WorldWideScience

Sample records for mapping crop water

  1. Satellite mapping of crop water demand in California

    Science.gov (United States)

    Surface delivery of irrigation water in the San Joaquin Valley is becoming increasingly restricted due to urbanization and environmental regulation, and the strain is projected to worsen under most climate change scenarios. Remote sensing technology offers the potential to monitor crop evapotranspi...

  2. Crop water stress maps for an entire growing season from visible and thermal UAV imagery

    DEFF Research Database (Denmark)

    Hoffmann, Helene; Jensen, Rasmus; Thomsen, Anton

    2016-01-01

    This study investigates whether a water deficit index (WDI) based on imagery from unmanned aerial vehicles (UAVs) can provide accurate crop water stress maps at different growth stages of barley and in differing weather situations. Data from both the early and late growing season are included...... to investigate whether the WDI has the unique potential to be applicable both when the land surface is partly composed of bare soil and when crops on the land surface are senescing. The WDI differs from the more commonly applied crop water stress index (CWSI) in that it uses both a spectral vegetation index (VI...... season because at this stage the remote sensing data represent crop water availability to a greater extent than they do in the early growing season, and because the WDI accounts for areas of ripe crops that no longer have the same need for irrigation. WDI maps can potentially serve as water stress maps...

  3. Mapping Multi-Cropped Land Use to Estimate Water Demand Using the California Pesticide Reporting Database

    Science.gov (United States)

    Henson, W.; Baillie, M. N.; Martin, D.

    2017-12-01

    Detailed and dynamic land-use data is one of the biggest data deficiencies facing food and water security issues. Better land-use data results in improved integrated hydrologic models that are needed to look at the feedback between land and water use, specifically for adequately representing changes and dynamics in rainfall-runoff, urban and agricultural water demands, and surface fluxes of water (e.g., evapotranspiration, runoff, and infiltration). Currently, land-use data typically are compiled from annual (e.g., Crop Scape) or multi-year composites if mapped at all. While this approach provides information about interannual land-use practices, it does not capture the dynamic changes in highly developed agricultural lands prevalent in California agriculture such as (1) dynamic land-use changes from high frequency multi-crop rotations and (2) uncertainty in sub-annual crop distribution, planting times, and cropped areas. California has collected spatially distributed data for agricultural pesticide use since 1974 through the California Pesticide Information Portal (CalPIP). A method leveraging the CalPIP database has been developed to provide vital information about dynamic agricultural land use (e.g., crop distribution and planting times) and water demand issues in Salinas Valley, California, along the central coast. This 7 billion dollar/year agricultural area produces up to 50% of U.S. lettuce and broccoli. Therefore, effective and sustainable water resource development in the area must balance the needs of this essential industry, other beneficial uses, and the environment. This new tool provides a way to provide more dynamic crop data in hydrologic models. While the current application focuses on the Salinas Valley, the methods are extensible to all of California and other states with similar pesticide reporting. The improvements in representing variability in crop patterns and associated water demands increase our understanding of land-use change and

  4. Agricultural crop mapping and classification by Landsat images to evaluate water use in the Lake Urmia basin, North-west Iran

    Science.gov (United States)

    Fazel, Nasim; Norouzi, Hamid; Madani, Kaveh; Kløve, Bjørn

    2016-04-01

    Lake Urmia, once one of the largest hypersaline lakes in the world has lost more than 90% of its surface body mainly due to the intensive expansion of agriculture, using more than 90% of all water in the region. Access to accurate and up-to-date information on the extent and distribution of individual crop types, associated with land use changes and practices, has significant value in intensively agricultural regions. Explicit information of croplands can be useful for sustainable water resources, land and agriculture planning and management. Remote sensing, has been proven to be a more cost-effective alternative to the traditional statistically-based ground surveys for crop coverage areas that are costly and provide insufficient information. Satellite images along with ground surveys can provide the necessary information of spatial coverage and spectral responses of croplands for sustainable agricultural management. This study strives to differentiate different crop types and agricultural practices to achieve a higher detailed crop map of the Lake Urmia basin. The mapping approach consists of a two-stage supervised classification of multi-temporal multi-spectral high resolution images obtained from Landsat imagery archive. Irrigated and non-irrigated croplands and orchards were separated from other major land covers (urban, ranges, bare-lands, and water) in the region by means of maximum Likelihood supervised classification method. The field data collected during 2015 and land use maps generated in 2007 and Google Earth comparisons were used to form a training data set to perform the supervised classification. In the second stage, non-agricultural lands were masked and the supervised classification was applied on the Landsat images stack to identify seven major croplands in the region (wheat and barley, beetroot, corn, sunflower, alfalfa, vineyards, and apple orchards). The obtained results can be of significant value to the Urmia Lake restoration efforts which

  5. Mapping Cropping Practices of a Sugarcane-Based Cropping System in Kenya Using Remote Sensing

    Directory of Open Access Journals (Sweden)

    Betty Mulianga

    2015-10-01

    Full Text Available Over the recent past, there has been a growing concern on the need for mapping cropping practices in order to improve decision-making in the agricultural sector. We developed an original method for mapping cropping practices: crop type and harvest mode, in a sugarcane landscape of western Kenya using remote sensing data. At local scale, a temporal series of 15-m resolution Landsat 8 images was obtained for Kibos sugar management zone over 20 dates (April 2013 to March 2014 to characterize cropping practices. To map the crop type and harvest mode we used ground survey and factory data over 1280 fields, digitized field boundaries, and spectral indices (the Normalized Difference Vegetation Index (NDVI and the Normalized Difference Water Index (NDWI were computed for all Landsat images. The results showed NDVI classified crop type at 83.3% accuracy, while NDWI classified harvest mode at 90% accuracy. The crop map will inform better planning decisions for the sugar industry operations, while the harvest mode map will be used to plan for sensitizations forums on best management and environmental practices.

  6. Crop Biometric Maps: The Key to Prediction

    Directory of Open Access Journals (Sweden)

    Francisco Rovira-Más

    2013-09-01

    Full Text Available The sustainability of agricultural production in the twenty-first century, both in industrialized and developing countries, benefits from the integration of farm management with information technology such that individual plants, rows, or subfields may be endowed with a singular “identity.” This approach approximates the nature of agricultural processes to the engineering of industrial processes. In order to cope with the vast variability of nature and the uncertainties of agricultural production, the concept of crop biometrics is defined as the scientific analysis of agricultural observations confined to spaces of reduced dimensions and known position with the purpose of building prediction models. This article develops the idea of crop biometrics by setting its principles, discussing the selection and quantization of biometric traits, and analyzing the mathematical relationships among measured and predicted traits. Crop biometric maps were applied to the case of a wine-production vineyard, in which vegetation amount, relative altitude in the field, soil compaction, berry size, grape yield, juice pH, and grape sugar content were selected as biometric traits. The enological potential of grapes was assessed with a quality-index map defined as a combination of titratable acidity, sugar content, and must pH. Prediction models for yield and quality were developed for high and low resolution maps, showing the great potential of crop biometric maps as a strategic tool for vineyard growers as well as for crop managers in general, due to the wide versatility of the methodology proposed.

  7. Crop biometric maps: the key to prediction.

    Science.gov (United States)

    Rovira-Más, Francisco; Sáiz-Rubio, Verónica

    2013-09-23

    The sustainability of agricultural production in the twenty-first century, both in industrialized and developing countries, benefits from the integration of farm management with information technology such that individual plants, rows, or subfields may be endowed with a singular "identity." This approach approximates the nature of agricultural processes to the engineering of industrial processes. In order to cope with the vast variability of nature and the uncertainties of agricultural production, the concept of crop biometrics is defined as the scientific analysis of agricultural observations confined to spaces of reduced dimensions and known position with the purpose of building prediction models. This article develops the idea of crop biometrics by setting its principles, discussing the selection and quantization of biometric traits, and analyzing the mathematical relationships among measured and predicted traits. Crop biometric maps were applied to the case of a wine-production vineyard, in which vegetation amount, relative altitude in the field, soil compaction, berry size, grape yield, juice pH, and grape sugar content were selected as biometric traits. The enological potential of grapes was assessed with a quality-index map defined as a combination of titratable acidity, sugar content, and must pH. Prediction models for yield and quality were developed for high and low resolution maps, showing the great potential of crop biometric maps as a strategic tool for vineyard growers as well as for crop managers in general, due to the wide versatility of the methodology proposed.

  8. Epistatic association mapping in homozygous crop cultivars.

    Directory of Open Access Journals (Sweden)

    Hai-Yan Lü

    Full Text Available The genetic dissection of complex traits plays a crucial role in crop breeding. However, genetic analysis and crop breeding have heretofore been performed separately. In this study, we designed a new approach that integrates epistatic association analysis in crop cultivars with breeding by design. First, we proposed an epistatic association mapping (EAM approach in homozygous crop cultivars. The phenotypic values of complex traits, along with molecular marker information, were used to perform EAM. In our EAM, all the main-effect quantitative trait loci (QTLs, environmental effects, QTL-by-environment interactions and QTL-by-QTL interactions were included in a full model and estimated by empirical Bayes approach. A series of Monte Carlo simulations was performed to confirm the reliability of the new method. Next, the information from all detected QTLs was used to mine novel alleles for each locus and to design elite cross combination. Finally, the new approach was adopted to dissect the genetic basis of seed length in 215 soybean cultivars obtained, by stratified random sampling, from 6 geographic ecotypes in China. As a result, 19 main-effect QTLs and 3 epistatic QTLs were identified, more than 10 novel alleles were mined and 3 elite parental combinations, such as Daqingdou and Zhengzhou790034, were predicted.

  9. Evaluation of Aqua crop Model to Predict Crop Water Productivity

    International Nuclear Information System (INIS)

    Mohd Noor Hidayat Adenan; Faiz Ahmad; Shyful Azizi Abdul Rahman; Abdul Rahim Harun; Khairuddin Abdul Rahim

    2015-01-01

    Water and nutrient are critical inputs for crop production, especially in meeting challenges from increasing fertilizer cost and irregular water availability associated with climate change. The Land and Water Division of Food and Agriculture Organization of the United Nations (FAO) has developed Aqua Crop, an integrated application software to simulate the interactions between plant, water and soil. Field management and irrigation management are the factors that need to be considered since it affects the interactions. Four critical components are needed in the Aqua Crop model, viz. climate, crop, field management and soil conditions. In our case study, climate data from rice field in Utan Aji, Kangar, Perlis was applied to run a simulation by using AquaCrop model. The rice crop was also assessed against deficit irrigation schedules and we found that use of water at optimum level increased rice yield. Results derived from the use of the model corresponded conventional assessment. This model can be adopted to help farmers in Malaysia in planning crop and field management to increase the crop productivity, especially in areas where the water is limited. (author)

  10. Public Waters Inventory Maps

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme is a scanned and rectified version of the Minnesota DNR - Division of Waters "Public Waters Inventory" (PWI) maps. DNR Waters utilizes a small scale...

  11. Saline water irrigation for crop production

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Singh, S S; Singh, S R [Directorate of Water Management Research, Indian Council of Agricultural Research (ICAR), Walmi Complex, P.O. - Phulwari Sharif, Patna (India)

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation.

  12. Saline water irrigation for crop production

    International Nuclear Information System (INIS)

    Khan, A.R.; Singh, S.S.; Singh, S.R.

    2001-05-01

    Salinity is one of agriculture's most complex production problems. Excessive salts from irrigation water or high water tables can severely limit crop production. Years of saline water irrigation on poorly drained soils can eventually make economic crop production impossible. About 10% of all land are affected by salinity problems. They occur in every continent in different proportions, more frequently in arid and semi-arid areas. This paper discusses a range of problems related to use of saline water for crop irrigation

  13. A study of the utilization of ERTS-1 data from the Wabash River Basin. [crop identification, water resources, urban land use, soil mapping, and atmospheric modeling

    Science.gov (United States)

    Landgrebe, D. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The most significant results were obtained in the water resources research, urban land use mapping, and soil association mapping projects. ERTS-1 data was used to classify water bodies to determine acreages and high agreement was obtained with USGS figures. Quantitative evaluation was achieved of urban land use classifications from ERTS-1 data and an overall test accuracy of 90.3% was observed. ERTS-1 data classifications of soil test sites were compared with soil association maps scaled to match the computer produced map and good agreement was observed. In some cases the ERTS-1 results proved to be more accurate than the soil association map.

  14. Rice crop risk map in Babahoyo canton (Ecuador)

    Science.gov (United States)

    Valverde Arias, Omar; Tarquis, Ana; Garrido, Alberto

    2016-04-01

    It is widely known that extreme climatic phenomena occur with more intensity and frequency. This fact has put more pressure over farming, making agricultural and livestock production riskier. In order to reduce hazards and economic loses that could jeopardize farmer's incomes and even its business continuity, it is very important to implement agriculture risk management plans by governments and institutions. One of the main strategies is transfer risk by agriculture insurance. Agriculture insurance based in indexes has a significant growth in the last decade. And consist in a comparison between measured index values with a defined threshold that triggers damage losses. However, based index insurance could not be based on an isolated measurement. It is necessary to be integrated in a complete monitoring system that uses many sources of information and tools. For example, index influence areas, crop production risk maps, crop yields, claim statistics, and so on. Crop production risk is related with yield variation of crops and livestock, due to weather, pests, diseases, and other factors that affect both the quantity and quality of commodities produced. This is the risk which farmers invest more time managing, and it is completely under their control. The aim of this study is generate a crop risk map of rice that can provide risk manager important information about the status of crop facing production risks. Then, based on this information, it will be possible to make best decisions to deal with production risk. The rice crop risk map was generated qualifying a 1:25000 scale soil and climatic map of Babahoyo canton, which is located in coast region of Ecuador, where rice is one of the main crops. The methodology to obtain crop risk map starts by establishing rice crop requirements and indentifying the risks associated with this crop. A second step is to evaluate soil and climatic conditions of the study area related to optimal crop requirements. Based on it, we can

  15. Soil water evaporation and crop residues

    Science.gov (United States)

    Crop residues have value when left in the field and also when removed from the field and sold as a commodity. Reducing soil water evaporation (E) is one of the benefits of leaving crop residues in place. E was measured beneath a corn canopy at the soil suface with nearly full coverage by corn stover...

  16. Disaggregating and mapping crop statistics using hypertemporal remote sensing

    Science.gov (United States)

    Khan, M. R.; de Bie, C. A. J. M.; van Keulen, H.; Smaling, E. M. A.; Real, R.

    2010-02-01

    Governments compile their agricultural statistics in tabular form by administrative area, which gives no clue to the exact locations where specific crops are actually grown. Such data are poorly suited for early warning and assessment of crop production. 10-Daily satellite image time series of Andalucia, Spain, acquired since 1998 by the SPOT Vegetation Instrument in combination with reported crop area statistics were used to produce the required crop maps. Firstly, the 10-daily (1998-2006) 1-km resolution SPOT-Vegetation NDVI-images were used to stratify the study area in 45 map units through an iterative unsupervised classification process. Each unit represents an NDVI-profile showing changes in vegetation greenness over time which is assumed to relate to the types of land cover and land use present. Secondly, the areas of NDVI-units and the reported cropped areas by municipality were used to disaggregate the crop statistics. Adjusted R-squares were 98.8% for rainfed wheat, 97.5% for rainfed sunflower, and 76.5% for barley. Relating statistical data on areas cropped by municipality with the NDVI-based unit map showed that the selected crops were significantly related to specific NDVI-based map units. Other NDVI-profiles did not relate to the studied crops and represented other types of land use or land cover. The results were validated by using primary field data. These data were collected by the Spanish government from 2001 to 2005 through grid sampling within agricultural areas; each grid (block) contains three 700 m × 700 m segments. The validation showed 68%, 31% and 23% variability explained (adjusted R-squares) between the three produced maps and the thousands of segment data. Mainly variability within the delineated NDVI-units caused relatively low values; the units are internally heterogeneous. Variability between units is properly captured. The maps must accordingly be considered "small scale maps". These maps can be used to monitor crop performance of

  17. Water, heat and crop growth

    NARCIS (Netherlands)

    Feddes, R.A.

    1971-01-01

    To a large extent the results of a farmer's efforts to get higher crop yields will be determined by the prevailing environmental conditions, i.e. by the existing complex of physical, chemical and biological factors. The possibilities of an efficient use of these factors are enlarged by our

  18. Effects of Temperature and Growing Seasons on Crop Water ...

    African Journals Online (AJOL)

    PROF HORSFALL

    The crop water requirement (CWR) depends on several factors including temperature and ...... infrastructure for collection, treatment and recycling of wastewater (MOEP, 2010 .... blue and grey water footprint of crops and derived crop products ...

  19. Crop modeling applications in agricultural water management

    Science.gov (United States)

    Kisekka, Isaya; DeJonge, Kendall C.; Ma, Liwang; Paz, Joel; Douglas-Mankin, Kyle R.

    2017-01-01

    This article introduces the fourteen articles that comprise the “Crop Modeling and Decision Support for Optimizing Use of Limited Water” collection. This collection was developed from a special session on crop modeling applications in agricultural water management held at the 2016 ASABE Annual International Meeting (AIM) in Orlando, Florida. In addition, other authors who were not able to attend the 2016 ASABE AIM were also invited to submit papers. The articles summarized in this introductory article demonstrate a wide array of applications in which crop models can be used to optimize agricultural water management. The following section titles indicate the topics covered in this collection: (1) evapotranspiration modeling (one article), (2) model development and parameterization (two articles), (3) application of crop models for irrigation scheduling (five articles), (4) coordinated water and nutrient management (one article), (5) soil water management (two articles), (6) risk assessment of water-limited irrigation management (one article), and (7) regional assessments of climate impact (two articles). Changing weather and climate, increasing population, and groundwater depletion will continue to stimulate innovations in agricultural water management, and crop models will play an important role in helping to optimize water use in agriculture.

  20. Agrometeorology and water needs of crops

    Directory of Open Access Journals (Sweden)

    Gabriele Cola

    2006-07-01

    Full Text Available This paper aims to present some agrometeorological methods useful for water management in agriculture discussing the existing technology and giving some insights about research and development activities in this field. After a general discussion about the importance of water for plants and more generally for the ecosystem the agrometerological aspects of water balance are discussed and opportunities of use of forecasts are also presented. Some effects of climatic change on water needs of crops are also discussed.

  1. RICE CROP MAPPING USING SENTINEL-1A PHENOLOGICAL METRICS

    Directory of Open Access Journals (Sweden)

    C. F. Chen

    2016-06-01

    Full Text Available Rice is the most important food crop in Vietnam, providing food more than 90 million people and is considered as an essential source of income for majority of rural populations. Monitoring rice-growing areas is thus important to developing successful strategies for food security in the country. This paper aims to develop an approach for crop acreage estimation from multi-temporal Sentinel-1A data. We processed the data for two main cropping seasons (e.g., winter–spring, summer–autumn in the Mekong River Delta (MRD, Vietnam through three main steps: (1 data pre-processing, (3 rice classification based on crop phenological metrics, and (4 accuracy assessment of the mapping results. The classification results compared with the ground reference data indicated the overall accuracy of 86.2% and Kappa coefficient of 0.72. These results were reaffirmed by close correlation between the government’s rice area statistics for such crops (R2 > 0.95. The values of relative error in area obtained for the winter–spring and summer–autumn were -3.6% and 6.7%, respectively. This study demonstrates the potential application of multi-temporal Sentinel-1A data for rice crop mapping using information of crop phenology in the study region.

  2. Large Scale Crop Mapping in Ukraine Using Google Earth Engine

    Science.gov (United States)

    Shelestov, A.; Lavreniuk, M. S.; Kussul, N.

    2016-12-01

    There are no globally available high resolution satellite-derived crop specific maps at present. Only coarse-resolution imagery (> 250 m spatial resolution) has been utilized to derive global cropland extent. In 2016 we are going to carry out a country level demonstration of Sentinel-2 use for crop classification in Ukraine within the ESA Sen2-Agri project. But optical imagery can be contaminated by cloud cover that makes it difficult to acquire imagery in an optimal time range to discriminate certain crops. Due to the Copernicus program since 2015, a lot of Sentinel-1 SAR data at high spatial resolution is available for free for Ukraine. It allows us to use the time series of SAR data for crop classification. Our experiment for one administrative region in 2015 showed much higher crop classification accuracy with SAR data than with optical only time series [1, 2]. Therefore, in 2016 within the Google Earth Engine Research Award we use SAR data together with optical ones for large area crop mapping (entire territory of Ukraine) using cloud computing capabilities available at Google Earth Engine (GEE). This study compares different classification methods for crop mapping for the whole territory of Ukraine using data and algorithms from GEE. Classification performance assessed using overall classification accuracy, Kappa coefficients, and user's and producer's accuracies. Also, crop areas from derived classification maps compared to the official statistics [3]. S. Skakun et al., "Efficiency assessment of multitemporal C-band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine," IEEE Journal of Selected Topics in Applied Earth Observ. and Rem. Sens., 2015, DOI: 10.1109/JSTARS.2015.2454297. N. Kussul, S. Skakun, A. Shelestov, O. Kussul, "The use of satellite SAR imagery to crop classification in Ukraine within JECAM project," IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.1497-1500, 13

  3. Estimation of crop water requirements using remote sensing for operational water resources management

    Science.gov (United States)

    Vasiliades, Lampros; Spiliotopoulos, Marios; Tzabiras, John; Loukas, Athanasios; Mylopoulos, Nikitas

    2015-06-01

    An integrated modeling system, developed in the framework of "Hydromentor" research project, is applied to evaluate crop water requirements for operational water resources management at Lake Karla watershed, Greece. The framework includes coupled components for operation of hydrotechnical projects (reservoir operation and irrigation works) and estimation of agricultural water demands at several spatial scales using remote sensing. The study area was sub-divided into irrigation zones based on land use maps derived from Landsat 5 TM images for the year 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used to derive actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat TM imagery. Agricultural water needs were estimated using the FAO method for each zone and each control node of the system for a number of water resources management strategies. Two operational strategies of hydro-technical project development (present situation without operation of the reservoir and future situation with the operation of the reservoir) are coupled with three water demand strategies. In total, eight (8) water management strategies are evaluated and compared. The results show that, under the existing operational water resources management strategies, the crop water requirements are quite large. However, the operation of the proposed hydro-technical projects in Lake Karla watershed coupled with water demand management measures, like improvement of existing water distribution systems, change of irrigation methods, and changes of crop cultivation could alleviate the problem and lead to sustainable and ecological use of water resources in the study area.

  4. Evaluation of Different Phenological Information to Map Crop Rotation in Complex Irrigated Indus Basin

    Science.gov (United States)

    Ismaeel, A.; Zhou, Q.

    2018-04-01

    Accurate information of crop rotation in large basin is essential for policy decisions on land, water and nutrient resources around the world. Crop area estimation using low spatial resolution remote sensing data is challenging in a large heterogeneous basin having more than one cropping seasons. This study aims to evaluate the accuracy of two phenological datasets individually and in combined form to map crop rotations in complex irrigated Indus basin without image segmentation. Phenology information derived from Normalized Difference Vegetation Index (NDVI) and Leaf Area Index (LAI) of Moderate Resolution Imaging Spectroradiometer (MODIS) sensor, having 8-day temporal and 1000 m spatial resolution, was used in the analysis. An unsupervised (temporal space clustering) to supervised (area knowledge and phenology behavior) classification approach was adopted to identify 13 crop rotations. Estimated crop area was compared with reported area collected by field census. Results reveal that combined dataset (NDVI*LAI) performs better in mapping wheat-rice, wheat-cotton and wheat-fodder rotation by attaining root mean square error (RMSE) of 34.55, 16.84, 20.58 and mean absolute percentage error (MAPE) of 24.56 %, 36.82 %, 30.21 % for wheat, rice and cotton crop respectively. For sugarcane crop mapping, LAI produce good results by achieving RMSE of 8.60 and MAPE of 34.58 %, as compared to NDVI (10.08, 40.53 %) and NDVI*LAI (10.83, 39.45 %). The availability of major crop rotation statistics provides insight to develop better strategies for land, water and nutrient accounting frameworks to improve agriculture productivity.

  5. EVALUATION OF DIFFERENT PHENOLOGICAL INFORMATION TO MAP CROP ROTATION IN COMPLEX IRRIGATED INDUS BASIN

    Directory of Open Access Journals (Sweden)

    A. Ismaeel

    2018-04-01

    Full Text Available Accurate information of crop rotation in large basin is essential for policy decisions on land, water and nutrient resources around the world. Crop area estimation using low spatial resolution remote sensing data is challenging in a large heterogeneous basin having more than one cropping seasons. This study aims to evaluate the accuracy of two phenological datasets individually and in combined form to map crop rotations in complex irrigated Indus basin without image segmentation. Phenology information derived from Normalized Difference Vegetation Index (NDVI and Leaf Area Index (LAI of Moderate Resolution Imaging Spectroradiometer (MODIS sensor, having 8-day temporal and 1000 m spatial resolution, was used in the analysis. An unsupervised (temporal space clustering to supervised (area knowledge and phenology behavior classification approach was adopted to identify 13 crop rotations. Estimated crop area was compared with reported area collected by field census. Results reveal that combined dataset (NDVI*LAI performs better in mapping wheat-rice, wheat-cotton and wheat-fodder rotation by attaining root mean square error (RMSE of 34.55, 16.84, 20.58 and mean absolute percentage error (MAPE of 24.56 %, 36.82 %, 30.21 % for wheat, rice and cotton crop respectively. For sugarcane crop mapping, LAI produce good results by achieving RMSE of 8.60 and MAPE of 34.58 %, as compared to NDVI (10.08, 40.53 % and NDVI*LAI (10.83, 39.45 %. The availability of major crop rotation statistics provides insight to develop better strategies for land, water and nutrient accounting frameworks to improve agriculture productivity.

  6. Integrating future scenario‐based crop expansion and crop conditions to map switchgrass biofuel potential in eastern Nebraska, USA

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2018-01-01

    Switchgrass (Panicum virgatum) has been evaluated as one potential source for cellulosic biofuel feedstocks. Planting switchgrass in marginal croplands and waterway buffers can reduce soil erosion, improve water quality, and improve regional ecosystem services (i.e. it serves as a potential carbon sink). In previous studies, we mapped high risk marginal croplands and highly erodible cropland buffers that are potentially suitable for switchgrass development, which would improve ecosystem services and minimally impact food production. In this study, we advance our previous study results and integrate future crop expansion information to develop a switchgrass biofuel potential ensemble map for current and future croplands in eastern Nebraska. The switchgrass biomass productivity and carbon benefits (i.e. NEP: net ecosystem production) for the identified biofuel potential ensemble areas were quantified. The future scenario‐based (‘A1B’) land use and land cover map for 2050, the US Geological Survey crop type and Compound Topographic Index (CTI) maps, and long‐term (1981–2010) averaged annual precipitation data were used to identify future crop expansion regions that are suitable for switchgrass development. Results show that 2528 km2 of future crop expansion regions (~3.6% of the study area) are potentially suitable for switchgrass development. The total estimated biofuel potential ensemble area (including cropland buffers, marginal croplands, and future crop expansion regions) is 4232 km2 (~6% of the study area), potentially producing 3.52 million metric tons of switchgrass biomass per year. Converting biofuel ensemble regions to switchgrass leads to potential carbon sinks (the total NEP for biofuel potential areas is 0.45 million metric tons C) and is environmentally sustainable. Results from this study improve our understanding of environmental conditions and ecosystem services of current and future cropland systems in eastern Nebraska and provide

  7. Mapping marginal croplands suitable for cellulosic feedstock crops in the Great Plains, United States

    Science.gov (United States)

    Gu, Yingxin; Wylie, Bruce K.

    2016-01-01

    Growing cellulosic feedstock crops (e.g., switchgrass) for biofuel is more environmentally sustainable than corn-based ethanol. Specifically, this practice can reduce soil erosion and water quality impairment from pesticides and fertilizer, improve ecosystem services and sustainability (e.g., serve as carbon sinks), and minimize impacts on global food supplies. The main goal of this study was to identify high-risk marginal croplands that are potentially suitable for growing cellulosic feedstock crops (e.g., switchgrass) in the US Great Plains (GP). Satellite-derived growing season Normalized Difference Vegetation Index, a switchgrass biomass productivity map obtained from a previous study, US Geological Survey (USGS) irrigation and crop masks, and US Department of Agriculture (USDA) crop indemnity maps for the GP were used in this study. Our hypothesis was that croplands with relatively low crop yield but high productivity potential for switchgrass may be suitable for converting to switchgrass. Areas with relatively low crop indemnity (crop indemnity marginal croplands in the GP are potentially suitable for switchgrass development. The total estimated switchgrass biomass productivity gain from these suitable areas is about 5.9 million metric tons. Switchgrass can be cultivated in either lowland or upland regions in the GP depending on the local soil and environmental conditions. This study improves our understanding of ecosystem services and the sustainability of cropland systems in the GP. Results from this study provide useful information to land managers for making informed decisions regarding switchgrass development in the GP.

  8. Improved Satellite-based Crop Yield Mapping by Spatially Explicit Parameterization of Crop Phenology

    Science.gov (United States)

    Jin, Z.; Azzari, G.; Lobell, D. B.

    2016-12-01

    Field-scale mapping of crop yields with satellite data often relies on the use of crop simulation models. However, these approaches can be hampered by inaccuracies in the simulation of crop phenology. Here we present and test an approach to use dense time series of Landsat 7 and 8 acquisitions data to calibrate various parameters related to crop phenology simulation, such as leaf number and leaf appearance rates. These parameters are then mapped across the Midwestern United States for maize and soybean, and for two different simulation models. We then implement our recently developed Scalable satellite-based Crop Yield Mapper (SCYM) with simulations reflecting the improved phenology parameterizations, and compare to prior estimates based on default phenology routines. Our preliminary results show that the proposed method can effectively alleviate the underestimation of early-season LAI by the default Agricultural Production Systems sIMulator (APSIM), and that spatially explicit parameterization for the phenology model substantially improves the SCYM performance in capturing the spatiotemporal variation in maize and soybean yield. The scheme presented in our study thus preserves the scalability of SCYM, while significantly reducing its uncertainty.

  9. Reproducibility of crop surface maps extracted from Unmanned Aerial Vehicle (UAV) derived digital surface maps

    KAUST Repository

    Parkes, Stephen

    2016-10-25

    Crop height measured from UAVs fitted with commercially available RGB cameras provide an affordable alternative to retrieve field scale high resolution estimates. The study presents an assessment of between flight reproducibility of Crop Surface Maps (CSM) extracted from Digital Surface Maps (DSM) generated by Structure from Motion (SfM) algorithms. Flights were conducted over a centre pivot irrigation system covered with an alfalfa crop. An important step in calculating the absolute crop height from the UAV derived DSM is determining the height of the underlying terrain. Here we use automatic thresholding techniques applied to RGB vegetation index maps to classify vegetated and soil pixels. From interpolation of classified soil pixels, a terrain map is calculated and subtracted from the DSM. The influence of three different thresholding techniques on CSMs are investigated. Median Alfalfa crop heights determined with the different thresholding methods varied from 18cm for K means thresholding to 13cm for Otsu thresholding methods. Otsu thresholding also gave the smallest range of crop heights and K means thresholding the largest. Reproducibility of median crop heights between flight surveys was 4-6cm for all thresholding techniques. For the flight conducted later in the afternoon shadowing caused soil pixels to be classified as vegetation in key locations around the domain, leading to lower crop height estimates. The range of crop heights was similar for both flights using K means thresholding (35-36cm), local minimum thresholding depended on whether raw or normalised RGB intensities were used to calculate vegetation indices (30-35cm), while Otsu thresholding had a smaller range of heights and varied most between flights (26-30cm). This study showed that crop heights from multiple survey flights are comparable, however, they were dependent on the thresholding method applied to classify soil pixels and the time of day the flight was conducted.

  10. Reproducibility of crop surface maps extracted from Unmanned Aerial Vehicle (UAV) derived digital surface maps

    KAUST Repository

    Parkes, Stephen; McCabe, Matthew; Al-Mashhawari, Samir K.; Rosas, Jorge

    2016-01-01

    Crop height measured from UAVs fitted with commercially available RGB cameras provide an affordable alternative to retrieve field scale high resolution estimates. The study presents an assessment of between flight reproducibility of Crop Surface Maps (CSM) extracted from Digital Surface Maps (DSM) generated by Structure from Motion (SfM) algorithms. Flights were conducted over a centre pivot irrigation system covered with an alfalfa crop. An important step in calculating the absolute crop height from the UAV derived DSM is determining the height of the underlying terrain. Here we use automatic thresholding techniques applied to RGB vegetation index maps to classify vegetated and soil pixels. From interpolation of classified soil pixels, a terrain map is calculated and subtracted from the DSM. The influence of three different thresholding techniques on CSMs are investigated. Median Alfalfa crop heights determined with the different thresholding methods varied from 18cm for K means thresholding to 13cm for Otsu thresholding methods. Otsu thresholding also gave the smallest range of crop heights and K means thresholding the largest. Reproducibility of median crop heights between flight surveys was 4-6cm for all thresholding techniques. For the flight conducted later in the afternoon shadowing caused soil pixels to be classified as vegetation in key locations around the domain, leading to lower crop height estimates. The range of crop heights was similar for both flights using K means thresholding (35-36cm), local minimum thresholding depended on whether raw or normalised RGB intensities were used to calculate vegetation indices (30-35cm), while Otsu thresholding had a smaller range of heights and varied most between flights (26-30cm). This study showed that crop heights from multiple survey flights are comparable, however, they were dependent on the thresholding method applied to classify soil pixels and the time of day the flight was conducted.

  11. Winter Crop Mapping for Improving Crop Production Estimates in Argentina Using Moderation Resolution Satellite Imagery

    Science.gov (United States)

    Humber, M. L.; Copati, E.; Sanchez, A.; Sahajpal, R.; Puricelli, E.; Becker-Reshef, I.

    2017-12-01

    Accurate crop production data is fundamental for reducing uncertainly and volatility in the domestic and international agricultural markets. The Agricultural Estimates Department of the Buenos Aires Grain Exchange has worked since 2000 on the estimation of different crop production data. With this information, the Grain Exchange helps different actors of the agricultural chain, such as producers, traders, seed companies, market analyst, policy makers, into their day to day decision making. Since 2015/16 season, the Grain Exchange has worked on the development of a new earth observations-based method to identify winter crop planted area at a regional scale with the aim of improving crop production estimates. The objective of this new methodology is to create a reliable winter crop mask at moderate spatial resolution using Landsat-8 imagery by exploiting bi-temporal differences in the phenological stages of winter crops as compared to other landcover types. In collaboration with the University of Maryland, the map has been validated by photointerpretation of a stratified statistically random sample of independent ground truth data in the four largest producing provinces of Argentina: Buenos Aires, Cordoba, La Pampa, and Santa Fe. In situ measurements were also used to further investigate conditions in the Buenos Aires province. Preliminary results indicate that while there are some avenues for improvement, overall the classification accuracy of the cropland and non-cropland classes are sufficient to improve downstream production estimates. Continuing research will focus on improving the methodology for winter crop mapping exercises on a yearly basis as well as improving the sampling methodology to optimize collection of validation data in the future.

  12. Efficient crop type mapping based on remote sensing in the Central Valley, California

    Science.gov (United States)

    Zhong, Liheng

    Most agricultural systems in California's Central Valley are purposely flexible and intentionally designed to meet the demands of dynamic markets. Agricultural land use is also impacted by climate change and urban development. As a result, crops change annually and semiannually, which makes estimating agricultural water use difficult, especially given the existing method by which agricultural land use is identified and mapped. A minor portion of agricultural land is surveyed annually for land-use type, and every 5 to 8 years the entire valley is completely evaluated. So far no effort has been made to effectively and efficiently identify specific crop types on an annual basis in this area. The potential of satellite imagery to map agricultural land cover and estimate water usage in the Central Valley is explored. Efforts are made to minimize the cost and reduce the time of production during the mapping process. The land use change analysis shows that a remote sensing based mapping method is the only means to map the frequent change of major crop types. The traditional maximum likelihood classification approach is first utilized to map crop types to test the classification capacity of existing algorithms. High accuracy is achieved with sufficient ground truth data for training, and crop maps of moderate quality can be timely produced to facilitate a near-real-time water use estimate. However, the large set of ground truth data required by this method results in high costs in data collection. It is difficult to reduce the cost because a trained classification algorithm is not transferable between different years or different regions. A phenology based classification (PBC) approach is developed which extracts phenological metrics from annual vegetation index profiles and identifies crop types based on these metrics using decision trees. According to the comparison with traditional maximum likelihood classification, this phenology-based approach shows great advantages

  13. Crop Dominance Mapping with IRS-P6 and MODIS 250-m Time Series Data

    Directory of Open Access Journals (Sweden)

    Murali Krishna Gumma

    2014-04-01

    Full Text Available This paper describes an approach to accurately separate out and quantify crop dominance areas in the major command area in the Krishna River Basin. Classification was performed using IRS-P6 (Indian Remote Sensing Satellite, series P6 and MODIS eight-day time series remote sensing images with a spatial resolution of 23.6 m, 250 m for the year 2005. Temporal variations in the NDVI (Normalized Difference Vegetation Index pattern obtained in crop dominance classes enables a demarcation between long duration crops and short duration crops. The NDVI pattern was found to be more consistent in long duration crops than in short duration crops due to the continuity of the water supply. Surface water availability, on the other hand, was dependent on canal water release, which affected the time of crop sowing and growth stages, which was, in turn, reflected in the NDVI pattern. The identified crop-wise classes were tested and verified using ground-truth data and state-level census data. The accuracy assessment was performed based on ground-truth data through the error matrix method, with accuracies from 67% to 100% for individual crop dominance classes, with an overall accuracy of 79% for all classes. The derived major crop land areas were highly correlated with the sub-national statistics with R2 values of 87% at the mandal (sub-district level for 2005–2006. These results suggest that the methods, approaches, algorithms and datasets used in this study are ideal for rapid, accurate and large-scale mapping of paddy rice, as well as for generating their statistics over large areas. This study demonstrates that IRS-P6 23.6-m one-time data fusion with MODIS 250-m time series data is very useful for identifying crop type, the source of irrigation water and, in the case of surface water irrigation, the way in which it is applied. The results from this study have assisted in improving surface water and groundwater irrigated areas of the command area and also

  14. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Science.gov (United States)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  15. Transgenic crops coping with water scarcity.

    Science.gov (United States)

    Cominelli, Eleonora; Tonelli, Chiara

    2010-11-30

    Water scarcity is a serious problem that will be exacerbated by global climate change. Massive quantities of water are used in agriculture, and abiotic stresses, especially drought and increased salinity, are primary causes of crop loss worldwide. Various approaches may be adopted to consume less water in agriculture, one of them being the development of plants that use less water yet maintain high yields in conditions of water scarcity. In recent years several molecular networks concerned with stress perception, signal transduction and stress responses in plants have been elucidated. Consequently, engineering some of the genes involved in these mechanisms promises to enhance plant tolerance to stresses and in particular increase their water use efficiency. Here we review the various approaches used so far to produce transgenic plants having improved tolerance to abiotic stresses, and discuss criteria for choosing which genes to work on (functional and regulatory genes) and which gene expression promoters (constitutive, inducible, and cell-specific) have been used to obtain successful results. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Estimation of paddy water temperature during crop development

    International Nuclear Information System (INIS)

    Centeno, H.G.S.; Horie, T.

    1996-01-01

    The crop meristem is in direct contact with paddy water during crop's vegetative stage. Ambient air temperature becomes an important factor in crop development only when internodes elongate sufficiently for the meristem to rise above the water surface. This does not occur until after panicle initiation. Crop growth at vegetative stage is affected more by water temperature than the most commonly measured air temperature. During transplanting in 1992 dry season, the maximum paddy water temperature was 10 deg C higher than the maximum air temperature. For rice crop models, the development of a submodel to estimate water temperature is important to account the effect of paddy water temperature on plant growth. Paddy water temperature is estimated from mean air temperature, solar radiation, and crop canopy. The parameters of the model were derived using the simplex method on data from the 1993 wet- and dry-season field experiments at IRRI

  17. Association mapping in forest trees and fruit crops.

    Science.gov (United States)

    Khan, M Awais; Korban, Schuyler S

    2012-06-01

    Association mapping (AM), also known as linkage disequilibrium (LD) mapping, is a viable approach to overcome limitations of pedigree-based quantitative trait loci (QTL) mapping. In AM, genotypic and phenotypic correlations are investigated in unrelated individuals. Unlike QTL mapping, AM takes advantage of both LD and historical recombination present within the gene pool of an organism, thus utilizing a broader reference population. In plants, AM has been used in model species with available genomic resources. Pursuing AM in tree species requires both genotyping and phenotyping of large populations with unique architectures. Recently, genome sequences and genomic resources for forest and fruit crops have become available. Due to abundance of single nucleotide polymorphisms (SNPs) within a genome, along with availability of high-throughput resequencing methods, SNPs can be effectively used for genotyping trees. In addition to DNA polymorphisms, copy number variations (CNVs) in the form of deletions, duplications, and insertions also play major roles in control of expression of phenotypic traits. Thus, CNVs could provide yet another valuable resource, beyond those of microsatellite and SNP variations, for pursuing genomic studies. As genome-wide SNP data are generated from high-throughput sequencing efforts, these could be readily reanalysed to identify CNVs, and subsequently used for AM studies. However, forest and fruit crops possess unique architectural and biological features that ought to be taken into consideration when collecting genotyping and phenotyping data, as these will also dictate which AM strategies should be pursued. These unique features as well as their impact on undertaking AM studies are outlined and discussed.

  18. The green, blue and grey water footprint of crops and derived crop products

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2011-01-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid.

  19. Using Imaging Spectrometry to Approach Crop Classification from a Water Management Perspective

    Science.gov (United States)

    Shivers, S.; Roberts, D. A.

    2017-12-01

    We use hyperspectral remote sensing imagery to classify crops in the Central Valley of California at a level that would be of use to water managers. In California irrigated agriculture uses 80 percent of the state's water supply with differences in water application rate varying by as large as a factor of three, dependent on crop type. Therefore, accurate water resource accounting is dependent upon accurate crop mapping. While on-the-ground crop accounting at the county level requires significant labor and time inputs, remote sensing has the potential to map crops over a greater spatial area with more frequent time intervals. Specifically, imaging spectrometry with its wide spectral range has the ability to detect small spectral differences at the field-level scale that may be indiscernible to multispectral sensors such as Landsat. In this study, crops in the Central Valley were classified into nine categories defined and used by the California Department of Water Resources as having similar water usages. We used the random forest classifier on Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery from June 2013, 2014 and 2015 to analyze accuracy of multi-temporal images and to investigate the extent to which cropping patterns have changed over the course of the 2013-2015 drought. Initial results show accuracies of over 90% for all three years, indicating that hyperspectral imagery has the potential to identify crops by water use group at a single time step with a single sensor, allowing cropping patterns to be monitored in anticipation of water needs.

  20. The green, blue and grey water footprint of crops and derived crop products

    Science.gov (United States)

    Mekonnen, M. M.; Hoekstra, A. Y.

    2011-05-01

    This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996-2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network. Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton-1), vegetables (300 m3 ton-1), roots and tubers (400 m3 ton-1), fruits (1000 m3 ton-1), cereals (1600 m3 ton-1), oil crops (2400 m3 ton-1) to pulses (4000 m3 ton-1). The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m3 GJ-1) than biodiesel, which supports earlier analyses. The crop used matters significantly as well: the global average water footprint of bio-ethanol based on sugar beet amounts to 51 m3 GJ-1

  1. Adjustment and Optimization of the Cropping Systems under Water Constraint

    Directory of Open Access Journals (Sweden)

    Pingli An

    2016-11-01

    Full Text Available The water constraint on agricultural production receives growing concern with the increasingly sharp contradiction between demand and supply of water resources. How to mitigate and adapt to potential water constraint is one of the key issues for ensuring food security and achieving sustainable agriculture in the context of climate change. It has been suggested that adjustment and optimization of cropping systems could be an effective measure to improve water management and ensure food security. However, a knowledge gap still exists in how to quantify potential water constraint and how to select appropriate cropping systems. Here, we proposed a concept of water constraint risk and developed an approach for the evaluation of the water constraint risks for agricultural production by performing a case study in Daxing District, Beijing, China. The results show that, over the whole growth period, the order of the water constraint risks of crops from high to low was wheat, rice, broomcorn, foxtail millet, summer soybean, summer peanut, spring corn, and summer corn, and the order of the water constraint risks of the cropping systems from high to low was winter wheat-summer grain crops, rice, broomcorn, foxtail millet, and spring corn. Our results are consistent with the actual evolving process of cropping system. This indicates that our proposed method is practicable to adjust and optimize the cropping systems to mitigate and adapt to potential water risks. This study provides an insight into the adjustment and optimization of cropping systems under resource constraints.

  2. UAV MULTISPECTRAL SURVEY TO MAP SOIL AND CROP FOR PRECISION FARMING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    G. Sona

    2016-06-01

    Full Text Available New sensors mounted on UAV and optimal procedures for survey, data acquisition and analysis are continuously developed and tested for applications in precision farming. Procedures to integrate multispectral aerial data about soil and crop and ground-based proximal geophysical data are a recent research topic aimed to delineate homogeneous zones for the management of agricultural inputs (i.e., water, nutrients. Multispectral and multitemporal orthomosaics were produced over a test field (a 100 m x 200 m plot within a maize field, to map vegetation and soil indices, as well as crop heights, with suitable ground resolution. UAV flights were performed in two moments during the crop season, before sowing on bare soil, and just before flowering when maize was nearly at the maximum height. Two cameras, for color (RGB and false color (NIR-RG images, were used. The images were processed in Agisoft Photoscan to produce Digital Surface Model (DSM of bare soil and crop, and multispectral orthophotos. To overcome some difficulties in the automatic searching of matching points for the block adjustment of the crop image, also the scientific software developed by Politecnico of Milan was used to enhance images orientation. Surveys and image processing are described, as well as results about classification of multispectral-multitemporal orthophotos and soil indices.

  3. Impacts of crop insurance on water withdrawals for irrigation

    Science.gov (United States)

    Deryugina, Tatyana; Konar, Megan

    2017-12-01

    Agricultural production remains particularly vulnerable to weather fluctuations and extreme events, such as droughts, floods, and heat waves. Crop insurance is a risk management tool developed to mitigate some of this weather risk and protect farmer income in times of poor production. However, crop insurance may have unintended consequences for water resources sustainability, as the vast majority of freshwater withdrawals go to agriculture. The causal impact of crop insurance on water use in agriculture remains poorly understood. Here, we determine the empirical relationship between crop insurance and irrigation water withdrawals in the United States. Importantly, we use an instrumental variables approach to establish causality. Our methodology exploits a major policy change in the crop insurance system - the 1994 Federal Crop Insurance Reform Act - which imposed crop insurance requirements on farmers. We find that a 1% increase in insured crop acreage leads to a 0.223% increase in irrigation withdrawals, with most coming from groundwater aquifers. We identify farmers growing more groundwater-fed cotton as an important mechanism contributing to increased withdrawals. A 1% increase in insured crop acreage leads to a 0.624% increase in cotton acreage, or 95,602 acres. These results demonstrate that crop insurance causally leads to more irrigation withdrawals. More broadly, this work underscores the importance of determining causality in the water-food nexus as we endeavor to achieve global food security and water resources sustainability.

  4. Assessing the MODIS crop detection algorithm for soybean crop area mapping and expansion in the Mato Grosso state, Brazil.

    Science.gov (United States)

    Gusso, Anibal; Arvor, Damien; Ducati, Jorge Ricardo; Veronez, Mauricio Roberto; da Silveira, Luiz Gonzaga

    2014-01-01

    Estimations of crop area were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from moderate resolution imaging spectroradiometer (MODIS) images. Evaluation of the ability of the MODIS crop detection algorithm (MCDA) to estimate soybean crop areas was performed for fields in the Mato Grosso state, Brazil. Using the MCDA approach, soybean crop area estimations can be provided for December (first forecast) using images from the sowing period and for February (second forecast) using images from the sowing period and the maximum crop development period. The area estimates were compared to official agricultural statistics from the Brazilian Institute of Geography and Statistics (IBGE) and from the National Company of Food Supply (CONAB) at different crop levels from 2000/2001 to 2010/2011. At the municipality level, the estimates were highly correlated, with R (2) = 0.97 and RMSD = 13,142 ha. The MCDA was validated using field campaign data from the 2006/2007 crop year. The overall map accuracy was 88.25%, and the Kappa Index of Agreement was 0.765. By using pre-defined parameters, MCDA is able to provide the evolution of annual soybean maps, forecast of soybean cropping areas, and the crop area expansion in the Mato Grosso state.

