes, though there was spatial genetic population structuring. The Australian population is genetically differentiated from the Indonesian populations. Within Indonesia we did not record an East-West barrier, which has frequently been reported for other marine invertebrates. Kakaban lake is the largest and most isolated marine lake in Indonesia and contains the highest genetic diversity with genetic variants not observed elsewhere. Kakaban lake may be an area where multiple putative refugia populations have come into secondary contact, resulting in high levels of genetic diversity and a high number of endemic species.

  15. Salimyxins and enhygrolides: antibiotic, sponge-related metabolites from the obligate marine myxobacterium Enhygromyxa salina.

    Science.gov (United States)

    Felder, Stephan; Kehraus, Stefan; Neu, Edith; Bierbaum, Gabriele; Schäberle, Till F; König, Gabriele M

    2013-07-22

    Unlike their terrestrial counterparts, marine myxobacteria are hardly investigated for their secondary metabolites. This study describes three new compounds (1-3), named salimyxins and enhygrolides, obtained from the obligate marine myxobacterium Enhygromyxa salina. These are the first natural products obtained from Enhygromyxa species. Their structures were elucidated by spectroscopic analysis, including NMR and CD spectroscopy. Enhygrolides are closely related to the nostoclides, which were initially isolated from a cyanobacterium of the genus Nostoc. The salimyxins, representing structurally most unusual degraded sterols, are close to identical to demethylincisterol from the sponge Homaxinella sp. Salimyxin B and enhygrolide A inhibit the growth of the Gram-positive bacterium Arthrobacter cristallopoietes (MIC salimyxin B, 8 μg mL⁻¹; enhygrolide A, 4 μg mL⁻¹).

  16. Aeroplysinin-1, a Sponge-Derived Multi-Targeted Bioactive Marine Drug.

    Science.gov (United States)

    García-Vilas, Javier A; Martínez-Poveda, Beatriz; Quesada, Ana R; Medina, Miguel Ángel

    2015-12-22

    Organisms lacking external defense mechanisms have developed chemical defense strategies, particularly through the production of secondary metabolites with antibiotic or repellent effects. Secondary metabolites from marine organisms have proven to be an exceptionally rich source of small molecules with pharmacological activities potentially beneficial to human health. (+)-Aeroplysinin-1 is a secondary metabolite isolated from marine sponges with a wide spectrum of bio-activities. (+)-Aeroplysinin-1 has potent antibiotic effects on Gram-positive bacteria and several dinoflagellate microalgae causing toxic blooms. In preclinical studies, (+)-aeroplysinin-1 has been shown to have promising anti-inflammatory, anti-angiogenic and anti-tumor effects. Due to its versatility, (+)-aeroplysinin-1 might have a pharmaceutical interest for the treatment of different pathologies.

  17. Anti-inflammatory, analgesic and antipyretic potentials of marine sponge Sigmadocia pumila

    Directory of Open Access Journals (Sweden)

    Devaraj Isaac Dhinakaran

    2016-04-01

    Full Text Available Objective: To study the pharmacological properties of Sigmadocia pumila (S. pumila, a marine sponge, through in-vivo analysis. Methods: The anti-inflammatory activity was determined by the carrageenan-induced rat paw edema method. The analgesic activity was analyzed by tail immersion method. Antipyretic activity was done by using Brewer’s yeast induced hyperpyrexia method. Results: The anti-inflammatory activity using methanol extracts in S. pumila at the concentrations of 100 mg/kg and 200 mg/kg, (p.o. on rats showed significant decrease in the paw thickness at the 5th h of administration. It was denoted that the S. pumila exerted more analgesic activity. As for the antipyretic activity during the 2nd and 3rd h, the 3rd and 4th group of rats showed the reduction in temperature in S. pumila at 100 mg/kg and 200 mg/kg dosages. Conclusions: The present study concludes that the marine sponge S. pumila acts as a vital role in exhibiting pharmaceutical activities. It could be used to produce novel drugs.

  18. Trypanocidal activity of organic extracts from the Brazilian and Spanish marine sponges

    Directory of Open Access Journals (Sweden)

    Jéssica Carreira de Paula

    2015-12-01

    Full Text Available Abstract Chagas' disease is a parasitic infection caused by protozoan Trypanosoma cruzi that affect millions of people worldwide. The available drugs for treatment of this infection cause serious side effects and have variable efficacy, especially in the chronic phase of the disease. In this context, natural compounds have shown great potential for the discovery of new chemotherapies for the treatment of this infection and various other diseases. In present study, we evaluated the in vitro antiprotozoal activity of five species of Brazilian and Spanish marine sponges (Condrosia reniformes, Tethya rubra, Tethya ignis, Mycale angulosa and Dysidea avara against T. cruzi. By GC–MS data, we observed that in these extracts were present the major classes of the following compounds: hydrocarbons, terpenes, steroids and alcohols. The extracts showed activity against the three forms of this parasite and did not induce toxicity in mammalian cells. Better activities were observed with the extracts of marine sponges, C. reniformes (EC50 = 0.6 μg/ml, D. avara (EC50 = 1.1 μg/ml and M. angulosa (EC50 = 3.8 μg/ml, against trypomastigote forms. In intracellular amastigote forms, the extract of T. ignis showed IC50 of 7.2 μg/ml and SI of 24.65. On this basis, our results indicate that these extracts can be promising chemotherapeutic agents against T. cruzi.

  19. Phylogenetic diversity, host-specificity and community profiling of sponge-associated bacteria in the northern Gulf of Mexico.

    Directory of Open Access Journals (Sweden)

    Patrick M Erwin

    Full Text Available BACKGROUND: Marine sponges can associate with abundant and diverse consortia of microbial symbionts. However, associated bacteria remain unexamined for the majority of host sponges and few studies use phylogenetic metrics to quantify symbiont community diversity. DNA fingerprinting techniques, such as terminal restriction fragment length polymorphisms (T-RFLP, might provide rapid profiling of these communities, but have not been explicitly compared to traditional methods. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the bacterial communities associated with the marine sponges Hymeniacidon heliophila and Haliclona tubifera, a sympatric tunicate, Didemnum sp., and ambient seawater from the northern Gulf of Mexico by combining replicated clone libraries with T-RFLP analyses of 16S rRNA gene sequences. Clone libraries revealed that bacterial communities associated with the two sponges exhibited lower species richness and lower species diversity than seawater and tunicate assemblages, with differences in species composition among all four source groups. T-RFLP profiles clustered microbial communities by source; individual T-RFs were matched to the majority (80.6% of clone library sequences, indicating that T-RFLP analysis can be used to rapidly profile these communities. Phylogenetic metrics of community diversity indicated that the two sponge-associated bacterial communities include dominant and host-specific bacterial lineages that are distinct from bacteria recovered from seawater, tunicates, and unrelated sponge hosts. In addition, a large proportion of the symbionts associated with H. heliophila were shared with distant, conspecific host populations in the southwestern Atlantic (Brazil. CONCLUSIONS/SIGNIFICANCE: The low diversity and species-specific nature of bacterial communities associated with H. heliophila and H. tubifera represent a distinctly different pattern from other, reportedly universal, sponge-associated bacterial communities

  20. Investigation of bioactivity of extracts of Marine Sponge, Spongosorites halichondrioides (Dendy, 1905) from western coastal areas of India

    Institute of Scientific and Technical Information of China (English)

    Maushmi S. Kumar; Asim. K. Pal

    2012-01-01

    Objective: Sponges (phylum Porifera) are sessile marine invertebrates and are known to be the richest source of pharmacologically-active compounds. This work was taken to investigate the antibacterial, antifungal activity and cytotoxicity from marine sponge. Method: In this study the marine sponge Spongosorites halichondrioides crude extracts were investigated for three bioassays. The first is an antimicrobial test against Proteus vulgaris, Bacillus subtilis, Staphylococcus aureus, Salmonella typhi, Klebsiella pneumonia, Escherichia coli, P. aeruginosa and the second is an antifungal test against three pathogenic fungi, Aspergillus flavus, Aspergillusniger and Metarhizium anisopliae. The third is a cytotoxicity test using larva of Artemia salina, for detection of cytotoxic activity in the extracts. Result: For all the three bioassays, extracts were found to be bioactive. This result suggests that this marine sponge is able to produce biologically active agents required for an overall defense against their predators. Conclusions: Further GC MS was done and the fragmentation pattern, showed the presence of sterol esters and terpenoids in the active extracts.

  1. Draft Genome Sequence of Microbacterium sp. Strain Alg239_V18, an Actinobacterium Retrieved from the Marine Sponge Spongia sp.

    Science.gov (United States)

    Karimi, Elham; Gonçalves, Jorge M S; Reis, Margarida; Costa, Rodrigo

    2017-01-19

    Here, we describe the draft genome sequence of Microbacterium sp. strain Alg239_V18, an actinobacterium retrieved from the marine sponge Spongia sp. Genome annotation revealed a vast gene repertoire involved in antibiotic and heavy metal-resistance, and a versatile carbohydrate assimilation metabolism with potential for chitin utilization.

  2. Antimicrobial activity of untenospongin B, a metabolic from the marine sponge Hippospongia communis collected from the Atlantic coast of Morocco

    NARCIS (Netherlands)

    Rifai, S.; Kijjoa, A.; van Soest, R.W.M.

    2004-01-01

    (-)-Untenospongin B isolated from the marine sponge Hippospongia communis has been tested for its antimicrobial activity against bacteria and human pathogenic fungi using agar disk method and was found to possess a broad and strong activity toward the test organisms. Its antifungal activity was furt

  3. Antimicrobial Activity of Untenospongin B, a Metabolite from the Marine Sponge Hippospongia communis collected from the Atlantic Coast of Morocco

    OpenAIRE

    Aziz Fassouane Fassouane; Rob van Soest; Anake Kijjoa; Saida Rifai

    2004-01-01

    Abstract: (-)-Untenospongin B isolated from the marine sponge Hippospongia communis has been tested for its antimicrobial activity against bacteria and human pathogenic fungi using agar disk method and was found to possess a broad and strong activity toward the test organisms. Its antifungal activity was further characterized by determination of the minimum inhibitory concentration (MIC) against five fungal species using broth microdilution method.

  4. Sulfated steroids: ptilosteroids A-C and ptilosaponosides A and B from the Solomon Islands marine sponge Ptilocaulis spiculifer.

    Science.gov (United States)

    Gabant, Marion; Schmitz-Afonso, Isabelle; Gallard, Jean-François; Menou, Jean-Louis; Laurent, Dominique; Debitus, Cécile; Al-Mourabit, Ali

    2009-04-01

    Three new pregnanes, ptilosteroid A (1), ptilosteroid B (2), and ptilosteroid C (3), and two new pregnane glycosides, ptilosaponoside A (4) and ptilosaponoside B (5), were isolated from the marine sponge Ptilocaulis spiculifer collected in the Solomon Islands. The structures were determined by spectroscopic methods. Biological tests of these compounds showed that they are not cytotoxic against KB cells.

  5. Antibacterial Activities of Bacteria Isolated from the Marine Sponges Isodictya compressa and Higginsia bidentifera Collected from Algoa Bay, South Africa

    Science.gov (United States)

    Matobole, Relebohile Matthew; van Zyl, Leonardo Joaquim; Parker-Nance, Shirley; Davies-Coleman, Michael T.; Trindade, Marla

    2017-01-01

    Due to the rise in multi-drug resistant pathogens and other diseases, there is renewed interest in marine sponge endosymbionts as a rich source of natural products (NPs). The South African marine environment is rich in marine biota that remains largely unexplored and may represent an important source for the discovery of novel NPs. We first investigated the bacterial diversity associated with five South African marine sponges, whose microbial populations had not previously been investigated, and select the two sponges (Isodictya compressa and Higginsia bidentifera) with highest species richness to culture bacteria. By employing 33 different growth conditions 415 sponge-associated bacterial isolates were cultured and screened for antibacterial activity. Thirty-five isolates showed antibacterial activity, twelve of which exhibited activity against the multi-drug resistant Escherichia coli 1699, implying that some of the bioactive compounds could be novel. Genome sequencing of two of these isolates confirmed that they harbour uncharacterized biosynthetic pathways that may encode novel chemical structures. PMID:28218694

  6. Pentacyclic ingamine-type alkaloids, a new antiplasmodial pharmacophore from the marine sponge petrosid Ng5 Sp5

    Science.gov (United States)

    Two new pentacyclic ingamine- type alkaloids, namely 22(S)-hydroxyingamine A (2) and dihydroingenamine D (3), together with the known ingamine A (1) have been isolated from marine sponge Petrosid Ng5 Sp5 (Family: Petrosiidae) obtained from the open repository of National Cancer Institute, USA. The s...

  7. Salaramides A and B; two alpha-oxoamides isolated from the marine sponge Hippospongia sp. (Porifera, Dictyoceratida).

    Science.gov (United States)

    Bensemhoun, Julia; Rudi, Amira; Kashman, Yoel; Gaydou, Emile M; Vacelet, Jean; Aknin, Maurice

    2010-02-01

    Two novel alpha-oxoamides, salaramide A (1) and its homologue salaramide B (2), were isolated from the Madagascar marine sponge, Hippospongia sp., collected in Salary Bay, north of Tulear. The structures of 1 and 2 were elucidated by interpretation of mass spectra, 1D and 2D NMR spectra, and confirmed by chemical transformation.

  8. Perplexing distribution of 3-alkylpyridines in haplosclerid sponges.

    NARCIS (Netherlands)

    Becking, L.E.; Nakao, Y.; de Voogd, N.J.; van Soest, R.W.M.; Fusetani, N.; Matsunaga, S.; Custódio, M.R,; Hajdu Custódio, M.R; Muricy, Lôbo-Hajdu G

    2007-01-01

    Abstract: In this study we reviewed the natural product literature for the distribution of 3-alkylpyridines among sponge taxa. In parallel, we traced selected 3-alkylpyridines, amphitoxins, in three haplosclerid genera (Amphimedon, Callyspongia, Haliclona) in order to establish the utility of such c

  9. Study the antimicrobial activity of six marine sponges and three parts of sea anemone on Candida albicans

    Directory of Open Access Journals (Sweden)

    Homa Hamayeli

    2016-08-01

    Full Text Available Objective: To evaluate the antifungal and inhibitory activity of six different species of marine sponges and one species of sea anemone that were collected from the Persian Gulf on the growth of Candida albicans (C. albicans. Methods: Sea anemone and six different sponges were gathered from the Persian Gulf and extracted by methanol macerated with dichloromethane solvents. The activity of each extracts against C. albicans was determined by paper disc diffusion and agar well diffusion methods. Also, minimum inhibitory concentration and minimal bactericidal concentration of each extract were determined. Results: The finding of current research confirmed that all sponge extracts had sufficient inhibitory effect against C. albicans but the extracts of sponge type 2 and 5 had the best inhibitory effect on C. albicans and their zones of inhibition were 45 mm and 38 mm, respectively. The tentacle of sea anemone had the best inhibitory effect against C. albicans compared to other part of the body and its zone of inhibition was 41 mm. Besides, the sponge type 5 extracts had the best minimum inhibitory concentration and minimal bactericidal concentration values with 6.25 and 12.5 mg/mL, respectively. Conclusions: It could be concluded that the crude extracts of six different sponges and sea anemone have high potential to produce broad spectral antifungal activity with minimal concentration against different pathogenic fungi.

  10. Study the antimicrobial activity of six marine sponges and three parts of sea anemone onCandida albicans

    Institute of Scientific and Technical Information of China (English)

    Homa Hamayeli; Abdolhamid Namaki Shoshtari; Mehdi Hassanshahian; Majid Askari Hesni

    2016-01-01

    Objective:To evaluate the antifungal and inhibitory activity of six different species of marine sponges and one species of sea anemone that were collected from the Persian Gulf on the growth ofCandida albicans (C. albicans). Methods: Sea anemone and six different sponges were gathered from the Persian Gulf and extracted by methanol macerated with dichloromethane solvents. The activity of each extracts againstC. albicanswas determined by paper disc diffusion and agar well diffusion methods. Also, minimum inhibitory concentration and minimal bactericidal concentration of each extract were determined. Results: The finding of current research confirmed that all sponge extracts had sufficient inhibitory effect againstC. albicans but the extracts of sponge type 2 and 5 had the best inhibitory effect onC. albicans and their zones of inhibition were 45 mm and 38 mm, respectively. The tentacle of sea anemone had the best inhibitory effect againstC. albicans compared to other part of the body and its zone of inhibition was 41 mm. Besides, the sponge type 5 extracts had the best minimum inhibitory concentration and minimal bactericidal concentration values with 6.25 and 12.5 mg/mL, respectively. Conclusions: It could be concluded that the crude extracts of six different sponges and sea anemone have high potential to produce broad spectral antifungal activity with minimal concentration against different pathogenic fungi.

  11. The antimicrobial activity of heterotrophic bacteria isolated from the marine sponge Erylus deficiens (Astrophorida, Geodiidae

    Directory of Open Access Journals (Sweden)

    Ana Patrícia Graça

    2015-05-01

    Full Text Available Interest in the study of marine sponges and their associated microbiome has increased both for ecological reasons and for their great biotechnological potential. In this work, heterotrophic bacteria associated with three specimens of the marine sponge Erylus deficiens, were isolated in pure culture, phylogenetically identified and screened for antimicrobial activity. The isolation of bacteria after an enrichment treatment in heterotrophic medium revealed diversity in bacterial composition with only Pseudoalteromonas being shared by two specimens. Of the 83 selected isolates, 58% belong to Proteobacteria, 23 % to Actinobacteria and 19 % to Firmicutes. Diffusion agar assays for bioactivity screening against four bacterial strains and one yeast, revealed that a high number of the isolated bacteria (68.7 % were active, particularly against Candida albicans and Vibrio anguillarum. Pseudoalteromonas, Microbacterium and Proteus were the most bioactive genera. After this preliminary screening, the bioactive strains were further evaluated in liquid assays against C. albicans, Bacillus subtilis and Escherichia coli. Filtered culture medium and acetone extracts from three and five days-old cultures were assayed. High antifungal activity against C. albicans in both aqueous and acetone extracts as well as absence of activity against B. subtilis were confirmed. Higher levels of activity were obtained with the aqueous extracts when compared to the acetone extracts and differences were also observed between the 3 and 5 day-old extracts. Furthermore, a low number of active strains was observed against E. coli. Potential presence of type-I polyketide synthases (PKS-I and nonribosomal peptide synthetases (NRPSs genes were detected in seventeen and thirty isolates, respectively. The high levels of bioactivity and the likely presence of associated genes suggest that Erylus deficiens bacteria are potential sources of novel marine bioactive compounds.

  12. Speciation of americium in seawater and accumulation in the marine sponge Aplysina cavernicola.

    Science.gov (United States)

    Maloubier, Melody; Michel, Hervé; Solari, Pier Lorenzo; Moisy, Philippe; Tribalat, Marie-Aude; Oberhaensli, François R; Dechraoui Bottein, Marie Yasmine; Thomas, Olivier P; Monfort, Marguerite; Moulin, Christophe; Den Auwer, Christophe

    2015-12-21

    The fate of radionuclides in the environment is a cause of great concern for modern society, seen especially in 2011 after the Fukushima accident. Among the environmental compartments, seawater covers most of the earth's surface and may be directly or indirectly impacted. The interaction between radionuclides and the marine compartment is therefore essential for better understanding the transfer mechanisms from the hydrosphere to the biosphere. This information allows for the evaluation of the impact on humans via our interaction with the biotope that has been largely undocumented up to now. In this report, we attempt to make a link between the speciation of heavy elements in natural seawater and their uptake by a model marine organism. More specifically, because the interaction of actinides with marine invertebrates has been poorly studied, the accumulation in a representative member of the Mediterranean coralligenous habitat, the sponge Aplysina cavernicola, was investigated and its uptake curve exposed to a radiotracer (241)Am was estimated using a high-purity Ge gamma spectrometer. But in order to go beyond the phenomenological accumulation rate, the speciation of americium(III) in seawater must be assessed. The speciation of (241)Am (and natural europium as its chemically stable surrogate) in seawater was determined using a combination of different techniques: Time-Resolved Laser-Induced Fluorescence (TRLIF), Extended X-ray Absorption Fine Structure (EXAFS) at the LIII edge, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy and Scanning Electron Microscopy (SEM) and the resulting data were compared with the speciation modeling. In seawater, the americium(III) complex (as well as the corresponding europium complex, although with conformational differences) was identified as a ternary sodium biscarbonato complex, whose formula can be tentatively written as NaAm(CO3)2·nH2O. It is therefore this chemical form of americium that is

  13. Characterisation of non-autoinducing tropodithietic Acid (TDA) production from marine sponge Pseudovibrio species.

    Science.gov (United States)

    Harrington, Catriona; Reen, F Jerry; Mooij, Marlies J; Stewart, Fiona A; Chabot, Jean-Baptiste; Guerra, Antonio F; Glöckner, Frank O; Nielsen, Kristian F; Gram, Lone; Dobson, Alan D W; Adams, Claire; O'Gara, Fergal

    2014-12-10

    The search for new antimicrobial compounds has gained added momentum in recent years, paralleled by the exponential rise in resistance to most known classes of current antibiotics. While modifications of existing drugs have brought some limited clinical success, there remains a critical need for new classes of antimicrobial compound to which key clinical pathogens will be naive. This has provided the context and impetus to marine biodiscovery programmes that seek to isolate and characterize new activities from the aquatic ecosystem. One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic acid (TDA). The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a high degree of conservation among the tda biosynthetic clusters while expression studies revealed coordinated regulation of TDA synthesis upon transition from log to stationary phase growth, which was not induced by TDA itself or by the presence of the C10-acyl homoserine lactone quorum sensing signal molecule.

  14. Characterisation of Non-Autoinducing Tropodithietic Acid (TDA Production from Marine Sponge Pseudovibrio Species

    Directory of Open Access Journals (Sweden)

    Catriona Harrington

    2014-12-01

    Full Text Available The search for new antimicrobial compounds has gained added momentum in recent years, paralleled by the exponential rise in resistance to most known classes of current antibiotics. While modifications of existing drugs have brought some limited clinical success, there remains a critical need for new classes of antimicrobial compound to which key clinical pathogens will be naive. This has provided the context and impetus to marine biodiscovery programmes that seek to isolate and characterize new activities from the aquatic ecosystem. One new antibiotic to emerge from these initiatives is the antibacterial compound tropodithietic acid (TDA. The aim of this study was to provide insight into the bioactivity of and the factors governing the production of TDA in marine Pseudovibrio isolates from a collection of marine sponges. The TDA produced by these Pseudovibrio isolates exhibited potent antimicrobial activity against a broad spectrum of clinical pathogens, while TDA tolerance was frequent in non-TDA producing marine isolates. Comparative genomics analysis suggested a high degree of conservation among the tda biosynthetic clusters while expression studies revealed coordinated regulation of TDA synthesis upon transition from log to stationary phase growth, which was not induced by TDA itself or by the presence of the C10-acyl homoserine lactone quorum sensing signal molecule.

  15. Insights into the lifestyle of uncultured bacterial natural product factories associated with marine sponges.

    Science.gov (United States)

    Lackner, Gerald; Peters, Eike Edzard; Helfrich, Eric J N; Piel, Jörn

    2017-01-17

    The as-yet uncultured filamentous bacteria "Candidatus Entotheonella factor" and "Candidatus Entotheonella gemina" live associated with the marine sponge Theonella swinhoei Y, the source of numerous unusual bioactive natural products. Belonging to the proposed candidate phylum "Tectomicrobia," Candidatus Entotheonella members are only distantly related to any cultivated organism. The Ca E. factor has been identified as the source of almost all polyketide and modified peptides families reported from the sponge host, and both Ca Entotheonella phylotypes contain numerous additional genes for as-yet unknown metabolites. Here, we provide insights into the biology of these remarkable bacteria using genomic, (meta)proteomic, and chemical methods. The data suggest a metabolic model of Ca Entotheonella as facultative anaerobic, organotrophic organisms with the ability to use methanol as an energy source. The symbionts appear to be auxotrophic for some vitamins, but have the potential to produce most amino acids as well as rare cofactors like coenzyme F420 The latter likely accounts for the strong autofluorescence of Ca Entotheonella filaments. A large expansion of protein families involved in regulation and conversion of organic molecules indicates roles in host-bacterial interaction. In addition, a massive overrepresentation of members of the luciferase-like monooxygenase superfamily points toward an important role of these proteins in Ca Entotheonella. Furthermore, we performed mass spectrometric imaging combined with fluorescence in situ hybridization to localize Ca Entotheonella and some of the bioactive natural products in the sponge tissue. These metabolic insights into a new candidate phylum offer hints on the targeted cultivation of the chemically most prolific microorganisms known from microbial dark matter.

  16. Biological Activities of Aqueous and Organic Extracts from Tropical Marine Sponges

    Directory of Open Access Journals (Sweden)

    Tom Turk

    2010-04-01

    Full Text Available We report on screening tests of 66 extracts obtained from 35 marine sponge species from the Caribbean Sea (Curaçao and from eight species from the Great Barrier Reef (Lizard Island. Extracts were prepared in aqueous and organic solvents and were tested for hemolytic, hemagglutinating, antibacterial and anti-acetylcholinesterase (AChE activities, as well as their ability to inhibit or activate cell protein phosphatase 1 (PP1. The most interesting activities were obtained from extracts of Ircinia felix, Pandaros acanthifolium, Topsentia ophiraphidites, Verongula rigida and Neofibularia nolitangere. Aqueous and organic extracts of I. felix and V. rigida showed strong antibacterial activity. Topsentia aqueous and some organic extracts were strongly hemolytic, as were all organic extracts from I. felix. The strongest hemolytic activity was observed in aqueous extracts from P. acanthifolium. Organic extracts of N. nolitangere and I. felix inhibited PP1. The aqueous extract from Myrmekioderma styx possessed the strongest hemagglutinating activity, whilst AChE inhibiting activity was found only in a few sponges and was generally weak, except in the methanolic extract of T. ophiraphidites.

  17. Selective uptake of prokaryotic picoplankton by a marine sponge ( Callyspongia sp.) within an oligotrophic coastal system

    Science.gov (United States)

    Hanson, Christine E.; McLaughlin, M. James; Hyndes, Glenn A.; Strzelecki, Joanna

    2009-09-01

    Marine sponges are key players in the transfer of carbon from the pelagic microbial food web into the benthos. Selective uptake of prokaryotic picoplankton (bacteria and autotrophic Synechococcus cyanobacteria identified and enumerated by flow cytometry. Callyspongia sp. demonstrated high filtration efficiencies, particularly for high DNA (HDNA) bacteria (up to 85.3% in summer 2008) and Synechococcus (up to 91.1% in autumn 2007), however efficiency varied non-uniformly with time and food type ( p bacteria (40 ± 17.2%), except during winter 2007 ( p = 0.14) when ambient Synechococcus concentrations were lowest. When compared to ambient abundances of the different food types, Callyspongia sp. exhibited consistently negative selectivity for LDNA bacteria and positive selectivity for Synechococcus, while HDNA bacteria was generally a neutral or positive selection. The total carbon removal rate (sum of all prokaryotic picoplankton cells), calculated on a per unit area basis, varied significantly with time ( p food webs of southwestern Australia, and support the conclusion that sponges actively select food particles that optimise their nutritional intake.

  18. Marine sponge skeleton photosensitized by copper phthalocyanine: A catalyst for Rhodamine B degradation

    Directory of Open Access Journals (Sweden)

    Norman Małgorzata

    2016-01-01

    Full Text Available We present a combined approach to photo-assisted degradation processes, in which a catalyst, H2O2 and UV irradiation are used together to enhance the oxidation of Rhodamine B (RB. The heterogeneous photocatalyst was made by the process of adsorption of copper phthalocyanine tetrasulfonic acid (CuPC onto purified spongin-based Hippospongia communis marine sponge skeleton (HcS. The product obtained, CuPC-HcS, was investigated by a variety of spectroscopic (carbon-13 nuclear magnetic resonance 13C NMR, Fourier transform infrared spectroscopy FTIR, energy-dispersive X-ray spectroscopy EDS and microscopic techniques (scanning electron microscopy SEM, fluorescent and optical microscopy, as well as thermal analysis. The study confirms the stable combination of the adsorbent and adsorbate. For a 10 mg/L RB solution, the percentage degradation reached 95% using CuPC-HcS as a heterocatalyst. The mechanism of RB removal involves adsorption and photodegradation simultaneously.

  19. Cytotoxic 5α,8α-epidioxy sterols from the marine sponge Monanchora sp.

    Science.gov (United States)

    Mun, Bora; Wang, Weihong; Kim, Hiyoung; Hahn, Dongyup; Yang, Inho; Won, Dong Hwan; Kim, Eun-hee; Lee, Jihye; Han, Chulkyeong; Kim, Hyunji; Ekins, Merrick; Nam, Sang-Jip; Choi, Hyukjae; Kang, Heonjoong

    2015-01-01

    Three new sterols, 5α,8α-epidioxy-24-norcholesta-6,9(11),22-trien-3β-ol (1), 5α,8α-epidioxy-cholesta-6,9(11),24-trien-3β-ol (2), and 5α,8α-epidioxy-cholesta-6,23-dien-3β,25-diol (3), with four known sterols (4-7) were isolated from a marine sponge Monanchora sp. Their chemical structures were elucidated by extensive spectroscopic analysis. Compounds 1 and 3-7 showed moderate cytotoxicity against several human carcinoma cell lines including renal (A-498), pancreatic (PANC-1 and MIA PaCa-2), and colorectal (HCT 116) cancer cell lines.

  20. A New 1,4-Diazepine from South China Sea Marine Sponge Callyspongia Species

    Directory of Open Access Journals (Sweden)

    Shi-Hai Xu

    2010-02-01

    Full Text Available A new 1,4-diazepine, callysponine (1, was isolated from a South China Sea Callyspongia sp. marine sponge, together with four known proline-based diketopiperazines: cyclo-(S-Pro-R-Leu (2, cyclo-(S-Pro-R-Val (3, cyclo-(S-Pro-R-Ala (4, andcyclo-(S-Pro-R-Tyr (5. The new structure was determined on the basis of NMR and MS analysis, and the absolute stereochemistry was defined by NOESY spectroscopy and optical rotation. The structures of the known compounds were identified by comparison of their spectroscopic data with those reported in the literature. Callysponine (1 did not inhibit the growth of HepG2 (hepatoma carcinoma cell, A549 (lung carcinoma cell, and HeLa (cervical cancer cell cell lines.

  1. A new diketopiperazine from South China Sea marine sponge Callyspongia sp.

    Science.gov (United States)

    Chen, Yinning; Peng, Yan; Gao, Chenghai; Huang, Riming

    2014-01-01

    Further chemical investigation on the marine sponge Callyspongia sp. collected from South China Sea led to the isolation of a new diketopiperazine, named callysponine A (1), as well as four known diketopiperazines, namely cyclo-(Gly-Pro) (2), cyclo-(Thr-Pro) (3), cyclo-(Ile-Pro) (4) and cyclo-(Pro-Pro) (5). The new structure was determined on the basis of NMR and MS analysis, and the absolute stereochemistry was defined by analysis of the coupling constants and optical rotation. The structures of the known compounds were identified by comparing their spectroscopic data with those reported in the literature. Compounds 1-5 did not inhibit the growth of HepG2 (hepatoma carcinoma cell), A549 (lung carcinoma cell) and HeLa (cervical cancer cell) cell lines.

  2. Silicon Crystals Formation Using Silicatein-Like Cathepsin of Marine Sponge Latrunculia oparinae.

    Science.gov (United States)

    Kamenev, D G; Shkryl, Y N; Veremeichik, G N; Golotin, V A; Naryshkina, N N; Timofeeva, Y O; Kovalchuk, S N; Semiletova, I V; Bulgakov, V P

    2015-12-01

    The cDNA fragment encoding the catalytic domain of the new silicatein-like cathepsin enzyme LoCath was expressed in a strain Top10 of Escherichia coli, extracted and purified via nickel-affinity chromatography. Recombinant enzyme performed silica-polymerizing activity when mixed with water-soluble silica precursor-tetrakis-(2-hydroxyethyl)-orthosilicate. Scanning electron microscopy revealed hexagonal, octahedral and β-tridimit crystals. Energy dispersion fluorescence X-ray spectrometry analysis showed that all these crystals consist of pure silicon oxide. It is the first report about the ability of marine sponge's cathepsin to polymerize silicon, as well as about the structure and composition of the silicon oxide crystal formed by recombinant cathepsin. Further study of the catalytic activity of silicatein and cathepsin will help to understand the biosilification processes in vivo, and will create basis for biotechnological use of recombinant proteins for silicon polymerization.

  3. Indole derivatives from a marine sponge-derived yeast as DPPH radical scavengers.

    Science.gov (United States)

    Sugiyama, Yasumasa; Ito, Yuki; Suzuki, Motofumi; Hirota, Akira

    2009-11-01

    Two new indole derivatives (3, 4) and three known compounds (1, 2, 5) were isolated as radical scavengers from the culture filtrate of a marine sponge-derived yeast. Their structures were determined to be tyrosol (1), tryptophol (2), 2-(1H-indol-3-yl)ethyl 2-hydroxypropanoate (3), 2-(1H-indol-3-yl)ethyl 5-hydroxypentanoate (4), and cyclo(L-Pro-L-Tyr) (5) on the basis of their spectroscopic data. The absolute configurations of compounds 3 and 5 were determined by chiral HPLC analysis combined with synthesis and Marfey's method, respectively. Each obtained compound was evaluated for DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity, and all compounds exhibited weak activities.

  4. Marine Sponge-Derived Streptomyces sp. SBT343 Extract Inhibits Staphylococcal Biofilm Formation

    Science.gov (United States)

    Balasubramanian, Srikkanth; Othman, Eman M.; Kampik, Daniel; Stopper, Helga; Hentschel, Ute; Ziebuhr, Wilma; Oelschlaeger, Tobias A.; Abdelmohsen, Usama R.

    2017-01-01

    Staphylococcus epidermidis and Staphylococcus aureus are opportunistic pathogens that cause nosocomial and chronic biofilm-associated infections. Indwelling medical devices and contact lenses are ideal ecological niches for formation of staphylococcal biofilms. Bacteria within biofilms are known to display reduced susceptibilities to antimicrobials and are protected from the host immune system. High rates of acquired antibiotic resistances in staphylococci and other biofilm-forming bacteria further hamper treatment options and highlight the need for new anti-biofilm strategies. Here, we aimed to evaluate the potential of marine sponge-derived actinomycetes in inhibiting biofilm formation of several strains of S. epidermidis, S. aureus, and Pseudomonas aeruginosa. Results from in vitro biofilm-formation assays, as well as scanning electron and confocal microscopy, revealed that an organic extract derived from the marine sponge-associated bacterium Streptomyces sp. SBT343 significantly inhibited staphylococcal biofilm formation on polystyrene, glass and contact lens surfaces, without affecting bacterial growth. The extract also displayed similar antagonistic effects towards the biofilm formation of other S. epidermidis and S. aureus strains tested but had no inhibitory effects towards Pseudomonas biofilms. Interestingly the extract, at lower effective concentrations, did not exhibit cytotoxic effects on mouse fibroblast, macrophage and human corneal epithelial cell lines. Chemical analysis by High Resolution Fourier Transform Mass Spectrometry (HRMS) of the Streptomyces sp. SBT343 extract proportion revealed its chemical richness and complexity. Preliminary physico-chemical characterization of the extract highlighted the heat-stable and non-proteinaceous nature of the active component(s). The combined data suggest that the Streptomyces sp. SBT343 extract selectively inhibits staphylococcal biofilm formation without interfering with bacterial cell viability. Due to

  5. Developmental cycle and pharmaceutically relevant compounds of Salinispora actinobacteria isolated from Great Barrier Reef marine sponges.

    Science.gov (United States)

    Ng, Yi Kai; Hewavitharana, Amitha K; Webb, Richard; Shaw, P Nicholas; Fuerst, John A

    2013-04-01

    The developmental cycle of the obligate marine antibiotic producer actinobacterium Salinispora arenicola isolated from a Great Barrier Reef marine sponge was investigated in relation to mycelium and spore ultrastructure, synthesis of rifamycin antibiotic compounds, and expression of genes correlated with spore formation and with rifamycin precursor synthesis. The developmental cycle of S. arenicola M413 on solid agar medium was characterized by substrate mycelium growth, change of colony color, and spore formation; spore formation occurred quite early in colony growth but development of black colonies occurred only at late stages, correlated with a change in spore maturity in relation to cell wall layers. Rifamycins were detected throughout the growth cycle, but changed in relative quantity at particular phases in the cycle, with a marked increase after 32 days. Expression of the spore division gene ssgA and the rifK gene for 3-amino-5-hydroxybenzoate synthase responsible for rifamycin precursor synthesis was seen even at early stages of the growth cycle. ssgA expression significantly increased between days 26 and 31, but rifK expression effectively remained constant throughout the growth cycle, consistent with the early synthesis of rifamycin. Factors other than precursor synthesis may be responsible for an observed late increase in rifamycin production. A useful approach for measuring and exploring the regulation of antibiotic synthesis and gene expression in the marine natural product producer S. arenicola has been established.

  6. Synthesis and Bioactivity of Secondary Metabolites from Marine Sponges Containing Dibrominated Indolic Systems

    Directory of Open Access Journals (Sweden)

    Azzurra Stefanucci

    2012-05-01

    Full Text Available Marine sponges. (e.g., Hyrtios sp., Dragmacidin sp., Aglophenia pleuma, Aplidium cyaneum, Aplidium meridianum. produce bioactive secondary metabolites involved in their defence mechanisms. Recently it was demonstrated that several of those compounds show a large variety of biological activities against different human diseases with possible applications in medicinal chemistry and in pharmaceutical fields, especially related to the new drug development process. Researchers have focused their attention principally on secondary metabolites with anti-cancer and cytotoxic activities. A common target for these molecules is the cytoskeleton, which has a central role in cellular proliferation, motility, and profusion involved in the metastatic process associate with tumors. In particular, many substances containing brominated indolic rings such as 5,6-dibromotryptamine, 5,6-dibromo-N-methyltryptamine, 5,6-dibromo-N-methyltryptophan (dibromoabrine, 5,6-dibromo-N,N-dimethyltryptamine and 5,6-dibromo-L-hypaphorine isolated from different marine sources, have shown anti-cancer activity, as well as antibiotic and anti-inflammatory properties. Considering the structural correlation between endogenous monoamine serotonin with marine indolic alkaloids 5,6-dibromoabrine and 5,6-dibromotryptamine, a potential use of some dibrominated indolic metabolites in the treatment of depression-related pathologies has also been hypothesized. Due to the potential applications in the treatment of various diseases and the increasing demand of these compounds for biological assays and the difficult of their isolation from marine sources, we report in this review a series of recent syntheses of marine dibrominated indole-containing products.

  7. Bioremediation of bacteria pollution using the marine sponge Hymeniacidon perlevis in the intensive mariculture water system of turbot Scophthalmus maximus.

    Science.gov (United States)

    Zhang, Xichang; Zhang, Wei; Xue, Lingyun; Zhang, Bi; Jin, Meifang; Fu, Wantao

    2010-01-01

    Sessile filter-feeding marine sponges (Porifera) have been reported to possess high efficiency in removing bacteria pollution from natural or aquaculture seawater. However, no investigation has been carried out thus far in a true mariculture farm water system. Therefore this study sought to investigate the ability of the marine sponge Hymeniacidon perlevis to bioremediate the bacteria pollution in the intensive aquaculture water system of turbot Scophthalmus maximus. Sponge specimens were hung in fish culture effluent at different temperature to investigate the optimal temperature condition for bacteria removal by H. perlevis. Turbots S. maximus were co-cultured with sponge H. perlevis in 1.5 m(3) of water system at 15-18 degrees C for 6 weeks to control the growth of bacteria. It was found that H. perlevis was able to remove pathogenic bacteria efficiently at 10-20 degrees C, with a maximal removal of 71.4-78.8% of fecal coliform, 73.9-98.7% of pathogenic vibrio, and 75.0-83.7% of total culturable bacteria from fish-culture effluent at 15 degrees C; H. perlevis continuously showed good bioremediation of bacteria pollution in the S. maximus culture water system, achieving removal of 60.0-90.2% of fecal coliform, 37.6-81.6% of pathogenic vibrio, and 45.1-83.9% of total culturable bacteria. The results demonstrate that H. perlevis is an effective bioremediator of bacteria pollution in the turbot S. maximus culture farm water system.

  8. A method to type the potential angucycline producers in actinomycetes isolated from marine sponges.

    Science.gov (United States)

    Ouyang, Yongchang; Wu, Houbo; Xie, Lianwu; Wang, Guanghua; Dai, Shikun; Chen, Minjie; Yang, Keqian; Li, Xiang

    2011-05-01

    Angucyclines are aromatic polyketides with antimicrobial, antitumor, antiviral and enzyme inhibition activities. In this study, a new pair of degenerate primers targeting the cyclase genes that are involved in the aromatization of the first and/or second ring of angucycline, were designed and evaluated in a PCR protocol targeting the jadomycin cyclase gene of Streptomyces venezuelae ISP5230. The identity of the target amplicon was confirmed by sequencing. After validation, the primers were used to screen 49 actinomycete isolates from three different marine sponges to identify putative angucycline producers. Seven isolates were positively identified using this method. Sequence analysis of the positive amplicons confirmed their identity as putative angucycline cyclases with sequence highly similar to known angucycline cyclases. Phylogenetic analysis clustered these positives into the angucycline group of cyclases. Furthermore, amplifications of the seven isolates using ketosynthase-specific primers were positive, backing the results using the cyclase primers. Together these results provided strong support for the presence of angucycline biosynthetic genes in these isolates. The specific primer set targeting the cyclase can be used to identify putative angucycline producers among marine actinobacteria, and aid in the discovery of novel angucyclines.