  5. Building Exposure Maps Of Urban Infrastructure And Crop Fields In The Mekong River Basin

    Science.gov (United States)

    Haas, E.; Weichselbaum, J.; Gangkofner, U.; Miltzer, J.; Wali, A.

    2013-12-01

    In the frame of the Integrated Water Resources Management (IWRM) initiative for the Mekong river basin World Bank is collaborating with the Mekong River Commission and governmental organizations in Cambodia, Lao PDR, Thailand and Vietnam to build national and regional capacities for managing the risks associated with natural disasters, such as floods, flash floods and droughts. Within ‘eoworld', a joint initiative set up by ESA and World Bank to foster the use of Earth Observation (EO) for sustainable development work, a comprehensive database of elements at risk in the Lower Mekong river basin has been established by GeoVille, including urban infrastructure and crops (primarily rice paddies). In the long term, this exposure information shall be fed into an open-source multi- hazard modeling tool for risk assessment along the Mekong River, which then shall be used by national stakeholders as well as insurance and financial institutions for planning, disaster preparedness and emergency management. Earth Observation techniques can provide objective, synoptic and repetitive observations of elements at risk including buildings, infrastructure and crops. Through the fusion of satellite-based with in-situ data from field surveys and local knowledge (e.g. on building materials) features at risk can be characterised and mapped with high accuracy. Earth Observation data utilised comprise bi-weekly Envisat ASAR imagery programmed for a period of 9 months in 2011 to map the development of the rice cultivation area, identify predominant cropping systems (wet-season vs. dry season cultivation), crop cycles (single /double / triple crop per year), date of emergence/harvest and the distinction between rice planted under intensive (SRI) vs. regular rice cultivation techniques. Very High Resolution (VHR) optical data from SPOT, KOMPSAT and QuickBird were used for mapping of buildings and infrastructure, such as building footprints, residential / commercial areas, industrial

  6. Increased food production and reduced water use through optimized crop distribution

    Science.gov (United States)

    Davis, Kyle Frankel; Rulli, Maria Cristina; Seveso, Antonio; D'Odorico, Paolo

    2017-12-01

    Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods.

  7. Spatial Variability Mapping of Crop Residue Using Hyperion (EO-1 Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Abderrazak Bannari

    2015-06-01

    Full Text Available Soil management practices that maintain crop residue cover and reduce tillage improve soil structure, increase organic matter content in the soil, positively influence water infiltration, evaporation and soil temperature, and play an important role in fixing CO2 in the soil. Consequently, good residue management practices on agricultural land have many positive impacts on soil quality, crop production quality and decrease the rate of soil erosion. Several studies have been undertaken to develop and test methods to derive information on crop residue cover and soil tillage using empirical and semi-empirical methods in combination with remote sensing data. However, these methods are generally not sufficiently rigorous and accurate for characterizing the spatial variability of crop residue cover in agricultural fields. The goal of this research is to investigate the potential of hyperspectral Hyperion (Earth Observing-1, EO-1 data and constrained linear spectral mixture analysis (CLSMA for percent crop residue cover estimation and mapping. Hyperion data were acquired together with ground-reference measurements for validation purposes at the beginning of the agricultural season (prior to spring crop planting in Saskatchewan (Canada. At this time, only bare soil and crop residue were present with no crop cover development. In order to extract the crop residue fraction, the images were preprocessed, and then unmixed considering the entire spectral range (427 nm–2355 nm and the pure spectra (endmember. The results showed that the correlation between ground-reference measurements and extracted fractions from the Hyperion data using CLMSA showed that the model was overall a very good predictor for crop residue percent cover (index of agreement (D of 0.94, coefficient of determination (R2 of 0.73 and root mean square error (RMSE of 8.7% and soil percent cover (D of 0.91, R2 of 0.68 and RMSE of 10.3%. This performance of Hyperion is mainly due to the

  8. Agroclimatic mapping of maize crop based on soil physical properties

    International Nuclear Information System (INIS)

    Dourado Neto, Durval; Sparovek, G.; Reichardt, K.; Timm, Luiz Carlos; Nielsen, D.R.

    2004-01-01

    With the purpose of estimating water deficit to forecast yield knowing productivity (potential yield), the water balance is useful tool to recommend maize exploration and to define the sowing date. The computation can be done for each region with the objective of mapping maize grain yield based on agro-climatic data and soil physical properties. Based on agro-climatic data, air temperature and solar radiation, a model was built to estimate the corn grain productivity (the energy conversion results in dry mass production). The carbon dioxide (CO 2 ) fixation by plants is related to gross carbohydrate (CH 2 O) production and solar radiation. The CO 2 assimilation by C4 plants depends on the photosynthetic active radiation and temperature. From agro-climatic data and soil physical properties, a map with region identification can be built for solar radiation, air temperature, rainfall, maize grain productivity and yield, potential and real evapo-transpiration and water deficit. The map allows to identify the agro-climatic and the soil physical restrictions. This procedure can be used in different spatial (farm to State) and temporal (daily to monthly data) scales. The statistical analysis allows to compare estimated and observed values in different situations to validate the model and to verify which scale is more appropriate

  9. Towards a globally optimized crop distribution: Integrating water use, nutrition, and economic value

    Science.gov (United States)

    Davis, K. F.; Seveso, A.; Rulli, M. C.; D'Odorico, P.

    2016-12-01

    Human demand for crop production is expected to increase substantially in the coming decades as a result of population growth, richer diets and biofuel use. In order for food production to keep pace, unprecedented amounts of resources - water, fertilizers, energy - will be required. This has led to calls for `sustainable intensification' in which yields are increased on existing croplands while seeking to minimize impacts on water and other agricultural resources. Recent studies have quantified aspects of this, showing that there is a large potential to improve crop yields and increase harvest frequencies to better meet human demand. Though promising, both solutions would necessitate large additional inputs of water and fertilizer in order to be achieved under current technologies. However, the question of whether the current distribution of crops is, in fact, the best for realizing sustainable production has not been considered to date. To this end, we ask: Is it possible to increase crop production and economic value while minimizing water demand by simply growing crops where soil and climate conditions are best suited? Here we use maps of yields and evapotranspiration for 14 major food crops to identify differences between current crop distributions and where they can most suitably be planted. By redistributing crops across currently cultivated lands, we determine the potential improvements in calorie (+12%) and protein (+51%) production, economic output (+41%) and water demand (-5%). This approach can also incorporate the impact of future climate on cropland suitability, and as such, be used to provide optimized cropping patterns under climate change. Thus, our study provides a novel tool towards achieving sustainable intensification that can be used to recommend optimal crop distributions in the face of a changing climate while simultaneously accounting for food security, freshwater resources, and livelihoods.

  10. Water Quality Impacts of Cover Crop/Manure Management Systems

    OpenAIRE

    Kern, James Donald

    1997-01-01

    Crop production, soil system, water quality, and economic impacts of four corn silage production systems were compared through a field study including 16 plots (4 replications of each treatment). Systems included a rye cover crop and application of liquid dairy manure in the spring and fall. The four management systems were: 1) traditional, 2) double- crop, 3) roll-down, and 4) undercut. In the fourth system, manure was applied below the soil surface during the ...

  11. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Science.gov (United States)

    Chu, Yingmin; Shen, Yanjun; Yuan, Zaijian

    2017-06-01

    The North China Plain (NCP) has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP) was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF) of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1) the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI) of cotton was the largest, and for vegetables, it was the smallest; (2) the total WF, WFblue, WFgreen and WFgrey for 13 years (2000-2012) of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3) winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue) accounted for 74.2 % of the total WFblue in the HSP; (4) the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat-summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  12. Water footprint of crop production for different crop structures in the Hebei southern plain, North China

    Directory of Open Access Journals (Sweden)

    Y. Chu

    2017-06-01

    Full Text Available The North China Plain (NCP has a serious shortage of freshwater resources, and crop production consumes approximately 75 % of the region's water. To estimate water consumption of different crops and crop structures in the NCP, the Hebei southern plain (HSP was selected as a study area, as it is a typical region of groundwater overdraft in the NCP. In this study, the water footprint (WF of crop production, comprised of green, blue and grey water footprints, and its annual variation were analyzed. The results demonstrated the following: (1 the WF from the production of main crops was 41.8 km3 in 2012. Winter wheat, summer maize and vegetables were the top water-consuming crops in the HSP. The water footprint intensity (WFI of cotton was the largest, and for vegetables, it was the smallest; (2 the total WF, WFblue, WFgreen and WFgrey for 13 years (2000–2012 of crop production were 604.8, 288.5, 141.3 and 175.0 km3, respectively, with an annual downtrend from 2000 to 2012; (3 winter wheat, summer maize and vegetables consumed the most groundwater, and their blue water footprint (WFblue accounted for 74.2 % of the total WFblue in the HSP; (4 the crop structure scenarios analysis indicated that, with approximately 20 % of arable land cultivated with winter wheat–summer maize in rotation, 38.99 % spring maize, 10 % vegetables and 10 % fruiters, a sustainable utilization of groundwater resources can be promoted, and a sufficient supply of food, including vegetables and fruits, can be ensured in the HSP.

  13. Water Savings of Crop Redistribution in the United States

    Directory of Open Access Journals (Sweden)

    Kyle Frankel Davis

    2017-01-01

    Full Text Available Demographic growth, changes in diet, and reliance on first-generation biofuels are increasing the human demand for agricultural products, thereby enhancing the human pressure on global freshwater resources. Recent research on the food-water nexus has highlighted how some major agricultural regions of the world lack the water resources required to sustain current growth trends in crop production. To meet the increasing need for agricultural commodities with limited water resources, the water use efficiency of the agricultural sector must be improved. In this regard, recent work indicates that the often overlooked strategy of changing the crop distribution within presently cultivated areas offers promise. Here we investigate the extent to which water in the United States could be saved while improving yields simply by replacing the existing crops with more suitable ones. We propose crop replacement criteria that achieve this goal while preserving crop diversity, economic value, nitrogen fixation, and food protein production. We find that in the United States, these criteria would greatly improve calorie (+46% and protein (+34% production and economic value (+208%, with 5% water savings with respect to the present crop distribution. Interestingly, greater water savings could be achieved in water-stressed agricultural regions of the US such as California (56% water savings, and other western states.

  14. Vegetation Water Content Mapping for Agricultural Regions in SMAPVEX16

    Science.gov (United States)

    White, W. A.; Cosh, M. H.; McKee, L.; Berg, A. A.; McNairn, H.; Hornbuckle, B. K.; Colliander, A.; Jackson, T. J.

    2017-12-01

    Vegetation water content impacts the ability of L-band radiometers to measure surface soil moisture. Therefore it is necessary to quantify the amount of water held in surface vegetation for an accurate soil moisture remote sensing retrieval. A methodology is presented for generating agricultural vegetation water content maps using Landsat 8 scenes for agricultural fields of Iowa and Manitoba for the Soil Moisture Active Passive Validation Experiments in 2016 (SMAPVEX16). Manitoba has a variety of row crops across the region, and the study period encompasses the time frame from emergence to reproduction, as well as a forested region. The Iowa study site is dominated by corn and soybeans, presenting an easier challenge. Ground collection of vegetation biomass and water content were also collected to provide a ground truth data source. Errors for the resulting vegetation water content maps ranged depending upon crop type, but generally were less than 15% of the total plant water content per crop type. Interpolation is done between Landsat overpasses to produce daily vegetation water content maps for the summer of 2016 at a 30 meter resolution.

  15. Mapping crop diseases using survey data: The case of bacterial wilt in bananas in the East African highlands

    NARCIS (Netherlands)

    Bouwmeester, H.; Heuvelink, G.B.M.; Stoorvogel, J.J.

    2016-01-01

    Globally, crop diseases result in significant losses in crop yields. To properly target interventions to control crop diseases, it is important to map diseases at a high resolution. However, many surveys of crop diseases pose challenges to mapping because available observations are only proxies of

  16. The green, blue and grey water footprint of crops and derived crop products

    Directory of Open Access Journals (Sweden)

    M. M. Mekonnen

    2011-05-01

    Full Text Available This study quantifies the green, blue and grey water footprint of global crop production in a spatially-explicit way for the period 1996–2005. The assessment improves upon earlier research by taking a high-resolution approach, estimating the water footprint of 126 crops at a 5 by 5 arc minute grid. We have used a grid-based dynamic water balance model to calculate crop water use over time, with a time step of one day. The model takes into account the daily soil water balance and climatic conditions for each grid cell. In addition, the water pollution associated with the use of nitrogen fertilizer in crop production is estimated for each grid cell. The crop evapotranspiration of additional 20 minor crops is calculated with the CROPWAT model. In addition, we have calculated the water footprint of more than two hundred derived crop products, including various flours, beverages, fibres and biofuels. We have used the water footprint assessment framework as in the guideline of the Water Footprint Network.

    Considering the water footprints of primary crops, we see that the global average water footprint per ton of crop increases from sugar crops (roughly 200 m3 ton−1, vegetables (300 m3 ton−1, roots and tubers (400 m3 ton−1, fruits (1000 m3 ton−1, cereals (1600 m3 ton−1, oil crops (2400 m3 ton−1 to pulses (4000 m3 ton−1. The water footprint varies, however, across different crops per crop category and per production region as well. Besides, if one considers the water footprint per kcal, the picture changes as well. When considered per ton of product, commodities with relatively large water footprints are: coffee, tea, cocoa, tobacco, spices, nuts, rubber and fibres. The analysis of water footprints of different biofuels shows that bio-ethanol has a lower water footprint (in m

  17. Estimating Major Crop Water Productivity at Neyshabour Basin and Optimize Crop Area

    Directory of Open Access Journals (Sweden)

    Yavar Pourmohamad

    2017-06-01

    Full Text Available Introductionin current situation when world is facing massive population, producing enough food and adequate income for people is a big challenge specifically for governors. This challenge gets even harder in recent decades, due to global population growth which was projected to increase to 7.8 billion in 2025. Agriculture as the only industry that has ability to produce food is consuming 90 percent of fresh water globally. Despite of increasing for food demand, appropriate agricultural land and fresh water resources are restricted. To solve this problem, one is to increase water productivity which can be obtain by irrigation. Iran is not only exempted from this situation but also has more critical situation due to its dry climate and inappropriate precipitation distribution spatially and temporally, also uneven distribution of population which is concentrate in small area. The only reasonable solution by considering water resources limitation and also restricted crop area is changing crop pattern to reach maximum or at least same amount of income by using same or less amount of water. The purpose of this study is to assess financial water productivity and optimize farmer’s income by changing in each crop acreage at basin and sub-basin level with no extra groundwater withdrawals, also in order to repair the damages which has enforce to groundwater resources during last decades a scenario of using only 80percent of renewable water were applied and crop area were optimize to provide maximum or same income for farmers. Materials and methodsThe Neyshabour basin is located in northeast of Iran, the total geographical area of basin is 73,000 km2 consisting of 41,000 km2 plain and the rest of basin is mountains. This Basin is a part of Kalshoor catchment that is located in southern part of Binaloud heights and northeast of KavirMarkazi. In this study whole Neyshabour basin were divided into 199 sub-basins based on pervious study.Based on official

  18. Disaggregating and mapping crop statistics using hypertemporal remote sensing

    NARCIS (Netherlands)

    Khan, M.R.; Bie, de C.A.J.M.; Keulen, van H.; Smaling, E.M.A.; Real, R.

    2010-01-01

    Governments compile their agricultural statistics in tabular form by administrative area, which gives no clue to the exact locations where specific crops are actually grown. Such data are poorly suited for early warning and assessment of crop production. 10-Daily satellite image time series of

  19. Crop modelling and water use efficiency of protected cucumber

    International Nuclear Information System (INIS)

    El Moujabber, M.; Atallah, Th.; Darwish, T.

    2002-01-01

    Crop modelling is considered an essential tool of planning. The automation of irrigation scheduling using crop models would contribute to an optimisation of water and fertiliser use of protected crops. To achieve this purpose, two experiments were carried. The first one aimed at determining water requirements and irrigation scheduling using climatic data. The second experiment was to establish the influence of irrigation interval and fertigation regime on water use efficiency. The results gave a simple model for the determination of the water requirements of protected cucumber by the use of climatic data: ETc=K* Ep. K and Ep are calculated using climatic data outside the greenhouse. As for water use efficiency, the second experiment highlighted the fact that a high frequency and continuous feeding are highly recommended for maximising yield. (author)

  20. Water dynamics in a bean crop (Phaseolus vulgaris)

    International Nuclear Information System (INIS)

    Calvache, Marcelo; Garcia, Carlos.

    1987-01-01

    The dynamics of water was studied at 'La Tola', Experimental Teaching Center of the Central University of Ecuador, in a Sandy-Ioan, typic Haplustoll soil, in wich beans were growing. All the components of the crop water balance were determined. Real evapotranspiration was in direct relation to the growth of the crop, reaching its maximum value of 4.9 mm day-1, at pod setting, then decreasing slowly until maturation of the kernels. Up to 1 meter depth, water loss by drainage depended on rainfall, reaching up to 24% of the total water loss: the soil layer supplying most of the water for the use of the crop was between 0-40 cm, where the root activity was greatest

  1. Performance evaluation of selected crop yield-water use models for wheat crop

    Directory of Open Access Journals (Sweden)

    H. E. Igbadun

    2001-10-01

    Full Text Available Crop yield-water use models that provide useful information about the exact form of crop response to different amounts of water used by the crop throughout its growth stages and those that provide adequate information for decisions on optimal use of water in the farm were evaluated. Three crop yield models: Jensen (1968, Minhas et al., (1974 and Bras and Cordova (1981 additive type models were studied. Wheat (Triticum aestivum was planted at the Institute for Agricultural Research Farm during the 1995/96 and 1996/97 irrigation seasons of November to March. The data collected from the field experiments during the 1995/96 planting season were used to calibrate the models and their stress sensitivity factors estimated for four selected growth stages of the wheat crop. The ability of the model to predict grain yield of wheat with the estimated stress sensitivity factors was evaluated by comparing predicted grain yields by each model with those obtained in the field during the 1996/97 season. The three models performed fairly well in predicting grain yields, as the predicted results were not significantly different from the field measured grain yield at 5% level of significance.

  2. Crops, Nitrogen, Water: Are Legumes Friend, Foe, or Misunderstood Ally?

    Science.gov (United States)

    Adams, Mark A; Buchmann, Nina; Sprent, Janet; Buckley, Thomas N; Turnbull, Tarryn L

    2018-06-01

    Biological nitrogen fixation (BNF) by crop legumes reduces demand for industrial nitrogen fixation (INF). Nonetheless, rates of BNF in agriculture remain low, with strong negative feedback to BNF from reactive soil nitrogen (N) and drought. We show that breeding for yield has resulted in strong relationships between photosynthesis and leaf N in non-leguminous crops, whereas grain legumes show strong relations between leaf N and water use efficiency (WUE). We contrast these understandings with other studies that draw attention to the water costs of grain legume crops, and their potential for polluting the biosphere with N. We propose that breeding grain legumes for reduced stomatal conductance can increase WUE without compromising production or BNF. Legume crops remain a better bet than relying on INF. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Water Use and Crop Coefficients in Sprinkler Irrigated Rice

    Directory of Open Access Journals (Sweden)

    Antonino Spanu

    Full Text Available Field experiments were carried out during the years 2002, 2004, 2005 and 2006 to analyze water-soil-atmosphere interactions in sprinkler irrigated rice. The research was carried out in Sardinia (39º 59’ N; 8º 40’ E, at altitude 15 m. The cultivars used in the experiments, respectively in 2002 and in 2004-2005-2006, were Irat 212 and Eurosis. In each year cultivars were subjected to the same crop management. Irrigation was applied since the emergence with the sprinkler method, taking into account the loss of water from ‘Class A’ pan evaporation. Soil water content was monitored at 0.10 m intervals until 1.00-m depth using a ‘Diviner 2000’ (Sentek. In 2002 seven irrigation scheduling treatments were compared. In 2004, 2005, 2006 irrigation treatments provided for optimal soil water conditions during the growing season. In 2002 the results highlighted: 1 0-0.20 m depth was the most important layer for crop water uptake and the best correlated layer with rice rough yield; 2 the positive relationship between yield and water supply was significant until 6500 m3 ha-1 of water applied. Further seasonal irrigation volumes did not increase significantly yield. In 2004, 2005 and 2006 the analysis of the soil water balance at different crop phenological stages allowed to estimate crop coefficients (Kc using the Penman-Monteith equation and the ‘Class A’ pan evaporation (Kcev. Kc varied over the three-year period on average from 0.90 to 1.07 and 0.97, respectively for the emergence-end of tillering, end of tillering-heading and heading-maturing periods, while crop coefficients as a ratio between maximum crop evapotranspiration (ETc and Epan, Kcev ranged from 0.78 to 0.92 and 0.81 for the same time periods.

  4. Cover crop biomass production and water use in the central great plains under varying water availability

    Science.gov (United States)

    The water-limited environment of the semi-arid central Great Plains may not have potential to produce enough cover crop biomass to generate benefits associated with cover crop use in more humid regions. There have been reports that cover crops grown in mixtures produce more biomass with greater wate...

  5. Assessment of global grey water footprint of major food crops

    Science.gov (United States)

    Yang, Hong; Liu, Wenfeng; Antonelli, Marta

    2016-04-01

    Agricultural production is one of the major sources of water pollution in the world. This is closely related to the excess application of fertilizers. Leaching of N and P to water bodies has caused serious degradation of water quality in many places. With the persistent increase in the demand for agricultural products, agricultural intensification evident during the past decades will continue in the future. This will lead to further increase in fertilizer application and consequently water pollution. Grey water footprint is a measure of the intensity of water pollution caused by water use for human activities. It is defined as the volume of water that is required to assimilate a load of pollutants to a freshwater body, based on natural background concentrations and water quality standards. This study conducts a global assessment of grey water footprint for major cereal crops, wheat, maize and rice. A crop model, Python-based EPIC (PEPIT), is applied to quantify the leaching of N and P from the fertilizer application in the three crops on a global scale with 0.5 degree spatial resolution. The hotspots of leaching are identified. The results suggest that, based on the definition and method of grey water footprint proposed by the World Water Footprint Network, the grey water footprint in many parts of the world has exceeded their total water resources availability. This indicates the seriousness of water pollution caused by agricultural production. However, the situation may also call for the development of a realistic measurement of grey water footprint which is more pertinent to water resources management. This paper proposes some alternatives in measuring grey water footprint and also discusses incorporation of grey water footprint assessment into water policy formulation and river basins plan development.

  6. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand

    Directory of Open Access Journals (Sweden)

    Shabbir H. Gheewala

    2014-06-01

    Full Text Available The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water and blue water (or irrigation water. Rice (paddy farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H2Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future.

  7. Improving crop water use efficiency using carbon isotope discrimination

    International Nuclear Information System (INIS)

    Serraj, R.

    2006-01-01

    Water scarcity, drought and salinity are among the most important environmental constraints challenging crop productivity in the arid and semi-arid regions of the world, especially the rain-fed production systems. The current challenge is to enhance food security in water-limited and/or salt-affected areas for the benefit of resource-poor farmers in developing countries. There is also an increasing need that water use in agriculture should focus on improvement in the management of existing water resources and enhancing crop water productivity. The method based on carbon-13 discrimination in plant tissues has a potentially important role in the selection and breeding of some crop species for increased water use efficiency in some specific environments. Under various water-limited environments, low delta in the plants, indicating low carbon isotope discrimination has been generally associated with high transpiration efficiency (TE). In contrast, for well-watered environments many positive genotypic correlations have been reported between delta and grain yield indicating potential value in selecting for greater delta in these environments. Few studies have been reported on the impact of selection for delta on adaptation and grain yield in saline environments. Studies of the impact of genetic selection for greater and lower delta are currently coordinated by the Soil and water Management and Crop Nutrition Section (SWMCN) of the Joint FAO/IAEA Division. A Coordinated Research Project (CRP) is currently on-going on the Selection for Greater Agronomic Water-Use Efficiency in Wheat and Rice using Carbon Isotope Discrimination (D1-20 08). The overall objective of this project is to contribute to increasing the agronomic water-use efficiency of wheat and rice production, where agronomic water-use efficiency is defined as grain yield/total water use including both transpiration and evaporation. The CRP is also aiming at increasing wheat productivity under drought and rice

  8. Water Use and Quality Footprints of Biofuel Crops in Florida

    Science.gov (United States)

    Shukla, S.; Hendricks, G.; Helsel, Z.; Knowles, J.

    2013-12-01

    The use of biofuel crops for future energy needs will require considerable amounts of water inputs. Favorable growing conditions for large scale biofuel production exist in the sub-tropical environment of South Florida. However, large-scale land use change associated with biofuel crops is likely to affect the quantity and quality of water within the region. South Florida's surface and ground water resources are already stressed by current allocations. Limited data exists to allocate water for growing the energy crops as well as evaluate the accompanying hydrologic and water quality impacts of large-scale land use changes. A three-year study was conducted to evaluate the water supply and quality impacts of three energy crops: sugarcane, switchgrass, and sweet sorghum (with a winter crop). Six lysimeters were used to collect the data needed to quantify crop evapotranspiration (ETc), and nitrogen (N) and phosphorus (P) levels in groundwater and discharge (drainage and runoff). Each lysimeter (4.85 x 3.65 x 1.35 m) was equipped to measure water input, output, and storage. The irrigation, runoff, and drainage volumes were measured using flow meters. Groundwater samples were collected bi-weekly and drainage/runoff sampling was event based; samples were analyzed for nitrogen (N) and phosphorous (P) species. Data collected over the three years revealed that the average annual ETc was highest for sugarcane (1464 mm) followed by switchgrass and sweet sorghum. Sweet sorghum had the highest total N (TN) concentration (7.6 mg/L) in groundwater and TN load (36 kg/ha) in discharge. However, sweet sorghum had the lowest total P (TP) concentration (1.2 mg/L) in groundwater and TP load (9 kg/ha) in discharge. Water use footprint for ethanol (liter of water used per liter of ethanol produced) was lowest for sugarcane and highest for switchgrass. Switchgrass had the highest P-load footprint for ethanol. No differences were observed for the TN load footprint for ethanol. This is the

  9. A global sensitivity analysis of crop virtual water content

    Science.gov (United States)

    Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.

    2015-12-01

    The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for

  10. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya.

    Science.gov (United States)

    Richard, Kyalo; Abdel-Rahman, Elfatih M; Subramanian, Sevgan; Nyasani, Johnson O; Thiel, Michael; Jozani, Hosein; Borgemeister, Christian; Landmann, Tobias

    2017-11-03

    Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF) classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC) and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step). An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer's accuracy and UA: user's accuracy) for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10-20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  11. Maize Cropping Systems Mapping Using RapidEye Observations in Agro-Ecological Landscapes in Kenya

    Directory of Open Access Journals (Sweden)

    Kyalo Richard

    2017-11-01

    Full Text Available Cropping systems information on explicit scales is an important but rarely available variable in many crops modeling routines and of utmost importance for understanding pests and disease propagation mechanisms in agro-ecological landscapes. In this study, high spatial and temporal resolution RapidEye bio-temporal data were utilized within a novel 2-step hierarchical random forest (RF classification approach to map areas of mono- and mixed maize cropping systems. A small-scale maize farming site in Machakos County, Kenya was used as a study site. Within the study site, field data was collected during the satellite acquisition period on general land use/land cover (LULC and the two cropping systems. Firstly, non-cropland areas were masked out from other land use/land cover using the LULC mapping result. Subsequently an optimized RF model was applied to the cropland layer to map the two cropping systems (2nd classification step. An overall accuracy of 93% was attained for the LULC classification, while the class accuracies (PA: producer’s accuracy and UA: user’s accuracy for the two cropping systems were consistently above 85%. We concluded that explicit mapping of different cropping systems is feasible in complex and highly fragmented agro-ecological landscapes if high resolution and multi-temporal satellite data such as 5 m RapidEye data is employed. Further research is needed on the feasibility of using freely available 10–20 m Sentinel-2 data for wide-area assessment of cropping systems as an important variable in numerous crop productivity models.

  12. Phenology MMS: a program to simulate crop phenological responses to water stress

    Science.gov (United States)

    Crop phenology is fundamental for understanding crop growth and development, and increasingly influences many agricultural management practices. Water deficits are one environmental factor that can influence crop phenology through shortening or lengthening the developmental phase, yet the phenologic...

  13. Simulating crop phenological responses to water stress using the phenology mms software component

    Science.gov (United States)

    Crop phenology is fundamental for understanding crop growth and development, and increasingly influences many agricultural management practices. Water deficits are one environmental factor that can influence crop phenology through shortening or lengthening the developmental phase, yet the phenologic...

  14. Sustainable use of Brackish water for crop production

    International Nuclear Information System (INIS)

    Chaudhry, M.R.; Iqbal, M.; Subhani, K.M.

    2005-01-01

    The good quality surface-water is not sufficient to meet the crop water requirement for potential crop production. To augment the inadequate supplies of good quality water the only alternative is the use of poor quality , ground water. To explore sustainable use of brackish water a study was conducted in Fordwah Eastern Sadiqia South, Bahawalnagar, Punjab during the year 1998-99 to 2000-2001 with the objective to evaluate the impact of different irrigation treatments on physical and chemical properties of soil and crops yield. The experiment was conducted on farmer's field with his collaboration. The initial soil pH was about 8.0 while ECe and SAR ranged between 2.0 to 4.1 dS m/sup -/1 and 7.1 to 15.1 (mmol/sub c/ L/sup -1/)1/2, respectively with sandy loam texture. The brackish water used for irrigation had ECiw, SAR and RSC between 5.6 to 6.7 dS m/sup -/1, 15.1 to 16.4 (mmolc L/sup -1/sup 1/2/ and 1.52 to 1.64 (mmol/sub c/ L/sup -1/.The crops tested were wheat during Rabi and cotton during Kharif season. The treatments tested were: irrigation with canal water (T/sub 1/), canal water during Rabi and drainage water during Kharif (T/sub 2/), drainage water for two years and canal water for one season(T/sub 3/); and drainage water for three years + application of gypsum at the rate of 25% of CWR and thereafter canal water for one season(T 4). Fertilizers were applied at the rate of 120-60-50 N, P/sub 2/O/sub 5/ and K20 kg ha/sup -1/, respectively in the form of urea, diammonium phosphate and sulfate of potash. Crops irrigated with drainage water visualized yield reduction depending upon the share of drainage water in the irrigation delta. Application of gypsum provided reasonable check against salinity build-up with brackish water irrigation besides a nominal boost of 3 and 5% in yield of wheat and cotton, respectively over comparable treatment of year-round brackish water irrigation lacking gypsum application. Drainage water in alternate arrangement of seasonal

  15. Modelling the economic tradeoffs between allocating water for crop ...

    African Journals Online (AJOL)

    2009-06-05

    Jun 5, 2009 ... for crop production or leaching for salinity management ... reduce the area irrigated under limited water supply conditions in .... same as ECe because the concentration of salts in the soil is .... to-scale (VRS) (Banker et al., 1984) DEA model. ... ensures that the interpolated input used for the reference units.

  16. Revised FAO methodology for crop-water requirements

    International Nuclear Information System (INIS)

    Smith, M.; Allen, R.; Pereira, L.

    1998-01-01

    In the early 1970s, the Food and Agriculture Organization of the United Nations (FAO) developed a practical procedure to estimate crop-water requirements that has become a widely accepted standard, in particular for irrigation studies. Since its publication as FAO Irrigation and Drainage Paper, new concepts and advances in research have revealed shortcomings in the methodology and made necessary a review and revision. A consultation of experts organized by FAO recommended the adoption of the Penman-Monteith combination method as a new standard for reference evapotranspiration, and advised on procedures for calculation of the various parameters. By defining the reference crop as hypothetical with an assumed height of 0.12 m, a surface resistance of 70 s m -1 and an albedo of 0.23, closely resembling the evaporation of an extensive surface of actively growing and adequately watered green grass of uniform height, the FAO Penman-Monteith method was developed, overcoming previous deficiencies and providing values more consistent with actual crop-water-use data worldwide. Furthermore, recommendations have been developed for the use of the FAO Penman-Monteith method with limited climatic data, largely eliminating the need for any other reference evapotranspiration methods and creating a consistent and transparent basis for a globally valid standard for crop-water-requirement calculations. (author)

  17. Retrieval of canopy water content of different crop types with two new hyperspectral indices: Water Absorption Area Index and Depth Water Index

    Science.gov (United States)

    Pasqualotto, Nieves; Delegido, Jesús; Van Wittenberghe, Shari; Verrelst, Jochem; Rivera, Juan Pablo; Moreno, José

    2018-05-01

    Crop canopy water content (CWC) is an essential indicator of the crop's physiological state. While a diverse range of vegetation indices have earlier been developed for the remote estimation of CWC, most of them are defined for specific crop types and areas, making them less universally applicable. We propose two new water content indices applicable to a wide variety of crop types, allowing to derive CWC maps at a large spatial scale. These indices were developed based on PROSAIL simulations and then optimized with an experimental dataset (SPARC03; Barrax, Spain). This dataset consists of water content and other biophysical variables for five common crop types (lucerne, corn, potato, sugar beet and onion) and corresponding top-of-canopy (TOC) reflectance spectra acquired by the hyperspectral HyMap airborne sensor. First, commonly used water content index formulations were analysed and validated for the variety of crops, overall resulting in a R2 lower than 0.6. In an attempt to move towards more generically applicable indices, the two new CWC indices exploit the principal water absorption features in the near-infrared by using multiple bands sensitive to water content. We propose the Water Absorption Area Index (WAAI) as the difference between the area under the null water content of TOC reflectance (reference line) simulated with PROSAIL and the area under measured TOC reflectance between 911 and 1271 nm. We also propose the Depth Water Index (DWI), a simplified four-band index based on the spectral depths produced by the water absorption at 970 and 1200 nm and two reference bands. Both the WAAI and DWI outperform established indices in predicting CWC when applied to heterogeneous croplands, with a R2 of 0.8 and 0.7, respectively, using an exponential fit. However, these indices did not perform well for species with a low fractional vegetation cover (<30%). HyMap CWC maps calculated with both indices are shown for the Barrax region. The results confirmed the

  18. Airborne thermography for crop water stress assessment

    Science.gov (United States)

    Millard, J. P.; Idso, S. B.; Reginato, R. J.; Jackson, R. D.; Ehrler, W. L.; Goettelman, R. C.

    1977-01-01

    Aircraft overflights to obtain canopy temperatures of six differentially irrigated plots of durum wheat were made at Phoenix, Arizona on 1 and 29 April 1976. The data were acquired by a Texas Instruments model RS-25 infrared line scanner operating in the 8 to 14 micrometer bandpass region. Concurrently, plant water tension was measured on the ground with the Scholander pressure bomb technique. The results indicated that canopy temperatures acquired by aircraft about an hour and a half past solar noon correlated well with presunrise plant water tension - a parameter directly related to plant growth and development. The aircraft data also showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over the more spotty view obtained by ground-operated infrared thermometers.

  19. Firewood crops in areas of brackish water

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, A.N.

    1984-01-01

    Parts of the Mathura, Agra, Etah and Aligarh districts of Uttar Pradesh have a special problem of brackish water which is the result of the complete destruction of natural vegetation during a period of several centuries. Twenty species of trees and shrubs (listed) were planted during 1981-1982 in plots of 30 x 30 m at a spacing of 1.5 x 1.5 m. A detailed analysis of water from the Forest Research Station, Mathura is presented; pH ranged from 7.00 to 7.85 and electrical conductivity from 4.0 to 6.10. Various salt concentrations were high. At 18 months old the species that were doing well were: Prosopis juliflora, Acacia nilotica, Terminalia arjuna, Syzygium cumini, Albizia lebbek, Pongamia pinnata, Cassia auriculata, Adhatoda vasica and Cassia siamea.

  20. Physical Mapping Technologies for the Identification and Characterization of Mutated Genes to Crop Quality

    International Nuclear Information System (INIS)

    2011-09-01

    The improvement of quality traits in food and industrial crops is an important breeding objective for both developed and developing countries in order to add value to the crop and thereby increasing farmers' income. It has been well established that the application of mutagens can be a very important approach for manipulating many crop characteristics including quality. While mutation induction using nuclear techniques such as gamma irradiation is a power tool in generating new genotypes with favourable alleles for improving crop quality in plant breeding, a more thorough understanding of gene expression, gene interactions, and physical location will improve ability to manipulate and control genes, and directly lead to crop improvement. Physical mapping technologies, molecular markers and molecular cytogenetic techniques are tools available with the potential to enhance the ability to tag genes and gene complexes to facilitate the selection of desirable genotypes in breeding programmes, including those based on mutation breeding. This Coordinated Research Project (CRP) on 'Physical Mapping Technologies for the Identification and Characterization of Mutated Genes Contributing to Crop Quality' was conducted under the overall IAEA project objective of 'Identification, Characterization and Transfer of Mutated Genes'. The specific objectives of the CRP were to assist Member States in accelerating crop breeding programmes through the application of physical mapping and complementary genomic approaches, and the characterization and utilization of induced mutants for improvement of crop quality. The IAEA-TECDOC describes the success obtained in the application of molecular cytology, molecular markers, physical mapping and mutation technologies since the inception of the CRP in 2003. The CRP also resulted in two book chapters, 35 peer reviewed papers, 25 conference proceedings, one PhD thesis, and 22 published abstracts. In addition, thirteen sequences were submitted to the

  1. Object-oriented crop mapping and monitoring using multi-temporal polarimetric RADARSAT-2 data

    Science.gov (United States)

    Jiao, Xianfeng; Kovacs, John M.; Shang, Jiali; McNairn, Heather; Walters, Dan; Ma, Baoluo; Geng, Xiaoyuan

    2014-10-01

    The aim of this paper is to assess the accuracy of an object-oriented classification of polarimetric Synthetic Aperture Radar (PolSAR) data to map and monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in North-eastern Ontario, Canada. Polarimetric images and field data were acquired during the 2011 and 2012 growing seasons. The classification and field data collection focused on the main crop types grown in the region, which include: wheat, oat, soybean, canola and forage. The polarimetric parameters were extracted with PolSAR analysis using both the Cloude-Pottier and Freeman-Durden decompositions. The object-oriented classification, with a single date of PolSAR data, was able to classify all five crop types with an accuracy of 95% and Kappa of 0.93; a 6% improvement in comparison with linear-polarization only classification. However, the time of acquisition is crucial. The larger biomass crops of canola and soybean were most accurately mapped, whereas the identification of oat and wheat were more variable. The multi-temporal data using the Cloude-Pottier decomposition parameters provided the best classification accuracy compared to the linear polarizations and the Freeman-Durden decomposition parameters. In general, the object-oriented classifications were able to accurately map crop types by reducing the noise inherent in the SAR data. Furthermore, using the crop classification maps we were able to monitor crop growth stage based on a trend analysis of the radar response. Based on field data from canola crops, there was a strong relationship between the phenological growth stage based on the BBCH scale, and the HV backscatter and entropy.

  2. A Three-Dimensional Index for Characterizing Crop Water Stress

    Directory of Open Access Journals (Sweden)

    Jessica A. Torrion

    2014-05-01

    Full Text Available The application of remotely sensed estimates of canopy minus air temperature (Tc-Ta for detecting crop water stress can be limited in semi-arid regions, because of the lack of full ground cover (GC at water-critical crop stages. Thus, soil background may restrict water stress interpretation by thermal remote sensing. For partial GC, the combination of plant canopy temperature and surrounding soil temperature in an image pixel is expressed as surface temperature (Ts. Soil brightness (SB for an image scene varies with surface soil moisture. This study evaluates SB, GC and Ts-Ta and determines a fusion approach to assess crop water stress. The study was conducted (2007 and 2008 on a commercial scale, center pivot irrigated research site in the Texas High Plains. High-resolution aircraft-based imagery (red, near-infrared and thermal was acquired on clear days. The GC and SB were derived using the Perpendicular Vegetation Index approach. The Ts-Ta was derived using an array of ground Ts sensors, thermal imagery and weather station air temperature. The Ts-Ta, GC and SB were fused using the hue, saturation, intensity method, respectively. Results showed that this method can be used to assess water stress in reference to the differential irrigation plots and corresponding yield without the use of additional energy balance calculation for water stress in partial GC conditions.

  3. Mapping Cropland and Crop-type Distribution Using Time Series MODIS Data

    Science.gov (United States)

    Lu, D.; Chen, Y.; Moran, E. F.; Batistella, M.; Luo, L.; Pokhrel, Y.; Deb, K.

    2016-12-01

    Mapping regional and global cropland distribution has attracted great attention in the past decade, but the separation of crop types is challenging due to the spectral confusion and cloud cover problems during the growing season in Brazil. The objective of this study is to develop a new approach to identify crop types (including soybean, cotton, maize) and planting patterns (soybean-maize, soybean-cotton, and single crop) in Mato Grosso, Goias and Tocantins States, Brazil. The time series moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) (MOD13Q1) in 2015/2016 were used in this research and field survey data were collected in May 2016. The major steps include: (1) reconstruct time series NDVI data contaminated by noise and clouds using the temporal interpolation algorithm; (2) identify the best periods and develop temporal indices and phenology parameters to distinguish cropland from other land cover types based on time series NDVI data; (3) develop a crop temporal difference index (CTDI) to extract crop types and patterns using time series NDVI data. This research shows that (1) the cropland occupied approximately 16.85% of total land in these three states; (2) soybean-maize and soybean-cotton were two major crop patterns which occupied 54.80% and 19.30% of total cropland area. This research indicates that the proposed approach is promising for accurately and rapidly mapping cropland and crop-type distribution in these three states of Brazil.

  4. Remote sensing based crop type mapping and evapotranspiration estimates at the farm level in arid regions of the globe

    Science.gov (United States)

    Ozdogan, M.; Serrat-Capdevila, A.; Anderson, M. C.

    2017-12-01

    Despite increasing scarcity of freshwater resources, there is dearth of spatially explicit information on irrigation water consumption through evapotranspiration, particularly in semi-arid and arid geographies. Remote sensing, either alone or in combination with ground surveys, is increasingly being used for irrigation water management by quantifying evaporative losses at the farm level. Increased availability of observations, sophisticated algorithms, and access to cloud-based computing is also helping this effort. This presentation will focus on crop-specific evapotranspiration estimates at the farm level derived from remote sensing in a number of water-scarce regions of the world. The work is part of a larger effort to quantify irrigation water use and improve use efficiencies associated with several World Bank projects. Examples will be drawn from India, where groundwater based irrigation withdrawals are monitored with the help of crop type mapping and evapotranspiration estimates from remote sensing. Another example will be provided from a northern irrigation district in Mexico, where remote sensing is used for detailed water accounting at the farm level. These locations exemplify the success stories in irrigation water management with the help of remote sensing with the hope that spatially disaggregated information on evapotranspiration can be used as inputs for various water management decisions as well as for better water allocation strategies in many other water scarce regions.

  5. Satellite-based mapping of field-scale stress indicators for crop yield forecasting: an application over Mead, NE

    Science.gov (United States)

    Yang, Y.; Anderson, M. C.; Gao, F.; Wardlow, B.; Hain, C.; Otkin, J.; Sun, L.; Dulaney, W.

    2017-12-01

    In agricultural regions, water is one of the most widely limiting factors of crop performance and production. Evapotranspiration (ET) describes crop water use through transpiration and water lost through direct soil evaporation, which makes it a good indicator of soil moisture availability and vegetation health and thus has been an integral part of many yield estimation efforts. The Evaporative Stress Index (ESI) describes temporal anomalies in a normalized evapotranspiration metric (fRET) as derived from satellite remote sensing and has demonstrated capacity to explain regional yield variability in water limited crop growing regions. However, its performance in some regions where the vegetation cycle is intensively managed appears to be degraded. In this study we generated maps of ET, fRET, and ESI at high spatiotemporal resolution (30-m pixels, daily timesteps) using a multi-sensor data fusion method, integrating information from satellite platforms with good temporal coverage and other platforms that provide field-scale spatial detail. The study was conducted over the period 2010-2014, covering a region around Mead, Nebraska that includes both rainfed and irrigated crops. Correlations between ESI and measurements of corn yield are investigated at both the field and county level to assess the value of ESI as a yield forecasting tool. To examine the role of phenology in ESI-yield correlations, annual input fRET timeseries were aligned by both calendar day and by biophysically relevant dates (e.g. days since planting or emergence). Results demonstrate that mapping of fRET and ESI at 30-m has the advantage of being able to resolve different crop types with varying phenology. The study also suggests that incorporating phenological information significantly improves yield-correlations by accounting for effects of phenology such as variable planting date and emergence date. The yield-ESI relationship in this study well captures the inter-annual variability of yields

  6. Using NDVI and guided sampling to develop yield prediction maps of processing tomato crop

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, A.; Henar Prieto, M. del; García-Martín, A.; Córdoba, A.; Martínez, L.; Campillo, C.

    2015-07-01

    The use of yield prediction maps is an important tool for the delineation of within-field management zones. Vegetation indices based on crop reflectance are of potential use in the attainment of this objective. There are different types of vegetation indices based on crop reflectance, the most commonly used of which is the NDVI (normalized difference vegetation index). NDVI values are reported to have good correlation with several vegetation parameters including the ability to predict yield. The field research was conducted in two commercial farms of processing tomato crop, Cantillana and Enviciados. An NDVI prediction map developed through ordinary kriging technique was used for guided sampling of processing tomato yield. Yield was studied and related with NDVI, and finally a prediction map of crop yield for the entire plot was generated using two geostatistical methodologies (ordinary and regression kriging). Finally, a comparison was made between the yield obtained at validation points and the yield values according to the prediction maps. The most precise yield maps were obtained with the regression kriging methodology with RRMSE values of 14% and 17% in Cantillana and Enviciados, respectively, using the NDVI as predictor. The coefficient of correlation between NDVI and yield was correlated in the point samples taken in the two locations, with values of 0.71 and 0.67 in Cantillana and Enviciados, respectively. The results suggest that the use of a massive sampling parameter such as NDVI is a good indicator of the distribution of within-field yield variation. (Author)

  7. Remote Sensing for Mapping Soybean Crop in the Brazilian Cerrado

    Science.gov (United States)

    Trabaquini, K.; Bernardes, T.; Mello, M. P.; Formaggio, A.; Rosa, V. G.

    2011-12-01

    The soybean expansion in the Brazilian Cerrado has been strongly affected by internal and external markets. The main factors driving that expansion are the climatic conditions, the development of technologies and genetic improvement. Recent studies have shown that the soybean expansion has become a major cause of reduction of native vegetation in Mato Grosso State - Brazil, responding for 17% of deforestation from 2000 to 2004. This work aims to map soybean areas in the Brazilian Cerrado in Mato Grosso State, using MODIS data. Thirteen MODIS images (MOD13 - 16 days composition), acquired from September, 2005 to March, 2006, were used to run principal component analysis (PCA) in order to reduce the dimensionality of the data. The first three components (PC1, PC2 and PC3), which contained about 90% of data variability were segmented and utilized as input for an unsupervised classification using the ISOSEG classifier, implemented in the SPRING software. Eighty field work points were randomly selected for the accuracy assessment. An intersection between the soybean map and a map generated by the "Project Monitoring Deforestation of Brazilian Biomes Satellite - PMDBBS", which aimed at identifying anthropic areas, was conducted in order to evaluate the distribution of soybeans within those areas. Moreover a soil map was used in order to evaluate the soybean distribution over the classes of soil. The classification result presented overall index of 83% and the kappa coefficient of 0.64 for the soybean map, which presented a total soybean area of about 42,317 square kilometers. Furthermore, it was verified that 27% of anthropic area was covered by soybean. In relation to the soil analysis, 87% of the total soybean area was planted in Oxisoils. Despite the economic gain related to the soybean production, an adequate management is needed to avoid soil acidification, soil erosion and pollution, aiming at providing a sustainable environment.

  8. [Distribution of virtual water of crops in Beijing].

    Science.gov (United States)

    Wang, Hong-Rui; Dong, Yan-Yan; Wang, Jun-Hong; Wang, Yan; Han, Zhao-Xing

    2007-11-01

    Virtual water content of grains and vegetables in Beijing's districts is calculated and analyzed for many years by irrigating water quota method, which is compared with the distribution and exploitation of groundwater in Beijing. The results indicate the virtual water content of grains shows a downward trend in all the districts, but the grain production in Yanqing district brings great pressure to the local groundwater. Secondly, the virtual water content of vegetables shows an upward trend in Shunyi District, Daxing district and Pinggu District and is accounting for more and more gradually. Thirdly, the total virtual water volume of grains is decreasing, and the total virtual water volume of vegetables is increasing and the total virtual water volume of crops in Beijing is reducing in recent years, which corresponds with the structural adjustment of policies.