  9. Streptomyces atlanticus sp. nov., a novel actinomycete isolated from marine sponge Aplysina fulva (Pallas, 1766).

    Science.gov (United States)

    Silva, Fábio Sérgio Paulino; Souza, Danilo Tosta; Zucchi, Tiago Domingues; Pansa, Camila Cristiane; de Figueiredo Vasconcellos, Rafael Leandro; Crevelin, Eduardo José; de Moraes, Luiz Alberto Beraldo; Melo, Itamar Soares

    2016-11-01

    The taxonomic position of a novel marine actinomycete isolated from a marine sponge, Aplysina fulva, which had been collected in the Archipelago of Saint Peter and Saint Paul (Equatorial Atlantic Ocean), was determined by using a polyphasic approach. The organism showed a combination of morphological and chemotaxonomic characteristics consistent with its classification in the genus Streptomyces and forms a distinct branch within the Streptomyces somaliensis 16S rRNA gene tree subclade. It is closely related to Streptomyces violascens ISP 5183(T) (97.27 % 16S rRNA gene sequence similarity) and Streptomyces hydrogenans NBRC 13475(T) (97.15 % 16S rRNA gene sequence similarity). The 16S rRNA gene similarities between the isolate and the remaining members of the subclade are lower than 96.77 %. The organism can be distinguished readily from other members of the S. violacens subclade using a combination of phenotypic properties. On the basis of these results, it is proposed that isolate 103(T) (=NRRL B-65309(T) = CMAA 1378(T)) merits recognition as the type strain of a new Streptomyces species, namely Streptomyces atlanticus sp. nov.

  10. Biochemical and biophysical characterization of collagens of marine sponge, Ircinia fusca (Porifera: Demospongiae: Irciniidae).

    Science.gov (United States)

    Pallela, Ramjee; Bojja, Sreedhar; Janapala, Venkateswara Rao

    2011-07-01

    Collagens were isolated and partially characterized from the marine demosponge, Ircinia fusca from Gulf of Mannar (GoM), India, with an aim to develop potentially applicable collagens from unused and under-used resources. The yield of insoluble, salt soluble and acid soluble forms of collagens was 31.71 ± 1.59, 20.69 ± 1.03, and 17.38 ± 0.87 mg/g dry weight, respectively. Trichrome staining, Scanning & Transmission Electron microscopic (SEM & TEM) studies confirmed the presence of collagen in the isolated, terminally globular irciniid filaments. The partially purified (gel filtration chromatography), non-fibrillar collagens appeared as basement type collagenous sheets under light microscopy whereas the purified fibrillar collagens appeared as fibrils with a repeated band periodicity of 67 nm under Atomic Force Microscope (AFM). The non-fibrillar and fibrillar collagens were seen to have affinity for anti-collagen type IV and type I antibodies raised against human collagens, respectively. The macromolecules, i.e., total protein, carbohydrate and lipid contents within the tissues were also quantified. The present information on the three characteristic irciniid collagens (filamentous, fibrillar and non-fibrillar) could assist the future attempts to unravel the therapeutically important, safer collagens from marine sponges for their use in pharmaceutical and cosmeceutical industries.

  11. Anti-amoebic properties of a Malaysian marine sponge Aaptos sp. on Acanthamoeba castellanii.

    Science.gov (United States)

    Nakisah, M A; Ida Muryany, M Y; Fatimah, H; Nor Fadilah, R; Zalilawati, M R; Khamsah, S; Habsah, M

    2012-03-01

    Crude methanol extracts of a marine sponge, Aaptos aaptos, collected from three different localities namely Kapas, Perhentian and Redang Islands, Terengganu, Malaysia, were tested in vitro on a pathogenic Acanthamoeba castellanii (IMR isolate) to examine their anti-amoebic potential. The examination of anti-Acanthamoebic activity of the extracts was conducted in 24 well plates for 72 h at 30 °C. All extracts possessed anti-amoebic activity with their IC(50) values ranging from 0.615 to 0.876 mg/mL. The effect of the methanol extracts on the surface morphology of A. castellanii was analysed under scanning electron microscopy. The ability of the extracts to disrupt the amoeba cell membrane was indicated by extensive cell's blebbing, changes in the surface morphology, reduced in cell size and with cystic appearance of extract-treated Acanthamoeba. Number of acanthapodia and food cup was also reduced in this Acanthamoeba. Morphological criteria of apoptosis in Acanthamoeba following treatment with the sponge's extracts was determined by acridine orange-propidium iodide staining and observed by fluorescence microscopy. By this technique, apoptotic and necrotic cells can be visualized and quantified. The genotoxic potential of the methanol extracts was performed by the alkaline comet assay. All methanol extracts used were significantly induced DNA damage compared to untreated Acanthamoeba by having high percentage of scores 1, 2, and 3 of the DNA damage. Results from cytotoxicity and genotoxicity studies carried out in the present study suggest that all methanol extracts of A. aaptos have anti-amoebic properties against A. castellanii.

  12. Evaluation, partial characterization and purification of acetylcholine esterase enzyme and antiangiogenic activity from marine sponges

    Institute of Scientific and Technical Information of China (English)

    Maushmi Shailesh Kumar; Sukanya Gopalkrishnan

    2014-01-01

    Objective: To test three marine sponges Halichondria glabrata Keller, 1891; Spirastrellapachyspira (S. pachyspira) Levi, 1958 and Cliona lobata Hancock, 1849 for the presence of the acetylcholinesterase (AChE) in both young and developed samples from western coastal area of India. S. pachyspira methanolic extract was selected for anti/pro angiogenic activity. Methods:They were evaluated for AChE activity using Ellman’s assay based on production of yellow colored 5-thio-2-nitrobenzoate. Purification of the enzyme was planned using ammonium sulphate precipitation and characterization by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Chorioallantoic membrane (ChAM) assay model was used for angiogenic/antiangiogenic testing. Results:All the three sponges showed good specific enzyme activity and S. pachyspira contained maximum specific enzyme activity. Sixty percent of ammonium sulphate precipitation of crude protein sample gave single band at 66 kDa corresponding to the true AChE. ChAM assay was performed at 62.5, 125.0 and 250.0 µg/mL. Dosage beyond 250 µg/mL extract showed toxic response with anti angiogenic activity at all the concentrations. Conclusions:AChE activity was detected in all samples. Extract showed good anti-angiogenic response at 62.5 µg/mL. Extract was highly toxic affecting microvasculature of ChAM as well as normal growth and development of the embryo at 500 µg/mL. With further characterization of bioactive compounds from the extract of S. pachyspira, the compounds can be developed for anti tumor activity.

  13. Evaluation, partial characterization and purification of acetylcholine esterase enzyme and antiangiogenic activity from marine sponges

    Directory of Open Access Journals (Sweden)

    Maushmi Shailesh Kumar

    2014-11-01

    Full Text Available Objective: To test three marine sponges Halichondria glabrata Keller, 1891; Spirastrella pachyspira (S. pachyspira Levi, 1958 and Cliona lobata Hancock, 1849 for the presence of the acetylcholinesterase (AChE in both young and developed samples from western coastal area of India. S. pachyspira methanolic extract was selected for anti/pro angiogenic activity. Methods: They were evaluated for AChE activity using Ellman’s assay based on production of yellow colored 5-thio-2-nitrobenzoate. Purification of the enzyme was planned using ammonium sulphate precipitation and characterization by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Chorioallantoic membrane (ChAM assay model was used for angiogenic/ antiangiogenic testing. Results: All the three sponges showed good specific enzyme activity and S. pachyspira contained maximum specific enzyme activity. Sixty percent of ammonium sulphate precipitation of crude protein sample gave single band at 66 kDa corresponding to the true AChE. ChAM assay was performed at 62.5, 125.0 and 250.0 µg/mL. Dosage beyond 250 µg/mL extract showed toxic response with anti angiogenic activity at all the concentrations. Conclusions: AChE activity was detected in all samples. Extract showed good anti-angiogenic response at 62.5 µg/mL. Extract was highly toxic affecting microvasculature of ChAM as well as normal growth and development of the embryo at 500 µg/mL. With further characterization of bioactive compounds from the extract of S. pachyspira, the compounds can be developed for anti tumor activity.

  14. Recently confirmed apoptosis-inducing lead compounds isolated from marine sponge of potential relevance in cancer treatment

    KAUST Repository

    Essack, Magbubah

    2011-09-20

    Despite intense efforts to develop non-cytotoxic anticancer treatments, effective agents are still not available. Therefore, novel apoptosis-inducing drug leads that may be developed into effective targeted cancer therapies are of interest to the cancer research community. Targeted cancer therapies affect specific aberrant apoptotic pathways that characterize different cancer types and, for this reason, it is a more desirable type of therapy than chemotherapy or radiotherapy, as it is less harmful to normal cells. In this regard, marine sponge derived metabolites that induce apoptosis continue to be a promising source of new drug leads for cancer treatments. A PubMed query from 01/01/2005 to 31/01/2011 combined with hand-curation of the retrieved articles allowed for the identification of 39 recently confirmed apoptosis-inducing anticancer lead compounds isolated from the marine sponge that are selectively discussed in this review. 2011 by the authors.

  15. Antimicrobial Activity of Untenospongin B, a Metabolite from the Marine Sponge Hippospongia communis collected from the Atlantic Coast of Morocco

    Directory of Open Access Journals (Sweden)

    Aziz Fassouane Fassouane

    2004-08-01

    Full Text Available Abstract: (--Untenospongin B isolated from the marine sponge Hippospongia communis has been tested for its antimicrobial activity against bacteria and human pathogenic fungi using agar disk method and was found to possess a broad and strong activity toward the test organisms. Its antifungal activity was further characterized by determination of the minimum inhibitory concentration (MIC against five fungal species using broth microdilution method.

  16. Determination of the Chemical Structures of Tandyukisins B–D, Isolated from a Marine Sponge-Derived Fungus

    Directory of Open Access Journals (Sweden)

    Takeshi Yamada

    2015-05-01

    Full Text Available Tandyukisins B–D (1–3, novel decalin derivatives, have been isolated from a strain of Trichoderma harzianum OUPS-111D-4 originally derived from the marine sponge Halichondria okadai, and their structures have been elucidated on the basis of spectroscopic analyses using 1D and 2D NMR techniques. In addition, their chemical structures were established by chemical transformation. They exhibited weak cytotoxicity, but selective growth inhibition on panel screening using 39 human cancer cell lines.

  17. Investigating on the Correlation Between Some Biological Activities of Marine Sponge-Associated Bacteria Extracts and Isolated Diketopiperazines.

    Science.gov (United States)

    Abd El-Hady, Faten K; Fayad, Walid; Iodice, Carmine; El-Shahid, Zeinab A; Abdel-Aziz, Mohamed S; Crudele, Egle; Tommonaro, Giuseppina

    2017-01-01

    Marine organisms have been considered as the richest sources of novel bioactive metabolites, which can be used for pharmaceutical purposes. In the last years, the interest for marine microorganisms has grown for their enormous biodiversity and for the evidence that many novel compounds isolated from marine invertebrates are really synthesized by their associated bacteria. Nevertheless, the discovery of a chemical communication Quorum sensing (QS) between bacterial cells and between bacteria and host has gained the researchers to expand the aim of their study toward the role of bacteria associated with marine invertebrates, such as marine sponge. In the present paper, we report the evaluation of biological activities of different extracts of bacteria Vibrio sp. and Bacillus sp. associated with marine sponges Dysidea avara and Ircinia variabilis, respectively. Moreover, we evaluated the biological activities of some diketopiperazines (DKPs), previously isolated, and able to activate QS mechanism. The results showed that all extracts, fractions, and DKPs showed low scavenging activity against DPPH and superoxide anion, low cytotoxic and anti-tyrosinase activities, but no antimicrobial and acetylcholinesterase inhibitory activities. One DKP [cyclo-(trans-4-hydroxy-L-prolyl-L-leucine)] has the highest α-glucosidase inhibitory activity even than the standard acarbose.

  18. RNA interference in marine and freshwater sponges: actin knockdown in Tethya wilhelma and Ephydatia muelleri by ingested dsRNA expressing bacteria

    Directory of Open Access Journals (Sweden)

    Wörheide Gert

    2011-06-01

    Full Text Available Abstract Background The marine sponge Tethya wilhelma and the freshwater sponge Ephydatia muelleri are emerging model organisms to study evolution, gene regulation, development, and physiology in non-bilaterian animal systems. Thus far, functional methods (i.e., loss or gain of function for these organisms have not been available. Results We show that soaking developing freshwater sponges in double-stranded RNA and/or feeding marine and freshwater sponges bacteria expressing double-stranded RNA can lead to RNA interference and reduction of targeted transcript levels. These methods, first utilized in C. elegans, have been adapted for the development and feeding style of easily cultured marine and freshwater poriferans. We demonstrate phenotypic changes result from 'knocking down' expression of the actin gene. Conclusion This technique provides an easy, efficient loss-of-function manipulation for developmental and gene regulatory studies in these important non-bilaterian animals.

  19. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges.

    Science.gov (United States)

    Siegl, Alexander; Kamke, Janine; Hochmuth, Thomas; Piel, Jörn; Richter, Michael; Liang, Chunguang; Dandekar, Thomas; Hentschel, Ute

    2011-01-01

    In this study, we present a single-cell genomics approach for the functional characterization of the candidate phylum Poribacteria, members of which are nearly exclusively found in marine sponges. The microbial consortia of the Mediterranean sponge Aplysina aerophoba were singularized by fluorescence-activated cell sorting, and individual microbial cells were subjected to phi29 polymerase-mediated 'whole-genome amplification'. Pyrosequencing of a single amplified genome (SAG) derived from a member of the Poribacteria resulted in nearly 1.6 Mb of genomic information distributed among 554 contigs analyzed in this study. Approximately two-third of the poribacterial genome was sequenced. Our findings shed light on the functional properties and lifestyle of a possibly ancient bacterial symbiont of marine sponges. The Poribacteria are mixotrophic bacteria with autotrophic CO(2)-fixation capacities through the Wood-Ljungdahl pathway. The cell wall is of Gram-negative origin. The Poribacteria produce at least two polyketide synthases (PKSs), one of which is the sponge-specific Sup-type PKS. Several putative symbiosis factors such as adhesins (bacterial Ig-like domains, lamininin G domain proteins), adhesin-related proteins (ankyrin, fibronectin type III) and tetratrico peptide repeat domain-encoding proteins were identified, which might be involved in mediating sponge-microbe interactions. The discovery of genes coding for 24-isopropyl steroids implies that certain fossil biomarkers used to date the origins of metazoan life on earth may possibly be of poribacterial origin. Single-cell genomic approaches, such as those shown herein, contribute to a better understanding of beneficial microbial consortia, of which most members are, because of the lack of cultivation, inaccessible by conventional techniques.

  20. Phylogenetically diverse ureC genes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospongia testudinaria.

    Directory of Open Access Journals (Sweden)

    Jing Su

    Full Text Available Urea is one of the dominant organic nitrogenous compounds in the oligotrophic oceans. Compared to the knowledge of nitrogen transformation of nitrogen fixation, ammonia oxidization, nitrate and nitrite reduction mediated by sponge-associated microbes, our knowledge of urea utilization in sponges and the phylogenetic diversity of sponge-associated microbes with urea utilization potential is very limited. In this study, Marinobacter litoralis isolated from the marine sponge Xestospongia testudinaria and the slurry of X. testudinaria were found to have urease activity. Subsequently, phylogenetically diverse bacterial ureC genes were detected in the total genomic DNA and RNA of sponge X. testudinaria, i.e., 19 operative taxonomic units (OTUs in genomic DNA library and 8 OTUs in cDNA library at 90% stringency. Particularly, 6 OTUs were common to both the genomic DNA library and the cDNA library, which suggested that some ureC genes were expressed in this sponge. BLAST and phylogenetic analysis showed that most of the ureC sequences were similar with the urease alpha subunit of members from Proteobacteria, which were the predominant component in sponge X. testudinaria, and the remaining ureC sequences were related to those from Magnetococcus, Cyanobacteria, and Actinobacteria. This study is the first assessment of the role of sponge bacterial symbionts in the regenerated utilization of urea by the detection of transcriptional activity of ureC gene, as well as the phylogenetic diversity of ureC gene of sponge bacterial symbionts. The results suggested the urea utilization by bacterial symbionts in marine sponge X. testudinaria, extending our understanding of nitrogen cycling mediated by sponge-associated microbiota.

  1. Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons.

    Science.gov (United States)

    Kamke, Janine; Taylor, Michael W; Schmitt, Susanne

    2010-04-01

    The phylogenetic diversity of microorganisms in marine sponges is becoming increasingly well described, yet relatively little is known about the activities of these symbionts. Given the seemingly favourable environment provided to microbes by their sponge hosts, as indicated by the extraordinarily high abundance of sponge symbionts, we hypothesized that the majority of sponge-associated bacteria are active in situ. To test this hypothesis we compared, for the first time in sponges, 16S rRNA gene- vs 16S rRNA-derived bacterial community profiles to gain insights into symbiont composition and activity, respectively. Clone libraries revealed a highly diverse bacterial community in Ancorina alata, and a much lower diversity in Polymastia sp., which were identified by electron microscopy as a high- and a low-microbial abundance sponge, respectively. Substantial overlap between DNA and RNA libraries was evident at both phylum and phylotype levels, indicating in situ activity for a large fraction of sponge-associated bacteria. This active fraction included uncultivated, sponge-specific lineages within, for example, Actinobacteria, Chloroflexi and Gemmatimonadetes. This study shows the potential of RNA vs DNA comparisons based on the 16S rRNA gene to provide insights into the activity of sponge-associated microorganisms.

  2. Intermittent hypoxia and prolonged suboxia measured in situ in a marine sponge

    Directory of Open Access Journals (Sweden)

    Adi Lavy

    2016-12-01

    Full Text Available High Microbial Abundance (HMA sponges constitute a guild of suspension-feeding sponges that host vast populations of symbiotic microbes. These symbionts mediate a complex series of biogeochemical transformations that fuel the holobiont’s metabolism. Although sponges are aerobic animals, suboxic and anaerobic bacteria are known to reside within their bodies. However, little is known about the chemical characteristics of the sponge environment in which they occur and almost no data are available regarding the dissolved oxygen (DO dynamics inside the holobiont in its natural habitat. In this study we examined the oxygen dynamics in situ in the HMA sponge Theonella swinhoei. A submersed data-logging system equipped with micro-sensors was used to continuously record DO concentrations inside the sponge body and in its outflowing water for up to 48 hours. Actively pumping sponges exhibited high DO removal rates punctuated with short bursts of extreme DO uptake (>90 µmol DO Lpumped-1, never before observed in sponges. Such a high DO removal rate indicates the consumption of a considerable amount of reduced matter, far exceeding the available sources in the surrounding water of the oligotrophic coral-reef ecosystem inhabited by this sponge. The inner body of the sponge remained suboxic throughout the experiments, with short events of further rapid DO concentration decline. Moreover, DO concentrations measured in the body and in the outflowing water were found to be uncorrelated. Our findings support a previous hypothesis of bacterial symbiont farming by the sponge as a potential source for acquiring reduced material. Moreover, this suggests a complex and highly localized control of the holobiont’s metabolism, probably associated with the microbial community’s metabolism. Our results indicate that temporal micro-environments exist in the sponge at alternating locations, providing suitable conditions for the activity of its anaerobic microbial

  3. Effects of culture medium compositions on antidiabetic activity and anticancer activity of marine endophitic bacteria isolated from sponge

    Science.gov (United States)

    Maryani, Faiza; Mulyani, Hani; Artanti, Nina; Udin, Linar Zalinar; Dewi, Rizna Triana; Hanafi, Muhammad; Murniasih, Tutik

    2017-01-01

    High diversity of Indonesia marine spesies and their ability in producing secondary metabolite that can be used as a drug candidate cause this fascinating topic need to explore. Most of marine organisms explored to discover drug is macroorganism whereas microorganism (such as Indonesia marine bacteria) is very limited. Therefore, in this report, antidiabetic and anticancer activity of Indonesia marine bacteria isolated from Sponges's extract have been studied. Bacteria strain 8.9 which are collection of Research Center for Oseanography, Indonesian Institute of Sciences were from Barrang Lompo Island, Makasar, Indonesia. Bacteria were cultured in different culture medium compositions (such as: different pH, source of glucose and water) for 48 hours on a shaker, then they were extracted with ethyl asetate. Extracts of bacteria were tested by DPPH method (antioxidant activity), alpha glucosidase inhibitory activity method (antidiabetic activity), and Alamar Blue assay (anticancer activity) at 200 ppm. According to result, extract of bacteria in pH 8.0 exhibited the greatest antioxidant (19.27% inhibition), antidiabetic (63.95% inhibition) and anticancer activity of T47D cell line (44.62% cell viability) compared to other extracts. However, effect of addition of sugar sources (such as: glucose, sucrose, and soluble starch) and effect of addition of water/sea water exhibited less influence on their bioactivities. In conclusion, Indonesia marine bacteria isolated from sponge have potential a source of bioactive compound in drug discovery field.

  4. Diversity and biological activities of the bacterial community associated with the marine sponge Phorbas tenacior (Porifera, Demospongiae).

    Science.gov (United States)

    Dupont, S; Carré-Mlouka, A; Descarrega, F; Ereskovsky, A; Longeon, A; Mouray, E; Florent, I; Bourguet-Kondracki, M L

    2014-01-01

    The diversity of the cultivable microbiota of the marine sponge Phorbas tenacior frequently found in the Mediterranean Sea was investigated, and its potential as a source of antimicrobial, antioxidant and antiplasmodial compounds was evaluated. The cultivable bacterial community was studied by isolation, cultivation and 16S rRNA gene sequencing. Twenty-three bacterial strains were isolated and identified in the Proteobacteria (α or γ classes) and Actinobacteria phyla. Furthermore, three different bacterial morphotypes localized extracellularly within the sponge tissues were revealed by microscopic observations. Bacterial strains were assigned to seven different genera, namely Vibrio, Photobacterium, Shewanella, Pseudomonas, Ruegeria, Pseudovibrio and Citricoccus. The strains affiliated to the same genus were differentiated according to their genetic dissimilarities using random amplified polymorphic DNA (RAPD) analyses. Eleven bacterial strains were selected for evaluation of their bioactivities. Three isolates Pseudovibrio P1Ma4, Vibrio P1MaNal1 and Citricoccus P1S7 revealed antimicrobial activity; Citricoccus P1S7 and Vibrio P1MaNal1 isolates also exhibited antiplasmodial activity, while two Vibrio isolates P1Ma8 and P1Ma5 displayed antioxidant activity. These data confirmed the importance of Proteobacteria and Actinobacteria associated with marine sponges as a reservoir of bioactive compounds. This study presents the first report on the diversity of the cultivable bacteria associated with the marine sponge Phorbas tenacior, frequently found in the Mediterranean Sea. Evaluation of the antiplasmodial, antimicrobial and antioxidant activities of the isolates has been investigated and allowed to select bacterial strains, confirming the importance of Proteobacteria and Actinobacteria as sources of bioactive compounds. © 2013 The Society for Applied Microbiology.

  5. Glycosides from Marine Sponges (Porifera, Demospongiae: Structures, Taxonomical Distribution, Biological Activities and Biological Roles

    Directory of Open Access Journals (Sweden)

    Valentin A. Stonik

    2012-08-01

    Full Text Available Literature data about glycosides from sponges (Porifera, Demospongiae are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.

  6. Glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities and biological roles.

    Science.gov (United States)

    Kalinin, Vladimir I; Ivanchina, Natalia V; Krasokhin, Vladimir B; Makarieva, Tatyana N; Stonik, Valentin A

    2012-08-01

    Literature data about glycosides from sponges (Porifera, Demospongiae) are reviewed. Structural diversity, biological activities, taxonomic distribution and biological functions of these natural products are discussed.

  7. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity

    Directory of Open Access Journals (Sweden)

    Ana I. S. Esteves

    2011-01-01

    Full Text Available The extraction, fractionation and HIV-1 inhibition potential of polysaccharides extracted from three species of marine sponges, Erylus discophorus, Cliona celata and Stelletta sp., collected in the Northeastern Atlantic, is presented in this work. The anti-HIV activity of 23 polysaccharide pellets and three crude extracts was tested. Crude extracts prepared from Erylus discophorus specimens were all highly active against HIV-1 (90 to 95% inhibition. Cliona celata pellets showed low polysaccharide content (bellow 38.5% and almost no anti-HIV activity (<10% inhibition. Stelletta sp. pellets, although quite rich in polysaccharide (up to 97.3%, showed only modest bioactivity (<36% HIV-1 inhibition. Erylus discophorus pellets were among the richest in terms of polysaccharide content (up to 98% and the most active against HIV-1 (up to 95% inhibition. Chromatographic fractionation of the polysaccharide pellet obtained from a specimen of Erylus discophorus (B161 yielded only modestly active fractions. However, we could infer that the active molecule is most probably a high molecular weight sulfated polysaccharide (>2000 kDa, whose mechanism is possibly preventing viral attachment and entry (fusion inhibitor.

  8. Comprehensive investigation of marine Actinobacteria associated with the sponge Halichondria panicea.

    Science.gov (United States)

    Schneemann, Imke; Nagel, Kerstin; Kajahn, Inga; Labes, Antje; Wiese, Jutta; Imhoff, Johannes F

    2010-06-01

    Representatives of Actinobacteria were isolated from the marine sponge Halichondria panicea collected from the Baltic Sea (Germany). For the first time, a comprehensive investigation was performed with regard to phylogenetic strain identification, secondary metabolite profiling, bioactivity determination, and genetic exploration of biosynthetic genes, especially concerning the relationships of the abundance of biosynthesis gene fragments to the number and diversity of produced secondary metabolites. All strains were phylogenetically identified by 16S rRNA gene sequence analyses and were found to belong to the genera Actinoalloteichus, Micrococcus, Micromonospora, Nocardiopsis, and Streptomyces. Secondary metabolite profiles of 46 actinobacterial strains were evaluated, 122 different substances were identified, and 88 so far unidentified compounds were detected. The extracts from most of the cultures showed biological activities. In addition, the presence of biosynthesis genes encoding polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in 30 strains was established. It was shown that strains in which either PKS or NRPS genes were identified produced a significantly higher number of metabolites and exhibited a larger number of unidentified, possibly new metabolites than other strains. Therefore, the presence of PKS and NRPS genes is a good indicator for the selection of strains to isolate new natural products.

  9. Comprehensive Investigation of Marine Actinobacteria Associated with the Sponge Halichondria panicea▿ †

    Science.gov (United States)

    Schneemann, Imke; Nagel, Kerstin; Kajahn, Inga; Labes, Antje; Wiese, Jutta; Imhoff, Johannes F.

    2010-01-01

    Representatives of Actinobacteria were isolated from the marine sponge Halichondria panicea collected from the Baltic Sea (Germany). For the first time, a comprehensive investigation was performed with regard to phylogenetic strain identification, secondary metabolite profiling, bioactivity determination, and genetic exploration of biosynthetic genes, especially concerning the relationships of the abundance of biosynthesis gene fragments to the number and diversity of produced secondary metabolites. All strains were phylogenetically identified by 16S rRNA gene sequence analyses and were found to belong to the genera Actinoalloteichus, Micrococcus, Micromonospora, Nocardiopsis, and Streptomyces. Secondary metabolite profiles of 46 actinobacterial strains were evaluated, 122 different substances were identified, and 88 so far unidentified compounds were detected. The extracts from most of the cultures showed biological activities. In addition, the presence of biosynthesis genes encoding polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) in 30 strains was established. It was shown that strains in which either PKS or NRPS genes were identified produced a significantly higher number of metabolites and exhibited a larger number of unidentified, possibly new metabolites than other strains. Therefore, the presence of PKS and NRPS genes is a good indicator for the selection of strains to isolate new natural products. PMID:20382810

  10. Tsukamurella spongiae sp. nov., a novel actinomycete isolated from a deep-water marine sponge.

    Science.gov (United States)

    Olson, Julie B; Harmody, Dedra K; Bej, Asim K; McCarthy, Peter J

    2007-07-01

    A Gram-positive, rod-shaped, non-spore-forming bacterium (strain K362(T)) was isolated from a deep-water marine sponge collected off the coast of Curaçao in the Netherlands Antilles. On the basis of 16S rRNA gene sequence similarities, strain K362(T) was shown to belong to the genus Tsukamurella, being most closely related to Tsukamurella pulmonis (99.2 %), Tsukamurella tyrosinosolvens (98.9 %), Tsukamurella strandjordii (98.8 %), Tsukamurella pseudospumae (98.8 %) and Tsukamurella spumae (98.8 %). A combination of the substrate utilization patterns, the fatty acid and mycolic acid profiles and the DNA-DNA hybridization results supported the affiliation of strain K362(T) to the genus Tsukamurella and enabled the genotypic and phenotypic differentiation of strain K362(T) from the seven recognized Tsukamurella species. Strain K362(T) therefore represents a novel species of the genus Tsukamurella, for which the name Tsukamurella spongiae sp. nov. is proposed. The type strain is K362(T) (=DSM 44990(T)=NRRL B-24467(T)).

  11. Marine sponge cyclic peptide theonellamide A disrupts lipid bilayer integrity without forming distinct membrane pores.

    Science.gov (United States)

    Espiritu, Rafael Atillo; Cornelio, Kimberly; Kinoshita, Masanao; Matsumori, Nobuaki; Murata, Michio; Nishimura, Shinichi; Kakeya, Hideaki; Yoshida, Minoru; Matsunaga, Shigeki

    2016-06-01

    Theonellamides (TNMs) are antifungal and cytotoxic bicyclic dodecapeptides derived from the marine sponge Theonella sp. These peptides specifically bind to 3β-hydroxysterols, resulting in 1,3-β-D-glucan overproduction and membrane damage in yeasts. The inclusion of cholesterol or ergosterol in phosphatidylcholine membranes significantly enhanced the membrane affinity of theonellamide A (TNM-A) because of its direct interaction with 3β-hydroxyl groups of sterols. To better understand TNM-induced membrane alterations, we investigated the effects of TNM-A on liposome morphology. (31)P nuclear magnetic resonance (NMR) and dynamic light scattering (DLS) measurements revealed that the premixing of TNM-A with lipids induced smaller vesicle formation. When giant unilamellar vesicles were incubated with exogenously added TNM-A, confocal micrographs showed dynamic changes in membrane morphology, which were more frequently observed in cholesterol-containing than sterol-free liposomes. In conjunction with our previous data, these results suggest that the membrane action of TNM-A proceeds in two steps: 1) TNM-A binds to the membrane surface through direct interaction with sterols and 2) accumulated TNM-A modifies the local membrane curvature in a concentration-dependent manner, resulting in dramatic membrane morphological changes and membrane disruption.

  12. Penicillium chrysogenum DSOA associated with marine sponge (Tedania anhelans) exhibit antimycobacterial activity.

    Science.gov (United States)

    Visamsetti, Amarendra; Ramachandran, Santhosh Sarojini; Kandasamy, Dhevendaran

    2016-04-01

    A strain of Penicillium chrysogenum was isolated from Tedania anhelans (marine sponge) collected from Indian Ocean (8°22'30″N latitude and 76°59'16″ longitude) and deposited in culture collection centers. The strain subjected to different culture conditions for production of extrolites were extracted using ethyl acetate and chloroform. When both extracts were subjected for antibacterial activity, latter had high activity. Minimum inhibitory concentration of chloroform extract ranged from 31.25-1000 μg/mL in tested microbes such as, Mycobacterium tuberculosis H37Ra, Mycobacterium avium, Mycobacterium fortuitum, Mycobacterium smegmatis, Mycobacterium vaccae, Staphylococcus aureus, Aeromonas hydrophila, Pseudomonas aeruginosa and Vibrio cholerae. No cytotoxicity was observed in Vero cell line up to 399.10 μg/mL. Antibacterial activity previously reported by Parameswaran et al. in 1997 from ethyl acetate extract of T. anhelans might be due to the diketopiperazines, Cyclo-(L-Pro-L-Phe) and Cyclo-(L-Leu-L-Pro) produced by the associated fungi-P. chrysogenum DSOA. It is producing a metabolites having antimycobacterial activity, a first report.

  13. Pectenotoxin-2 from Marine Sponges: A Potential Anti-Cancer Agent—A Review

    Directory of Open Access Journals (Sweden)

    Wun-Jae Kim

    2011-11-01

    Full Text Available Pectenotoxin-2 (PTX-2, which was first identified as a cytotoxic entity in marine sponges, has been reported to display significant cytotoxicity to human cancer cells where it inhibits mitotic separation and cytokinesis through the depolymerization of actin filaments. In the late stage of endoreduplication, the effects of PTX-2 on different cancer cells involves: (i down-regulation of anti-apoptotic Bcl-2 members and IAP family proteins; (ii up-regulation of pro-apoptotic Bax protein and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-receptor 1/receptor 2 (DR4/DR5; and (iii mitochondrial dysfunction. In addition, PTX-2 induces apoptotic effects through suppression of the nuclear factor κB (NF-κB signaling pathway in several cancer cells. Analysis of cell cycle regulatory proteins showed that PTX-2 increases phosphorylation of Cdc25c and decreases protein levels of Cdc2 and cyclin B1. Cyclin-dependent kinase (Cdk inhibitor p21 and Cdk2, which are associated with the induction of endoreduplication, were upregulated. Furthermore, it was found that PTX-2 suppressed telomerase activity through the transcriptional and post-translational suppression of hTERT. The purpose of this review was to provide an update regarding the anti-cancer mechanism of PTX-2, with a special focus on its effects on different cellular signaling cascades.

  14. Predicting the HMA-LMA status in marine sponges by machine learning

    NARCIS (Netherlands)

    Moitinho-Silva, Lucas; Steinert, Georg; Nielsen, Shaun; Hardoim, Cristiane C.P.; Wu, Yu Chen; McCormack, Grace P.; López-Legentil, Susanna; Marchant, Roman; Webster, Nicole; Thomas, Torsten; Hentschel, Ute

    2017-01-01

    The dichotomy between high microbial abundance (HMA) and low microbial abundance (LMA) sponges has been observed in sponge-microbe symbiosis, although the extent of this pattern remains poorly unknown. We characterized the differences between the microbiomes of HMA (n = 19) and LMA (n = 17)

  15. Single-cell genomics reveals the lifestyle of Poribacteria, a candidate phylum symbiotically associated with marine sponges

    Science.gov (United States)

    Siegl, Alexander; Kamke, Janine; Hochmuth, Thomas; Piel, Jörn; Richter, Michael; Liang, Chunguang; Dandekar, Thomas; Hentschel, Ute

    2011-01-01

    In this study, we present a single-cell genomics approach for the functional characterization of the candidate phylum Poribacteria, members of which are nearly exclusively found in marine sponges. The microbial consortia of the Mediterranean sponge Aplysina aerophoba were singularized by fluorescence-activated cell sorting, and individual microbial cells were subjected to phi29 polymerase-mediated ‘whole-genome amplification'. Pyrosequencing of a single amplified genome (SAG) derived from a member of the Poribacteria resulted in nearly 1.6 Mb of genomic information distributed among 554 contigs analyzed in this study. Approximately two-third of the poribacterial genome was sequenced. Our findings shed light on the functional properties and lifestyle of a possibly ancient bacterial symbiont of marine sponges. The Poribacteria are mixotrophic bacteria with autotrophic CO2-fixation capacities through the Wood–Ljungdahl pathway. The cell wall is of Gram-negative origin. The Poribacteria produce at least two polyketide synthases (PKSs), one of which is the sponge-specific Sup-type PKS. Several putative symbiosis factors such as adhesins (bacterial Ig-like domains, lamininin G domain proteins), adhesin-related proteins (ankyrin, fibronectin type III) and tetratrico peptide repeat domain-encoding proteins were identified, which might be involved in mediating sponge–microbe interactions. The discovery of genes coding for 24-isopropyl steroids implies that certain fossil biomarkers used to date the origins of metazoan life on earth may possibly be of poribacterial origin. Single-cell genomic approaches, such as those shown herein, contribute to a better understanding of beneficial microbial consortia, of which most members are, because of the lack of cultivation, inaccessible by conventional techniques. PMID:20613790

  16. Marine Sponge/H3PO4: As a Naturally Occurring Chiral Catalyst for Solvent-free Fischer-Indole Synthesis.

    Science.gov (United States)

    Shushizadeh, Mohammad Reza; Mostoufi, Azar; Badri, Rashid; Azizyan, Somaye

    2013-11-01

    A new and efficient method have been developed for the synthesis of different indole derivatives from various ketones, having at least one hydrogen atom attached to each of their α-carbon atoms, and hydrazines in solvent-free conditions, using marine sponge/H3PO4 as a naturally occurring chiral catalyst. This study recommended the use of marine sponge/H3PO4 as a naturally occurring chiral catalyst for preparation of phenylhydrazones from ketones having one α-hydrogen and subsequent cyclisation of the products to indoles. The reaction was carried out by mixing the phenylhydrazine, ketone, and marine sponge/H3PO4 powder in mortar and pestle; the mixture was ground at room temperature in an appropriate time until TLC show the completion of the reaction. The product extracted by CH2Cl2 and evaporation of solvent yields the products. In this research work, several indoles are synthesized using phenylhydrazine and aliphatic or aromatic ketone as starting materials, in the presence of marine sponge/H3PO4 powder as a natural catalyst under solvent-free condition. We found marine sponge/H3PO4 to be an effective catalyst for indolisation of phenylhydrazones from ketones having α-hydrogens in solvent-free conditions.

  17. In vitro antiplasmodial activity of marine sponge Stylissa carteri associated bacteria against Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Samuel Jacob Inbaneson

    2012-10-01

    Full Text Available Objective: To identify the possible antiplasmodial drugs from bacteria associated with marine sponge Stylissa carteri (S. carteri. Methods: The S. carteri samples were collected from Thondi coast and subjected for enumeration and isolation of associated bacteria. Filter sterilized extracts (100, 50, 25, 12.5, 6.25 and 3.125 毺 g/mL from isolated bacterial isolates were screened for antiplasmodial activity against Plasmodium falciparum (P. falciparum and potential extracts were also screened for biochemical constituents. Results: Twelve samples of S. carteri were collected and subjected for enumeration and isolation of associated bacteria. The count of bacterial isolates were maximum in November 2007 (34暳 104 CFU/g and the average count was maximum during the monsoon season (203暳 103 CFU/g. Thirty two morphologically different bacterial isolates were isolated from S. carteri and the ethyl acetate bacterial extracts were screened for antiplasmodial activity against P. falciparum. The antiplasmodial activity of a isolate THB17 (IC 50 20.56 毺 g/ mL extract is highly comparable with the positive control chloroquine (IC50 19.59 毺 g/mL and 13 bacterial extracts which showed IC 50 value of more than 100 毺 g/mL. Statistical analysis reveals that, significant in vitro antiplasmodial activity (P<0.05 was observed between the concentrations and time of exposure. The chemical injury to erythrocytes showed no morphological changes in erythrocytes by the ethyl acetate extract of bacterial isolates after 48 h of incubation. The in vitro antiplasmodial activity might be due to the presence of reducing sugars and alkaloids in the ethyl acetate extracts of bacterial isolates. Conclusions: The ethyl acetate extract of THB17 possesses lead compounds for the development of antiplasmodial drugs.

  18. A Lactose-Binding Lectin from the Marine Sponge Cinachyrella Apion (Cal Induces Cell Death in Human Cervical Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Adriana Uchoa

    2012-03-01

    Full Text Available Cancer represents a set of more than 100 diseases, including malignant tumors from different locations. Strategies inducing differentiation have had limited success in the treatment of established cancers. Marine sponges are a biological reservoir of bioactive molecules, especially lectins. Several animal and plant lectins were purified with antitumor activity, mitogenic, anti-inflammatory and antiviral, but there are few reports in the literature describing the mechanism of action of lectins purified from marine sponges to induce apoptosis in human tumor cells. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL was evaluated with respect to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death in tumor cells. The antiproliferative activity of CaL was tested against HeLa, PC3 and 3T3 cell lines, with highest growth inhibition for HeLa, reducing cell growth at a dose dependent manner (0.5–10 µg/mL. Hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 (10 µg/mL for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. Results showed that lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase and acting as both dependent and/or independent of caspases pathway. These results indicate the potential of CaL in studies of medicine for treating cancer.

  19. Phylogenetic Identification of Fungi Isolated from the Marine Sponge Tethya aurantium and Identification of Their Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Jutta Wiese

    2011-04-01

    Full Text Available Fungi associated with the marine sponge Tethya aurantium were isolated and identified by morphological criteria and phylogenetic analyses based on internal transcribed spacer (ITS regions. They were evaluated with regard to their secondary metabolite profiles. Among the 81 isolates which were characterized, members of 21 genera were identified. Some genera like Acremonium, Aspergillus, Fusarium, Penicillium, Phoma, and Trichoderma are quite common, but we also isolated strains belonging to genera like Botryosphaeria, Epicoccum, Parasphaeosphaeria, and Tritirachium which have rarely been reported from sponges. Members affiliated to the genera Bartalinia and Volutella as well as to a presumably new Phoma species were first isolated from a sponge in this study. On the basis of their classification, strains were selected for analysis of their ability to produce natural products. In addition to a number of known compounds, several new natural products were identified. The scopularides and sorbifuranones have been described elsewhere. We have isolated four additional substances which have not been described so far. The new metabolite cillifuranone (1 was isolated from Penicillium chrysogenum strain LF066. The structure of cillifuranone (1 was elucidated based on 1D and 2D NMR analysis and turned out to be a previously postulated intermediate in sorbifuranone biosynthesis. Only minor antibiotic bioactivities of this compound were found so far.

  20. Two brominated cyclic dipeptides released by the coldwater marine sponge Geodia barretti act in synergy as chemical defense.

    Science.gov (United States)

    Sjögren, Martin; Jonsson, Per R; Dahlström, Mia; Lundälv, Tomas; Burman, Robert; Göransson, Ulf; Bohlin, Lars

    2011-03-25

    The current work shows that two structurally similar cyclodipeptides, barettin (1) and 8,9-dihydrobarettin (2), produced by the coldwater marine sponge Geodia barretti Bowerbank act in synergy to deter larvae of surface settlers and may also be involved in defense against grazers. Previously, 1 and 2 were demonstrated to bind specifically to serotonergic 5-HT receptors. It may be suggested that chemical defense in G. barretti involves a synergistic action where one of the molecular targets is a 5-HT receptor. A mixture of 1 and 2 lowered the EC(50) of larval settlement as compared to the calculated theoretical additive effect of the two compounds. Moreover, an in situ sampling at 120 m depth using a remotely operated vehicle revealed that the sponge releases these two compounds to the ambient water. Thus, it is suggested that the synergistic action of 1 and 2 may benefit the sponge by reducing the expenditure of continuous production and release of its chemical defense substances. Furthermore, a synergistic action between structurally closely related compounds produced by the same bioenzymatic machinery ought to be the most energy effective for the organism and, thus, is more common than synergy between structurally indistinct compounds.

  1. Genomics of sponge-associated Streptomyces spp. closely related to Streptomyces albus J1074: insights into marine adaptation and secondary metabolite biosynthesis potential.

    Directory of Open Access Journals (Sweden)

    Elena Ian

    Full Text Available A total of 74 actinomycete isolates were cultivated from two marine sponges, Geodia barretti and Phakellia ventilabrum collected at the same spot at the bottom of the Trondheim fjord (Norway. Phylogenetic analyses of sponge-associated actinomycetes based on the 16S rRNA gene sequences demonstrated the presence of species belonging to the genera Streptomyces, Nocardiopsis, Rhodococcus, Pseudonocardia and Micromonospora. Most isolates required sea water for growth, suggesting them being adapted to the marine environment. Phylogenetic analysis of Streptomyces spp. revealed two isolates that originated from different sponges and had 99.7% identity in their 16S rRNA gene sequences, indicating that they represent very closely related strains. Sequencing, annotation, and analyses of the genomes of these Streptomyces isolates demonstrated that they are sister organisms closely related to terrestrial Streptomyces albus J1074. Unlike S. albus J1074, the two sponge streptomycetes grew and differentiated faster on the medium containing sea water. Comparative genomics revealed several genes presumably responsible for partial marine adaptation of these isolates. Genome mining targeted to secondary metabolite biosynthesis gene clusters identified several of those, which were not present in S. albus J1074, and likely to have been retained from a common ancestor, or acquired from other actinomycetes. Certain genes and gene clusters were shown to be differentially acquired or lost, supporting the hypothesis of divergent evolution of the two Streptomyces species in different sponge hosts.

  2. 13-Deoxytedanolide, a marine sponge-derived antitumor macrolide, binds to the 60S large ribosomal subunit.

    Science.gov (United States)

    Nishimura, Shinichi; Matsunaga, Shigeki; Yoshida, Minoru; Hirota, Hiroshi; Yokoyama, Shigeyuki; Fusetani, Nobuhiro

    2005-01-17

    13-Deoxytedanolide is a potent antitumor macrolide isolated from the marine sponge Mycale adhaerens. In spite of its remarkable activity, the mode of action of 13-deoxytedanolide has not been elucidated. [11-3H]-(11S)-13-Deoxydihydrotedanolide derived from the macrolide was used for identifying the target molecule from the yeast cell lysate. Fractionation of the binding protein revealed that the labeled 13-deoxytedanolide derivative strongly bound to the 80S ribosome as well as to the 60S large subunit, but not to the 40S small subunit. In agreement with this observation, 13-deoxytedanolide efficiently inhibited the polypeptide elongation. Interestingly, competition studies demonstrated that 13-deoxytedanolide shared the binding site on the 60S large subunit with pederin and its marine-derived analogues. These results indicate that 13-deoxytedanolide is a potent protein synthesis inhibitor and is the first macrolide to inhibit the eukaryotic ribosome.

  3. Anticancer Activity of Marine Sponge Hyrtios sp. Extract in Human Colorectal Carcinoma RKO Cells with Different p53 Status

    Directory of Open Access Journals (Sweden)

    Hyun Kyung Lim

    2014-01-01

    Full Text Available Drug development using marine bioresources is limited even though the ocean occupies about 70% of the earth and contains a large number of biological materials. From the screening test of the marine sponge extracts, we found Hyrtios sp. sponge collected from Chuuk island, Micronesia. In this study, the Hyrtios sp. extract was examined for anticancer activity against human colorectal carcinoma RKO cells that are wildtype for p53 and RKO-E6 that are p53 defective. The Hyrtios sp. extract dose-dependently inhibited viability in both cell lines. Multinucleation as an indication of mitotic catastrophe was also observed. Cytotoxicity tests gave significantly different results for RKO and RKO-E6 cells after 48 h exposure to Hyrtios sp. extract. In RKO cells treated with Hyrtios sp. extract, cell death occurred by induction of p53 and p21 proteins. In p53-defective RKO-E6 cells, Hyrtios sp. extract decreased expression of JNK protein and increased p21 protein. These results indicate that Hyrtios sp. extract induced apoptosis via different pathways depending on p53 status and could be a good natural product for developing new anticancer drugs.

  4. HPLC-ESI-IT-MS/MS Analysis and Biological Activity of Triterpene Glycosides from the Colombian Marine Sponge Ectyoplasia ferox

    Directory of Open Access Journals (Sweden)

    Jhonny Colorado-Ríos

    2013-12-01

    Full Text Available The marine sponge Ectyoplasia ferox produces antipredatory and allelopathic triterpenoid glycosides as part of its chemical defense repertoire against predators, competitors, and fouling organisms. These molecules are responsible for the pharmacological potential found in the glycosides present in this species. In order to observe the glycochemical diversity present in E. ferox, a liquid chromatography coupled to a tandem mass spectrometry approach to analyse a complex polar fraction of this marine sponge was performed. This gave valuable information for about twenty-five compounds three of which have been previously reported and another three which were found to be composed of known aglycones. Furthermore, a group of four urabosides, sharing two uncommon substitutions with carboxyl groups at C-4 on the terpenoid core, were identified by a characteristic fragmentation pattern. The oxidized aglycones present in this group of saponins can promote instability, making the purification process difficult. Cytotoxicity, cell cycle modulation, a cell cloning efficiency assay, as well as its hemolytic activity were evaluated. The cytotoxic activity was about IC50 40 µg/mL on Jurkat and CHO-k1 cell lines without exhibiting hemolysis. Discussion on this bioactivity suggests the scanning of other biological models would be worthwhile.

  5. Functional and Structural Characterization of FAU Gene/Protein from Marine Sponge Suberites domuncula.

    Science.gov (United States)

    Perina, Dragutin; Korolija, Marina; Hadžija, Marijana Popović; Grbeša, Ivana; Belužić, Robert; Imešek, Mirna; Morrow, Christine; Marjanović, Melanija Posavec; Bakran-Petricioli, Tatjana; Mikoč, Andreja; Ćetković, Helena

    2015-07-07

    Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV) ubiquitously expressed (FAU) gene is down-regulated in human prostate, breast and ovarian cancers. Moreover, its dysregulation is associated with poor prognosis in breast cancer. Sponges (Porifera) are animals without tissues which branched off first from the common ancestor of all metazoans. A large majority of genes implicated in human cancers have their homologues in the sponge genome. Our study suggests that FAU gene from the sponge Suberites domuncula reflects characteristics of the FAU gene from the metazoan ancestor, which have changed only slightly during the course of animal evolution. We found pro-apoptotic activity of sponge FAU protein. The same as its human homologue, sponge FAU increases apoptosis in human HEK293T cells. This indicates that the biological functions of FAU, usually associated with "higher" metazoans, particularly in cancer etiology, possess a biochemical background established early in metazoan evolution. The ancestor of all animals possibly possessed FAU protein with the structure and function similar to evolutionarily more recent versions of the protein, even before the appearance of true tissues and the origin of tumors and metastasis. It provides an opportunity to use pre-bilaterian animals as a simpler model for studying complex interactions in human cancerogenesis.

  6. Lysobacter hymeniacidonis sp. nov., isolated from a crude oil-contaminated marine sponge

    Science.gov (United States)

    Xin, Yanjuan; Qu, Junge; Xu, Junyi; Wu, Peichun; Cao, Xupeng; Xue, Song

    2015-12-01

    An aerobic, Gram-negative bacterium, strain 2-5T, was isolated from a crude oil-contaminated marine sponge collected near Dalian Bay, China, and subjected to a polyphasic taxonomic investigation. Cells of strain 2-5T were non-spore forming, non-motile, rods 0.2-0.3 µm wide and 1.1-1.2µm long. Strain 2-5T grew well on nutrient agar, TSA, R2A agar and LB agar. Colonies of strain 2-5T on LB agar were circular, smooth with entire margins, non-transparent and pale yellow after 3 d of incubation at 30°C. Growth of strain 2-5T occurred in LN medium with 0-6% NaCl; no growth occurred in the presence of 8.0% NaCl. Strain 2-5T grew at 15-42°C and at pH 6.0-8.0. Comparative 16S rRNA gene sequence analysis showed that strain 2-5T clustered with the species of the genus Lysobacter. Its closet neighbors were the type strains of Lysobacter concretionis KCTC 12205T (97% similarity), Lysobacter arseniciresistens ZS79T (96%), and Lysobacter defluii APB-9T (96%). The value for DNA-DNA relatedness between strain 2-5T and L. concretionis KCTC 12205T was 23%. Branched fatty acids iso-C16: 0, iso-C15: 0, iso-C 11: 0 3-OH, iso-C17: 1ω9 c and iso-C11: 0 were found to be predominant. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Strain 2-5T had a DNA G+C content of 63.8 mol%. On the basis of the phenotypic, chemotaxonomic, DNA-DNA hybridization and phylogenetic data, strain 2-5T represents a novel species of the genus Lysobacter, for which the name Lysobacter hymeniacidonis sp. nov. is proposed. The type strain is 2-5T (=CGMCC 1.12190T = JCM 18137T).

  7. Growth and metabolism of sponges

    NARCIS (Netherlands)

    Koopmans, M.

    2009-01-01

    Sponges (phylum Porifera) are multi cellular filter-feeding invertebrate animals living attached to a substratum in mostly marine but also in freshwater habitats. The interest in sponges has increased rapidly since the discovery of potential new pharmaceutical compounds produced by many sponges. An

  8. Sponge cell culture

    NARCIS (Netherlands)

    Schippers, K.J.

    2013-01-01

    Marine sponges are a rich source of bioactive compounds with pharmaceutical potential and are the most prolific source of newly discovered bioactive compounds with more than 7,000 novel molecules discovered in 40 years. Despite its enormous potential, only a few sponge-derived bioactive compounds ha

  9. Culture-independent nested PCR method reveals high diversity of actinobacteria associated with the marine sponges Hymeniacidon perleve and Sponge sp.

    Science.gov (United States)

    Xin, Yanjuan; Huang, Jianyu; Deng, Maicun; Zhang, Wei

    2008-11-01

    A culture-independent nested polymerase chain reaction (PCR) technique was used to investigate the diversity of actinobacteria communities associated with the sponges Hymeniacidon perleve and Sponge sp. The phylogenetic affiliation of sponge-derived actinobacteria was then assessed by 16S rRNA sequencing of cloned DNA fragments. A total of 196 positive clones were screened by restriction fragment length polymorphism (RFLP) analysis; 48 unique operational taxonomic units (OTUs) were selected for sequencing. Rarefaction analysis indicated that the clone libraries represented 93% and 94% of the total estimated diversity for the two species, respectively. Phylogenetic analysis of sequence data revealed representatives of various phylogenetic divisions, which were related to the following ten actinobacterial genera: Acidimicrobium, Corynebacterium, Propionibacterium, Actinomyces, Micrococcus, Microbacterium, Streptomyces, Mycobacterium, Cellulosimicrobium, Sporichthya, and unidentified actinobacterial clones. A sponge-specific, previously uncultured actinobacteria community grouped within the subclass Acidimicrobidae was discovered from both H. perleve and Sponge sp. Sequences belonging to Acidimicrobium in the H. perleve and the Sponge sp. clone libraries represented 33% and 24% of the clones, respectively. In the Sponge sp. clone library Mycobacterium dominated, accounting for 70% of all clones. The presence of Acidimicrobium and mycobacteria within two sponges can lay the groundwork for attempts to culture these interesting bacteria for industrial applications.

  10. Neuritogenic activity-guided isolation of a free base form manzamine A from a marine sponge, Acanthostrongylophora aff. ingens (Thiele, 1899)

    NARCIS (Netherlands)

    Zhang, B.; Miyamoto, T.; van Soest, R.W.M.

    2008-01-01

    Two manzamine-class alkaloids, manzamine A (1) and 8-hydroxymanzamine (2) were isolated from a Japanese marine sponge Acanthostrongylophora aff. ingens, together with three known alkaloids manzamine E (3), manzamine F (4), and manzamine X (5). The spectral features of 1 and 2 were different from the

  11. In vitro and in vivo evaluation of the marine sponge skeleton as a bone mimicking biomaterial

    Digital Repository Service at National Institute of Oceanography (India)

    Nandi S.K.; Kundu, B.; Mahato, A.; Thakur, N.L.; Joardar, S.N.; Mandal, B.B.

    . Eighteen New Zealand white rabbits of either sex, weighing 1.5-2 kg were randomly distributed into four groups: control group I and the test animals, group II, III and IV. 6 animals were implanted in each group with either pure sponge scaffold (without...

  12. An Aeroplysinin-1 Specific Nitrile Hydratase Isolated from the Marine Sponge Aplysina cavernicola

    Directory of Open Access Journals (Sweden)

    Peter Proksch

    2013-08-01

    Full Text Available A nitrile hydratase (NHase that specifically accepts the nitrile aeroplysinin-1 (1 as a substrate and converts it into the dienone amide verongiaquinol (7 was isolated, partially purified and characterized from the Mediterranean sponge Aplysina cavernicola; although it is currently not known whether the enzyme is of sponge origin or produced by its symbiotic microorganisms. The formation of aeroplysinin-1 and of the corresponding dienone amide is part of the chemical defence system of A. cavernicola. The latter two compounds that show strong antibiotic activity originate from brominated isoxazoline alkaloids that are thought to protect the sponges from invasion of bacterial pathogens. The sponge was shown to contain at least two NHases as two excised protein bands from a non denaturating Blue Native gel showed nitrile hydratase activity, which was not observed for control samples. The enzymes were shown to be manganese dependent, although cobalt and nickel ions were also able to recover the activity of the nitrile hydratases. The temperature and pH optimum of the studied enzymes were found at 41 °C and pH 7.8. The enzymes showed high substrate specificity towards the physiological substrate aeroplysinin-1 (1 since none of the substrate analogues that were prepared either by partial or by total synthesis were converted in an in vitro assay. Moreover de-novo sequencing by mass spectrometry was employed to obtain information about the primary structure of the studied NHases, which did not reveal any homology to known NHases.

  13. An Aeroplysinin-1 Specific Nitrile Hydratase Isolated from the Marine Sponge Aplysina cavernicola

    Science.gov (United States)

    Lipowicz, Bartosz; Hanekop, Nils; Schmitt, Lutz; Proksch, Peter

    2013-01-01

    A nitrile hydratase (NHase) that specifically accepts the nitrile aeroplysinin-1 (1) as a substrate and converts it into the dienone amide verongiaquinol (7) was isolated, partially purified and characterized from the Mediterranean sponge Aplysina cavernicola; although it is currently not known whether the enzyme is of sponge origin or produced by its symbiotic microorganisms. The formation of aeroplysinin-1 and of the corresponding dienone amide is part of the chemical defence system of A. cavernicola. The latter two compounds that show strong antibiotic activity originate from brominated isoxazoline alkaloids that are thought to protect the sponges from invasion of bacterial pathogens. The sponge was shown to contain at least two NHases as two excised protein bands from a non denaturating Blue Native gel showed nitrile hydratase activity, which was not observed for control samples. The enzymes were shown to be manganese dependent, although cobalt and nickel ions were also able to recover the activity of the nitrile hydratases. The temperature and pH optimum of the studied enzymes were found at 41 °C and pH 7.8. The enzymes showed high substrate specificity towards the physiological substrate aeroplysinin-1 (1) since none of the substrate analogues that were prepared either by partial or by total synthesis were converted in an in vitro assay. Moreover de-novo sequencing by mass spectrometry was employed to obtain information about the primary structure of the studied NHases, which did not reveal any homology to known NHases. PMID:23966036

  14. 24-O-Ethylmanoalide, a Manoalide-related Sesterterpene from the Marine sponge Luffariella cf. variabilis

    Directory of Open Access Journals (Sweden)

    Jacqueline Smadja

    2008-12-01

    Full Text Available A new manoalide-related sesterterpene, 24-O-ethylmanoalide (3, was isolated from the Indian Ocean sponge Luffariella cf. variabilis, together with the known compounds manoalide (1, seco-manoalide, manoalide monoacetate and 24-O-methylmanoalide (2. The structure of compound 3 was elucidated by interpretation of its spectroscopic data.

  15. Poecillastrin D: a new cytotoxin of the chondropsin class from marine sponge Jaspis serpentina.

    Science.gov (United States)

    Takemoto, Daisaku; Takekawa, Yoshihiko; Soest, Rob W M van; Fusetani, Nobuhiro; Matsunaga, Shigeki

    2007-11-01

    Poecillastrin D (2) was isolated together with poecillastrin C (1) from the deep sea sponge, Japsis serpentina. Its structure was elucidated to be that of a macrolide lactam by spectroscopic methods. These compounds showed potent cytotoxicity against various tumor cell lines.

  16. Structure Elucidation and Cytotoxic Evaluation of New Polyacetylenes from a Marine Sponge Petrosia sp.

    Directory of Open Access Journals (Sweden)

    Yung-Shun Juan

    2014-09-01

    Full Text Available The sponge Petrosia sp. yielded five polyacetylenic compounds (1–5, including two new polyacetylenes, petrosianynes A (1 and B (2. The structures of these compounds were elucidated by detailed spectroscopic analysis and by comparison with the physical and spectral data of related known analogues. Compounds 1–5 exhibited significant cytotoxic activity against a limited panel of cancer cell lines.

  17. Phylogeography of the Sponge Suberites diversicolor in Indonesia: insights into the evolution of marine lake populations

    NARCIS (Netherlands)

    Becking, L.E.; Erpenbeck, D.; Peijnenburg, K.T.C.A.; Voogd, de N.J.

    2013-01-01

    The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through

  18. Phylogeography of the Sponge Suberites diversicolor in Indonesia: Insights into the Evolution of Marine Lake Populations

    NARCIS (Netherlands)

    Becking, L.E.; Erpenbeck, D.; Peijnenburg, K.T.C.A.; Voogd, de N.J.

    2013-01-01

    The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through

  19. Phylogeography of the Sponge Suberites diversicolor in Indonesia: insights into the evolution of marine lake populations

    NARCIS (Netherlands)

    Becking, L.E.; Erpenbeck, D.; Peijnenburg, K.T.C.A.; Voogd, de N.J.

    2013-01-01

    The existence of multiple independently derived populations in landlocked marine lakes provides an opportunity for fundamental research into the role of isolation in population divergence and speciation in marine taxa. Marine lakes are landlocked water bodies that maintain a marine character through

  20. Metabolomic Profiling Reveals the N-Acyl-Taurine Geodiataurine in Extracts from the Marine Sponge Geodia macandrewii (Bowerbank).

    Science.gov (United States)

    Olsen, Elisabeth K; Søderholm, Kine L; Isaksson, Johan; Andersen, Jeanette H; Hansen, Espen

    2016-05-27

    A metabolomic approach was used to identify known and new natural products from the marine sponges Geodia baretti and G. macandrewii. G. baretti is known to produce bioactive natural products such as barettin (1), 8,9-dihydrobarettin (2), and bromobenzisoxazolone barettin (3), while secondary metabolites from G. macandrewii are not reported in the literature. Specimens of the two sponges were collected from different sites along the coast of Norway, and their extracts were analyzed using UHPLC-HR-MS. Metabolomic analyses revealed that extracts from both species contained barettin (1) and 8,9-dihydrobarettin (2), and all samples of G. baretti contained higher amounts of both compounds compared to G. macandrewii. The analysis of the MS data also revealed that samples of G. macandrewii contained a compound that was not present in any of the G. baretti samples. This new compound was isolated and identified as the N-acyl-taurine geodiataurine (4), and it was tested for antioxidant, anticancer, and antibacterial properties.

  1. Antiplasmodial Activities of Homogentisic Acid Derivative Protein Kinase Inhibitors Isolated from a Vanuatu Marine Sponge Pseudoceratina sp.

    Directory of Open Access Journals (Sweden)

    Dominique Laurent

    2009-11-01

    Full Text Available As part of our search for new antimalarial drugs in South Pacific marine sponges, we have looked for inhibitors of Pfnek-1, a specific protein kinase of Plasmodium falciparum. On the basis of promising activity in a preliminary screening, the ethanolic crude extract of a new species of Pseudoceratina collected in Vanuatu was selected for further investigation. A bioassay-guided fractionation led to the isolation of a derivative of homogentisic acid [methyl (2,4-dibromo-3,6-dihydroxyphenylacetate, 4a] which inhibited Pfnek-1 with an IC50 around 1.8 μM. This product was moderately active in vitro against a FcB1 P. falciparum strain (IC50 = 12 μM. From the same sponge, we isolated three known compounds [11,19-dideoxyfistularin-3 (1, 11-deoxyfistularin-3 (2 and dibromo-verongiaquinol (3] which were inactive against Pfnek-1. Synthesis and biological evaluation of some derivatives of 4a are reported.

  2. Antiplasmodial activities of homogentisic acid derivative protein kinase inhibitors isolated from a Vanuatu marine sponge Pseudoceratina sp.

    Science.gov (United States)

    Lebouvier, Nicolas; Jullian, Valérie; Desvignes, Isabelle; Maurel, Séverine; Parenty, Arnaud; Dorin-Semblat, Dominique; Doerig, Christian; Sauvain, Michel; Laurent, Dominique

    2009-11-23

    As part of our search for new antimalarial drugs in South Pacific marine sponges, we have looked for inhibitors of Pfnek-1, a specific protein kinase of Plasmodium falciparum. On the basis of promising activity in a preliminary screening, the ethanolic crude extract of a new species of Pseudoceratina collected in Vanuatu was selected for further investigation. A bioassay-guided fractionation led to the isolation of a derivative of homogentisic acid [methyl (2,4-dibromo-3,6-dihydroxyphenyl)acetate, 4a] which inhibited Pfnek-1 with an IC(50) around 1.8 muM. This product was moderately active in vitro against a FcB1 P. falciparum strain (IC(50) = 12 muM). From the same sponge, we isolated three known compounds [11,19-dideoxyfistularin-3 (1), 11-deoxyfistularin-3 (2) and dibromo-verongiaquinol (3)] which were inactive against Pfnek-1. Synthesis and biological evaluation of some derivatives of 4a are reported.

  3. Pichia pastoris production of a prolyl 4-hydroxylase derived from Chondrosia reniformis sponge: A new biotechnological tool for the recombinant production of marine collagen.

    Science.gov (United States)

    Pozzolini, Marina; Scarfì, Sonia; Mussino, Francesca; Salis, Annalisa; Damonte, Gianluca; Benatti, Umberto; Giovine, Marco

    2015-08-20

    Prolyl 4-hydroxylase (P4H) is a α2β2 tetramer catalyzing the post-translational hydroxylation of prolines in collagen. Its recombinant production is mainly pursued to realize biotechnological tools able to generate animal contaminant-free hydroxylated collagen. One promising candidate for biomedical applications is the collagen extracted from the marine sponge Chondrosia reniformis, because of its biocompatibility and because is devoid of the health risks associated with bovine and porcine collagens. Here we report on the production and selection, by enzymatic and biomolecular analyses, of a triple transformed Pichia pastoris strain expressing a stable P4H tetramer derived from C. reniformis sponge and a hydroxylated non fibrillar procollagen polypeptide from the same animal. The percentage of recombinant procollagen hydroxylated prolines inside the transformed yeast was of 36.3% analyzed by mass spectrometry indicating that the recombinant enzyme is active on its natural substrate inside the yeast cell host. Furthermore, the recombinant sponge P4H has the ability to hydroxylate its natural substrate in both X and Y positions in the Xaa-Yaa-Gly collagenous triplets. In conclusion this Pichia system seems ideal for high-level production of hydroxylated sponge- or marine-derived collagen polypeptides as well as of conotoxins or other marine proteins of high pharmacological interest needing this particular post-translational modification.

  4. Asteltoxins with Antiviral Activities from the Marine Sponge-Derived Fungus Aspergillus sp. SCSIO XWS02F40.

    Science.gov (United States)

    Tian, Yong-Qi; Lin, Xiu-Ping; Wang, Zhen; Zhou, Xue-Feng; Qin, Xiao-Chu; Kaliyaperumal, Kumaravel; Zhang, Tian-Yu; Tu, Zheng-Chao; Liu, Yonghong

    2015-12-26

    Two new asteltoxins named asteltoxin E (2) and F (3), and a new chromone (4), together with four known compounds were isolated from a marine sponge-derived fungus, Aspergillus sp. SCSIO XWS02F40. The structures of the compounds (1-7) were determined by the extensive 1D- and 2D-NMR spectra, and HRESIMS spectrometry. All the compounds were tested for their antiviral (H1N1 and H3N2) activity. Compounds 2 and 3 showed significant activity against H3N2 with the prominent IC50 values of 6.2 ± 0.08 and 8.9 ± 0.3 μM, respectively. In addition, compound 2 also exhibited inhibitory activity against H1N1 with an IC50 value of 3.5 ± 1.3 μM.

  5. Production and characterization of lipopeptide biosurfactant by a sponge-associated marine actinomycetes Nocardiopsis alba MSA10.

    Science.gov (United States)

    Gandhimathi, R; Seghal Kiran, G; Hema, T A; Selvin, Joseph; Rajeetha Raviji, T; Shanmughapriya, S

    2009-10-01

    A sponge-associated marine actinomycetes Nocardiopsis alba MSA10 was screened and evaluated for the production of biosurfactant. Biosurfactant production was confirmed by conventional screening methods including hemolytic activity, drop collapsing test, oil displacement method, lipase production and emulsification index. The active compound was extracted with three solvents including ethyl acetate, diethyl ether and dichloromethane. The diethyl ether extract was fractionated by TLC and semi-preparative HPLC to isolate the pure compound. In TLC, a single discrete spot was obtained with the R (f) 0.60 and it was extrapolated as valine. Based on the chemical characterization, the active compound was partially confirmed as lipopeptide. The optimum production was attained at pH 7, temperature 30 degrees C, and 1% salinity with glucose and peptone supplementation as carbon and nitrogen sources, respectively. Considering the biosurfactant production potential of N. alba, the strain could be developed for large-scale production of lipopeptide biosurfactant.

  6. Relative and Absolute Stereochemistry of Diacarperoxides: Antimalarial Norditerpene Endoperoxides from Marine Sponge Diacarnus megaspinorhabdosa

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2014-08-01

    Full Text Available Five new norditerpene endoperoxides, named diacarperoxides H–L (1–5, and a new norditerpene diol, called diacardiol B (6, were isolated from the South China Sea sponge, Diacarnus megaspinorhabdosa. Their structures, including conformations and absolute configurations, were determined by using spectroscopic analyses, computational approaches and chemical degradation. Diacarperoxides H–J (1–3 showed some interesting stereochemical issues, as well as antimalarial activity.

  7. In vitro antiproliferative effect of fractions from the caribbean marine sponge Myrmekioderma gyroderma

    Directory of Open Access Journals (Sweden)

    Diana Márquez Fernández

    Full Text Available Introduction: studies performed to Myrmekioderma genus sponges show phospholipid fatty acids, volatile compounds, sterols, bioactive cyclic diterpenes, sesquiterpenes, lineal diterpenes and glycolipid ethers. Objetive: to evaluate the antiproliferative effect of seven fractions (F1-F7 obtained by flash column chromatography from the most bioactive extract of the sponge Myrmekioderma gyroderma, and to analyze the chemical composition of the most active fraction. Methods: samples of dried sponge were extracted with two different solvents: CH2Cl2 (2 x 50 mL, and CH3OH (2 x 50 mL. Each fraction was evaluated on tumor cell derived cell lines; and the cell growth, and viability were determined by a colorimeter assay using sulforhodamine B. Fatty acids structure of the most active fraction was possible by GC-MS analysis of the methyl ester, and pyrrolidine derivatives. Results: the fraction with higher activity on the assessed tumor cell lines is F4 due to it totally inhibited MDA-MB-231, and HT29 cell line growth to 5, and 25 µg/mL concentration (IC50< 1 µg/mL. Fatty acids identified in bioactive F4 fraction of the M. gyroderma sponge can be classified on the following groups: lineal chain saturated, branched-saturated, unsaturated, and a 3-hydroxy acid. Conclusions: 43 fatty acids among saturated, branched-saturated, and unsaturated were identified out of the F4 fraction with activity on the cell lines derived of breast cancer MDA-MB-231, colon carcinoma HT29, and lung carcinoma cells A-549. These results show the growth inhibitory effect shown by the fractions, on the tumor cell lines, depends on the dose.

  8. Marine sponges as bioindicators of oil and combustion derived PAH in coastal waters.

    Science.gov (United States)

    Batista, Daniela; Tellini, Karla; Nudi, Adriana H; Massone, Thaís P; Scofield, Arthur de L; Wagener, Angela de L R

    2013-12-01

    The present study evaluates the potential of Hymeniacidon heliophila as bioindicator of PAH contamination. For this, concentration of 33 PAH was determined in organisms from sites with different contamination level including the heavily polluted Guanabara Bay, Rio de Janeiro, and less impacted coastal areas. PAH concentration and typology were determined in sponges collected from different depths and in two different seasons. The brown mussel broadly studied as bioindicator was also sampled from the same sites for comparison. Both species provided similar information on total PAH concentration which is related to site contamination level. Sponges, however, revealed slight tendency to accumulation of combustion-derived PAH in relation to petrogenic compounds. Differences in PAH typology between species may derive from the interspecific variation in particle size ingestion. Different hydrocarbon typologies were observed in sponges from dry and wet season and PAH concentration varied with depth. H. heliophila may be used as an alternative approach to investigate the presence and sources of PAH in estuarine areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The antibacterial capacity of marine bacteria isolated from sponge Acanthella cavernosa collected from Lombok Island

    Institute of Scientific and Technical Information of China (English)

    Tutik Murniasih; Eka Ayu Indriany; Masteri Yunovilsa Putra; Febriana Untari

    2016-01-01

    Objective:To find a potent antibiotic producer from the sponge-associated bacteria as well as to profile the important substances. Methods:Sponge collection, bacteria isolation, extraction and characterization of potent active compounds were carried out for this study. Results:Approximately 59 single strains of bacteria were isolated from this sponge. Totally 40 strains showed activity against Escerichia coli, Staphylococcus aureus and Vibrio eltor. The chemical separation of the potent strain Bacterium sp. Lb.10%.2.1.1.b, using n-phase column chromatography revealed 7 active fractions (7, 8, 9, 10, 11, 14 and 15). The gas chromatography-mass spectrometer analysis of Fraction 7 indicated some phenolic compounds including 4-nonylphenol, methyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, acetosyringone, 2,4-bis(1-phenylethyl)phenol, 1,2-benzenedicarboxylic acid, mono(2-ethylhexyl) ester, tri(2-ethylhexyl) trimellitate and oleamide. Conclusions:Indeed, this is a preliminary information in profiling chemical substances, produced by Bacterium sp. Lb.10%.2.1.1.b. Further purification and structural chemical determination were needed to find a comprehensive result.

  10. Culture of marine sponges with potential applications in Aquaculture and Biotechnology

    Directory of Open Access Journals (Sweden)

    Susana M F Ferreira

    2014-06-01

    In this study, the sponges were collected from the sea bottom in the surrounding areas of Peniche (central western coast of Portugal, by scuba diving. They were sealed in plastic zip bags during transportation to the surface and laboratory, to avoid air contact, which they are not able to endure. They were maintained in a closed water circulation system, transplanted into artificial substrates of plastic and fed every two days, with a mixed solution of microalgae Nanochloropsis salina culture and faeces of gilt-head sea bream (Sparus aurata. As this species is susceptible to the light, half of the tanks of the culture system were protected with a black cloth and the other half were submitted to an acclimation process to this factor, in order for them to be used in aquariophilia. The sponges dimension and weight were assessed. The establishment of an efficient culture strategy will allow to use sponges as ornamental organism, as well as a diet for other interesting commercial species (also potentially as probiotics, or even as source of extracts for different biotechnology fields.

  11. Biogeography rather than association with cyanobacteria structures symbiotic microbial communities in the marine sponge Petrosia ficiformis

    Science.gov (United States)

    Burgsdorf, Ilia; Erwin, Patrick M.; López-Legentil, Susanna; Cerrano, Carlo; Haber, Markus; Frenk, Sammy; Steindler, Laura

    2014-01-01

    The sponge Petrosia ficiformis is ubiquitous in the Mediterranean Sea and Eastern Atlantic Ocean, hosting a diverse assemblage of bacteria, including, in illuminated sites, cyanobacteria. Two closely related sponge color morphs have been described, one inside caves and at their entrance (white/pink), and one on the rocky cliffs (violet). The presence of the different morphs and their ubiquity in the Mediterranean (from North-West to South-East) provides an opportunity to examine which factors mostly affect the associated microbial communities in this species: (i) presence of phototrophic symbionts or (ii) biogeography. 16S rRNA gene tag pyrosequencing data of the microbial communities revealed that Chloroflexi, Gammaproteobacteria, and Acidobacteria dominated the bacterial communities of all sponges analyzed. Chlorophyll a content, TEM observations and DNA sequence data confirmed the presence of the cyanobacterium Synechococcus feldmannii in violet and pink morphs of P. ficiformis and their absence in white color morphs. Rather than cyanobacterial symbionts (i.e., color morphs) accounting for variability in microbial symbiont communities, a biogeographic trend was observed between P. ficiformis collected in Israel and Italy. Analyses of partial 18S rRNA and mitochondrial cytochrome c oxidase subunit I (COX1) gene sequences revealed consistent genetic divergence between the violet and pink-white morphotypes of P. ficiformis. Overall, data indicated that microbial symbiont communities were more similar in genetically distinct P. ficiformis from the same location, than genetically similar P. ficiformis from distant locations. PMID:25346728

  12. Biogeography rather than association with cyanobacteria structures symbiotic microbial communities in the marine sponge Petrosia ficiformis.

    Science.gov (United States)

    Burgsdorf, Ilia; Erwin, Patrick M; López-Legentil, Susanna; Cerrano, Carlo; Haber, Markus; Frenk, Sammy; Steindler, Laura

    2014-01-01

    The sponge Petrosia ficiformis is ubiquitous in the Mediterranean Sea and Eastern Atlantic Ocean, hosting a diverse assemblage of bacteria, including, in illuminated sites, cyanobacteria. Two closely related sponge color morphs have been described, one inside caves and at their entrance (white/pink), and one on the rocky cliffs (violet). The presence of the different morphs and their ubiquity in the Mediterranean (from North-West to South-East) provides an opportunity to examine which factors mostly affect the associated microbial communities in this species: (i) presence of phototrophic symbionts or (ii) biogeography. 16S rRNA gene tag pyrosequencing data of the microbial communities revealed that Chloroflexi, Gammaproteobacteria, and Acidobacteria dominated the bacterial communities of all sponges analyzed. Chlorophyll a content, TEM observations and DNA sequence data confirmed the presence of the cyanobacterium Synechococcus feldmannii in violet and pink morphs of P. ficiformis and their absence in white color morphs. Rather than cyanobacterial symbionts (i.e., color morphs) accounting for variability in microbial symbiont communities, a biogeographic trend was observed between P. ficiformis collected in Israel and Italy. Analyses of partial 18S rRNA and mitochondrial cytochrome c oxidase subunit I (COX1) gene sequences revealed consistent genetic divergence between the violet and pink-white morphotypes of P. ficiformis. Overall, data indicated that microbial symbiont communities were more similar in genetically distinct P. ficiformis from the same location, than genetically similar P. ficiformis from distant locations.

  13. The antibacterial capacity of marine bacteria isolated from sponge Acanthella cavernosa collected from Lombok Island

    Directory of Open Access Journals (Sweden)

    Tutik Murniasih

    2016-10-01

    Full Text Available Objective: To find a potent antibiotic producer from the sponge-associated bacteria as well as to profile the important substances. Methods: Sponge collection, bacteria isolation, extraction and characterization of potent active compounds were carried out for this study. Results: Approximately 59 single strains of bacteria were isolated from this sponge. Totally 40 strains showed activity against Escerichia coli, Staphylococcus aureus and Vibrio eltor. The chemical separation of the potent strain Bacterium sp. Lb.10%.2.1.1.b, using n-phase column chromatography revealed 7 active fractions (7, 8, 9, 10, 11, 14 and 15. The gas chromatography-mass spectrometer analysis of Fraction 7 indicated some phenolic compounds including 4-nonylphenol, methyl 3-(3,5-di-tert-butyl-4-hydroxyphenylpropionate, acetosyringone, 2,4-bis(1-phenylethylphenol, 1,2-benzenedicarboxylic acid, mono(2- ethylhexyl ester, tri(2-ethylhexyl trimellitate and oleamide. Conclusions: Indeed, this is a preliminary information in profiling chemical substances, produced by Bacterium sp. Lb.10%.2.1.1.b. Further purification and structural chemical determination were needed to find a comprehensive result.

  14. Anticancer Effects of the Marine Sponge Lipastrotethya sp. Extract on Wild-Type and p53 Knockout HCT116 Cells

    Directory of Open Access Journals (Sweden)

    Kiheon Choi

    2017-01-01

    Full Text Available Interest in marine bioresources is increasing in the drug development sector. In particular, marine sponges produce a wide range of unique metabolites that enable them to survive in challenging environments, which makes them attractive sources of candidate pharmaceuticals. In previous study, we investigated over 40 marine specimens collected in Micronesia and provided by the Korean Institute of Ocean Science and Technology, for their antiproliferative effects on various cancer cell lines, and Lipastrotethya sp. extract (LSSE was found to have a marked antiproliferative effect. In the present study, we investigated the mechanism responsible for its anticancer effect on wild-type p53 (WT or p53 knockout (KO HCT116 cells. LSSE inhibited cell viability and induced apoptotic cell death more so in HCT116 p53 KO cells than the WT. HCT116 WT cells treated with LSSE underwent apoptosis associated with the induction of p53 and its target genes. On the other hand, in HCT116 p53 KO cells, LSSE reduced mTOR and Bcl-2 and increased Beclin-1 and LC3-II protein levels, suggesting autophagy induction. These results indicate that the mechanisms responsible for the anticancer effect of LSSE depend on p53 status.

  15. Molecular characterization and expression analysis of the first Porifera tumor necrosis factor superfamily member and of its putative receptor in the marine sponge Chondrosia reniformis.