  9. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  10. Estimation of available water capacity components of two-layered soils using crop model inversion: Effect of crop type and water regime

    Science.gov (United States)

    Sreelash, K.; Buis, Samuel; Sekhar, M.; Ruiz, Laurent; Kumar Tomer, Sat; Guérif, Martine

    2017-03-01

    Characterization of the soil water reservoir is critical for understanding the interactions between crops and their environment and the impacts of land use and environmental changes on the hydrology of agricultural catchments especially in tropical context. Recent studies have shown that inversion of crop models is a powerful tool for retrieving information on root zone properties. Increasing availability of remotely sensed soil and vegetation observations makes it well suited for large scale applications. The potential of this methodology has however never been properly evaluated on extensive experimental datasets and previous studies suggested that the quality of estimation of soil hydraulic properties may vary depending on agro-environmental situations. The objective of this study was to evaluate this approach on an extensive field experiment. The dataset covered four crops (sunflower, sorghum, turmeric, maize) grown on different soils and several years in South India. The components of AWC (available water capacity) namely soil water content at field capacity and wilting point, and soil depth of two-layered soils were estimated by inversion of the crop model STICS with the GLUE (generalized likelihood uncertainty estimation) approach using observations of surface soil moisture (SSM; typically from 0 to 10 cm deep) and leaf area index (LAI), which are attainable from radar remote sensing in tropical regions with frequent cloudy conditions. The results showed that the quality of parameter estimation largely depends on the hydric regime and its interaction with crop type. A mean relative absolute error of 5% for field capacity of surface layer, 10% for field capacity of root zone, 15% for wilting point of surface layer and root zone, and 20% for soil depth can be obtained in favorable conditions. A few observations of SSM (during wet and dry soil moisture periods) and LAI (within water stress periods) were sufficient to significantly improve the estimation of AWC

  11. Impact of water-fertilizer interaction on yields of crops

    International Nuclear Information System (INIS)

    Kahlown, M.A.; Iqbal, M.; Junejo, M.R.; Ghaffar, A.

    2002-01-01

    Water-fertilizer interaction was studied on wheat and cotton during crop seasons of 1995 to 1998 in the Fordwah Eastern Sadiqia (south), Irrigation and Drainage Project. Irrigation levels applied included 0.75, 1.00 and 1.25 times the evapotranspiration (ET), while fertilizer doses were 75, 100 and 125 percent of recommendations of NPK for district Bahawalnagar. The experiment was conducted at four different locations of the project, where soil was medium textured, free from salinity/alkalinity and sufficiently drained, with water table in the range of 2-3m from the soil surface. Wheat variety Inqalab-91 and cotton variety CLM-109 were sown at their recommended time of sowing, seed rate and management practices. Irrigation was applied in consideration of open-pan evaporation and crop co-efficient for the respective crop, when sum total of the products of pan-evaporation and KC values reached 7.5 cm. Irrigation was applied to all the plots according to treatment allowance, i.e. , with 25 percent cut and addition to .75 and 1.25 Et levels, respectively. The results indicated that irrigation levels had non-significant effect on wheat and cotton yields. The results clearly negate the concept of heavy irrigation, generally exercised by our farming community. Light irrigation as a results of 0.75 Et indication were equally effective: rather, these were economical and efficient under the scarce water availability. Fertilizer had somewhat significant response. Irrigation and fertilizer did not exhibit much significant interaction. In case of wheat, the two inputs were independent, while cotton had significant inter-dependence of the two variables. The experiment gave the conclusion that both wheat and cotton crops should be applied lighter irrigation and NPK fertilizer must be applied in compliance to recommendations, for efficient and economical use of the available crop-production resources. (author)

  12. Crop coefficient, yield response to water stress and water productivity of teff (Eragrostis tef (Zucc.)

    NARCIS (Netherlands)

    Araya, A.; Stroosnijder, L.; Girmay, G.; Keesstra, S.D.

    2011-01-01

    In the semi-arid region of Tigray, Northen Ethiopia a two season experiment was conducted to measure evapotranspiration, estimate yield response to water stress and derive the crop coefficient of teff using the single crop coefficient approach with simple, locally made lysimeters and field plots.

  13. Modelling soil water dynamics and crop water uptake at the field level

    NARCIS (Netherlands)

    Kabat, P.; Feddes, R.A.

    1995-01-01

    Parametrization approaches to model soil water dynamics and crop water uptake at field level were analysed. Averaging and numerical difficulties in applying numerical soil water flow models to heterogeneous soils are highlighted. Simplified parametrization approaches to the soil water flow, such as

  14. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.

    Science.gov (United States)

    Wang, Y B; Wu, P T; Engel, B A; Sun, S K

    2014-11-01

    Water shortages are detrimental to China's grain production while food production consumes a great deal of water causing water crises and ecological impacts. Increasing crop water productivity (CWP) is critical, so China is devoting significant resources to develop water-saving agricultural systems based on crop planning and agricultural water conservation planning. A comprehensive CWP index is necessary for such planning. Existing indices such as water use efficiency (WUE) and irrigation efficiency (IE) have limitations and are not suitable for the comprehensive evaluation of CWP. The water footprint (WF) index, calculated using effective precipitation and local water use, has advantages for CWP evaluation. Due to regional differences in crop patterns making the CWP difficult to compare directly across different regions, a unified virtual crop pattern is needed to calculate the WF. This project calculated and compared the WF of each grain crop and the integrated WFs of grain products with actual and virtual crop patterns in different regions of China for 2010. The results showed that there were significant differences for the WF among different crops in the same area or among different areas for the same crop. Rice had the highest WF at 1.39 m(3)/kg, while corn had the lowest at 0.91 m(3)/kg among the main grain crops. The WF of grain products was 1.25 m(3)/kg in China. Crop patterns had an important impact on WF of grain products because significant differences in WF were found between actual and virtual crop patterns in each region. The CWP level can be determined based on the WF of a virtual crop pattern, thereby helping optimize spatial distribution of crops and develop agricultural water savings to increase CWP. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Selenium status in soil, water and essential crops of Iran

    Directory of Open Access Journals (Sweden)

    Nazemi Lyly

    2012-11-01

    Full Text Available Abstracts As a contributing factor to health, the trace element selenium (Se is an essential nutrient of special interest for humans and all animals. It is estimated that 0.5 to 1 billion people worldwide suffer from Se deficiency. In spite of the important role of Se, its concentrations in soil, water and essential crops have not been studied in Iran. Therefore, the main aim of the current study was to determine the Se content of soil, water, and essential crops (rice in North, wheat in Center, date, and pistachio in South of different regions of Iran. Sampling was performed in the North, South, and Central regions of Iran. In each selected area in the three regions, 17 samples of surface soil were collected; samples of water and essential crops were also collected at the same sampling points. Upon preliminary preparation of all samples, the Se concentrations were measured by ICP-OES Model Varian Vista-MPX. The amount of soil-Se was found to be in the range between 0.04 and 0.45 ppm in the studied areas; the Se content of soil in the central region of Iran was the highest compared to other regions (p

  16. Water Quality Effects of Miscanthus as a Bioenergy Crop

    Science.gov (United States)

    Ng, T.; Eheart, J. W.; Cai, X.

    2009-12-01

    There is increasing interest in perennial grasses as a renewable source of bioenergy and biofuels. Under the right conditions, environmental advantages of cultivating such crops, relative to conventional row crops, include reductions in greenhouse gas emissions and waterborne pollutants, increased biodiversity and improved soil properties. This study focuses on the riverine nitrate load of cultivating miscanthus in lieu of conventional crops. Miscanthus has been identified as a high-yielding, low-input perennial grass suitable as a feedstock for cellulosic ethanol production and power generation by biomass combustion. To achieve the objective of this study, the Soil and Water Assessment Tool (SWAT) is used to model runoff and stream water quality in the Salt Creek watershed in East-Central Illinois. The watershed is agricultural and its nitrogen export, like that of most other agricultural watersheds in the region, is a major contributor to hypoxia in the Gulf of Mexico. SWAT is a hydrologic model with a built-in crop growth component. However, as miscanthus is relatively new as a crop of interest, data for the SWAT crop growth parameters for it are lacking. This study reports an evaluation of those parameters and an application of them to estimate the potential reduction in nitrate load from miscanthus cultivation under various scenarios. The miscanthus growth parameters are divided into three subsets. The first subset contains those parameters describing optimal growth under zero stress conditions, while the second contains those used to estimate nitrogen stress. Those parameters that are remaining (namely, maximum root depth and phosphorus and temperature stress parameters) are included in the third subset. To calibrate for the parameters in the first subset, simulated data from another miscanthus growth model are used. That other model is highly mechanistic and has been validated (no calibration is necessary because of its degree of mechanisticity) using

  17. Water Demand Analysis for Tree Crops in Spanish Mediterranean Farms

    Directory of Open Access Journals (Sweden)

    Maria Angeles Fernández-Zamudio

    2006-01-01

    Full Text Available Olive, vine and almond in rainfed farming systems are the most traditional crops in the large inland extensions of the Spanish Mediterranean. Their economic contributions enable farming activities to be maintained meaning that the villages remain inhabited. In the rainfed-farms in the Mediterranean regions it is possible to find only a certain proportion of the farms with some type of irrigation system. Given the water scarcity, the aim of this work is to determine the impact that an irrigationwater pricing policy would have on these regions, as outlined in the European Water Framework Directive. After analysing the direct effect water price would have on the net margin in these crops, demand functions have been obtained, applying the Multiattribute Utility Theory. The calculations, with reference to a farm that is representative of these regions, have been applied to two model scenarios, each with a different level of mechanization. Results show the impact on economic, social and environmental aspects of the pricing policy under the current water allotment. The work is completed by analysing the different contexts of irrigation-water availability on the farm. The study leads to the conclusion that increasing mechanization may be the most straightforward strategy to ensure the survival of these farms in the short to medium term if the current trend of increasing irrigation-water prices is consolidated.

  18. Drinking Water Mapping Application (DWMA) - Public Version

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Drinking Water Mapping Application (DWMA) is a web-based geographic information system (GIS) that enhances the capabilities to identify major contaminant risks...

  19. Crop water-stress assessment using an airborne thermal scanner

    Science.gov (United States)

    Millard, J. P.; Jackson, R. D.; Reginato, R. J.; Idso, S. B.; Goettelman, R. C.

    1978-01-01

    An airborne thermal scanner was used to measure the temperature of a wheat crop canopy in Phoenix, Arizona. The results indicate that canopy temperatures acquired about an hour and a half past solar noon were well correlated with presunrise plant water tension, a parameter directly related to plant growth and development. Pseudo-colored thermal images reading directly in stress degree days, a unit indicative of crop irrigation needs and yield potential, were produced. The aircraft data showed significant within-field canopy temperature variability, indicating the superiority of the synoptic view provided by aircraft over localized ground measurements. The standard deviation between airborne and ground-acquired canopy temperatures was 2 C or less.

  20. Selection on crop-derived traits and QTL in sunflower (Helianthus annuus) crop-wild hybrids under water stress.

    Science.gov (United States)

    Owart, Birkin R; Corbi, Jonathan; Burke, John M; Dechaine, Jennifer M

    2014-01-01

    Locally relevant conditions, such as water stress in irrigated agricultural regions, should be considered when assessing the risk of crop allele introgression into wild populations following hybridization. Although research in cultivars has suggested that domestication traits may reduce fecundity under water stress as compared to wild-like phenotypes, this has not been investigated in crop-wild hybrids. In this study, we examine phenotypic selection acting on, as well as the genetic architecture of vegetative, reproductive, and physiological characteristics in an experimental population of sunflower crop-wild hybrids grown under wild-like low water conditions. Crop-derived petiole length and head diameter were favored in low and control water environments. The direction of selection differed between environments for leaf size and leaf pressure potential. Interestingly, the additive effect of the crop-derived allele was in the direction favored by selection for approximately half the QTL detected in the low water environment. Selection favoring crop-derived traits and alleles in the low water environment suggests that a subset of these alleles would be likely to spread into wild populations under water stress. Furthermore, differences in selection between environments support the view that risk assessments should be conducted under multiple locally relevant conditions.

  1. Mapping Crop Cycles in China Using MODIS-EVI Time Series

    Directory of Open Access Journals (Sweden)

    Le Li

    2014-03-01

    Full Text Available As the Earth’s population continues to grow and demand for food increases, the need for improved and timely information related to the properties and dynamics of global agricultural systems is becoming increasingly important. Global land cover maps derived from satellite data provide indispensable information regarding the geographic distribution and areal extent of global croplands. However, land use information, such as cropping intensity (defined here as the number of cropping cycles per year, is not routinely available over large areas because mapping this information from remote sensing is challenging. In this study, we present a simple but efficient algorithm for automated mapping of cropping intensity based on data from NASA’s (NASA: The National Aeronautics and Space Administration MODerate Resolution Imaging Spectroradiometer (MODIS. The proposed algorithm first applies an adaptive Savitzky-Golay filter to smooth Enhanced Vegetation Index (EVI time series derived from MODIS surface reflectance data. It then uses an iterative moving-window methodology to identify cropping cycles from the smoothed EVI time series. Comparison of results from our algorithm with national survey data at both the provincial and prefectural level in China show that the algorithm provides estimates of gross sown area that agree well with inventory data. Accuracy assessment comparing visually interpreted time series with algorithm results for a random sample of agricultural areas in China indicates an overall accuracy of 91.0% for three classes defined based on the number of cycles observed in EVI time series. The algorithm therefore appears to provide a straightforward and efficient method for mapping cropping intensity from MODIS time series data.

  2. Mapping of crop calendar events by object-based analysis of MODIS and ASTER images

    Directory of Open Access Journals (Sweden)

    A.I. De Castro

    2014-06-01

    Full Text Available A method to generate crop calendar and phenology-related maps at a parcel level of four major irrigated crops (rice, maize, sunflower and tomato is shown. The method combines images from the ASTER and MODIS sensors in an object-based image analysis framework, as well as testing of three different fitting curves by using the TIMESAT software. Averaged estimation of calendar dates were 85%, from 92% in the estimation of emergence and harvest dates in rice to 69% in the case of harvest date in tomato.

  3. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    Science.gov (United States)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  4. Mapping rice extent map with crop intensity in south China through integration of optical and microwave images based on google earth engine

    Science.gov (United States)

    Zhang, X.; Wu, B.; Zhang, M.; Zeng, H.

    2017-12-01

    Rice is one of the main staple foods in East Asia and Southeast Asia, which has occupied more than half of the world's population with 11% of cultivated land. Study on rice can provide direct or indirect information on food security and water source management. Remote sensing has proven to be the most effective method to monitoring the cropland in large scale by using temporary and spectral information. There are two main kinds of satellite have been used to mapping rice including microwave and optical. Rice, as the main crop of paddy fields, the main feature different from other crops is flooding phenomenon at planning stage (Figure 1). Microwave satellites can penetrate through clouds and efficiency on monitoring flooding phenomenon. Meanwhile, the vegetation index based on optical satellite can well distinguish rice from other vegetation. Google Earth Engine is a cloud-based platform that makes it easy to access high-performance computing resources for processing very large geospatial datasets. Google has collected large number of remote sensing satellite data around the world, which providing researchers with the possibility of doing application by using multi-source remote sensing data in a large area. In this work, we map rice planting area in south China through integration of Landsat-8 OLI, Sentienl-2, and Sentinel-1 Synthetic Aperture Radar (SAR) images. The flowchart is shown in figure 2. First, a threshold method the VH polarized backscatter from SAR sensor and vegetation index including normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) from optical sensor were used the classify the rice extent map. The forest and water surface extent map provided by earth engine were used to mask forest and water. To overcome the problem of the "salt and pepper effect" by Pixel-based classification when the spatial resolution increased, we segment the optical image and use the pixel- based classification results to merge the object

  5. Soil Water Improvements with the Long Term Use of a Winter Rye Cover Crop

    Science.gov (United States)

    Basche, A.; Kaspar, T.; Archontoulis, S.; Jaynes, D. B.; Sauer, T. J.; Parkin, T.; Miguez, F.

    2015-12-01

    The Midwestern United States, a region that produces one-third of maize and one-quarter of soybeans globally, is projected to experience increasing rainfall variability with future climate change. One approach to mitigate climate impacts is to utilize crop and soil management practices that enhance soil water storage, reducing the risks of flooding and runoff as well as drought-induced crop water stress. While some research indicates that a winter cover crop in a maize-soybean rotation increases soil water, producers continue to be concerned that water use by cover crops will reduce water for a following cash crop. We analyzed continuous in-field soil moisture measurements over from 2008-2014 at a Central Iowa research site that has included a winter rye cover crop in a maize-soybean rotation for thirteen years. This period of study included years in the top third of wettest years on record (2008, 2010, 2014) as well as years in the bottom third of driest years (2012, 2013). We found the cover crop treatment to have significantly higher soil water storage from 2012-2014 when compared to the no cover crop treatment and in most years greater soil water content later in the growing season when a cover crop was present. We further found that the winter rye cover crop significantly increased the field capacity water content and plant available water compared to the no cover crop treatment. Finally, in 2012 and 2013, we measured maize and soybean biomass every 2-3 weeks and did not see treatment differences in crop growth, leaf area or nitrogen uptake. Final crop yields were not statistically different between the cover and no cover crop treatment in any of the years of this analysis. This research indicates that the long-term use of a winter rye cover crop can improve soil water dynamics without sacrificing cash crop growth.

  6. Water Use and Water-Use Efficiency of Three Perennial Bioenergy Grass Crops in Florida

    Directory of Open Access Journals (Sweden)

    Jerry M. Bennett

    2012-10-01

    Full Text Available Over two-thirds of human water withdrawals are estimated to be used for agricultural production, which is expected to increase as demand for renewable liquid fuels from agricultural crops intensifies. Despite the potential implications of bioenergy crop production on water resources, few data are available on water use of perennial bioenergy grass crops. Therefore, the objective of this study was to compare dry matter yield, water use, and water-use efficiency (WUE of elephantgrass, energycane, and giant reed, grown under field conditions for two growing seasons in North Central Florida. Using scaled sap flow sensor data, water use ranged from about 850 to 1150 mm during the growing season, and was generally greater for giant reed and less for elephantgrass. Despite similar or greater water use by giant reed, dry biomass yields of 35 to 40 Mg ha−1 were significantly greater for energycane and elephantgrass, resulting in greater WUE. Overall, water use by the bioenergy crops was greater than the rainfall received during the study, indicating that irrigation will be needed in the region to achieve optimal yields. Species differ in water use and WUE and species selection can play an important role with regard to potential consequences for water resources.

  7. Spatial Field Variability Mapping of Rice Crop using Clustering Technique from Space Borne Hyperspectral Data

    Science.gov (United States)

    Moharana, S.; Dutta, S.

    2015-12-01

    Precision farming refers to field-specific management of an agricultural crop at a spatial scale with an aim to get the highest achievable yield and to achieve this spatial information on field variability is essential. The difficulty in mapping of spatial variability occurring within an agriculture field can be revealed by employing spectral techniques in hyperspectral imagery rather than multispectral imagery. However an advanced algorithm needs to be developed to fully make use of the rich information content in hyperspectral data. In the present study, potential of hyperspectral data acquired from space platform was examined to map the field variation of paddy crop and its species discrimination. This high dimensional data comprising 242 spectral narrow bands with 30m ground resolution Hyperion L1R product acquired for Assam, India (30th Sept and 3rd Oct, 2014) were allowed for necessary pre-processing steps followed by geometric correction using Hyperion L1GST product. Finally an atmospherically corrected and spatially deduced image consisting of 112 band was obtained. By employing an advanced clustering algorithm, 12 different clusters of spectral waveforms of the crop were generated from six paddy fields for each images. The findings showed that, some clusters were well discriminated representing specific rice genotypes and some clusters were mixed treating as a single rice genotype. As vegetation index (VI) is the best indicator of vegetation mapping, three ratio based VI maps were also generated and unsupervised classification was performed for it. The so obtained 12 clusters of paddy crop were mapped spatially to the derived VI maps. From these findings, the existence of heterogeneity was clearly captured in one of the 6 rice plots (rice plot no. 1) while heterogeneity was observed in rest of the 5 rice plots. The degree of heterogeneous was found more in rice plot no.6 as compared to other plots. Subsequently, spatial variability of paddy field was

  8. Crop diversification, tillage, and management system influences on spring wheat yield and soil water use

    Science.gov (United States)

    Depleted soil quality, decreased water availability, and increased weed competition constrain spring wheat production in the northern Great Plains. Integrated crop management systems are necessary for improved crop productivity. We conducted a field experiment from 2004-2010 comparing productivity...

  9. Tradeoffs between water requirements and yield stability in annual vs. perennial crops

    Science.gov (United States)

    Vico, Giulia; Brunsell, Nathaniel A.

    2018-02-01

    Population growth and changes in climate and diets will likely further increase the pressure on agriculture and water resources globally. Currently, staple crops are obtained from annuals plants. A shift towards perennial crops may enhance many ecosystem services, but at the cost of higher water requirements and lower yields. It is still unclear when the advantages of perennial crops overcome their disadvantages and perennial crops are thus a sustainable solution. Here we combine a probabilistic description of the soil water balance and crop development with an extensive dataset of traits of congeneric annuals and perennials to identify the conditions for which perennial crops are more viable than annual ones with reference to yield, yield stability, and effective use of water. We show that the larger and more developed roots of perennial crops allow a better exploitation of soil water resources and a reduction of yield variability with respect to annual species, but their yields remain lower when considering grain crops. Furthermore, perennial crops have higher and more variable irrigation requirements and lower water productivity. These results are important to understand the potential consequences for yield, its stability, and water resource use of a shift from annual to perennial crops and, more generally, if perennial crops may be more resilient than annual crops in the face of climatic fluctuations.

  10. Landsat-based monitoring of crop water demand in the San Joaquin Valley

    Science.gov (United States)

    Johnson, L.; Trout, T.; Wang, D.; Melton, F. S.

    2010-12-01

    retrieve ETcb (mm/d) for each overpass date. Spatially contiguous maps of Kcb and ETcb were generated for the Valley for each satellite scene. Temporal profiles of Kcb and ETcb were developed for several individual study fields located in the Landsat path 42/43 overlap zone, providing a revisit period of approximately 8 days. Two sets of ETcb profiles were produced - one referenced to 2008 ETo (representing actual conditions on overpass date) and another to long-term historical average ETo. The satellite-based approach, as implemented in regions with an available ETo network, potentially enables timely estimation of crop water use for resource monitoring and scheduling of irrigation events.

  11. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    OpenAIRE

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality a...

  12. Improvements in crop water productivity increase water sustainability and food security—a global analysis

    International Nuclear Information System (INIS)

    Brauman, Kate A; Foley, Jonathan A; Siebert, Stefan

    2013-01-01

    Irrigation consumes more water than any other human activity, and thus the challenges of water sustainability and food security are closely linked. To evaluate how water resources are used for food production, we examined global patterns of water productivity—food produced (kcal) per unit of water (l) consumed. We document considerable variability in crop water productivity globally, not only across different climatic zones but also within climatic zones. The least water productive systems are disproportionate freshwater consumers. On precipitation-limited croplands, we found that ∼40% of water consumption goes to production of just 20% of food calories. Because in many cases crop water productivity is well below optimal levels, in many cases farmers have substantial opportunities to improve water productivity. To demonstrate the potential impact of management interventions, we calculated that raising crop water productivity in precipitation-limited regions to the 20th percentile of productivity would increase annual production on rainfed cropland by enough to provide food for an estimated 110 million people, and water consumption on irrigated cropland would be reduced enough to meet the annual domestic water demands of nearly 1.4 billion people. (letter)

  13. Virtual Crop Water Export Analysis: The Case of Greece at River Basin District Level

    Directory of Open Access Journals (Sweden)

    Nikolaos Mellios

    2018-05-01

    Full Text Available An analysis of virtual crop water export through international trade is conducted for Greece, downscaled to the River Basin District (RBD level, in order to identify critical “hotspots” of localized water shortage in the country. A computable general equilibrium model (MAGNET was used to obtain the export shares of crops and associated irrigation water was calculated for all major crops in Greece. A distinction between virtual crop water locally consumed and traded internationally was made for all Greek RBDs. Cotton was identified as a large water consumer and virtual water exporter, while GR08 and GR10 were identified as the RBDs mostly impacted. The value of virtual water exported was calculated for all crop types and fruits and vegetables were identified as the crop most beneficial, since they consume the least water for the obtained value.

  14. Crop classification and mapping based on Sentinel missions data in cloud environment

    Science.gov (United States)

    Lavreniuk, M. S.; Kussul, N.; Shelestov, A.; Vasiliev, V.

    2017-12-01

    Availability of high resolution satellite imagery (Sentinel-1/2/3, Landsat) over large territories opens new opportunities in agricultural monitoring. In particular, it becomes feasible to solve crop classification and crop mapping task at country and regional scale using time series of heterogenous satellite imagery. But in this case, we face with the problem of Big Data. Dealing with time series of high resolution (10 m) multispectral imagery we need to download huge volumes of data and then process them. The solution is to move "processing chain" closer to data itself to drastically shorten time for data transfer. One more advantage of such approach is the possibility to parallelize data processing workflow and efficiently implement machine learning algorithms. This could be done with cloud platform where Sentinel imagery are stored. In this study, we investigate usability and efficiency of two different cloud platforms Amazon and Google for crop classification and crop mapping problems. Two pilot areas were investigated - Ukraine and England. Google provides user friendly environment Google Earth Engine for Earth observation applications with a lot of data processing and machine learning tools already deployed. At the same time with Amazon one gets much more flexibility in implementation of his own workflow. Detailed analysis of pros and cons will be done in the presentation.

  15. Evaluation of Multiple Kernel Learning Algorithms for Crop Mapping Using Satellite Image Time-Series Data

    Science.gov (United States)

    Niazmardi, S.; Safari, A.; Homayouni, S.

    2017-09-01

    Crop mapping through classification of Satellite Image Time-Series (SITS) data can provide very valuable information for several agricultural applications, such as crop monitoring, yield estimation, and crop inventory. However, the SITS data classification is not straightforward. Because different images of a SITS data have different levels of information regarding the classification problems. Moreover, the SITS data is a four-dimensional data that cannot be classified using the conventional classification algorithms. To address these issues in this paper, we presented a classification strategy based on Multiple Kernel Learning (MKL) algorithms for SITS data classification. In this strategy, initially different kernels are constructed from different images of the SITS data and then they are combined into a composite kernel using the MKL algorithms. The composite kernel, once constructed, can be used for the classification of the data using the kernel-based classification algorithms. We compared the computational time and the classification performances of the proposed classification strategy using different MKL algorithms for the purpose of crop mapping. The considered MKL algorithms are: MKL-Sum, SimpleMKL, LPMKL and Group-Lasso MKL algorithms. The experimental tests of the proposed strategy on two SITS data sets, acquired by SPOT satellite sensors, showed that this strategy was able to provide better performances when compared to the standard classification algorithm. The results also showed that the optimization method of the used MKL algorithms affects both the computational time and classification accuracy of this strategy.

  16. Integrated Modeling of Crop Growth and Water Resource Management to Project Climate Change Impacts on Crop Production and Irrigation Water Supply and Demand in African Nations

    Science.gov (United States)

    Dale, A. L.; Boehlert, B.; Reisenauer, M.; Strzepek, K. M.; Solomon, S.

    2017-12-01

    Climate change poses substantial risks to African agriculture. These risks are exacerbated by concurrent risks to water resources, with water demand for irrigation comprising 80 to 90% of water withdrawals across the continent. Process-based crop growth models are able to estimate both crop demand for irrigation water and crop yields, and are therefore well-suited to analyses of climate change impacts at the food-water nexus. Unfortunately, impact assessments based on these models generally focus on either yields or water demand, rarely both. For this work, we coupled a crop model to a water resource management model in order to predict national trends in the impact of climate change on crop production, irrigation water demand, and the availability of water for irrigation across Africa. The crop model FAO AquaCrop-OS was run at 2ox2o resolution for 17 different climate futures from the CMIP5 archive, nine for Representative Concentration Pathway (RCP) 4.5 and eight for RCP8.5. Percent changes in annual rainfed and irrigated crop production and temporal shifts in monthly irrigation water demand were estimated for the years 2030, 2050, 2070, and 2090 for maize, sorghum, rice, wheat, cotton, sugarcane, fruits & vegetables, roots & tubers, and legumes & soybeans. AquaCrop was then coupled to a water management model (WEAP) in order to project changes in the ability of seven major river basins (the Congo, Niger, Nile, Senegal, Upper Orange, Volta, and Zambezi) to meet irrigation water demand out to 2050 in both average and dry years in the face of both climate change and irrigation expansion. Spatial and temporal trends were identified and interpreted through the lens of potential risk management strategies. Uncertainty in model estimates is reported and discussed.

  17. Satellite-based mapping of field-scale stress indicators for crop yield forecasting: an application over Mead, NE

    Science.gov (United States)

    In global agricultural regions, water is one of the most widely limiting factors of crop performance and production. Evapotranspiration (ET) describes crop water use through transpiration and water lost through direct soil evaporation, which makes it a good indicator of soil moisture availability an...

  18. Mapping Crop Planting Quality in Sugarcane from UAV Imagery: A Pilot Study in Nicaragua

    Directory of Open Access Journals (Sweden)

    Inti Luna

    2016-06-01

    Full Text Available Sugarcane is an important economic resource for many tropical countries and optimizing plantations is a serious concern with economic and environmental benefits. One of the best ways to optimize the use of resources in those plantations is to minimize the occurrence of gaps. Typically, gaps open in the crop canopy because of damaged rhizomes, unsuccessful sprouting or death young stalks. In order to avoid severe yield decrease, farmers need to fill the gaps with new plants. Mapping gap density is therefore critical to evaluate crop planting quality and guide replanting. Current field practices of linear gap evaluation are very labor intensive and cannot be performed with sufficient intensity as to provide detailed spatial information for mapping, which makes replanting difficult to perform. Others have used sensors carried by land vehicles to detect gaps, but these are complex and require circulating over the entire area. We present a method based on processing digital mosaics of conventional images acquired from a small Unmanned Aerial Vehicle  (UAV that produced a map of gaps at 23.5 cm resolution in a study area of 8.7 ha with 92.9% overall accuracy. Linear Gap percentage estimated from this map for a grid with cells of 10 m × 10 m linearly correlates with photo-interpreted linear gap percentage with a coefficient of determination (R2= 0.9; a root mean square error (RMSE = 5.04; and probability (p << 0.01. Crop Planting Quality levels calculated from image-derived gaps agree with those calculated from a photo-interpreted version of currently used field methods (Spearman coefficient = 0.92. These results clearly demonstrate the effectiveness of processing mosaics of Unmanned Aerial System (UAS images for mapping gap density and, together with previous studies using satellite and hand-held spectroradiometry, suggests the extension towards multi-spectral imagery to add insight on plant condition.

  19. CHANGE DETECTION OF CROPPING PATTERN IN PADDY FIELD USING MULTI SPECTRAL SATELLITE DATA FOR ESTIMATING IRRIGATION WATER NEEDS

    Directory of Open Access Journals (Sweden)

    Rizatus Shofiyati1

    2012-10-01

    Full Text Available This paper investigates the use of multi spectral satellite data for cropping pattern monitoring in paddy field. The southern coastal of Citarum watershed, West Java Province was selected as study sites. The analysis used in this study is identifying crop pattern based on growth stages of wetland paddy and other crops by investi-gating the characteristic of Normalized Differen-ce Vegetation Indices (NDVI and Wetness of Tasseled Cap Transformation (TCT derived from 14 scenes of Landsat TM date 1988 to 2001. In general, the phenological of growth stages of wetland paddy can be used to distinguish with other seasonal crops. The research results indicate that multi spectral satellite data has a great potential for identi-fication and monitoring cropping pattern in paddy field. Specific character of NDVI and Wetness can also produce a map of cropping pattern in paddy field that is useful to monitor agricultural land condition. The cropping pattern can also be used to estimate irrigation water needed of paddy field in the area. Expected implication of the information obtained from this analysis is useful for guiding more appropriate planning and better agricultural management.

  20. The virtual water content of major grain crops and virtual water flows between regions in China.

    Science.gov (United States)

    Sun, Shi-Kun; Wu, Pu-Te; Wang, Yu-Bao; Zhao, Xi-Ning

    2013-04-01

    The disproportionate distribution of arable land and water resources has become a bottleneck for guaranteeing food security in China. Virtual water and virtual water trade theory have provided a potential solution to improve water resources management in agriculture and alleviate water crises in water-scarce regions. The present study evaluates the green and blue virtual water content of wheat, maize and rice at the regional scale in China. It then assesses the water-saving benefits of virtual water flows related to the transfer of the three crops between regions. The national average virtual water content of wheat, maize and rice were 1071 m(3) per ton (50.98% green water, 49.02% blue water ), 830 m(3) per ton (76.27% green water, 23.73% blue water) and 1294 m(3) per ton (61.90% green water, 38.10% blue water), respectively. With the regional transfer of wheat, maize and rice, virtual water flows reached 30.08 Gm(3) (59.91% green water, 40.09% blue water). Meanwhile, China saved 11.47 Gm(3) green water, while it consumed 7.84 Gm(3) more blue water than with a no-grain transfer scenario in 2009. In order to guarantee food security in China, the government should improve water productivity (reduce virtual water content of crops) during the grain production process. Meanwhile, under the preconditions of economic feasibility and land-water resources availability, China should guarantee the grain-sown area in southern regions for taking full advantage of green water resources and to alleviate the pressure on water resources. © 2012 Society of Chemical Industry.

  1. Airborne Thermal Imagery to Detect the Seasonal Evolution of Crop Water Status in Peach, Nectarine and Saturn Peach Orchards

    Directory of Open Access Journals (Sweden)

    Joaquim Bellvert

    2016-01-01

    Full Text Available In the current scenario of worldwide limited water supplies, conserving water is a major concern in agricultural areas. Characterizing within-orchard spatial heterogeneity in water requirements would assist in improving irrigation water use efficiency and conserve water. The crop water stress index (CWSI has been successfully used as a crop water status indicator in several fruit tree species. In this study, the CWSI was developed in three Prunus persica L. cultivars at different phenological stages of the 2012 to 2014 growing seasons, using canopy temperature measurements of well-watered trees. The CWSI was then remotely estimated using high-resolution thermal imagery acquired from an airborne platform and related to leaf water potential (ѰL throughout the season. The feasibility of mapping within-orchard spatial variability of ѰL from thermal imagery was also explored. Results indicated that CWSI can be calculated using a common non-water-stressed baseline (NWSB, upper and lower limits for the entire growing season and for the three studied cultivars. Nevertheless, a phenological effect was detected in the CWSI vs. ѰL relationships. For a specific given CWSI value, ѰL was more negative as the crop developed. This different seasonal response followed the same trend for the three studied cultivars. The approach presented in this study demonstrated that CWSI is a feasible method to assess the spatial variability of tree water status in heterogeneous orchards, and to derive ѰL maps throughout a complete growing season. A sensitivity analysis of varying pixel size showed that a pixel size of 0.8 m or less was needed for precise ѰL mapping of peach and nectarine orchards with a tree crown area between 3.0 to 5.0 m2.

  2. Land-Water-Food Nexus and Indications of Crop Adjustment for Water Shortage Solution

    Science.gov (United States)

    Yang, Y.; Ren, D.; Zhou, X.

    2017-12-01

    Agriculture places the greatest demand on water resources, and increasing agricultural production is worsening a global water shortage. Reducing the cultivation of water-consuming crops may be the most effective way to reduce agricultural water use. However, when also taking food demand into consideration, sustaining the balance between regional water and food securities is a growing challenge. This paper addresses this task for regions where water is unsustainable for food production (Beijing-Tianjin-Hebei Region for example), by (i) assessing the different effects of wheat and maize on water use; (ii) analyzing virtual water and virtual land flows associated with food imports and exports between Beijing-Tianjin-Hebei and elsewhere in China; (iii) identifying sub-regions where grain are produced using scarce water resources but exported to other regions. (iv) analyzing the potentiality for mitigating water shortage via Land-Water-Food Nexus. In the Beijing-Tianjin-Hebei Region, the study reveals that 29.76 bn m3 of virtual water (10.81 bn m3 of blue virtual water) are used by wheat and maize production and nearly 2 million ha of cropland using 8.77 bn m3 of virtual water overproduced 12 million ton of maize for external food consumption. As an importing-based sub-region with high population density, Beijing and Tianjin (BT) imported mostly grain (wheat and maize) from Shandong (SD). Whereas, Hebei (HB), as an exporting-based sub-region with sever water shortage, overproduced too much grain for other regions (like Central area), which aggravated water crisis. To achieve Beijing-Tianjin-Hebei's integrated and sustainable development, HB should not undertake the breadbasket role for BT but pay more attention to groundwater depletion. The analysis of the Land-Water-Food Nexus indicates how shifts in the cultivated crops can potentially solve the overuse of water resources without adverse effect on food supply, and provides meaningful information to support policy

  3. Blue and green water use of cultivating selected crops in Malaysia

    Science.gov (United States)

    Harun, Siti Norliyana; Hanafiah, Marlia M.

    2018-04-01

    Sustainability of water resources should be a concern parallel to the fast pace of economic development. This study was conducted to estimate the total water consumption of growing 9 crops in Peninsular Malaysia which divided into two category of crops; fruits and vegetables, i.e. mandarin, banana, mango, pineapple, watermelon, cucumber, eggplant, green bean and lettuce. The water footprint of these crops was estimated based on 9 years data of climate and crop (2005-2013). The crop water use was determined using CROPWAT 8.0 model and Penman-Monteith equation. It was found that the green water footprint for cultivating 9 crops was higher compared to blue water footprint. The blue water footprint ranged from 20.97m3/ton to 197.84m3/ton, whereas the green water footprint ranged from 129.8m3/ton to 1586.2m3/ton. Banana has the highest total water footprint (1717.10m3/ton) and the lowest total water footprint was obtained for cucumber (175.07m3/ton). In conclusion, water consumption for cultivating agricultural crops will accelerate the competition on the consumption of clean water with the other sectors. However, the availability of water resource in Peninsular Malaysia is still sufficient to fulfill the demands for water at the present time. Further study should include grey water as well as an indicator for water quality to help in assessing the sustainable, efficient and equitable use of water resources.

  4. Water logging and salinity control for environmentally sustainable crop production

    International Nuclear Information System (INIS)

    Chaudhry, M.R.; Bhutta, M.N.

    2005-01-01

    Irrigation supplies at proper time and adequate quantities are imperative for potential agricultural production under arid and semi-arid climatic conditions. To achieve this goal one of the largest integrated irrigation network was established. Without adequate drainage it resulted in the problems of water logging and salinity. To control these problems a big programme of Salinity Control and Reclamation projects (SCARPs) was initiated during 1960 and 82 such SCARPs have been completed and 9 were in progress up to June, 2002 covering an area of 18.6 ma (7.5 mh) at a cost of Rs.93 billions. Under these projects 12746 tube wells in fresh, 3572 in saline groundwater and 13726 km surface and 12612 km tile pipes covering 6391.7 ha, 160 km interceptor drains have been constructed an area of 0.998 ma (GCA). In addition to this some other measures like on farm water management, canal command project, canal lining, construction of evaporation ponds, establishment of research Inst./Organizations were also taken. Many drainage plans like Master Plan (1963), Northern Regional Plan (1967), Water Sector Investment Plan Study (1990), Right Bank Master Plan (1992), Drainage Sector Environmental Assessment (1993) and National Drainage Programme (1995) were prepared and implemented. The cost of the, phase-I of the National Drainage Programme was 785 million US$. The main activities undertaken were remodeling/extension of existing surface and new drains; rehabilitation/replacement of saline ground water (SGW) tube wells; construction of interceptor drains, reclamation of waterlogged areas through biological drainage and transfer of fresh ground water tube wells to the farmers. The data indicate that all the measures taken have played a significant role in reducing the water logging, salinity/sodicity and have increased the crop production and consequently improved the socio-economic conditions of the peoples especially the farming community. The environment in these areas was also

  5. Crop Mapping Using PROBA-V Time Series Data at the Yucheng and Hongxing Farm in China

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2016-11-01

    Full Text Available PROBA-V is a new global vegetation monitoring satellite launched in the second quarter of 2013 that provides data with a 100 m to 1 km spatial resolution and a daily to 10-day temporal resolution in the visible and near infrared (VNIR bands. A major mission of the PROBA-V satellite is global agriculture monitoring, in which the accuracy of crop mapping plays a key role. In countries such as China, crop fields are typically small, in assorted shapes and with various management approaches, which deem traditional methods of crop identification ineffective, and accuracy is highly dependent on image resolution and acquisition time. The five-day temporal and 100 m spatial resolution PROBA-V data make it possible to automatically identify crops using time series phenological information. This paper takes advantage of the improved spatial and temporal resolution of the PROBA-V data, to map crops at the Yucheng site in Shandong Province and the Hongxing farm in Heilongjiang province of China. First, the Swets filter algorithm was employed to eliminate noisy pixels and fill in data gaps on time series data during the growing season. Then, the crops are classified based on the Iterative Self-Organizing Data Analysis Technique (ISODATA clustering, the maximum likelihood method (MLC and similarity analysis. The mapping results were validated using field-collected crop type polygons and high resolution crop maps based on GaoFen-1 satellite (GF-1 data in 16 m resolution. Our study showed that, for the Yucheng site, the cropping system is simple, mainly dominated by winter wheat–maize rotation. The overall accuracy of crop identification was 73.39% which was slightly better than the result derived from MODIS data. For the Hongxing farm, the cropping system is more complex (i.e., more than three types of crops were planted. The overall accuracy of the crop mapping by PROBA-V was 73.29% which was significantly higher than the MODIS product (46.81%. This study

  6. The application of water poverty mapping in water management

    Directory of Open Access Journals (Sweden)

    Charles van der Vyver

    2012-07-01

    Full Text Available Water management has been carried out for many centuries wherever there has been a need to provide water to large numbers of people. Complex social norms have developed around water management and competing users have established political (governance and economic cooperative relationships. For example, community-managed irrigation schemes in Bali and the cloud-collection canals built by the Incas at Inca Pirca in Peru are examples of water management systems which still currently supply water to people (Sullivan et al., 2005. Water resources will steadily decline because of population growth, pollution and expected climate change (Hemson et al., 2008. It has been estimated that the global demand for water doubles approximately every two decades (Meyer, 2007 and that water will even become as expensive as oil in the future (Holland, 2005. “In the year 2000, global water use was twice as high as it was in 1960” (Clarke and King, 2004:19. Unfortunately this trend is expected to continue. The aim of this paper is to describe how water poverty mapping as a process can be used to assist the management of our already scarce water resources. It constructs a water poverty map after which it describes its application at various management levels. The research indicates that the mapping process can be used to obtain more accurate predictions, as well as to form part of the master plan and integrated development plan documents. Keywords: Water management, water poverty mapping Disciplines: Water management, geographical information systems (GIS, poverty studies, decision support

  7. Integrated water-crop-soil-management system for evaluating the quality of irrigation water

    International Nuclear Information System (INIS)

    Pla-Sentis, I.

    1983-01-01

    The authors make use of an independent balance of the salts and ions present in the water available for irrigation, based on the residence times in the soil solution that are allowed by solubility limits and drainage conditions, to develop an efficient system for evaluating the quality of such water which combines the factors: water, crop, soil and management. The system is based on the principle that such quality depends not only on the concentration and composition of the salts dissolved in the water, but also on existing possibilities and limitations in using and managing it in respect of the soil and crops, with allowance for the crop's tolerance of salinity, drainage conditions and hydrological properties of the soils, climate and current or potential practices for the management of the irrigation. If this system is used to quantify approximately the time behaviour of the concentration and composition of the salts in the soil solution, it is possible not only to predict the effects on soil, crops and drainage water, but also to evaluate the various combinations of irrigation water, soil, crops and management and to select the most suitable. It is also useful for fairly accurately diagnosing current problems of salinity and for identifying alternatives and possibilities for reclamation. Examples of its use for these purposes in Venezuela are presented with particular reference to the diagnosis of the present and future development of ''salino-sodic'' and ''sodic'' soils by means of low-salt irrigation water spread over agricultural soils with very poor drainage in a sub-humid or semi-arid tropical climate. The authors also describe the use of radiation techniques for gaining an understanding of the relations between the factors making up the system and for improving the quantitative evaluations required to diagnose problems and to select the best management methods for the available irrigation water. (author)

  8. Green, blue and grey water footprint reduction in irrigated crop production

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie

    2017-01-01

    In the face of increasing water scarcity, reducing the consumptive and degradative water use of crop production is important to produce more food and/or for the environment. The thesis explores the potential for reducing the green, blue and grey water footprint (WF) of irrigated crop production by

  9. Evaluation of Intrinsic Water Use Efficiency and Ecophysiological Modelling on a Potato Dihaploid Mapping Population

    DEFF Research Database (Denmark)

    Topbjerg, Henrik Bak

    of the solution the crop has to be able to tolerate drought. In this study, a dihaploid potato mapping population has been used to investigate clonal performance in intrinsic water use efficiency (WUEi) under progressive drought achieved in greenhouse and under field conditions. The mapping population revealed...... on environmental sustainability. Future growth in the global population predicts that the agricultural output will have to increase considerably if malnutrition and famine are to be prevented. On this basis, the development of crops capable of producing higher yields under water scarce situations is being...... progression in the development of drought tolerant crop cultivars, faster screening methods have to be developed. Here, it was found that the chlorophyll content index could be a useful screening method for higher WUEi under greenhouse conditions. However, such methods must rely on physiological trait...

  10. SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop

    Science.gov (United States)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    The sustainability of irrigation is a complex and comprehensive undertaking, requiring an attention to much more than hydraulics, chemistry, and agronomy. A special combination of human, environmental, and economic factors exists in each irrigated region and must be recognized and evaluated. A way to evaluate the efficiency of irrigation water use for crop production is to consider the so-called crop-water production functions, which express the relation between the yield of a crop and the quantity of water applied to it or consumed by it. The term has been used in a somewhat ambiguous way. Some authors have defined the Crop-Water Production Functions between yield and the total amount of water applied, whereas others have defined it as a relation between yield and seasonal evapotranspiration (ET). In case of high efficiency of irrigation water use the volume of water applied is less than the potential evapotranspiration (PET), then - assuming no significant change of soil moisture storage from beginning of the growing season to its end-the volume of water may be roughly equal to ET. In other case of low efficiency of irrigation water use the volume of water applied exceeds PET, then the excess of volume of water applied over PET must go to either augmenting soil moisture storage (end-of-season moisture being greater than start-of-season soil moisture) or to runoff or/and deep percolation beyond the root zone. In presented contribution some results of a case study of estimation of biomass and leaf area index (LAI) for irrigated alfalfa by SEBAL algorithm will be discussed. The field study was conducted with aim to compare ground biomass of alfalfa at some irrigated fields (provided by agricultural farm) at Saratov and Volgograd Regions of Russia. The study was conducted during vegetation period of 2012 from April till September. All the operations from importing the data to calculation of the output data were carried by eLEAF company and uploaded in Fieldlook web

  11. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    Science.gov (United States)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  12. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    OpenAIRE

    Gurbir Singh; Jon E. Schoonover; Karl W. J. Williard

    2018-01-01

    In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphor...

  13. Optimal crop selection and water allocation under limited water supply in irrigation

    Science.gov (United States)

    Stange, Peter; Grießbach, Ulrike; Schütze, Niels

    2015-04-01

    Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.

  14. Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy

    Science.gov (United States)

    Shi, J.; Liu, J.; Pinter, L.

    2013-09-01

    China has dramatically increased its virtual water import unconsciously for recent years. Many studies have focused on the quantity of traded virtual water but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops soybeans, mostly imported from the US, Brazil and Argentina are the most significant. As crop yield and crop water productivity in North and South America are generally higher than those in Asia and Africa, the effect of China's crop-related virtual water trade positively contributes to optimizing crop water use efficiency at the global scale. In order to mitigate water scarcity and secure the food supply, virtual water should be actively incorporated into national water management strategies. From the national perspective, China should reduce the export and increase the import of water-intensive crops. But the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.

  15. Remote sensing in Iowa agriculture. [land use, crop identification, and soil mapping

    Science.gov (United States)

    Mahlstede, J. P. (Principal Investigator); Carlson, R. E.; Fenton, T. E.

    1974-01-01

    The author has identified the following significant results. Analysis of 1972 single-date coverage indicated that a complete crop classification was not attainable at the test sites. Good multi-date coverage during 1973 indicates that many of the problems encountered in 1972 will be minimized. In addition, the compilation of springtime imagery covering the entire state of Iowa has added a new dimension to interpretation of Iowa's natural resources. ERTS-1 has provided data necessary to achieve the broad synoptic view not attainable through other means. This should provide soils and crop researchers and land use planners a base map of Iowa. Granted and due to the resolution of ERTS-1, not all details are observable for many land use planning needs, but this gives a general and current view of Iowa.