    Science.gov (United States)

    Pozzolini, Marina; Scarfì, Sonia; Ghignone, Stefano; Mussino, Francesca; Vezzulli, Luigi; Cerrano, Carlo; Giovine, Marco

    2016-04-01

    Here we report the molecular cloning and characterization of the first Tumor Necrosis Factor homologous and of its putative receptor in the marine sponge Chondrosia reniformis: chTNF and chTNFR, respectively. The deduced chTNF amino acid sequence is a type II transmembrane protein containing the typical TNFSF domain. Phylogenetic analysis reveals that chTNF is more related to Chordata TNFs rather than to other invertebrates. chTNF and chTNFR are constitutively expressed both in the ectosome and in the choanosome of the sponge, with higher levels in the ectosome. chTNF and chTNFR mRNAs were monitored in sponge fragmorphs treated with Gram(+) or Gram(-) bacteria. chTNF was significantly upregulated in Gram(+)-treated fragmorphs as compared to controls, while chTNFR was upregulated by both treatments. Finally, the possible chTNF fibrogenic role in sponge fragmorphs was studied by TNF inhibitor treatment measuring fibrillar and non fibrillar collagen gene expression; results indicate that the cytokine is involved in sponge collagen deposition and homeostasis.

  16. Swinholide J, a Potent Cytotoxin from the Marine Sponge Theonella swinhoei

    Directory of Open Access Journals (Sweden)

    Angela Zampella

    2011-06-01

    Full Text Available In our ongoing search for new pharmacologically active leads from Solomon organisms, we have examined the sponge Theonella swinhoei. Herein we report the isolation and structure elucidation of swinholide A (1 and one new macrolide, swinholide J (2. Swinholide J is an unprecedented asymmetric 44-membered dilactone with an epoxide functionality in half of the molecule. The structural determination was based on extensive interpretation of high-field NMR spectra and HRESIMS data. Swinholide J displayed potent in vitro cytotoxicity against KB cells (human nasopharynx cancer with an IC50 value of 6 nM.

  17. Swinholide J, a potent cytotoxin from the marine sponge Theonella swinhoei.

    Science.gov (United States)

    De Marino, Simona; Festa, Carmen; D'Auria, Maria Valeria; Cresteil, Thierry; Debitus, Cecile; Zampella, Angela

    2011-01-01

    In our ongoing search for new pharmacologically active leads from Solomon organisms, we have examined the sponge Theonella swinhoei. Herein we report the isolation and structure elucidation of swinholide A (1) and one new macrolide, swinholide J (2). Swinholide J is an unprecedented asymmetric 44-membered dilactone with an epoxide functionality in half of the molecule. The structural determination was based on extensive interpretation of high-field NMR spectra and HRESIMS data. Swinholide J displayed potent in vitro cytotoxicity against KB cells (human nasopharynx cancer) with an IC(50) value of 6 nM.

  18. A New Bioactive Metabolite Isolated from the Red Sea Marine Sponge Hyrtios erectus.

    Science.gov (United States)

    Elhady, Sameh S; El-Halawany, Ali M; Alahdal, Abdulrahman M; Hassanean, Hashim A; Ahmed, Safwat A

    2016-01-15

    Chemical investigation of the lipophilic fraction of Hyrtios erectus, a Red Sea sponge, yielded a new pentacyclic nitrogen-containing scalarane; 24-methoxypetrosaspongia C (1), together with the previously reported scalaranes sesterstatin 3 (2), 12-deacetyl-12-epi-scalaradial (3) and 12-deacetyl-12,18-di-epi-scalaradial (4). The compounds were identified using HRESIMS, 1D and 2D NMR experiments. The isolated compounds showed growth inhibitory activity against hepatocellular carcinoma (HepG2), colorectal carcinoma (HCT-116) and breast adenocarcinoma cells (MCF-7).

  19. Supplementary Material for: Hologenome analysis of two marine sponges with different microbiomes

    KAUST Repository

    Ryu, Tae Woo

    2016-01-01

    Abstract Background Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. Results Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR)-like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. Conclusions Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses.

  20. Characterization of deep coral and sponge communities in the Gulf of the Farallones National Marine Sanctuary: Rittenburg Bank, Cochrane Bank and the Farallon Escarpment.

    Science.gov (United States)

    Etnoyer, P.; Cochrane, Guy R.; Salgado, E.; Graiff, K.; Roletto, J.; Williams, G.J.; Reyna, K.; Hyland, J.

    2014-01-01

    Benthic surveys were conducted in the Gulf of Farallones National Marine Sanctuary (GFNMS) aboard R/V Fulmar, October 3-11, 2012 using the large observation-class remotely operated vehicle (ROV) Beagle. The purpose of the surveys was to groundtruth mapping data collected in 2011, and to characterize the seafloor biota, particularly corals and sponges, in order to support Essential Fish Habitat designations under Magnuson-Stevens Act (MSA) and other conservation and management goals under the National Marine Sanctuaries Act (NMSA). A total area of 25,416 sq. meters of sea floor was surveyed during 34 ROV transects. The overall research priorities were: (1) to locate and characterize DSC and sponge habitats in priority areas; (2) to collect information to help understand the value of DSCs and sponges as reservoirs of biodiversity, or habitat for associated species, including commercially important fishes and invertebrates; (3) to assess the condition of DSC/sponge assemblages in relation to potential anthropogenic or environmental disturbances; and (4) to make this information available to support fisheries and sanctuary management needs under MSA and NMSA requirements.

  1. New marine natural products from sponges (Porifera) of the order Dictyoceratida (2001 to 2012); a promising source for drug discovery, exploration and future prospects.

    Science.gov (United States)

    Mehbub, Mohammad F; Perkins, Michael V; Zhang, Wei; Franco, Christopher M M

    2016-01-01

    The discovery of new drugs can no longer rely primarily on terrestrial resources, as they have been heavily exploited for over a century. During the last few decades marine sources, particularly sponges, have proven to be a most promising source of new natural products for drug discovery. This review considers the order Dictyoceratida in the Phylum Porifera from which the largest number of new marine natural products have been reported over the period 2001-2012. This paper examines all the sponges from the order Dictyoceratida that were reported as new compounds during the time period in a comprehensive manner. The distinctive physical characteristics and the geographical distribution of the different families are presented. The wide structural diversity of the compounds produced and the variety of biological activities they exhibited is highlighted. As a representative of sponges, insights into this order and avenues for future effective natural product discovery are presented. The research institutions associated with the various studies are also highlighted with the aim of facilitating collaborative relationships, as well as to acknowledge the major international contributors to the discovery of novel sponge metabolites. The order Dictyoceratida is a valuable source of novel chemical structures which will continue to contribute to a new era of drug discovery. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Spongiimicrobium salis gen. nov., sp. nov., a bacterium of the family Flavobacteriaceae isolated from a marine sponge.

    Science.gov (United States)

    Yoon, Jaewoo; Adachi, Kyoko; Kasai, Hiroaki

    2016-09-01

    A Gram-stain-negative, strictly aerobic, pale-yellow pigmented, rod-shaped, chemoheterotrophic bacterium, designated A6F-11(T), was isolated from a marine sponge collected in Japan. Phylogenetic analysis based on the 16S rRNA gene sequence indicated that the novel marine strain was affiliated with the family Flavobacteriaceae of the phylum Bacteroidetes and that it shared the highest (92.9 %) sequence similarity with Arenibacter palladensis LMG 21972(T). The strain could be differentiated phenotypically from related members of the family Flavobacteriaceae. The major fatty acids of strain A6F-11(T) were iso-C15:1 G, iso-C15:0, C16:1 ω6c and/or C16:1 ω7c and iso-C17:0 3-OH. The polar lipid profile consisted of phosphatidylglycerol, two unidentified aminolipids and two unidentified lipids. The DNA G+C content was 34.7 mol%, and the major respiratory quinone was menaquinone 6 (MK-6). From the distinct phylogenetic position and combination of genotypic and phenotypic characteristics, the strain is considered to represent a novel taxon in the family Flavobacteriaceae, for which the name Spongiimicrobium salis gen. nov., sp. nov. is proposed. The type strain of S. salis gen. nov., sp. nov. is A6F-11(T) (= KCTC 42753(T) = NBRC 111401(T)).

  3. Screening and Characterization of Protease Inhibitors from Marine Bacteria Associated with Sponge Jaspis sp.

    Directory of Open Access Journals (Sweden)

    ARIS TRI WAHYUDI

    2010-12-01

    Full Text Available Three isolates among 138 sponge-associated bacteria were isolated from Waigeo Island, Raja Ampat West Papua Province, Indonesia, have been shown protease inhibitory activity against subtilisin (serine protease, thermolysin (metalloprotease, and crude extract from pathogenic bacteria (Eschericia coli enteropathogenic/EPEC K.1.1, Staphylococcus aureus, and Pseudomonas aeruginosa. Those three isolates were designated as sponge associated bacteria SAB S-12, SAB S-21, and SAB S-17. A simple casein and Sea Water Complete (SWC double layer agar method was used to screen the bacteria against pathogenic bacteria producing protease, i.e. EPEC K.1.1, S. aureus, and P. aeruginosa. Among them, SAB S-12 isolate showed no inhibitory zone indicated. The isolate had the highest inhibitory activity against subtilisin and crude extract enzyme of pathogenic bacteria, the inhibitory activity was 91.6 and 98.9%, respectively. In addition, the SAB S-21 isolate had the highest inhibitory activity against thermolysin, it was 70.4%. The optimum pH and temperature for protease inhibition of the three isolates was at pH 7.0-8.0 and 40-50 oC respectively. Based on 16S rRNA gene sequence, the closest related with SAB S-12, SAB-17, and SAB-21 isolates was Providencia sp. (92% identity, Paracoccus sp. (86% identity, and Bacillus sp. (% identity, respectively.

  4. Functional gene-based discovery of phenazines from the actinobacteria associated with marine sponges in the South China Sea.

    Science.gov (United States)

    Karuppiah, Valliappan; Li, Yingxin; Sun, Wei; Feng, Guofang; Li, Zhiyong

    2015-07-01

    Phenazines represent a large group of nitrogen-containing heterocyclic compounds produced by the diverse group of bacteria including actinobacteria. In this study, a total of 197 actinobacterial strains were isolated from seven different marine sponge species in the South China Sea using five different culture media. Eighty-seven morphologically different actinobacterial strains were selected and grouped into 13 genera, including Actinoalloteichus, Kocuria, Micrococcus, Micromonospora, Mycobacterium, Nocardiopsis, Prauserella, Rhodococcus, Saccharopolyspora, Salinispora, Serinicoccus, and Streptomyces by the phylogenetic analysis of 16S rRNA gene. Based on the screening of phzE genes, ten strains, including five Streptomyces, two Nocardiopsis, one Salinispora, one Micrococcus, and one Serinicoccus were found to be potential for phenazine production. The level of phzE gene expression was highly expressed in Nocardiopsis sp. 13-33-15, 13-12-13, and Serinicoccus sp. 13-12-4 on the fifth day of fermentation. Finally, 1,6-dihydroxy phenazine (1) from Nocardiopsis sp. 13-33-15 and 13-12-13, and 1,6-dimethoxy phenazine (2) from Nocardiopsis sp. 13-33-15 were isolated and identified successfully based on ESI-MS and NMR analysis. The compounds 1 and 2 showed antibacterial activity against Bacillus mycoides SJ14, Staphylococcus aureus SJ51, Escherichia coli SJ42, and Micrococcus luteus SJ47. This study suggests that the integrated approach of gene screening and chemical analysis is an effective strategy to find the target compounds and lays the basis for the production of phenazine from the sponge-associated actinobacteria.

  5. Larvicidal, Ovicidal, and Repellent Activities of Marine Sponge Cliona celata (Grant) Extracts against Culex quinquefasciatus Say and Aedes aegypti L. (Diptera: Culicidae)

    OpenAIRE

    Reegan, Appadurai Daniel; Kinsalin, Arokia Valan; Paulraj, Michael Gabriel; Ignacimuthu,Savarimuthu

    2013-01-01

    Solvent extracts of marine sponge Cliona celata (Grant) were screened for larvicidal, ovicidal, and repellent properties against the filarial vector Culex quinquefasciatus Say and dengue vector Aedes aegypti L. Larvicidal and ovicidal activities of hexane, ethyl acetate, and methanol extracts were tested in four different concentrations ranging as 62.5, 125, 250, and 500 ppm. Among the three solvent extracts of C. celata, methanol extract showed the highest larvicidal activity at 500 ppm agai...

  6. Conicasterol E, a Small Heterodimer Partner Sparing Farnesoid X Receptor Modulator Endowed with a Pregnane X Receptor Agonistic Activity, from the Marine Sponge Theonella swinhoei

    OpenAIRE

    V. Sepe; Ummarino, R.; D'Auria, M. V.; M. G. Chini; Bifulco, G.; Renga, B; D'Amore, C.; Debitus, Cécile; Fiorucci, S.; Zampella, A.

    2012-01-01

    We report the isolation and pharmacological characterization of conicasterol E isolated from the marine sponge Theonella swinhoei. Pharmacological characterization of this steroid in comparison to CDCA, a natural FXR ligand, and 6-ECDCA, a synthetic FXR agonist generated by an improved synthetic strategy, and rifaximin, a potent PXR agonist, demonstrated that conicasterol E is an FXR modulator endowed with PXR agonistic activity. Conicasterol E induces the expression of genes involved in bile...

  7. Global conservation status of sponges.

    Science.gov (United States)

    Bell, James J; McGrath, Emily; Biggerstaff, Andrew; Bates, Tracey; Cárdenas, César A; Bennett, Holly

    2015-02-01

    Sponges are important for maintaining ecosystem function and integrity of marine and freshwater benthic communities worldwide. Despite this, there has been no assessment of their current global conservation status. We assessed their status, accounting for the distribution of research effort; patterns of temporal variation in sponge populations and assemblages; the number of sponges on threatened species lists; and the impact of environmental pressures. Sponge research effort has been variable; marine sponges in the northeastern Atlantic and Mediterranean and freshwater sponges in Europe and North America have received the most attention. Although sponge abundance has increased in some locations since 1990, these were typically on coral reefs, in response to declines in other benthic organisms, and restricted to a few species. Few data were available on temporal trends in freshwater sponge abundance. Despite over 8500 described sponge species, only 20 are on threatened species lists, and all are marine species from the northeastern Atlantic and Mediterranean. Of the 202 studies identified, the effects of temperature, suspended sediment, substratum loss, and microbial pathogens have been studied the most intensively for marine sponges, although responses appear to be variable. There were 20 studies examining environmental impacts on freshwater sponges, and most of these were on temperature and heavy metal contamination. We found that most sponges do not appear to be threatened globally. However, little information is available for most species and more data are needed on the impacts of anthropogenic-related pressures. This is a critical information gap in understanding sponge conservation status. © 2015 Society for Conservation Biology.

  8. Culture-dependent and culture-independent diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve from the South China Sea.

    Science.gov (United States)

    Sun, Wei; Dai, Shikun; Jiang, Shumei; Wang, Guanghua; Liu, Guohui; Wu, Houbo; Li, Xiang

    2010-06-01

    In this report, the diversity of Actinobacteria associated with the marine sponge Hymeniacidon perleve collected from a remote island of the South China Sea was investigated employing classical cultivation and characterization, 16S rDNA library construction, 16S rDNA-restriction fragment length polymorphism (rDNA-RFLP) and phylogenetic analysis. A total of 184 strains were isolated using seven different media and 24 isolates were selected according to their morphological characteristics for phylogenetic analysis on the basis of their 16S rRNA gene sequences. Results showed that the 24 isolates were assigned to six genera including Salinispora, Gordonia, Mycobacterium, Nocardia, Rhodococcus and Streptomyces. This is the first report that Salinispora is present in a marine sponge from the South China Sea. Subsequently, 26 rDNA clones were selected from 191 clones in an Actinobacteria-specific 16S rDNA library of the H. perleve sample, using the RFLP technique for sequencing and phylogenetic analysis. In total, 26 phylotypes were clustered in eight known genera of Actinobacteria including Mycobacterium, Amycolatopsis, Arthrobacter, Brevibacterium, Microlunatus, Nocardioides, Pseudonocardia and Streptomyces. This study contributes to our understanding of actinobacterial diversity in the marine sponge H. perleve from the South China Sea.

  9. Two Marine Sponges of the Family Ancorinidae (Demospongiae: Astrophorida from Korea

    Directory of Open Access Journals (Sweden)

    Eun Jung Shim

    2013-01-01

    Full Text Available Two sponges, Stelletta subtilis (Sollas, 1886 and Stryphnus sollasi n. sp., were collected from depth of 24-30 m at Jeju-do Island and Chuja-do Island by SCUBA diving from July 2003 to June 2010. The new species Stryphnus sollasi n. sp is similar with Stryphnus niger Sollas, 1886 in the composition of spicules, however they differ in colour and spicule size. This new species has smaller oxeas and larger oxyasters than those of S. niger. This new species has two size categories of oxyaster but S. niger has one size category of oxyaster. The colour of S. sollasi n. sp is white, but the latter puce black. Stelletta subtilis (Sollas, 1886 is first recorded in Korean fauna.

  10. Evaluation of the Anti-Inflammatory, Antioxidant and Immunomodulatory Effects of the Organic Extract of the Red Sea Marine Sponge Xestospongia testudinaria against Carrageenan Induced Rat Paw Inflammation.

    Directory of Open Access Journals (Sweden)

    Nagla A El-Shitany

    Full Text Available Marine sponges are found to be a rich source of bioactive compounds which show a wide range of biological activities including antiviral, antibacterial, and anti-inflammatory activities. This study aimed to investigate the possible anti-inflammatory, antioxidant and immunomodulator effects of the methanolic extract of the Red Sea marine sponge Xestospongia testudinaria. The chemical composition of the Xestospongia testudinaria methanolic extract was determined using Gas chromatography-mass spectroscopy (GC-MS analysis. DPPH (2, 2-diphenyl-1-picryl-hydrazyl was measured to assess the antioxidant activity of the sponge extract. Carrageenan-induced rat hind paw edema was adopted in this study. Six groups of rats were used: group1: Control, group 2: Carrageenan, group 3: indomethacin (10 mg/kg, group 4-6: Xestospongia testudinaria methanolic extract (25, 50, and 100 mg/kg. Evaluation of the anti-inflammatory activity was performed by both calculating the percentage increase in paw weight and hisopathologically. Assessment of the antioxidant and immunomodulatory activity was performed. GC-MS analysis revealed that there were 41 different compounds present in the methanolic extract. Sponge extract exhibited antioxidant activity against DPPH free radicals. Xestospongia testudinaria methanolic extract (100 mg/kg significantly decreased % increase in paw weight measured at 1, 2, 3 and 4 h after carrageenan injection. Histopathologically, the extract caused a marked decrease in the capillary congestion and inflammatory cells infiltrate. The extract decreased paw malondialdehyde (MDA and nitric oxide (NO and increased the reduced glutathione (GSH, glutathione peroxidase (GPx, and catalase (CAT activity. It also decreased the inflammatory cytokines, tumor necrosis factor-α (TNF-α, interleukin-1 β(IL-1β and IL-6. The results of this study demonstrated the anti-inflammatory, antioxidant, and immunomodulatory effects of the methanolic extract of the Red

  11. Marine sponges: a potential source of eco-friendly antifouling compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Wagh, A.B.; Thakur, N.L.; Anil, A.C.; Venkat, K.

    biocides have environmental concerns. In view of this search for ecofriendly antifouling protocols gained momentum. Sourcing of such antifouling compounds has often been explored with marine organism. This paper reviews the efforts in this domain...

  12. Influence of spatial competitor on the growth and regeneration of the marine sponge Cinachyrella cf. cavernosa (Porifera, demospongiae)

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, A.; Thakur, N.L.

    software (developed at the National Institutes of Health, USA). The body size of the individual sponge was measured by taking multiple reading (4 readings per sponge) for the diameter and mean diameter was calculated. Then, the volume was calculated... of the predictor variables; therefore, a stepwise multiple regression was used to establish the relationship between ecological factors (such as pH, temperature, salinity, DO, silicate, N: P ratio and competitor) and the specific growth rate of the tagged sponges...

  13. Whole Genome Sequencing of the Symbiont Pseudovibrio sp. from the Intertidal Marine Sponge Polymastia penicillus Revealed a Gene Repertoire for Host-Switching Permissive Lifestyle.

    Science.gov (United States)

    Alex, Anoop; Antunes, Agostinho

    2015-10-31

    Sponges harbor a complex consortium of microbial communities living in symbiotic relationship benefiting each other through the integration of metabolites. The mechanisms influencing a successful microbial association with a sponge partner are yet to be fully understood. Here, we sequenced the genome of Pseudovibrio sp. POLY-S9 strain isolated from the intertidal marine sponge Polymastia penicillus sampled from the Atlantic coast of Portugal to identify the genomic features favoring the symbiotic relationship. The draft genome revealed an exceptionally large genome size of 6.6 Mbp compared with the previously reported genomes of the genus Pseudovibrio isolated from a coral and a sponge larva. Our genomic study detected the presence of several biosynthetic gene clusters-polyketide synthase, nonribosomal peptide synthetase and siderophore-affirming the potential ability of the genus Pseudovibrio to produce a wide variety of metabolic compounds. Moreover, we identified a repertoire of genes encoding adaptive symbioses factors (eukaryotic-like proteins), such as the ankyrin repeats, tetratrico peptide repeats, and Sel1 repeats that improve the attachment to the eukaryotic hosts and the avoidance of the host's immune response : The genome also harbored a large number of mobile elements (∼5%) and gene transfer agents, which explains the massive genome expansion and suggests a possible mechanism of horizontal gene transfer. In conclusion, the genome of POLY-S9 exhibited an increase in size, number of mobile DNA, multiple metabolite gene clusters, and secretion systems, likely to influence the genome diversification and the evolvability.

  14. Production and purification of a bioactive substance against multi-drug resistant human pathogens from the marine-sponge-derived Salinispora sp.

    Institute of Scientific and Technical Information of China (English)

    Satyendra Singh; Pritesh Prasad; Ramesh Subramani; William Aalbersberg

    2014-01-01

    Objective: To isolate, purify, characterize, elucidate structure and evaluate bioactive compounds from the sponge-derived Salinispora sp. FS-0034. Methods: The symbiotic actinomycete strain FS-0034 with an interesting bioactivity profile was isolated from the Fijian marine sponge Theonella sp. Based on colony morphology and obligatory requirement of seawater for growth, and mycelia morphological characteristics the isolate FS-0034 was identified as a Salinispora sp. The bioactive compound was identified by using various spectral analysis of ultraviolet, high resolution electrospray ionization mass spectroscopy, 1H nuclear magnetic resonance, correlated spectroscopy and heteronuclear multiple bond coherence spectral data. A minimum inhibitory concentration assay were performed to evaluate the biological properties of the pure compound against multi-drug resistant pathogens. Results: Bioassay guided fractionation of the ethyl acetate extract of the culture of Salinispora sp. FS-0034 by different chromatographic methods yielded the isolation of an antibacterial compound, which was identified as rifamycin W (compound 1). Rifamycin W was reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus, wild typeStaphylococcus aureus and vancomycin-resistant Enterococcus faecium and displayed minimum inhibitory concentrations of 15.62, 7.80 and 250.00 µg/mL, respectively. Conclusions:The present study reported the rifamycin W from sponge-associated Salinispora sp. and it exhibited appreciable antibacterial activity against multi-drug resistant human pathogens which indicated that sponge-associated Actinobacteria are significant sources of bioactive metabolites.

  15. Anti HSV-1 Activity of Halistanol Sulfate and Halistanol Sulfate C Isolated from Brazilian Marine Sponge Petromica citrina (Demospongiae)

    Science.gov (United States)

    da Rosa Guimarães, Tatiana; Quiroz, Carlos Guillermo; Rigotto, Caroline; de Oliveira, Simone Quintana; Rojo de Almeida, Maria Tereza; Bianco, Éverson Miguel; Moritz, Maria Izabel Goulart; Carraro, João Luís; Palermo, Jorge Alejandro; Cabrera, Gabriela; Schenkel, Eloir Paulo; Reginatto, Flávio Henrique; Oliveira Simões, Cláudia Maria

    2013-01-01

    The n-butanol fraction (BF) obtained from the crude extract of the marine sponge Petromica citrina, the halistanol-enriched fraction (TSH fraction), and the isolated compounds halistanol sulfate (1) and halistanol sulfate C (2), were evaluated for their inhibitory effects on the replication of the Herpes Simplex Virus type 1 (HSV-1, KOS strain) by the viral plaque number reduction assay. The TSH fraction was the most effective against HSV-1 replication (SI = 15.33), whereas compounds 1 (SI = 2.46) and 2 (SI = 1.95) were less active. The most active fraction and these compounds were also assayed to determine the viral multiplication step(s) upon which they act as well as their potential synergistic effects. The anti-HSV-1 activity detected was mediated by the inhibition of virus attachment and by the penetration into Vero cells, the virucidal effect on virus particles, and by the impairment in levels of ICP27 and gD proteins of HSV-1. In summary, these results suggest that the anti-HSV-1 activity of TSH fraction detected is possibly related to the synergic effects of compounds 1 and 2. PMID:24172213

  16. New Polyketides and New Benzoic Acid Derivatives from the Marine Sponge-Associated Fungus Neosartorya quadricincta KUFA 0081

    Science.gov (United States)

    Prompanya, Chadaporn; Dethoup, Tida; Gales, Luís; Lee, Michael; Pereira, José A. C.; Silva, Artur M. S.; Pinto, Madalena M. M.; Kijjoa, Anake

    2016-01-01

    Two new pentaketides, including a new benzofuran-1-one derivative (1) and a new isochromen-1-one (5), and seven new benzoic acid derivatives, including two new benzopyran derivatives (2a, b), a new benzoxepine derivative (3), two new chromen-4-one derivatives (4b, 7) and two new benzofuran derivatives (6a, b), were isolated, together with the previously reported 2,3-dihydro-6-hydroxy-2,2-dimethyl-4H-1-benzopyran-4-one (4a), from the culture of the marine sponge-associated fungus Neosartorya quadricincta KUFA 0081. The structures of the new compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compounds 1, 2a, 4b, 5, 6a and 7, the absolute configurations of their stereogenic carbons were determined by an X-ray crystallographic analysis. None of the isolated compounds were active in the tests for antibacterial activity against Gram-positive and Gram-negative bacteria, as well as multidrug-resistant isolates from the environment (MIC > 256 μg/mL), antifungal activity against yeast (Candida albicans ATTC 10231), filamentous fungus (Aspergillus fumigatus ATTC 46645) and dermatophyte (Trichophyton rubrum FF5) (MIC > 512 µg/mL) and in vitro growth inhibitory activity against the MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer) and A375-C5 (melanoma) cell lines (GI50 > 150 µM) by the protein binding dye SRB method. PMID:27438842

  17. New Polyketides and New Benzoic Acid Derivatives from the Marine Sponge-Associated Fungus Neosartorya quadricincta KUFA 0081

    Directory of Open Access Journals (Sweden)

    Chadaporn Prompanya

    2016-07-01

    Full Text Available Two new pentaketides, including a new benzofuran-1-one derivative (1 and a new isochromen-1-one (5, and seven new benzoic acid derivatives, including two new benzopyran derivatives (2a, b, a new benzoxepine derivative (3, two new chromen-4-one derivatives (4b, 7 and two new benzofuran derivatives (6a, b, were isolated, together with the previously reported 2,3-dihydro-6-hydroxy-2,2-dimethyl-4H-1-benzopyran-4-one (4a, from the culture of the marine sponge-associated fungus Neosartorya quadricincta KUFA 0081. The structures of the new compounds were established based on 1D and 2D NMR spectral analysis, and in the case of compounds 1, 2a, 4b, 5, 6a and 7, the absolute configurations of their stereogenic carbons were determined by an X-ray crystallographic analysis. None of the isolated compounds were active in the tests for antibacterial activity against Gram-positive and Gram-negative bacteria, as well as multidrug-resistant isolates from the environment (MIC > 256 μg/mL, antifungal activity against yeast (Candida albicans ATTC 10231, filamentous fungus (Aspergillus fumigatus ATTC 46645 and dermatophyte (Trichophyton rubrum FF5 (MIC > 512 µg/mL and in vitro growth inhibitory activity against the MCF-7 (breast adenocarcinoma, NCI-H460 (non-small cell lung cancer and A375-C5 (melanoma cell lines (GI50 > 150 µM by the protein binding dye SRB method.

  18. Anti HSV-1 Activity of Halistanol Sulfate and Halistanol Sulfate C Isolated from Brazilian Marine Sponge Petromica citrina (Demospongiae

    Directory of Open Access Journals (Sweden)

    Cláudia Maria Oliveira Simões

    2013-10-01

    Full Text Available The n-butanol fraction (BF obtained from the crude extract of the marine sponge Petromica citrina, the halistanol-enriched fraction (TSH fraction, and the isolated compounds halistanol sulfate (1 and halistanol sulfate C (2, were evaluated for their inhibitory effects on the replication of the Herpes Simplex Virus type 1 (HSV-1, KOS strain by the viral plaque number reduction assay. The TSH fraction was the most effective against HSV-1 replication (SI = 15.33, whereas compounds 1 (SI = 2.46 and 2 (SI = 1.95 were less active. The most active fraction and these compounds were also assayed to determine the viral multiplication step(s upon which they act as well as their potential synergistic effects. The anti-HSV-1 activity detected was mediated by the inhibition of virus attachment and by the penetration into Vero cells, the virucidal effect on virus particles, and by the impairment in levels of ICP27 and gD proteins of HSV-1. In summary, these results suggest that the anti-HSV-1 activity of TSH fraction detected is possibly related to the synergic effects of compounds 1 and 2.

  19. Haliclonadiamine Derivatives and 6-epi-Monanchorin from the Marine Sponge Halichondria panicea Collected at Iriomote Island.

    Science.gov (United States)

    Abdjul, Delfly B; Yamazaki, Hiroyuki; Kanno, Syu-ichi; Takahashi, Ohgi; Kirikoshi, Ryota; Ukai, Kazuyo; Namikoshi, Michio

    2016-04-22

    Four new haliclonadiamine analogues, (10Z,12E)-haliclonadiamine (1), (10E,12Z)-haliclonadiamine (2), and halichondriamines A (3) and B (4), were isolated from the Okinawan marine sponge Halichondria panicea together with haliclonadiamine (5) and papuamine (6). The structures of 1-4 were elucidated on the basis of their spectroscopic data by comparisons with those for 5 and 6. Further separation of the remaining fraction led to the isolation of a new bicyclic guanidine alkaloid, 6-epi-monanchorin (7), along with monanchorin (8). Compound 7 is the epimer of 8 at the 6 position. Compounds 1-6 inhibited the growth of Mycobacterium smegmatis with inhibition zones of 12, 7, 8, 7, 16, and 12 mm at 10 μg/disc, respectively. Compounds 2-4 exhibited weak cytotoxicities against the Huh-7 (hepatoma) human cancer cell line and were 2-fold less active than 5 and 6. Compounds 7 and 8 were not active against M. smegmatis at 20 μg/disc or the cancer cell line at 10 μM.

  20. Pretreatment Hepatoprotective Effect of the Marine Fungus Derived from Sponge on Hepatic Toxicity Induced by Heavy Metals in Rats

    Directory of Open Access Journals (Sweden)

    Nehad M. Abdel-Monem

    2013-01-01

    Full Text Available The aim of this study was to evaluate the pretreatment hepatoprotective effect of the extract of marine-derived fungus Trichurus spiralis Hasselbr (TS isolated from Hippospongia communis sponge on hepatotoxicity. Twenty-eight male Sprague-Dawley rats were divided into four groups (n=7. Group I served as −ve control, group II served as the induced group receiving subcutaneously for seven days 0.25 mg heavy metal mixtures, group III received (i.p. TS extract of dose 40 mg for seven days, and group IV served as the protected group pretreated with TS extract for seven days as a protection dose, and then treated with the heavy metal-mixture. The main pathological changes within the liver after heavy-metal mixtures administrations marked hepatic damage evidenced by foci of lobular necrosis with neutrophilic infiltration, adjacent to dysplastic hepatocytes. ALT and AST measurements show a significant increase in group II by 46.20% and 45.12%, respectively. Total protein, elevated by about 38.9% in induction group compared to the −ve control group, in contrast to albumin, decreased as a consequence of metal administration with significant elevation on bilirubin level. The results prove that TS extract possesses a hepatoprotective property due to its proven antioxidant and free-radical scavenging properties.

  1. Bioleaching of electronic waste using bacteria isolated from the marine sponge Hymeniacidon heliophila (Porifera).

    Science.gov (United States)

    Rozas, Enrique E; Mendes, Maria A; Nascimento, Claudio A O; Espinosa, Denise C R; Oliveira, Renato; Oliveira, Guilherme; Custodio, Marcio R

    2017-05-05

    The bacteria isolated from Hymeniacidon heliophila sponge cells showed bioleaching activity. The most active strain, Hyhel-1, identified as Bacillus sp., was selected for bioleaching tests under two different temperatures, 30°C and 40°C, showing rod-shaped cells and filamentous growth, respectively. At 30°C, the bacteria secreted substances which linked to the leached copper, and at 40°C metallic nanoparticles were produced inside the cells. In addition, infrared analysis detected COOH groups and linear peptides in the tested bacteria at both temperatures. The Hyhel-1 strain in presence of electronic waste (e-waste) induced the formation of crust, which could be observed due to bacteria growing on the e-waste fragment. SEM-EDS measurements showed that the bacterial net surface was composed mostly of iron (16.1% w/w), while a higher concentration of copper was observed in the supernatant (1.7% w/w) and in the precipitated (49.8% w/w). The substances linked to copper in the supernatant were sequenced by MALDI-TOF-ms/ms and identified as macrocyclic surfactin-like peptides, similar to the basic sequence of Iturin, a lipopeptide from Bacillus subtilis. Finally, the results showed that Hyhel-1 is a bioleaching bacteria and cooper nanoparticles producer and that this bacteria could be used as a copper recovery tool from electronic waste. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Surviving in a marine desert: The sponge loop retains resources within coral reefs

    NARCIS (Netherlands)

    de Goeij, J.M.; van Oevelen, D.; Vermeij, M.J.A.; Osinga , R.; Middelburg, J.J.; de Goeij, A.F.P.M.; Admiraal, W.

    2013-01-01

    Ever since Darwin’s early descriptions of coral reefs, scientists have debated how one of the world’s most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is tra

  3. Surviving in a marine desert: the sponge loop retains resources within coral reefs

    NARCIS (Netherlands)

    de Goei, J.M.; van Oevelen, D.; Vermeij, M.J.A.; Osinga, R.; Middelburg, J.J.; de Goei, A.F.P.M.; Admiraal, W.

    2013-01-01

    Ever since Darwin’s early descriptions of coral reefs, scientists have debated how one of the world’s most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is tra

  4. Surviving in a Marine Desert: The Sponge Loop Retains Resources Within Coral Reefs

    NARCIS (Netherlands)

    Goeij, de J.M.; Oevelen, van D.; Vermeij, M.J.A.; Osinga, R.; Middelburg, J.J.; Goeij, de A.F.P.M.; Admiraal, W.

    2013-01-01

    Ever since Darwin’s early descriptions of coral reefs, scientists have debated how one of the world’s most productive and diverse ecosystems can thrive in the marine equivalent of a desert. It is an enigma how the flux of dissolved organic matter (DOM), the largest resource produced on reefs, is tra

  5. Marine sponges from Curaçao and other Caribbean localities Part II. Haplosclerida

    NARCIS (Netherlands)

    Soest, van R.W.M.

    1980-01-01

    The present paper deals with the West Indian marine Haplosclerida incorporated in the collections of the Zoological Museum of Amsterdam. A total of 36 species is described and fully illustrated. Part of the material consists of the Duchassaing & Michelotti collection housed in Amsterdam; of all the

  6. Marinobacter xestospongiae sp. nov., isolated from the marine sponge Xestospongia testudinaria collected from the Red Sea

    KAUST Repository

    Lee, O. O.

    2011-10-14

    A Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped and slightly halophilic bacterial strain, designated UST090418-1611(T), was isolated from the marina sponge Xestospongia testudinaria collected from the Red Sea coast of Saudi Arabia. Phylogenetic trees based on the 16S rRNA gene sequence placed strain UST090418-1611(T) in the family Alteromonadaceae with the closest relationship to the genus Marinobacter. The 16S rRNA gene sequence similarity between the strain and the type strains of recognized Marinobacter species ranged from 92.9 to 98.3%. Although strain UST090418-1611(T) shared high 16S rRNA gene sequence similarity with Marinobacter mobilis CN46(T), M. zhejiangensis CN74(T) and M. sediminum R65(T) (98.3, 97.4 and 97.3%, respectively), the relatedness of the strain to these three strains in DNA DNA hybridization was only 58, 56 and 33%, respectively, supporting the novelty of the strain. In contrast to most strains in the genus Marinobacter, strain UST090418-1611(T) tolerated only 6% (w/v) NaCl, and optimal growth occurred at 2.0% (w/v) NaCl, pH 7.0-8.0 and 28-36 degrees C. The predominant cellular fatty acids were C-12:0 3-OH, C-16:0, C-12:0 and summed feature 3 (C-16.1 omega 6c and/or C-16:1 omega 7c) The genomic DNA G+C content was 57.1 mol%. Based on the physiological, phylogenetic and chemotaxonomic characteristics presented in this study, we suggest that the strain represents a novel species in the genus Marinobacter, for which the name Marinobacter xestospongiae sp. nov. is proposed, with UST090418-1611(T) (=JCM 17469(T) =NRRL B-59512(T)) as the type strain.

  7. Tricyclic Guanidine Alkaloids from the Marine Sponge Acanthella cavernosa that Stabilize the Tumor Suppressor PDCD4

    Science.gov (United States)

    Grkovic, Tanja; Blees, Johanna S.; Bayer, Magdalena M.; Colburn, Nancy H.; Thomas, Cheryl L.; Henrich, Curtis J.; Peach, Megan L.; McMahon, James B.; Schmid, Tobias; Gustafson, Kirk R.

    2014-01-01

    A cell-based high-throughput screen that assessed the cellular stability of a tumor suppressor protein PDCD4 (Programmed cell death 4) was used to identify a new guanidine-containing marine alkaloid mirabilin K (3), as well as the known compounds mirabilin G (1) and netamine M (2). The structures of these tricyclic guanidine alkaloids were established from extensive spectroscopic analyses. Compounds 1 and 2 inhibited cellular degradation of PDCD4 with EC50 values of 1.8 μg/mL and 2.8 μg/mL, respectively. Mirabilin G (1) and netamine M (2) are the first marine natural products reported to stabilize PDCD4 under tumor promoting conditions. PMID:25196934

  8. Anti-biofilm activity of a polysaccharide from marine sponge associated Bacillus licheniformis

    OpenAIRE

    S. M. Abu, Sayem

    2011-01-01

    Secondary metabolites ranging from furanone to exo-polysaccharides have been suggested to have anti-biofilm activity in various recent studies. Among these,Escherichia coli group II capsular polysaccharides were shown to inhibit biofilm formation in a wide range of organisms and more recently marine Vibrio sp. and Kingella kingae were found to secrete complex exopolysaccharides having the potential for broad-spectrum biofilm inhibition and disruption. In this study, a ca. 1800 kDA polysacc...

  9. New Cyclotetrapeptides and a New Diketopiperzine Derivative from the Marine Sponge-Associated Fungus Neosartorya glabra KUFA 0702

    Science.gov (United States)

    May Zin, War War; Buttachon, Suradet; Dethoup, Tida; Fernandes, Carla; Cravo, Sara; Pinto, Madalena M. M.; Gales, Luís; Pereira, José A.; Silva, Artur M. S.; Sekeroglu, Nazim; Kijjoa, Anake

    2016-01-01

    Two new cyclotetrapeptides, sartoryglabramides A (5) and B (6), and a new analog of fellutanine A (8) were isolated, together with six known compounds including ergosta-4, 6, 8 (14), 22-tetraen-3-one, ergosterol 5, 8-endoperoxide, helvolic acid, aszonalenin (1), (3R)-3-(1H-indol-3-ylmethyl)-3,4-dihydro-1H-1,4-benzodiazepine-2,5-dione (2), takakiamide (3), (11aR)-2,3-dihydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine-5,11(10H,11aH)-dione (4), and fellutanine A (7), from the ethyl acetate extract of the culture of the marine sponge-associated fungus Neosartorya glabra KUFA 0702. The structures of the new compounds were established based on extensive 1D and 2D spectral analysis. X-ray analysis was also used to confirm the relative configuration of the amino acid constituents of sartoryglabramide A (5), and the absolute stereochemistry of the amino acid constituents of sartoryglabramide A (5) and sartoryglabramides B (6) was determined by chiral HPLC analysis of their hydrolysates by co-injection with the d- and l- amino acids standards. Compounds 1–8 were tested for their antibacterial activity against Gram-positive (Escherichia coli ATCC 25922) and Gram-negative (Staphyllococus aureus ATCC 25923) bacteria, as well as for their antifungal activity against filamentous (Aspergillus fumigatus ATCC 46645), dermatophyte (Trichophyton rubrum ATCC FF5) and yeast (Candida albicans ATCC 10231). None of the tested compounds exhibited either antibacterial (MIC > 256 μg/mL) or antifungal activities (MIC > 512 μg/mL). PMID:27447650

  10. Discovery that theonellasterol a marine sponge sterol is a highly selective FXR antagonist that protects against liver injury in cholestasis.