  16. Brain water mapping with MR imaging

    International Nuclear Information System (INIS)

    Laine, F.J.; Fatouros, P.P.; Kraft, K.A.

    1990-01-01

    This paper reports on a recently developed MR imaging technique to determine the spatial distribution of brain water to healthy volunteers. A noninvasive MR imaging technique to obtain absolute measurements of brain water has been developed and validated with phantom and animal studies. Patient confirmation was obtained from independent gravimetric measurements of brain tissue samples harvested by biopsy. This approach entails the production of accurate T1 maps from multiple inversion recovery images of a selected anatomic section and their subsequent conversion into an absolute water image by means of a previously determined calibration curve. Twenty healthy volunteers were studied and their water distribution was determined in a standard section. The following brain water values means and SD grams of water per gram of tissue) were obtained for selected brain regions; white matter, 68.9% ± 1.0; corpus callosum, 67.4% ± 1.1; thalamus, 75.3% ± 1.4; and caudate nucleus, 80.3% ± 1.4. MR imaging water mapping is a valid means of determining water content in a variety of brain tissues

  17. Determination of Water Requirement and Crop Coefficient for ...

    African Journals Online (AJOL)

    Knowledge of crop evapotranspiration (ETc), the combined process of evaporation and plant transpiration, is important in agriculture for scheduling farm operations and designing and managing irrigation and drainage systems. Development of crop coefficient (Kc) can enhance crop evapotranspiration (ETc) estimates in ...

  18. Improved regional-scale Brazilian cropping systems' mapping based on a semi-automatic object-based clustering approach

    Science.gov (United States)

    Bellón, Beatriz; Bégué, Agnès; Lo Seen, Danny; Lebourgeois, Valentine; Evangelista, Balbino Antônio; Simões, Margareth; Demonte Ferraz, Rodrigo Peçanha

    2018-06-01

    Cropping systems' maps at fine scale over large areas provide key information for further agricultural production and environmental impact assessments, and thus represent a valuable tool for effective land-use planning. There is, therefore, a growing interest in mapping cropping systems in an operational manner over large areas, and remote sensing approaches based on vegetation index time series analysis have proven to be an efficient tool. However, supervised pixel-based approaches are commonly adopted, requiring resource consuming field campaigns to gather training data. In this paper, we present a new object-based unsupervised classification approach tested on an annual MODIS 16-day composite Normalized Difference Vegetation Index time series and a Landsat 8 mosaic of the State of Tocantins, Brazil, for the 2014-2015 growing season. Two variants of the approach are compared: an hyperclustering approach, and a landscape-clustering approach involving a previous stratification of the study area into landscape units on which the clustering is then performed. The main cropping systems of Tocantins, characterized by the crop types and cropping patterns, were efficiently mapped with the landscape-clustering approach. Results show that stratification prior to clustering significantly improves the classification accuracies for underrepresented and sparsely distributed cropping systems. This study illustrates the potential of unsupervised classification for large area cropping systems' mapping and contributes to the development of generic tools for supporting large-scale agricultural monitoring across regions.

  19. Inland excess water mapping using hyperspectral imagery

    Directory of Open Access Journals (Sweden)

    Csendes Bálint

    2016-01-01

    Full Text Available Hyperspectral imaging combined with the potentials of airborne scanning is a powerful tool to monitor environmental processes. The aim of this research was to use high resolution remotely sensed data to map the spatial extent of inland excess water patches in a Hungarian study area that is known for its oil and gas production facilities. Periodic floodings show high spatial and temporal variability, nevertheless, former studies have proven that the affected soil surfaces can be accurately identified. Besides separability measurements, we performed spectral angle classification, which gave a result of 85% overall accuracy and we also compared the generated land cover map with LIDAR elevation data.

  20. A dense camera network for cropland (CropInsight) - developing high spatiotemporal resolution crop Leaf Area Index (LAI) maps through network images and novel satellite data

    Science.gov (United States)

    Kimm, H.; Guan, K.; Luo, Y.; Peng, J.; Mascaro, J.; Peng, B.

    2017-12-01

    Monitoring crop growth conditions is of primary interest to crop yield forecasting, food production assessment, and risk management of individual farmers and agribusiness. Despite its importance, there are limited access to field level crop growth/condition information in the public domain. This scarcity of ground truth data also hampers the use of satellite remote sensing for crop monitoring due to the lack of validation. Here, we introduce a new camera network (CropInsight) to monitor crop phenology, growth, and conditions that are designed for the US Corn Belt landscape. Specifically, this network currently includes 40 sites (20 corn and 20 soybean fields) across southern half of the Champaign County, IL ( 800 km2). Its wide distribution and automatic operation enable the network to capture spatiotemporal variations of crop growth condition continuously at the regional scale. At each site, low-maintenance, and high-resolution RGB digital cameras are set up having a downward view from 4.5 m height to take continuous images. In this study, we will use these images and novel satellite data to construct daily LAI map of the Champaign County at 30 m spatial resolution. First, we will estimate LAI from the camera images and evaluate it using the LAI data collected from LAI-2200 (LI-COR, Lincoln, NE). Second, we will develop relationships between the camera-based LAI estimation and vegetation indices derived from a newly developed MODIS-Landsat fusion product (daily, 30 m resolution, RGB + NIR + SWIR bands) and the Planet Lab's high-resolution satellite data (daily, 5 meter, RGB). Finally, we will scale up the above relationships to generate high spatiotemporal resolution crop LAI map for the whole Champaign County. The proposed work has potentials to expand to other agro-ecosystems and to the broader US Corn Belt.

  1. AquaCrop-OS: A tool for resilient management of land and water resources in agriculture

    Science.gov (United States)

    Foster, Timothy; Brozovic, Nicholas; Butler, Adrian P.; Neale, Christopher M. U.; Raes, Dirk; Steduto, Pasquale; Fereres, Elias; Hsiao, Theodore C.

    2017-04-01

    Water managers, researchers, and other decision makers worldwide are faced with the challenge of increasing food production under population growth, drought, and rising water scarcity. Crop simulation models are valuable tools in this effort, and, importantly, provide a means of quantifying rapidly crop yield response to water, climate, and field management practices. Here, we introduce a new open-source crop modelling tool called AquaCrop-OS (Foster et al., 2017), which extends the functionality of the globally used FAO AquaCrop model. Through case studies focused on groundwater-fed irrigation in the High Plains and Central Valley of California in the United States, we demonstrate how AquaCrop-OS can be used to understand the local biophysical, behavioural, and institutional drivers of water risks in agricultural production. Furthermore, we also illustrate how AquaCrop-OS can be combined effectively with hydrologic and economic models to support drought risk mitigation and decision-making around water resource management at a range of spatial and temporal scales, and highlight future plans for model development and training. T. Foster, et al. (2017) AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management. 181: 18-22. http://dx.doi.org/10.1016/j.agwat.2016.11.015.

  2. Crop yields response to water pressures in the Ebro basin in Spain: risk and water policy implications

    Science.gov (United States)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2011-02-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro river basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  3. Risk of water scarcity and water policy implications for crop production in the Ebro Basin in Spain

    Science.gov (United States)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2010-08-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro River Basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  4. Developing index maps of water-harvest potential in Africa

    Science.gov (United States)

    Senay, G.B.; Verdin, J.P.

    2004-01-01

    The food security problem in Africa is tied to the small farmer, whose subsistence farming relies heavily on rain-fed agriculture. A dry spell lasting two to three weeks can cause a significant yield reduction. A small-scale irrigation scheme from small-capacity ponds can alleviate this problem. This solution would require a water harvest mechanism at a farm level. In this study, we looked at the feasibility of implementing such a water harvest mechanism in drought prone parts of Africa. A water balance study was conducted at different watershed levels. Runoff (watershed yield) was estimated using the SCS curve number technique and satellite derived rainfall estimates (RFE). Watersheds were delineated from the Africa-wide HYDRO-1K digital elevation model (DEM) data set in a GIS environment. Annual runoff volumes that can potentially be stored in a pond during storm events were estimated as the product of the watershed area and runoff excess estimated from the SCS Curve Number method. Estimates were made for seepage and net evaporation losses. A series of water harvest index maps were developed based on a combination of factors that took into account the availability of runoff, evaporation losses, population density, and the required watershed size needed to fill a small storage reservoir that can be used to alleviate water stress during a crop growing season. This study presents Africa-wide water-harvest index maps that could be used for conducting feasibility studies at a regional scale in assessing the relative differences in runoff potential between regions for the possibility of using ponds as a water management tool. ?? 2004 American Society of Agricultural Engineers.

  5. Catch crops impact on soil water infiltration in vineyards

    Science.gov (United States)

    Cerdà, Artemi; Bagarello, Vincenzo; Iovino, Massimo; Ferro, Vito; Keesstra, Saskia; Rodrigo-Comino, Jesús; García Diaz, Andrés; di Prima, Simone

    2017-04-01

    Bagarello, V., Castellini, M., Di Prima, S., & Iovino, M. (2014). Soil hydraulic properties determined by infiltration experiments and different heights of water pouring. Geoderma, 213, 492-501. Bagarello, V., Elrick, D. E., Iovino, M., & Sgroi, A. (2006). A laboratory analysis of falling head infiltration procedures for estimating the hydraulic conductivity of soils. Geoderma, 135, 322-334. Ben Slimane, A., Raclot, D., Evrard, O., Sanaa, M., Lefevre, I., & Le Bissonnais, Y. (2016). Relative contribution of Rill/Interrill and Gully/Channel erosion to small reservoir siltation in mediterranean environments. Land Degradation and Development, 27(3), 785-797. doi:10.1002/ldr.2387 Cerdà, A. (1996). Seasonal variability of infiltration rates under contrasting slope conditions in southeast spain. Geoderma, 69(3-4), 217-232. Cerdà, A. (1999). Seasonal and spatial variations in infiltration rates in badland surfaces under mediterranean climatic conditions. Water Resources Research, 35(1), 319-328. doi:10.1029/98WR01659 Cerdà, A. (2001). Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. European Journal of Soil Science, 52(1), 59-68. doi:10.1046/j.1365-2389.2001.00354.x Cerdà, A., Morera, A. G., & Bodí, M. B. (2009). Soil and water losses from new citrus orchards growing on sloped soils in the western mediterranean basin. Earth Surface Processes and Landforms, 34(13), 1822-1830. doi:10.1002/esp.1889 di Prima, S., Lassabatère, L., Bagarello, V., Iovino, M., & Angulo-Jaramillo, R. (2016). Testing a new automated single ring infiltrometer for Beerkan infiltration experiments. Geoderma, 262, 20-34. Iovino, M., Castellini, M., Bagarello, V., & Giordano, G. (2016). Using static and dynamic indicators to evaluate soil physical quality in a sicilian area. Land Degradation and Development, 27(2), 200-210. doi:10.1002/ldr.2263 Laudicina, V. A., Novara, A., Barbera, V., Egli, M., & Badalucco, L. (2015). Long-term tillage and cropping system effects on

  6. Enhancing water and fertilizer saving without compromising rice yield through integrated crop management

    NARCIS (Netherlands)

    Wardana, I.P.; Gani, A.; Abdulrachmann, S.; Bindraban, P.S.; Keulen, van H.

    2010-01-01

    Water and fertilizer scarcity amid the increasing need of rice production challenges today’s agriculture. Integrated crop management (ICM) is a combination of water, crop, and nutrient management that optimizes the synergistic interaction of these components aiming at improving resource use

  7. Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery

    Directory of Open Access Journals (Sweden)

    Jordi Inglada

    2015-09-01

    Full Text Available Crop area extent estimates and crop type maps provide crucial information for agricultural monitoring and management. Remote sensing imagery in general and, more specifically, high temporal and high spatial resolution data as the ones which will be available with upcoming systems, such as Sentinel-2, constitute a major asset for this kind of application. The goal of this paper is to assess to what extent state-of-the-art supervised classification methods can be applied to high resolution multi-temporal optical imagery to produce accurate crop type maps at the global scale. Five concurrent strategies for automatic crop type map production have been selected and benchmarked using SPOT4 (Take5 and Landsat 8 data over 12 test sites spread all over the globe (four in Europe, four in Africa, two in America and two in Asia. This variety of tests sites allows one to draw conclusions applicable to a wide variety of landscapes and crop systems. The results show that a random forest classifier operating on linearly temporally gap-filled images can achieve overall accuracies above 80% for most sites. Only two sites showed low performances: Madagascar due to the presence of fields smaller than the pixel size and Burkina Faso due to a mix of trees and crops in the fields. The approach is based on supervised machine learning techniques, which need in situ data collection for the training step, but the map production is fully automatic.

  8. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    Science.gov (United States)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  9. Analysis of ONKALO water leakage mapping results

    International Nuclear Information System (INIS)

    Ahokas, H.; Nummela, J; Turku, J.

    2014-04-01

    As part of the programme for the final disposal of spent nuclear fuel, an analysis has been compiled of water leakage mapping performed in ONKALO. Leakage mapping is part of the Olkiluoto Monitoring Programme (OMO) and the field work has been carried out by Posiva Oy. The main objective of the study is to analyse differences detected between mapping campaigns carried out typically twice a year in 2005-2012. Differences were estimated to be caused by the differences in groundwater conditions caused by seasonal effects or by differences between the years. The effect of technical changes like shotcreting, postgrouting, ventilation etc. on the results was also studied. The development of the visualisation of mapping results was also an objective of this work. Leakage mapping results have been reported yearly in the monitoring reports of Hydrology with some brief comments on the detected differences. In this study, the development of the total area and the number of different leakages as well as the correlation of changes with shotcreting and grouting operations were studied. In addition, traces of fractures on tunnel surfaces, and the location of rock bolts and drain pipes were illustrated together with leakage mapping. In water leakage mapping, the tunnel surfaces are visually mapped to five categories: dry, damp, wet, dripping and flowing. Major changes were detected in the total area of damp leakages. It is likely that the increase has been caused by the condensation of warm ventilation air on the tunnel surfaces and the corresponding decrease by the evaporation of moisture into the dry ventilation air. Shotcreting deep in ONKALO may also have decreased the total area of damp leakages. Changes in the total area and number of wet leakages correlate at least near the surface with differences in yearly precipitation. It is possible that strong rains have also caused a temporary increase in wet leakages. Dripping and wet leakages have been observed on average more

  10. Analysis of ONKALO water leakage mapping results

    Energy Technology Data Exchange (ETDEWEB)

    Ahokas, H.; Nummela, J; Turku, J. [Poeyry Finland Oy, Vantaa (Finland)

    2014-04-15

    As part of the programme for the final disposal of spent nuclear fuel, an analysis has been compiled of water leakage mapping performed in ONKALO. Leakage mapping is part of the Olkiluoto Monitoring Programme (OMO) and the field work has been carried out by Posiva Oy. The main objective of the study is to analyse differences detected between mapping campaigns carried out typically twice a year in 2005-2012. Differences were estimated to be caused by the differences in groundwater conditions caused by seasonal effects or by differences between the years. The effect of technical changes like shotcreting, postgrouting, ventilation etc. on the results was also studied. The development of the visualisation of mapping results was also an objective of this work. Leakage mapping results have been reported yearly in the monitoring reports of Hydrology with some brief comments on the detected differences. In this study, the development of the total area and the number of different leakages as well as the correlation of changes with shotcreting and grouting operations were studied. In addition, traces of fractures on tunnel surfaces, and the location of rock bolts and drain pipes were illustrated together with leakage mapping. In water leakage mapping, the tunnel surfaces are visually mapped to five categories: dry, damp, wet, dripping and flowing. Major changes were detected in the total area of damp leakages. It is likely that the increase has been caused by the condensation of warm ventilation air on the tunnel surfaces and the corresponding decrease by the evaporation of moisture into the dry ventilation air. Shotcreting deep in ONKALO may also have decreased the total area of damp leakages. Changes in the total area and number of wet leakages correlate at least near the surface with differences in yearly precipitation. It is possible that strong rains have also caused a temporary increase in wet leakages. Dripping and wet leakages have been observed on average more

  11. Variability in the Water Footprint of Arable Crop Production across European Regions

    Czech Academy of Sciences Publication Activity Database

    Gobin, A.; Kersebaum, K. C.; Eitzinger, Josef; Trnka, Miroslav; Hlavinka, Petr; Takáč, J.; Kroes, J.; Ventrella, D.; Dalla Marta, A.; Deelstra, J.; Lalic, B.; Nejedlík, P.; Orlandini, S.; Peltonen-Sainio, P.; Rajala, A.; Saue, T.; Saylan, L.; Stricevic, R.; Vucetic, V.; Zoumides, C.

    2017-01-01

    Roč. 9, č. 2 (2017), č. článku 93. ISSN 2073-4441 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD13030 Institutional support: RVO:86652079 Keywords : simulate yield response * climate - change * virtual water * impact * green * model * blue * agriculture * irrigation * reduction * water footprint * arable crops * cereals * Europe * crop water use * yield Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Water resources Impact factor: 1.832, year: 2016

  12. Land-Water-Food Nexus and indications of crop adjustment for water shortage solution.

    Science.gov (United States)

    Ren, Dandan; Yang, Yonghui; Yang, Yanmin; Richards, Keith; Zhou, Xinyao

    2018-06-01

    While agriculture places the greatest demand on water resources, increasing agricultural production is worsening a global water shortage. Reducing the cultivation of water-consuming crops may be the most effective way to reduce agricultural water use. However, when also taking food demand into consideration, sustaining the balance between regional water and food securities is a growing challenge. This paper addresses this task for regions where water is unsustainable for food production (Beijing-Tianjin-Hebei Region for example) by: (i) assessing the different effects of wheat and maize on water use; (ii) analyzing virtual water and virtual land flows associated with food imports and exports between Beijing-Tianjin-Hebei and elsewhere in China; (iii) identifying sub-regions where grain is produced using scarce water resources but exported to other regions; and (iv) analyzing the potentiality for mitigating water shortage via Land-Water-Food Nexus. In the Beijing-Tianjin-Hebei Region, the study reveals that 29.76 bn m 3 of virtual water (10.81 bn m 3 of blue virtual water) are used by wheat and maize production and 8.77 bn m 3 of virtual water used in nearly 2 million ha of cropland to overproduce 12 million ton of maize for external food consumption. As an importing-based sub-region with high population density, Beijing & Tianjin imported mostly grain (wheat and maize) from Shandong Province. Then, Hebei Province, as an exporting-based sub-region with severe water shortage, overproduced too much grain for other regions, which aggravated the water crisis. To achieve an integrated and sustainable development of the Beijing-Tianjin-Hebei Region, Hebei Province should stop undertaking the breadbasket role for Beijing & Tianjin and pay more attention to groundwater depletion. The analysis of the Land-Water-Food Nexus indicates how shifts in cultivated crops can potentially solve the overuse of water resources without adverse effects on food supply

  13. Impacts of Cover Crops on Water and Nutrient Dynamics in Agroecosystems

    Science.gov (United States)

    Williard, K.; Swanberg, S.; Schoonover, J.

    2013-05-01

    Intensive cropping systems of corn (Zea Mays L.) and soybeans (Glycine max) are commonly leaky systems with respect to nitrogen (N). Reactive N outputs from agroecosystems can contribute to eutrophication and hypoxic zones in downstream water bodies and greenhouse gas (N2O) emissions. Incorporating cover crops into temperate agroecosystem rotations has been promoted as a tool to increase nitrogen use efficiency and thus limit reactive N outputs to the environment. Our objective was determine how cereal rye (Secale cereal L.) and annual ryegrass (Lolium multiflorum) cover crops impact nutrient and soil water dynamics in an intensive corn and soybean cropping rotation in central Illinois. Cover crops were planted in mid to late October and terminated in early April prior to corn or soybean planting. In the spring just prior to cover crop termination, soil moisture levels were lower in the cover crop plots compared to no cover plots. This can be a concern for the subsequent crop in relatively dry years, which the Midwestern United States experienced in 2012. No cover plots had greater nutrient leaching below the rooting zone compared to cover crop areas, as expected. The cover crops were likely scavenging nutrients during the fall and early spring and should provide nutrients to the subsequent crop via decomposition and mineralization of the cover crop residue. Over the long term, cover crop systems should produce greater inputs and cycling of carbon and N, increasing the productivity of crops due to the long-term accumulation of soil organic matter. This study demonstrates that there may be short term trade-offs in reduced soil moisture levels that should be considered alongside the long term nutrient scavenging and recycling benefits of cover crops.

  14. Assessment of crop growth and water productivity for five C3 species in semi-arid Inner Mongolia

    NARCIS (Netherlands)

    Yuan, M.; Zhang, L.; Gou, F.; Su, Z.; Spiertz, J.H.J.; Werf, van der W.

    2013-01-01

    Water availability is a key biophysical factor determining agricultural production potential. The FAO crop water response model AquaCrop was developed to estimate crop production under water limiting conditions. This model uses the normalized water productivity, WP* (g m-2 d-1), to estimate the

  15. Reducing nitrate loss in tile drainage water with cover crops and water-table management systems.

    Science.gov (United States)

    Drury, C F; Tan, C S; Welacky, T W; Reynolds, W D; Zhang, T Q; Oloya, T O; McLaughlin, N B; Gaynor, J D

    2014-03-01

    Nitrate lost from agricultural soils is an economic cost to producers, an environmental concern when it enters rivers and lakes, and a health risk when it enters wells and aquifers used for drinking water. Planting a winter wheat cover crop (CC) and/or use of controlled tile drainage-subirrigation (CDS) may reduce losses of nitrate (NO) relative to no cover crop (NCC) and/or traditional unrestricted tile drainage (UTD). A 6-yr (1999-2005) corn-soybean study was conducted to determine the effectiveness of CC+CDS, CC+UTD, NCC+CDS, and NCC+UTD treatments for reducing NO loss. Flow volume and NO concentration in surface runoff and tile drainage were measured continuously, and CC reduced the 5-yr flow-weighted mean (FWM) NO concentration in tile drainage water by 21 to 38% and cumulative NO loss by 14 to 16% relative to NCC. Controlled tile drainage-subirrigation reduced FWM NO concentration by 15 to 33% and cumulative NO loss by 38 to 39% relative to UTD. When CC and CDS were combined, 5-yr cumulative FWM NO concentrations and loss in tile drainage were decreased by 47% (from 9.45 to 4.99 mg N L and from 102 to 53.6 kg N ha) relative to NCC+UTD. The reductions in runoff and concomitant increases in tile drainage under CC occurred primarily because of increases in near-surface soil hydraulic conductivity. Cover crops increased corn grain yields by 4 to 7% in 2004 increased 3-yr average soybean yields by 8 to 15%, whereas CDS did not affect corn or soybean yields over the 6 yr. The combined use of a cover crop and water-table management system was highly effective for reducing NO loss from cool, humid agricultural soils. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Crop production management practices as a cause for low water ...

    African Journals Online (AJOL)

    Limited knowledge of irrigated crop production among farmers has been identified as one of the constraints to improved crop productivity, but research that investigates the relationship between farmer practices and productivity is lacking. A monitoring study was therefore conducted at the Zanyokwe Irrigation Scheme (ZIS) ...

  17. Virtual water flows and water-footprint of agricultural crop production, import and export: A case study for Israel.

    Science.gov (United States)

    Shtull-Trauring, E; Bernstein, N

    2018-05-01

    Agriculture is the largest global consumer of freshwater. As the volume of international trade continues to rise, so does the understanding that trade of water-intensive crops from areas with high precipitation, to arid regions can help mitigate water scarcity, highlighting the importance of crop water accounting. Virtual-Water, or Water-Footprint [WF] of agricultural crops, is a powerful indicator for assessing the extent of water use by plants, contamination of water bodies by agricultural practices and trade between countries, which underlies any international trade of crops. Most available studies of virtual-water flows by import/export of agricultural commodities were based on global databases, which are considered to be of limited accuracy. The present study analyzes the WF of crop production, import, and export on a country level, using Israel as a case study, comparing data from two high-resolution local databases and two global datasets. Results for local datasets demonstrate a WF of ~1200Million Cubic Meters [MCM]/year) for total crop production, ~1000MCM/year for import and ~250MCM/year for export. Fruits and vegetables comprise ~80% of Export WF (~200MCM/year), ~50% of crop production and only ~20% of the imports. Economic Water Productivity [EWP] ($/m 3 ) for fruits and vegetables is 1.5 higher compared to other crops. Moreover, the results based on local and global datasets varied significantly, demonstrating the importance of developing high-resolution local datasets based on local crop coefficients. Performing high resolution WF analysis can help in developing agricultural policies that include support for low WF/high EWP and limit high WF/low EWP crop export, where water availability is limited. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evaluation of crop production, trade, and consumption from the perspective of water resources: a case study of the Hetao irrigation district, China, for 1960-2010.

    Science.gov (United States)

    Liu, Jing; Sun, Shikun; Wu, Pute; Wang, Yubao; Zhao, Xining

    2015-02-01

    The integration of water footprints and virtual water flows allows the mapping of the links between production, trade, and consumption and could potentially help to alleviate water scarcity and improve water management. We evaluated the water footprints and virtual water flows of crop production, consumption, and trade and their influencing factors in the Hetao irrigation district in China for 1960-2010. The water footprint of crop production and the export of virtual water fluctuated but tended to increase during this period and were influenced mainly by agricultural factors such as crop yield, irrigation efficiency, and area sown. The water footprint of crop consumption and the import of virtual water increased during 1960-1979 and decreased during 1980-2010 and were influenced by socio-economic factors such as total population, the retail-price index, and the proportion of the population in urban areas. Most of the water footprint of production was exported to other areas, which added to the pressure on local water systems. The import of virtual water led to a saving of water for the Hetao irrigation district, while its share of the water footprint of consumption has decreased significantly since 1977. An increase in irrigation efficiency can alleviate water scarcity, and its application should be coupled with measures that constrain the continued expansion of agriculture. Full-cost pricing of irrigation water was an effective policy tool for its management. Re-shaping regional water-production and water-trade nexuses by changing crop structures could provide alternative opportunities for addressing the problems of local water scarcity, but the trade-offs involved should first be assessed. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Integrated Soil, Water and Nutrient Management for Sustainable Rice–Wheat Cropping Systems in Asia

    International Nuclear Information System (INIS)

    2016-08-01

    The rice-wheat system is a predominant cropping system in Asia providing food, employment and income, ensuring the livelihoods of about 1 billion of resource poor rural and urban people. However, the productivity of the current rice-wheat systems is seriously threatened by increasing land degradation and scarcity of water and labour, inefficient cropping practices and other emerging socio economic and environmental drivers. Responding to the need to develop alternate crop establishment methods and improved cropping practices, this publication summarizes the results from a joint FAO/IAEA coordinated research project on optimizing productivity and sustainability of rice-wheat cropping systems. It provides relevant information on how to modify existing water and nutrient management systems and improve soil management in both traditional and emerging crop establishment methods for sustainable intensification of cereal production in Asia

  20. Effect of irrigation techniques and strategies on water footprint of growing crops

    Science.gov (United States)

    Chukalla, A. D.; Krol, M. S.; Hoekstra, A. Y. Y.

    2014-12-01

    Reducing the water footprint (WF) of growing crops, the largest water user and a significant contributor to the WF of many consumer products, plays a significant role in integrated and sustainable water management. The water footprint for growing crop is accounted by relating the crop yield with the corresponding consumptive water use (CWU), which both can be adjusted by measures that affect the crop growth and root-zone soil water balance. This study explored the scope for reducing the water footprint of irrigated crops by experimenting set of field level technical and managerial measures: (i) irrigation technologies (Furrow, sprinkler, drip and sub-surface drip), (ii) irrigation strategies (full and a range of sustained and controlled deficit) and (iii) field management options (zero, organic and synthetic mulching). Ranges of cases were also considered: (a) Arid and semi-arid environment (b) Loam and Sandy-loam soil types and (c) for Potato, Wheat and Maize crops; under (c) wet, normal and dry years. AquaCrop, the water driven crop growth and soil water balance model, offered the opportunity to systematically experiment these measures on water consumption and yield. Further, the green and blue water footprints of growing crop corresponding to each measure were computed by separating the root zone fluxes of the AquaCrop output into the green and blue soil water stocks and their corresponding fluxes. Results showed that in arid environment reduction in irrigation supply, CWU and WF up to 300 mm, 80 mm and 75 m3/tonne respectively can be achieved for Maize by a combination of organic mulching and drip technology with controlled deficit irrigation strategies (10-20-30-40% deficit with reference to the full irrigation requirement). These reductions come with a yield drop of 0.54 tonne/ha. In the same environment under the absence of mulching practice, the sub-surface drip perform better in reducing CWU and WF of irrigated crops followed by drip and furrow irrigation

  1. An Automated Approach to Map Winter Cropped Area of Smallholder Farms across Large Scales Using MODIS Imagery

    Directory of Open Access Journals (Sweden)

    Meha Jain

    2017-06-01

    Full Text Available Fine-scale agricultural statistics are an important tool for understanding trends in food production and their associated drivers, yet these data are rarely collected in smallholder systems. These statistics are particularly important for smallholder systems given the large amount of fine-scale heterogeneity in production that occurs in these regions. To overcome the lack of ground data, satellite data are often used to map fine-scale agricultural statistics. However, doing so is challenging for smallholder systems because of (1 complex sub-pixel heterogeneity; (2 little to no available calibration data; and (3 high amounts of cloud cover as most smallholder systems occur in the tropics. We develop an automated method termed the MODIS Scaling Approach (MSA to map smallholder cropped area across large spatial and temporal scales using MODIS Enhanced Vegetation Index (EVI satellite data. We use this method to map winter cropped area, a key measure of cropping intensity, across the Indian subcontinent annually from 2000–2001 to 2015–2016. The MSA defines a pixel as cropped based on winter growing season phenology and scales the percent of cropped area within a single MODIS pixel based on observed EVI values at peak phenology. We validated the result with eleven high-resolution scenes (spatial scale of 5 × 5 m2 or finer that we classified into cropped versus non-cropped maps using training data collected by visual inspection of the high-resolution imagery. The MSA had moderate to high accuracies when validated using these eleven scenes across India (R2 ranging between 0.19 and 0.89 with an overall R2 of 0.71 across all sites. This method requires no calibration data, making it easy to implement across large spatial and temporal scales, with 100% spatial coverage due to the compositing of EVI to generate cloud-free data sets. The accuracies found in this study are similar to those of other studies that map crop production using automated methods

  2. Use of landsat ETM+ SLC-off segment-based gap-filled imagery for crop type mapping

    Science.gov (United States)

    Maxwell, S.K.; Craig, M.E.

    2008-01-01

    Failure of the Scan Line Corrector (SLC) on the Landsat ETM+ sensor has had a major impact on many applications that rely on continuous medium resolution imagery to meet their objectives. The United States Department of Agriculture (USDA) Cropland Data Layer (CDL) program uses Landsat imagery as the primary source of data to produce crop-specific maps for 20 states in the USA. A new method has been developed to fill the image gaps resulting from the SLC failure to support the needs of Landsat users who require coincident spectral data, such as for crop type mapping and monitoring. We tested the new gap-filled method for a CDL crop type mapping project in eastern Nebraska. Scan line gaps were simulated on two Landsat 5 images (spring and late summer 2003) and then gap-filled using landscape boundary models, or segment models, that were derived from 1992 and 2002 Landsat images (used in the gap-fill process). Various date combinations of original and gap-filled images were used to derive crop maps using a supervised classification process. Overall kappa values were slightly higher for crop maps derived from SLC-off gap-filled images compared to crop maps derived from the original imagery (0.3–1.3% higher). Although the age of the segment model used to derive the SLC-off gap-filled product did not negatively impact the overall agreement, differences in individual cover type agreement did increase (−0.8%–1.6% using the 2002 segment model to −5.0–5.1% using the 1992 segment model). Classification agreement also decreased for most of the classes as the size of the segment used in the gap-fill process increased.

  3. A Fast Track approach to deal with the temporal dimension of crop water footprint

    Science.gov (United States)

    Tuninetti, Marta; Tamea, Stefania; Laio, Francesco; Ridolfi, Luca

    2017-07-01

    Population growth, socio-economic development and climate changes are placing increasing pressure on water resources. Crop water footprint is a key indicator in the quantification of such pressure. It is determined by crop evapotranspiration and crop yield, which can be highly variable in space and time. While the spatial variability of crop water footprint has been the objective of several investigations, the temporal variability remains poorly studied. In particular, some studies approached this issue by associating the time variability of crop water footprint only to yield changes, while considering evapotranspiration patterns as marginal. Validation of this Fast Track approach has yet to be provided. In this Letter we demonstrate its feasibility through a comprehensive validation, an assessment of its uncertainty, and an example of application. Our results show that the water footprint changes are mainly driven by yield trends, while evapotranspiration plays a minor role. The error due to considering constant evapotranspiration is three times smaller than the uncertainty of the model used to compute the crop water footprint. These results confirm the suitability of the Fast Track approach and enable a simple, yet appropriate, evaluation of time-varying crop water footprint.

  4. Optimization of Water Allocation between Different Crops in Water Stress Conditions in Qazvin Irrigation Network

    Directory of Open Access Journals (Sweden)

    Mehdi Mohammad khani

    2017-06-01

    Full Text Available Introduction: Evaluations show the necessity of using optimization models in order to determine optimal allocation of water in different water conditions. Its use can be proposed according to developed model abilities in this study in order to optimize water productivity and provide sustainable management and development of water resources over irrigation and drainage networks. Basic needs of the earth growing population and limitation of water and soil resources remindnecessity of optimal use of resources. World’s more than 280 million hectare lands are covered by irrigation networks (Khalkhali et al., 2006. The efficiency of most projects is between 30-50 percent and studies show that performance of most irrigation and drainage networks is not desirable and they have not achieved their aims. Hirich et al. (2014 Used deficit irrigation to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season 2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of a crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of the full irrigation during the vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity. Moghaddasi et al. (2010 worked examines and compares this approach with that based on the optimization method to manage agricultural water demand during drought to minimize damage. The results show that the optimization method resulted in 42% more income for the agricultural sector using the

  5. Use of crop water stress index for monitoring water stress in some sinanthropic plant species

    Directory of Open Access Journals (Sweden)

    Marinela Roxana ROŞESCU

    2010-11-01

    Full Text Available The water stress indicator (crop water stress index, CWSI is a measure of the transpiration rate of a plant, influenced by the leaf and air temperature difference from the plant’s vicinity and the air pressure deficit of the water vapors from the atmosphere. The experiments were realized in July-August 2008 and 2009 for six species in the cities Pitesti, Mioveni and Maracineni: Cichorium intybus L., Conyza canadensis (L. Cronq., Erigeron annuus L. (Pers., Lactuca serriola Torn., Polygonum aviculare L. and Echinochloa crus-galli (L. Beauv. For those species we calculated the CWSI to estimate the water stress on the selected plants in the urban environment conditions. The analyzed species were exposed to a less accentuated water stress while vegetating in the soil and to a more intense one they were grown in the asphalt cracks. Cichorium intybus had the smallest CWSI value (0.26 while Lactuca serriola the highest one (0.44.

  6. Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China.

    Science.gov (United States)

    Liu, Jing; Wu, Pute; Wang, Yubao; Zhao, Xining; Sun, Shikun; Cao, Xinchun

    2014-11-01

    Analysis of cropping patterns is a prerequisite for their optimisation, and evaluation of virtual water flows could shed new light on water resources management. This study is intended to explore the effects of cropping pattern changes between 1960 and 2008 on virtual water flows related to crops transfer in the Hetao irrigation district, China. (1) The sown area of crops increased at an average rate of 3.57 × 10(3) ha year(-1) while the proportion of sown grain crops decreased from 92.83% in the 1960s to 50.22% in the 2000s. (2) Virtual water content decreased during the study period while net virtual water exports increased since the 1980s. (3) Assuming that the cropping pattern was constant and was equal to the average 1960s value, accumulated net virtual water export in 1980-2008 would have been 4.76 × 10(9) m(3) greater than that in the actual cropping pattern scenario. Cropping pattern changes in the Hetao irrigation district could not only be seen as resulting from the pursuit for higher economic returns, but also as a feedback response to limited water resources. A systematic framework is still needed for future cropping pattern planning by taking food security, continued agricultural expansion and other constraints into consideration. © 2014 Society of Chemical Industry.

  7. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    Science.gov (United States)

    Yeo, I.-Y.; Lee, S.; Sadeghi, A. M.; Beeson, P. C.; Hively, W. D.; McCarty, G. W.; Lang, M. W.

    2014-12-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay watershed (CBW), which is located in the mid-Atlantic US, winter cover crop use has been emphasized, and federal and state cost-share programs are available to farmers to subsidize the cost of cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops to improve water quality at the watershed scale (~ 50 km2) and to identify critical source areas of high nitrate export. A physically based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data to simulate hydrological processes and agricultural nutrient cycling over the period of 1990-2000. To accurately simulate winter cover crop biomass in relation to growing conditions, a new approach was developed to further calibrate plant growth parameters that control the leaf area development curve using multitemporal satellite-based measurements of species-specific winter cover crop performance. Multiple SWAT scenarios were developed to obtain baseline information on nitrate loading without winter cover crops and to investigate how nitrate loading could change under different winter cover crop planting scenarios, including different species, planting dates, and implementation areas. The simulation results indicate that winter cover crops have a negligible impact on the water budget but significantly reduce nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading from agricultural lands was approximately 14 kg ha-1, but decreased to 4.6-10.1 kg ha-1 with cover crops resulting in a reduction rate of 27-67% at the watershed scale. Rye was the most effective species, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of cover crops (~ 30

  8. Mapping crop based on phenological characteristics using time-series NDVI of operational land imager data in Tadla irrigated perimeter, Morocco

    Science.gov (United States)

    Ouzemou, Jamal-eddine; El Harti, Abderrazak; EL Moujahid, Ali; Bouch, Naima; El Ouazzani, Rabii; Lhissou, Rachid; Bachaoui, El Mostafa

    2015-10-01

    Morocco is a primarily arid to semi-arid country. These climatic conditions make irrigation an imperative and inevitable technique. Especially, agriculture has a paramount importance for the national economy. Retrieving of crops and their location as well as their spatial extent is useful information for agricultural planning and better management of irrigation water resource. Remote sensing technology was often used in management and agricultural research. Indeed, it's allows crops extraction and mapping based on phenological characteristics, as well as yield estimation. The study area of this work is the Tadla irrigated perimeter which is characterized by heterogeneous areas and extremely small size fields. Our principal objectives are: (1) the delimitation of the major crops for a good water management, (2) the insulation of sugar beet parcels for modeling its yields. To achieve the traced goals, we have used Landsat-8 OLI (Operational Land Imager) data pan-sharpened to 15 m. Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) classifications were applied to the Normalized Difference Vegetation Index (NDVI) time-series of 10 periods. Classifications were calculated for a site of more than 124000 ha. This site was divided into two parts: the first part for selecting, training datasets and the second one for validating the classification results. The SVM and SAM methods classified the principal crops with overall accuracies of 85.27% and 57.17% respectively, and kappa coefficient of 80% and 43% respectively. The study showed the potential of using time-series OLI NDVI data for mapping different crops in irrigated, heterogeneous and undersized parcels in arid and semi-arid environment.

  9. Soil phosphatase and urease activities impacted by cropping systems and water management

    Science.gov (United States)

    Soil enzymes can play an important role in nutrient availability to plants. Consequently, soil enzyme measurements can provide useful information on soil fertility for crop production. We examined the impact of cropping system and water management on phosphatase, urease, and microbial biomass C in s...

  10. Responses of apple fruit size to tree water status and crop load.

    Science.gov (United States)

    Naor, A; Naschitz, S; Peres, M; Gal, Y

    2008-08-01

    The combined effects of irrigation rate and crop load on apple yield and fruit size were examined in two commercial apple orchards (cv. Golden Delicious) in a semi-arid zone. The irrigation rates applied were 1, 3 and 7 mm day(-1), and the two fruit thinning treatments involved adjusting crop load to 100 and 300 fruits per tree at Ortal and 50 and 150 fruits per tree at Matityahu. Unthinned trees served as the control. The fruit from each tree was picked separately, and fruit size distribution was determined with a commercial grading machine. Midday stem water potentials varied from -0.9 to -2.8 MPa, crop load varied from 80,000 to 1,900,000 fruit ha(-1) and crop yield varied from 10 to 144 Mg ha(-1). Midday stem water potential decreased with increasing crop load in all irrigation treatments at Matityahu, but only in the 1 mm day(-1) treatment at Ortal. The extent of the lowering of midday stem water potential by crop load decreased with increasing soil water availability. At both orchards, a similar response of total crop yield to crop load on a per hectare basis was observed. Mean fruit mass and relative yield of fruit > 70 mm in diameter increased with midday stem water potential, with the low crop loads having similar but steeper slopes than the high crop load. The responses of mean fruit mass and relative yield of fruit > 70 mm in diameter to midday stem water potential were similar at both orchards, perhaps indicating that thresholds for irrigation scheduling are transferable to other orchards within a region. Factors that may limit the transferability of these thresholds are discussed.

  11. Water Mapping Using Multispectral Airborne LIDAR Data

    Science.gov (United States)

    Yan, W. Y.; Shaker, A.; LaRocque, P. E.

    2018-04-01

    This study investigates the use of the world's first multispectral airborne LiDAR sensor, Optech Titan, manufactured by Teledyne Optech to serve the purpose of automatic land-water classification with a particular focus on near shore region and river environment. Although there exist recent studies utilizing airborne LiDAR data for shoreline detection and water surface mapping, the majority of them only perform experimental testing on clipped data subset or rely on data fusion with aerial/satellite image. In addition, most of the existing approaches require manual intervention or existing tidal/datum data for sample collection of training data. To tackle the drawbacks of previous approaches, we propose and develop an automatic data processing workflow for land-water classification using multispectral airborne LiDAR data. Depending on the nature of the study scene, two methods are proposed for automatic training data selection. The first method utilizes the elevation/intensity histogram fitted with Gaussian mixture model (GMM) to preliminarily split the land and water bodies. The second method mainly relies on the use of a newly developed scan line elevation intensity ratio (SLIER) to estimate the water surface data points. Regardless of the training methods being used, feature spaces can be constructed using the multispectral LiDAR intensity, elevation and other features derived from these parameters. The comprehensive workflow was tested with two datasets collected for different near shore region and river environment, where the overall accuracy yielded better than 96 %.

  12. Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy

    Science.gov (United States)

    Shi, J.; Liu, J.; Pinter, L.

    2014-04-01

    China has dramatically increased its virtual water import over recent years. Many studies have focused on the quantity of traded virtual water, but very few go into analysing geographic distribution and the properties of China's virtual water trade network. This paper provides a calculation and analysis of the crop-related virtual water trade network of China based on 27 major primary crops between 1986 and 2009. The results show that China is a net importer of virtual water from water-abundant areas of North America and South America, and a net virtual water exporter to water-stressed areas of Asia, Africa, and Europe. Virtual water import is far larger than virtual water export, and in both import and export a small number of trade partners control the supply chain. Grain crops are the major contributors to virtual water trade, and among grain crops, soybeans, mostly imported from the US, Brazil and Argentina, are the most significant. In order to mitigate water scarcity and secure the food supply, virtual water should actively be incorporated into national water management strategies. And the sources of virtual water import need to be further diversified to reduce supply chain risks and increase resilience.

  13. Grid-cell-based crop water accounting for the famine early warning system

    Science.gov (United States)

    Verdin, James; Klaver, Robert

    2002-06-01

    Rainfall monitoring is a regular activity of food security analysts for sub-Saharan Africa due to the potentially disastrous impact of drought. Crop water accounting schemes are used to track rainfall timing and amounts relative to phenological requirements, to infer water limitation impacts on yield. Unfortunately, many rain gauge reports are available only after significant delays, and the gauge locations leave large gaps in coverage. As an alternative, a grid-cell-based formulation for the water requirement satisfaction index (WRSI) was tested for maize in Southern Africa. Grids of input variables were obtained from remote sensing estimates of rainfall, meteorological models, and digital soil maps. The spatial WRSI was computed for the 1996-97 and 1997-98 growing seasons. Maize yields were estimated by regression and compared with a limited number of reports from the field for the 1996-97 season in Zimbabwe. Agreement at a useful level (r = 0·80) was observed. This is comparable to results from traditional analysis with station data. The findings demonstrate the complementary role that remote sensing, modelling, and geospatial analysis can play in an era when field data collection in sub-Saharan Africa is suffering an unfortunate decline. Published in 2002 by John Wiley & Sons, Ltd.

  14. Regional Disparities in the Beneficial Effects of Rising CO2 Emissions on Crop Water Productivity

    Science.gov (United States)

    Deryng, Delphine; Elliott, Joshua; Folberth, Christian; Meuller, Christoph; Pugh, Thomas A. M.; Boote, Kenneth J.; Conway, Declan; Ruane, Alex C.; Gerten, Dieter; Jones, James W.; hide

    2016-01-01

    Rising atmospheric carbon dioxide concentrations are expected to enhance photosynthesis and reduce crop water use. However, there is high uncertainty about the global implications of these effects for future crop production and agricultural water requirements under climate change. Here we combine results from networks of field experiments and global crop models to present a spatially explicit global perspective on crop water productivity (CWP, the ratio of crop yield to evapotranspiration) for wheat, maize, rice and soybean under elevated carbon dioxide and associated climate change projected for a high-end greenhouse gas emissions scenario. We find carbon dioxide effects increase global CWP by 10[0;47]%-27[7;37]% (median[interquartile range] across the model ensemble) by the 2080s depending on crop types, with particularly large increases in arid regions (by up to 48[25;56]% for rain fed wheat). If realized in the fields, the effects of elevated carbon dioxide could considerably mitigate global yield losses whilst reducing agricultural consumptive water use (4-17%). We identify regional disparities driven by differences in growing conditions across agro-ecosystems that could have implications for increasing food production without compromising water security. Finally, our results demonstrate the need to expand field experiments and encourage greater consistency in modeling the effects of rising carbon dioxide across crop and hydrological modeling communities.

  15. A multi-attribute preference model for optimal irrigated crop planning under water scarcity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Montazar, A.; Snyder, R. L.

    2012-11-01

    Water resources sustainability has a key role in the existence and durability of irrigated farming systems and strongly depends on the crop planning. The decision process is complex due to a number of constraints and the desire to secure crop diversification and the involvement of affected various parameters. The objective of the present study was to develop a comprehensive multi-criteria model for selecting adequate cropping pattern in an irrigation district under water scarcity condition. Eleven and nine attribute decisions were considered in ranking the type of crop and determination of the percentage of crop cultivation area as an optimal irrigated crop planning system, respectively. The results indicate that the proposed multi-attribute preference approach can synthesize various sets of criteria in the preference elicitation of the crop type and cultivated area. The predictive validity analysis shows that the preferences acquired by the proposed model are evidently in reasonable accordance with those of the conjunctive water use model. Consequently, the model may be used to aggregate preferences in order to obtain a group decision, improve understanding of the choice problem, accommodate multiple objectives and increase transparency and credibility in decision making by actively involving relevant criteria in the crop planning. (Author) 27 refs.

  16. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model

    Science.gov (United States)

    Yeo, In-Young; Lee, Sangchui; Sadeghi, Ali M.; Beeson, Peter C.; Hively, W. Dean; McCarty, Greg W.; Lang, Megan W.

    2013-01-01

    Winter cover crops are an effective conservation management practice with potential to improve water quality. Throughout the Chesapeake Bay Watershed (CBW), which is located in the Mid-Atlantic US, winter cover crop use has been emphasized and federal and state cost-share programs are available to farmers to subsidize the cost of winter cover crop establishment. The objective of this study was to assess the long-term effect of planting winter cover crops at the watershed scale and to identify critical source areas of high nitrate export. A physically-based watershed simulation model, Soil and Water Assessment Tool (SWAT), was calibrated and validated using water quality monitoring data and satellite-based estimates of winter cover crop species performance to simulate hydrological processes and nutrient cycling over the period of 1991–2000. Multiple scenarios were developed to obtain baseline information on nitrate loading without winter cover crops planted and to investigate how nitrate loading could change with different winter cover crop planting scenarios, including different species, planting times, and implementation areas. The results indicate that winter cover crops had a negligible impact on water budget, but significantly reduced nitrate leaching to groundwater and delivery to the waterways. Without winter cover crops, annual nitrate loading was approximately 14 kg ha−1, but it decreased to 4.6–10.1 kg ha−1 with winter cover crops resulting in a reduction rate of 27–67% at the watershed scale. Rye was most effective, with a potential to reduce nitrate leaching by up to 93% with early planting at the field scale. Early planting of winter cover crops (~30 days of additional growing days) was crucial, as it lowered nitrate export by an additional ~2 kg ha−1 when compared to late planting scenarios. The effectiveness of cover cropping increased with increasing extent of winter cover crop implementation. Agricultural fields with well-drained soils

  17. Water savings from reduced alfalfa cropping in California's Upper San Joaquin Valley

    Science.gov (United States)

    Singh, K. K.; Gray, J.