    Directory of Open Access Journals (Sweden)

    Barbara Renga

    Full Text Available BACKGROUND: The farnesoid-x-receptor (FXR is a bile acid sensor expressed in the liver and gastrointestinal tract. Despite FXR ligands are under investigation for treatment of cholestasis, a biochemical condition occurring in a number of liver diseases for which available therapies are poorly effective, mice harboring a disrupted FXR are protected against liver injury caused by bile acid overload in rodent models of cholestasis. Theonellasterol is a 4-methylene-24-ethylsteroid isolated from the marine sponge Theonella swinhoei. Here, we have characterized the activity of this theonellasterol on FXR-regulated genes and biological functions. PRINCIPAL FINDINGS: Interrogation of HepG2 cells, a human hepatocyte cell line, by microarray analysis and transactivation assay shows that theonellasterol is a selective FXR antagonist, devoid of any agonistic or antagonistic activity on a number of human nuclear receptors including the vitamin D receptor, PPARs, PXR, LXRs, progesterone, estrogen, glucorticoid and thyroid receptors, among others. Exposure of HepG2 cells to theonellasterol antagonizes the effect of natural and synthetic FXR agonists on FXR-regulated genes, including SHP, OSTα, BSEP and MRP4. A proof-of-concept study carried out to investigate whether FXR antagonism rescues mice from liver injury caused by the ligation of the common bile duct, a model of obstructive cholestasis, demonstrated that theonellasterol attenuates injury caused by bile duct ligation as measured by assessing serum alanine aminostrasferase levels and extent of liver necrosis at histopathology. Analysis of genes involved in bile acid uptake and excretion by hepatocytes revealed that theonellasterol increases the liver expression of MRP4, a basolateral transporter that is negatively regulated by FXR. Administering bile duct ligated mice with an FXR agonist failed to rescue from liver injury and downregulated the expression of MRP4. CONCLUSIONS: FXR antagonism in vivo

  11. Neuritogenic activity-guided isolation of a free base form manzamine A from a marine sponge, Acanthostrongylophora aff. ingens (Thiele, 1899).

    Science.gov (United States)

    Zhang, Bo; Higuchi, Ryuichi; Miyamoto, Tomofumi; Van Soest, Rob W M

    2008-06-01

    Two manzamine-class alkaloids, manzamine A (1) and 8-hydroxymanzamine (2) were isolated from a Japanese marine sponge Acanthostrongylophora aff. ingens, together with three known alkaloids manzamine E (3), manzamine F (4), and manzamine X (5). The spectral features of 1 and 2 were different from the reported data. Detailed structure analysis using 2D NMR revealed the structure of 1 and 2 as a free base form of hydrochloric salt. These manzamine-class alkaloids showed neuritogenic activity against Neuro 2a cells.

  12. Structure-Activity Relationship and in Vivo Anti-Tumor Evaluations of Dictyoceratin-A and -C, Hypoxia-Selective Growth Inhibitors from Marine Sponge

    Directory of Open Access Journals (Sweden)

    Yuji Sumii

    2015-12-01

    Full Text Available Oral dictyoceratin-C (1 and A (2, hypoxia-selective growth inhibitors, showed potent in vivo antitumor effects in mice subcutaneously inoculated with sarcoma S180 cells. Structurally modified analogs were synthesized to assess the structure–activity relationship of the natural compounds 1 and 2 isolated from a marine sponge. Biological evaluation of these analogs showed that the exo-olefin and hydroxyl and methyl ester moieties were important for the hypoxia-selective growth inhibitory activities of 1 and 2. Thus far, only substitution of the methyl ester with propargyl amide in 1 was found to be effective for the synthesis of probe molecules for target identification.

  13. Antifouling effect of bioactive compounds from marine sponge Acanthella elongata and different species of bacterial film on larval attachment of Balanus amphitrite (cirripedia, crustacea

    Directory of Open Access Journals (Sweden)

    Viswambaran Ganapiriya

    2012-06-01

    Full Text Available The antifouling activity of bioactive compounds from marine sponge Acanthella elongata (Dendy and five species of bacterial biofilm were studied. Larvae of Balanus amphitrite (Cyprids and nauplii were used to monitor the settlement inhibition and the extent to which inhibition was due to toxicity. The crude extract and partially purified fractions of A.elongata showed significant inhibition over the settlement individually, and with the interaction of bacterial species. No bacterial film stimulated the barnacle settlement. The high but variable levels of antifouling activity in combination with less amount of toxicity showed the potential of these metabolites in environmentally-friendly antifouling preparations.

  14. Marine sponges (Porifera: Demospongiae) from the Gulf of México, new records and redescription of Erylus trisphaerus (de Laubenfels, 1953).

    Science.gov (United States)

    Ugalde, Diana; Gómez, Patricia; Simões, Nuno

    2015-01-19

    Marine sponges usually constitute the most diverse group of the benthic community in coral reefs. Although they are reasonably well studied at the northern Gulf of Mexico (GMx), the southern GMx is poorly known and lacks records from many major reef systems that lie off the Mexican coast. The present taxonomic study is the first sponge account from Alacranes reef, the largest coral reef system in the GMx, and from the shallow reef banks of Sisal, both in the northwest Yucatan Peninsula. The 19 species herein described represent the first sponge fauna records from these reefs. Among these, seven species represent new record for GMx: Erylus formosus, Cliona flavifodina, Spirastrella aff. mollis, Strongylacidon bermuda, Topsentia bahamensis, Agelas tubulata and Chelonaplysilla aff. erecta. Twelve species are new records for the Southern GMx: Erylus trisphaerus, Cliona amplicavata, Chondrilla caribensis, Halichondria lutea, Hymeniacidon caerulea, Axinella corrugata, Dragmacidon reticulatum, Chalinula molitba, Amphimedon caribica, A. complanata, Hyatella cavernosa and Dysidea variabilis. Additionally, a redescription of Erylus trisphaerus is presented which had not been reviewed since its original description in 1953 off Western Florida, except that it was listed for north La Habana, Cuba. 

  15. Diversity and Bioactivity of Marine Bacteria Associated with the Sponges Candidaspongia flabellata and Rhopaloeides odorabile from the Great Barrier Reef in Australia

    Directory of Open Access Journals (Sweden)

    Candice M. Brinkmann

    2017-09-01

    Full Text Available Sponges and their associated microbial communities have sparked much interest in recent decades due on the abundant production of chemically diverse metabolites that in nature serve as functional compounds required by the marine sponge host. These compounds were found to carry therapeutic importance for medicinal applications. In the presented study, 123 bacterial isolates from the culture collection of the Australian Institute of Marine Science (AIMS previously isolated from two different sponge species, namely Candidaspongia flabellata and Rhopaloeides odorabile, originating from different locations on the Great Barrier Reef in Queensland, Australia, were thus studied for their bioactivity. The symbiotic bacterial isolates were first identified using 16S rRNA gene analysis and they were found to belong to five different dominating classes of Domain Bacteria, namely Alphaproteobacteria, Gammaproteobacteria, Flavobacteria, Bacilli and Actinobacteria. Following their taxonomical categorization, the isolates were screened for their antimicrobial activity against human pathogenic microbial reference strains: Escherichia coli (ATCC® BAA-196™, E. coli (ATCC® 13706™, E. coli (ATCC® 25922™, Klebsiella pneumoniae (ATCC® BAA-1705™, Enterococcus faecalis (ATCC® 51575™, Bacillus subtilis (ATCC® 19659™, Staphylococcus aureus (ATCC® 29247™, Candida albicans (ATCC® 10231™ and Aspergillus niger (ATCC® 16888™. Over 50% of the isolates displayed antimicrobial activity against one or more of the reference strains tested. The subset of these bioactive bacterial isolates was further investigated to identify their biosynthetic genes such as polyketide synthase (PKS type I and non-ribosomal peptide synthetase (NRPS genes. This was done using polymerase chain reaction (PCR with degenerate primers that have been previously used to amplify PKS-I and NRPS genes. These specific genes have been reported to be possibly involved in bacterial

  16. Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont:Citrinin,a secondary metabolite of Penicillium sp.

    Institute of Scientific and Technical Information of China (English)

    Ramesh; Subramani; Rohitesh; Kumar; Pritesh; Prasad; William; Aalbersberg

    2013-01-01

    Objective:To Isolate,purify,characterize,and evaluate the bioaclive compounds from the sponge-derived fungus Penicillium sp.FF001 and to elucidate its structure.Methods:The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp.Based on conidiophores aggregation,conidia development and mycelia morphological characteristics,the isolate FF001 was classically identified as a Penicillium sp.The bioactive compound was identified using various spectral analysis of UV,high resolution electrospray ionization mass spectra,1H and 13C NMR spectral data.Further minimum inhibitory concentrations(MICs)assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound.Results:Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp.by different chromatographic methods led the isolation of an antibacterial,anticryptococcal and cytotoxic active compound,which was identified as citrinin(1).Further,citrinin(1)is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus(S.aureus),rifampicin-resistant 5.aureus,wild type S.aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90,0.97,1.95 and7.81μg/mL,respectively.Further citrinin(1)displayed significant activity against the pathogenic yeast Cryptococcus neoformans(MIC 3.90μg/mL),and exhibited cytotoxicity against brine shrimp larvae LD50of 96μg/mL.Conclusions:Citrinin(1)is reported from sponge associated Penicillium sp.from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae,which indicated that sponge associated Penicillium spp.are promising sources of natural bioactive metabolites.

  17. Cytotoxic and antibacterial substances against multi-drug resistant pathogens from marine sponge symbiont:Citrinin, a secondary metabolite of Penicillium sp

    Institute of Scientific and Technical Information of China (English)

    Ramesh Subramani; Rohitesh Kumar; Pritesh Prasad; William Aalbersberg

    2013-01-01

    Objective: To Isolate, purify, characterize, and evaluate the bioactive compounds from the sponge-derived fungus Penicillium sp. FF001 and to elucidate its structure. Methods: The fungal strain FF001 with an interesting bioactivity profile was isolated from a marine Fijian sponge Melophlus sp. Based on conidiophores aggregation, conidia development and mycelia morphological characteristics, the isolate FF001 was classically identified as a Penicillium sp. The bioactive compound was identified using various spectral analysis of UV, high resolution electrospray ionization mass spectra, 1H and 13C NMR spectral data. Further minimum inhibitory concentrations (MICs) assay and brine shrimp cytotoxicity assay were also carried out to evaluate the biological properties of the purified compound. Results: Bioassay guided fractionation of the EtOAc extract of a static culture of this Penicillium sp. by different chromatographic methods led the isolation of an antibacterial, anticryptococcal and cytotoxic active compound, which was identified as citrinin (1). Further, citrinin (1) is reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus (S. aureus), rifampicin-resistant S. aureus, wild type S. aureus and vancomycin-resistant Enterococcus faecium showed MICs of 3.90, 0.97, 1.95 and 7.81 µg/mL, respectively. Further citrinin (1) displayed significant activity against the pathogenic yeast Cryptococcus neoformans (MIC 3.90 µg/mL), and exhibited cytotoxicity against brine shrimp larvae LD50 of 96 µg/mL. Conclusions: Citrinin (1) is reported from sponge associated Penicillium sp. from this study and for its strong antibacterial activity against multi-drug resistant human pathogens including cytotoxicity against brine shrimp larvae, which indicated that sponge associated Penicillium spp. are promising sources of natural bioactive metabolites.

  18. Production and purification of a bioactive substance against multi-drug resistant human pathogens from the marine-sponge-derived Salinispora sp.

    Institute of Scientific and Technical Information of China (English)

    Satyendra; Singh; Pritesh; Prasad; Ramesh; Subramani; William; Aalbersberg

    2014-01-01

    Objective:To isolate,purify,characterize,elucidate structure and evaluate bioactive compounds from the sponge-derived Salinispora sp.FS-0034.Methods:The symbiotic actinomycete strain FS-0034 with an interesting bioactivity profile was isolated from the Fijian marine sponge Theonella sp.Based on colony morphology and obligatory requirement of seawater for growth,and mycelia morphological characteristics the isolate FS-0034 was identified as a Salinispora sp.The bioactive compound was identified by using various spectral analysis of ultraviolet,high resolution electrospray ionization mass spectroscopy,H nuclear magnetic resonance,correlated spectroscopy and heteronuclear multiple bond coherence spectral data.A minimum inhibitory concentration assay were performed to evaluate the biological properties of the pure compound against multi-drug resistant pathogens.Results:Bioassay guided fractionation of the ethyl acetate extract of the culture of Salinispora sp.FS-0034 by different chromatographic methods yielded the isolation of an antibacterial compound,which was identified as rifamycin W(compound 1).Rifamycin W was reported for its potent antibacterial activity against methicillin-resistant Staphylococcus aureus,wild type Staphylococcus aureus and vancomycin-resistant Enterococcus faecium and displayed minimum inhibitory concentrations of 15.62,7.80 and 250.00 μg/mL,respectively.Conclusions:The present study reported the rifamycin W from sponge-associated Salinispora sp.and it exhibited appreciable antibacterial activity against multi-drug resistant human pathogens which indicated that sponge-associated Actinobacteria are significant sources of bioactive metabolites.

  19. Larvicidal, ovicidal and repellent activities of marine spongeCliona celata (Grant) extracts againstAnopheles stephensi Liston (Diptera:Culicidae)

    Institute of Scientific and Technical Information of China (English)

    Appadurai Daniel Reegan; Arokia Valan Kinsalin; Michael Gabriel Paulraj; Savarimuthu Ignacimuthu

    2015-01-01

    Objective:To evaluate the larvicidal, ovicidal and repellent properties of solvent extracts of marine spongeCliona celata(C. celata)(Grant) against the malarial vectorAnopheles stephensi(An. stephensi)Liston.Methods:Marine spongeC. celata was thoroughly washed with distilled water and shade dried for48 h.Then the sponges were homogenized and extracted sequentially with hexane, ethyl acetate and methanol.Larvicidal and ovicidal activities were tested at four different concentrationsviz.,62.5,125.0,250.0 and500.0 ppm.For repellent study extracts were taken in three different concentrationsviz.,5.0,2.5,1.0 mg/cm2 at.Results:Among the three solvent extracts ofC. celata, methanol extract showed the highest larvicidal activity at500 ppm against the fourth instar larvae ofAn. stephensi.TheLC50andLC90 values ofC. celata methanol extract were recorded as80.61 and220.81 ppm againstAn. stephensi larvae respectively.High ovicidal activity of91.2% was recorded at500 ppm concentration of methanol extract.The haxane extract was found to be the most effective protectant against the adult female mosquitoes ofAn. stephensi. The mean protection time recorded in hexane extract was up to245 min at5 mg/cm2 dosage againstAn. stephensi adults.Conclusions:The screening results suggest that the hexane and methanol extracts ofC. celata are promising in mosquito control.Considering these bioactivities,C. celata could be probed further to obtain some novel pesticidal molecules.

  20. Isolation of Araguspongine M, a New Stereoisomer of an Araguspongine/Xestospongin alkaloid, and Dopamine from the Marine Sponge Neopetrosia exigua Collected in Palau

    Directory of Open Access Journals (Sweden)

    Xinsheng Yao

    2004-11-01

    Full Text Available Abstract: A new stereoisomer of an araguspongine/xestospongin alkaloid, named araguspongine M (1, has been isolated together with 12 known compounds, araguspongines B (2 and D (3, dopamine, three galactosyl diacylglycerols, 24-methyl cholesterol, 5,6-dihydrocholesterol, β-sitosterol, and three 5α,8α-epidioxy sterols (11–13, from the marine sponge Neopetrosia exigua (formerly Xestospongia exigua collected in Palau. The structure of 1 was assigned on the basis of its spectral data analysis. This is the first report on the isolation of dopamine from a marine sponge. This compound may be produced by an endosymbiotic Synechococcus-like cyanobacterium. Compounds 1–3 and 11–13 showed cytotoxicity against HL-60 at IC50’s of 5.5, 5.5, 5.9, 22.4, 9.5, and 9.6 μM, respectively. The possible biosynthesis origin of the isolated metabolites is discussed.

  1. Anti-Inflammatory Effects of a Methanol Extract from the Marine Sponge Geodia cydonium on the Human Breast Cancer MCF-7 Cell Line

    Directory of Open Access Journals (Sweden)

    Susan Costantini

    2015-01-01

    Full Text Available Many research groups are working to find new possible anti-inflammatory molecules, and marine sponges represent a rich source of biologically active compounds with pharmacological applications. In the present study, we tested different concentrations of the methanol extract from the marine sponge, Geodia cydonium, on normal human breast epithelial cells (MCF-10A and human breast cancer cells (MCF-7. Our results show that this extract has no cytotoxic effects on both cell lines whereas it induces a decrease in levels of VEGF and five proinflammatory cytokines (CCL2, CXCL8, CXCL10, IFN-γ, and TNF-α only in MCF-7 cells in a dose-dependent manner, thereby indicating an anti-inflammatory effect. Moreover, interactomic analysis suggests that all six cytokines are involved in a network and are connected with some HUB nodes such as NF-kB subunits and ESR1 (estrogen receptor 1. We also report a decrease in the expression of two NFKB1 and c-Rel subunits by RT-qPCR experiments only in MCF-7 cells after extract treatment, confirming NF-kB inactivation. These data highlight the potential of G. cydonium for future drug discovery against major diseases, such as breast cancer.

  2. Amsterdam Expeditions to the West Indian Islands, Report 13. Marine sponges from an island cave on San Salvador Island, Bahamas

    NARCIS (Netherlands)

    Soest, van R.W.M.; Sass, B. Daniel

    1981-01-01

    Dixon Hill Lighthouse Cave, about 800 m (0.5 miles) inshore on San Salvador Island, Bahamas, was found to hold populations of three sponge species new to science, viz. Pellina penicilliformis n. sp., Prosuberites geracei n. sp., and Cinachyra subterranea n. sp. The new species are described and figu

  3. Estimating Surface Area of Sponges and Marine Gorgonians as Indicators of Habitat Availability on Caribbean Coral Reefs

    Science.gov (United States)

    Surface area and topographical complexity are fundamental attributes of shallow tropical coral reefs and can be used to estimate habitat for fish and invertebrates. This study presents empirical methods for estimating surface area provided by sponges and gorgonians in the Central...

  4. First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Maldonado, Manuel; Spindler, Klaus-Dieter; Eckert, Carsten; Hanke, Thomas; Born, René; Goebel, Caren; Simon, Paul; Heinemann, Sascha; Worch, Hartmut

    2007-07-15

    The Porifera (sponges) are often regarded as the oldest, extant metazoan phylum, also bearing the ancestral stage for most features occurring in higher animals. The absence of chitin in sponges, except for the wall of peculiar resistance bodies produced by a highly derived fresh-water group, is puzzling, since it points out chitin to be an autapomorphy for a particular sponge family rather than the ancestral condition within the metazoan lineage. By investigating the internal proteinaceous (spongin) skeleton of two demosponges (Aplysina sp. and Verongula gigantea) using a wide array of techniques (Fourier transform infrared (FTIR), Raman, X-ray, Calcofluor White Staining, Immunolabeling, and chitinase test), we show that chitin is a component of the outermost layer (cuticle) of the skeletal fibers of these demosponges. FTIR and Raman spectra, as well as X-ray difractograms consistently revealed that sponge chitin is much closer to the alpha-chitin known from other animals than to beta-chitin. These findings support the view that the occurrence of a chitin-producing system is the ancestral condition in Metazoa, and that the alpha-chitin is the primitive form in animals.

  5. Estimating Surface Area of Sponges and Marine Gorgonians as Indicators of Habitat Availability on Caribbean Coral Reefs

    Science.gov (United States)

    Surface area and topographical complexity are fundamental attributes of shallow tropical coral reefs and can be used to estimate habitat for fish and invertebrates. This study presents empirical methods for estimating surface area provided by sponges and gorgonians in the Central...

  6. A new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia that guards against buckling instability

    Science.gov (United States)

    Monn, Michael A.; Kesari, Haneesh

    2017-01-01

    We identify a new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia. The skeletal elements, known as spicules, are millimeter-long, axisymmetric, silica rods that are tapered along their lengths. Mechanical designs in other structural biomaterials, such as nacre and bone, have been studied primarily for their benefits to toughness properties. The structure-property connection we identify, however, falls in the entirely new category of buckling resistance. We use computational mechanics calculations and information about the spicules’ arrangement within the sponge to develop a structural mechanics model for the spicules. We use our structural mechanics model along with measurements of the spicules’ shape to estimate the load they can transmit before buckling. Compared to a cylinder with the same length and volume, we predict that the spicules’ shape enhances this critical load by up to 30%. We also find that the spicules’ shape is close to the shape of the column that is optimized to transmit the largest load before buckling. In man-made structures, many strategies are used to prevent buckling. We find, however, that the spicules use a completely new strategy. We hope our discussion will generate a greater appreciation for nature’s ability to produce beneficial designs.

  7. A new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia that guards against buckling instability

    Science.gov (United States)

    Monn, Michael A.; Kesari, Haneesh

    2017-01-01

    We identify a new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia. The skeletal elements, known as spicules, are millimeter-long, axisymmetric, silica rods that are tapered along their lengths. Mechanical designs in other structural biomaterials, such as nacre and bone, have been studied primarily for their benefits to toughness properties. The structure-property connection we identify, however, falls in the entirely new category of buckling resistance. We use computational mechanics calculations and information about the spicules’ arrangement within the sponge to develop a structural mechanics model for the spicules. We use our structural mechanics model along with measurements of the spicules’ shape to estimate the load they can transmit before buckling. Compared to a cylinder with the same length and volume, we predict that the spicules’ shape enhances this critical load by up to 30%. We also find that the spicules’ shape is close to the shape of the column that is optimized to transmit the largest load before buckling. In man-made structures, many strategies are used to prevent buckling. We find, however, that the spicules use a completely new strategy. We hope our discussion will generate a greater appreciation for nature’s ability to produce beneficial designs. PMID:28051108

  8. A new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia that guards against buckling instability.

    Science.gov (United States)

    Monn, Michael A; Kesari, Haneesh

    2017-01-04

    We identify a new structure-property connection in the skeletal elements of the marine sponge Tethya aurantia. The skeletal elements, known as spicules, are millimeter-long, axisymmetric, silica rods that are tapered along their lengths. Mechanical designs in other structural biomaterials, such as nacre and bone, have been studied primarily for their benefits to toughness properties. The structure-property connection we identify, however, falls in the entirely new category of buckling resistance. We use computational mechanics calculations and information about the spicules' arrangement within the sponge to develop a structural mechanics model for the spicules. We use our structural mechanics model along with measurements of the spicules' shape to estimate the load they can transmit before buckling. Compared to a cylinder with the same length and volume, we predict that the spicules' shape enhances this critical load by up to 30%. We also find that the spicules' shape is close to the shape of the column that is optimized to transmit the largest load before buckling. In man-made structures, many strategies are used to prevent buckling. We find, however, that the spicules use a completely new strategy. We hope our discussion will generate a greater appreciation for nature's ability to produce beneficial designs.

  9. Conicasterol E, a small heterodimer partner sparing farnesoid X receptor modulator endowed with a pregnane X receptor agonistic activity, from the marine sponge Theonella swinhoei.

    Science.gov (United States)

    Sepe, Valentina; Ummarino, Raffaella; D'Auria, Maria Valeria; Chini, Maria Giovanna; Bifulco, Giuseppe; Renga, Barbara; D'Amore, Claudio; Debitus, Cécile; Fiorucci, Stefano; Zampella, Angela

    2012-01-12

    We report the isolation and pharmacological characterization of conicasterol E isolated from the marine sponge Theonella swinhoei. Pharmacological characterization of this steroid in comparison to CDCA, a natural FXR ligand, and 6-ECDCA, a synthetic FXR agonist generated by an improved synthetic strategy, and rifaximin, a potent PXR agonist, demonstrated that conicasterol E is an FXR modulator endowed with PXR agonistic activity. Conicasterol E induces the expression of genes involved in bile acids detoxification without effect on the expression of small heterodimer partner (SHP), thus sparing the expression of genes involved in bile acids biosynthesis. The relative positioning in the ligand binding domain of FXR, explored through docking calculations, demonstrated a different spatial arrangement for conicasterol E and pointed to the presence of simultaneous and efficient interactions with the receptor. In summary, conicasterol E represents a FXR modulator and PXR agonist that might hold utility in treatment of liver disorders.

  10. Antiviral Activity of Bacillus sp. Isolated from the Marine Sponge Petromica citrina against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    Science.gov (United States)

    Bastos, Juliana Cristina Santiago; Kohn, Luciana Konecny; Fantinatti-Garboggini, Fabiana; Padilla, Marina Aiello; Flores, Eduardo Furtado; da Silva, Bárbara Pereira; de Menezes, Cláudia Beatriz Afonso; Arns, Clarice Weis

    2013-01-01

    The Hepatitis C virus causes chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. The Bovine viral diarrhea virus is used as a surrogate model for antiviral assays for the HCV. From marine invertebrates and microorganisms isolated from them, extracts were prepared for assessment of their possible antiviral activity. Of the 128 tested, 2 were considered active and 1 was considered promising. The best result was obtained from the extracts produced from the Bacillus sp. isolated from the sponge Petromica citrina. The extracts 555 (500 µg/mL, SI>18) and 584 (150 µg/mL, SI 27) showed a percentage of protection of 98% against BVDV, and the extract 616, 90% of protection. All of them showed activity during the viral adsorption. Thus, various substances are active on these studied organisms and may lead to the development of drugs which ensure an alternative therapy for the treatment of hepatitis C. PMID:23628828

  11. Antiviral Activity of Bacillus sp. Isolated from the Marine Sponge Petromica citrina against Bovine Viral Diarrhea Virus, a Surrogate Model of the Hepatitis C Virus

    Directory of Open Access Journals (Sweden)

    Clarice Weis Arns

    2013-04-01

    Full Text Available The Hepatitis C virus causes chronic infections in humans, which can develop to liver cirrhosis and hepatocellular carcinoma. The Bovine viral diarrhea virus is used as a surrogate model for antiviral assays for the HCV. From marine invertebrates and microorganisms isolated from them, extracts were prepared for assessment of their possible antiviral activity. Of the 128 tested, 2 were considered active and 1 was considered promising. The best result was obtained from the extracts produced from the Bacillus sp. isolated from the sponge Petromica citrina. The extracts 555 (500 µg/mL, SI>18 and 584 (150 µg/mL, SI 27 showed a percentage of protection of 98% against BVDV, and the extract 616, 90% of protection. All of them showed activity during the viral adsorption. Thus, various substances are active on these studied organisms and may lead to the development of drugs which ensure an alternative therapy for the treatment of hepatitis C.

  12. Isolation and diversity of natural product biosynthetic genes of cultivable bacteria associated with marine sponge Mycale sp. from the coast of Fujian, China.

    Science.gov (United States)

    Su, Pei; Wang, De-Xiang; Ding, Shao-Xiong; Zhao, Jing

    2014-04-01

    The marine sponge Mycale sp., a potential source of natural bioactive products, is widely distributed along the coast of Fujian, China. The cultivable bacterial community associated with Mycale sp., the antibacterial activities, and the PKS (polyketide synthase) and NRPS (nonribosomal peptide synthetase) gene diversity of these bacteria were investigated. Phylogenetic analysis of the 16S rRNA gene showed that the 51 isolates from Mycale sp. belonged to Actinobacteria, Bacteroidetes, Gammaproteobacteria, Alphaproteobacteria, and Firmicutes. Among them, some bacteria were first isolated from marine sponge. The 20 isolates with antimicrobial activities were primarily clustered within the groups Actinobacteria, Gammaproteobacteria, and Bacillus. Strain HNS054, which showed 99% similarity to Streptomyces labedae, exhibited the strongest antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus MTCC 1430, Bacillus subtilis MTCC 441) and Vibrio species. The screening of natural product biosynthetic genes revealed that 8 Actinobacteria species with antimicrobial activities possessed PKS-KS (ketosynthase) or NRPS-A domains, and the Nocardiopsis species contained a hybrid or mixed PKS-NRPS system. The phylogenetic analysis of the amino acid sequences indicated that the identified KS domains clustered with those from diverse bacterial groups, including Actinobacteria, Alphaproteobacteria, Cyanobacteria, and Firmicutes. Most KS domain sequences had high homology (>80%) to type I KSs, but the KS domain of Nocardiopsis sp. strain HNS048 had 77% similarity to the type II KS domain of Burkholderia gladioli. The NRPS-A domains of the 8 isolates were grouped into the Gammaproteobacteria, Actinobacteria, and Firmicutes groups. The NRPS-A gene of strain HNS052, identified as Nocardiopsis cyriacigeorgica, showed only 54% similarity to Rhodococcus opacus. All results suggested that Mycale sp. harboured diverse bacteria that could contribute to the production of novel

  13. Sponge cell reaggregation: Cellular structure and morphogenetic potencies of multicellular aggregates.

    Science.gov (United States)

    Lavrov, Andrey I; Kosevich, Igor A

    2016-02-01

    Sponges (phylum Porifera) are one of the most ancient extant multicellular animals and can provide valuable insights into origin and early evolution of Metazoa. High plasticity of cell differentiations and anatomical structure is characteristic feature of sponges. Present study deals with sponge cell reaggregation after dissociation as the most outstanding case of sponge plasticity. Dynamic of cell reaggregation and structure of multicellular aggregates of three demosponge species (Halichondria panicea (Pallas, 1766), Haliclona aquaeductus (Sсhmidt, 1862), and Halisarca dujardinii Johnston, 1842) were studied. Sponge tissue dissociation was performed mechanically. Resulting cell suspensions were cultured at 8-10°C for at least 5 days. Structure of multicellular aggregates was studied by light, transmission and scanning electron microscopy. Studied species share common stages of cell reaggregation-primary multicellular aggregates, early-stage primmorphs and primmorphs, but the rate of reaggregation varies considerably among species. Only cells of H. dujardinii are able to reconstruct functional and viable sponge after primmorphs formation. Sponge reconstruction in this species occurs due to active cell locomotion. Development of H. aquaeductus and H. panicea cells ceases at the stages of early primmorphs and primmorphs, respectively. Development of aggregates of these species is most likely arrested due to immobility of the majority of cells inside them. However, the inability of certain sponge species to reconstruct functional and viable individuals during cell reaggregation may be not a permanent species-specific characteristic, but depends on various factors, including the stage of the life cycle and experimental conditions.

  14. Phylogenetic diversity and community structure of sponge-associated bacteria from mangroves of the Caribbean Sea

    KAUST Repository

    Yang, Jiangke

    2011-02-08

    To gain insight into the species richness and phylogeny of the microbial communities associated with sponges in mangroves, we performed an extensive phylogenetic analysis, based on terminal restriction fragment length polymorphism profiling and 16S ribosomal RNA gene sequences, of the 4 sponge species Aplysina fulva, Haliclona hogarthi, Tedania ignis and Ircinia strobilina as well as of ambient seawater. The sponge-associated bacterial communities contained 13 phyla, including Poribacteria and an unclassified group not found in the ambient seawater community, 98% of which comprised Proteobacteria, Cyanobacteria and Bacteroidetes. Although the sponges themselves were phylogenetically distant and bacterial community variation within the host species was observed, microbial phyla such as Proteobacteria, Acidobacteria, Chloroflexi and the unclassified group were consistently observed as the dominant populations within the communities. The sponge-associated bacterial communities resident in the Caribbean Sea mangroves are phylogenetically similar but significantly distinct from communities found in other biogeographical sites such as the deep-water environments of the Caribbean Sea, the South China Sea and Australia. The interspecific variation within the host species and the distinct biogeographical characteristics that the sponge-associated bacteria exhibited indicate that the acquisition, establishment and formation of functional sponge-associated bacterial communities may initially be the product of both vertical and horizontal transmission, and is then shaped by the internal environment created by the sponge species and certain external environmental factors. © Inter-Research 2011.

  15. Renieramycins H and I, two novel alkaloids from the sponge Haliclona cribricutis Dendy

    Digital Repository Service at National Institute of Oceanography (India)

    Parameswaran, P.S.; Naik, C.G.; Kamat, S.Y.; Pramanik, B.N.

    The known alkaloid, mimosamycin 1, along with its moon- and di hydroxy derivaties, 4-hydroxy mimosamycin 2 and 1, 4-dihydroxymimosamycin 3 and two new dimeric alkaloids: namely renieramycins H and I 4 and 5 have been isolated from the MeOH extract...

  16. Production and purification of a bioactive substance against multi-drug resistant human pathogens from the marine-sponge-derived Salinispora sp.

    Directory of Open Access Journals (Sweden)

    Satyendra Singh

    2014-10-01

    Conclusions: The present study reported the rifamycin W from sponge-associated Salinispora sp. and it exhibited appreciable antibacterial activity against multi-drug resistant human pathogens which indicated that sponge-associated Actinobacteria are significant sources of bioactive metabolites.

  17. Novel utilization of waste marine sponge (Demospongiae) as a catalyst in ultrasound-assisted transesterification of waste cooking oil.

    Science.gov (United States)

    Hindryawati, Noor; Maniam, Gaanty Pragas

    2015-01-01

    This study demonstrates the potential of Na-silica waste sponge as a source of low cost catalyst in the transesterification of waste cooking oil aided by ultrasound. In this work an environmentally friendly and efficient transesterification process using Na-loaded SiO2 from waste sponge skeletons as a solid catalyst is presented. The results showed that the methyl esters content of 98.4±0.4wt.% was obtainable in less than an hour (h) of reaction time at 55°C. Optimization of reaction parameters revealed that MeOH:oil, 9:1; catalyst, 3wt.% and reaction duration of 30min as optimum reaction conditions. The catalyst is able to tolerant free fatty acid and moisture content up to 6% and 8%, respectively. In addition, the catalyst can be reused for seven cycles while maintaining the methyl esters content at 86.3%. Ultrasound undoubtedly assisted in achieving this remarkable result in less than 1h reaction time. For the kinetics study at 50-60°C, a pseudo first order model was proposed, and the activation energy of the reaction is determined as 33.45kJ/mol using Arrhenius equation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Phylogenetic position of sponges in early metazoan evolution and bionic applications of siliceous sponge spicules

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Sponges are the oldest and the simplest but not primitive multicellular animals. They represent the earliest evolutionary metazoan phylum still extant. It was a long and painful scientific process to position the most enigmatic and mysterious metazoan, the Porifera, into their correct phylogenetic place among the eukaryotes in general and multicellular animals in particular. As living fossils, sponges provide the best evidence for the early evolution of Metazoa. More recently, interest has been focused on the bionic applications of sponges' siliceous spicules, after the discovery of their unique structure and high fiber performance. In this review, the emergence of sponges, evolutionary novelties found in sponges, and the phylogenetic position of sponges in early metazoan evolution are highlighted. In addition, the pre-sent state of knowledge on silicatein-mediated "biosilica" formation in marine sponges, including the involvement of other molecules in silica metabolism and their potential application in nanobiotechnol-ogy and medicine, is given.

  19. Glassin, a histidine-rich protein from the siliceous skeletal system of the marine sponge Euplectella, directs silica polycondensation.

    Science.gov (United States)

    Shimizu, Katsuhiko; Amano, Taro; Bari, Md Rezaul; Weaver, James C; Arima, Jiro; Mori, Nobuhiro

    2015-09-15

    The hexactinellids are a diverse group of predominantly deep sea sponges that synthesize elaborate fibrous skeletal systems of amorphous hydrated silica. As a representative example, members of the genus Euplectella have proved to be useful model systems for investigating structure-function relationships in these hierarchically ordered siliceous network-like composites. Despite recent advances in understanding the mechanistic origins of damage tolerance in these complex skeletal systems, the details of their synthesis have remained largely unexplored. Here, we describe a previously unidentified protein, named "glassin," the main constituent in the water-soluble fraction of the demineralized skeletal elements of Euplectella. When combined with silicic acid solutions, glassin rapidly accelerates silica polycondensation over a pH range of 6-8. Glassin is characterized by high histidine content, and cDNA sequence analysis reveals that glassin shares no significant similarity with any other known proteins. The deduced amino acid sequence reveals that glassin consists of two similar histidine-rich domains and a connecting domain. Each of the histidine-rich domains is composed of three segments: an amino-terminal histidine and aspartic acid-rich sequence, a proline-rich sequence in the middle, and a histidine and threonine-rich sequence at the carboxyl terminus. Histidine always forms HX or HHX repeats, in which most of X positions are occupied by glycine, aspartic acid, or threonine. Recombinant glassin reproduces the silica precipitation activity observed in the native proteins. The highly modular composition of glassin, composed of imidazole, acidic, and hydroxyl residues, favors silica polycondensation and provides insights into the molecular mechanisms of skeletal formation in hexactinellid sponges.

  20. The marine sponge-derived polyketide endoperoxide plakortide F acid mediates its antifungal activity by interfering with calcium homeostasis

    Science.gov (United States)

    Plakortide F acid (PFA) is a marine-derived polyketide endoperoxide exhibiting strong inhibitory activity against several clinically important fungal pathogens. In the present study, transcriptional profiling coupled with mutant and biochemical analyses were conducted using the model organism Sacch...

  1. Sponge Hybridomas: Applications and Implications

    NARCIS (Netherlands)

    Pomponi, S.A.; Jevitt, A.; Patel, J.; Diaz, M.C.

    2013-01-01

    Many sponge-derived natural products with applications to human health have been discovered over the past three decades. In vitro production has been proposed as one biological alternative to ensure adequate supply of marine natural products for preclinical and clinical development of drugs. Althoug

  2. Culturable actinobacteria from the marine sponge Hymeniacidon perleve: isolation and phylogenetic diversity by 16S rRNA gene-RFLP analysis.

    Science.gov (United States)

    Zhang, Haitao; Lee, Yoo Kyung; Zhang, Wei; Lee, Hong Kum

    2006-08-01

    A total of 106 actinobacteria associated with the marine sponge Hymeniacidon perleve collected from the Yellow Sea, China were isolated using eight different media. The number of species and genera of actinobacteria recovered from the different media varied significantly, underlining the importance of optimizing the isolation conditions. The phylogenetic diversity of the actinobacteria isolates was assessed using 16S rRNA gene amplification-restriction fragment length polymorphism (RFLP) analysis of the 106 strains with different morphologies. The RFLP fingerprinting of selected strains by HhaI-digestion of the 16S rRNA genes resulted in 11 different patterns. The HhaI-RFLP analysis gave good resolution for the identification of the actinobacteria isolates at the genus level. A phylogenetic analysis using 16S rRNA gene sequences revealed that the isolates belonged to seven genera of culturable actinobacteria including Actinoalloteichus, Micromonospora, Nocardia, Nocardiopsis, Pseudonocardia, Rhodococcus, and Streptomyces. The dominant genus was Streptomyces, which represented 74% of the isolates. Three of the strains identified are candidates for new species.

  3. The CckA-ChpT-CtrA phosphorelay system is regulated by quorum sensing and controls flagellar motility in the marine sponge symbiont Ruegeria sp. KLH11.

    Directory of Open Access Journals (Sweden)

    Jindong Zan

    Full Text Available Bacteria respond to their environment via signal transduction pathways, often two-component type systems that function through phosphotransfer to control expression of specific genes. Phosphorelays are derived from two-component systems but are comprised of additional components. The essential cckA-chpT-ctrA phosphorelay in Caulobacter crescentus has been well studied and is important in orchestrating the cell cycle, polar development and flagellar biogenesis. Although cckA, chpT and ctrA homologues are widespread among the Alphaproteobacteria, relatively few is known about their function in the large and ecologically significant Roseobacter clade of the Rhodobacterales. In this study the cckA-chpT-ctrA system of the marine sponge symbiont Ruegeria sp. KLH11 was investigated. Our results reveal that the cckA, chpT and ctrA genes positively control flagellar biosynthesis. In contrast to C. crescentus, the cckA, chpT and ctrA genes in Ruegeria sp. KLH11 are non-essential and do not affect bacterial growth. Gene fusion and transcript analyses provide evidence for ctrA autoregulation and the control of motility-related genes. In KLH11, flagellar motility is controlled by the SsaRI system and acylhomoserine lactone (AHL quorum sensing. SsaR and long chain AHLs are required for cckA, chpT and ctrA gene expression, providing a regulatory link between flagellar locomotion and population density in KLH11.

  4. Lista de esponjas marinas asociadas al arrecife Tuxpan, Veracruz, México Checklist of marine sponges from Tuxpan Reef, Veracruz, Mexico

    Directory of Open Access Journals (Sweden)

    Carlos González-Gándara

    2009-04-01

    Full Text Available Se presenta la lista de esponjas marinas (Porifera: Demospongiae del arrecife Tuxpan, Veracruz, México, colectadas en 2004, 2005 y 2006 mediante buceo libre y con equipo autónomo SCUBA. Los resultados muestran la presencia de 18 especies pertenecientes a 13 géneros y 13 familias, 17 de estas especies son nuevos registros para los arrecifes coralinos del norte de Veracruz y una (Aplysina cauliformis Carter, 1882 para el estado. La información puede auxiliar para definir las estrategias de manejo, monitoreo y protección de estas formaciones arrecifales que recientemente han sido propuestas como área de protección de flora y fauna.A checklist of marine sponge species (Porifera: Demospongiae from Tuxpan reef, Veracruz, Mexico, collected during 2004, 2005 and 2006 by free and SCUBA diving equipment, is presented. The results show the presence of 18 species belonging to 13 genera and 13 families. 17 speices represent new records for the northern coral reefs of Veracruz, and the 18th species (Aplysina cauliformis Carter, 1882 is a new record for the state. This information may help to define appropriate management, monitoring and protection strategies for the coral reefs of the north of Veracruz, which have been proposed as a natural preserve area recently.

  5. New Deferoxamine Glycoconjugates Produced upon Overexpression of Pathway-Specific Regulatory Gene in the Marine Sponge-Derived Streptomyces albus PVA94-07.

    Science.gov (United States)

    Sekurova, Olga N; Pérez-Victoria, Ignacio; Martín, Jesús; Degnes, Kristin F; Sletta, Håvard; Reyes, Fernando; Zotchev, Sergey B

    2016-08-27

    Activation of silent biosynthetic gene clusters in Streptomyces bacteria via overexpression of cluster-specific regulatory genes is a promising strategy for the discovery of novel bioactive secondary metabolites. This approach was used in an attempt to activate a cryptic gene cluster in a marine sponge-derived Streptomyces albus PVA94-07 presumably governing the biosynthesis of peptide-based secondary metabolites. While no new peptide-based metabolites were detected in the recombinant strain, it was shown to produce at least four new analogues of deferoxamine with additional acyl and sugar moieties, for which chemical structures were fully elucidated. Biological activity tests of two of the new deferoxamine analogues revealed weak activity against Escherichia coli. The gene knockout experiment in the gene cluster targeted for activation, as well as overexpression of certain genes from this cluster did not have an effect on the production of these compounds by the strain overexpressing the regulator. It seems plausible that the production of such compounds is a response to stress imposed by the production of an as-yet unidentified metabolite specified by the cryptic cluster.

  6. New Deferoxamine Glycoconjugates Produced upon Overexpression of Pathway-Specific Regulatory Gene in the Marine Sponge-Derived Streptomyces albus PVA94-07

    Directory of Open Access Journals (Sweden)

    Olga N. Sekurova

    2016-08-01

    Full Text Available Activation of silent biosynthetic gene clusters in Streptomyces bacteria via overexpression of cluster-specific regulatory genes is a promising strategy for the discovery of novel bioactive secondary metabolites. This approach was used in an attempt to activate a cryptic gene cluster in a marine sponge-derived Streptomyces albus PVA94-07 presumably governing the biosynthesis of peptide-based secondary metabolites. While no new peptide-based metabolites were detected in the recombinant strain, it was shown to produce at least four new analogues of deferoxamine with additional acyl and sugar moieties, for which chemical structures were fully elucidated. Biological activity tests of two of the new deferoxamine analogues revealed weak activity against Escherichia coli. The gene knockout experiment in the gene cluster targeted for activation, as well as overexpression of certain genes from this cluster did not have an effect on the production of these compounds by the strain overexpressing the regulator. It seems plausible that the production of such compounds is a response to stress imposed by the production of an as-yet unidentified metabolite specified by the cryptic cluster.

  7. Cellulase production from agricultural residues by recombinant fusant strain of a fungal endophyte of the marine sponge Latrunculia corticata for production of ethanol.

    Science.gov (United States)

    El-Bondkly, Ahmed M A; El-Gendy, Mervat M A

    2012-02-01

    Several fungal endophytes of the Egyptian marine sponge Latrunculia corticata were isolated, including strains Trichoderma sp. Merv6, Penicillium sp. Merv2 and Aspergillus sp. Merv70. These fungi exhibited high cellulase activity using different lignocellulosic substrates in solid state fermentations (SSF). By applying mutagenesis and intergeneric protoplast fusion, we have obtained a recombinant strain (Tahrir-25) that overproduced cellulases (exo-β-1,4-glucanase, endo-β-1,4-glucanase and β-1,4-glucosidase) that facilitated complete cellulolysis of agricultural residues. The process parameters for cellulase production by strain Tahrir-25 were optimized in SSF. The highest cellulase recovery from fermentation slurries was achieved with 0.2% Tween 80 as leaching agent. Enzyme production was optimized under the following conditions: initial moisture content of 60% (v/w), inoculum size of 10(6) spores ml(-1), average substrate particle size of 1.0 mm, mixture of sugarcane bagasse and corncob (2:1) as the carbon source supplemented with carboxymethyl cellulose (CMC) and corn steep solids, fermentation time of 7 days, medium pH of 5.5 at 30°C. These optimized conditions yielded 450, 191, and 225 units/gram dry substrate (U gds(-1)) of carboxylmethyl cellulase, filter-paperase (FPase), and β-glucosidase, respectively. Subsequent fermentation by the yeast, Saccharomyces cerevisiae NRC2, using lignocellulose hydrolysates obtained from the optimized cellulase process produced the highest amount of ethanol (58 g l(-1)). This study has revealed the potential of exploiting marine fungi for cost-effective production of cellulases for second generation bioethanol processes.

  8. Global diversity of sponges (Porifera.

    Directory of Open Access Journals (Sweden)

    Rob W M Van Soest

    Full Text Available With the completion of a single unified classification, the Systema Porifera (SP and subsequent development of an online species database, the World Porifera Database (WPD, we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all 'known' sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future.

  9. Global diversity of sponges (Porifera).

    Science.gov (United States)

    Van Soest, Rob W M; Boury-Esnault, Nicole; Vacelet, Jean; Dohrmann, Martin; Erpenbeck, Dirk; De Voogd, Nicole J; Santodomingo, Nadiezhda; Vanhoorne, Bart; Kelly, Michelle; Hooper, John N A

    2012-01-01

    With the completion of a single unified classification, the Systema Porifera (SP) and subsequent development of an online species database, the World Porifera Database (WPD), we are now equipped to provide a first comprehensive picture of the global biodiversity of the Porifera. An introductory overview of the four classes of the Porifera is followed by a description of the structure of our main source of data for this paper, the WPD. From this we extracted numbers of all 'known' sponges to date: the number of valid Recent sponges is established at 8,553, with the vast majority, 83%, belonging to the class Demospongiae. We also mapped for the first time the species richness of a comprehensive set of marine ecoregions of the world, data also extracted from the WPD. Perhaps not surprisingly, these distributions appear to show a strong bias towards collection and taxonomy efforts. Only when species richness is accumulated into large marine realms does a pattern emerge that is also recognized in many other marine animal groups: high numbers in tropical regions, lesser numbers in the colder parts of the world oceans. Preliminary similarity analysis of a matrix of species and marine ecoregions extracted from the WPD failed to yield a consistent hierarchical pattern of ecoregions into marine provinces. Global sponge diversity information is mostly generated in regional projects and resources: results obtained demonstrate that regional approaches to analytical biogeography are at present more likely to achieve insights into the biogeographic history of sponges than a global perspective, which appears currently too ambitious. We also review information on invasive sponges that might well have some influence on distribution patterns of the future.

  10. Modelling genetic regulation of growth and form in a branching sponge.

    Science.gov (United States)

    Kaandorp, Jaap A; Blom, Joke G; Verhoef, Jozef; Filatov, Max; Postma, M; Müller, Werner E G

    2008-11-22

    We present a mathematical model of the genetic regulation controlling skeletogenesis and the influence of the physical environment on a branching sponge with accretive growth (e.g. Haliclona oculata or Lubomirskia baikalensis). From previous work, it is known that high concentrations of silicate induce spicule formation and upregulate the silicatein gene. The upregulation of this gene activates locally the production of spicules in the sponge and the deposition of the skeleton. Furthermore, it is known that the expression of the gene Iroquois induces the formation of an aquiferous system, consisting of exhalant and inhalant pores. We propose a model of the regulatory network controlling the separation in time and space of the skeletogenesis and the formation of the aquiferous system. The regulatory network is closely linked with environmental influences. In building a skeleton, silicate is absorbed from the environment. In our model, silicate is transported by diffusion through the environment and absorbed at the surface of a geometric model of the sponge, resulting in silicate gradients emerging in the neighbourhood of the sponge. Our model simulations predict sponge morphology and the positioning of the exhalant pores over the surface of the sponge.

  11. Deposition of shallow water sponges in response to seasonal changes

    Science.gov (United States)

    Ávila, Enrique; Carballo, José Luis; Vega, Cristina; Camacho, Leonardo; Barrón-Álvarez, José J.; Padilla-Verdín, Claudia; Yáñez-Chávez, Benjamín

    2011-08-01

    Removal of organisms from the subtidal zone plays an important role in shaping benthic communities in shallow bays. The main objective of this research was to quantify the biomass of sponges washed up on the beach at Mazatlan Bay (Mexico, eastern Pacific Ocean), and to determine its relationship with local weather and oceanographic conditions. To know whether this process has a significant effect on the sponge populations, changes in abundance of the species washed into the beach were also quantified in adjoining sublittoral areas. The sponges that were washed ashore were mainly branching ( Mycale ramulosa), massive ( Haliclona caerulea) and cushion-shaped ( Callyspongia californica) species. Species with high content of spongin in their structure (e.g. Hyattella intestinalis) were common in the subtidal zone but were rarely found on the beach. Encrusting species were never found. Four-year data of sponge deposition on the beach showed that the total annual sponge biomass ranged from 30 to 60 g DW m - 2 with an inter-annual range from 0.1 to 17.3 g DW m - 2 . The highest deposition of sponges was during the spring-summer transition (from April to July), which was associated with a change in wind direction (from NW to WSW). This change also matched with low tides and a high resuspension of bottom sediments, suggesting a high-energy environment during this transition. The increase in sponge biomass washed on the beach coincided with a decrease in the density of adjacent sponge populations. A multiple regression analysis showed that 68.48% of the variation on sponge biomass on the beach could be statistically explained using a combination of environmental factors (wind speed, sediment resuspension and tides). Thus, seasonal changes in wind direction combined with the effect of low tides and sediment resuspension could serve to predict fragmentation/detachment events of benthic organisms in shallow sublittoral areas worldwide. This study also provides insights to

  12. Medullary Sponge Kidney

    Science.gov (United States)

    ... Sponge Kidney? Complications of medullary sponge kidney include hematuria, or blood in the urine kidney stones urinary ... both kidneys. Complications of medullary sponge kidney include hematuria, or blood in the urine kidney stones urinary ...

  13. IN VITRO ANTAGONISTIC ACTIVITIES OF INDONESIAN MARINE SPONGE AAPTOS AAPTOS AND CALLYSPONGIA PSEUDORETICULATA EXTRACTS AND THEIR TOXICITY AGAINST Vibrio spp.

    Directory of Open Access Journals (Sweden)

    Rosmiati Rosmiati

    2011-12-01

    Full Text Available Vibriosis is one of diseases which often results in mass mortality of Penaeus monodon larval rearing systems. It attacks shrimp of all stages in zoea, mysis and shrimp postlarva stage. This disease is caused by Vibrio spp, particularly Vibrio harveyi (a luminescent bacterium. Several kinds of antibiotics and chemical material have been used to overcome the disease but they have side effects to environment and human. The searching of bioactive compounds as an alternative treatment has been done for multi purposes. In this study diethyl eter, butanol and aqueous extract of Indonesian sponges Aaptos aaptos and Callyspongia pseudoreticulata were tested for in vitro activity against Vibrio spp. and Vibrio harveyi by using disc diffusion method. The result showed that all extracts of Aaptos aaptos gave a positive antibacterial activity towards those pathogenic bacteria. Meanwhile, only butanol extract of Callyspongia pseudoreticulata obtained to exhibit an antibacterial activity on those pathogenic bacteria. The strong anti-vibrio activity were shown by butanol and aqueous extract of Aaptos aaptos with the minimum inhibitory concentration (MIC value of 0.313 and 0.625 mg/mL, respectively. Whilst, the butanol extract of Callyspongia pseudoreticulata indicated a low antibacterial activity with the MIC value of 10 mg/mL. Toxicity of those active extracts was evaluated by Brine Shrimp Lethality Test (BST. Interestingly, butanol and aqueous extracts of Aaptos aaptos did not show any toxic effect in Artemia salina larvae up to 8 x MIC (2.504 mg/mL and 5.000 mg/mL. It is the first report for the anti-vibr io activity of both Aaptos aaptos and Callyspongia pseudoreticulata. This results suggest that Aaptos aaptos has a potential to be used as a source of alternative compound to vibriosis prevention for mariculture.

  14. Crouching shells, hidden sponges: Unusual Late Ordovician cavities containing sponges

    Science.gov (United States)

    Park, Jino; Lee, Jeong-Hyun; Hong, Jongsun; Choh, Suk-Joo; Lee, Dong-Chan; Lee, Dong-Jin

    2017-01-01

    Marine cavities harbouring cryptic organisms have been ubiquitous throughout the Phanerozoic. However, our knowledge of early cryptic communities is as yet insufficient, and how metazoans began to utilize such habitats remains unknown. In this study, we document demosponge remains within intraskeletal cavities embedded in the micritic succession of a shallow carbonate platform in the Upper Ordovician (Katian) Xiazhen Formation of South China. Molluscs (gastropods, bivalves, and nautiloids) and corals (the solitary rugosan Tryplasma and colonial agetolitids) within the succession commonly contain patches of "spicular" demosponge remains (11%; n = 45/415), mainly occupying intraskeletal spaces with areas of 1-30 mm2 in thin-section. Sponge occurrence varies according to sedimentary facies: within lime mudstone facies, sponges commonly occur both inside and outside intraskeletal cavities, suggesting that sponges would have inhabited and become preserved within any available space in this environment. In contrast, when other sessile organisms co-occur in wackestone to packstone facies, there are fewer sponge occurrences both inside and outside cavities, possibly due to competition in open habitats and/or their poorer preservation in such environments. Overall, this result suggests that sponges would have exploited cryptic habitats by normal expansion of the open-surface biota. In addition, compared with coeval reef and hardground crypts, the Xiazhen intraskeletal cryptic biota is monotonous in composition, suggesting "decoupled" occupation of cryptic habitats in different environments.

  15. Validation and evaluation of an HPLC methodology for the quantification of the potent antimitotic compound (+)-discodermolide in the Caribbean marine sponge Discodermia dissoluta.

    Science.gov (United States)

    Valderrama, Katherine; Castellanos, Leonardo; Zea, Sven

    2010-08-01

    The sponge Discodermia dissoluta is the source of the potent antimitotic compound (+)-discodermolide. The relatively abundant and shallow populations of this sponge in Santa Marta, Colombia, allow for studies to evaluate the natural and biotechnological supply options of (+)-discodermolide. In this work, an RP-HPLC-UV methodology for the quantification of (+)-discodermolide from sponge samples was tested and validated. Our protocol for extracting this compound from the sponge included lyophilization, exhaustive methanol extraction, partitioning using water and dichloromethane, purification of the organic fraction in RP-18 cartridges and then finally retrieving the (+)-discodermolide in the methanol-water (80:20 v/v) fraction. This fraction was injected into an HPLC system with an Xterra RP-18 column and a detection wavelength of 235 nm. The calibration curve was linear, making it possible to calculate the LODs and quantification in these experiments. The intra-day and inter-day precision showed relative standard deviations lower than 5%. The accuracy, determined as the percentage recovery, was 99.4%. Nine samples of the sponge from the Bahamas, Bonaire, Curaçao and Santa Marta had concentrations of (+)-discodermolide ranging from 5.3 to 29.3 microg/g(-1) of wet sponge. This methodology is quick and simple, allowing for the quantification in sponges from natural environments, in situ cultures or dissociated cells.

  16. Pore forming polyalkylpyridinium salts from marine sponges versus synthetic lipofection systems: distinct tools for intracellular delivery of cDNA and siRNA

    Directory of Open Access Journals (Sweden)

    Blagbrough Ian S

    2006-01-01

    Full Text Available Abstract Background Haplosclerid marine sponges produce pore forming polyalkylpyridinium salts (poly-APS, which can be used to deliver macromolecules into cells. The aim of this study was to investigate the delivery of DNA, siRNA and lucifer yellow into cells mediated by poly-APS and its potential mechanisms as compared with other lipofection systems (lipofectamine and N4,N9-dioleoylspermine (LipoGen. DNA condensation was evaluated and HEK 293 and HtTA HeLa cells were used to investigate pore formation and intracellular delivery of cDNA, siRNA and lucifer yellow. Results Poly-APS and LipoGen were both found to be highly efficient DNA condensing agents. Fura-2 calcium imaging was used to measure calcium transients indicative of cell membrane pore forming activity. Calcium transients were evoked by poly-APS but not LipoGen and lipofectamine. The increases in intracellular calcium produced by poly-APS showed temperature sensitivity with greater responses being observed at 12°C compared to 21°C. Similarly, delivery of lucifer yellow into cells with poly-APS was enhanced at lower temperatures. Transfection with cDNA encoding for the expression enhanced green fluorescent protein was also evaluated at 12°C with poly-APS, lipofectamine and LipoGen. Intracellular delivery of siRNA was achieved with knockdown in beta-actin expression when lipofectamine and LipoGen were used as transfection reagents. However, intracellular delivery of siRNA was not achieved with poly-APS. Conclusion Poly-APS mediated pore formation is critical to its activity as a transfection reagent, but lipofection systems utilise distinct mechanisms to enable delivery of DNA and siRNA into cells.

  17. Fossil and modern sponge fauna of southern Australia and adjacent regions compared: interpretation, evolutionary and biogeographic significance of the late Eocene ‘soft’ sponges

    NARCIS (Netherlands)

    Łukowiak, M.

    2016-01-01

    The late Eocene ‘soft’ sponge fauna of southern Australia is reconstructed based on disassociated spicules and is used to interpret the paleoecology and environmental context of shallow marine communities in this region. The reconstructed sponge association was compared with coeval sponge

  18. Fossil and modern sponge fauna of southern Australia and adjacent regions compared: interpretation, evolutionary and biogeographic significance of the late Eocene ‘soft’ sponges

    NARCIS (Netherlands)

    Łukowiak, M.

    2016-01-01

    The late Eocene ‘soft’ sponge fauna of southern Australia is reconstructed based on disassociated spicules and is used to interpret the paleoecology and environmental context of shallow marine communities in this region. The reconstructed sponge association was compared with coeval sponge assemblage

  19. Asteltoxins with Antiviral Activities from the Marine Sponge-Derived Fungus Aspergillus sp. SCSIO XWS02F40

    Directory of Open Access Journals (Sweden)

    Yong-Qi Tian

    2015-12-01

    Full Text Available Two new asteltoxins named asteltoxin E (2 and F (3, and a new chromone (4, together with four known compounds were isolated from a marine sponge–derived fungus, Aspergillus sp. SCSIO XWS02F40. The structures of the compounds (1–7 were determined by the extensive 1D- and 2D-NMR spectra, and HRESIMS spectrometry. All the compounds were tested for their antiviral (H1N1 and H3N2 activity. Compounds 2 and 3 showed significant activity against H3N2 with the prominent IC50 values of 6.2 ± 0.08 and 8.9 ± 0.3 μM, respectively. In addition, compound 2 also exhibited inhibitory activity against H1N1 with an IC50 value of 3.5 ± 1.3 μM.

  20. Genomics of "Candidatus Synechococcus spongiarium", a Cyanobacterial Sponge Symbiont

    Energy Technology Data Exchange (ETDEWEB)

    Slaby, Beate M. [Univ. of Wuerzburg (Germany); Copeland, Alex [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Woyke, Tanja [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Hentschel, Ute [Univ. of Wuerzburg (Germany)

    2014-03-21

    Marine sponges (Porifera): ancient metazoans of ecological importance, that produce bioactive secondary metabolites and interact with various microorganisms including cyanobacteria1: Marine Synechococcus spp.: cyanobacteria, important contributors to the global carbon cycle and major primary producers in the oceans2 Ca. S. spongiarum: an ecotype of this genus, widespread and abundant symbiont of various marine sponges around the world3, e.g. Aplysina aerophoba

  1. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater

    KAUST Repository

    Bayer, Kristina

    2015-01-08

    The GeoChip 4.2 gene array was employed to interrogate the microbial functional gene repertoire of sponges and seawater collected from the Red Sea and the Mediterranean. Complementary amplicon sequencing confirmed the microbial community composition characteristic of high microbial abundance (HMA) and low microbial abundance (LMA) sponges. By use of GeoChip, altogether 20 273 probes encoding for 627 functional genes and representing 16 gene categories were identified. Minimum curvilinear embedding analyses revealed a clear separation between the samples. The HMA/LMA dichotomy was stronger than any possible geographic pattern, which is shown here for the first time on the level of functional genes. However, upon inspection of individual genes, very few specific differences were discernible. Differences were related to microbial ammonia oxidation, ammonification, and archaeal autotrophic carbon fixation (higher gene abundance in sponges over seawater) as well as denitrification and radiation-stress-related genes (lower gene abundance in sponges over seawater). Except for few documented specific differences the functional gene repertoire between the different sources appeared largely similar. This study expands previous reports in that functional gene convergence is not only reported between HMA and LMA sponges but also between sponges and seawater.

  2. Marine sponge Craniella austrialiensis-associated bacterial diversity revelation based on 16S rDNA library and biologically active Actinomycetes screening, phylogenetic analysis.

    Science.gov (United States)

    Li, Z-Y; Liu, Y

    2006-10-01

    The aim of this study was to investigate the bacterial diversity associated with the sponge Craniella australiensis using a molecular strategy and isolating Actinomycetes with antimicrobial potentials. The bacterial diversity associated with South China Sea sponge C. austrialiensis was assessed using a 16S rDNA clone library alongside restriction fragment length polymorphism and phylogenetic analysis. It was found that the C. austrialiensis-associated bacterial community consisted of alpha, beta and gamma-Proteobacteria, Firmicutes, Bacteroidetes as well as Actinobacterium. Actinomycetes were isolated successfully using seawater medium with sponge extracts. According to the BLAST and phylogenetic analysis based on about 600-bp 16S rDNA sequences, 11 of the representative 23 isolates closely matched the Streptomyces sp. while the remaining 12 matched the Actinomycetales. Twenty Actinomycetes have antimicrobial potentials, of which 15 are found to possess broad-spectrum antimicrobial potentials. The sponge C. austrialiensis-associated bacterial community is very abundant including Proteobacteria, Firmicutes, Bacteroidetes and Actinobacterium while Actinomycetes is not predominant. Artificial seawater medium with sponge extracts is suitable for Actinomycetes isolation. Most of the isolated C. austrialiensis-associated Actinomycetes have a broad spectrum of antimicrobial activity. This study revealed the diversity of the bacterial community and the isolated Actinomycetes with antimicrobial potentials associated with sponge C. australiensis.

  3. The Marine Natural Product Manzamine A Targets Vacuolar ATPases and Inhibits Autophagy in Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Amy E. Wright

    2013-09-01

    Full Text Available Manzamine A, a member of the manzamine alkaloids, was originally isolated from marine sponges of the genus Haliclona. It was recently shown to have activity against pancreatic cancer cells, but the precise mechanism of action remained unclear. To further our understanding of the mechanism of action of manzamine A, chemogenomic profiling in the yeast S. cerevisiae was performed, suggesting that manzamine A is an uncoupler of vacuolar ATPases. Fluorescence microscopy confirmed this effect on yeast vacuoles, where manzamine A produced a phenotype very similar to that of the established v-ATPase inhibitor bafilomycin A1. In pancreatic cancer cells, 10 µM manzamine A affected vacuolar ATPase activity and significantly increased the level of autophagosome marker LC3-II and p62/SQSTM1 as observed by western blot analysis. Treatment with manzamine A in combination with bafilomycin A1 (inhibitor of autophagosome-lysosome fusion did not change the levels of LC3-II when compared to cells treated with bafilomycin A1 alone, suggesting that manzamine A is a potential inhibitor of autophagy by preventing autophagosome turnover. As autophagy is essential for pancreatic tumor growth, blocking this pathway with manzamine A suggests a promising strategy for the treatment of pancreatic cancer.

  4. ABOUT SPONGE FARMING

    Directory of Open Access Journals (Sweden)

    Marijana Pećarević

    2005-04-01

    Full Text Available Sponges are the simplest multicellular animals. Farming of sponges is facilitated by their asexual reproduction and great ability of regeneration. Farming of filter-feeding sponges is environment friendly, and it can positively influence on environmental impact of other aquaculture activities. Natural populations of sponges in Mediterranean Sea are endangered by inappropriate overfishing. Farming of sponges is possible solution for regeneration and protection of natural populations.

  5. Anti-malarial, anti-algal, anti-tubercular, anti-bacterial, anti-photosynthetic, and anti-fouling activity of diterpene and diterpene isonitriles from the tropical marine sponge Cymbastela hooperi.

    Science.gov (United States)

    Wright, Anthony D; McCluskey, Adam; Robertson, Mark J; MacGregor, Kylie A; Gordon, Christopher P; Guenther, Jana

    2011-01-21

    In an investigation into their potential ecological role(s), a group of mainly diterpene isonitriles, nine in total, isolated from the tropical marine sponge Cymbastela hooperi, and the sesquiterpene axisonitrile-3, isolated from the tropical marine sponge Acanthella kletra, were evaluated in a series of bioassays including anti-fouling, anti-algal, anti-photosynthetic, anti-bacterial (Gram +ve and -ve), anti-fungal, and anti-tubercular. The results of these assays showed that all of the tested compounds, with the exception of diterpene 9, were active in at least two of the applied test systems, with axisonitrile-3 (10) and diterpene isonitrile 1 being the two most active compounds overall, closely followed by diterpene isonitrile 3. Based on the results of the photosynthetic study a molecular modelling investigation was undertaken with all of the compounds used in that study. The results showed a positive correlation between reduction in photosynthetic activity and the interaction of the modelled compounds with a potential enzyme active site.

  6. Temporal variation in macroinvertebrates associated with intertidal sponge Ircinia fusca (Carter 1880) from Ratnagiri, West coast, India.

    Digital Repository Service at National Institute of Oceanography (India)

    Sivadas, S.K.; Redij, A.G.S.; Sagare, P.; Thakur, N.L.; Ingole, B.S.

    Temporal variation of macrofauna associated with a marine sponge, Ircinia fusca was studied from a tropical rocky shore along the West coast of India. Triplicate sponge samples (~100 g) were collected from January to December 2010 from Bhagwati...

  7. Bioprospecting sponge-associated microbes for antimicrobial compounds

    NARCIS (Netherlands)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-01-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review

  8. Bioprospecting sponge-associated microbes for antimicrobial compounds

    NARCIS (Netherlands)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-01-01

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review

  9. Cultivation of Sponges, Sponge Cells and Symbionts: Achievements and Future Prospects

    NARCIS (Netherlands)

    Schippers, K.J.; Sipkema, D.; Osinga, R.; Smidt, H.; Pomponi, S.A.; Martens, D.E.; Wijffels, R.H.

    2012-01-01

    Marine sponges are a rich source of bioactive compounds with pharmaceutical potential. Since biological production is one option to supply materials for early drug development, the main challenge is to establish generic techniques for small-scale production of marine organisms. We analysed the state

  10. Culturable epibacteria of the marine sponge Ircinia fusca: Temporal variations and their possible role in the epibacterial defense of the host

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Anil, A.C.; Muller, W.E.G.

    in glass beakers and brought to the field laboratory within 1 h. Isolation, enumeration, culture and identification of sponge surface-associated bacteria (SAB). Once in the laboratory, the specimens were placed separately in beakers with sterile seawater..., which was changed 4 to 5 times in order to remove free bacteria in water and on the sponge surface. A small area of each specimen (1 cm 2 ) was softly swabbed with a sterile cotton tip applicator, by placing a sterile plastic film with a 1 cm 2 hole...

  11. Metabolic Profiling as a Screening Tool for Cytotoxic Compounds: Identification of 3-Alkyl Pyridine Alkaloids from Sponges Collected at a Shallow Water Hydrothermal Vent Site North of Iceland

    Science.gov (United States)

    Einarsdottir, Eydis; Magnusdottir, Manuela; Astarita, Giuseppe; Köck, Matthias; Ögmundsdottir, Helga M.; Thorsteinsdottir, Margret; Rapp, Hans Tore; Omarsdottir, Sesselja; Paglia, Giuseppe

    2017-01-01

    Twenty-eight sponge specimens were collected at a shallow water hydrothermal vent site north of Iceland. Extracts were prepared and tested in vitro for cytotoxic activity, and eight of them were shown to be cytotoxic. A mass spectrometry (MS)-based metabolomics approach was used to determine the chemical composition of the extracts. This analysis highlighted clear differences in the metabolomes of three sponge specimens, and all of them were identified as Haliclona (Rhizoniera) rosea (Bowerbank, 1866). Therefore, these specimens were selected for further investigation. Haliclona rosea metabolomes contained a class of potential key compounds, the 3-alkyl pyridine alkaloids (3-APA) responsible for the cytotoxic activity of the fractions. Several 3-APA compounds were tentatively identified including haliclamines, cyclostellettamines, viscosalines and viscosamines. Among these compounds, cyclostellettamine P was tentatively identified for the first time by using ion mobility MS in time-aligned parallel (TAP) fragmentation mode. In this work, we show the potential of applying metabolomics strategies and in particular the utility of coupling ion mobility with MS for the molecular characterization of sponge specimens. PMID:28241423

  12. Metabolic Profiling as a Screening Tool for Cytotoxic Compounds: Identification of 3-Alkyl Pyridine Alkaloids from Sponges Collected at a Shallow Water Hydrothermal Vent Site North of Iceland

    Directory of Open Access Journals (Sweden)

    Eydis Einarsdottir

    2017-02-01

    Full Text Available Twenty-eight sponge specimens were collected at a shallow water hydrothermal vent site north of Iceland. Extracts were prepared and tested in vitro for cytotoxic activity, and eight of them were shown to be cytotoxic. A mass spectrometry (MS-based metabolomics approach was used to determine the chemical composition of the extracts. This analysis highlighted clear differences in the metabolomes of three sponge specimens, and all of them were identified as Haliclona (Rhizoniera rosea (Bowerbank, 1866. Therefore, these specimens were selected for further investigation. Haliclona rosea metabolomes contained a class of potential key compounds, the 3-alkyl pyridine alkaloids (3-APA responsible for the cytotoxic activity of the fractions. Several 3-APA compounds were tentatively identified including haliclamines, cyclostellettamines, viscosalines and viscosamines. Among these compounds, cyclostellettamine P was tentatively identified for the first time by using ion mobility MS in time-aligned parallel (TAP fragmentation mode. In this work, we show the potential of applying metabolomics strategies and in particular the utility of coupling ion mobility with MS for the molecular characterization of sponge specimens.

  13. Same, same but different: symbiotic bacterial associations in GBR sponges

    Directory of Open Access Journals (Sweden)

    Nicole S Webster

    2013-01-01

    Full Text Available Symbioses in marine sponges involve diverse consortia of microorganisms that contribute to the health and ecology of their hosts. The microbial communities of 13 taxonomically diverse Great Barrier Reef (GBR sponge species were assessed by DGGE and 16S rRNA gene sequencing to determine intra and inter species variation in bacterial symbiont composition. Microbial profiling revealed communities that were largely conserved within different individuals of each species with intra species similarity ranging from 65-100%. 16S rRNA gene sequencing revealed that the communities were dominated by Proteobacteria, Chloroflexi, Acidobacteria, Actinobacteria, Nitrospira and Cyanobacteria. Sponge-associated microbes were also highly host-specific with no operational taxonomic units (OTUs common to all species and the most ubiquitous OTU found in only 5 of the 13 sponge species. In total, 91% of the OTUs were restricted to a single sponge species. However, GBR sponge microbes were more closely related to other sponge-derived bacteria than they were to environmental communities with sequences falling within 50 of the 173 previously defined sponge-(or sponge-coral specific sequence clusters. These sequence clusters spanned the Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimonadetes, Nitrospira and the Planctomycetes-Verrucomicrobia-Chlamydiae superphylum. The number of sequences assigned to these sponge-specific clusters across all species ranged from 0% to 92%. No relationship between host phylogeny and symbiont communities were observed across the different sponge orders, although the highest level of similarity was detected in two closely related Xestospongia species. This study identifies the core microbial inhabitants in a range of GBR sponges thereby providing the basis for future studies on sponge symbiotic function and research aiming to predict how sponge holobionts will respond to environmental

  14. Functional Insights into Sponge Microbiology by Single Cell Genomics

    KAUST Repository

    Hentschel, Ute

    2011-04-09

    Marine Sponges (Porifera) are known to harbor enormous amounts of microorganisms with members belonging to at least 30 different bacterial phyla including several candidate phyla and both archaeal lineages. Here, we applied single cell genomics to the mic

  15. Stereochemical determination and bioactivity assessment of {(S)}-(+)-curcuphenol dimers isolated from the marine sponge Didiscus aceratus and synthesized through laccase biocatalysis

    DEFF Research Database (Denmark)

    Lassen, Peter Rygaard

    2005-01-01

    Electrospray ionization mass spectrometry-guided isolation of extracts from Didiscus aceratus led to the discovery of several new derivatives of the bioactive bisabolene-type sponge metabolite (S)-(+)-curcuphenol (1). The compounds obtained by this method included a mixture of known (2) and new (3...

  16. Immunomodulatory N-acyl Dopamine Glycosides from the Icelandic Marine Sponge Myxilla incrustans Collected at a Hydrothermal Vent Site

    DEFF Research Database (Denmark)

    Einarsdottir, Eydis; Liu, Hong Bing; Freysdottir, Jona;

    2016-01-01

    A chemical investigation of the sponge (Porifera) Myxilla incrustans collected from the unique submarine hydrothermal vent site Strytan, North of Iceland, revealed a novel family of closely related N-acyl dopamine glycosides. Three new compounds, myxillin A (1), B (2) and C (3), were isolated and...

  17. Three dimensional MOF-sponge for fast dynamic adsorption.

    Science.gov (United States)

    Li, Huizeng; Li, Mingzhu; Li, Wenbo; Yang, Qiang; Li, Yanan; Gu, Zhenkun; Song, Yanlin

    2017-02-22

    Nowadays, environmental pollution is a big problem. Metal organic frameworks (MOFs) provide a novel strategy for exhaust gases adsorption and toxic pollutants removal. We proposed a facile and versatile method to prepare a highly efficient three dimensional MOF-sponge by coating MOF crystals on polyurethane sponge surface, mimicking the porous structure of the marine animal, sponge. Owing to combination of the spatial structure of the commercial sponge and the excellent adsorption capacity of MOF coatings, the MOF-sponge possessed good permeability and high dynamic adsorption capacity. Dynamic adsorption ability of the prepared Cu3(BTC)2-sponge was demonstrated by flowing gas-mixtures of NH3/N2 and an aquatic solution of Rhodamine B through it, with a capacity of 101.6 mg g(-1) and 8.8 mg g(-1) for NH3 and Rhodamine B, respectively.

  18. Chemical ecology of marine sponges

    Digital Repository Service at National Institute of Oceanography (India)

    Thakur, N.L.; Singh, A.

    predator and prevent epibiont growth on their surfaces. These compounds are highly bioactive and have been explored for their possible therapeutic applications. As compared to the biomedical applications of these compounds, their possible ecological roles...

  19. A new cyclostellettamine from sponge Amphimedon compressa

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new compound, 8,8'-dienecyclostellettamine, was isolated from the marine sponge Amphimedon compressa. Its structure was elucidated by spectroscopic methods including 1D and 2D NMR, UV, IR, ESI-MS, MALDI-MS techniques. It is probably an important precursor of the manzamine alkoids, and also showed vigorous antibacterial activities.

  20. Plakilactones G and H from a marine sponge. Stereochemical determination of highly flexible systems by quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts

    Directory of Open Access Journals (Sweden)

    Simone Di Micco

    2013-12-01

    Full Text Available In this paper the stereostructural investigation of two new oxygenated polyketides, plakilactones G and H, isolated from the marine sponge Plakinastrella mamillaris collected at Fiji Islands, is reported. The stereostructural studies began on plakilactone H by applying an integrated approach of the NOE-based protocol and quantum mechanical calculations of 13C chemical shifts. In particular, plakilactone H was used as a template to extend the application of NMR-derived interproton distances to a highly flexible molecular system with simultaneous assignment of four non-contiguous stereocenters. Chemical derivatization and quantum mechanical calculations of 13C on plakilactone G along with a plausible biogenetic interconversion between plakilactone G and plakilactone H allowed us to determine the absolute configuration in this two new oxygenated polyketides.

  1. 3种环境因素对叶片山海绵海区移植效果的影响%The Influence of Environmental Facts on Growth Rate of an Explanted Marine Sponge Mycale phyllophila

    Institute of Scientific and Technical Information of China (English)

    欧徽龙; 王德祥; 龚琳; 陈军; 丁少雄

    2013-01-01

    Marine sponges are a diverse taxon of benthic aquatic animals of great biopharmaceutical importance.However,the lack of sufficient supply of sponge biomass restricts their preclinical and clinical application.In situ sponge aquaculture is nowadays one of the most reliable methods to supply of biomass for drug development.In this study,we focus on the aquaculture of the sponge Mycale phyllophila,which has a potential usage for biological medicine and commonly distributed along the southeastern of China coast.Culture efficiency were evaluated by determine of sponge survival and growth rates under different aquacultural factors,such as culture depths,water flow rates and explant sizes.The survival rates of explants were achieved 100% in all experimental groups.Relatively fast growth rates also were achieved,among which,the fastest group reached a growth rate of 472.1% after 60 days' culture.Deeper culture depths and slower water flow is more conducive to the growth of the sponge.No significant difference of growth rates were detected among groups with different explant sizes.%海绵动物是重要的药源生物,由于自然海区生物量较少,限制了它的开发以及应用,海绵的人工增殖被认为是最有效解决海绵药源供给的途径.本研究以福建沿海广泛分布的山海绵属(Mycale)的种类为研究对象进行了初步的海区增殖研究.叶片山海绵(Mycale ph yllophila)属于寻常海绵纲(Demospongiae),繁骨海绵目(Poecilosclerida),山海绵科(Mycalidae),山海绵属.研究了养殖深度,海水流速,附着基大小等3种因素对叶片山海绵在自然海区生长速度的影响.结果显示,不同移植环境中叶片山海绵成活率均为100%,且都具有较快的生长速度.最快的生长速度出现在水深2.0m,流速较缓,附着基面积为75 cm2的实验组,2个月平均增长率达472.1%.环境因子的多重方差分析结果显示,水深和水流对叶片山海绵的生长速度影响显著(p<0

  2. Reporter Dyes Demonstrate Functional Expression of Multidrug Resistance Proteins in the Marine Flatworm Macrostomum lignano: The Sponge-Derived Dye Ageladine A Is Not a Substrate of These Transporters

    Directory of Open Access Journals (Sweden)

    Ulf Bickmeyer

    2013-10-01

    Full Text Available The marine plathyhelminth Macrostomum lignano was recently isolated from Adriatic shore sediments where it experiences a wide variety of environmental challenges, ranging from hypoxia and reoxygenation, feeding on toxic algae, to exposure to anthropogenic contaminants. As multidrug resistance transporters constitute the first line of defense against toxins and toxicants we have studied the presence of such transporters in M. lignano in living animals by applying optical methods and pharmacological inhibitors that had been developed for mammalian cells. Application of the MDR1 inhibitor Verapamil or of the MRP1 inhibitors MK571 or Probenecid increased the intracellular fluorescence of the reporter dyes Fura-2 am, Calcein am, Fluo-3 am in the worms, but did not affect their staining with the dyes Rhodamine B, CMFDA or Ageladine A. The marine sponge alkaloid Ageladine A remained intracellularly trapped for several days in the worms, suggesting that it does not serve as substrate of multidrug resistance exporters. In addition, Ageladine A did not affect multidrug resistance-associated protein (MRP-mediated dye export from M. lignano or the MRP1-mediated glutathione (GSH export from cultured rat brain astrocytes. The data obtained demonstrate that life-imaging is a useful tool to address physiological drug export from intact marine transparent flatworms by using multiphoton scanning microscopy.