    2017-12-01

    Water and food and forage security are inextricably linked. In fact, 90% of global freshwater is consumed for food production. Food demand increases as populations grow and diets change, making water increasingly scarce. This tension is particularly acute, contentious, and popularly appreciated in California's Central Valley, which is one of the most important non-grain cropping areas in the United States. While the water-intensive production of tree nuts like almonds and pistachios has received the most popular attention, it is California's nation-leading alfalfa production that consumes the most water. Alfalfa, the "Queen of Forages" is the preferred feedstock for California's prodigious dairy industry. It is grown year-round, and single fields can be harvested more than four times a year; a practice which can require in excess of 1.5 m of irrigation water. Given the water scarcity in the region, the production of alfalfa is under increasing scrutiny with respect to long-term sustainability. However, the potential water savings associated with alternative crops, and various levels of alfalfa replacement have not been quantified. Here, we address that knowledge gap by simulating the ecohydrology of the Upper San Joaquin's cropping system under various scenarios of alfalfa crop replacement with crops of comparable economic value. Specifically, we use the SWAT model to evaluate the water savings that would be realized at 33%, 66%, and 100% alfalfa replacement with economically comparable, but more water efficient crops such as tomatoes. Our results provide an important quantification of the potential water savings under alternative cropping systems that, importantly, also addresses the economic concerns of farmers. Results like these provide critical guidance to farmers and land/water decision makers as they plan for a more sustainable and productive agricultural future.

  18. Cover Crops for Managing Stream Water Quantity and Improving Stream Water Quality of Non-Tile Drained Paired Watersheds

    Directory of Open Access Journals (Sweden)

    Gurbir Singh

    2018-04-01

    Full Text Available In the Midwestern United States, cover crops are being promoted as a best management practice for managing nutrient and sediment losses from agricultural fields through surface and subsurface water movement. To date, the water quality benefits of cover crops have been inferred primarily from plot scale studies. This project is one of the first to analyze the impacts of cover crops on stream water quality at the watershed scale. The objective of this research was to evaluate nitrogen, phosphorus, and sediment loss in stream water from a no-till corn-soybean rotation planted with winter cover crops cereal rye (Secale cereale and hairy vetch (Vicia villosa in non-tile drained paired watersheds in Illinois, USA. The paired watersheds are under mixed land use (agriculture, forest, and pasture. The control watershed had 27 ha of row-crop agriculture, and the treatment watershed had 42 ha of row crop agriculture with cover crop treatment (CC-treatment. During a 4-year calibration period, 42 storm events were collected and Event Mean Concentrations (EMCs for each storm event were calculated for total suspended solids (TSS, nitrate-N (NO3-N, ammonia-N (NH4-N, dissolved reactive phosphorus (DRP, and total discharge. Predictive regression equations developed from the calibration period were used for calculating TSS, NO3-N, NH4-N, and DRP losses of surface runoff for the CC-treatment watershed. The treatment period consisted of total 18 storm events, seven of which were collected during the cereal rye, eight in the hairy vetch cover crop season and three during cash crop season. Cover crops reduced TSS and discharge by 33% and 34%, respectively in the CC-treatment watershed during the treatment period. However, surprisingly, EMCs for NO3-N, NH4-N, and DRP did not decrease. Stream discharge from the paired-watersheds will continue to be monitored to determine if the current water quality results hold or new patterns emerge.

  19. Influence of crop load on almond tree water status and its importance in irrigation scheduling

    Science.gov (United States)

    Puerto Conesa, Pablo; Domingo Miguel, Rafael; Torres Sánchez, Roque; Pérez Pastor, Alejandro

    2014-05-01

    In the Mediterranean area water is the main factor limiting crop production and therefore irrigation is essential to achieve economically viable yields. One of the fundamental techniques to ensure that irrigation water is managed efficiently with maximum productivity and minimum environmental impact is irrigation scheduling. The fact that the plant water status integrates atmospheric demand and soil water content conditions encourages the use of plant-based water status indicators. Some researchers have successfully scheduled irrigation in certain fruit trees by maintaining the maximum daily trunk diameter shrinkage (MDS) signal intensity at threshold values to generate (or not) water stress. However MDS not only depends on the climate and soil water content, but may be affected by tree factors such as age, size, phenological stage and fruit load. There is therefore a need to quantify the influence of these factors on MDS. The main objective of this work was to study the effects of crop load on tree water relations for scheduling purposes. We particularly focused on MDS vs VPD10-15 (mean air vapor pressure deficit during the period 10.00-15.00 h solar time) for different loads and phenological phases under non-limiting soil water conditions. The experiment was carried out in 2011 in a 1 ha plot in SE Spain with almond trees (Prunus dulcis (Mill.) D.A. Webb cv. 'Marta'). Three crop load treatments were studied according to three crop load levels, i) T100, high crop load, characteristic crop load, ii) T50, medium crop load, in which 50% of the fruits were removed and iii) T0, practically without fruits. Fruits were manually thinned. Each treatment, randomly distributed in blocks, was run in triplicate. Plant water status was assessed from midday stem water potential (Ψs), MDS, daily trunk growth rate (TGR), leaf turgor potential Ψp, fruit water potential (Ψf), stomatal conductance (gs) and photosynthesis (Pn) and transpiration rates (E). Yield, pruning weights and

  20. Variability in the Water Footprint of Arable Crop Production across European Regions

    Directory of Open Access Journals (Sweden)

    Anne Gobin

    2017-02-01

    Full Text Available Crop growth and yield are affected by water use during the season: the green water footprint (WF accounts for rain water, the blue WF for irrigation and the grey WF for diluting agri-chemicals. We calibrated crop yield for FAO’s water balance model “Aquacrop” at field level. We collected weather, soil and crop inputs for 45 locations for the period 1992–2012. Calibrated model runs were conducted for wheat, barley, grain maize, oilseed rape, potato and sugar beet. The WF of cereals could be up to 20 times larger than the WF of tuber and root crops; the largest share was attributed to the green WF. The green and blue WF compared favourably with global benchmark values (R2 = 0.64–0.80; d = 0.91–0.95. The variability in the WF of arable crops across different regions in Europe is mainly due to variability in crop yield ( c v ¯ = 45% and to a lesser extent to variability in crop water use ( c v ¯ = 21%. The WF variability between countries ( c v ¯ = 14% is lower than the variability between seasons ( c v ¯ = 22% and between crops ( c v ¯ = 46%. Though modelled yields increased up to 50% under sprinkler irrigation, the water footprint still increased between 1% and 25%. Confronted with drainage and runoff, the grey WF tended to overestimate the contribution of nitrogen to the surface and groundwater. The results showed that the water footprint provides a measurable indicator that may support European water governance.

  1. Validation of AquaCrop Model for Simulation of Winter Wheat Yield and Water Use Efficiency under Simultaneous Salinity and Water Stress

    OpenAIRE

    M. Mohammadi; B. Ghahraman; K. Davary; H. Ansari; A. Shahidi

    2016-01-01

    Introduction: FAO AquaCrop model (Raes et al., 2009a; Steduto et al., 2009) is a user-friendly and practitioner oriented type of model, because it maintains an optimal balance between accuracy, robustness, and simplicity; and it requires a relatively small number of model input parameters. The FAO AquaCrop model predicts crop productivity, water requirement, and water use efficiency under water-limiting and saline water conditions. This model has been tested and validated for different crops ...

  2. Soil hydrology of agroforestry systems: Competition for water or positive tree-crops interactions?

    Science.gov (United States)

    Gerjets, Rowena; Richter, Falk; Jansen, Martin; Carminati, Andrea

    2017-04-01

    In dry periods during the growing season crops may suffer from severe water stress. The question arises whether the alternation of crop and tree strips might enhance and sustain soil water resources available for crops during drought events. Trees reduce wind exposure, decreasing the potential evapotranspiration of crops and soils; additionally hydraulic lift from the deep roots of trees to the drier top soil might provide additional water for shallow-rooted crops. To understand the above and belowground water relations of agroforestry systems, we measured soil moisture and soil water potential in crop strips as a function of distance to the trees at varying depth as well as meteorological parameters. At the agroforestry site Reiffenhausen, Lower Saxony, Germany, two different tree species are planted, each in one separated tree strip: willow breed Tordis ((Salix viminalis x Salix Schwerinii) x Salix viminalis) and poplar clone Max 1 (Populus nigra x Populus maximowiczii). In between the tree strips a crop strip of 24 m width was established with annual crop rotation, managed the same way as the reference site. During a drought period in May 2016 with less than 2 mm rain in four weeks, an overall positive effect on hydrological conditions of the agroforestry system was observed. The results show that trees shaded the soil surface, lowering the air temperature and further increasing the soil moisture in the crop strips compared to the reference site, which was located far from the trees. At the reference site the crops took up water in the upper soil (sunlight. The two tree species behaved differently. The poplar strips showed more marked diurnal changes in soil water potential, with fast drying during daytime and rewetting during nighttime. We suppose that the rewetting during nighttime was caused by hydraulic lift, which supports passively the drier upper soil with water from the wetter, lower soil layers. This experimental study shows the importance of above- and

  3. Using participatory risk mapping (PRM to identify and understand people's perceptions of crop loss to animals in Uganda.

    Directory of Open Access Journals (Sweden)

    Amanda D Webber

    Full Text Available Considering how people perceive risks to their livelihoods from local wildlife is central to (i understanding the impact of crop damage by animals on local people and (ii recognising how this influences their interactions with, and attitudes towards, wildlife. Participatory risk mapping (PRM is a simple, analytical tool that can be used to identify and classify risk within communities. Here we use it to explore local people's perceptions of crop damage by wildlife and the animal species involved. Interviews (n = 93, n = 76 and seven focus groups were conducted in four villages around Budongo Forest Reserve, Uganda during 2004 and 2005. Farms (N = 129 were simultaneously monitored for crop loss. Farmers identified damage by wildlife as the most significant risk to their crops; risk maps highlighted its anomalous status compared to other anticipated challenges to agricultural production. PRM was further used to explore farmers' perceptions of animal species causing crop damage and the results of this analysis compared with measured crop losses. Baboons (Papio anubis were considered the most problematic species locally but measurements of loss indicate this perceived severity was disproportionately high. In contrast goats (Capra hircus were considered only a moderate risk, yet risk of damage by this species was significant. Surprisingly, for wild pigs (Potamochoerus sp, perceptions of severity were not as high as damage incurred might have predicted, although perceived incidence was greater than recorded frequency of damage events. PRM can assist researchers and practitioners to identify and explore perceptions of the risk of crop damage by wildlife. As this study highlights, simply quantifying crop loss does not determine issues that are important to local people nor the complex relationships between perceived risk factors. Furthermore, as PRM is easily transferable it may contribute to the identification and development of

  4. More crop per drop: Improving our knowledge on crop water requirements for irrigation scheduling

    CSIR Research Space (South Africa)

    Gush, Mark B

    2015-10-01

    Full Text Available South Africa is a dry country facing climate change, population expansion and economic growth, resulting in increasing water scarcity and competition for water. The irrigated agriculture and forestry sectors have been allocated approximately two...

  5. Soil Water: Advanced Crop and Soil Science. A Course of Study.

    Science.gov (United States)

    Miller, Larry E.

    The course of study represents the fourth of six modules in advanced crop and soil science and introduces the agriculture student to the topic of soil water. Upon completing the three day module, the student will be able to classify water as to its presence in the soil, outline the hydrological cycle, list the ways water is lost from the soil,…

  6. Automation of irrigation systems to control irrigation applications and crop water use efficiency

    Science.gov (United States)

    Agricultural irrigation management to slow water withdrawals from non-replenishing quality water resources is a global endeavor and vital to sustaining irrigated agriculture and dependent rural economies. Research in site-specific irrigation management has shown that water use efficiency, and crop p...

  7. The crop water stress index (CWSI) for drip irrigated cotton in a semi ...

    African Journals Online (AJOL)

    The crop water stress index (CWSI) for drip irrigated cotton in a semi-arid region of Turkey. ... Four irrigation treatments designated as full (I100) with no water stress and slight (DI70), moderate (DI50) and strong water ... from 32 Countries:.

  8. Mapping Rice Cropping Systems in Vietnam Using an NDVI-Based Time-Series Similarity Measurement Based on DTW Distance

    Directory of Open Access Journals (Sweden)

    Xudong Guan

    2016-01-01

    Full Text Available Normalized Difference Vegetation Index (NDVI derived from Moderate Resolution Imaging Spectroradiometer (MODIS time-series data has been widely used in the fields of crop and rice classification. The cloudy and rainy weather characteristics of the monsoon season greatly reduce the likelihood of obtaining high-quality optical remote sensing images. In addition, the diverse crop-planting system in Vietnam also hinders the comparison of NDVI among different crop stages. To address these problems, we apply a Dynamic Time Warping (DTW distance-based similarity measure approach and use the entire yearly NDVI time series to reduce the inaccuracy of classification using a single image. We first de-noise the NDVI time series using S-G filtering based on the TIMESAT software. Then, a standard NDVI time-series base for rice growth is established based on field survey data and Google Earth sample data. NDVI time-series data for each pixel are constructed and the DTW distance with the standard rice growth NDVI time series is calculated. Then, we apply thresholds to extract rice growth areas. A qualitative assessment using statistical data and a spatial assessment using sampled data from the rice-cropping map reveal a high mapping accuracy at the national scale between the statistical data, with the corresponding R2 being as high as 0.809; however, the mapped rice accuracy decreased at the provincial scale due to the reduced number of rice planting areas per province. An analysis of the results indicates that the 500-m resolution MODIS data are limited in terms of mapping scattered rice parcels. The results demonstrate that the DTW-based similarity measure of the NDVI time series can be effectively used to map large-area rice cropping systems with diverse cultivation processes.

  9. Gypsiferous mine water use in irrigation on rehabilitated open-cast mine land: Crop production, soil water and salt balance

    OpenAIRE

    Annandale, J.; Jovanovic, N.; Pretorius, J.; Lorentz, S.; Rethman, N.; Tanner, P.

    2001-01-01

    The use of gypsiferous mine water for irrigation of agricultural crops is a promising technology, which could alleviate a shortage of irrigation water and address the problem of disposal of mine effluent. A field trial was established at Kleinkopje Colliery in Witbank (Mpumalanga Province, South Africa) during the 1997-1998 season. Sugar beans and wheat were irrigated with three center pivots, on both virgin and rehabilitated land. The objectives were to determine crop response to irrigation ...

  10. Water use efficiency in potatoes crop using nuclear techniques in Tumbaco - Ecuador

    International Nuclear Information System (INIS)

    Calvache, Marcelo; Ontaneda, Milton; Flor Jorge.

    1986-01-01

    The optimum water layer for potatoes (Solanum tuberosum L.) was computed by the balance of mass method. This project was carried out in a Typic Ustropepts, Silty-Loam Soil at 'La Tola' Experimental Field. Soil humidity was determined through the neutron probe. Irrigation efficiency for the first application layer, - layer 3- (30 days old crop), was 17%. It was increased to 34% at the age of 100 days. Layer 2 was increased to 25% and layer 1 to 20%. By this time the crop was developed. Crop water consumptive usage at layer 3 was 476.4 mm; 355.7 mm in layer 2; 390.5 mm for layer 1 and 269.3 mm in layer 0. Yield production was of the 29. 24.; 18.4 and 15. Kg/ha respectively. It is concluded that the timely application of water to potato crops is very important

  11. Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model

    Science.gov (United States)

    Senay, G.B.; Verdin, J.

    2003-01-01

    In many parts of sub-Saharan Africa, subsistence agriculture is characterized by significant fluctuations in yield and production due to variations in moisture availability to staple crops. Widespread drought can lead to crop failures, with associated deterioration in food security. Ground data collection networks are sparse, so methods using geospatial rainfall estimates derived from satellite and gauge observations, where available, have been developed to calculate seasonal crop water balances. Using conventional crop production data for 4 years in Ethiopia (1996-1999), it was found that water-limited and water-unlimited growing regions can be distinguished. Furthermore, maize growing conditions are also indicative of conditions for sorghum. However, another major staple, teff, was found to behave sufficiently differently from maize to warrant studies of its own.

  12. Principles of root water uptake, soil salinity and crop yield for optimizing irrigation management

    International Nuclear Information System (INIS)

    Dirksen, C.

    1983-01-01

    The paper reviews the principles of water and salt transport, root water uptake, crop salt tolerance, water quality, and irrigation methods which should be considered in optimizing irrigation management for sustained, viable agriculture with protection of the quality of land and water resources. In particular, the advantages of high-frequency irrigation at small leaching fractions with closed systems are discussed, for which uptake-weighted mean salinity is expected to correlate best with crop yields. Optimization of irrigation management depends on the scale considered. Non-technical problems which are often much harder to solve than technical problems, may well be most favourable for new projects in developing countries. (author)

  13. Cropping pattern adjustment in China's grain production and its impact on land and water use

    DEFF Research Database (Denmark)

    Li, Tian-xiang; Zhu, Jing; Balezentis, Tomas

    2016-01-01

    This paper aims at decomposing China's grain output changes into three terms, namely area sown effect, pure yield effect, and cropping pattern adjustment effect. Furthermore, the paper analyses the impact of shifts in cropping pattern on water and land use in China's grain production. An index...... adjustments). However, these effects vary across regions: Southeast China experienced land-saving and water-using changes, while other regions underwent land- and water-saving changes. In general, China's grain output growth has increased the total amount of land and water needed, implying more severe...... played an important role in promoting China's grain production, with a contribution of over 15 per cent during 2003-2012. Moreover, such changes enabled to save about 6.8 million hectares of sown areas and 31.06 billion m3 of water in grain production (if compared to the case without cropping pattern...

  14. Designing bioenergy crop buffers to mitigate nitrous oxide emissions and water quality impacts from agriculture

    Science.gov (United States)

    Gopalakrishnan, G.; Negri, C. M.

    2010-12-01

    There is a strong societal need to evaluate and understand the environmental aspects of bioenergy production, especially due to the significant increases in production mandated by many countries, including the United States. Bioenergy is a land-based renewable resource and increases in production are likely to result in large-scale conversion of land from current uses to bioenergy crop production; potentially causing increases in the prices of food, land and agricultural commodities as well as disruption of ecosystems. Current research on the environmental sustainability of bioenergy has largely focused on the potential of bioenergy crops to sequester carbon and mitigate greenhouse gas (GHG) emissions and possible impacts on water quality and quantity. A key assumption in these studies is that bioenergy crops will be grown in a manner similar to current agricultural crops such as corn and hence would affect the environment similarly. This study presents a systems approach where the agricultural, energy and environmental sectors are considered as components of a single system, and bioenergy crops are used to design multi-functional agricultural landscapes that meet society’s requirements for food, energy and environmental protection. We evaluate the production of bioenergy crop buffers on marginal land and using degraded water and discuss the potential for growing cellulosic bioenergy crops such as miscanthus and switchgrass in optimized systems such that (1) marginal land is brought into productive use; (2) impaired water is used to boost yields (3); clean freshwater is left for other uses that require higher water quality; and (4) feedstock diversification is achieved that helps ecological sustainability, biodiversity, and economic opportunities for farmers. The process-based biogeochemical model DNDC was used to simulate crop yield, nitrous oxide production and nitrate concentrations in groundwater when bioenergy crops were grown in buffer strips adjacent to

  15. Effect of near-infrared-radiation reflective screen materials on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop

    NARCIS (Netherlands)

    Stanghellini, C.; Jianfeng, D.; Kempkes, F.L.K.

    2011-01-01

    The effect of Near Infrared (NIR)-reflective screen material on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop was investigated in an experiment whereby identical climate was ensured in greenhouse compartments installed with either NIR-reflective or

  16. Estimating Water Footprints of Vegetable Crops: Influence of Growing Season, Solar Radiation Data and Functional Unit

    Directory of Open Access Journals (Sweden)

    Betsie le Roux

    2016-10-01

    Full Text Available Water footprint (WF accounting as proposed by the Water Footprint Network (WFN can potentially provide important information for water resource management, especially in water scarce countries relying on irrigation to help meet their food requirements. However, calculating accurate WFs of short-season vegetable crops such as carrots, cabbage, beetroot, broccoli and lettuce presented some challenges. Planting dates and inter-annual weather conditions impact WF results. Joining weather datasets of just rainfall, minimum and maximum temperature with ones that include solar radiation and wind-speed affected crop model estimates and WF results. The functional unit selected can also have a major impact on results. For example, WFs according to the WFN approach do not account for crop residues used for other purposes, like composting and animal feed. Using yields in dry matter rather than fresh mass also impacts WF metrics, making comparisons difficult. To overcome this, using the nutritional value of crops as a functional unit can connect water use more directly to potential benefits derived from different crops and allow more straightforward comparisons. Grey WFs based on nitrogen only disregards water pollution caused by phosphates, pesticides and salinization. Poor understanding of the fate of nitrogen complicates estimation of nitrogen loads into the aquifer.

  17. Historical development of crop-related water footprints and inter-regional virtual water flows within China

    Science.gov (United States)

    Zhuo, La; Mekonnen, Mesfin M.; Hoekstra, Arjen Y.

    2015-04-01

    China is facing water-related challenges, including an uneven distribution of water resources, both temporally and spatially, and an increasing competition over the limited water resources among different sectors. This issue has been widely researched and was finally included into the National Plan 2011 (the 2011 No. 1 Document by the State Council of China). However, there is still lack of information on how population growth and rapid urbanization have affected the water resources in China over the last decades. The current study aims at investigating (i) the intra-annual variation of green and blue water footprints (WFs) of crop production in China over the period 1978-2009 at a spatial resolution of 5 by 5 arc-minute; (ii) the yearly virtual water (VW) balances of 31 provinces within China, related water savings for the country, as well as the VW flows among eight economic regions resulting from inter-regional crop trade over the same period; and (iii) the development of the WF related to crop consumption by Chinese consumers. Results show that, over the period 1978-2009, the total WF related to crop production within China increased by only 4%), but regional changes were significant. From the 1980s to the 2000s, the shift of the cropping centre from the South to the North resulted in an increase of about 16% in the blue WF and 19% in the green WF in the North and a reduction of the blue and green WF in the South by 11% and 3%, respectively. China as a whole was a net virtual water importer related to crop trade, thus saving domestic water resources. China's inter-regional crop trade generated a blue water 'loss' annually by transferring crops from provinces with relatively low crop water productivity to provinces with relatively high productivity. Over the decades, the original VW flow from the South coastal region to the Northeast was reversed. Rice was the all-time dominant crop in the inter-regional VW flows (accounting for 34% in 2009), followed by wheat

  18. Analysis of water footprints of rainfed and irrigated crops in Sudan

    Directory of Open Access Journals (Sweden)

    Shamseddin Musa Ahmed

    2011-12-01

    Full Text Available Water rather than land is the limiting factor for crop production in Sudan. This study attempts to use the water footprint (WFP and virtual water concepts to account for crops water consumption under the Sudanese rainfed and irrigated conditions. The general average of the green WFP of sorghum and millet were found to be about 7700 and 10700 m3 ton-1, respectively. According to experimental results at three different climates, in-situ rainwater harvesting techniques could reduce the WFP of rainfed sorghum by 56% on the average. The blue component (surface water shows the highest contribution to the total WFP of irrigated crops: 88% for cotton, 70% for sorghum, 68% for groundnut and 100% for wheat. However, the role of the green water (rainwater is not marginal since it largely influences the operation and maintenance (silt clearance of the gravity-fed irrigation system. Under normal conditions, the annual total virtual water demand of sorghum (the dominant food crop in Sudan is found to be 15 km3, of which 91% is green water. During a dry year, however, Sudan could experience a deficit of 2.3 km3 of water, necessitating the adoption of a wise food stocking-exporting policy.

  19. The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop

    Science.gov (United States)

    Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.

    2014-12-01

    Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.

  20. Ecosystem Services Mapping for Sustainable Agricultural Water Management in California's Central Valley.

    Science.gov (United States)

    Matios, Edward; Burney, Jennifer

    2017-03-07

    Accurate information on agricultural water needs and withdrawals at appropriate spatial and temporal scales remains a key limitation to joint water and land management decision-making. We use InVEST ecosystem service mapping to estimate water yield and water consumption as functions of land use in Fresno County, a key farming region in California's Central Valley. Our calculations show that in recent years (2010-2015), the total annual water yield for the county has varied dramatically from ∼0.97 to 5.37 km 3 (all ±17%; 1 MAF ≈ 1.233 km 3 ), while total annual water consumption has changed over a smaller range, from ∼3.37 to ∼3.98 km 3 (±20%). Almost all of the county's water consumption (∼96% of total use) takes place in Fresno's croplands, with discrepancy between local annual surface water yields and crop needs met by surface water allocations from outside the county and, to a much greater extent, private groundwater irrigation. Our estimates thus bound the amount of groundwater needed to supplement consumption each year (∼1.76 km 3 on average). These results, combined with trends away from field crops and toward orchards and vineyards, suggest that Fresno's land and water management have become increasingly disconnected in recent years, with the harvested area being less available as an adaptive margin to hydrological stress.

  1. Large Area Crop Inventory Experiment (LACIE). Detecting and monitoring agricultural vegetative water stress over large areas using LANDSAT digital data. [Great Plains

    Science.gov (United States)

    Thompson, D. R.; Wehmanen, O. A. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The Green Number Index technique which uses LANDSAT digital data from 5X6 nautical mile sampling frames was expanded to evaluate its usefulness in detecting and monitoring vegetative water stress over the Great Plains. At known growth stages for wheat, segments were classified as drought or non drought. Good agreement was found between the 18 day remotely sensed data and a weekly ground-based crop moisture index. Operational monitoring of the 1977 U.S.S.R. and Australian wheat crops indicated drought conditions. Drought isoline maps produced by the Green Number Index technique were in good agreement with conventional sources.

  2. Stress Coefficients for Soil Water Balance Combined with Water Stress Indicators for Irrigation Scheduling of Woody Crops

    Directory of Open Access Journals (Sweden)

    Maria Isabel Ferreira

    2017-06-01

    Full Text Available There are several causes for the failure of empirical models to estimate soil water depletion and to calculate irrigation depths, and the problem is particularly critical in tall, uneven, deficit irrigated (DI crops in Mediterranean climates. Locally measured indicators that quantify water status are useful for addressing those causes and providing feed-back information for improving the adequacy of simple models. Because of their high aerodynamic resistance, the canopy conductance of woody crops is an important factor in determining evapotranspiration (ET, and accurate stress coefficient (Ks values are needed to quantify the impact of stomatal closure on ET. A brief overview of basic general principles for irrigation scheduling is presented with emphasis on DI applications that require Ks modelling. The limitations of existing technology related to scheduling of woody crops are discussed, including the shortcomings of plant-based approaches. In relation to soil water deficit and/or predawn leaf water potential, several woody crop Ks functions are presented in a secondary analysis. Whenever the total and readily available water data were available, a simple Ks model was tested. The ultimate aim of this discussion is to illustrate the central concept: that a combination of simple ET models and water stress indicators is required for scheduling irrigation of deep-rooted woody crops.

  3. Mapping regional soil water erosion risk in the Brittany-Loire basin for water management agency

    Science.gov (United States)

    Degan, Francesca; Cerdan, Olivier; Salvador-Blanes, Sébastien; Gautier, Jean-Noël

    2014-05-01

    Soil water erosion is one of the main degradation processes that affect soils through the removal of soil particles from the surface. The impacts for environment and agricultural areas are diverse, such as water pollution, crop yield depression, organic matter loss and reduction in water storage capacity. There is therefore a strong need to produce maps at the regional scale to help environmental policy makers and soil and water management bodies to mitigate the effect of water and soil pollution. Our approach aims to model and map soil erosion risk at regional scale (155 000 km²) and high spatial resolution (50 m) in the Brittany - Loire basin. The factors responsible for soil erosion are different according to the spatial and time scales considered. The regional scale entails challenges about homogeneous data sets availability, spatial resolution of results, various erosion processes and agricultural practices. We chose to improve the MESALES model (Le Bissonnais et al., 2002) to map soil erosion risk, because it was developed specifically for water erosion in agricultural fields in temperate areas. The MESALES model consists in a decision tree which gives for each combination of factors the corresponding class of soil erosion risk. Four factors that determine soil erosion risk are considered: soils, land cover, climate and topography. The first main improvement of the model consists in using newly available datasets that are more accurate than the initial ones. The datasets used cover all the study area homogeneously. Soil dataset has a 1/1 000 000 scale and attributes such as texture, soil type, rock fragment and parent material are used. The climate dataset has a spatial resolution of 8 km and a temporal resolution of mm/day for 12 years. Elevation dataset has a spatial resolution of 50 m. Three different land cover datasets are used where the finest spatial resolution is 50 m over three years. Using these datasets, four erosion factors are characterized and

  4. Leaf temperature of maize and crop water stress index with variable irrigation and nitrogen supply

    Science.gov (United States)

    Water scarcity due to changing climate, population growth, and economic development is a major threat to the sustainability of irrigated agriculture in the Western United States and other regions around the world. Water stress indices based on crop canopy temperature can be useful for assessing plan...

  5. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions.

    Directory of Open Access Journals (Sweden)

    Yunqi Wang

    Full Text Available The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE in winter wheat (Triticum aestivum L. were investigated under non-irrigation (W0, no irrigation during growth stage, one time irrigation (W1, irrigation applied at stem elongation and two times irrigation (W2, irrigation applied at stem elongation and anthesis conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%-6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%-34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%-28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition.

  6. Water and nitrogen in crop and pasture systems in southern Australia

    International Nuclear Information System (INIS)

    Angus, J.F.; Peoples, M.B.; Herwaarden, A.F. van

    1998-01-01

    Recent research on water and N for dryland crops in southern Australia has addressed the need for more efficient and sustainable production. Water-use efficiency is well below the potential and N-use efficiency well below optimum on farms. Excess water and N cause on-site and off-site environmental damage. The most effective means of illustrating these inefficiencies to growers is to present simple benchmarks of water and N-use efficiencies with which farmers can assess and improve the performance of their own crops. The practices shown by our recent research that best support the goals of more efficient and sustainable production are those that maximize extraction of soil water and mineral N, and increase biological N 2 fixation. Wheat growing after a brassica break-crop extract more water and mineral N from the soil than when grown as a continuous cereal, apparently because of a 'biofumigation' effect that reduces the numbers of soil-borne pathogens of wheat and produces a stronger root system. In the case of phased pasture-crop systems, annual pastures do not fully extract subsoil water or mineral N. However, when the grasses are removed from annual pastures with a selective herbicide, the remaining pure clover rapidly decomposes after maturity, leaving a large amount of mineral N for the following crop. Perennial pastures containing lucerne produce more forage and fix more N 2 than do annual pastures, but they dry the soil profile. After removal of the lucerne, the soil may be so dry that mineralization is slow, with the risk of water deficit for the subsequent crop. (author)

  7. Risk mapping of NO/sub 3/-N contamination on groundwater under intensive rice-based cropping systems in the Philippines

    International Nuclear Information System (INIS)

    Pascual, C.M.; Baga, M.C.S.; Valencia, D.P.

    2005-01-01

    The groundwater resources in a 265 ha watershed of highly diversified and intensive rice-based environment was endangered to NO/sub 3/-N contamination with spatial degree of influence and temporal vulnerability risks as affected by intensive cropping systems with application of high N-fertilizer and judicious use of groundwater for irrigation. Such nitrate contamination levels are above the World Health Organization's maximum contamination level of 10 ppm for drinking water. Tree-joining, complete cluster analysis of monthly groundwater depths on observation wells revealed three distinct groups of wells differentiated by groundwater depths. Planting of nitrate catch crops such as legumes to reduce groundwater contamination and vigorous information dissemination on ill-effects of high NO/sub 3/-N, as well as groundwater recharging were considered to reduce contamination. However, the groundwater extraction for irrigation is still sustainable due to natural recharging of rainfall and hydraulic connections from surface water along rivers and creeks. The combined-use of GIS and GPS proved useful for spatial and temporal risk mapping assessment on groundwater NO/sub 3/-N vulnerability among other geo-referenced attributes of groundwater and other environmental considerations at the study site. Such systems analysis tools can be used by planners, researchers, extension workers, students and farmers for other sustainable development and environmental risk mapping, assessment, extrapolation analysis and strategic planning of sustainable development of the environment. (author)

  8. Water productivity analysis of irrigated crops in Sirsa district, India

    NARCIS (Netherlands)

    Singh, R.; Dam, van J.C.; Feddes, R.A.

    2006-01-01

    Water productivity (WP) expresses the value or benefit derived from the use of water, and includes essential aspects of water management such as production for arid and semi-arid regions. A profound WP analysis was carried out at five selected farmer fields (two for wheat¿rice and three for

  9. Water-Energy Nexus: the case of biogas production from energy crops evaluated by Water Footprint and LCA methods

    Science.gov (United States)

    Pacetti, Tommaso; Caporali, Enrica; Federici, Giorgio

    2015-04-01

    This study analyzes the production of biogas from aerobic digestion of energy crops. The production of biogas is an important case study because its spread, similar to other sources of bioenergy, creates questions about the environmental effects, the competition in the food market as well as the progressive change of land use. In particular is hereby analyzed the nexus between bioenergy production and water, which plays a key role because water resources are often the limiting factor in energy production from energy crops. The environmental performances of biogas production were analyzed through Water Footprint (WF) and Life cycle assessment (LCA): the integration of LCA and WF represents an attempt of taking advantage of their complementary strengths in environmental assessment, trying to give a comprehensive analysis of bioenergy production sustainability. Eighteen scenarios were considered, trying to figure out the performances of different combinations of locations (north, center, south Italy), crops (maize, sorghum, wheat) and treatments (anaerobic digestion with water dilution or manure co-digestion). WF assessment shows that cultivation phase is the most impacting on water resource use along the entire system life cycle. In particular, water requirements for crop growth shows that sorghum is the more water saver crop (in terms of consumptive water use to produce the amount of crop needed to produce 1 GJ of biogas energy content). Moreover WF investigates the kind of water use and shows that wheat, despite being the most intensive water user, exploits more green water than the other crops.WF was evaluated with respect to water stress indicators for the Italian territory, underlining the higher criticalities associated with water use in southern Italy and identifying consumptive blue water use, in this area, as the main hotspot. Therefore biogas production from energy crops in southern Italy is unsustainable from a water management perspective. At a basin

  10. How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis.

    Science.gov (United States)

    Dietzel, Ranae; Liebman, Matt; Ewing, Robert; Helmers, Matt; Horton, Robert; Jarchow, Meghann; Archontoulis, Sotirios

    2016-02-01

    Agricultural systems are being challenged to decrease water use and increase production while climate becomes more variable and the world's population grows. Low water use efficiency is traditionally characterized by high water use relative to low grain production and usually occurs under dry conditions. However, when a cropping system fails to take advantage of available water during wet conditions, this is also an inefficiency and is often detrimental to the environment. Here, we provide a systems-level definition of water use efficiency (sWUE) that addresses both production and environmental quality goals through incorporating all major system water losses (evapotranspiration, drainage, and runoff). We extensively calibrated and tested the Agricultural Production Systems sIMulator (APSIM) using 6 years of continuous crop and soil measurements in corn- and soybean-based cropping systems in central Iowa, USA. We then used the model to determine water use, loss, and grain production in each system and calculated sWUE in years that experienced drought, flood, or historically average precipitation. Systems water use efficiency was found to be greatest during years with average precipitation. Simulation analysis using 28 years of historical precipitation data, plus the same dataset with ± 15% variation in daily precipitation, showed that in this region, 430 mm of seasonal (planting to harvesting) rainfall resulted in the optimum sWUE for corn, and 317 mm for soybean. Above these precipitation levels, the corn and soybean yields did not increase further, but the water loss from the system via runoff and drainage increased substantially, leading to a high likelihood of soil, nutrient, and pesticide movement from the field to waterways. As the Midwestern United States is predicted to experience more frequent drought and flood, inefficiency of cropping systems water use will also increase. This work provides a framework to concurrently evaluate production and

  11. Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, B. R. [BP Research, Cleveland, OH (United States); Nielsen, D. C.; Shock, C. C.

    1992-10-15

    Infrared thermometry can be a valuable research and production tool for detecting and quantifying water stress in plants, as shown by a large volume of published research. Users of infrared thermometers (IRT) should be aware of the many equipment, environmental, and plant factors influencing canopy temperature measured by an IRT. The purpose of this paper is to describe factors influencing measured plant temperature, outline sampling procedures that will produce reliable Crop Water Stress Index (CWSI) values, and offer interpretations of CWSI and plant temperatures relative to crop production and other water stress parameters by reviewing previously conducted research. Factors that are considered are IRT condition, configuration, and position; psychrometer location; wind speed; solar radiation; time of day; leaf area and orientation; and appropriate non-water-stressed baseline equation. Standard sampling and CWSI calculation procedures are proposed. Use of CWSI with crops varying in type of response to water stress is described. Previously conducted research on plant temperatures or CWSI is tabulated by crop and water stress parameters measured. The paper provides valuable information to assist interested users of IRTs in making reliable water stress measurements. (author)

  12. Infrared thermometry and the crop water stress index. II. Sampling procedures and interpretation

    International Nuclear Information System (INIS)

    Gardner, B.R.; Nielsen, D.C.; Shock, C.C.

    1992-01-01

    Infrared thermometry can be a valuable research and production tool for detecting and quantifying water stress in plants, as shown by a large volume of published research. Users of infrared thermometers (IRT) should be aware of the many equipment, environmental, and plant factors influencing canopy temperature measured by an IRT. The purpose of this paper is to describe factors influencing measured plant temperature, outline sampling procedures that will produce reliable Crop Water Stress Index (CWSI) values, and offer interpretations of CWSI and plant temperatures relative to crop production and other water stress parameters by reviewing previously conducted research. Factors that are considered are IRT condition, configuration, and position; psychrometer location; wind speed; solar radiation; time of day; leaf area and orientation; and appropriate non-water-stressed baseline equation. Standard sampling and CWSI calculation procedures are proposed. Use of CWSI with crops varying in type of response to water stress is described. Previously conducted research on plant temperatures or CWSI is tabulated by crop and water stress parameters measured. The paper provides valuable information to assist interested users of IRTs in making reliable water stress measurements. (author)

  13. California State Waters Map Series—Offshore of Monterey, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Hartwell, Stephen R.; Cochrane, Guy R.; Golden, Nadine E.; Watt, Janet T.; Davenport, Clifton W.; Kvitek, Rikk G.; Erdey, Mercedes D.; Krigsman, Lisa M.; Sliter, Ray W.; Maier, Katherine L.; Johnson, Samuel Y.; Cochran, Susan A.

    2016-08-18

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Offshore of Monterey map area in central California is located on the Pacific Coast, about 120 km south of San Francisco. Incorporated cities in the map area include Seaside, Monterey, Marina, Pacific Grove, Carmel-by-the-Sea, and Sand City. The local economy receives significant resources from tourism, as well as from the Federal Government. Tourist attractions include the Monterey Bay Aquarium, Cannery Row, Fisherman’s Wharf, and the many golf courses near Pebble Beach, and the area serves as a gateway to the spectacular scenery and outdoor activities along the Big Sur coast to the south. Federal facilities include the Army’s Defense Language Institute, the Naval Postgraduate School, and the Fleet Numerical Meteorology and Oceanography Center (operated by the Navy). In 1994, Fort Ord army base, located between Seaside and Marina, was closed; much of former army base land now makes up the Fort Ord National Monument, managed by the U.S. Bureau of Land Management as part of the National Landscape Conservation System. In addition, part of the old Fort Ord is now occupied by California State University, Monterey Bay.The offshore part of the map area lies entirely within the Monterey Bay National

  14. Fertigation for improved water use efficiency and crop yield

    International Nuclear Information System (INIS)

    Al-Wabel, M.I.; Al-Jaloud, A.A.; Hussain, G.; Karimulla, S.

    2002-01-01

    A greenhouse experiment was carried out at the Al-Muzahmiya Research Station, King Abdulaziz City for Science and Technology, Riyadh, to evaluate the effect of fertigation on cucumber yield. Five labelled N ( 15 N) treatments namely a control, soil application (120 mg N L -1 ), N-1 (60 mg N L -1 ), N-2 (120 mg N L -1 ) and N-3 (180 mg N L -1 ) were tried for their effect on greenhouse cucumber yield. A cucumber cultivar (Figaro F-1) was sown as test crop. The experiment was carried out during the period from April to July, 1997. The mean fresh fruit cucumber yield ranged between 7.73 to 33.74 t ha -1 . Highest yield was obtained with the labelled N application of 180 mg L -1 . The mean ranges for the different elements in the plant leaves were 1.33- 2.70% (N), 0.364-0.515% (P) and 1.57-3.82% (K). Whereas, in the plant shoot these ranges were 1.26-2.42% (N), 0.28-0.49% (P) and 4.74-9.45% (K). The mean content of the different elements in the cucumber fruit was 2.15-3.70% (N), 0.47-0.73% (P) and 4.40-5.23% (K). The soil salinity varied between 2.23-4.66 dS m -1 in the top soil (0-20 cm depth) and 0.95-2.62 dS m -1 in the sub-surface (20-40 cm depth) soil. The application did not affect significantly the soil salinity and was found well below the hazardous limit for most crops. The evolution of the other elements was different.. For example, elements such as Ca, P and K showed an increase while Na showed a decrease, whereas the Mg content did not respond with increasing N application. The soil moisture ranged between 8.06-9.15% (0-20 cm depth) and 5.51-9.36% (20-40 cm depth) and did not show any effect of N application. The nitrogen use efficiency (NUE) varied between 72.70 to 129.53 kg kg -1 N in the different N treatments. The mean 15 N a.e. ranged from 0.010 to 0.844% (leaves), 0.058 to 0.855% (shoots), 0.044 to 0.747 (roots) and 0.07 to 0.823 % (fruits). In conclusion, the mean highest yield of cucumber as fresh fruit was 33.74 t ha -1 , obtained with 180 mg N L

  15. Water consumption of the estevia (Stevia rebaudiana (Bert. Bertoni crop estimated through microlysimeter

    Directory of Open Access Journals (Sweden)

    Fronza Diniz

    2003-01-01

    Full Text Available The knowledge of water requirement of crops in the different growing phases elicits higher crop yield and rational use of water resource. The aim of this work was to estimate the water consumption of stevia using two constant watertable microlysimeters. The research was conducted in San Piero a Grado, Pisa, Italy. The data were collected daily from June, 1st, to October, 22th, 2000. Reference evapotranspiration was determined by the Penman-Monteith-FAO method, in the same period. Microlysimeters watertables level were maintained at the 35 cm depth. Crop evapotranspiration for the total cicle (80 days was 464 mm. For the most water consuming phase, crop average evapotranspiration was 5.44 mm day-1. The crop coefficient values were 1.45 for the first 25 days, 1.14 for the next period (26 to 50 days, and 1.16 for the latest period (51 to 80 days. The stevia leaf yield of the microlysimeters was 4.369 kg ha-1 and their steviosideo content 6.49%.

  16. Assessing Uncertainties of Water Footprints Using an Ensemble of Crop Growth Models on Winter Wheat

    Directory of Open Access Journals (Sweden)

    Kurt Christian Kersebaum

    2016-12-01

    Full Text Available Crop productivity and water consumption form the basis to calculate the water footprint (WF of a specific crop. Under current climate conditions, calculated evapotranspiration is related to observed crop yields to calculate WF. The assessment of WF under future climate conditions requires the simulation of crop yields adding further uncertainty. To assess the uncertainty of model based assessments of WF, an ensemble of crop models was applied to data from five field experiments across Europe. Only limited data were provided for a rough calibration, which corresponds to a typical situation for regional assessments, where data availability is limited. Up to eight models were applied for wheat. The coefficient of variation for the simulated actual evapotranspiration between models was in the range of 13%–19%, which was higher than the inter-annual variability. Simulated yields showed a higher variability between models in the range of 17%–39%. Models responded differently to elevated CO2 in a FACE (Free-Air Carbon Dioxide Enrichment experiment, especially regarding the reduction of water consumption. The variability of calculated WF between models was in the range of 15%–49%. Yield predictions contributed more to this variance than the estimation of water consumption. Transpiration accounts on average for 51%–68% of the total actual evapotranspiration.

  17. Phytotoxicity of water-soluble substances from alfalfa and barley soil extracts on four crop species.

    Science.gov (United States)

    Read, J J; Jensen, E H

    1989-02-01

    Problems associated with continuously planting alfalfa (Medicago saliva L.) or seeding to thicken depleted alfalfa stands may be due to autotoxicity, an intraspecific form of allelopathy. A bioassay approach was utilized to characterize the specificity and chemical nature of phytotoxins in extracts of alfalfa soils as compared to fallow soil or soil where a cereal was the previous crop. In germination chamber experiments, water-soluble substances present in methanol extracts of soil cropped to alfalfa or barley (Hordeum vulgare L.) decreased seedling root length of alfalfa L-720, winter wheat (Triticum aestivum L. Nugaines) and radish (Raphanus sativa L. Crimson Giant). Five days after germination, seedling dry weights of alfalfa and radish in alfalfa soil extracts were lower compared to wheat or red clover (Trifolium pralense L. Kenland). Growth of red clover was not significantly reduced by soil extracts from cropped soil. Extracts of crop residue screened from soil cropped to alfalfa or barley significantly reduced seedling root length; extracts of alfalfa residue caused a greater inhibition of seedling dry weight than extracts of barely residue. A phytotoxic, unidentified substance present in extracts of crop residue screened from alfalfa soil, which inhibited seedling root length of alfalfa, was isolated by thin-layer chromatography (TLC). Residues from a soil cropped continuously to alfalfa for 10 years had the greatest phytotoxic activity.

  18. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe

    OpenAIRE

    Markus Immitzer; Francesco Vuolo; Clement Atzberger

    2016-01-01

    The study presents the preliminary results of two classification exercises assessing the capabilities of pre-operational (August 2015) Sentinel-2 (S2) data for mapping crop types and tree species. In the first case study, an S2 image was used to map six summer crop species in Lower Austria as well as winter crops/bare soil. Crop type maps are needed to account for crop-specific water use and for agricultural statistics. Crop type information is also useful to parametrize crop growth models fo...

  19. Spatial Mapping of Agricultural Water Productivity Using the SWAT Model

    Science.gov (United States)

    Thokal, Rajesh Tulshiram; Gorantiwar, S. D.; Kothari, Mahesh; Bhakar, S. R.; Nandwana, B. P.

    2015-03-01

    The Sina river basin is facing both episodic and chronic water shortages due to intensive irrigation development. The main objective of this study was to characterize the hydrologic processes of the Sina river basin and assess crop water productivity using the distributed hydrologic model, SWAT. In the simulation year (1998-1999), the inflow to reservoir from upstream side was the major contributor to the reservoir accounting for 92 % of the total required water release for irrigation purpose (119.5 Mm3), while precipitation accounted for 4.1 Mm3. Annual release of water for irrigation was 119.5 Mm3 out of which 54 % water was diverted for irrigation purpose, 26 % was wasted as conveyance loss, average discharge at the command outlet was estimated as 4 % and annual average ground-water recharge coefficient was in the range of 13-17 %. Various scenarios involving water allocation rule were tested with the goal of increasing economic water productivity values in the Sina Irrigation Scheme. Out of those, only most benefited allocation rule is analyzed in this paper. Crop yield varied from 1.98 to 25.9 t/ha, with the majority of the area between 2.14 and 2.78 t/ha. Yield and WP declined significantly in loamy soils of the irrigation command. Crop productivity in the basin was found in the lower range when compared with potential and global values. The findings suggested that there was a potential to improve further. Spatial variations in yield and WP were found to be very high for the crops grown during rabi season, while those were low for the crops grown during kharif season. The crop yields and WP during kharif season were more in the lower reach of the irrigation commands, where loamy soil is more concentrated. Sorghum in both seasons was most profitable. Sorghum fetched net income fivefold that of sunflower, two and half fold of pearl millet and one and half fold of mung beans as far as crop during kharif season were concerned and it fetched fourfold that of

  20. Application of water footprint in a fertirrigated melon crop under semiarid conditions: A review.

    Science.gov (United States)

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; María Tarquis Alfonso, Ana

    2015-04-01

    In recent times, there has been a major increase in the use of water and fertilizers in order to increase agricultural production, while at the same time there has increased evidence that aquifers are reducing their water level, enriched by nutrient and degraded as a result of pollution. So best management practices are needed for much of cropped, irrigated and fertirrigated land, to avoid contamination of fresh water and groundwater. The concept of "water footprint" (WF) was introduced as an indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [1]. The WF distinguishes between blue water (volume of surface and groundwater consumed), green water (rain-water consumed), and grey water (volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards). This study is focused in calculating the crops WF using a real case of study in a fertirrigated melon crop under semiarid conditions which is principally cultivated in the centre of Spain declared vulnerable zone to nitrate pollution by applying the Directive 91/676/CEE. During successive years, a melon crop (Cucumis melo L.) was grown under field conditions applying mineral and organic fertilizers. Different doses of ammonium nitrate were used as well as compost derived from the wine-distillery industry which is relevant in this area. This application help us to review the different concepts in which is based WF. Acknowledgements: This project has been supported by INIA-RTA04-111-C3 and INIA-RTA2010-00110-C03-01. Keywords: Water footprint, nitrogen, fertirrigation, inorganic fertilizers, organic amendments, winery waste, semiarid conditions. [1] Hoekstra, A.Y. 2003. Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12-13 December 2002. Value of Water Research Report Series No. 12, UNESCO-IHE, Delft, The Netherlands.

  1. Impacts of multiple global environmental changes on African crop yield and water use efficiency: Implications to food and water security

    Science.gov (United States)

    Pan, S.; Yang, J.; Zhang, J.; Xu, R.; Dangal, S. R. S.; Zhang, B.; Tian, H.

    2016-12-01

    Africa is one of the most vulnerable regions in the world to climate change and climate variability. Much concern has been raised about the impacts of climate and other environmental factors on water resource and food security through the climate-water-food nexus. Understanding the responses of crop yield and water use efficiency to environmental changes is particularly important because Africa is well known for widespread poverty, slow economic growth and agricultural systems particularly sensitive to frequent and persistent droughts. However, the lack of integrated understanding has limited our ability to quantify and predict the potential of Africa's agricultural sustainability and freshwater supply, and to better manage the system for meeting an increasing food demand in a way that is socially and environmentally or ecologically sustainable. By using the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed the spatial and temporal patterns of crop yield, evapotranspiration (ET) and water use efficiency across entire Africa in the past 35 years (1980-2015) and the rest of the 21st century (2016-2099). Our preliminary results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion (about 50%), elevated atmospheric CO2 concentration, and nitrogen deposition. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Climate extremes especially droughts and heat wave have largely reduced crop yield in the most vulnerable regions. Our results indicate that N fertilizer could be a major driver to improve food security in Africa. Future climate warming could reduce crop yield and shift cropland distribution. Our study further suggests that improving water use efficiency through land

  2. Pond and Irrigation Model (PIM): a tool for simultaneously evaluating pond water availability and crop irrigation demand

    Science.gov (United States)

    Ying Ouyang; Gary Feng; Theodor D. Leininger; John Read; Johnie N. Jenkins

    2018-01-01

    Agricultural ponds are an important alternative source of water for crop irrigation to conserve surface and ground water resources. In recent years more such ponds have been constructed in Mississippi and around the world. There is currently, however, a lack of a tool to simultaneously estimate crop irrigation demand and pond water availability. In this study, a Pond-...

  3. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorous content for wheat and succeeding maize crop on different soil types

    International Nuclear Information System (INIS)

    Chapke, V.G.; Bhujbal, B.M.; Mistry, K.B.

    1988-01-01

    Efficiency of 32 P labelled ammonium nitrate phosphate (ANP) containding 30, 50 and 90 per cent of water-soluble phosphorus (WSP) vis-a-vis that of entirely water soluble monoammonium orthophosphate (MAP) for wheat and succeeding maize crop on deep black (vertisol), calcareous black (vertisol), alluvial-Tarai (mollisol) and grey brown alluvial (aridisol) soils was examined in greenhouse experiments. Data on wheat indicated that ANP (50 per cent WSP) was, in general, equally efficient to MAP and ANP (90 per cent WSP) in terms of drymatter yield and total uptake of phosphorus in all soils examined, however, the per cent utilization of applied fertilizer was significantly higher for MAP and ANP (90 per cent WSP) than those for ANP (50 per cent WSP) in all soils. In general, ANP (30 per cent WSP) was significantly inferior to MAP and ANP (90 per cent WSP) in all soils. Data on the succeeding maize crop grown to flowering indicated that residual value of ANP (30 per cent WSP) was equal to that of MAP and ANP (90 per cent WSP) in terms of drymatter yield and phosphorus uptake by the four soils examined. Complementary incubation studies conducted upto 60 days on the above four soils at field capacity moisture status indicated highest 0.5 M NaHCO 3 (pH 8.5) extractable phosphorus levels in MAP treatments followed by ANP (50 per cent WSP) and least in ANP (30 per cent WSP) treatments. (author). 4 tables, 4 figures, 19 refs

  4. Grass plants crop water consumption model in urban parks located ...

    African Journals Online (AJOL)

    The most important issue is the to use of urban space to increase the number and size of green areas. As well as another important issue is to work towards maintaining these spaces. One such important effort is to meet the water needs of plants. Naturally, the amount of water needed by plants depends on the species.

  5. Assessing crop water productivity from field to regional scale

    NARCIS (Netherlands)

    Wesseling, J.G.; Feddes, R.A.

    2006-01-01

    As previous co-workers of Dr. Jans Wesseling, who headed the Department of Water Management of the Institute for Land and Water Management Research, i.e. the `Instituut voor Cultuurtechniek en Waterhuishouding¿ (ICW), Wageningen from 1959 to 1987, we have written the present review article. We start

  6. Crop yield response to water stress imposed at different growth stages

    International Nuclear Information System (INIS)

    Iqbal, M.; Mahmood Shah, M.; Wisal, M.

    1995-01-01

    Potato requires sufficient soil moisture and fertilization to produce high yields but the present water resoures are limited compared to the cultivable land, field experiments were conduced from 1991 to 1995 to study relationship between yield and crop water use as a function of water stress imposed at different growth stages. The irrigation treatments involved application of full and stress watering s selectively at four growth stages : Establishment , Flowering Tuber formation and ripening. In full watering, full water requirements of the crop were met, i.e., ET sub a = ET sub m whereas in stress watering about half the amount of full watering was applied, i.e., ET sub a < ET sub m. Changes in moisture content of the soil pre files after irrigation were monitored with the help of neutron moisture probe in order to compute ET sub a by the water balance method. The results obtained showed that the tuber yield was produced by full watering ( T 1) and the lowest by continuous stress watering (T 2). A plot of relative yield against relative evapotranspiration deficit revealed that ripening was the lest sensitive whereas early development followed by flowering the most sensitive growth stage to water stress. The crop water use efficiencies were generally higher in the treatments where a combination of normal and stress watering was applied compared to where all - normal watering s were applied. The traditional irrigation practice resulted in wasteful water application with relatively lower yields, hence the results from this project will have high value for the farming community to get this higher yields with scarce water resources. The studies with labelled fertilizer showed that planting and earthing - up were equally important growth stages of potato for applying fertilizer for its efficient utilization. 3 figs; 25 tabs; 12 refs (Author)

  7. Estimating Hydrologic Fluxes, Crop Water Use, and Agricultural Land Area in China using Data Assimilation

    Science.gov (United States)

    Smith, Tiziana; McLaughlin, Dennis B.; Hoisungwan, Piyatida

    2016-04-01

    Crop production has significantly altered the terrestrial environment by changing land use and by altering the water cycle through both co-opted rainfall and surface water withdrawals. As the world's population continues to grow and individual diets become more resource-intensive, the demand for food - and the land and water necessary to produce it - will continue to increase. High-resolution quantitative data about water availability, water use, and agricultural land use are needed to develop sustainable water and agricultural planning and policies. However, existing data covering large areas with high resolution are susceptible to errors and can be physically inconsistent. China is an example of a large area where food demand is expected to increase and a lack of data clouds the resource management dialogue. Some assert that China will have insufficient land and water resources to feed itself, posing a threat to global food security if they seek to increase food imports. Others believe resources are plentiful. Without quantitative data, it is difficult to discern if these concerns are realistic or overly dramatized. This research presents a quantitative approach using data assimilation techniques to characterize hydrologic fluxes, crop water use (defined as crop evapotranspiration), and agricultural land use at 0.5 by 0.5 degree resolution and applies the methodology in China using data from around the year 2000. The approach uses the principles of water balance and of crop water requirements to assimilate existing data with a least-squares estimation technique, producing new estimates of water and land use variables that are physically consistent while minimizing differences from measured data. We argue that this technique for estimating water fluxes and agricultural land use can provide a useful basis for resource management modeling and policy, both in China and around the world.

  8. What are the socio-economic impacts of genetically modified crops worldwide? A systematic map protocol

    NARCIS (Netherlands)

    Garcia-Yi, J.; Lapikanonth, T.; Vionita, H.; Vu, H.; Yang, S.; Zhong, Y.; Li, Y.; Nagelschneider, V.; Schlindwein, B.; Wesseler, J.H.H.

    2014-01-01

    Genetically modified (GM) crops have generated a great deal of controversy. Since commercially introduced to farmers in 1996, the global area cultivated with GM crops has increased 94-fold. The rapid adoption of GM technology has had substantial socio-economic impacts which a vast amount of

  9. Effect of water content and organic carbon on remote sensing of crop residue cover

    Science.gov (United States)

    Serbin, G.; Hunt, E. R., Jr.; Daughtry, C. S. T.; McCarty, G. W.; Brown, D. J.; Doraiswamy, P. C.

    2009-04-01

    Crop residue cover is an important indicator of tillage method. Remote sensing of crop residue cover is an attractive and efficient method when compared with traditional ground-based methods, e.g., the line-point transect or windshield survey. A number of spectral indices have been devised for residue cover estimation. Of these, the most effective are those in the shortwave infrared portion of the spectrum, situated between 1950 and 2500 nm. These indices include the hyperspectral Cellulose Absorption Index (CAI), and advanced multispectral indices, i.e., the Lignin-Cellulose Absorption (LCA) index and the Shortwave Infrared Normalized Difference Residue Index (SINDRI), which were devised for the NASA Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor. Spectra of numerous soils from U.S. Corn Belt (Indiana and Iowa) were acquired under wetness conditions varying from saturation to oven-dry conditions. The behavior of soil reflectance with water content was also dependent on the soil organic carbon content (SOC) of the soils, and the location of the spectral bands relative to significant water absorptions. High-SOC soils showed the least change in spectral index values with increase in soil water content. Low-SOC soils, on the other hand, showed measurable difference. For CAI, low-SOC soils show an initial decrease in index value followed by an increase, due to the way that water content affects CAI spectral bands. Crop residue CAI values decrease with water content. For LCA, water content increases decrease crop residue index values and increase them for soils, resulting in decreased contrast. SINDRI is also affected by SOC and water content. As such, spatial information on the distribution of surface soil water content and SOC, when used in a geographic information system (GIS), will improve the accuracy of remotely-sensed crop residue cover estimates.

  10. Simultaneous Improvement in Water Use, Productivity and Albedo Through Crop Structural Modification

    Science.gov (United States)

    Drewry, D.; Kumar, P.; Long, S.

    2014-12-01

    Agricultural lands provide a tremendous opportunity to address challenges at the intersection of climate change, food and water security. Global demand for the major grain and seed crops is beginning to outstrip production, while population growth and the expansion of the global middle class have motivated calls for a doubling of food production by the middle of this century. This is occurring as yield gains for the major food crops have stagnated. At current rates of yield improvement this doubling will not be achieved. Plants have evolved to maximize the capture of radiation in the upper leaves, resulting in sub-optimal monoculture crop fields for maximizing productivity and other biogeophysical services. Using the world's most important protein crop, soybean, as an example, we show that by applying numerical optimization to a micrometeorological crop canopy model that significant, simultaneous gains in water use, productivity and reflectivity are possible with no increased demand on resources. Here we apply the MLCan multi-layer canopy biophysical model, which vertically resolves the radiation and micro-environmental variations that stimulate biochemical and ecophysiological functions that govern canopy-atmosphere exchange processes. At each canopy level photosynthesis, stomatal conductance, and energy balance are solved simultaneously for shaded and sunlit foliage. A multi-layer sub-surface model accounts for water availability as a function of root biomass distribution. MLCan runs at sub-hourly temporal resolution, allowing it to capture variability in CO2, water and energy exchange as a function of environmental variability. By modifying total canopy leaf area, its vertical distribution, leaf angle, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, we show that increases in either productivity (7%), water use (13%) or albedo (34%) could be achieved with no detriment to the other objectives, under United

  11. 49 Trace Metals' Contamination of Stream Water and Irrigated Crop ...

    African Journals Online (AJOL)

    ABUBAKAR AHMED

    human consumption as they pose serious health risks due to contamination with the metals. For environmental ... mining activities, industrial and domestic effluents, urban ... drinking and bathing water, irrigation, food, fuel and energy.

  12. Simulating Water Allocation and Cropping Decisions in Yemen’s Abyan Delta Spate Irrigation System

    Directory of Open Access Journals (Sweden)

    Derek Jin-Uk Marchant

    2018-01-01

    Full Text Available Agriculture employs more Yemenis than any other sector and spate irrigation is the largest source of irrigation water. Spate irrigation however is growing increasingly difficult to sustain in many areas due to water scarcity and unclear sharing of water amongst users. In some areas of Yemen, there are no institutionalised water allocation rules which can lead to water related disputes. Here, we propose a proof-of-concept model to evaluate the impacts of different water allocation patterns to assist in devising allocation rules. The integrated model links simple wadi flow, diversion, and soil moisture-yield simulators to a crop decision model to evaluate impacts of different water allocation rules and their possible implications on local agriculture using preliminary literature data. The crop choice model is an agricultural production model of irrigation command areas where the timing, irrigated area and crop mix is decided each month based on current conditions and expected allocations. The model is applied to Yemen’s Abyan Delta, which has the potential to be the most agriculturally productive region in the country. The water allocation scenarios analysed include upstream priority, downstream priority, equal priority (equal sharing of water shortages, and a user-defined mixed priority that gives precedence to different locations based on the season. Once water is distributed according to one of these allocation patterns, the model determines the profit-maximising plant date and crop selection for 18 irrigated command areas. This aims to estimate the impacts different water allocation strategies could have on livelihoods. Initial results show an equal priority allocation is the most equitable and efficient, with 8% more net benefits than an upstream scenario, 10% more net benefits than a downstream scenario, and 25% more net benefits than a mixed priority.

  13. Combined Effects of Numerical Method Type and Time Step on Water Stressed Actual Crop ET

    Directory of Open Access Journals (Sweden)

    B. Ghahraman

    2016-02-01

    Full Text Available Introduction: Actual crop evapotranspiration (Eta is important in hydrologic modeling and irrigation water management issues. Actual ET depends on an estimation of a water stress index and average soil water at crop root zone, and so depends on a chosen numerical method and adapted time step. During periods with no rainfall and/or irrigation, actual ET can be computed analytically or by using different numerical methods. Overal, there are many factors that influence actual evapotranspiration. These factors are crop potential evapotranspiration, available root zone water content, time step, crop sensitivity, and soil. In this paper different numerical methods are compared for different soil textures and different crops sensitivities. Materials and Methods: During a specific time step with no rainfall or irrigation, change in soil water content would be equal to evapotranspiration, ET. In this approach, however, deep percolation is generally ignored due to deep water table and negligible unsaturated hydraulic conductivity below rooting depth. This differential equation may be solved analytically or numerically considering different algorithms. We adapted four different numerical methods, as explicit, implicit, and modified Euler, midpoint method, and 3-rd order Heun method to approximate the differential equation. Three general soil types of sand, silt, and clay, and three different crop types of sensitive, moderate, and resistant under Nishaboor plain were used. Standard soil fraction depletion (corresponding to ETc=5 mm.d-1, pstd, below which crop faces water stress is adopted for crop sensitivity. Three values for pstd were considered in this study to cover the common crops in the area, including winter wheat and barley, cotton, alfalfa, sugar beet, saffron, among the others. Based on this parameter, three classes for crop sensitivity was considered, sensitive crops with pstd=0.2, moderate crops with pstd=0.5, and resistive crops with pstd=0

  14. Designing a new cropping system for high productivity and sustainable water usage under climate change

    Science.gov (United States)

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) -summer maize system. The M-M system improved yield by 14-31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr-1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  15. Potential impacts of climate change on water availability for crops in the Okanagan Basin, British Columbia

    International Nuclear Information System (INIS)

    Neilsen, D.; Smith, C.A.S.; Frank, G.; Koch, W.; Alila, Y.; Merritt, W.S.; Taylor, W.G.; Barton, M.; Hall, J.W.; Cohen, S.J.

    2006-01-01

    Crop water demand in the Okanagan Basin was determined for 1961 to 1990, 2010 to 2039, 2040 to 2069, and 2070 to 2099. Daily station temperature data were spatially interpolated to a 1 x 1 km grid and adjusted for elevation. Daily precipitation data were estimated across four climatic regions. Output from three global climate models (GCM), CGCM2, CSIROMk2 and HadCM3 was used to create future daily climate. Daily potential evapo-transpiration (grass reference) was estimated from an empirical relationship between Bellani-plate atmometer readings, temperature and extra-terrestrial solar radiation, and then modified by crop coefficients for all crops except pasture. Depending on GCM, projected water demand increased by 12-20% (2010 to 2039), 24-38% (2040 to 2069) and 40-61% (2070 to 2099). Possible elevated CO 2 effects on stomatal conductance which may reduce water demand were not accounted for. Comparisons with modeled Okanagan Lake inflows indicated that, on average, high water demand and low supply scenarios coincided. In one sub-basin, supply and demand thresholds were exceeded 1 yr in 6 (HadCM3) in the 2050s and at least 1 yr in 4 for all GCMs by the 2080s, and existing water supply infrastructure may be inadequate. Crop growing seasons were defined empirically from growing degree days or threshold temperatures. The growing season lengthened up to 30-35% leading to higher demand in fall and shortages due to low stream flows. (author)

  16. Efficiency of water use in sugar beet and processing tomato cropped in Southern Italy

    Directory of Open Access Journals (Sweden)

    Alessandro Vittorio Vonella

    2011-02-01

    Full Text Available A more efficient crop water use in biomass and yield accumulation can represent great water saving in the waterlimited environments. Crop management – irrigation, sowing time, fertilization – could affect water (and irrigation water transformation efficiency in dry matter and commercial yield of beet and tomato in Southern Italy. This field research, carried out in two locations of Southern Italy (Foggia and Vasto in 1998-2002 period, compared for sugar beet irrigation regimes (optimal, 100% of ETc and reduced, 60% of ETc and sowing times (autumnal and spring; for tomato three irrigation regimes were compared, re-establishing 100% (ET100, 66 (ET66 and 33% (ET33 of crop evapotranspiration. Water and irrigation water transformation efficiency in harvestable yield (WUEhdm and IRRWUE hdm, in total dry matter (WUEdm and IRRWUEdm and sucrose (WUEsuc were calculated both at harvest and during crop cycle. The results showed a significant effect of sowing date on WUEhdm and WUEsuc of sugar beet (respectively 2.44 and 2.12 for autumnal sowing and 1.08 and 0.84 kg m-3 for spring sowing. Irrigation regimes did not show significant differences. “Irrigation x sowing times” interaction was significant for WUEdm, with a superiority of reduced vs. optimal only in spring sowing time. In tomato, WUEdm was not affected by the irrigation regime, while WUEhdm in ET66 treatment was more efficient treatment than ET100 (1.19 vs. 1.00 kg m-3. “Year” effect was significant for WUEdm and WUEhdm with lowest values in the driest year. IRRWUE was higher in tomato than in sugar beet, considering dry matter, fresh harvestable product and also from an economic point of view. The temporal analysis of water use efficiency showed WUEdm and WUEhdm greater in the middle of crop cycle in autumnal than in spring sugar beet, but not between the irrigation regimes. In tomato, the ET66 treatment resulted the most efficient in water using, especially at the end of crop cycle

  17. Efficiency of water use in sugar beet and processing tomato cropped in Southern Italy

    Directory of Open Access Journals (Sweden)

    Michele Rinaldi

    2006-09-01

    Full Text Available A more efficient crop water use in biomass and yield accumulation can represent great water saving in the waterlimited environments. Crop management – irrigation, sowing time, fertilization – could affect water (and irrigation water transformation efficiency in dry matter and commercial yield of beet and tomato in Southern Italy. This field research, carried out in two locations of Southern Italy (Foggia and Vasto in 1998-2002 period, compared for sugar beet irrigation regimes (optimal, 100% of ETc and reduced, 60% of ETc and sowing times (autumnal and spring; for tomato three irrigation regimes were compared, re-establishing 100% (ET100, 66 (ET66 and 33% (ET33 of crop evapotranspiration. Water and irrigation water transformation efficiency in harvestable yield (WUEhdm and IRRWUE hdm, in total dry matter (WUEdm and IRRWUEdm and sucrose (WUEsuc were calculated both at harvest and during crop cycle. The results showed a significant effect of sowing date on WUEhdm and WUEsuc of sugar beet (respectively 2.44 and 2.12 for autumnal sowing and 1.08 and 0.84 kg m-3 for spring sowing. Irrigation regimes did not show significant differences. “Irrigation x sowing times” interaction was significant for WUEdm, with a superiority of reduced vs. optimal only in spring sowing time. In tomato, WUEdm was not affected by the irrigation regime, while WUEhdm in ET66 treatment was more efficient treatment than ET100 (1.19 vs. 1.00 kg m-3. “Year” effect was significant for WUEdm and WUEhdm with lowest values in the driest year. IRRWUE was higher in tomato than in sugar beet, considering dry matter, fresh harvestable product and also from an economic point of view. The temporal analysis of water use efficiency showed WUEdm and WUEhdm greater in the middle of crop cycle in autumnal than in spring sugar beet, but not between the irrigation regimes. In tomato, the ET66 treatment resulted the most efficient in water using, especially at the end of crop cycle

  18. Land Use Cover Mapping of Water Melon and Cereals in Southern Italy

    Directory of Open Access Journals (Sweden)

    Costanza Fiorentino

    2010-06-01

    Full Text Available The new high-resolution images from the satellites as IKONOS, SPOT5, Quickbird2 give us the opportunity to map ground features, which were not detectable in the past, by using medium resolution remote sensed data (LANDSAT. More accurate and reliable maps of land cover can then be produced. However, classification procedure with these images is more complex than with the medium resolution remote sensing data for two main reasons: firstly, because of their exiguous number of spectral bands, secondly, owing to high spatial resolution, the assumption of pixel independence does not generally hold. It is then necessary to have a multi-temporal series of images or to use classifiers taking into account also proximal information. The data in this study were (i a remote sensing image taken by SPOT5 satellite in July 2007 and used to discriminate the water melon cover class and, (ii three multi-temporal remote sensing images taken by SPOT5 satellite in May, June and July 2008 used to discriminate water melon and cereal crop cover classes. For water melon recognition, providing a single image in 2007, an object-oriented technique was applied instead of a traditional, per pixel technique obtaining an increase of overall accuracy of 15%. In 2008, since it was available a multi-temporal data set, a traditional ‘Maximum Likelihood’ technique was applied for both water melon and cereal crop cover class. The overall accuracy is greater than 95%.

  19. Mapping the Energy-Water Nexus around the Pacific Rim

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moreland, Barbara Denise [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    The energy-water nexus has been mapped for almost 12,000 watersheds distributed across the 21-economies comprising the Asia-Pacific Economic Cooperation. Water consumption for energy production was estimated for 9 different sectors including thermoelectric and hydroelectric power; energy extraction including coal, oil, natural gas, uranium and unconventional oil/gas; and, energy processing including oil and biofuels. Conversely, the energy consumed providing water services was mapped for three sectors, drinking water, waste water and seawater desalination. These measures of resource use were put in context by drawing comparison with published measures of water risk. The objective of the mapping was to quantify the energy-water nexus and its variability at the subnational level, pinpoint potential vulnerabilities, and identify opportunities for international collaboration.

  20. Irrigation management strategies to improve Water Use Efficiency of potatoes crop in Central Tunisia

    Science.gov (United States)

    Ghazouani, Hiba; Provenzano, Giuseppe; Rallo, Giovanni; Mguidiche, Amel; Douh, Boutheina; Boujelben, Abdelhamid

    2015-04-01

    In Tunisia, the expansion of irrigated area and the semiarid climate make it compulsory to adopt strategies of water management to increase water use efficiency. Subsurface drip irrigation (SDI), providing the application of high frequency small irrigation volumes below the soil surface have been increasingly used to enhance irrigation efficiency. At the same time, deficit irrigation (DI) has shown successful results with a large number of crop in various countries. However, for some crops like potatoes, DI is difficult to manage due to the rapid effect of water stress on tuber yield. Irrigation frequency is a key factor to schedule subsurface drip irrigation because, even maintaining the total seasonal volume, soil wetting patterns can result different during the growth period, with consequence on crop yield. Despite the need to enhance water use efficiency, only a few studies related to deficit irrigation of horticultural crops have been made in Tunisia. Objective of the paper was to assess the effects of different on-farm irrigation strategies on water use efficiency of potatoes crop irrigated with subsurface drip irrigation in a semiarid area of central Tunisia. After validation, Hydrus-2D model was used to simulate soil water status in the root zone, to evaluate actual crop evapotranspiration and then to estimate indirectly water use efficiency (IWUE), defined as the ratio between crop yield and total amount of water supplied with irrigation. Field experiments, were carried out in Central Tunisia (10° 33' 47.0" E, 35° 58' 8.1° N, 19 m a.s.l) on a potatoes crop planted in a sandy loam soil, during the growing season 2014, from January 15 (plantation of tubers) to May 6 (harvesting). Soil water status was monitored in two plots (T1 and T2) maintained under the same management, but different irrigation volumes, provided by a SDI system. In particular, irrigation was scheduled according to the average water content measured in the root zone, with a total of 8

  1. Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade.

    Science.gov (United States)

    Zhuo, La; Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-09-01

    The study assesses green and blue water footprints (WFs) and virtual water (VW) trade in China under alternative scenarios for 2030 and 2050, with a focus on crop production, consumption and trade. We consider five driving factors of change: climate, harvested crop area, technology, diet, and population. Four scenarios (S1-S4) are constructed by making use of three of IPCC's shared socio-economic pathways (SSP1-SSP3) and two of IPCC's representative concentration pathways (RCP 2.6 and RCP 8.5) and taking 2005 as the baseline year. Results show that, across the four scenarios and for most crops, the green and blue WFs per tonne will decrease compared to the baseline year, due to the projected crop yield increase, which is driven by the higher precipitation and CO2 concentration under the two RCPs and the foreseen uptake of better technology. The WF per capita related to food consumption decreases in all scenarios. Changing to the less-meat diet can generate a reduction in the WF of food consumption of 44% by 2050. In all scenarios, as a result of the projected increase in crop yields and thus overall growth in crop production, China will reverse its role from net VW importer to net VW exporter. However, China will remain a big net VW importer related to soybean, which accounts for 5% of the WF of Chinese food consumption (in S1) by 2050. All scenarios show that China could attain a high degree of food self-sufficiency while simultaneously reducing water consumption in agriculture. However, the premise of realizing the presented scenarios is smart water and cropland management, effective and coherent policies on water, agriculture and infrastructure, and, as in scenario S1, a shift to a diet containing less meat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. SUPPORT VECTOR MACHINE CLASSIFICATION OF OBJECT-BASED DATA FOR CROP MAPPING, USING MULTI-TEMPORAL LANDSAT IMAGERY

    Directory of Open Access Journals (Sweden)

    R. Devadas

    2012-07-01

    Full Text Available Crop mapping and time series analysis of agronomic cycles are critical for monitoring land use and land management practices, and analysing the issues of agro-environmental impacts and climate change. Multi-temporal Landsat data can be used to analyse decadal changes in cropping patterns at field level, owing to its medium spatial resolution and historical availability. This study attempts to develop robust remote sensing techniques, applicable across a large geographic extent, for state-wide mapping of cropping history in Queensland, Australia. In this context, traditional pixel-based classification was analysed in comparison with image object-based classification using advanced supervised machine-learning algorithms such as Support Vector Machine (SVM. For the Darling Downs region of southern Queensland we gathered a set of Landsat TM images from the 2010–2011 cropping season. Landsat data, along with the vegetation index images, were subjected to multiresolution segmentation to obtain polygon objects. Object-based methods enabled the analysis of aggregated sets of pixels, and exploited shape-related and textural variation, as well as spectral characteristics. SVM models were chosen after examining three shape-based parameters, twenty-three textural parameters and ten spectral parameters of the objects. We found that the object-based methods were superior to the pixel-based methods for classifying 4 major landuse/land cover classes, considering the complexities of within field spectral heterogeneity and spectral mixing. Comparative analysis clearly revealed that higher overall classification accuracy (95% was observed in the object-based SVM compared with that of traditional pixel-based classification (89% using maximum likelihood classifier (MLC. Object-based classification also resulted speckle-free images. Further, object-based SVM models were used to classify different broadacre crop types for summer and winter seasons. The influence of

  3. Water stress effects on spatially referenced cotton crop canopy properties

    Science.gov (United States)

    rop canopy temperature is known to be affected by water stress. Canopy reflectance can also be impacted as leaf orientation and color respond to the stress. As sensor systems are investigated for real-time management of irrigation and nitrogen, it is essential to understand how the data from the sen...

  4. estimating water consumptive use for some crops under stress conditions using neutron scattering method

    International Nuclear Information System (INIS)

    Salama, M.A.A.A.

    2011-01-01

    Field experiment was conducted to study the influence of different levels of irrigation water salinity on actual evapotranspiration, water stress coefficient, yield and water use efficiency of both groundnut and wheat crops growing on sandy soil under trickle irrigation system located at 30 o 24 ' N latitude, 31 o 35 ' E longitude while the altitude is 20 m above the sea level.Four irrigation water salinity levels were used for both crops, they are; 2.4 (S 1 ), 2.7 (S 2 ), 3.3 (S 3 ) and 4.4 (S 4 ) dS m -1 , for groundnut and 4.9 (S 1 ), 6.3 (S 2 ), 8.7 (S 3 ) and 13 (S 4 ) dS m -1 , for wheat respectively besides a fresh water (FW) as a control treatment (0.5 dS m -1 ). Cattle manure was added as a soil amendment at a rate of 48 m 3 ha -1 . Neutron moisture meter was used to determine soil moisture content and depletion through the soil depths of 30, 45, 60, 75 and 90cm. Soil moisture content at 15 cm soil depth was determined gravimetrically. The applied irrigation water was 700 mm/season for groundnut and 550 mm/season for wheat based on 100 % of the recommended crop water requirements according to FAO No.33. (1979). The obtained results showed that the actual evapotranspiration (ET a ) and water stress coefficient (K s ) were slightly deceased by increasing the salinity of irrigation water especially under (S 4 ) irrigation salinity treatment for both crops.

  5. Mapping the sensitivity of citrus crops to freeze stress using a geographical information system in Ramsar, Iran

    Directory of Open Access Journals (Sweden)

    Hasan Zabihi

    2016-12-01

    Full Text Available Citrus, a cold-sensitive plant, often suffers from low temperature, which seriously affects citrus productivity. Environmental constraint factors have mixed impacts on horticulture that differ among the areas, periods and crops. This study presents a statistical analysis to investigate the freeze stress (FS conditions and morphometry, especially altitude and minimum temperature on citriculture at a regional scale. Based on the temperature isolines map and topography, this paper highlights the impact of altitude and minimum temperature on the citrus crop production using geographic information system (GIS techniques, statistical analysis and climatic data in Ramsar, Iran over a period of 30 years from 1980 to 2010. This study shows that the suitability varies in relation to the critical temperature and concludes that both minimum temperature and altitude have significant negative impact on citrus crop production. Climate change, in particular, occurring cold fronts in recent years during the citrus harvest time have been complicating this issue and increased the importance of freezes stress (FS. The results highlight that citrus crop orchards were more strongly affected by the minimum temperature, and along with the elevation ranges theses are major challenging factors.

  6. Soil water infiltration affected by topsoil thickness in row crop and switchgrass production systems

    Science.gov (United States)

    Conversion of annual grain crop systems to biofuel production systems can restore soil hydrologic function; however, information on these effects is limited. Hence, the objective of this study was to evaluate the influence of topsoil thickness on water infiltration in claypan soils for grain and swi...

  7. Crop growth and two dimensional modeling of soil water transport in drip irrigated potatoes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Iversen, Bo Vangsø; Mollerup, Mikkel

    2009-01-01

    of abscisic acid (ABA). Model outputs from the mechanistic simulation model Daisy, in SAFIR developed to include 2D soil processes and gas exchange processes based on Ball et al. and Farquhar were compared with measured crop dynamics, final DM yield and volumetric water content in the soil measured by TDR...

  8. Infrared thermometry of water-stressed crops - emerging methods and technologies

    Science.gov (United States)

    Infrared thermometry has shown potential to quantify water stress in crop canopy. This presentation will outline the limited irrigation experiments by the USDA-ARS in northern Colorado, which is used for a framework to evaluate canopy temperature. Recent methods have been introduced that may be accu...

  9. Development of an irrigation scheduling software based on model predicted crop water stress

    Science.gov (United States)

    Modern irrigation scheduling methods are generally based on sensor-monitored soil moisture regimes rather than crop water stress which is difficult to measure in real-time, but can be computed using agricultural system models. In this study, an irrigation scheduling software based on RZWQM2 model pr...

  10. Effect of acidified drinking water on the recovery of Salmonella enteritidis from broiler crops

    Directory of Open Access Journals (Sweden)

    Avila LAF de

    2003-01-01

    Full Text Available Crop is a known source of Salmonella contamination during broiler carcass processing. The effect of drinking water acidification by lactic acid or citric acid or a combination of those with cupric sulfate and d-limonene in the reduction of Salmonella Enteritidis (SE recovered from the crop of broilers was evaluated. Treatments were administered during 8 hours of preslaughter fasting period (Experiments I and II and during the last 32 hours of preslaughter (Experiment III. It was observed that acidification reduced water intake when treatments began at preslaughter feed withdrawal, and affected the possible reducing effect of these acids on SE recovering (Experiments I and II. Water intake during preslaughter feed withdrawal was not affected when treatment began 32 hours before slaughter (Experiment III. Treatments reduced SE recovering from crop (p<0.05. In Experiment III, 0.470% of lactic acid reduced the number of recovered SE in 99%. This study suggested that the addition of organic acids in the drinking water 24 hours before beginning the preslaughter feed withdrawal might reduce crop SE colonization and might be an important strategy to reduce SE contamination of broiler products during processing.

  11. Effects of Land Use Change for Crops on Water and Carbon Budgets in the Midwest USA

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2017-02-01

    Full Text Available Increasing demand for food and bioenergy has altered the global landscape dramatically in recent years. Land use and land cover change affects the environmental system in many ways through biophysical and biogeochemical mechanisms. In this study, we evaluate the impacts of land use and land cover change driven by recent crop expansion and conversion on the water budget, carbon exchange, and carbon storage in the Midwest USA. A dynamic global vegetation model was used to simulate and examine the impacts of landscape change in a historical case based on crop distribution data from the United States Department of Agriculture National Agricultural Statistics Services. The simulation results indicate that recent crop expansion not only decreased soil carbon sequestration (60 Tg less of soil organic carbon and net carbon flux into ecosystems (3.7 Tg·year−1 less of net biome productivity, but also lessened water consumption through evapotranspiration (1.04 × 1010 m3·year−1 less over 12 states in the Midwest. More water yield at the land surface does not necessarily make more water available for vegetation. Crop residue removal might also exacerbate the soil carbon loss.

  12. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    Science.gov (United States)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.

    2016-12-01

    What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  13. Pressure Heads and Simulated Water Uptake Patterns for a Severely Stressed Bean Crop

    NARCIS (Netherlands)

    Durigon, A.; Santos, dos M.A.; Lier, van Q.D.; Metselaar, K.

    2012-01-01

    In modeling, actual crop transpiration as a function of soil hydraulic conditions is usually estimated from a water content or pressure head dependent reduction function. We compared the performance of the empirical pressure head based reduction function of Feddes (FRF) and a more physically based

  14. Historical effects of CO2 and climate trends on global crop water demand

    Science.gov (United States)

    Urban, Daniel W.; Sheffield, Justin; Lobell, David B.

    2017-12-01

    A critical question for agricultural production and food security is how water demand for staple crops will respond to climate and carbon dioxide (CO2) changes1, especially in light of the expected increases in extreme heat exposure2. To quantify the trade-offs between the effects of climate and CO2 on water demand, we use a `sink-strength' model of demand3,4 which relies on the vapour-pressure deficit (VPD), incident radiation and the efficiencies of canopy-radiation use and canopy transpiration; the latter two are both dependent on CO2. This model is applied to a global data set of gridded monthly weather data over the cropping regions of maize, soybean, wheat and rice during the years 1948-2013. We find that this approach agrees well with Penman-Monteith potential evapotranspiration (PM) for the C3 crops of soybean, wheat and rice, where the competing CO2 effects largely cancel each other out, but that water demand in maize is significantly overstated by a demand measure that does not include CO2, such as the PM. We find the largest changes in wheat, for which water demand has increased since 1981 over 86% of the global cropping area and by 2.3-3.6 percentage points per decade in different regions.

  15. Soil-Water Storage Predictions for Cultivated Crops on the Záhorská Lowlands

    Directory of Open Access Journals (Sweden)

    Jarabicová Miroslava

    2016-06-01

    Full Text Available The main objective of this paper is to evaluate the impact of climate change on the soil-water regime of the Záhorská lowlands. The consequences of climate change on soil-water storage were analyzed for two crops: spring barley and maize. We analyzed the consequences of climate change on soil-water storage for two crops: spring barley and maize. The soil-water storage was simulated with the GLOBAL mathematical model. The data entered into the model as upper boundary conditions were established by the SRES A2 and SRES B1 climate scenarios and the KNMI regional climate model for the years from 2071 to 2100 (in the text called the time horizon 2085 which is in the middle this period. For the reference period the data from the years 1961-1990 was used. The results of this paper predict soil-water storage until the end of this century for the crops evaluated, as well as a comparison of the soil-water storage predictions with the course of the soil-water storage during the reference period.

  16. Early Season Large-Area Winter Crop Mapping Using MODIS NDVI Data, Growing Degree Days Information and a Gaussian Mixture Model

    Science.gov (United States)

    Skakun, Sergii; Franch, Belen; Vermote, Eric; Roger, Jean-Claude; Becker-Reshef, Inbal; Justice, Christopher; Kussul, Nataliia

    2017-01-01

    Knowledge on geographical location and distribution of crops at global, national and regional scales is an extremely valuable source of information applications. Traditional approaches to crop mapping using remote sensing data rely heavily on reference or ground truth data in order to train/calibrate classification models. As a rule, such models are only applicable to a single vegetation season and should be recalibrated to be applicable for other seasons. This paper addresses the problem of early season large-area winter crop mapping using Moderate Resolution Imaging Spectroradiometer (MODIS) derived Normalized Difference Vegetation Index (NDVI) time-series and growing degree days (GDD) information derived from the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product. The model is based on the assumption that winter crops have developed biomass during early spring while other crops (spring and summer) have no biomass. As winter crop development is temporally and spatially non-uniform due to the presence of different agro-climatic zones, we use GDD to account for such discrepancies. A Gaussian mixture model (GMM) is applied to discriminate winter crops from other crops (spring and summer). The proposed method has the following advantages: low input data requirements, robustness, applicability to global scale application and can provide winter crop maps 1.5-2 months before harvest. The model is applied to two study regions, the State of Kansas in the US and Ukraine, and for multiple seasons (2001-2014). Validation using the US Department of Agriculture (USDA) Crop Data Layer (CDL) for Kansas and ground measurements for Ukraine shows that accuracies of greater than 90% can be achieved in mapping winter crops 1.5-2 months before harvest. Results also show good correspondence to official statistics with average coefficients of determination R(exp. 2) greater than 0.85.

  17. Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe

    OpenAIRE

    Grazia Zulian; Joachim Maes; Maria Luisa Paracchini

    2013-01-01

    Pollination is a key ecosystem service as many crops but in particular, fruits and vegetables are partially dependent on pollinating insects to produce food for human consumption. Here we assessed how pollination services are delivered at the European scale. We used this assessment to estimate the relative contribution of wild pollinators to crop production. We developed an index of relative pollination potential, which is defined as the relative potential or relative capacity of ecosystems t...

  18. Assessment of Climate Change Impacts on Agricultural Water Demands and Crop Yields in California's Central Valley

    Science.gov (United States)

    Tansey, M. K.; Flores-Lopez, F.; Young, C. A.; Huntington, J. L.

    2012-12-01

    Long term planning for the management of California's water resources requires assessment of the effects of future climate changes on both water supply and demand. Considerable progress has been made on the evaluation of the effects of future climate changes on water supplies but less information is available with regard to water demands. Uncertainty in future climate projections increases the difficulty of assessing climate impacts and evaluating long range adaptation strategies. Compounding the uncertainty in the future climate projections is the fact that most readily available downscaled climate projections lack sufficient meteorological information to compute evapotranspiration (ET) by the widely accepted ASCE Penman-Monteith (PM) method. This study addresses potential changes in future Central Valley water demands and crop yields by examining the effects of climate change on soil evaporation, plant transpiration, growth and yield for major types of crops grown in the Central Valley of California. Five representative climate scenarios based on 112 bias corrected spatially downscaled CMIP 3 GCM climate simulations were developed using the hybrid delta ensemble method to span a wide range future climate uncertainty. Analysis of historical California Irrigation Management Information System meteorological data was combined with several meteorological estimation methods to compute future solar radiation, wind speed and dew point temperatures corresponding to the GCM projected temperatures and precipitation. Future atmospheric CO2 concentrations corresponding to the 5 representative climate projections were developed based on weighting IPCC SRES emissions scenarios. The Land, Atmosphere, and Water Simulator (LAWS) model was used to compute ET and yield changes in the early, middle and late 21st century for 24 representative agricultural crops grown in the Sacramento, San Joaquin and Tulare Lake basins. Study results indicate that changes in ET and yield vary

  19. Mapping Water Use and Drought with Satellite Remote Sensing

    OpenAIRE

    Anderson, Martha

    2014-01-01

    Mapping water use and drought with satellite remote sensing. Martha C. Anderson, Bill Kustas, Feng Gao, Kate Semmens. USDA-Agricultural Research Service Hydrology and Remote Sensing Laboratory, Beltsville, MD. Chris Hain NOAA-NESDIS

  20. Linking Land Cover Data and Crop Yields for Mapping and Assessment of Pollination Services in Europe

    Directory of Open Access Journals (Sweden)

    Maria Luisa Paracchini

    2013-09-01

    Full Text Available Pollination is a key ecosystem service as many crops but in particular, fruits and vegetables are partially dependent on pollinating insects to produce food for human consumption. Here we assessed how pollination services are delivered at the European scale. We used this assessment to estimate the relative contribution of wild pollinators to crop production. We developed an index of relative pollination potential, which is defined as the relative potential or relative capacity of ecosystems to support crop pollination. The model for relative pollination potential is based on the assumption that different habitats, but in particular forest edges, grasslands rich in flowers and riparian areas, offer suitable sites for wild pollinator insects. Using data of the foraging range of wild bees with short flight distances, we linked relative pollination potential to regional statistics of crop production. At aggregated EU level, the absence of insect pollination would result in a reduction of between 25% and 32% of the total production of crops which are partially dependent on insect pollination, depending on the data source used for the assessment. This production deficit decreases to 2.5% if only the relative pollination potential of a single guild of pollinators is considered. A strength of our approach is the spatially-explicit link between land cover based relative pollination potential and crop yield which enables a general assessment of the benefits that are derived from pollination services in Europe while providing insight where pollination gaps in the landscape occur.

  1. Irrigation water consumption modelling of a soilless cucumber crop under specific greenhouse conditions in a humid tropical climate

    Directory of Open Access Journals (Sweden)

    Galo Alberto Salcedo

    Full Text Available ABSTRACT: The irrigation water consumption of a soilless cucumber crop under greenhouse conditions in a humid tropical climate has been evaluated in this paper in order to improve the irrigation water and fertilizers management in these specific conditions. For this purpose, a field experiment was conducted. Two trials were carried out during the years 2011 and 2014 in an experimental farm located in Vinces (Ecuador. In each trial, the complete growing cycle of a cucumber crop grown under a greenhouse was evaluated. Crop development was monitored and a good fit to a sigmoidal Gompertz type growth function was reported. The daily water uptake of the crop was measured and related to the most relevant indoor climate variables. Two different combination methods, namely the Penman-Monteith equation and the Baille equation, were applied. However, the results obtained with these combination methods were not satisfactory due to the poor correlation between the climatic variables, especially the incoming radiation, and the crop's water uptake (WU. On contrary, a good correlation was reported between the crop's water uptake and the leaf area index (LAI, especially in the initial crop stages. However, when the crop is fully developed, the WU stabilizes and becomes independent from the LAI. A preliminary model to simulate the water uptake of the crop was adjusted using the data obtained in the first experiment and then validated with the data of the second experiment.

  2. National-scale crop type mapping and area estimation using multi-resolution remote sensing and field survey

    Science.gov (United States)

    Song, X. P.; Potapov, P.; Adusei, B.; King, L.; Khan, A.; Krylov, A.; Di Bella, C. M.; Pickens, A. H.; Stehman, S. V.; Hansen, M.

    2016-12-01

    Reliable and timely information on agricultural production is essential for ensuring world food security. Freely available medium-resolution satellite data (e.g. Landsat, Sentinel) offer the possibility of improved global agriculture monitoring. Here we develop and test a method for estimating in-season crop acreage using a probability sample of field visits and producing wall-to-wall crop type maps at national scales. The method is first illustrated for soybean cultivated area in the US for 2015. A stratified, two-stage cluster sampling design was used to collect field data to estimate national soybean area. The field-based estimate employed historical soybean extent maps from the U.S. Department of Agriculture (USDA) Cropland Data Layer to delineate and stratify U.S. soybean growing regions. The estimated 2015 U.S. soybean cultivated area based on the field sample was 341,000 km2 with a standard error of 23,000 km2. This result is 1.0% lower than USDA's 2015 June survey estimate and 1.9% higher than USDA's 2016 January estimate. Our area estimate was derived in early September, about 2 months ahead of harvest. To map soybean cover, the Landsat image archive for the year 2015 growing season was processed using an active learning approach. Overall accuracy of the soybean map was 84%. The field-based sample estimated area was then used to calibrate the map such that the soybean acreage of the map derived through pixel counting matched the sample-based area estimate. The strength of the sample-based area estimation lies in the stratified design that takes advantage of the spatially explicit cropland layers to construct the strata. The success of the mapping was built upon an automated system which transforms Landsat images into standardized time-series metrics. The developed method produces reliable and timely information on soybean area in a cost-effective way and could be implemented in an operational mode. The approach has also been applied for other crops in

  3. Suitability of Gray Water for Hydroponic Crop Production Following Biological and Physical Chemical and Biological Subsystems

    Science.gov (United States)

    Bubenheim, David L.; Harper, Lynn D.; Wignarajah, Kanapathipillai; Greene, Catherine

    1994-01-01

    The water present in waste streams from a human habitat must be recycled in Controlled Ecological Life Support Systems (CELSS) to limit resupply needs and attain self-sufficiency. Plants play an important role in providing food, regenerating air, and producing purified water via transpiration. However, we have shown that the surfactants present in hygiene waste water have acute toxic effects on plant growth (Bubenheim et al. 1994; Greene et al., 1994). These phytotoxic affects can be mitigated by allowing the microbial population on the root surface to degrade the surfactant, however, a significant suppression (several days) in crop performance is experienced prior to reaching sub-toxic surfactant levels and plant recovery. An effective alternative is to stabilize the microbial population responsible for degradation of the surfactant on an aerobic bioreactor and process the waste water prior to utilization in the hydroponic solution (Wisniewski and Bubenheim, 1993). A sensitive bioassay indicates that the surfactant phytotoxicity is suppressed by more than 90% within 5 hours of introduction of the gray water to the bioreactor; processing for more than 12 hours degrades more than 99% of the phytotoxin. Vapor Compression Distillation (VCD) is a physical / chemical method for water purification which employees sequential distillation steps to separate water from solids and to volatilize contaminants. The solids from the waste water are concentrated in a brine and the pure product water (70 - 90% of the total waste water volume depending on operating conditions) retains non of the phytotoxic effects. Results of the bioassay were used to guide evaluations of the suitability of recovered gray water following biological and VCD processing for hydroponic lettuce production in controlled environments. Lettuce crops were grown for 28 days with 100% of the input water supplied with recovered water from the biological processor or VCD. When compared with the growth of plants

  4. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Science.gov (United States)

    Chivenge, Pauline; Mabhaudhi, Tafadzwanashe; Modi, Albert T.; Mafongoya, Paramu

    2015-01-01

    Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS). The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA), and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i) what can grow under water-scarce conditions, (ii) water requirements, and (iii) water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture. PMID:26016431

  5. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Pauline Chivenge

    2015-05-01

    Full Text Available Modern agricultural systems that promote cultivation of a very limited number of crop species have relegated indigenous crops to the status of neglected and underutilised crop species (NUCS. The complex interactions of water scarcity associated with climate change and variability in sub-Saharan Africa (SSA, and population pressure require innovative strategies to address food insecurity and undernourishment. Current research efforts have identified NUCS as having potential to reduce food and nutrition insecurity, particularly for resource poor households in SSA. This is because of their adaptability to low input agricultural systems and nutritional composition. However, what is required to promote NUCS is scientific research including agronomy, breeding, post-harvest handling and value addition, and linking farmers to markets. Among the essential knowledge base is reliable information about water utilisation by NUCS with potential for commercialisation. This commentary identifies and characterises NUCS with agronomic potential in SSA, especially in the semi-arid areas taking into consideration inter alia: (i what can grow under water-scarce conditions, (ii water requirements, and (iii water productivity. Several representative leafy vegetables, tuber crops, cereal crops and grain legumes were identified as fitting the NUCS category. Agro-biodiversity remains essential for sustainable agriculture.