  3. Environmental shaping of sponge associated archaeal communities.

    Directory of Open Access Journals (Sweden)

    Aline S Turque

    Full Text Available BACKGROUND: Archaea are ubiquitous symbionts of marine sponges but their ecological roles and the influence of environmental factors on these associations are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We compared the diversity and composition of archaea associated with seawater and with the sponges Hymeniacidon heliophila, Paraleucilla magna and Petromica citrina in two distinct environments: Guanabara Bay, a highly impacted estuary in Rio de Janeiro, Brazil, and the nearby Cagarras Archipelago. For this we used metagenomic analyses of 16S rRNA and ammonia monooxygenase (amoA gene libraries. Hymeniacidon heliophila was more abundant inside the bay, while P. magna was more abundant outside and P. citrina was only recorded at the Cagarras Archipelago. Principal Component Analysis plots (PCA generated using pairwise unweighted UniFrac distances showed that the archaeal community structure of inner bay seawater and sponges was different from that of coastal Cagarras Archipelago. Rarefaction analyses showed that inner bay archaeaoplankton were more diverse than those from the Cagarras Archipelago. Only members of Crenarchaeota were found in sponge libraries, while in seawater both Crenarchaeota and Euryarchaeota were observed. Although most amoA archaeal genes detected in this study seem to be novel, some clones were affiliated to known ammonia oxidizers such as Nitrosopumilus maritimus and Cenarchaeum symbiosum. CONCLUSION/SIGNIFICANCE: The composition and diversity of archaeal communities associated with pollution-tolerant sponge species can change in a range of few kilometers, probably influenced by eutrophication. The presence of archaeal amoA genes in Porifera suggests that Archaea are involved in the nitrogen cycle within the sponge holobiont, possibly increasing its resistance to anthropogenic impacts. The higher diversity of Crenarchaeota in the polluted area suggests that some marine sponges are able to change the composition

  4. Square-wave anodic-stripping voltammetric determination of Cd, Pb, and Cu in a hydrofluoric acid solution of siliceous spicules of marine sponges (from the Ligurian Sea, Italy, and the Ross Sea, Antarctica)

    Energy Technology Data Exchange (ETDEWEB)

    Truzzi, C.; Annibaldi, A.; Illuminati, S.; Bassotti, E.; Scarponi, G. [Polytechnic University of Marche, Ancona (Italy). Department of Marine Science

    2008-09-15

    Square-wave anodic-stripping voltammetry (SWASV) was set up and optimized for simultaneous determination of cadmium, lead, and copper in siliceous spicules of marine sponges, directly in the hydrofluoric acid solution ({proportional_to}0.55 mol L{sup -1} HF, pH {proportional_to}1.9). A thin mercury-film electrode (TMFE) plated on to an HF-resistant epoxy-impregnated graphite rotating-disc support was used. The optimum experimental conditions, evaluated also in terms of the signal-to-noise ratio, were as follows: deposition potential -1100 mV vs. Ag/AgCl, KCl 3 mol L{sup -1}, deposition time 3-10 min, electrode rotation 3000 rpm, SW scan from -1100 mV to +100 mV, SW pulse amplitude 25 mV, frequency 100 Hz, {delta}E{sub step} 8 mV, t{sub step} 100 ms, t{sub wait} 60 ms, t{sub delay} 2 ms, t{sub meas} 3 ms. Under these conditions the metal peak potentials were Cd -654{+-}1 mV, Pb -458 {+-} 1 mV, Cu -198{+-}1 mV. The electrochemical behaviour was reversible for Pb, quasi-reversible for Cd, and kinetically controlled (possibly following chemical reaction) for Cu. The linearity of the response with concentration was verified up to {proportional_to}4 {mu}g L{sup -1} for Cd and Pb and {proportional_to}20 {mu}g L{sup -1} for Cu. The detection limits were 5.8 ng L{sup -1}, 3.6 ng L{sup -1}, and 4.3 ng L{sup -1} for Cd, Pb, and Cu, respectively, with t{sub d}=5 min. The method was applied for determination of the metals in spicules of two specimens of marine sponges (Demosponges) from the Portofino natural reserve (Ligurian Sea, Italy, Petrosia ficiformis) and Terra Nova Bay (Ross Sea, Antarctica, Sphaerotylus antarcticus). The metal contents varied from tens of ng g{sup -1} to {proportional_to}1 {mu}g g{sup -1}, depending on the metal considered and with significant differences between the two sponge species. (orig.)

  5. 繁茂膜海绵中可培养稀有放线菌的多样性%Phylogenetic diversity of the culturable rare actinomycetes in marine sponge Hymeniacidon perlevis by improved isolation media

    Institute of Scientific and Technical Information of China (English)

    信艳娟; 吴佩春; 邓麦村; 张卫

    2009-01-01

    [Objective] Based on the molecular diversity information, seven actinomycete-selective culture media and isolation conditions were modified to isolate and cultivate diverse rare actinomycetes from Hymeniacidon perlevis. [Methods] Modified, selective cultivation and enrichment media were used, with the addition of an elemental solution of simulating the elemental composition of marine sponge H. perlevis. Restriction Fragment Length Polymorphism (RFLP) analysis of 16S rDNA sequence was used to reveal the diversity of culturable rare actinomycetes. [Results] A total of 59 actinomycete strains were isolated from the marine sponge H. perlevis . A total of 27 representative actinomycetes were selected according to their morphological feature, color and pigments. They gave 15 different RFLP patterns after digesting their PCR products of 16s rDNA with Hha I . The results showed that these isolates belonged to 10 genera: Streptomyces, Nocardiopsis, Micromonospora, Cellulosimicrobium, Gordonia, Nocardia, Prauseria, Pseudonocardia, Saccharomonospora and Microbacterium. [ Conclusion] The modified isolation media and selective cultivation procedures are highly effective in the recovery of culturable actinomycetes from the marine sponge H. perlevis , resulting in the highest diversity of culturable rare actinomycetes from any sponges.%[目的]本文旨在尝试改进分离培养方法从大连海域繁茂膜海绵中筛选稀有放线菌,并对其多样性进行研究.[方法]根据繁茂膜海绵元素组成配制微量元素溶液,加入到放线菌分离培养基中,同时将部分培养基稀释成寡营养培养基,结合富集培养法,对繁茂膜海绵中放线菌进行分离培养.采用16S rDNA的限制性片断长度多态性(.Restriction Fragment Length Polymorphism,RFLP)分析和序列分析,揭示其多样性.[结果]共获得可培养放线菌59株,通过形态、颜色观察,将其归为27个类群.RFLP分析表现为15种不同的图谱类型.16S rDNA序列分

  6. Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges.

    Directory of Open Access Journals (Sweden)

    Stephen A Jackson

    Full Text Available Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ~60% and ~72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (~11% of sequences. Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity identified in sponges, with 4 and 6 dominant OTUs comprising ~88% and ~89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (~0.2% and ~0.3% of sequences were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.

  7. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea

    KAUST Repository

    Lee, Onon

    2010-11-18

    Marine sponges are associated with a remarkable array of microorganisms. Using a tag pyrosequencing technology, this study was the first to investigate in depth the microbial communities associated with three Red Sea sponges, Hyrtios erectus, Stylissa carteri and Xestospongia testudinaria. We revealed highly diverse sponge-associated bacterial communities with up to 1000 microbial operational taxonomic units (OTUs) and richness estimates of up to 2000 species. Altogether, 26 bacterial phyla were detected from the Red Sea sponges, 11 of which were absent from the surrounding sea water and 4 were recorded in sponges for the first time. Up to 100 OTUs with richness estimates of up to 300 archaeal species were revealed from a single sponge species. This is by far the highest archaeal diversity ever recorded for sponges. A non-negligible proportion of unclassified reads was observed in sponges. Our results demonstrated that the sponge-associated microbial communities remained highly consistent in the same sponge species from different locations, although they varied at different degrees among different sponge species. A significant proportion of the tag sequences from the sponges could be assigned to one of the sponge-specific clusters previously defined. In addition, the sponge-associated microbial communities were consistently divergent from those present in the surrounding sea water. Our results suggest that the Red Sea sponges possess highly sponge-specific or even sponge-species-specific microbial communities that are resistant to environmental disturbance, and much of their microbial diversity remains to be explored. © 2011 International Society for Microbial Ecology All rights reserved.

  8. A New Isomalabaricane Triterpenoid from Sponge Jaspis sp.

    Institute of Scientific and Technical Information of China (English)

    Sheng An TANG; Zhi Wei DENG; Jun LI; Hong Zheng FU; Yue Hu PEI; Si ZHANG; Wen Han LIN

    2005-01-01

    From the marine sponge Jaspis sp., a new isomalabaricane triterpenoid 22, 23-dihydrostellettin D (1) was isolated, and its structure was established on the basis of IR, MS and extensive 2D NMR spectroscopic analysis. It is a unique skeleton compound rarely obtained from Chinese marine organisms.

  9. Two distinct microbial communities revealed in the sponge Cinachyrella

    Directory of Open Access Journals (Sweden)

    Marie Laure Cuvelier

    2014-11-01

    Full Text Available Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes, which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rDNA tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1 with low diversity (Shannon-Weiner index: 3.73 ± 0.22 and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25. Hosts’ 28S rDNA sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences present in low abundance or below detection limits (<0.07% in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5% and 22.4% of SG1 and SG2’s total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

  10. A new Triassic sponge from the Antimonio terrane, Sonora, Mexico

    Science.gov (United States)

    Senowbari-Daryan, Baba; Stanley, George D.; Gonzalez-Leon, Carlos

    2001-10-01

    A new Upper Triassic (Norian) chambered sponge, Fanthalamia glomerata n. sp., from the Antimonio Formation (Antimonio terrane) of northwestern Sonora, Mexico, is described. Recrystallized limestone containing the new sponge, together with other marine invertebrates, is interpreted to represent tropical, shallow-water carbonate settings characterized by local biostromal and biohermal buildups. The new species increases understanding of the ancient depositional environment and paleobiogeography of the Antimonio Formation.

  11. Metagenomic Analysis of Genes Encoding Nutrient Cycling Pathways in the Microbiota of Deep-Sea and Shallow-Water Sponges.

    Science.gov (United States)

    Li, Zhiyong; Wang, Yuezhu; Li, Jinlong; Liu, Fang; He, Liming; He, Ying; Wang, Shenyue

    2016-12-01

    Sponges host complex symbiotic communities, but to date, the whole picture of the metabolic potential of sponge microbiota remains unclear, particularly the difference between the shallow-water and deep-sea sponge holobionts. In this study, two completely different sponges, shallow-water sponge Theonella swinhoei from the South China Sea and deep-sea sponge Neamphius huxleyi from the Indian Ocean, were selected to compare their whole symbiotic communities and metabolic potential, particularly in element transformation. Phylogenetically diverse bacteria, archaea, fungi, and algae were detected in both shallow-water sponge T. swinhoei and deep-sea sponge N. huxleyi, and different microbial community structures were indicated between these two sponges. Metagenome-based gene abundance analysis indicated that, though the two sponge microbiota have similar core functions, they showed different potential strategies in detailed metabolic processes, e.g., in the transformation and utilization of carbon, nitrogen, phosphorus, and sulfur by corresponding microbial symbionts. This study provides insight into the putative metabolic potentials of the microbiota associated with the shallow-water and deep-sea sponges at the whole community level, extending our knowledge of the sponge microbiota's functions, the association of sponge- microbes, as well as the adaption of sponge microbiota to the marine environment.

  12. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission

    DEFF Research Database (Denmark)

    Sipkema, Detmer; de Caralt, Sònia; Morillo, Jose A

    2015-01-01

    Marine sponges host diverse communities of microorganisms that are often vertically transmitted from mother to oocyte or embryo. Horizontal transmission has often been proposed to co-occur in marine sponges, but the mechanism is poorly understood. To assess the impact of the mode of transmission...... on the microbial assemblages of sponges, we analysed the microbiota in sympatric sponges that have previously been reported to acquire bacteria via either vertical (Corticium candelabrum and Crambe crambe) or horizontal transmission (Petrosia ficiformis). The comparative study was performed by PCR......-DGGE and pyrosequencing of barcoded PCR-amplified 16S rRNA gene fragments. We found that P. ficiformis and C. candelabrum each harbor their own species-specific bacteria, but they are similar to other high-microbial-abundance sponges, while the low-microbial-abundance sponge C. crambe hosts microbiota of a very different...

  13. The vaginal contraceptive sponge.

    Science.gov (United States)

    Edelman, D A

    1984-06-01

    The vaginal contraceptive sponge, approved on April 1, 1983 by the US Food Administration (FDA) for sale in the US as a single use, disposable, over-the-counter contraceptive, is made of polyurethane and designed to be biocompatible with the vaginal environment. The sponge is available in a single size, is round, and about 5.5 cm in diameter and 2.5 cm thick. An indentation on 1 side helps to ensure the sponge's correct placement against the cervix. A polyester retrieval loop attached to the sponge facilitates removal. Postcoital tests of the sponge without the spermicide indicated that it was ineffective in preventing sperm from entering the cervical canal. Before insertion, the contraceptive sponge is moistened with tap water to activate the spermicide and is inserted into the vagina with the indentation placed against the cervis. The sponge has been designed to provide continuous protection against pregnancy for at least 24 hours after insertion. Following a successful phase ii clinical trail of the sponge, in 1979 comparative phase iii clinical trials were initiated by Family Health International. The following trials were conducted: sponge versus the diaphragm (arcing-spring) used with a spermicide (nonoxynol-9) at 13 clinics in the US (1439 subjects) and at 2 clinics in Canada and the UK (502 subjects); sponge versus a foaming spermicidal (menfegol) suppository at 5 clinics in Yugoslavia, Taiwan, and Bangladesh (1386) subjects); and sponge versus spermicidal (nonoxynol-9) foam at 2 clinics in Israel and Thailand (366 subjects). In all trials the contraceptive methods were raondomly assigned. Clinics were required to follow up subjects for 1 year. Only the US study has been completed. In the comparative trials of the sponge and diaphragm (both US based and overseas) the pregnancy rates were significantly higher for the sponge. In the comparative trials of the sponge and foaming suppositories or spermicidal foam there were no significant differences between the

  14. Marine envenomations.

    Science.gov (United States)

    Balhara, Kamna S; Stolbach, Andrew

    2014-02-01

    This article describes the epidemiology and presentation of human envenomation from marine organisms. Venom pathophysiology, envenomation presentation, and treatment options are discussed for sea snake, stingray, spiny fish, jellyfish, octopus, cone snail, sea urchin, and sponge envenomation. The authors describe the management of common exposures that cause morbidity as well as the keys to recognition and treatment of life-threatening exposures.

  15. Identification of the Antibacterial Compound Produced by the Marine Epiphytic Bacterium Pseudovibrio sp. D323 and Related Sponge-Associated Bacteria

    Directory of Open Access Journals (Sweden)

    Suhelen Egan

    2011-08-01

    Full Text Available Surface-associated marine bacteria often produce secondary metabolites with antagonistic activities. In this study, tropodithietic acid (TDA was identified to be responsible for the antibacterial activity of the marine epiphytic bacterium Pseudovibrio sp. D323 and related strains. Phenol was also produced by these bacteria but was not directly related to the antibacterial activity. TDA was shown to effectively inhibit a range of marine bacteria from various phylogenetic groups. However TDA-producers themselves were resistant and are likely to possess resistance mechanism preventing autoinhibition. We propose that TDA in isolate D323 and related eukaryote-associated bacteria plays a role in defending the host organism against unwanted microbial colonisation and, possibly, bacterial pathogens.

  16. Peniciadametizine A, a Dithiodiketopiperazine with a Unique Spiro[furan-2,7'-pyrazino[1,2-b][1,2]oxazine] Skeleton, and a Related Analogue, Peniciadametizine B, from the Marine Sponge-Derived Fungus Penicillium adametzioides.

    Science.gov (United States)

    Liu, Yang; Mándi, Attila; Li, Xiao-Ming; Meng, Ling-Hong; Kurtán, Tibor; Wang, Bin-Gui

    2015-06-05

    Peniciadametizine A (1); a new dithiodiketopiperazine derivative possessing a unique spiro[furan-2,7'-pyrazino[1,2-b][1,2]oxazine] skeleton, together with a highly oxygenated new analogue, peniciadametizine B (2); as well as two known compounds, brasiliamide A (3); and viridicatumtoxin (4), were isolated and identified from Penicillium adametzioides AS-53, a fungus obtained from an unidentified marine sponge. The unambiguous assignment of the relative and absolute configuration for the spiro center C-2 of compound 1 was solved by the combination of NMR and ECD measurements with Density-Functional Theory (DFT) conformational analysis and Time-Dependent Density-Functional Theory-Electronic Circular Dichroism (TDDFT-ECD) calculations. The spiro[furan-2,7'-pyrazino[1,2-b][1,2]oxazine] skeleton of 1 has not been reported yet among natural products and the biosynthetic pathway for 1 and 2 was discussed. Compounds 1 and 2 showed inhibitory activity against the pathogenic fungus Alternaria brassicae.

  17. Streptomycin affinity depends on 13 amino acids forming a loop in homology modelled ribosomal S12 protein (rpsL gene) of Lysinibacillus sphaericus DSLS5 associated with marine sponge (Tedania anhelans).

    Science.gov (United States)

    Suriyanarayanan, Balasubramanian; Lakshmi, Praveena Pothuraju; Santhosh, Ramachandran Sarojini; Dhevendaran, Kandasamy; Priya, Balakrishnan; Krishna, Shivaani

    2016-06-01

    Streptomycin, an antibiotic used against microbial infections, inhibits the protein synthesis by binding to ribosomal protein S12, encoded by rpsL12 gene, and associated mutations cause streptomycin resistance. A streptomycin resistant, Lysinibacillus sphaericus DSLS5 (MIC >300 µg/mL for streptomycin), was isolated from a marine sponge (Tedania anhelans). The characterisation of rpsL12 gene showed a region having similarity to long terminal repeat sequences of murine lukemia virus which added 13 amino acids for loop formation in RpsL12; in addition, a K56R mutation which corresponds to K43R mutation present in streptomycin-resistant Escherichia coli is also present. The RpsL12 protein was modelled and compared with that of Lysinibacillus boronitolerans, Escherichia coli and Mycobacterium tuberculosis. The modelled proteins docked with streptomycin indicate compound had less affinity. The effect of loop on streptomycin resistance was analysed by constructing three different models of RpsL12 by, (i) removing both loop and mutation, (ii) removing the loop alone while retaining the mutation and (iii) without mutation having loop. The results showed that the presence of loop causes streptomycin resistance (decreases the affinity), and it further enhanced in the presence of mutation at 56th codon. Further study will help in understanding the evolution of streptomycin resistance in organisms.

  18. Distribution and Abundance of Archaea in South China Sea Sponge Holoxea sp. and the Presence of Ammonia-Oxidizing Archaea in Sponge Cells

    Directory of Open Access Journals (Sweden)

    Fang Liu

    2011-01-01

    Full Text Available Compared with bacterial symbionts, little is known about archaea in sponges especially about their spatial distribution and abundance. Understanding the distribution and abundance of ammonia-oxidizing archaea will help greatly in elucidating the potential function of symbionts in nitrogen cycling in sponges. In this study, gene libraries of 16S rRNA gene and ammonia monooxygenase subunit A (amoA genes and quantitative real-time PCR were used to study the spatial distribution and abundance of archaea in the South China Sea sponge Holoxea sp. As a result, Holoxea sp. specific AOA, mainly group C1a (marine group I: Crenarchaeota were identified. The presence of ammonia-oxidizing crenarchaea was observed for the first time within sponge cells. This study suggested a close relationship between sponge host and its archaeal symbionts as well as the archaeal potential contribution to sponge host in the ammonia-oxidizing process of nitrification.

  19. Host-specific microbial communities in three sympatric North Sea sponges

    NARCIS (Netherlands)

    Naim, M.A.; Morillo, J.A.; Sørensen, S.J.; Waleed, A.A.; Smidt, H.; Sipkema, D.

    2014-01-01

    The establishment of next-generation technology sequencing has deepened our knowledge of marine sponge-associated microbiota with the identification of at least 32 phyla of Bacteria and Archaea from a large number of sponge species. In this study, we assessed the diversity of the microbial

  20. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis

    NARCIS (Netherlands)

    Costa, Rodrigo; Keller-Costa, Tina; Gomes, Newton C. M.; Nunes da Rocha, Ulisses; van Overbeek, Leo; van Elsas, Jan Dirk

    To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria

  1. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis.

    NARCIS (Netherlands)

    Costa, R.; Keller-Costa, T.; Gomes, N.C.M.; Nunes da Rocha, U.; Overbeek, van L.S.; Elsas, J.D.

    2013-01-01

    To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria

  2. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.

    Science.gov (United States)

    Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

    2016-05-02

    Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.

  3. Preliminary assessment of sponge biodiversity on Saba Bank, Netherlands Antilles.

    Directory of Open Access Journals (Sweden)

    Robert W Thacker

    Full Text Available BACKGROUND: Saba Bank Atoll, Netherlands Antilles, is one of the three largest atolls on Earth and provides habitat for an extensive coral reef community. To improve our knowledge of this vast marine resource, a survey of biodiversity at Saba Bank included a multi-disciplinary team that sampled fishes, mollusks, crustaceans, macroalgae, and sponges. METHODOLOGY/PRINCIPAL FINDINGS: A single member of the dive team conducted surveys of sponge biodiversity during eight dives at six locations, at depths ranging from 15 to 30 m. This preliminary assessment documented the presence of 45 species pooled across multiple locations. Rarefaction analysis estimated that only 48 to 84% of species diversity was sampled by this limited effort, clearly indicating a need for additional surveys. An analysis of historical collections from Saba and Saba Bank revealed an additional 36 species, yielding a total of 81 sponge species recorded from this area. CONCLUSIONS/SIGNIFICANCE: This observed species composition is similar to that found on widespread Caribbean reefs, indicating that the sponge fauna of Saba Bank is broadly representative of the Caribbean as a whole. A robust population of the giant barrel sponge, Xestospongia muta, appeared healthy with none of the signs of disease or bleaching reported from other Caribbean reefs; however, more recent reports of anchor chain damage to these sponges suggests that human activities can have dramatic impacts on these communities. Opportunities to protect this extremely large habitat should be pursued, as Saba Bank may serve as a significant reservoir of sponge species diversity.

  4. First report on chitinous holdfast in sponges (Porifera).

    Science.gov (United States)

    Ehrlich, Hermann; Kaluzhnaya, Oksana V; Tsurkan, Mikhail V; Ereskovsky, Alexander; Tabachnick, Konstantin R; Ilan, Micha; Stelling, Allison; Galli, Roberta; Petrova, Olga V; Nekipelov, Serguei V; Sivkov, Victor N; Vyalikh, Denis; Born, René; Behm, Thomas; Ehrlich, Andre; Chernogor, Lubov I; Belikov, Sergei; Janussen, Dorte; Bazhenov, Vasilii V; Wörheide, Gert

    2013-07-07

    A holdfast is a root- or basal plate-like structure of principal importance that anchors aquatic sessile organisms, including sponges, to hard substrates. There is to date little information about the nature and origin of sponges' holdfasts in both marine and freshwater environments. This work, to our knowledge, demonstrates for the first time that chitin is an important structural component within holdfasts of the endemic freshwater demosponge Lubomirskia baicalensis. Using a variety of techniques (near-edge X-ray absorption fine structure, Raman, electrospray ionization mas spectrometry, Morgan-Elson assay and Calcofluor White staining), we show that chitin from the sponge holdfast is much closer to α-chitin than to β-chitin. Most of the three-dimensional fibrous skeleton of this sponge consists of spicule-containing proteinaceous spongin. Intriguingly, the chitinous holdfast is not spongin-based, and is ontogenetically the oldest part of the sponge body. Sequencing revealed the presence of four previously undescribed genes encoding chitin synthases in the L. baicalensis sponge. This discovery of chitin within freshwater sponge holdfasts highlights the novel and specific functions of this biopolymer within these ancient sessile invertebrates.

  5. Freshwater sponges of Suriname

    NARCIS (Netherlands)

    Ezcurra de Drago, Inés

    1975-01-01

    This paper is the first contribution to the knowledge of the freshwater sponges of Suriname. Four species have been identified up till now: Metania spinata (Carter, 1881), Trochospongilla paulula (Bowerbank, 1863), Radiospongilla crateriformis (Potts, 1882), and Drulia uruguayensis Bonetto & Ezcurra

  6. A New Sponge, Antho (Acarnia seogwipoensis (Poecilosclerida: Microcionidae from Korea

    Directory of Open Access Journals (Sweden)

    Kim, Hyung June

    2015-07-01

    Full Text Available A new marine sponge, Antho (Acarnia seogwipoensis n. sp., of the family Microcionidae, was collected from Seogwipo-si, Jeju-do, Korea, about 100 m in depth using a gill net on 1969. The genus Antho Gray, 1867 including Demospongiae, Poecilosclerida, Microcionidae, is a large group of sponges. About 100 species in Antho were reported from worldwide. The genus Antho contains five subgenera: Antho, Acarnia, Isopenectya, Jia, and Plocamia. Among them, about 30 species in Acarnia were described in world sponge. A new sponge's body shape is branching, size up to 124 mm wide, 213 mm high, 3-8 mm thick in branch and 7-9 mm thick in stalk. Antho (Acarnia seogwipoensis n. sp. is similar to A. (A. novizelanicum Ridley and Duncan, 1881 based on their spicules type and skeletal structure, but differs in the spicules dimension and growth form. This new species is branched growth form and have three kinds of toxa.

  7. Emerging Sponge Models of Animal-Microbe Symbioses

    Science.gov (United States)

    Pita, Lucia; Fraune, Sebastian; Hentschel, Ute

    2016-01-01

    Sponges have a significant impact on marine benthic communities, they are of biotechnological interest owing to their production of bioactive natural compounds, and they promise to provide insights into conserved mechanisms of host–microbe interactions in basal metazoans. The natural variability of sponge-microbe associations across species and environments provides a meaningful ecological and evolutionary framework to investigate animal-microbial symbiosis through experimentation in the field and also in aquaria. In addition, next-generation sequencing technologies have shed light on the genomic repertoire of the sponge host and revealed metabolic capacities and symbiotic lifestyle features of their microbiota. However, our understanding of symbiotic mechanisms is still in its infancy. Here, we discuss the potential and limitations of the sponge-microbe symbiosis as emerging models for animal-associated microbiota. PMID:28066403

  8. ESTUDIO QUÍMICO DE LAS FRACCIONES ESTERÓLICAS DE ESPONJAS MARINAS RECOLECTADAS EN EL CARIBE COLOMBIANO CHEMICAL STUDY OF THE ESTEROLIC FRACTIONS OF MARINE SPONGES COLLECTED IN THE CARIBBEAN COLOMBIAN

    Directory of Open Access Journals (Sweden)

    MARY CECILIA MONTAÑO

    2009-12-01

    Full Text Available De las esponjas marinas recolectadas en el Caribe Colombiano Amorphinopsis atlantica, Lissodendoryx carolinensis, Mycale microsigmatosa, Tedania ignis y Niphates erecta se obtuvieron las fracciones esterólicas, las cuales fueron analizadas por cromatografía de gases de alta resolución acoplada a espectrometría de masas. Se identificaron 51 esteroles (12 en A. atlantica, 9 en L. carolinensis, 13 en M. microsigmatosa, 7 en T. ignis y 10 en N. erecta, siendo los esteroles con núcleo Δ5 los que predominan (60.78% de abundancia, seguido de los esteroles con núcleo Δ7 (21.57% y por último los esteroles con núcleo Δ0 (17.64%. Las cadenas lasterales de estos compuestos variaron entre 7 y 11 átomos de carbono, algunas saturadas y otras insaturadas en los carbonos C-22 o C-24(28. Se mostraron 16 cadenas laterales diferentes para los 51 compuestos: 6 con diez átomos de carbono, 4 con ocho átomos de carbono, 4 con nueve átomos de carbonos, 1 con siete átomos de carbono y 1 con once átomos de carbonos; seis de estas cadenas laterales propuestas presentan instauración en el carbono 22 y cuatro de estas cadenas laterales presentan instauración entre los carbonos 24-28. El compuesto 5α-colestan-3β-ol para la esponja A. atlantica fue el compuesto mayoritario en la fracción esterólica con una abundancia de 48.36%, el compuesto 5α-Colestan-3β-ol (Colesterol fue el compuesto mayoritario en las fracciones de las esponjas L. carolinenis, M. microsigmatosa, T. ignis y N. erecta, con una abundancia de 66.81%, 49.92%, 33.19% y 23.64%, respectivamente.Sterolic fractions were obtained from the marine sponges Amorphinopsis atlantica, Lissodendoryx carolinensis, Mycale microsigmatosa, Tedania ignis and Niphates erecta from the Colombian Caribbean coast. These were analyzed in high resolution gas chromatography connected to the mass spectrometry. 51 sterols were identified (12 in the A. atlantica, 9 in the L. carolinensis, 13 in the M. microsigmatosa

  9. From anti-fouling to biofilm inhibition: New cytotoxic secondary metabolites from two Indonesian Agelas sponges

    NARCIS (Netherlands)

    Hertiani, T.; Edrada-Ebel, R.; Ortlepp, S.; van Soest, R.W.M.; de Voogd, N.J.; Wray, V.; Hentschel, U.; Kozytska, S.; Müller, W.E.G.; Proksch, P.

    2010-01-01

    Chemical investigation of Indonesian marine sponges Agelas linnaei and A. nakamurai afforded 24 alkaloid derivatives representing either bromopyrrole or diterpene alkaloids. A. linnaei yielded 16 bromopyrrole alkaloids including 11 new natural products with the latter exhibiting unusual functionalit

  10. Macrofauna inhabiting the sponge Paraleucilla magna (Porifera: Calcarea) in Rio de Janeiro, Brazil

    National Research Council Canada - National Science Library

    André Padua; Emilio Lanna; Michelle Klautau

    2013-01-01

      Sponges (phylum Porifera) are important components of the benthic marine fauna known for their interactions with vertebrates and a large number of invertebrates seeking for food, shelter or substrate for attachment...

  11. Growth inhibition of periphytic diatoms by methanol extracts of sponges and holothurians

    Digital Repository Service at National Institute of Oceanography (India)

    Mokashe, S.S.; Garg, A; Anil, A; Wagh, A

    Crude methanol extracts of a holothurian Holothuria leucospilota, and two sponges Craniella sp. and Ircinia ramosa were tested for their inhibitory effects on the growth of two marine diatoms, Navicula subinflata and N. crucicula, by diatom plating...

  12. In vitro antibacterial and antifungal activities of twelve sponges collected from the Anambas Islands, Indonesia

    Directory of Open Access Journals (Sweden)

    Masteria Yunovilsa Putra

    2016-09-01

    Full Text Available Objective: To evaluate antimicrobial activities in methanolic extracts of twelve sponges collected from the Anambas Islands, Indonesia. Methods: The antibacterial activity of methanolic extracts was tested against two Grampositive bacteria, viz. Bacillus subtilis (ATCC 6633 and Staphylococcus aureus (ATCC 25923, and two Gram-negative bacteria, viz. Eschericia coli (ATCC 25922 and Vibrio anguillarum (ATCC 19264 using the disk diffusion assay. The antifungal activity was similarly tested against Candida albicans (ATCC 10231 and Aspergillus niger (ATCC 16404. The minimum inhibitory concentrations of promising sponges extracts were determined by the microdilution technique. Results: All the sponge species in this study showed antimicrobial activities against at least one of the test strains. Antibacterial activities were observed in 66.7% of the sponges extracts, while 30.0% of the extracts exhibited antifungal activities. Among them, the extracts of the sponges Stylissa massa and Axinyssa sp. were the most active against four tested bacteria and the yeast Candida albicans. The sponge Theonella swinhoei and two species of Xestospongia also displayed significant activities against two fungal pathogens Candida albicans and Aspergillus niger. Conclusions: Antimicrobial activities were demonstrated in extracts from various marine sponges collected from the Anambas Islands, Indonesia. The most promising sponges among them were Stylissa massa and Axinyssa sp. This is the first report of antimicrobial activity in extracts of marine sponges from the Indonesian Anambas Islands.

  13. Entotheonella Bacteria as Source of Sponge-Derived Natural Products: Opportunities for Biotechnological Production.

    Science.gov (United States)

    Bhushan, Agneya; Peters, Eike E; Piel, Jörn

    2017-01-01

    Marine sponges belong to the oldest animals existing today. Apart from their role in recycling of carbon and nitrogen in the ocean, they are also an important source of a wide variety of structurally diverse bioactive natural products. Over the past few decades, a multitude of compounds from sponges have been discovered exhibiting diverse, pharmacologically promising activities. However, in many cases the low substance quantities present in the sponge tissue would require the collection of large amounts of sponge material, thus impeding further drug development. Recent research has focused on understanding natural product biosynthesis in sponges and on investigating symbiotic bacteria as possible production sources in order to develop sustainable production systems. This chapter covers research efforts that have taken place over the past few years involving the identification of 'Entotheonella' symbionts responsible for production of sponge compounds, as well as the elucidation of their biosynthetic routes, highlighting future biotechnological applications.

  14. Habitat- and host-related variation in sponge bacterial symbiont communities in Indonesian waters

    NARCIS (Netherlands)

    Cleary, D.F.R.; Becking, L.E.; Voogd, de N.J.; Pires, A.C.C.; Polonia, A.; Egas, C.; Gomes, N.

    2013-01-01

    Marine lakes are unique ecosystems that contain isolated populations of marine organisms. Isolated from the surrounding marine habitat, many lakes house numerous endemic species. In this study, microbial communities of sponges inhabiting these lakes were investigated for the first time using barcode

  15. Sponge cell culture? A molecular identification method for sponge cells

    NARCIS (Netherlands)

    Sipkema, D.; Heilig, G.H.J.; Akkermans, A.D.L.; Osinga, R.; Tramper, J.; Wijffels, R.H.

    2003-01-01

    Dissociated sponge cells are easily confused with unicellular organisms. This has been an obstacle in the development of sponge-cell lines. We developed a molecular detection method to identify cells of the sponge Dysidea avara in dissociated cell cultures. The 18S ribosomal RNA gene from a Dysidea

  16. Could some coral reefs become sponge reefs as our climate changes?

    Science.gov (United States)

    Bell, James J; Davy, Simon K; Jones, Timothy; Taylor, Michael W; Webster, Nicole S

    2013-09-01

    Coral reefs across the world have been seriously degraded and have a bleak future in response to predicted global warming and ocean acidification (OA). However, this is not the first time that biocalcifying organisms, including corals, have faced the threat of extinction. The end-Triassic mass extinction (200 million years ago) was the most severe biotic crisis experienced by modern marine invertebrates, which selected against biocalcifiers; this was followed by the proliferation of another invertebrate group, sponges. The duration of this sponge-dominated period far surpasses that of alternative stable-ecosystem or phase-shift states reported on modern day coral reefs and, as such, a shift to sponge-dominated reefs warrants serious consideration as one future trajectory of coral reefs. We hypothesise that some coral reefs of today may become sponge reefs in the future, as sponges and corals respond differently to changing ocean chemistry and environmental conditions. To support this hypothesis, we discuss: (i) the presence of sponge reefs in the geological record; (ii) reported shifts from coral- to sponge-dominated systems; and (iii) direct and indirect responses of the sponge holobiont and its constituent parts (host and symbionts) to changes in temperature and pH. Based on this evidence, we propose that sponges may be one group to benefit from projected climate change and ocean acidification scenarios, and that increased sponge abundance represents a possible future trajectory for some coral reefs, which would have important implications for overall reef functioning. © 2013 John Wiley & Sons Ltd.

  17. Stable microbial communities in the sponge Crambe crambe from inside and outside a polluted Mediterranean harbor.

    Science.gov (United States)

    Gantt, Shelby E; López-Legentil, Susanna; Erwin, Patrick M

    2017-06-15

    Marine sponges have been shown to harbor diverse microbial symbiont communities that play key roles in host functioning, yet little is known about how anthropogenic disturbances impact sponge-microbe interactions. The Mediterranean sponge Crambe crambe is known to accumulate heavy metals in polluted harbors. In this study, we investigated whether the microbiome of C. crambe differed between sponges inhabiting a polluted harbor in Blanes (Spain) and a nearby (86% of all sequence reads. These results indicate that sponge microbiomes exhibit greater stability and pollution tolerance than their free-living microbial counterparts, potentially mitigating the effects of pollutants on coastal marine communities. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Ketide Synthase (KS) Domain Prediction and Analysis of Iterative Type II PKS Gene in Marine Sponge-Associated Actinobacteria Producing Biosurfactants and Antimicrobial Agents.

    Science.gov (United States)

    Selvin, Joseph; Sathiyanarayanan, Ganesan; Lipton, Anuj N; Al-Dhabi, Naif Abdullah; Valan Arasu, Mariadhas; Kiran, George S

    2016-01-01

    The important biological macromolecules, such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS) genes was explored. A unique feature of type II PKS genes is their high amino acid (AA) sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of AA sequence encoded by PKS domains tailored the chemical structure of polyketide analogs still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species to correlate KS domain architecture and structural features. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products.

  19. Ketide Synthase (KS domain prediction and analysis of iterative type II PKS gene in marine sponge-associated actinobacteria producing biosurfactants and antimicrobial agents

    Directory of Open Access Journals (Sweden)

    George Seghal Kiran

    2016-02-01

    Full Text Available The important biological macromolecules such as lipopeptide and glycolipid biosurfactant producing marine actinobacteria were analyzed and their potential linkage between type II polyketide synthase (PKS genes was also explored. A unique feature of type II PKS genes is their high amino acid sequence homology and conserved gene organization. These enzymes mediate the biosynthesis of polyketide natural products with enormous structural complexity and chemical nature by combinatorial use of various domains. Therefore, deciphering the order of amino acid sequence encoded by PKS domains tailored the chemical structure of polyketide analogues still remains a great challenge. The present work deals with an in vitro and in silico analysis of PKS type II genes from five actinobacterial species with known PKS and metabolic products to correlate the domain architecture and structural features shared with known PKS proteins. Our present analysis reveals the unique protein domain organization of iterative type II PKS and KS domain of marine actinobacteria. The findings of this study would have implications in metabolic pathway reconstruction and design of semi-synthetic genomes to achieve rational design of novel natural products.

  20. Secondary metabolites extracted from marine sponge associated Comamonas testosteroni and Citrobacter freundii as potential antimicrobials against MDR pathogens and hypothetical leads for VP40 matrix protein of Ebola virus: an in vitro and in silico investigation.

    Science.gov (United States)

    Skariyachan, Sinosh; Acharya, Archana B; Subramaniyan, Saumya; Babu, Sumangala; Kulkarni, Shruthi; Narayanappa, Rajeswari

    2016-09-01

    The current study explores therapeutic potential of metabolites extracted from marine sponge (Cliona sp.)-associated bacteria against MDR pathogens and predicts the binding prospective of probable lead molecules against VP40 target of Ebola virus. The metabolite-producing bacteria were characterized by agar overlay assay and as per the protocols in Bergey's manual of determinative bacteriology. The antibacterial activities of extracted metabolites were tested against clinical pathogens by well-diffusion assay. The selected metabolite producers were characterized by 16S rDNA sequencing. Chemical screening and Fourier Transform Infrared (FTIR) analysis for selected compounds were performed. The probable lead molecules present in the metabolites were hypothesized based on proximate analysis, FTIR data, and literature survey. The drug-like properties and binding potential of lead molecules against VP40 target of Ebola virus were hypothesized by computational virtual screening and molecular docking. The current study demonstrated that clear zones around bacterial colonies in agar overlay assay. Antibiotic sensitivity profiling demonstrated that the clinical isolates were multi-drug resistant, however; most of them showed sensitivity to secondary metabolites (MIC-15 μl/well). The proximate and FTIR analysis suggested that probable metabolites belonged to alkaloids with O-H, C-H, C=O, and N-H groups. 16S rDNA characterization of selected metabolite producers demonstrated that 96% and 99% sequence identity to Comamonas testosteroni and Citrobacter freundii, respectively. The docking studies suggested that molecules such as Gymnastatin, Sorbicillactone, Marizomib, and Daryamide can designed as probable lead candidates against VP40 target of Ebola virus.

  1. Oxygen consumption by a coral reef sponge.

    Science.gov (United States)

    Hadas, Eran; Ilan, Micha; Shpigel, Muki

    2008-07-01

    Oxygen consumption of the Red Sea coral reef sponge Negombata magnifica was measured using both incubation and steady-state methods. The latter method was found to be the more reliable because sponge activity remained stable over time. Oxygen consumption rate was measured during three levels of sponge activity: full activity, reduced activity and basal activity (starved). It was found that the active oxygen consumption rate of N. magnifica averaged 37.3+/-4.6 nmol O2 min(-1) g(-1) wet mass, which is within the upper range reported for other tropical marine sponges. Fully active N. magnifica individuals consumed an average of 41.8+/-3.2 nmol O2 min(-1) g(-1) wet mass. The mean basal respiration rate was 20.2+/-1.2 nmol O2 min(-1) g(-1) wet mass, which is 51.6+/-2.5% of the active respiration rate. Therefore, the oxygen used for water pumping was calculated to be at most 10.6+/-1.8 nmol O2 min(-1) g(-1) wet mass, which is 25.1+/-3.6% of the total respiration. Combined oxygen used for maintenance and water pumping activity was calculated to be 30.8 nmol O2 min(-1) g(-1) wet mass, which is approximately 74% of the sponge's total oxygen requirement. The remaining oxygen is directed to other physiological activities, mainly the energy requirement of growth. These findings suggest that only a relatively minor amount of energy is potentially available for growth, and thus might be a factor in controlling the growth rate of N. magnifica in oligotrophic coral reefs.

  2. Similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission.

    Science.gov (United States)

    Sipkema, Detmer; de Caralt, Sònia; Morillo, Jose A; Al-Soud, Waleed Abu; Sørensen, Søren J; Smidt, Hauke; Uriz, María J

    2015-10-01

    Marine sponges host diverse communities of microorganisms that are often vertically transmitted from mother to oocyte or embryo. Horizontal transmission has often been proposed to co-occur in marine sponges, but the mechanism is poorly understood. To assess the impact of the mode of transmission on the microbial assemblages of sponges, we analysed the microbiota in sympatric sponges that have previously been reported to acquire bacteria via either vertical (Corticium candelabrum and Crambe crambe) or horizontal transmission (Petrosia ficiformis). The comparative study was performed by polymerase chain reaction-denaturing gradient gel electrophoresis and pyrosequencing of barcoded PCR-amplified 16S rRNA gene fragments. We found that P. ficiformis and C. candelabrum each harbour their own species-specific bacteria, but they are similar to other high-microbial-abundance sponges, while the low-microbial-abundance sponge C. crambe hosts microbiota of a very different phylogenetic signature. In addition, nearly 50% of the reads obtained from P. ficiformis were most closely related to bacteria that were previously reported to be vertically transmitted in other sponges and comprised vertical-horizontal transmission phylogenetic clusters (VHT clusters). Therefore, our results provide evidence for the hypothesis that similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission.