  6. Physiological factors affecting intrinsic water use efficiency of potato clones within a dihaploid mapping population under well-watered and drought-stressed conditions

    DEFF Research Database (Denmark)

    Topbjerg, Henrik Bak; Kaminski, Kacper Piotr; Markussen, Bo

    2014-01-01

    ) within a dihaploid potato (Solanum tuberosum L.) mapping population under well-watered (WW) and drought-stress (DS) conditions. The factorial dependency of WUEi on several plant bio-physiological traits was analyzed, and clonal difference of WUEi was compared. Significant differences in WUEi were found......Optimizing crops water use is essential for ensuring food production under future climate scenarios. Therefore, new cultivars that are capable of maintaining production under limited water resource are needed. This study screened for clonal differences in intrinsic water use efficiency (WUEi...

  7. Water Footprints of Vegetable Crop Wastage along the Supply Chain in Gauteng, South Africa

    Directory of Open Access Journals (Sweden)

    Betsie le Roux

    2018-04-01

    Full Text Available Food production in water-scarce countries like South Africa will become more challenging in the future because of the growing population and intensifying water shortages. Reducing food wastage is one way of addressing this challenge. The wastage of carrots, cabbage, beetroot, broccoli and lettuce, produced on the Steenkoppies Aquifer in Gauteng, South Africa, was estimated for each step along the supply chain from the farm to the consumer. Water footprints for these vegetables were used to determine the volume of water lost indirectly as a result of this wastage. Highest percentage wastage occurs at the packhouse level, which is consistent with published literature. Some crops like lettuce have higher average wastage percentages (38% compared to other crops like broccoli (13% and cabbage (14%, and wastage varied between seasons. Care should therefore be taken when applying general wastage values reported for vegetables. The classification of “waste” presented a challenge, because “wasted” vegetables are often used for other beneficial purposes, including livestock feed and composting. It was estimated that blue water lost on the Steenkoppies Aquifer due to vegetable crop wastage (4 Mm3 year−1 represented 25% of the estimated blue water volume that exceeded sustainable limits (17 Mm3 year−1.

  8. Analysis of the impact of energy crops on water quality. Final report

    International Nuclear Information System (INIS)

    Hatfield, J.L.; Gale, W.J.

    1993-01-01

    This report consists of two separate papers. The first, ''The potential use of agricultural simulation models in predicting the fate of nitrogen and pesticides applied to switchgrass and poplars,'' describes three models (CREAMS, GLEAMS, and EPIC) for the evaluation of the relationships which determine water quality in the agroecosystem. Case studies are presented which demonstrate the utility of these models in evaluating the potential impact of alternative crop management practices. The second paper, ''Energy crops as part of a sustainable landscape,'' discusses concepts of landscape management and the linkage among agricultural practices and environmental quality

  9. Mapping of Agricultural Crops from Single High-Resolution Multispectral Images—Data-Driven Smoothing vs. Parcel-Based Smoothing

    Directory of Open Access Journals (Sweden)

    Asli Ozdarici-Ok

    2015-05-01

    Full Text Available Mapping agricultural crops is an important application of remote sensing. However, in many cases it is based either on hyperspectral imagery or on multitemporal coverage, both of which are difficult to scale up to large-scale deployment at high spatial resolution. In the present paper, we evaluate the possibility of crop classification based on single images from very high-resolution (VHR satellite sensors. The main objective of this work is to expose performance difference between state-of-the-art parcel-based smoothing and purely data-driven conditional random field (CRF smoothing, which is yet unknown. To fulfill this objective, we perform extensive tests with four different classification methods (Support Vector Machines, Random Forest, Gaussian Mixtures, and Maximum Likelihood to compute the pixel-wise data term; and we also test two different definitions of the pairwise smoothness term. We have performed a detailed evaluation on different multispectral VHR images (Ikonos, QuickBird, Kompsat-2. The main finding of this study is that pairwise CRF smoothing comes close to the state-of-the-art parcel-based method that requires parcel boundaries (average difference ≈ 2.5%. Our results indicate that a single multispectral (R, G, B, NIR image is enough to reach satisfactory classification accuracy for six crop classes (corn, pasture, rice, sugar beet, wheat, and tomato in Mediterranean climate. Overall, it appears that crop mapping using only one-shot VHR imagery taken at the right time may be a viable alternative, especially since high-resolution multitemporal or hyperspectral coverage as well as parcel boundaries are in practice often not available.

  10. Water management in common bean (Imbabello) crops in declivity soils, Pichincha province

    International Nuclear Information System (INIS)

    Calvache, Marcelo

    1997-01-01

    The objective of this paper was to identify specific growth stages of the common bean crop at which the plant is less sensitive to water stress using two methods of irrigation (Furrows and Sprinkler) and neutron probe to monitoring water content in the soil. Seven irrigation regimes were used, including normal watering, full stress, traditional practice, single stress at vegetation, at flowering, at yield formation and ripening. The yield formation stage was the most sensitive to moisture stress reducing drastically the yield. The vegetation stage was no affected yield and permitted water economy of 40%. Sprinkler irrigation was most rentable that Furrows irrigation (the author)

  11. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    Science.gov (United States)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    Agriculture is the main productive sector and a major water-consuming sector in the seasonally-dry Guanacaste region of north-western Costa Rica. Agriculture in the region is intensifying at the same time that seasonal water scarcity is increasing. The climate of this region is characterized by a prolonged dry season from December to March, followed by a bimodal wet season from April to November. The wet season has historically experienced periodic oscillations in rainfall timing and amounts resulting from variations of several large-scale climatic features (El Niño Southern Oscillation, the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation and the North Atlantic Oscillation). However, global circulation models now project more recurrent variations in total annual rainfall, changes in rainfall temporal distribution, and increased temperatures in this region. This may result in a lengthening of the dry season and an increase in water scarcity and water-related conflicts as water resources are already limited and disputed in this area. In fact, this region has just undergone a four-year drought over the 2012-2015 period, which has intensified water related conflicts and put agricultural production at risk. In turn, the recent drought has also increased awareness of the local communities regarding the regional threat of water scarcity and the need of a regional water planning. The overall goal of this research is to generate data to characterize water use by the agricultural sector in this region and asses its sustainability in the regional context. Towards this goal, eddy-covariance flux towers were deployed on two extensive farms growing regionally-representative crops (melon/rice rotation and sugarcane) to evaluate, monitor and quantify water use in large-scale farms. The two identically instrumented stations provide continuous measurements of evapotranspiration and CO2 fluxes, and are equipped with additional instrumentation to monitor

  12. Predicting and mapping soil available water capacity in Korea

    Directory of Open Access Journals (Sweden)

    Suk Young Hong

    2013-04-01

    Full Text Available The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at −10 and −1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at −10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively. Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  13. Predicting and mapping soil available water capacity in Korea.

    Science.gov (United States)

    Hong, Suk Young; Minasny, Budiman; Han, Kyung Hwa; Kim, Yihyun; Lee, Kyungdo

    2013-01-01

    The knowledge on the spatial distribution of soil available water capacity at a regional or national extent is essential, as soil water capacity is a component of the water and energy balances in the terrestrial ecosystem. It controls the evapotranspiration rate, and has a major impact on climate. This paper demonstrates a protocol for mapping soil available water capacity in South Korea at a fine scale using data available from surveys. The procedures combined digital soil mapping technology with the available soil map of 1:25,000. We used the modal profile data from the Taxonomical Classification of Korean Soils. The data consist of profile description along with physical and chemical analysis for the modal profiles of the 380 soil series. However not all soil samples have measured bulk density and water content at -10 and -1500 kPa. Thus they need to be predicted using pedotransfer functions. Furthermore, water content at -10 kPa was measured using ground samples. Thus a correction factor is derived to take into account the effect of bulk density. Results showed that Andisols has the highest mean water storage capacity, followed by Entisols and Inceptisols which have loamy texture. The lowest water retention is Entisols which are dominated by sandy materials. Profile available water capacity to a depth of 1 m was calculated and mapped for Korea. The western part of the country shows higher available water capacity than the eastern part which is mountainous and has shallower soils. The highest water storage capacity soils are the Ultisols and Alfisols (mean of 206 and 205 mm, respectively). Validation of the maps showed promising results. The map produced can be used as an indication of soil physical quality of Korean soils.

  14. California State Waters Map Series: offshore of Tomales Point, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Golden, Nadine E.; Hartwell, Stephen R.; Greene, H. Gary; Erdey, Mercedes D.; Cochrane, Guy R.; Watt, Janet Tilden; Kvitek, Rikk G.; Manson, Michael W.; Endris, Charles A.; Dieter, Bryan E.; Krigsman, Lisa M.; Sliter, Ray W.; Lowe, Erik N.; Chinn, John L.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 200 m) subsurface geology.

  15. California State Waters Map Series: offshore of San Francisco, California

    Science.gov (United States)

    Cochrane, Guy R.; Johnson, Samuel Y.; Dartnell, Peter; Greene, H. Gary; Erdey, Mercedes D.; Golden, Nadine E.; Hartwell, Stephen R.; Endris, Charles A.; Manson, Michael W.; Sliter, Ray W.; Kvitek, Rikk G.; Watt, Janet Tilden; Ross, Stephanie L.; Bruns, Terry R.; Cochrane, Guy R.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology.

  16. California State Waters Map Series: offshore of Refugio Beach, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Krigsman, Lisa M.; Dieter, Bryan E.; Conrad, James E.; Greene, H. Gary; Seitz, Gordon G.; Endris, Charles A.; Sliter, Ray W.; Wong, Florence L.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Yoklavich, Mary M.; East, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology.

  17. California State Waters Map Series: offshore of Pacifica, California

    Science.gov (United States)

    Edwards, Brian D.; Phillips, Eleyne L.; Dartnell, Peter; Greene, H. Gary; Bretz, Carrie K.; Kvitek, Rikk G.; Hartwell, Stephen R.; Johnson, Samuel Y.; Cochrane, Guy R.; Dieter, Bryan E.; Sliter, Ray W.; Ross, Stephanie L.; Golden, Nadine E.; Watt, Janet Tilden; Chinn, John L.; Erdey, Mercedes D.; Krigsman, Lisa M.; Manson, Michael W.; Endris, Charles A.; Cochran, Susan A.; Edwards, Brian D.

    2015-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. 

  18. Multisensor Capacitance Probes for Simultaneously Monitoring Rice Field Soil-Water- Crop-Ambient Conditions.

    Science.gov (United States)

    Brinkhoff, James; Hornbuckle, John; Dowling, Thomas

    2017-12-26

    Multisensor capacitance probes (MCPs) have traditionally been used for soil moisture monitoring and irrigation scheduling. This paper presents a new application of these probes, namely the simultaneous monitoring of ponded water level, soil moisture, and temperature profile, conditions which are particularly important for rice crops in temperate growing regions and for rice grown with prolonged periods of drying. WiFi-based loggers are used to concurrently collect the data from the MCPs and ultrasonic distance sensors (giving an independent reading of water depth). Models are fit to MCP water depth vs volumetric water content (VWC) characteristics from laboratory measurements, variability from probe-to-probe is assessed, and the methodology is verified using measurements from a rice field throughout a growing season. The root-mean-squared error of the water depth calculated from MCP VWC over the rice growing season was 6.6 mm. MCPs are used to simultaneously monitor ponded water depth, soil moisture content when ponded water is drained, and temperatures in root, water, crop and ambient zones. The insulation effect of ponded water against cold-temperature effects is demonstrated with low and high water levels. The developed approach offers advantages in gaining the full soil-plant-atmosphere continuum in a single robust sensor.

  19. Remote Sensing for Crop Water Management: From ET Modelling to Services for the End Users

    Directory of Open Access Journals (Sweden)

    Alfonso Calera

    2017-05-01

    Full Text Available The experiences gathered during the past 30 years support the operational use of irrigation scheduling based on frequent multi-spectral image data. Currently, the operational use of dense time series of multispectral imagery at high spatial resolution makes monitoring of crop biophysical parameters feasible, capturing crop water use across the growing season, with suitable temporal and spatial resolutions. These achievements, and the availability of accurate forecasting of meteorological data, allow for precise predictions of crop water requirements with unprecedented spatial resolution. This information is greatly appreciated by the end users, i.e., professional farmers or decision-makers, and can be provided in an easy-to-use manner and in near-real-time by using the improvements achieved in web-GIS methodologies (Geographic Information Systems based on web technologies. This paper reviews the most operational and explored methods based on optical remote sensing for the assessment of crop water requirements, identifying strengths and weaknesses and proposing alternatives to advance towards full operational application of this methodology. In addition, we provide a general overview of the tools, which facilitates co-creation and collaboration with stakeholders, paying special attention to these approaches based on web-GIS tools.

  20. Agricultural interventions for water saving and crop yield improvement, in a Mediterranean area - an experimental design

    Science.gov (United States)

    Morianou, Giasemi; Kourgialas, Nektarios; Psarras, George; Koubouris, George; Arampatzis, George; Karatzas, George; Pavlidou, Elisavet

    2017-04-01

    This work is a part of LIFE+ AGROCLIMAWATER project and the aim is to improve the water efficiency, increase the adaptive capacity of tree corps and save water, in a Mediterranean area, under different climatic conditions and agricultural practices. The experimental design as well as preliminary results at farm and river basin scales are presented in this work. Specifically, ten (10) pilot farms, both organic and conventional ones have been selected in the sub-basin of Platanias in western Crete - Greece. These ten pilot farms were selected representing the most typical crops in Platanias area (olive trees and citrus trees), as well as the typical soil, landscape and agricultural practices differentiation for each crop (field slope, water availability, soil type, management regime). From the ten pilot farms, eight were olive farms and the rest two citrus. This proportion correspond adequacy to the presentence of olive and citrus crops in the extended area of Platanias prefecture. Each of the ten pilot farm has been divided in two parts, the first one will be used as a control part, while the other one as the demonstration part where the interventions will be applied. The action plans for each selected farm are based on the following groups of possible interventions: a) reduction of water evaporation losses from soil surface, b) reduction of transpiration water losses through winter pruning and summer pruning, c) reduction of deep percolation water and nutrient losses, d) reduction of surface runoff, e) measures in order to maximize the efficiency of irrigation and f) rationalization of fertilizers and agrochemicals utilized. Preliminary results indicate that water saving and crop yield can be significantly improved based on the above innervations both at farm and river basin scale.

  1. Use of ocean color scanner data in water quality mapping

    Science.gov (United States)

    Khorram, S.

    1981-01-01

    Remotely sensed data, in combination with in situ data, are used in assessing water quality parameters within the San Francisco Bay-Delta. The parameters include suspended solids, chlorophyll, and turbidity. Regression models are developed between each of the water quality parameter measurements and the Ocean Color Scanner (OCS) data. The models are then extended to the entire study area for mapping water quality parameters. The results include a series of color-coded maps, each pertaining to one of the water quality parameters, and the statistical analysis of the OCS data and regression models. It is found that concurrently collected OCS data and surface truth measurements are highly useful in mapping the selected water quality parameters and locating areas having relatively high biological activity. In addition, it is found to be virtually impossible, at least within this test site, to locate such areas on U-2 color and color-infrared photography.

  2. Assessment of the phenology impact on SVAT modelling through a crop growth model over a Mediterranean crop site : Consequences on the water balance under climate change conditions.

    Science.gov (United States)

    Moulin, S.; Garrigues, S.; Olioso, A.; Ruget, F.; Desfonds, V.; Bertrand, N.; Lecharpentier, P.; Ripoche, D.; Launay, M.; Brisson, N.

    2012-04-01

    In the coming years, water resources and vegetation production of Mediterranean areas will be drastically affected by climate changes as well as intense and rapid changes in the land use. The impact of climate and land-use changes on water balance and vegetation production can be analysed and predicted through land surface models, provided that the uncertainties associated to these models and to the data used to run them are evaluated. Vegetation phenology is generally poorly taken into account in land surface models and may be a substantial source of uncertainties for global change scenario studies. In this paper, we discuss the improvement obtained in Soil Vegetation Atmosphere Transfer (SVAT) modelling by taking into account the phenology using a crop growth model, focusing on the water budget, over a Mediterranean crop site. The STICS model (Brisson et al, 1998) is used to simulate crop processes (growth and development, taking into account water and nitrogen exchanges between the environment and the crop). STICS describes the vegetation phenology very accurately and was validated for many types of crop and various pedoclimatic conditions. The SVAT model being analyzed is the a-gs version (Calvet et al., 1998) of the ISBA model (Noilhan et al, 1989), which simulates the photosynthesis and calculates the plant biomass and the Leaf Area Index (LAI) using a simple growth model. In STICS, the phenology is driven by the sum of daily air temperatures, which is quite realistic, while in ISBA, the phenology is driven by the plant carbon assimilation. Measurements (vegetation characteristics, soil properties, agricultural practises, energy and water balance) performed in the lower Rhone valley experimental area (Avignon, France) are used as well as long series of climatic data (past records and future simulations). In a first step, by running STICS and ISBA for maize and wheat crops with long series of climatic data, including future scenarios of climate (CLIMATOR

  3. Introducing perennial biomass crops into agricultural landscapes to address water quality challenges and provide other environmental services: Integrating perennial bioenergy crops into agricultural landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Cacho, J. F. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA; Negri, M. C. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA; Zumpf, C. R. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA; Campbell, P. [Environmental Science Division, Argonne National Laboratory, Lemont IL USA

    2017-11-29

    The world is faced with a difficult multiple challenge of meeting nutritional, energy, and other basic needs, under a limited land and water budget, of between 9 and 10 billion people in the next three decades, mitigating impacts of climate change, and making agricultural production resilient. More productivity is expected from agricultural lands, but intensification of production could further impact the integrity of our finite surface water and groundwater resources. Integrating perennial bioenergy crops in agricultural lands could provide biomass for biofuel and potential improvements on the sustainability of commodity crop production. This article provides an overview of ways in which research has shown that perennial bioenergy grasses and short rotation woody crops can be incorporated into agricultural production systems with reduced indirect land use change, while increasing water quality benefits. Current challenges and opportunities as well as future directions are also highlighted.

  4. Quantitative modeling of the Water Footprint and Energy Content of Crop and Animal Products Consumption in Tanzania

    Directory of Open Access Journals (Sweden)

    felichesmi Selestine lyakurwa

    2014-05-01

    Full Text Available A comprehensive understanding of the link between water footprint and energy content of crop and animal products is vitally important for the sound management of water resources. In this study, we developed a mathematical relationship between water content, and energy content of many crops and animal products by using an improved LCA approach (water footprint. The standard values of the water and energy contents of crops and animal products were obtained from the databases of Agricultural Research Service, UNESCO Institute for water education and Food, and Agriculture Organization of the United Nations. The water footprint approach was applied to analyze the relationship between water requirement and energy of content of crop and animal products, in which the uncertainty and sensitivity was evaluated by Monte Carlo simulation technique that is contained in the Oracle Crystal Ball Fusion Edition v11.1.1.3.00. The results revealed significant water saving due to changes in food consumption pattern i.e. from consumption of more meat to vegetables. The production of 1kcal of crop and animal products requires about 98% of green, 4.8% blue water and 0.4% of gray water. In which changes in consumption pattern gave annual blue water saving of about 1605 Mm3 that is equivalent to 41.30m3/capita, extremely greater than the standard drinking water requirement for the whole population. Moreover, the projected results indicated, triple increase of dietary water requirement from 30.9 Mm3 in 2005 to 108 Mm3 by 2050. It was also inferred that, Tanzania has a positive virtual water balance of crop and animal products consumption with net virtual water import of 9.1 Mm3 that is the contribution margin to the water scarcity alleviation strategy. Therefore, developed relationship of water footprint and energy content of crops and animal products can be used by water resource experts for sustainable freshwater and food supply.

  5. Water and Land Footprints and Economic Productivity as Factors in Local Crop Choice: The Case of Silk in Malawi

    Directory of Open Access Journals (Sweden)

    Rick J. Hogeboom

    2017-10-01

    Full Text Available In deciding what crops to grow, farmers will look at, among other things, the economically most productive use of the water and land resources that they have access to. However, optimizing water and land use at the farm level may result in total water and land footprints at the catchment level that are in conflict with sustainable resource use. This study explores how data on water and land footprints, and on economic water and land productivity can inform micro-level decision making of crop choice, in the macro-level context of sustainable resource use. For a proposed sericulture project in Malawi, we calculated water and land footprints of silk along its production chain, and economic water and land productivities. We compared these to current cropping practices, and addressed the implications of water consumption at the catchment scale. We found that farmers may prefer irrigated silk production over currently grown rain-fed staple crops, because its economic water and land productivity is higher than that for currently grown crops. However, because the water footprint of irrigated silk is higher, sericulture will increase the pressure on local water resources. Since water consumption in the catchment generally does not exceed the maximum sustainable footprint, sericulture is a viable alternative crop for farmers in the case study area, as long as silk production remains small-scale (~3% of the area at most and does not depress local food markets.

  6. Rainfall and crop modeling-based water stress assessment for rainfed maize cultivation in peninsular India

    Science.gov (United States)

    Manivasagam, V. S.; Nagarajan, R.

    2018-04-01

    Water stress due to uneven rainfall distribution causes a significant impact on the agricultural production of monsoon-dependent peninsular India. In the present study, water stress assessment for rainfed maize crop is carried out for kharif (June-October) and rabi (October-February) cropping seasons which coincide with two major Indian monsoons. Rainfall analysis (1976-2010) shows that the kharif season receives sufficient weekly rainfall (28 ± 32 mm) during 26th-39th standard meteorological weeks (SMWs) from southwest monsoon, whereas the rabi season experiences a major portion of its weekly rainfall due to northeast monsoon between the 42nd and 51st SMW (31 ± 42 mm). The later weeks experience minimal rainfall (5.5 ± 15 mm) and thus expose the late sown maize crops to a severe water stress during its maturity stage. Wet and dry spell analyses reveal a substantial increase in the rainfall intensity over the last few decades. However, the distribution of rainfall shows a striking decrease in the number of wet spells, with prolonged dry spells in both seasons. Weekly rainfall classification shows that the flowering and maturity stages of kharif maize (33rd-39th SMWs) can suffer around 30-40% of the total water stress. In the case of rabi maize, the analysis reveals that a shift in the sowing time from the existing 42nd SMW (16-22 October) to the 40th SMW (1-7 October) can avoid terminal water stress. Further, AquaCrop modeling results show that one or two minimal irrigations during the flowering and maturity stages (33rd-39th SMWs) of kharif maize positively avoid the mild water stress exposure. Similarly, rabi maize requires an additional two or three lifesaving irrigations during its flowering and maturity stages (48th-53rd SMWs) to improve productivity. Effective crop planning with appropriate sowing time, short duration crop, and high yielding drought-resistant varieties will allow for better utilization of the monsoon rain, thus reducing water stress with

  7. A greenhouse experiment for the identification of spectral indices for crop water and nitrogen status assessment

    Science.gov (United States)

    Marino Gallina, Pietro; Bechini, Luca; Cabassi, Giovanni; Cavalli, Daniele; Chiaradia, Enrico Antonio; Corti, Martina; Ferrante, Antonio; Martinetti, Livia; Masseroni, Daniele; Morgutti, Silvia; Nocito, Fabio Francesco; Facchi, Arianna

    2015-04-01

    Improvements in crop production depend on the correct adoption of agronomic and irrigation management strategies. The use of high spatial and temporal resolution monitoring methods may be used in precision agriculture to improve the efficiency in water and nutrient input management, guaranteeing the environmental sustainability of agricultural productions. In the last decades, many indices for the monitoring of water or nitrogen status of crops were developed by using multispectral images and, more recently, hyperspectral and thermal images acquired by satellite of airborne platforms. To date, however, comprehensive studies aimed at identifying indices as independent as possible for the management of the two types of stress are still scarce in the literature. Moreover, the chemometric approach for the statistical analysis of the acquired images is not yet widely experienced in this research area. In this context, this work presents the set-up of a greenhouse experiment that will start in February 2015 in Milan (Northern Italy), which aims to the objectives described above. The experiment will be carried out on two crops with a different canopy geometry (rice and spinach) subjected to four nitrogen treatments, for a total of 96 pots. Hyperspectral scanner and thermal images will be acquired at four phenological stages. At each phenological phase, acquisitions will be conducted on one-fourth of the pots, in the first instance in good water conditions and, subsequently, at different time steps after the cessation of irrigation. During the acquisitions, measurements of leaf area index and biomass, chlorophyll and nitrogen content in the plants, soil water content, stomatal conductance and leaf water potential will be performed. Moreover, on leaf samples, destructive biochemical analysis will be conducted to evaluate the physiological stress status of crops in the light of different irrigation and nutrient levels. Multivariate regression analysis between the acquired

  8. Capability of crop water content for revealing variability of winter wheat grain yield and soil moisture under limited irrigation.

    Science.gov (United States)

    Zhang, Chao; Liu, Jiangui; Shang, Jiali; Cai, Huanjie

    2018-08-01

    Winter wheat (Triticum aestivum L.) is a major crop in the Guanzhong Plain, China. Understanding its water status is important for irrigation planning. A few crop water indicators, such as the leaf equivalent water thickness (EWT: g cm -2 ), leaf water content (LWC: %) and canopy water content (CWC: kg m -2 ), have been estimated using remote sensing techniques for a wide range of crops, yet their suitability and utility for revealing winter wheat growth and soil moisture status have not been well studied. To bridge this knowledge gap, field-scale irrigation experiments were conducted over two consecutive years (2014 and 2015) to investigate relationships of crop water content with soil moisture and grain yield, and to assess the performance of four spectral process methods for retrieving these three crop water indicators. The result revealed that the water indicators were more sensitive to soil moisture variation before the jointing stage. All three water indicators were significantly correlated with soil moisture during the reviving stage, and the correlations were stronger for leaf water indicators than that of the canopy water indicator at the jointing stage. No correlation was observed after the heading stage. All three water indicators showed good capabilities of revealing grain yield variability in jointing stage, with R 2 up to 0.89. CWC had a consistent relationship with grain yield over different growing seasons, but the performances of EWT and LWC were growing-season specific. The partial least squares regression was the most accurate method for estimating LWC (R 2 =0.72; RMSE=3.6%) and comparable capability for EWT and CWC. Finally, the work highlights the usefulness of crop water indicators to assess crop growth, productivity, and soil water status and demonstrates the potential of various spectral processing methods for retrieving crop water contents from canopy reflectance spectrums. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Hotspots of inefficiency: Mapping the difference between crop production and food calorie delivery

    Science.gov (United States)

    Cassidy, E. S.; Foley, J. A.

    2012-12-01

    Meeting growing demands for food calories will be a substantial challenge. One place to search for solutions is in how we allocate the world's crops, and finding ways to feed more people with current crop production. Currently, a substantial proportion of crop calories are used as animal feed, and only a small fraction of those feed calories ultimately contribute to human diets. Countries like the United States and China, which together produce over a third of the world's meat, eggs and dairy, lose a substantial portion of calories and protein to the feed-to-animal conversion process. This study looks at global croplands that have a large difference between calories grown, and the food calories available for consumption. These hotspots have the potential to feed more people, while reducing environmental impacts of agriculture.;

  10. Rapid myelin water content mapping on clinical MR systems

    International Nuclear Information System (INIS)

    Tonkova, Vyara; Arhelger, Volker; Schenk, Jochen; Neeb, Heiko; Koblenz Univ.

    2012-01-01

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T 1 , T * 2 and total water content. Employing the multiexponential T * 2 decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T * 2 curve was compromised to 10 echo times with a T Emax of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T 1 , T * 2 , total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  11. Crop water productivity for sunflower under different irrigation regimes and plant spacing in Gezira Scheme, Sudan

    Directory of Open Access Journals (Sweden)

    Eman Rahamtalla Ahmed Elsheikh

    2015-12-01

    Full Text Available Two field experiments with Sunflower on deep cracking soil with heavy clay (vertisol were conducted at Gezira Research Station Farm during two executive winter seasons, in WadMedani, Sudan. The crop was sown in the third week of November and in the first week of December for seasons 2012 and 2013 respectively. The experimental design was split plot design with three replicates. The Sunflower hybrid tested in the study was Hysun 33. The objective of this study was to determine the effect of three different irrigation intervals of 10, 15 and 20 days and two intra-row plant spacings of 30 cm and 40 cm on yield and yield components of Sunflower. The seed yields obtained from the different treatments were in the ranges of 1890-3300 kg/ha and 1590-3290 kg/ha for the first and second season respectively. The corresponding computed on average crop water productivity was in the range of 0.31-0.43 kg/m3. The study clearly indicated that the highest seed yield was obtained when the crop was sown at 40 cm plant spacing and irrigated every 10 days. The highest crop water productivity was achieved from irrigation every15 days in both planting spacings

  12. Energy and Water Use Related to the Cultivation of Energy Crops: a Case Study in the Tuscany Region

    Directory of Open Access Journals (Sweden)

    Anna Dalla Marta

    2011-06-01

    Full Text Available The contribution of agrobiomasses, as a source of energy, to the reduction of greenhouse gas emissions was confirmed by several studies. Biomass from agriculture represents one of the larger and more diverse sources to exploit and in particular ethanol and diesel have the potential to be a sustainable replacement for fossil fuels, mainly for transport purposes. However, the cultivation of energy crops dedicated to the production of biofuels presents some potential problems, e.g., competitiveness with food crops, water needs, use of fertilizers, etc., and the economic, energy, and environmental convenience of such activity depends on accurate evaluations about the global efficiency of the production system. In this study, the processes related to the cultivation of energy crops were analyzed from an energy and water cost perspective. The crops studied, maize (Zea mais and sunflower (Helianthus annuus, were identified for their different water requirements and cultivation management, which in turns induces different energy costs. A 50-year climatic series of meteorological data from 19 weather stations scattered in the Tuscany region was used to feed the crop model CropSyst for the simulation of crop production, water requirement, and cultivation techniques. Obtained results were analyzed to define the real costs of energy crop cultivation, depending on energy and water balances. In the energy crop cultivation, the only positive energy balance was obtained with the more efficient system of irrigation whereas all the other cases provided negative balances. Concerning water, the results demonstrated that more than 1.000 liters of water are required for producing 1 liter of bioethanol. As a consequence, the cultivation of energy crops in the reserved areas of the region will almost double the actual water requirement of the agricultural sector in Tuscany.

  13. Simultaneous improvement in productivity, water use, and albedo through crop structural modification.

    Science.gov (United States)

    Drewry, Darren T; Kumar, Praveen; Long, Stephen P

    2014-06-01

    Spanning 15% of the global ice-free terrestrial surface, agricultural lands provide an immense and near-term opportunity to address climate change, food, and water security challenges. Through the computationally informed breeding of canopy structural traits away from those of modern cultivars, we show that solutions exist that increase productivity and water use efficiency, while increasing land-surface reflectivity to offset greenhouse gas warming. Plants have evolved to maximize capture of radiation in the upper leaves, thus shading competitors. While important for survival in the wild, this is suboptimal in monoculture crop fields for maximizing productivity and other biogeophysical services. Crop progenitors evolved over the last 25 million years in an atmosphere with less than half the [CO2] projected for 2050. By altering leaf photosynthetic rates, rising [CO2] and temperature may also alter the optimal canopy form. Here using soybean, the world's most important protein crop, as an example we show by applying optimization routines to a micrometeorological leaf canopy model linked to a steady-state model of photosynthesis, that significant gains in production, water use, and reflectivity are possible with no additional demand on resources. By modifying total canopy leaf area, its vertical profile and angular distribution, and shortwave radiation reflectivity, all traits available in most major crop germplasm collections, increases in productivity (7%) are possible with no change in water use or albedo. Alternatively, improvements in water use (13%) or albedo (34%) can likewise be made with no loss of productivity, under Corn Belt climate conditions. © 2014 California Institute of Technology. Government sponsorship acknowledged.

  14. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.

    Science.gov (United States)

    Möller, M; Alchanatis, V; Cohen, Y; Meron, M; Tsipris, J; Naor, A; Ostrovsky, V; Sprintsin, M; Cohen, S

    2007-01-01

    Achieving high quality wine grapes depends on the ability to maintain mild to moderate levels of water stress in the crop during the growing season. This study investigates the use of thermal imaging for monitoring water stress. Experiments were conducted on a wine-grape (Vitis vinifera cv. Merlot) vineyard in northern Israel. Irrigation treatments included mild, moderate, and severe stress. Thermal and visible (RGB) images of the crop were taken on four days at midday with a FLIR thermal imaging system and a digital camera, respectively, both mounted on a truck-crane 15 m above the canopy. Aluminium crosses were used to match visible and thermal images in post-processing and an artificial wet surface was used to estimate the reference wet temperature (T(wet)). Monitored crop parameters included stem water potential (Psi(stem)), leaf conductance (g(L)), and leaf area index (LAI). Meteorological parameters were measured at 2 m height. CWSI was highly correlated with g(L) and moderately correlated with Psi(stem). The CWSI-g(L) relationship was very stable throughout the season, but for that of CWSI-Psi(stem) both intercept and slope varied considerably. The latter presumably reflects the non-direct nature of the physiological relationship between CWSI and Psi(stem). The highest R(2) for the CWSI to g(L) relationship, 0.91 (n=12), was obtained when CWSI was computed using temperatures from the centre of the canopy, T(wet) from the artificial wet surface, and reference dry temperature from air temperature plus 5 degrees C. Using T(wet) calculated from the inverted Penman-Monteith equation and estimated from an artificially wetted part of the canopy also yielded crop water-stress estimates highly correlated with g(L) (R(2)=0.89 and 0.82, respectively), while a crop water-stress index using 'theoretical' reference temperatures computed from climate data showed significant deviations in the late season. Parameter variability and robustness of the different CWSI estimates

  15. Mapping Cropland and Major Crop Types Across the Great Lakes Basin Using MODIS-NDVI Data

    Science.gov (United States)

    This research evaluated the potential for using the MODIS Normalized Difference Vegetation Index (NDVI) 16-day composite (MOD13Q) 250-m time-series data to develop a cropland mapping capability throughout the 480 000 km2 Great Lakes Basin (GLB). Cropland mapping was conducted usi...

  16. Augmentation of Water Resources Potential and Cropping Intensification Through Watershed Programs.

    Science.gov (United States)

    Mondal, Biswajit; Singh, Alka; Singh, S D; Kalra, B S; Samal, P; Sinha, M K; Ramajayam, D; Kumar, Suresh

    2018-02-01

      This paper presents the biophysical impact of various interventions made under watershed development programs, in terms of the creation of additional water resources, and resultant changes in land use and cropping patterns in the Bundelkhand region of Madhya Pradesh State, India. Both primary and secondary data gathered from randomly selected watersheds and their corresponding control villages were used in this study. Analysis revealed that emphasis was given primarily to the creation of water resources potential during implementation of the programs, which led to augmentation of surface and groundwater availability for both irrigation and non-agricultural purposes. In addition, other land based interventions for soil and moisture conservation, plantation activities, and so forth, were taken up on both arable and nonarable land, which helped to improve land slope and land use, cropping pattern, agricultural productivity, and vegetation cover.

  17. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types

    International Nuclear Information System (INIS)

    Bhujbal, B.M.; Mistry, K.B.; Chapke, V.G.; Mutatkar, V.K.

    1977-01-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO 3 (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers. (author)

  18. Efficiency of ammonium nitrate phosphates of varying water-soluble phosphorus content for rice and succeeding maize crop on contrasting soil types. [/sup 32/P-labelled fertilizers

    Energy Technology Data Exchange (ETDEWEB)

    Bhujbal, B M; Mistry, K B [Bhabha Atomic Research Centre, Bombay (India). Biology and Agriculture Div.; Chapke, V G; Mutatkar, V K [Fertilizer Corp. of India Ltd., Bombay

    1977-09-01

    Efficiency of ammonium nitrate phosphates (ANP) containing 30 and 50 percent of water-soluble phosphorus (W.S.P.) vis-a-vis that of entirely water-soluble monoammonium orthophosphate (MAP) for rice and succeeding maize crop on phosphate responsive laterite, red sandy loam (Chalka) and calcareous black soils was examined in greenhouse experiments. Data on dry matter yield, uptake of phosphorus, utilization of applied fertilizer, 'Effective Rate of Application' and 'Relative Efficiency percent' at flowering stage of rice indicated no significant differences between ammonium nitrate phosphate (30 percent and 50 percent water-soluble ohosphorus) and monoammonium orthophosphate (MAP) on laterits and natural red sandy loam soils. MAP was significantly superior to the two ANP fertilizers on calcareous black soil; no significant differences were observed between ANP (30 percent W.S.P.) and ANP (50 percent W.S.P.) on this soil. The succeeding maize crop grown up to flowering in the same pots indicated that the residual value of ANP (30 percent W.S.P.) was equal or superior to that of MAP on the laterits as well as calcareous black soil. No significant differences were detected between the residual values of the two water-solubility grades of ANP. Incubation under submerged conditions for periods upto 60 days showed that 0.5 M NaHCO/sub 3/ (pH 8.5) extractable phosphorus (plant-available phosphate) in the ANP (30 percent W.S.P.) treatment was, in general, equal to those in the MAP treatments in the laterite and red sandy loam but was significantly lower in the calcareous black soil. No marked differences were observed between the effects of the two ANP fertilizers.

  19. Detection of crop water status in mature olive orchards using vegetation spectral measurements

    Science.gov (United States)

    Rallo, Giovanni; Ciraolo, Giuseppe; Farina, Giuseppe; Minacapilli, Mario; Provenzano, Giuseppe

    2013-04-01

    Leaf/stem water potentials are generally considered the most accurate indicators of crop water status (CWS) and they are quite often used for irrigation scheduling, even if costly and time-consuming. For this reason, in the last decade vegetation spectral measurements have been proposed, not only for environmental monitoring, but also in precision agriculture, to evaluate crop parameters and consequently for irrigation scheduling. Objective of the study was to assess the potential of hyperspectral reflectance (450-2400 nm) data to predict the crop water status (CWS) of a Mediterranean olive orchard. Different approaches were tested and particularly, (i) several standard broad- and narrow-band vegetation indices (VIs), (ii) specific VIs computed on the basis of some key wavelengths, predetermined by simple correlations and finally, (iii) using partial least squares (PLS) regression technique. To this aim, an intensive experimental campaign was carried out in 2010 and a total of 201 reflectance spectra, at leaf and canopy level, were collected with an ASD FieldSpec Pro (Analytical Spectral Devices, Inc.) handheld field spectroradiometer. CWS was contemporarily determined by measuring leaf and stem water potentials with the Scholander chamber. The results indicated that the considered standard vegetation indices were weakly correlated with CWS. On the other side, the prediction of CWS can be improved using VIs pointed to key-specific wavelengths, predetermined with a correlation analysis. The best prediction accuracy, however, can be achieved with models based on PLS regressions. The results confirmed the dependence of leaf/canopy optical features from CWS so that, for the examined crop, the proposed methodology can be considered a promising tool that could also be extended for operational applications using multispectral aerial sensors.

  20. Green Fodder Production and Water Use Efficiency of Some Forage Crops under Hydroponic Conditions

    OpenAIRE

    Ghazi N. Al-Karaki; M. Al-Hashimi

    2012-01-01

    The objectives of this study were to evaluate five forage crops (alfalfa (Medicago sativa), barley (Hordeum vulgare), cowpea (Vigna unguiculata), sorghum (Sorghum bicolor), and wheat (Triticum aestivum)) for green fodder production and water use efficiency under hydroponic conditions. The experiment has been conducted under temperature-controlled conditions (24 ± 1°C) and natural window illumination at growth room of Soilless Culture Laboratory, Arabian Gulf University, Manama, Bahrain. The r...

  1. Combined Use of a Crop Model and FORMOSAT-2 Images for Permanent Grassland and Water Monitoring in Mediterranean Region

    Science.gov (United States)

    Hadria, Rachid; Courault, Dominique; Ruget, Francois; Olioso, Albert; Duchemin, Benoit; Desfonds, Veronique; Bertrand, Nadine; Hagolle, Olivier; Dedieu, Gerard

    2009-11-01

    The objective of this study is to provide tools to improve crop and water management in Mediterranean regions. The specific aim is twofold: 1) study the feasibility of using optical remote sensing data acquired at high spatio-temporal resolutions for crop agricultural practice monitoring and, 2) test the capacity of crop modelling to estimated water balance and crop production.We developed a methodology based on the combined use of FORMOSAT-2 images and STICS crop model to estimate evapotranspiration and drainage of irrigated grasslands in 'the Crau' region in the South Eastern France. Simple algorithms were developed to retrieve the dynamic of Leaf Area Index (LAI) for each plot of the studied region and the main agricultural practices such as mowing and irrigation dates. This information was then used to parameterize STICS, applied at region scale to estimate the spatial variability of water budget associated with the biomass productions. Satisfactory results were obtained when compared to ground measurements.s

  2. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.

    Directory of Open Access Journals (Sweden)

    Jingting Zhang

    Full Text Available It has long been concerned how crop water use efficiency (WUE responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation and agronomic practices (fertilization and cropping patterns in the semi-arid area of northern China (SAC during two periods, 1983-1999 and 2000-2010 (drier and warmer. Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax in warm-dry environment while reach the stable minimum WUE (WUEmin in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6-11.0% and 19.5-92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping. Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming.

  3. Responses of Crop Water Use Efficiency to Climate Change and Agronomic Measures in the Semiarid Area of Northern China.

    Science.gov (United States)

    Zhang, Jingting; Ren, Wei; An, Pingli; Pan, Zhihua; Wang, Liwei; Dong, Zhiqiang; He, Di; Yang, Jia; Pan, Shufen; Tian, Hanqin

    2015-01-01

    It has long been concerned how crop water use efficiency (WUE) responds to climate change. Most of existing researches have emphasized the impact of single climate factor but have paid less attention to the effect of developed agronomic measures on crop WUE. Based on the long-term field observations/experiments data, we investigated the changing responses of crop WUE to climate variables (temperature and precipitation) and agronomic practices (fertilization and cropping patterns) in the semi-arid area of northern China (SAC) during two periods, 1983-1999 and 2000-2010 (drier and warmer). Our results suggest that crop WUE was an intrinsical system sensitive to climate change and agronomic measures. Crops tend to reach the maximum WUE (WUEmax) in warm-dry environment while reach the stable minimum WUE (WUEmin) in warm-wet environment, with a difference between WUEmax and WUEmin ranging from 29.0%-55.5%. Changes in temperature and precipitation in the past three decades jointly enhanced crop WUE by 8.1%-30.6%. Elevated fertilizer and rotation cropping would increase crop WUE by 5.6-11.0% and 19.5-92.9%, respectively. These results indicate crop has the resilience by adjusting WUE, which is not only able to respond to subsequent periods of favorable water balance but also to tolerate the drought stress, and reasonable agronomic practices could enhance this resilience. However, this capacity would break down under impact of climate changes and unconscionable agronomic practices (e.g. excessive N/P/K fertilizer or traditional continuous cropping). Based on the findings in this study, a conceptual crop WUE model is constructed to indicate the threshold of crop resilience, which could help the farmer develop appropriate strategies in adapting the adverse impacts of climate warming.

  4. Spatial and temporal variability of water soluble carbon for a cropped field

    International Nuclear Information System (INIS)

    Liss, H.J.; Rolston, D.E.

    1983-01-01

    The water soluble carbon from soil extracts was taken from a two-hundred point grid established on a 1.2 ha field. The sampling was in the fall after the harvest of a sorghum crop. The concentrations ranged from 23.8 ppm to 274.2 ppm. Over 90 per cent of the concentrations were grouped around the mean of 40.3 ppm. The higher values caused the distribution to be greatly skewed such that neither normal nor log normal distributions characterized the data very well. The moisture content from the same samples followed normal distribution. Changes in the mean, the variance and the distribution of water soluble carbon were followed on 0.4 ha of the 1.2 ha in a grid of sixty points during a crop of wheat and a subsequent crop of sorghum. The mean increased in the spring, decreased in the summer and increased again in the fall. The spring and summer concentrations are well characterized by log normal distributions. The spatial dependence of water soluble carbon was examined on a fifty-five point transect across the field spaced every 1.37 m. The variogram indicated little or no dependence at this spacing. (author)

  5. The application of water poverty mapping in water management

    OpenAIRE

    Jordaan, Dawid Benjamin; Van Der Vyver, Charles

    2012-01-01

    Water management has been carried out for many centuries wherever there has been a need to provide water to large numbers of people. Complex social norms have developed around water management and competing users have established political (governance) and economic cooperative relationships. For example, community-managed irrigation schemes in Bali and the cloud-collection canals built by the Incas at Inca Pirca in Peru are examples of water management systems which still currently supply wat...

  6. The limit of irrigation adaption due to the inter-crop conflict of water use under changing climate and landuse

    Science.gov (United States)

    Okada, M.; Iizumi, T.; Sakamoto, T.; Kotoku, M.; Sakurai, G.; Nishimori, M.

    2017-12-01

    Replacing rainfed cropping system by irrigated one is assumed to be an effective measure for climate change adaptation in agriculture. However, in many agricultural impact assessments, future irrigation scenarios are externally given and do not consider variations in the availability of irrigation water under changing climate and land use. Therefore, we assess the potential effects of adaption measure expanding irrigated area under climate change by using a large-scale crop-river coupled model, CROVER [Okada et al. 2015, JAMES]. The CROVER model simulates the large-scale terrestrial hydrological cycle and crop growth depending on climate, soil properties, landuse, crop cultivation management, socio-economic water demand, and reservoir operation management. The bias-corrected GCMs outputs under the RCP 8.5 scenario were used. The future expansion of irrigation area was estimated by using the extrapolation method based on the historical change in irrigated and rainfed areas. As the results, the irrigation adaptation has only a limited effect on the rice production in East Asia due to the conflict of water use for irrigation with the other crops, whose farmlands require unsustainable water extraction with the excessively expanding irrigated area. In contrast, the irrigation adaptation benefits maize production in Europe due to the little conflict of water use for irrigation. Our findings suggest the importance of simulating the river water availability and crop production in a single model for the more realistic assessment in the irrigation adaptation potential effects of crop production under changing climate and land use.

  7. Global sensitivity and uncertainty analysis of the nitrate leaching and crop yield simulation under different water and nitrogen management practices

    Science.gov (United States)

    Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...

  8. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China

    NARCIS (Netherlands)

    Wang, X.B.; Dai, K.; Zhang, D.; Zhang, X.; Wang, Y.; Zhao, Q.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.

    2011-01-01

    Rainfed crop production in northern China is constrained by low and variable rainfall. This study explored the effects of tillage/crop residue and nutrient management practices on maize (Zea mays L.) yield, water use efficiency (WUE), and N agronomic use efficiency (NAE) at Shouyang Dryland Farming

  9. Vegetation Water Content Mapping in a Diverse Agricultural Landscape: National Airborne Field Experiment 2006

    Science.gov (United States)

    Cosh, Michael H.; Jing Tao; Jackson, Thomas J.; McKee, Lynn; O'Neill, Peggy

    2011-01-01

    Mapping land cover and vegetation characteristics on a regional scale is critical to soil moisture retrieval using microwave remote sensing. In aircraft-based experiments such as the National Airborne Field Experiment 2006 (NAFE 06), it is challenging to provide accurate high resolution vegetation information, especially on a daily basis. A technique proposed in previous studies was adapted here to the heterogenous conditions encountered in NAFE 06, which included a hydrologically complex landscape consisting of both irrigated and dryland agriculture. Using field vegetation sampling and ground-based reflectance measurements, the knowledge base for relating the Normalized Difference Water Index (NDWI) and the vegetation water content was extended to a greater diversity of agricultural crops, which included dryland and irrigated wheat, alfalfa, and canola. Critical to the generation of vegetation water content maps, the land cover for this region was determined from satellite visible/infrared imagery and ground surveys with an accuracy of 95.5% and a kappa coefficient of 0.95. The vegetation water content was estimated with a root mean square error of 0.33 kg/sq m. The results of this investigation contribute to a more robust database of global vegetation water content observations and demonstrate that the approach can be applied with high accuracy. Keywords: Vegetation, field experimentation, thematic mapper, NDWI, agriculture.