  3. Characterization of Bacterial, Archaeal and Eukaryote Symbionts from Antarctic Sponges Reveals a High Diversity at a Three-Domain Level and a Particular Signature for This Ecosystem

    Science.gov (United States)

    Rodríguez-Marconi, Susana; De la Iglesia, Rodrigo; Díez, Beatriz; Fonseca, Cássio A.; Hajdu, Eduardo; Trefault, Nicole

    2015-01-01

    Sponge-associated microbial communities include members from the three domains of life. In the case of bacteria, they are diverse, host specific and different from the surrounding seawater. However, little is known about the diversity and specificity of Eukarya and Archaea living in association with marine sponges. This knowledge gap is even greater regarding sponges from regions other than temperate and tropical environments. In Antarctica, marine sponges are abundant and important members of the benthos, structuring the Antarctic marine ecosystem. In this study, we used high throughput ribosomal gene sequencing to investigate the three-domain diversity and community composition from eight different Antarctic sponges. Taxonomic identification reveals that they belong to families Acarnidae, Chalinidae, Hymedesmiidae, Hymeniacidonidae, Leucettidae, Microcionidae, and Myxillidae. Our study indicates that there are different diversity and similarity patterns between bacterial/archaeal and eukaryote microbial symbionts from these Antarctic marine sponges, indicating inherent differences in how organisms from different domains establish symbiotic relationships. In general, when considering diversity indices and number of phyla detected, sponge-associated communities are more diverse than the planktonic communities. We conclude that three-domain microbial communities from Antarctic sponges are different from surrounding planktonic communities, expanding previous observations for Bacteria and including the Antarctic environment. Furthermore, we reveal differences in the composition of the sponge associated bacterial assemblages between Antarctic and tropical-temperate environments and the presence of a highly complex microbial eukaryote community, suggesting a particular signature for Antarctic sponges, different to that reported from other ecosystems. PMID:26421612

  4. Actinomycetes from the South China Sea sponges: isolation, diversity and potential for aromatic polyketides discovery

    Directory of Open Access Journals (Sweden)

    Zhiyong eLi

    2015-10-01

    Full Text Available Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a total of 77 actinomycete strains were isolated from 15 South China Sea sponge species. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 12 families and 20 genera, among which three rare genera (Marihabitans, Polymorphospora and Streptomonospora were isolated from marine sponges for the first time. Subsequently, β-ketoacyl synthase (KSα gene was used as marker for evaluating the potential of the actinomycete strains to produce aromatic polyketides. As a result, KSα gene was detected in 35 isolates related to 7 genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis, Saccharopolyspora, Salinispora and Streptomyces. Finally, ten strains were selected for small-scale fermentation, and one angucycline compound was detected from the culture extract of Streptomyces anulatus strain S71. This study advanced our knowledge of the sponge-associated actinomycetes regarding their diversity and potential in producing aromatic polyketides.

  5. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery

    Science.gov (United States)

    Sun, Wei; Zhang, Fengli; He, Liming; Karthik, Loganathan; Li, Zhiyong

    2015-01-01

    Marine sponges often harbor dense and diverse microbial communities including actinobacteria. To date no comprehensive investigation has been performed on the culturable diversity of the actinomycetes associated with South China Sea sponges. Structurally novel aromatic polyketides were recently discovered from marine sponge-derived Streptomyces and Saccharopolyspora strains, suggesting that sponge-associated actinomycetes can serve as a new source of aromatic polyketides. In this study, a total of 77 actinomycete strains were isolated from 15 South China Sea sponge species. Phylogenetic characterization of the isolates based on 16S rRNA gene sequencing supported their assignment to 12 families and 20 genera, among which three rare genera (Marihabitans, Polymorphospora, and Streptomonospora) were isolated from marine sponges for the first time. Subsequently, β-ketoacyl synthase (KSα) gene was used as marker for evaluating the potential of the actinomycete strains to produce aromatic polyketides. As a result, KSα gene was detected in 35 isolates related to seven genera (Kocuria, Micromonospora, Nocardia, Nocardiopsis, Saccharopolyspora, Salinispora, and Streptomyces). Finally, 10 strains were selected for small-scale fermentation, and one angucycline compound was detected from the culture extract of Streptomyces anulatus strain S71. This study advanced our knowledge of the sponge-associated actinomycetes regarding their diversity and potential in producing aromatic polyketides. PMID:26483773

  6. Identification of the protease inhibitor miraziridine A in the Red sea sponge Theonella swinhoei

    Directory of Open Access Journals (Sweden)

    Paula Tabares

    2012-01-01

    Full Text Available Background : Miraziridine A, a natural peptide isolated from a marine sponge, is a potent cathepsin B inhibitor with a second-order rate constant of 1.5 x 10 4 M -1 s -1 . In the present study, miraziridine A was isolated from the Red Sea sponge Theonella swinhoei on the basis of chromatographic and spectrometric techniques. We conclude that T. swinhoei from the Red Sea represents an alternative source of the aziridinylpeptide miraziridine A to the previously identified Theonella mirabilis from Japan. We confirmed that the metabolite is produced by marine sponges from different geographical locations. Context : Marine sponges have been proven to be a rich source of secondary metabolites exhibiting a huge diversity of biological activities, including antimicrobial, antitumor and immunomodulatory activities. Theonella species (order Lithistida, Demospongiae have been shown to be a source of anti-protease and anti-HIV secondary metabolites. Aims : To identify the protease inhibitor mirazirine A in the marine sponge Theonella swinhoei. Material and Methods : The marine sponge Theonella swinhoei was collected by SCUBA diving in the Red Sea in Eilat (Israel. Sponge material was lyophilized and further extracted successively with cyclohexane, dichloromethane and methanol to obtain three crude extracts. LC-MS analysis was performed to confirm the presence of Miraziridine A in the dichloromethane fraction. Results : In the present study, miraziridine A was isolated from the Red Sea sponge T. swinhoei on the basis of chromatographic and spectrophotometric techniques. Conclusions : We conclude that T. swinhoei from the Red Sea represents an alternative source of the aziridinylpeptide miraziridine A to the previously identified Theonella mirabilis from Japan.

  7. Marine-derived fungi as a source of proteases

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, T.; Rodrigues, C.; Naik, C.G.

    Microbial enzymes have continued to assist diverse reactions as biocatalysts. Marine derived microbes offer a prospective resource for such enzymes. In this study thirteen fungi were isolated from marine organisms (soft coral and sponge) collected...

  8. Investigations on abundance and activity of microbial sponge symbionts using quantitative real - time PCR

    DEFF Research Database (Denmark)

    Kumala, Lars; Hentschel, Ute; Bayer, Kristina

    Marine sponges are hosts to dense and diverse microbial consortia that are likely to play a key role in the metabolic processes of the host sponge due to their enormous abundance. Common symbioses between nitrogen transforming microorganisms and sponges indicate complex nitrogen cycling within...... the host. Of particular interest is determining the community structure and function of microbial symbionts in order to gain deeper insight into host-symbiont interactions. We investigated the abundance and activity of microbial symbionts in two Mediterranean sponge species using quantitative real-time PCR....... An absolute quantification of functional genes and transcripts in archaeal and bacterial symbionts was conducted to determine their involvement in nitrification and denitrification, comparing the low microbial abundance (LMA) sponge Dysidea avara with the high microbial abundance (HMA) representative Aplysina...

  9. Twelve new Demospongiae (Porifera) from Chilean fjords, with remarks upon sponge-derived biogeographic compartments in the SE Pacific.

    Science.gov (United States)

    Hajdu, Eduardo; Desqueyroux-Faúndez, Ruth; Carvalho, Mariana De Souza; Lôbo-Hajdu, Gisele; Willenz, Philippe

    2013-12-02

    This article reports on 12 new species originating from the Chilean fjords region, namely Clathria (Microciona) mytilifila sp. nov., Haliclona (Reniera) caduca sp. nov., Latrunculia (L.) ciruela sp. nov., Latrunculia (L.) copihuensis sp. nov., Latrunculia (L.) verenae sp. nov., Latrunculia (L.) yepayek sp. nov., Myxilla (Burtonanchora) araucana sp. nov., Neopodospongia tupecomareni sp. nov., Oceanapia guaiteca sp. nov., Oceanapia spinisphaera sp. nov., Suberites cranium sp. nov. and Tethya melinka sp. nov. The material studied was collected between 5 and 30 m depth at latitudes comprised between 42º and 50ºS, and is part of a large collection of Chilean sponges gathered by an international team in a series of expeditions. Identification keys are provided for SE Pacific Suberites and Latrunculia, and the known species of Myxilla (Burtonanchora) and Neopodospongia. A trans-Pacific link to the New Zealand fauna was retrieved for the latter genus. Distribution ranges apparent from the materials studied here are judged too preliminary to allow any inference on biotic boundaries in the SE Pacific. A revision of earlier assertions about these biogeographic units and their boundaries concluded that very little support remains other than for existence of a Magellanic fauna. This is in part a consequence of revising the taxonomy of sponge species originally deemed to underpin these areas. Specifically, the former proposal of a Central to Southern Chile biogeographic unit (33-56ºS) has been markedly undone. 

  10. The Characterization of Fish (Tilapia Collagen Sponge as a Biomaterial

    Directory of Open Access Journals (Sweden)

    Kohei Yamamoto

    2015-01-01

    Full Text Available For scaffold manufacturing, the utility of bioactive natural organic materials derived from marine products is useful and indispensable as an alternative to bovine collagen. The weakest feature of fish collagen for scaffold application is its low degeneration temperature (Td, indicating poor stability of fish collagen in mammals in vivo. We have focused on the tropical fish tilapia as a candidate for generating a clinical scaffold. The aim of this study was to confirm the Td of tilapia type I atelocollagen (TAC for biomedical application. Furthermore, the physical and structural properties were investigated and evaluated as a scaffold on a sponge form. Different concentrations {0.5%, 1.0%, and 2.0% (v/v} of TAC solution were analyzed. Differential scanning calorimetry showed that the Td of TAC was 35-36°C. The scanning electron microscopy results indicated that the pore size (90–160 μm of TAC sponges is acceptable for cell proliferation. The tensile strength of porous sponges was in the range of 0.01–0.07 MPa. These findings indicate that the TAC sponge prepared from tilapia is one of candidates as a scaffold. The 1.0% (v/v concentration of TAC solution is especially recommended to be advantageous for preparing and handling the solution and for sponge formation.

  11. Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates Atividade antibiótica, citotóxica e de inibição enzimática de extratos brutos de invertebrados marinhos do Brasil

    Directory of Open Access Journals (Sweden)

    Mirna H. R. Seleghim

    2007-09-01

    Full Text Available Herein we present the results of a screening with 349 crude extracts of Brazilian marine sponges, ascidians, bryozoans and octocorals, against 16 strains of susceptible and antibiotic-resistant bacteria, one yeast (Candida albicans, Mycobacterium tuberculosis H37Rv, three cancer cell lines MCF-7 (breast, B16 (murine melanoma and HCT8 (colon, and Leishmania tarentolae adenine phosphoribosyl transferase (L-APRT enzyme. Less than 15% of marine sponge crude extracts displayed antibacterial activity, both against susceptible and antibiotic-resistant bacteria. Up to 40% of marine sponge crude extracts displayed antimycobacterial activity against M. tuberculosis H37Rv. Cytotoxicity was observed for 18% of marine sponge crude extracts. Finally, less than 3% of sponge extracts inhibited L-APRT. Less than 10% of ascidian crude extracts displayed antibacterial activity. More than 25% of ascidian crude extracts were active against M. tuberculosis and the three cancer cell lines. Only two crude extracts from the ascidian Polysyncraton sp. collected in different seasons (1995 and 1997 displayed activity against L-APRT. Less than 2% of bryozoan and octocoral crude extracts presented antibacterial activity, but a high percentage of crude extracts from bryozoan and octororal displayed cytotoxic (11% and 30%, respectively and antimycobacterial (60% activities. The extract of only one species of bryozoan, Bugula sp., presented inhibitory activity against L-APRT. Overall, the crude extracts of marine invertebrates herein investigated presented a high level of cytotoxic and antimycobacterial activities, a lower level of antibacterial activity and only a small number of crude extracts inhibited L-APRT. Taxonomic analysis of some of the more potently active crude extracts showed the occurrence of biological activity in taxa that have been previously chemically investigated. These include marine sponges belonging to genera Aaptos, Aplysina, Callyspongia, Haliclona

  12. Biodiversity of Macrofauna Associated with Sponges across Ecological Gradients in the Central Red Sea

    KAUST Repository

    Kandler, Nora

    2015-12-01

    Between 33 and 91 percent of marine species are currently undescribed, with the majority occurring in tropical and offshore environments. Sponges act as important microhabitats and promote biodiversity by harboring a wide variety of macrofauna and microbiota, but little is known about the relationships between the sponges and their symbionts. This study uses DNA barcoding to examine the macrofaunal communities associated with sponges of the central Saudi Arabian Red Sea, a drastically understudied ecosystem with high biodiversity and endemism. In total, 185 epifaunal and infaunal operational taxonomic units (OTUs) were distinguished from the 1399 successfully-sequenced macrofauna individuals from 129 sponges representing seven sponge species, one of which (Stylissa carteri) was intensively studied. A significant difference was found in the macrofaunal community composition of Stylissa carteri along a cross-shelf gradient using relative OTU abundance (Bray-Curtis diversity index). The abundance of S. carteri also follows a cross-shelf gradient, increasing with proximity to shore. The difference in macrofaunal communities of several species of sponges at one location was found to be significant as well, using OTU presence (binary Jaccard diversity index). Four of the seven sponge species collected were dominated by a single annelid OTU, each unique to one sponge species. A fifth was dominated by four arthropod OTUs, all species-specific as well. Region-based diversity differences may be attributed to environmental factors such as reef morphology, water flow, and sedimentation, whereas species-based differences may be caused by sponge morphology, microbial abundances, and chemical defenses. As climate change and ocean acidification continue to modify coral reef ecosystems, understanding the ecology of sponges and their role as microhabitats may become more important. This thesis also includes a supplemental document in the form of a spreadsheet showing the number of

  13. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals.

    Science.gov (United States)

    Loh, Tse-Lynn; McMurray, Steven E; Henkel, Timothy P; Vicente, Jan; Pawlik, Joseph R

    2015-01-01

    Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs) with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes) were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals. An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites), a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.

  14. Indirect effects of overfishing on Caribbean reefs: sponges overgrow reef-building corals

    Directory of Open Access Journals (Sweden)

    Tse-Lynn Loh

    2015-04-01

    Full Text Available Consumer-mediated indirect effects at the community level are difficult to demonstrate empirically. Here, we show an explicit indirect effect of overfishing on competition between sponges and reef-building corals from surveys of 69 sites across the Caribbean. Leveraging the large-scale, long-term removal of sponge predators, we selected overfished sites where intensive methods, primarily fish-trapping, have been employed for decades or more, and compared them to sites in remote or marine protected areas (MPAs with variable levels of enforcement. Sponge-eating fishes (angelfishes and parrotfishes were counted at each site, and the benthos surveyed, with coral colonies scored for interaction with sponges. Overfished sites had >3 fold more overgrowth of corals by sponges, and mean coral contact with sponges was 25.6%, compared with 12.0% at less-fished sites. Greater contact with corals by sponges at overfished sites was mostly by sponge species palatable to sponge predators. Palatable species have faster rates of growth or reproduction than defended sponge species, which instead make metabolically expensive chemical defenses. These results validate the top-down conceptual model of sponge community ecology for Caribbean reefs, as well as provide an unambiguous justification for MPAs to protect threatened reef-building corals.An unanticipated outcome of the benthic survey component of this study was that overfished sites had lower mean macroalgal cover (23.1% vs. 38.1% for less-fished sites, a result that is contrary to prevailing assumptions about seaweed control by herbivorous fishes. Because we did not quantify herbivores for this study, we interpret this result with caution, but suggest that additional large-scale studies comparing intensively overfished and MPA sites are warranted to examine the relative impacts of herbivorous fishes and urchins on Caribbean reefs.

  15. First documentation of tidal-channel sponge biostromes (upper Pleistocene, southeastern Florida)

    Science.gov (United States)

    Cunningham, K.J.; Rigby, J.K.; Wacker, M.A.; Curran, H.A.

    2007-01-01

    Sponges are not a common principal component of Cenozoic reefs and are more typically dominant in deep-water and/or cold-water localities. Here we report the discovery of extensive upper Pleistocene shallow-marine, tropical sponge biostromes from the Mami Limestone of southeastern Florida built by a new ceractinomorph demosponge. These upright, barrel- to vase-shaped sponges occur in monospecific aggregations constructed within the tidal channels of an oolitic tidal-bar belt similar to modern examples on the Great Bahama Bank. The biostromes appear to have a ribbon-like geometry, with densely spaced sponges populating a paleochannel along a 3.5 km extent in the most lengthy biostrome. These are very large (as high as 2 m and 1.8 m in diameter), particularly well-preserved calcified sponges with walls as hard as concrete. Quartz grains are the most common particles agglutinated in the structure of the sponge walls. Where exposed, sediment fill between the sponges is commonly a highly burrowed or cross-bedded ooid-bearing grainstone and, locally, quartz sand. It is postulated that the dense, localized distribution of these particular sponges was due to a slight edge over competitors for food or energy supply and space in a stressed environment of tidal-influenced salinity and nutrient changes, strong currents, and frequently shifting submarine sand dunes. To our knowledge, this represents the first documentation of sponge biostromes composed of very large upright sponges within high-energy tidal channels between ooid shoals. The remarkably well-preserved accumulations provide an alternative example of sponge reefs for comparative paleoenvironmental studies. ?? 2007 The Geological Society of America.

  16. Host-specific microbial communities in three sympatric North Sea sponges

    DEFF Research Database (Denmark)

    Naim, Mohd Azrul; Morillo, Jose A.; Sørensen, Søren Johannes

    2014-01-01

    The establishment of next generation technology sequencing has deepened our knowledge of marine sponge-associated microbiota with the identification of at least 32 phyla of bacteria and archaea from a large number of sponge species. In this study we assessed the diversity of the microbial...... phylotypes belonging to Chlamydiae, TM6, Actinobacteria and Betaproteobacteria were detected in all sponge samples. A number of phylotypes of the phylum Chlamydiae were present at an unprecedentedly high relative abundance of up to 14.4% ± 1.4% of the total reads, which suggests an important ecological role...

  17. Production of indole antibiotics induced by exogenous gene derived from sponge metagenomes.

    Science.gov (United States)

    Takeshige, Yuya; Egami, Yoko; Wakimoto, Toshiyuki; Abe, Ikuro

    2015-05-01

    Sponge metagenomes are accessible genetic sources containing genes and gene clusters responsible for the biosynthesis of sponge-derived bioactive natural products. In this study, we obtained the clone pDC112, producing turbomycin A and 2,2-di(3-indolyl)-3-indolone, based on the functional screening of the metagenome library derived from the marine sponge Discodermia calyx. The subcloning experiment identified ORF 25, which is homologous to inosine 5'-monophosphate dehydrogenase and required for the production of 2,2-di(3-indolyl)-3-indolone in Escherichia coli.

  18. The HMA-LMA dichotomy revisited: an electron microscopical survey of 56 sponge species.

    Science.gov (United States)

    Gloeckner, Volker; Wehrl, Markus; Moitinho-Silva, Lucas; Gernert, Christine; Schupp, Peter; Pawlik, Joseph R; Lindquist, Niels L; Erpenbeck, Dirk; Wörheide, Gert; Hentschel, Ute

    2014-08-01

    The dichotomy between high microbial abundance (HMA) and low microbial abundance (LMA) sponges has been long recognized. In the present study, 56 sponge species from three geographic regions (greater Caribbean, Mediterranean, Red Sea) were investigated by transmission electron microscopy for the presence of microorganisms in the mesohyl matrix. Additionally, bacterial enumeration by DAPI-counting was performed on a subset of samples. Of the 56 species investigated, 28 were identified as belonging to the HMA and 28 to the LMA category. The sponge orders Agelasida and Verongida consisted exclusively of HMA species, and the Poecilosclerida were composed only of LMA sponges. Other taxa contained both types of microbial associations (e.g., marine Haplosclerida, Homoscleromorpha, Dictyoceratida), and a clear phylogenetic pattern could not be identified. For a few sponge species, an intermediate microbial load was determined, and the microscopy data did not suffice to reliably determine HMA or LMA status. To experimentally determine the HMA or LMA status of a sponge species, we therefore recommend a combination of transmission electron microscopy and 16S rRNA gene sequence data. This study significantly expands previous reports on microbial abundances in sponge tissues and contributes to a better understanding of the HMA-LMA dichotomy in sponge-microbe symbioses.

  19. Lipid constituents of marine sponge Suberites carnosus

    Digital Repository Service at National Institute of Oceanography (India)

    Mishra, P.D.; Wahidullah, S.; DeSouza, L.; Kamat, S.Y.

    Sterols (22E) - 24- methyl-cholest - 4, 8(9), 22(23) - triene - 3, 7 - diol (1) and (22E)-24-methyl-ergost-6, 22(23)-diene-5, 8-epidioxy-3-ol (2), a fatty acid nonadecanoic acid and a fatty ester methyl nonadecanoate have been isolated from...

  20. Patterns of chemical diversity in the Mediterranean sponge Spongia lamella.

    Science.gov (United States)

    Noyer, Charlotte; Thomas, Olivier P; Becerro, Mikel A

    2011-01-01

    The intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella. The chemical profiles of seven populations spreading over 1200 km in the Western Mediterranean were obtained by a straightforward SPE-HPLC-DAD-ELSD process whereas the identity of compounds was assessed by comparison between HPLC-MS spectra and literature data. Chemical diversity calculated by richness and Shannon indexes differed significantly between sponge populations but not at a larger regional scale. We used factor analysis, analysis of variance, and regression analysis to examine the chemical variability of this sponge at local and regional scales, to establish general patterns of variation in chemical diversity. The abundance of some metabolites varied significantly between sponge populations. Despite these significant differences between populations, we found a clear pattern of increasing chemical dissimilarity with increasing geographic distance. Additional large spatial scale studies on the chemical diversity of marine organisms will validate the universality or exclusivity of this pattern.

  1. Patterns of chemical diversity in the Mediterranean sponge Spongia lamella.

    Directory of Open Access Journals (Sweden)

    Charlotte Noyer

    Full Text Available The intra-specific diversity in secondary metabolites can provide crucial information for understanding species ecology and evolution but has received limited attention in marine chemical ecology. The complex nature of diversity is partially responsible for the lack of studies, which often target a narrow number of major compounds. Here, we investigated the intra-specific chemical diversity of the Mediterranean sponge Spongia lamella. The chemical profiles of seven populations spreading over 1200 km in the Western Mediterranean were obtained by a straightforward SPE-HPLC-DAD-ELSD process whereas the identity of compounds was assessed by comparison between HPLC-MS spectra and literature data. Chemical diversity calculated by richness and Shannon indexes differed significantly between sponge populations but not at a larger regional scale. We used factor analysis, analysis of variance, and regression analysis to examine the chemical variability of this sponge at local and regional scales, to establish general patterns of variation in chemical diversity. The abundance of some metabolites varied significantly between sponge populations. Despite these significant differences between populations, we found a clear pattern of increasing chemical dissimilarity with increasing geographic distance. Additional large spatial scale studies on the chemical diversity of marine organisms will validate the universality or exclusivity of this pattern.

  2. Dinoflagellates associated with freshwater sponges from the ancient lake baikal.

    Science.gov (United States)

    Annenkova, Natalia V; Lavrov, Dennis V; Belikov, Sergey I

    2011-04-01

    Dinoflagellates are a diverse group of protists that are common in both marine and freshwater environments. While the biology of marine dinoflagellates has been the focus of several recent studies, their freshwater relatives remain little-investigated. In the present study we explore the diversity of dinoflagellates in Lake Baikal by identifying and analyzing dinoflagellate sequences for 18S rDNA and ITS-2 from total DNA extracted from three species of endemic Baikalian sponges (Baikalospongia intermedia,Baikalospongia rectaand Lubomirskia incrustans). Phylogenetic analyses of these sequences revealed extensive dinoflagellate diversity in Lake Baikal. We found two groups of sequences clustering within the order Suessiales, known for its symbiotic relationships with various invertebrates. Thus they may be regarded as potential symbionts of Baikalian sponges. In addition,Gyrodinium helveticum, representatives from the genus Gymnodinium, dinoflagellates close to the family Pfiesteriaceae, and a few dinoflagellates without definite affiliation were detected. No pronounced difference in the distribution of dinoflagellates among the studied sponges was found, except for the absence of the Piscinoodinium-like dinoflagellates inL. incrustans. To the best of our knowledge, this is the first study of the diversity of dinoflagellates in freshwater sponges, the first systematic investigation of dinoflagellate molecular diversity in Lake Baikal and the first finding of members of the order Suessiales as symbionts of freshwater invertebrates.

  3. Sponge microbiota are a reservoir of functional antibiotic resistance genes

    Directory of Open Access Journals (Sweden)

    Dennis Versluis

    2016-11-01

    Full Text Available Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6, gentamicin (n=1, amikacin (n=7, trimethoprim (n=17, chloramphenicol (n=1, rifampicin (n=2 and ampicillin (n=3. Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria.

  4. Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages.

    Science.gov (United States)

    Perea-Blázquez, Alejandra; Davy, Simon K; Bell, James J

    2012-01-01

    Despite the importance of trophic interactions between organisms, and the relationship between primary production and benthic diversity, there have been few studies that have quantified the carbon flow from pelagic to benthic environments as a result of the assemblage level activity of suspension-feeding organisms. In this study, we examine the feeding activity of seven common sponge species from the Taputeranga marine reserve on the south coast of Wellington in New Zealand. We analysed the diet composition, feeding efficiency, pumping rates, and the number of food particles (specifically picoplanktonic prokaryotic cells) retained by sponges. We used this information, combined with abundance estimates of the sponges and estimations of the total amount of food available to sponges in a known volume of water (89,821 m(3)), to estimate: (1) particulate organic carbon (POC) fluxes through sponges as a result of their suspension-feeding activities on picoplankton; and (2) the proportion of the available POC from picoplankton that sponges consume. The most POC acquired by the sponges was from non-photosynthetic bacterial cells (ranging from 0.09 to 4.69 g C d(-1) with varying sponge percentage cover from 0.5 to 5%), followed by Prochlorococcus (0.07 to 3.47 g C d(-1)) and then Synechococcus (0.05 to 2.34 g C d(-1)) cells. Depending on sponge abundance, the amount of POC that sponges consumed as a proportion of the total POC available was 0.2-12.1% for Bac, 0.4-21.3% for Prochlo, and 0.3-15.8% for Synecho. The flux of POC for the whole sponge assemblage, based on the consumption of prokaryotic picoplankton, ranged from 0.07-3.50 g C m(2) d(-1). This study is the first to estimate the contribution of a sponge assemblage (rather than focusing on individual sponge species) to POC flow from three groups of picoplankton in a temperate rocky reef through the feeding activity of sponges and demonstrates the importance of sponges to energy flow in rocky reef environments.

  5. 21 CFR 886.4790 - Ophthalmic sponge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic sponge. 886.4790 Section 886.4790 Food... DEVICES OPHTHALMIC DEVICES Surgical Devices § 886.4790 Ophthalmic sponge. (a) Identification. An ophthalmic sponge is a device that is an absorbant sponge, pad, or spear made of folded gauze,...

  6. Antarctic sponges (Porifera, Demospongiae of the South Shetland Islands and vicinity: part I. Spirophorida, Astrophorida, Hadromerida, Halichondrida and Haplosclerida Esponjas Antárticas (Porifera, Demospongiae das Ilhas Shetland do Sul e áreas próximas: parte I. Spirophorida, Astrophorida, Hadromerida, Halichondrida e Haplosclerida

    Directory of Open Access Journals (Sweden)

    Maurício Campos

    2007-01-01

    Full Text Available The aim of this work is to redescribe 11 species of sponges collected through the Brazilian Antarctic Program (PROANTAR, at the South Shetland Islands and vicinity. New information is provided on the Antarctic sponge fauna, in regard to species richness and the geographical and bathymetric distributions of identified species. The following species were identified and are here illustrated and fully described: Cinachyra antarctica (Carter, 1872, Cinachyra barbata Sollas, 1886, Craniella leptoderma (Sollas, 1886, Tethyopsis longispinum (Lendenfeld, 1907, Polymastia invaginata Kirkpatrick, 1907, Homaxinella balfourensis (Ridley & Dendy, 1886, Suberites montiniger Carter, 1880, Halichondria (Eumastia attenuata (Topsent, 1915, Haliclona (Soestella chilensis (Thiele, 1905, Hemigellius bidens (Topsent, 1901 and Calyx arcuarius (Topsent, 1913. Two new records are given for the Antarctic continent: Halichondria (Eumastia attenuata (Topsent, 1915 and Haliclona (Soestella chilensis (Thiele, 1905. Tethyopsis longispinum (Lendenfeld, 1907, Suberites montiniger Carter, 1880 and Hemigellius bidens (Topsent, 1901 represent the first records for this sector of the continent. Bathymetric data are extended for T. longispinum and H. attenuata.O objetivo deste trabalho é redescrever 11 espécies de esponjas coletadas através do Programa Antártico Brasileiro (PROANTAR, nas Is. Shetland do Sul e áreas próximas. Nnovas informações são fornecidas acerca do conhecimento da fauna de poríferos da Antártica, tanto para a riqueza específica como para os dados referentes às distribuições geográfica e batimétrica das espécies identificadas. As seguintes espécies foram identificadas e são aqui ilustradas e amplamente descritas: Cinachyra antarctica (Carter, 1872, Cinachyra barbata Sollas, 1886, Craniella leptoderma (Sollas, 1886, Tethyopsis longispinum (Lendenfeld, 1907, Polymastia invaginata Kirkpatrick, 1907, Homaxinella balfourensis (Ridley & Dendy, 1886

  7. Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    DEFF Research Database (Denmark)

    Versluis, Dennis; de Evgrafov, Mari Cristina Rodriguez; Sommer, Morten Otto Alexander

    2016-01-01

    Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically...... examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional......). Fifteen of 37 inserts harbored resistance genes that shared resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance...

  8. Hazardous marine animals.

    Science.gov (United States)

    Auerbach, P S

    1984-08-01

    Both traumatic injury and the damage inflicted by envenomating marine animals are considered in this article. Among the creatures causing traumatic injury are sharks, barracudas, moray eels, and needlefish. Envenomating animals include sponges, coelenterates, coral, various mollusks, sea urchins, sea cucumbers, stingrays, sea snakes, and others.

  9. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability.

    Directory of Open Access Journals (Sweden)

    James R White

    Full Text Available BACKGROUND: Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge "holobiont" system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. METHODOLOGY/PRINCIPAL FINDINGS: We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs. Approximately 65,550 rRNA sequences (24% could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa, and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising >34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. CONCLUSIONS/SIGNIFICANCE: Slight shifts in several bacterial taxa

  10. Acetylcholinesterase-inhibitory activities of the extracts from sponges collected in mauritius waters.

    Science.gov (United States)

    Beedessee, Girish; Ramanjooloo, Avin; Surnam-Boodhun, Rashmee; van Soest, Rob W M; Marie, Daniel E P

    2013-03-01

    Patients diagnosed with Alzheimer's disease (AD) show a characteristic neurochemical deficit of acetylcholine, especially in the basal forebrains. The use of acetylcholinesterase (AChE) inhibitors to retard the hydrolysis of acetylcholine has been suggested as a promising strategy for AD treatment. In this study, we evaluated the acetylcholinesterase inhibitory (AChEI) activities of 134 extracts obtained from 45 species of marine sponges. Thin-layer chromatography (TLC) and microplate assays reveal potent acetylcholinsterase inhibitory activities of two AcOEt extracts from the sponges Pericharax heteroraphis and Amphimedon navalis PULITZER-FINALI. We further investigated the inhibitory kinetics of the extracts and found them to display mixed competitive/noncompetitive inhibition and associated their inhibitory activity partly to terpenoids. Acetylcholinesterase inhibitors from marine organisms have been rarely studied, and this study demonstrated the potential of marine sponges as a source of pharmaceutical leads against neurodegenerative diseases.

  11. Survey report of NOAA Ship McArthur II cruises AR-04-04, AR-05-05 and AR-06-03: habitat classification of side scan sonar imagery in support of deep-sea coral/sponge explorations at the Olympic Coast National Marine Sanctuary

    Science.gov (United States)

    Intelmann, Steven S.; Cochrane, Guy R.; Bowlby, C. Edward; Brancato, Mary Sue; Hyland, Jeffrey

    2007-01-01

    Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral-sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises, Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed.

  12. Environmental heterogeneity and microbial inheritance influence sponge-associated bacterial composition of Spongia lamella.

    Science.gov (United States)

    Noyer, Charlotte; Casamayor, Emilio O; Becerro, Mikel A

    2014-10-01

    Sponges are important components of marine benthic communities. High microbial abundance sponges host a large diversity of associated microbial assemblages. However, the dynamics of such assemblages are still poorly known. In this study, we investigated whether bacterial assemblages present in Spongia lamella remained constant or changed as a function of the environment and life cycle. Sponges were collected in multiple locations and at different times of the year in the western Mediterranean Sea and in nearby Atlantic Ocean to cover heterogeneous environmental variability. Co-occurring adult sponges and offsprings were compared at two of the sites. To explore the composition and abundance of the main bacteria present in the sponge mesohyl, embryos, and larvae, we applied both 16S rRNA gene-denaturing gradient gel electrophoresis (DGGE) and sequencing of excised DGGE bands and quantitative polymerase chain reactions (qPCR). On average, the overall core bacterial assemblage showed over 60 % similarity. The associated bacterial assemblage fingerprints varied both within and between sponge populations, and the abundance of specific bacterial taxa assessed by qPCR significantly differed among sponge populations and between adult sponge and offsprings (higher proportions of Actinobacteria in the latter). Sequences showed between 92 and 100 % identity to sequences previously reported in GenBank, and all were affiliated with uncultured invertebrate bacterial symbionts (mainly sponges). Sequences were mainly related to Chloroflexi and Acidobacteria and a few to Actinobacteria and Bacteroidetes. Additional populations may have been present under detection limits. Overall, these results support that both ecological and biological sponge features may shape the composition of endobiont bacterial communities in S. lamella.

  13. Diversity and distribution patterns in high southern latitude sponges.

    Directory of Open Access Journals (Sweden)

    Rachel V Downey

    Full Text Available Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ∼43%, with a higher level for the class Hexactinellida (68%. Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent

  14. Retained surgical sponge: An enigma

    Directory of Open Access Journals (Sweden)

    Gurjit Singh

    2013-01-01

    Full Text Available Retained surgical sponge in the body following a surgery is called "gossypiboma". A 27-year-old female who had undergone lower segment cesarean section 4 months earlier was admitted with complaints of pain abdomen with a palpable mass in left iliac fossa. X-ray, ultrasonography, and CT scan findings were suggestive of retained surgical sponge. Surgical sponge was removed following laparotomy. Surgeons must be aware of the risk factors that lead to gossypiboma, and measures should be taken to prevent it. Besides increasing morbidity and possible mortality, it may result in libel suit for compensation.

  15. Biodiversity of Actinomycetes associated with Caribbean sponges and their potential for natural product discovery.

    Science.gov (United States)

    Vicente, Jan; Stewart, Allison; Song, Bongkeun; Hill, Russell T; Wright, Jeffrey L

    2013-08-01

    Marine actinomycetes provide a rich source of structurally unique and bioactive secondary metabolites. Numerous genera of marine actinomycetes have been isolated from marine sediments as well as several sponge species. In this study, 16 different species of Caribbean sponges were collected from four different locations in the coastal waters off Puerto Rico in order to examine diversity and bioactive metabolite production of marine actinomycetes in Caribbean sponges. Sediments were also collected from each location, in order to compare actinomycete communities between these two types of samples. A total of 180 actinomycetes were isolated and identified based on 16S rRNA gene analysis. Phylogenetic analysis revealed the presence of at least 14 new phylotypes belonging to the genera Micromonospora, Verruscosispora, Streptomyces, Salinospora, Solwaraspora, Microbacterium and Cellulosimicrobium. Seventy-eight of the isolates (19 from sediments and 59 from sponges) shared 100 % sequence identity with Micromonospora sp. R1. Despite having identical 16S rRNA sequences, the bioactivity of extracts and subsequent fractions generated from the fermentation of both sponge- and sediment-derived isolates identical to Micromonospora sp. R1 varied greatly, with a marked increase in antibiotic metabolite production in those isolates derived from sponges. These results indicate that the chemical profiles of isolates with high 16S rRNA sequence homology to known strains can be diverse and dependent on the source of isolation. In addition, seven previously reported dihydroquinones produced by five different Streptomyces strains have been purified and characterized from one Streptomyces sp. strain isolated in this study from the Caribbean sponge Agelas sceptrum.

  16. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge

    KAUST Repository

    Tian, Renmao

    2014-08-29

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Implementing sponge physiological and genomic information to enhance the diversity of its culturable associated bacteria.

    Science.gov (United States)

    Lavy, Adi; Keren, Ray; Haber, Markus; Schwartz, Inbar; Ilan, Micha

    2014-02-01

    In recent years new approaches have emerged for culturing marine environmental bacteria. They include the use of novel culture media, sometimes with very low-nutrient content, and a variety of growth conditions such as temperature, oxygen levels, and different atmospheric pressures. These approaches have largely been neglected when it came to the cultivation of sponge-associated bacteria. Here, we used physiological and environmental conditions to reflect the environment of sponge-associated bacteria along with genomic data of the prominent sponge symbiont Candidatus Poribacteria sp. WGA-4E, to cultivate bacteria from the Red Sea sponge Theonella swinhoei. Designing culturing conditions to fit the metabolic needs of major bacterial taxa present in the sponge, through a combined use of diverse culture media compositions with aerobic and microaerophilic states, and addition of antibiotics, yielded higher diversity of the cultured bacteria and led to the isolation of novel sponge-associated and sponge-specific bacteria. In this work, 59 OTUs of six phyla were isolated. Of these, 22 have no close type strains at the species level (bacteria species, and some are probably new genera and even families.

  18. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge.

    Science.gov (United States)

    Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Bajic, Vladimir; Qian, Pei-Yuan

    2014-11-01

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Gossypiboma—Retained Surgical Sponge

    Directory of Open Access Journals (Sweden)

    Hung-Shun Sun

    2007-11-01

    Full Text Available Intra-abdominal retained surgical sponge is an uncommon surgical error. Herein, we report a 92-year-old woman who was brought to the emergency room for acute urinary retention. She had a history of vaginal hysterectomy for uterine prolapse 18 years previously, performed at our hospital. Retained surgical sponge in the pelvic cavity was suspected by abdominal computed tomography. The surgical gauze was removed by laparotomy excision and the final diagnosis was gossypiboma.

  20. Silica Synthesis by Sponges: Unanticipated Molecular Mechanism

    Science.gov (United States)

    Morse, D. E.; Weaver, J. C.

    2001-12-01

    Oceanic diatoms, sponges and other organisms synthesize gigatons per year of silica from silicic acid, ultimately obtained from the weathering of rock. This biogenic silica exhibits a remarkable diversity of structures, many of which reveal a precision of nanoarchitectural control that exceeds the capabilities of human engineering. In contrast to the conditions of anthropogenic and industrial manufacture, the biological synthesis of silica occurs under mild physiological conditions of low temperatures and pressures and near-neutral pH. In addition to the differentiation between biological and abiotic processes governing silica formation, the biomolecular mechanisms controlling synthesis of these materials may offer insights for the development of new, environmentally benign routes for synthesis of nanostructurally controlled silicas and high-performance polysiloxane composites. We found that the needle-like silica spicules made by the marine sponge, Tethya aurantia, each contain an occluded axial filament of protein composed predominantly of repeating assemblies of three similar subunits we named "silicateins." To our surprise, analysis of the purified protein subunits and the cloned silicatein DNAs revealed that the silicateins are highly homologous to a family of hydrolytic enzymes. As predicted from this finding, we discovered that the silicatein filaments are more than simple, passive templates; they actively catalyze and spatially direct polycondensation to form silica, (as well as the phenyl- and methyl-silsesquioxane) from the corresponding silicon alkoxides at neutral pH and low temperature. Catalytic activity also is exhibited by the silicatein subunits obtained by disaggregation of the protein filaments and those produced from recombinant DNA templates cloned in bacteria. This catalytic activity accelerates the rate-limiting hydrolysis of the silicon alkoxide precursors. Genetic engineering, used to produce variants of the silicatein molecule with