  10. Impacts of Past Land Use Changes on Water Resources: An Analog for Assessing Effects of Proposed Bioenergy Crops

    Science.gov (United States)

    Scanlon, B. R.; Schilling, K.; Young, M.; Duncan, I. J.; Gerbens-Leenes, P.

    2011-12-01

    Interest is increasing in renewable energy sources, including bioenergy. However, potential impacts of bioenergy crops on water resources need to be better understood before large scale expansion occurs. This study evaluates the potential for using past land use change impacts on water resources as an analog for assessing future bioenergy crop effects. Impacts were assessed for two cases and methods: (1) changes from perennial to annual crops in the Midwest U.S. using stream hydrograph separation; and (2) changes from perennial grasses and shrubs to annual crops in the Southwest U.S. using unsaturated zone and groundwater data. Results from the Midwest show that expanding the soybean production area by 80,000 km2 increased stream flow by 32%, based on data from Keokuk station in the Upper Mississippi River Basin. Using these relationships, further expansion of annual corn production for biofuels by 10 - 50% would increase streamflow by up to 40%, with related increases in nitrate, phosphate, and sediment pollutant transport to the Gulf of Mexico. The changes in water partitioning are attributed to reducing evapotranspiration, increasing recharge and baseflow discharge to streams. Similar results were found in the southwestern US, where changes from native perennial grasses and shrubs to annual crops increased recharge from ~0.0 to 24 mm/yr, raising water tables by up to 7 m in some regions and flushing accumulated salts into underlying aquifers in the southern High Plains. The changes in water partitioning are related to changes in rooting depth from deep rooted native vegetation to shallow rooted crops and growing season length. Further expansion of annual bioenergy crops, such as changes from Conservation Reserve Program to corn in the Midwest, will continue the trajectory of reducing ET, thereby increasing recharge and baseflow to streams and nutrient export. We hypothesize that changing bioenergy crops from annual crops to perennial grasses, such as switchgrass

  11. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    Directory of Open Access Journals (Sweden)

    F. Steinbacher

    2012-07-01

    Full Text Available In order to meet the requirements of the European Water Framework Directive (EU-WFD, authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river

  12. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  13. Yields of cotton and other crops as affected by applications of sulfuric acid in irrigation water

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, P.D.; Lyerly, P.J.

    1954-01-01

    Effects of sulfuric acid on crop yields and on some physical and chemical properties of a calcareous soil were investigated in a field experiment from 1947 through 1952. On cotton plots, the treatments consisted of applications of irrigation water containing no acid (pH 8.3), water acidified to pH 6, and water acidified to pH 2.3. Cotton was grown five seasons followed by sesbania the sixth season. A test on alfalfa was established using irrigation water not acidified and water acidifeid to pH 4. Alfalfa was grown for 3 years. The fourth year the alfalfa was plowed under and a crop of corn was raised. Cotton yields on the acid plots relative to the checks became progressively higher (with two exceptions) from one year to the next; however, in only one year (1950) were differences in yield statistically significant. With sesbania following cotton, highly significant yield increases resulted from the high acid treatment. Alfalfa yields on the acid plots became progressively greater relative to the non-acid plots, but yield differences were not significant. In cotton leaves, the acid treatments resulted in increased uptake of magnesium, sulfur, and phosphorus, but the increases were probably not significant. Uptake of sodium, potassium, calcium, manganese, and iron were not appreciably affected. In sesbania, the acid treatments did not significantly alter the uptake of any of the plant nutrients determined. There was some indication, however, that the uptake of sodium and iron was reduced by the acidification. The results of this study support the view that soil acidification on calcareous soils may improve the soil physical conditions and result in increased yields, particularly in some crops. The application of acid in the irrigation water did not prove to be economically feasible. 12 references, 1 figure, 7 tables.

  14. Water Productivity Mapping (WPM Using Landsat ETM+ Data for the Irrigated Croplands of the Syrdarya River Basin in Central Asia

    Directory of Open Access Journals (Sweden)

    Sabirjan Isaev

    2008-12-01

    Full Text Available The overarching goal of this paper was to espouse methods and protocols for water productivity mapping (WPM using high spatial resolution Landsat remote sensing data. In a world where land and water for agriculture are becoming increasingly scarce, growing “more crop per drop” (increasing water productivity becomes crucial for food security of future generations. The study used time-series Landsat ETM+ data to produce WPMs of irrigated crops, with emphasis on cotton in the Galaba study area in the Syrdarya river basin of Central Asia. The WPM methods and protocols using remote sensing data consisted of: (1 crop productivity (ton/ha maps (CPMs involvingcrop type classification, crop yield and biophysical modeling, and extrapolating yield models to larger areas using remotely sensed data; (2 crop water use (m3/ha maps (WUMs (or actual seasonal evapotranspiration or actual ET developed through Simplified Surface Energy Balance (SSEB model; and (3 water productivity (kg/m3 maps (WPMs produced by dividing raster layers of CPMs by WUMs. The SSEB model calculated WUMs (actual ET by multiplying the ET fractionby reference ET. The ETfraction was determined using Landsat thermal imagery by selecting the “hot” pixels (zero ET and “cold” pixels (maximum ET. The grass reference ET was calculated by FAO Penman-Monteith method using meteorological data. The WPMs for the Galaba study area demonstrated a wide variations (0-0.54 kg/m3 in water productivity of cotton fields with overwhelming proportion (87% of the area having WP less than 0.30 kg/m3, 11% of the area having WP in range of 0.30-0.36 kg/m3, and only 2% of the area with WP greater than 0.36 kg/m3. These results clearly imply that there are opportunities for significant WP increases in overwhelming proportion of the existing croplands. The areas of low WP are spatially pin-pointed and can be used as focus for WP improvements

  15. Effects of Watering and Nitrogen Fertilization on Yield and Water and Nitrogen Use Efficiency of Cropping Oil Sunflower

    Directory of Open Access Journals (Sweden)

    TAN Jian-xin

    2015-10-01

    Full Text Available The field experiment with split-plot design was conducted to study the effects of the interaction of water and nitrogen fertilization on the growth and yield of oil sunflower, water and nitrogen use efficiency of cropping oil sunflower. This experiment set three irrigation rate treatments, including high irrigation treatment (5 250 m3·hm-2, middle irrigation treatment (3 750 m3·hm-2, low irrigation treatment (2 250 m3·hm-2, and four nitrogen application rate treatments, covering no nitrogen fertilization treatment (0 kg·hm-2, low nitrogen application treatment (120 kg·hm-2, middle nitrogen application treatment (240 kg·hm-2 and high nitrogen application treatment (360 kg·hm-2. The results showed that the nitrogen absorption and nitrogen use efficiency of cropping oil sunflower increased as the irrigation rate increased. With the nitrogen application rate increased, the yield of cropping oil sunflower was increased when the nitrogen application rate was 0~240 kg·hm-2, but beyond the 240 kg·hm-2, there was no significant increase. With the irrigation rate increased, the water consumption amount of cropping oil sunflower increased all the time, but the water use efficiency increased first, and hen decreased. Besides there was no significant difference between 240 kg·hm-2 and 360 kg·hm-2 treatment. Under our experiment condition, during the cropping oil sunflower growth period, when the irrigation rate was 5 250 m3·hm-2 (high irrigation rate and the nitrogen ertilization was 360 m3·hm-2 (high nitrogen application rate, the yield of cropping oil sunflower was 3 598 kg·hm-2. When the irrigation rate was 3 750 m3·hm-2 (middle irrigation rate and the nitrogen fertilization was 240 m3·hm-2 (middle nitrogen application rate, the yield was 3 518 kg·hm-2, with the yield components similar with the high irrigation rate and high nitrogen application rate treatment. Considering various factors, middle irrigation rate and middle nitrogen

  16. Estimation of water consumption of tomato crops planted in rock wool bed in greenhouse

    International Nuclear Information System (INIS)

    Ito, K.; Senge, M.; Iwama, K.; Hashimoto, I.

    2002-01-01

    For estimating the crop water consumption, it is necessary to determine meteorological data in greenhouse from open field data and calculate potential evaporation. In this study, temperature, humidity, wind velocity and solar radiation were measured in greenhouse as well as in open field. Then, we compared the meteorological data of greenhouse with that of open field. Results of the comparison differed from the reference values of the Official Manual (1997). Humidity during heating period and wind velocity in the greenhouse cannot be evaluated from the steps of the Official Manual. We applied the original equation that was derived in this observation to calculate the potential evaporation in the greenhouse. It became apparent that the potential evaporation could be estimated using open field data. A portion of irrigated water was consumed by vegetation and remainder was discharged from rock wool bed. Mean daily water consumption during the measurement period was 2.50(mm/d), with a monthly maximum occurring in July with 3.54(mm/d). Discharged water amounted to 9% of irrigated water. Tomato's crop coeffieiency with rock wool cultivation was calculated by potential evaporation and water consumption. In this field, this value was smaller than those recorded in the Official Manual. The amount of irrigation was same in all segments of the greenhouse. However, water consumption was affected by incident energy. A portion of discharged water (5% of irrigation water in this greenhouse) could not be saved because there existed a differential volume need for some plants which consumed more water in relation to others

  17. Coupled Crop/Hydrology Model to Estimate Expanded Irrigation Impact on Water Resources

    Science.gov (United States)

    Handyside, C. T.; Cruise, J.

    2017-12-01

    A coupled agricultural and hydrologic systems model is used to examine the environmental impact of irrigation in the Southeast. A gridded crop model for the Southeast is used to determine regional irrigation demand. This irrigation demand is used in a regional hydrologic model to determine the hydrologic impact of irrigation. For the Southeast to maintain/expand irrigated agricultural production and provide adaptation to climate change and climate variability it will require integrated agricultural and hydrologic system models that can calculate irrigation demand and the impact of the this demand on the river hydrology. These integrated models can be used as (1) historical tools to examine vulnerability of expanded irrigation to past climate extremes (2) future tools to examine the sustainability of expanded irrigation under future climate scenarios and (3) a real-time tool to allow dynamic water resource management. Such tools are necessary to assure stakeholders and the public that irrigation can be carried out in a sustainable manner. The system tools to be discussed include a gridded version of the crop modeling system (DSSAT). The gridded model is referred to as GriDSSAT. The irrigation demand from GriDSSAT is coupled to a regional hydrologic model developed by the Eastern Forest Environmental Threat Assessment Center of the USDA Forest Service) (WaSSI). The crop model provides the dynamic irrigation demand which is a function of the weather. The hydrologic model includes all other competing uses of water. Examples of use the crop model coupled with the hydrologic model include historical analyses which show the change in hydrology as additional acres of irrigated land are added to water sheds. The first order change in hydrology is computed in terms of changes in the Water Availability Stress Index (WASSI) which is the ratio of water demand (irrigation, public water supply, industrial use, etc.) and water availability from the hydrologic model. Also

  18. Management of Brackish water for crop production under arid and semi-arid conditions

    International Nuclear Information System (INIS)

    Murtaza, G.; Ghafoor, A.; Akhtar, S.; Shah, S.H.; Mahmood, N.

    2005-01-01

    For sustainable crop production, changing soil or water chemistry so as to counter the adverse effects of brackish water is a good option. This is normally accomplished by soil or water applied amendments such as gypsum. The other option of blending or cycling brackish and non-brackish water also has merits to reduce the potential hazards. The biological and organic amendments improve soil physical conditions which, otherwise, are expected to be deteriorated by the use of brackish water. Keeping this in view, a field experiment was conducted on a non saline-non sodic sandy loam soil (EC/sub e/ 1.31-1.76 dS m/sup -1/, pH = 8.47-8.61, SAR = 5.50-7.41, infiltration rate 0.6-0.8 cm/h, bulk density = 1.56-1.61 Mg m/sup -3/ for the upper 15 cm soil depth) to evaluate the growth response of cotton crop to different soil and water treatments. Treatments included: T/sub 1/ canal water), T/sub 2/ [tube well water (EC = 3.38 dS m/sup -1/, SAR = 16.43 and RSC = 5.57 mmol/sub c/ L/sup -1/)], T3 [cyclic use (alternate irrigations with canal and tube well waters)], T/sub 4/ (tube well water as such + FYM at the rate of 25 Mg ha/sup -1/annually) and T/sub 5/ (tube well water + gypsum at the rate of water gypsum requirement (WRSC to be decreased up to 00). During the first year of experimentation seed cotton yield was not significantly affected by the applied treatments and was in the decreasing order of: T/sub 3/ (2361 kg ha/sup -1/) > T/sub 4/ (2073 kg ha/sup -1/) > T 1 (2015 kg ha/sup -1/) > T/sub 5/ (2001 kg ha.1 and T 2 (1982 ha/sup -1/. Number of bolls picked per plant was in the decreasing order of: T 2 (33) > T/sub 4/ (32) > T/sub 1/ (31) > T/sub 3/ (30) and T/sub 5/ (26) with non-significant treatment differences. The pH, EC/sub e/ and SAR values remained below safe limits by this cotton (first) crop. (author)

  19. Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data

    Science.gov (United States)

    Zhu, Likai; Radeloff, Volker C.; Ives, Anthony R.

    2017-06-01

    Mapping crop types is of great importance for assessing agricultural production, land-use patterns, and the environmental effects of agriculture. Indeed, both radiometric and spatial resolution of Landsat's sensors images are optimized for cropland monitoring. However, accurate mapping of crop types requires frequent cloud-free images during the growing season, which are often not available, and this raises the question of whether Landsat data can be combined with data from other satellites. Here, our goal is to evaluate to what degree fusing Landsat with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data can improve crop-type classification. Choosing either one or two images from all cloud-free Landsat observations available for the Arlington Agricultural Research Station area in Wisconsin from 2010 to 2014, we generated 87 combinations of images, and used each combination as input into the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to predict Landsat-like images at the nominal dates of each 8-day MODIS NBAR product. Both the original Landsat and STARFM-predicted images were then classified with a support vector machine (SVM), and we compared the classification errors of three scenarios: 1) classifying the one or two original Landsat images of each combination only, 2) classifying the one or two original Landsat images plus all STARFM-predicted images, and 3) classifying the one or two original Landsat images together with STARFM-predicted images for key dates. Our results indicated that using two Landsat images as the input of STARFM did not significantly improve the STARFM predictions compared to using only one, and predictions using Landsat images between July and August as input were most accurate. Including all STARFM-predicted images together with the Landsat images significantly increased average classification error by 4% points (from 21% to 25%) compared to using only Landsat

  20. High Nitrogen Fertilization of Tobacco Crop in Headwater Watershed Contaminates Subsurface and Well Waters with Nitrate

    Directory of Open Access Journals (Sweden)

    D. R. Kaiser

    2015-01-01

    Full Text Available Our hypothesis was that subsurface and well waters in watershed with shallow, stony soils, steep landscapes, and cropped to tobacco are contaminated by nitrate. Nitrate in soil solution was monitored in (0.20 m and below (0.5 m root zone with tension lysimeters, in five transects. Water from two wells (beneath tobacco field and in native forest used for human consumption was also analyzed for nitrate. Soil bulk density, porosity, and saturated hydraulic conductivity were evaluated. Soil physical and hydrological properties showed great variation at different landscape positions and soil depths. Soil coarse grain size, high porosity, and saturated hydraulic conductivity favored leaching nitrate. Nitrate in soil solution from tobacco fields was greater than in natural environment. Nitrate reached depths bellow rooting zone with values as high as 80 mg L−1 in tobacco plantation. Water well located below tobacco plantation had high nitrate concentration, sometimes above the critical limit of 10 mg L−1. Tobacco cropping causes significant water pollution by nitrate, posing risk to human health. A large amount of nitrogen fertilizers applied to tobacco and nitrate in subsurface waters demonstrate the unsustainability of tobacco production in small farming units on steeps slopes, with stony and shallow soils.

  1. Water Quality Changes in a Short-Rotation Woody Crop Riparian Buffer

    Science.gov (United States)

    Rosa, D.; Clausen, J.; Kuzovkina, J.

    2016-12-01

    Converting riparian buffers in agricultural areas from annual row crops to short rotation woody crops (SRWCs) grown for biofuel can provide both water quality benefits and a financial incentive for buffer adoption among agricultural producers. A randomized complete block design was used to determine water quality changes resulting from converting plots previously cultivated in corn to SRWC willow (Salix. spp) adjacent to a stream in Storrs, CT. Both overland flow and ground water samples were analyzed for total nitrogen (TN), nitrate + nitrite (NO2+NO3-N), and total phosphorus (TP). Overland flow was also analyzed for suspended solids concentration (SSC). Lower (p = 0.05) concentrations of TN (56%) and TP (61%) were observed in post-coppice surface runoff from willow plots than from corn plots. Shallow ground water concentrations at the edge of willow plots were lower in TN (56%) and NO3+NO2-N (64%), but 35% higher in TP, than at the edge of corn plots. SSC was also lower (72%) in overland flow associated with willow compared to corn. The treatment had no effect on discharge or mass export. These results suggest conversion from corn to a SRWC in a riparian area can provide water quality benefits similar to those observed in restored and established buffers.

  2. Drainage water management combined with cover crop enhances reduction of soil phosphorus loss.

    Science.gov (United States)

    Zhang, T Q; Tan, C S; Zheng, Z M; Welacky, T; Wang, Y T

    2017-05-15

    Integrating multiple practices for mitigation of phosphorus (P) loss from soils may enhance the reduction efficiency, but this has not been studied as much as individual ones. A four-year study was conducted to determine the effects of cover crop (CC) (CC vs. no CC, NCC) and drainage water management (DWM) (controlled drainage with sub-irrigation, CDS, vs. regular free tile drainage, RFD) and their interaction on P loss through both surface runoff (SR) and tile drainage (TD) water in a clay loam soil of the Lake Erie region. Cover crop reduced SR flow volume by 32% relative to NCC, regardless of DWM treatment. In contrast, CC increased TD flow volume by 57 and 9.4% with CDS and RFD, respectively, compared to the corresponding DWM treatment with NCC. The total (SR+TD) field water discharge volumes were comparable amongst all the treatments. Cover crop reduced flow-weighted mean (FWM) concentrations of particulate P (PP) by 26% and total P (TP) by 12% in SR, while it didn't affect the FWM dissolved reactive P (DRP) concentration, regardless of DWM treatments. Compared with RFD, CDS reduced FWM DRP concentration in TD water by 19%, while CC reduced FWM PP and TP concentrations in TD by 21 and 17%, respectively. Total (SR+TD) soil TP loss was the least with CDS-CC followed by RFD-CC, CDS-NCC, and RFD-NCC. Compared with RFD-NCC, currently popular practice in the region, total TP loss was reduced by 23% with CDS-CC. The CDS-CC system can be an effective practice to ultimately mitigate soil P loading to water resource. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Water allocations and mulching in castor bean crops in a semiarid Fluvic Neossol

    Directory of Open Access Journals (Sweden)

    Júlio José do Nascimento Silva

    Full Text Available The influence of different irrigation levels, both with and without mulching, was evaluated for the growth variables of productivity, production components and water use efficiency, in a castor bean crop (Ricinus Comunnis cv. BRS Energia, in a Fluvic Neossol of the semiarid in the Brazilian state of Pernambuco. The experimental design used was completely randomised in a factorial of 4 (irrigation levels × 2 (with and without mulch, with four replications. The irrigation levels were based on the evapotranspiration of the crop (ETc, with L1 = 60% ETc, L2 = 80% ETc, L3 = 100% ETc and L4 = 120% ETc. All growth variables showed significant differences to the mulch at 120 days after germination. The number of racemes per plant, percentage of bark, and water use efficiency responded significantly to the presence of mulch on the ground, while length of racemes, fruit yield and berry yield responded significantly to the isolated effects of the irrigation levels and ground cover. Levels L3 and L4 improved the performance of the crop, with an average productivity of over 2,360 kg berries ha-1.

  4. Crop water productivity under increasing irrigation capacities in Romania. A spatially-explicit assessment of winter wheat and maize cropping systems in the southern lowlands of the country

    Science.gov (United States)

    Dogaru, Diana

    2016-04-01

    Improved water use efficiency in agriculture is a key issue in terms of sustainable management and consumption of water resources in the context of peoples' increasing food demands and preferences, economic growth and agricultural adaptation options to climate variability and change. Crop Water Productivity (CWP), defined as the ratio of yield (or value of harvested crop) to actual evapotranspiration or as the ratio of yield (or value of harvested crop) to volume of supplied irrigation water (Molden et al., 1998), is a useful indicator in the evaluation of water use efficiency and ultimately of cropland management, particularly in the case of regions affected by or prone to drought and where irrigation application is essential for achieving expected productions. The present study investigates the productivity of water in winter wheat and maize cropping systems in the Romanian Plain (49 594 sq. km), an important agricultural region in the southern part of the country which is increasingly affected by drought and dry spells (Sandu and Mateescu, 2014). The scope of the analysis is to assess the gains and losses in CWP for the two crops, by considering increased irrigated cropland and improved fertilization, these being the most common measures potentially and already implemented by the farmers. In order to capture the effects of such measures on agricultural water use, the GIS-based EPIC crop-growth model (GEPIC) (Williams et al., 1989; Liu, 2009) was employed to simulate yields, seasonal evapotranspiration from crops and volume of irrigation water in the Romanian Plain for the 2002 - 2013 interval with focus on 2007 and 2010, two representative years for dry and wet periods, respectively. The GEPIC model operates on a daily time step, while the geospatial input datasets for this analysis (e.g. climate data, soil classes and soil parameters, land use) were harmonized at 1km resolution grid cell. The sources of the spatial data are mainly the national profile agencies

  5. Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes

    Science.gov (United States)

    The semi-arid regions of western U.S., India, China, and other parts of the world produce a major portion of the world’s food and fiber needs—from staple food grains of wheat, rice, and corn, to vegetables, fruits, nuts, wine, cotton, and forage crops for cattle and poultry. Most of this production ...

  6. Drip and Surface Irrigation Water Use Efficiency of Tomato Crop Using Nuclear Techniques

    International Nuclear Information System (INIS)

    Mellouli, H.J.; Askri, H.; Mougou, R.

    2003-01-01

    Nations in the arid and semi-arid regions, especially the Arab countries, will have to take up an important challenge at the beginning of the 21 st century: increasing food production in order to realise food security for growing population, wile optimising the use of limited water resources. Using and adapting management techniques like the drip irrigation system could obtain the later. This would allow reduction in water losses by bare soil evaporation and deep percolation. Consequently improved water use efficiency could be realised. In this way, this work was conducted as a contribution on the Tunisian national programs on the optimisation of the water use. By mean a field study at Cherfech Experimental Station (30 km from Tunis), the effect of the irrigation system on the water use efficiency (WUE)-by a season tomato crop-was monitored by comparing three treatments receiving equivalent quantities of fertiliser: Fertigation, Drip irrigation and Furrow irrigation. Irrigation was scheduled by mean calculation of the water requirement based on the agro meteorological data, the plant physiological stage and the soil water characteristics (Clay Loam). The plant water consumption (ETR) was determined by using soil water balance method, where rainfall and amount of irrigation water readily measured

  7. Rapid myelin water content mapping on clinical MR systems

    Energy Technology Data Exchange (ETDEWEB)

    Tonkova, Vyara; Arhelger, Volker [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Schenk, Jochen [Radiologisches Institut, Koblenz (Germany); Neeb, Heiko [Fachhochschule Koblenz, RheinAhrCampus Remagen (Germany); Koblenz Univ. (Germany). Inst. for Medical Engineering and Information Processing - MTI Mittelrhein

    2012-07-01

    We present an algorithm for the fast mapping of myelin water content using standard multiecho gradient echo acquisitions of the human brain. The method extents a previously published approach for the simultaneous measurement of brain T{sub 1}, T{sup *}{sub 2} and total water content. Employing the multiexponential T{sup *}{sub 2} decay signal of myelinated tissue, myelin water content was measured based on the quantification of two water pools ('myelin water' and 'rest') with different relaxation times. As the existing protocol was focussed on the fast mapping of quantitative MR parameters with whole brain coverage in clinically relevant measurement times, the sampling density of the T{sup *}{sub 2} curve was compromised to 10 echo times with a T {sub Emax} of approx. 40 ms. Therefore, pool amplitudes were determined using a quadratic optimisation approach. The optimisation was constrained by including a priori knowledge about brain water pools. All constraints were optimised in a simulation study to minimise systematic error sources given the incomplete knowledge about the real pool-specific relaxation properties. Based on the simulation results, whole brain in vivo myelin water content maps were acquired in 10 healthy controls and one subject with multiple sclerosis. The in vivo results obtained were consistent with previous reports which demonstrates that a simultaneous whole brain mapping of T{sub 1}, T{sup *}{sub 2}, total and myelin water content is feasible on almost any modern MR scanner in less than 10 minutes. (orig.)

  8. Response of nitrogen-fixing water fern Azolla biofertilization to rice crop.

    Science.gov (United States)

    Bhuvaneshwari, K; Singh, Pawan Kumar

    2015-08-01

    The water fern Azolla harbors nitrogen-fixing cyanobacterium Anabaena azollae as symbiont in its dorsal leaves and is known as potent N 2 fixer. Present investigation was carried out to study the influence of fresh Azolla when used as basal incorporation in soil and as dual cropped with rice variety Mahsoori separately and together with and without chemical nitrogen fertilizer in pots kept under net house conditions. Results showed that use of Azolla as basal or dual or basal plus dual influenced the rice crop positively where use of fern as basal plus dual was superior and served the nitrogen requirement of rice. There was marked increase in plant height, number of effective tillers, dry mass and nitrogen content of rice plants with the use of Azolla and N-fertilizers alone and other combinations. The use of Azolla also increased organic matter and potassium contents of the soil.

  9. The assessment of water vapour and carbon dioxide fluxes above arable crops - a comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, S.; Daemmgen, U.; Burkart, S. [Federal Agricultural Research Centre, Inst. of Agroecology, Braunschweig (Germany); Gruenhage, L. [Justus-Liebig-Univ., Inst. for Plant Ecology, Giessen (Germany)

    2005-04-01

    Vertical fluxes of water vapour and carbon dioxide obtained from gradient, eddy covariance (closed and open path systems) and chamber measurements above arable crops were compared with the directly measured energy balance and the harvested net biomass carbon. The gradient and chamber measurements were in the correct order of magnitude, whereas the closed path eddy covariance system showed unacceptably small fluxes. Correction methods based on power spectra analysis yielded increased fluxes. However, the energy balance could not be closed satisfactorily. The application of the open path system proved to be successful. The SVAT model PLATIN which had been adapted to various arable crops was able to depict the components of the energy balance adequately. Net carbon fluxes determined with the corrected closed path data sets, chamber, and SVAT model equal those of the harvested carbon. (orig.)

  10. Onion crop yield submitted to water and nitrogen levels by drip system

    Directory of Open Access Journals (Sweden)

    Renato Carvalho Vilas Boas

    2014-02-01

    Full Text Available The aim this work was evaluate the effects of water and nitrogen (N levels, supplied by drip system, on yield and water use efficiency of onion crop (Allium cepa L.. The experiment was carried at the experimental area of DEG/UFLA, in a randomized block statistical design was used, in a factorial scheme 4 x 4, with three replicates. Four irrigation depths based on Class A evaporation tanks (50, 100, 150 and 200% and four N doses (0, 60, 120 and 180 kg ha-1 were supplied through irrigation water (fertigation. It can be concluded that higher yields (total bulbs and of marketable bulbs and higher average marketable bulbs mass were obtained with the irrigation depth of 512.7 mm (100% Class A and 180 kg ha-1 of N. Water use efficiency decreased linearly as irrigation depths increased and N rate decreased.

  11. Weed map generation from UAV image mosaics based on crop row detection

    DEFF Research Database (Denmark)

    Midtiby, Henrik Skov

    To control weed in a field effectively with a minimum of herbicides, knowledge about the weed patches is required. Based on images acquired by Unmanned Aerial Vehicles (UAVs), a vegetation map of the entire field can be generated. Manual analysis, which is often required, to detect weed patches...... is used as input for the method. Issues related to perspective distortion are reduced by using an orthomosaic, which is a high resolution image of the entire field, built from hundreds of images taken by a UAV. A vegetation map is generated from the orthomosaic by calculating the excess green color index...

  12. Effects of cropping systems on water runoff, soil erosion and nutrient loss in the Moldavian Plateau, Romania

    Energy Technology Data Exchange (ETDEWEB)

    Ailincai, C.; Jitareanu, G.; Bucur, D.; Ailincai, D.; Raus, L.; Filipov, F.

    2009-07-01

    The experiments carried out at the Podu-lloaiei Agricultural Research Sation, during 1986-2008, had the following objectives: the study of water runoff and soil losses, by erosion, in different crops; the annual rate of erosion process under the influence of anti-erosion protection of different crops; the influence of water runoff and soil erosion on losses of organic matter and mineral elements from soil. (Author) 7 refs.

  13. Effects of cropping systems on water runoff, soil erosion and nutrient loss in the Moldavian Plateau, Romania

    International Nuclear Information System (INIS)

    Ailincai, C.; Jitareanu, G.; Bucur, D.; Ailincai, D.; Raus, L.; Filipov, F.

    2009-01-01

    The experiments carried out at the Podu-lloaiei Agricultural Research Sation, during 1986-2008, had the following objectives: the study of water runoff and soil losses, by erosion, in different crops; the annual rate of erosion process under the influence of anti-erosion protection of different crops; the influence of water runoff and soil erosion on losses of organic matter and mineral elements from soil. (Author) 7 refs.

  14. Growth and yield of cowpea/sunflower crop rotation under different irrigation management strategies with saline water

    Directory of Open Access Journals (Sweden)

    Antônia Leila Rocha Neves

    2015-05-01

    Full Text Available This study aimed to evaluate the effect of management strategies of irrigation with saline water on growth and yield of cowpea and sunflower in a crop rotation. The experiment was conducted in randomized blocks with thirteen treatments and five replications. The treatments consisted of: T1 (control, T2, T3 and T4 using water of 0.5 (A1, 2.2 (A2, 3.6 (A3 and 5.0 (A4 dS m-1, respectively, during the entire crop cycle; T5, T6 and T7, use of A2, A3 and A4 water, respectively, only in the flowering and fructification stage of the crop cycle; using different water in a cyclic way, six irrigations with A1 followed by six irrigations with A2 (T8, A3 (T9 and A4, (T10, respectively; T11, T12 and T13, using water A2, A3 and A4, respectively, starting at 11 days after planting (DAP and continuing until the end of the crop cycle. These treatments were employed in the first crop (cowpea, during the dry season, and the same plots were used for the cultivation of sunflower as succeeding crop during rainy season. The strategies of use of saline water in the salt tolerant growth stage (treatments T5, T6 and T7 or cyclically (treatments T8, T9 and T10 reduced the amount of good quality water used in the production of cowpea by 34 and 47%, respectively, without negative impacts on crop yield, and did not show the residual effects of salinity on sunflower as a succeeding crop. Thus, these strategies appear promising to be employed in areas with water salinity problems in the semiarid region of Brazil.

  15. Are simple empirical crop coefficient approaches for determining pecan water use readily transferrable across a wide range of conditions?

    CSIR Research Space (South Africa)

    Taylor, NJ

    2017-02-01

    Full Text Available , such as the United States of America, Mexico, South Africa and Australia (INC, 2011), the majority of pecan research has been conducted in the USA. Studies conducted in New Mexico suggest that seasonal crop evapotranspiration (ET) of flood irrigated... coefficient modelling approach to estimate water use of pecans Evapotranspiration was estimated using a pecan specific model from New Mexico (Samani et al., 2011) which relates crop coefficients and orchard water use to canopy cover as follows...

  16. subsurface sequence delineation and saline water mapping of lagos

    African Journals Online (AJOL)

    A subsurface sequence delineation and saline water mapping of Lagos State was carried out. Ten (10) deep boreholes with average depth of 300 m were drilled within the sedimentary basin. The boreholes were lithologically and geophysically logged. The driller's lithological logs aided by gamma and resistivity logs, ...

  17. Mapping soil water content on golf course greens with GPR

    Science.gov (United States)

    Ground-penetrating radar (GPR) can be an effective and efficient method for high-resolution mapping of volumetric water content in the sand layer directly beneath the ground surface at a golf course green. This information could potentially be very useful to golf course superintendents for determi...

  18. Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop.

    Science.gov (United States)

    Ng, Tze Ling; Eheart, J Wayland; Cai, Ximing; Miguez, Fernando

    2010-09-15

    There is increasing interest in perennial grasses as a renewable source of bioenergy and feedstock for second-generation cellulosic biofuels. The primary objective of this study is to estimate the potential effects on riverine nitrate load of cultivating Miscanthus x giganteus in place of conventional crops. In this study, the Soil and Water Assessment Tool (SWAT) is used to model miscanthus growth and streamwater quality in the Salt Creek watershed in Illinois. SWAT has a built-in crop growth component, but, as miscanthus is relatively new as a potentially commercial crop, data on the SWAT crop growth parameters for the crop are lacking. This leads to the second objective of this study, which is to estimate those parameters to facilitate the modeling of miscanthus in SWAT. Results show a decrease in nitrate load that depends on the percent land use change to miscanthus and the amount of nitrogen fertilizer applied to the miscanthus. Specifically, assuming a nitrogen fertilization rate for miscanthus of 90 kg-N/ha, a 10%, 25%, and 50% land use change to miscanthus will lead to decreases in nitrate load of about 6.4%, 16.5%, and 29.6% at the watershed outlet, respectively. Likewise, nitrate load may be reduced by lowering the fertilizer application rate, but not proportionately. When fertilization drops from 90 to 30 kg-N/ha the difference in nitrate load decrease is less than 1% when 10% of the watershed is miscanthus and less than 6% when 50% of the watershed is miscanthus. It is also found that the nitrate load decrease from converting less than half the watershed to miscanthus from corn and soybean in 1:1 rotation surpasses that from converting the whole watershed to just soybean.

  19. [Experimental study on crop photosynthesis, transpiration and high efficient water use].

    Science.gov (United States)

    Wang, Huixiao; Liu, Changming

    2003-10-01

    It is well known that the development of water-saving agriculture is a strategic choice for getting rid of the crisis of water shortage. In this paper, the crop photosynthesis, transpiration, stomatic behavior, and their affecting factors were studied in view of increasing the crop water use efficiency. The experimental results showed that there was a parabola relationship between photosynthesis and transpiration. The transpiration at the maximum photosynthesis was a critical value, above which, transpiration was the luxurious part. The luxurious transpiration could be controlled without affecting photosynthetic production. It is possible that the measures for increasing stomatic resistance and preventing transpiration could save water, and improve photosynthesis and yield as well. The photosynthesis rate increased with photosynthetic active radiation, and the light saturation point for photosynthesis existed. The light saturation point of dry treatment was much lower than that of wet treatment, and the relationship between transpiration and radiation was linear. When the photosynthetic active radiation was bigger than 1,000 mumol.m-2.s-1, some treatments could be carried out for decreasing transpiration and improving photosynthesis.

  20. Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water.

    Science.gov (United States)

    Lu, Jian; Wu, Jun; Stoffella, Peter J; Wilson, P Chris

    2015-01-01

    The potential uptake and distribution of bisphenol A (BPA) and nonylphenol (NP) (from reclaimed irrigation water) in edible crops was investigated. BPA and NP were spiked into simulated reclaimed water at environmentally relevant concentrations. Two crops (lettuce, Lactuca sativa and tomato, Lycopersicon esculentum) were grown hydroponically in a greenhouse using the spiked irrigation water under two irrigation exposure scenarios (overhead foliar exposure and subsurface root exposure). BPA concentrations in tomato fruit were 26.6 ± 5.8 (root exposure) and 18.3 ± 3.5 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 80.6 ± 23.1 (root exposure) and 128.9 ± 17.4 (foliar exposure) μg kg(-1). NP concentrations in tomato fruit were 46.1 ± 6.6 (root exposure) and 24.6 ± 6.4 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 144.1 ± 9.2 (root exposure) and 195.0 ± 16.9 (foliar exposure) μg kg(-1). BPA was relatively mobile in lettuce plants regardless of exposure route. Limited mobility was observed for NP in both crops and BPA in tomatoes. The estimated daily intake of BPA and NP through consumption of vegetables irrigated with reclaimed water ranged from 8.9-62.9 to 11.9-95.1 μg, respectively, depending on the exposure route. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    Directory of Open Access Journals (Sweden)

    Ana Allende

    2015-07-01

    Full Text Available There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  2. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions

    Science.gov (United States)

    Allende, Ana; Monaghan, James

    2015-01-01

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks. PMID:26151764

  3. Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions.

    Science.gov (United States)

    Allende, Ana; Monaghan, James

    2015-07-03

    There is increasing evidence of the contribution of irrigation water in the contamination of produce leading to subsequent outbreaks of foodborne illness. This is a particular risk in the production of leafy vegetables that will be eaten raw without cooking. Retailers selling leafy vegetables are increasingly targeting zero-risk production systems and the associated requirements for irrigation water quality have become more stringent in regulations and quality assurance schemes (QAS) followed by growers. Growers can identify water sources that are contaminated with potential pathogens through a monitoring regime and only use water free of pathogens, but the low prevalence of pathogens makes the use of faecal indicators, particularly E. coli, a more practical approach. Where growers have to utilise water sources of moderate quality, they can reduce the risk of contamination of the edible portion of the crop (i.e., the leaves) by treating irrigation water before use through physical or chemical disinfection systems, or avoid contact between the leaves and irrigation water through the use of drip or furrow irrigation, or the use of hydroponic growing systems. This study gives an overview of the main problems in the production of leafy vegetables associated with irrigation water, including microbial risk and difficulties in water monitoring, compliance with evolving regulations and quality standards, and summarises the current alternatives available for growers to reduce microbial risks.

  4. Infrared thermometry and the crop water stress index. I. History, theory, and baselines

    International Nuclear Information System (INIS)

    Gardner, B.R.; Nielsen, D.C.; Shock, C.C.

    1992-01-01

    Development of portable infrared thermometers and the definition of the Crop Water Stress Index (CWSI) have led to widespread interest in infrared thermometry to monitor water stress and schedule irrigations. But the CWSI concept is still new and poorly understood by many. The purpose of this paper is to review the definition of CWSI, and the determination and interpretation of the non-water-stressed baselines used to compute CWSI. The non-water-stressed baseline equation normalizes the canopy minus air temperature differential for variations in vapor pressure deficit. Non-water-stressed baselines can be determined empirically from measurements of canopy and air temperatures and vapor pressure deficit, made diurnally on a single day, or at a single time of day over many days, on well-watered plants. The value of the maximum canopy minus air temperature differential under maximum water stress should also be determined empirically. Causes for CWSI values falling outside of the defined 0 to 10 unit range are reviewed. Non-water-stressed baselines may shift with plant growth stage. Effective use of CWSI is dependent on understanding the definition of CWSI, and the proper determination and use of non-water-stressed baselines. (author)

  5. Effects of Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Jeffrey Morris; Patrick Richards; Joel Mason

    2010-09-30

    Demonstrating effective treatment technologies and beneficial uses for oil and gas produced water is essential for producers who must meet environmental standards and deal with high costs associated with produced water management. Proven, effective produced-water treatment technologies coupled with comprehensive data regarding blending ratios for productive long-term irrigation will improve the state-of-knowledge surrounding produced-water management. Effective produced-water management scenarios such as cost-effective treatment and irrigation will discourage discharge practices that result in legal battles between stakeholder entities. The goal of this work is to determine the optimal blending ratio required for irrigating crops with CBNG and conventional oil and gas produced water treated by ion exchange (IX), reverse osmosis (RO), or electro-dialysis reversal (EDR) in order to maintain the long term physical integrity of soils and to achieve normal crop production. The soils treated with CBNG produced water were characterized with significantly lower SAR values compared to those impacted with conventional oil and gas produced water. The CBNG produced water treated with RO at the 100% treatment level was significantly different from the untreated produced water, while the 25%, 50% and 75% water treatment levels were not significantly different from the untreated water. Conventional oil and gas produced water treated with EDR and RO showed comparable SAR results for the water treatment technologies. There was no significant difference between the 100% treated produced water and the control (river water). The EDR water treatment resulted with differences at each level of treatment, which were similar to RO treated conventional oil and gas water. The 100% treated water had SAR values significantly lower than the 75% and 50% treatments, which were similar (not significantly different). The results of the greenhouse irrigation study found the differences in biomass

  6. Modeling of seasonal water balance for crop production in Bangladesh with implications for future projection

    Directory of Open Access Journals (Sweden)

    Mohammed R. Karim

    2012-05-01

    Full Text Available Expecting the projected regional or global climate change, weather could have a significant effect on soil moisture and thereby affecting the plant growth. Water deficiency is considered as one of the major climatic restraints for crop production in Bangladesh, especially in the dry season. To better understand the crop responses to moisture variation, a quantitative analysis is done for major water balance components named, potential evapotranspiration (PET, actual evapotranspiration (AET, soil moisture storage (ST, water deficiency (WD and water surplus (WS with the use of Thornthwaite monthly water balance program. Analyses were carried out for three different seasons, together with interannual variability for 12 major rice growing districts of Bangladesh representing the north, central, southern and coastal zones. Hindcasted monthly average surface air temperature and precipitation data were collected from Bangladesh meteorological department during 1986 to 2006. Results suggested, trend of PET was same in every station and generally higher values were observed in the month of July and August. Khulna, the coastal station had the highest annual average PET of 1369 mm. The lowest annual AET of 1108 mm was estimated for Teknaf, while Dinajpur stood in second lowest position. ST was found almost at field capacity from July to September and, the southern station Chittagong experienced the highest average monthly ST. Maximum WD was found in Bogra and second highest shortage was in Dinajpur. The assessment of average WD of 178 mm yr-1 in northern Bangladesh reflected the worst situation among all regions, besides focusing the winter as the most crucial season regarding the water scarcity. Least amount of WS was noticed for the southern station Khulna. Significant positive relationship (p<0.05 between soil moisture and current rice yields proved the importance of surplus water conservation for the drought prone zone of Bangladesh. To boost up the

  7. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    Science.gov (United States)

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  8. Livestock and feed water productivity in the mixed crop-livestock system.

    Science.gov (United States)

    Bekele, M; Mengistu, A; Tamir, B

    2017-10-01

    Recently with limited information from intensified grain-based farming systems in developed countries, livestock production is challenged as being huge consumer of freshwater. The smallholder mixed crop-livestock (MCL) system which is predominant in developing countries like Ethiopia, is maintained with considerable contributions of crop residues (CR) to livestock feeding. Inclusion of CR is expected to reduce the water requirement for feed production resulting improvement in livestock water productivity (LWP). This study was conducted to determine feed water productivity (FWP) and LWP in the MCL system. A multistage sampling procedure was followed to select farmers from different wealth status. Wealth status dictated by ownership of key farm resources such as size of cropland and livestock influenced the magnitude of livestock outputs, FWP and LWP. Significant difference in feed collected, freshwater evapotranspired, livestock outputs and water productivity (WP) were observed between wealth groups, where wealthier are relatively more advantaged. Water productivity of CR and grazing land (GL) analyzed separately showed contrasting differences where better-off gained more on CR, whereas vice versa on GL. These counterbalancing of variations may justify the non-significant difference in total FWP between wealth groups. Despite observed differences, low WP on GL indicates the need of interventions at all levels. The variation in WP of CR is attributed to availability of production factors which restrained the capacity of poor farmers most. A linear relationship between the proportion of CR in livestock feed and FWP was evident, but the relationship with LWP was not likely linear. As CR are inherently low in digestibility and nutritive values which have an effect on feed conversion into valuable livestock products and services, increasing share of CR beyond an optimum level is not a viable option to bring improvements in livestock productivity as expressed in terms of

  9. Investigating water productivity and economic efficiency of wheat-crop under different sowing methods

    International Nuclear Information System (INIS)

    Mirani, A.A.; Dahri, Z.H.

    2011-01-01

    This study was conducted at PARC's research station Kala Shah Kaku, Lahore, in order to calculate the water productivity and economic efficiency of wheat-crop under different sowing methods in a combined harvested paddy filed. The sowing methods were direct drilling with FMI Seeder, Zero tillage and conventional method. Data were collected during 2008-09. Wheat-yield was 2750 kg/ha, 2665 kg/ha and 2610 kg/ha for direct drilling with F MI Seeder, Zero tillage and conventional method, respectively. The direct drilling in heavy residue gave 5.4 % more yield than the conventional method and 3.2 % more yield than zero tillage. The zero tillage ensured 2.1% more yield than the conventional method. The net water applied as 323, 354, and 380 mm for direct drilling with FMI seeder, zero tillage and conventional methods respectively against the potential crop evapotranspiration of 383 mm. This indicates that the direct drilling of wheat-crop in heave rice stubbles saves 15% irrigation water as compared to conventional method and 8.8% over zero tillage. The zero tillage method saves 6.8 % of irrigation water over the conventional method. The water productivity was found to be 0.851 kg/m3. 0.753 kg/m/sup 3/ and 0.687 kg/m/sup 3/ for direct drilling with FMI Seeder, Zero tillage and conventional method respectively. This indicates that the direct drilling ensures 23.9% increase in water productivity over conventional method and 13.01% over zero tillage. The zero tillage gave 9.6% more water productivity than the conventional method. The costs of production for the three sowing methods were Rs. 39123/ha, Rs.43737/ha and Rs. 53047/ha for direct drilling, zero tillage and conventional method respectively. This indicates an overall saving of Rs. 13924/ha (26.2 %) by the direct drilling method as compared to the conventional method and Rs. 4613/ha (10.5%) over zero tillage method. The zero tillage saves Rs. 9319/ha (17.6 %) over the conventional method. Thus, the resource

  10. Water deficit mapping of soils in Southern and Insular Italy

    Energy Technology Data Exchange (ETDEWEB)

    Ciavatta, C; Vianello, G

    1987-03-01

    Cross-elaboration of climatic, pedological and vegetational factors allows the water balance of soils to be defined. The data obtained are of particular interest not only for the primary sector, but also for the economy as a whole since the availability of such information is necessary for the correct and rational use of water resources. The application of a methodology, which takes into account the previously mentioned factors, led to the realization of a map showing the overall, annual and monthly water deficit of the soils in Southern Italy, Sicily and Sardinia.

  11. Integrated Soil, Water and Nitrogen Management For Sustainable Rice–Wheat Cropping System in Pakistan

    International Nuclear Information System (INIS)

    Hussain, F.; Yasin, M.; Gurmani, A.R.; Zia, M.S.

    2016-01-01

    The area under the rice–wheat (R–W) cropping system in Pakistan is about 2.2 Mha and despite its great importance as staple foods for the local population, the productivity of the system is poor due to several constraints. Rice (Oryza sativa L.) and wheat (Triticum aestivum L.) are normally grown in sequence on the same land in the same year. Field experiments with rice and wheat were conducted during four years on a Typic Halorthid soil at Lahore, in the alluvial plain of Punjab, Pakistan to assess nitrogen use efficiency and water productivity under both traditional and emerging crop establishment methods (raised beds, unpuddled soil, direct seeding). The climate in this region is semiarid. The experimental design was a randomized complete block design with five crop establishment methods as treatments and four replications. One micro-plot was laid down in each main plot to apply 15 N labelled urea (5 atom % 15 N). Both wheat and rice received a uniform application of 120 kg N ha -1 as urea, 30 kg P ha -1 as triple super phosphate, 50 kg K ha -1 as potassium sulphate and 5 kg Zn ha -1 as zinc sulphate. Pooled data of wheat grown in 2002–03, 2004–05 and 2005–06 showed that the highest wheat grain yield (3.89 t ha -1 ) was produced with conventional flatbed sowing (well pulverised soil) followed by raised bed sowing (3.79–3.82 t ha -1 ), whereas the lowest yield (3.45 t ha -1 ) was obtained in flat bed sowing with zero till rice in sequence. The highest rice paddy yield (4.15 t ha -1 ) was achieved with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest paddy yield (3.57 t ha -1 ) was recorded with direct seeding of rice in zero tilled soil. Total N uptake in wheat was maximum (117 kg ha -1 ) with conventional flatbed sowing and it was lowest with zero tilled soil. The highest total N uptake by rice (106 kg ha -1 ) was recorded with conventional flooded transplanted rice at 20 × 20 cm spacing and the lowest (89 kg ha -1 ) with

  12. Water requirements and crop coefficients of tropical forest seedlings in different shading conditions

    Directory of Open Access Journals (Sweden)

    Emanoeli B. Monteiro

    Full Text Available ABSTRACT The objective was to determine the crop evapotranspiration (ETc and crop coefficients (Kc of tropical forest seedlings over a 135-day cycle, in the climatic conditions of the Cerrado-Amazon transitional region (11º 51’ 08 “S; 55º 30’ 56” W; altitude of 371 m. Five native species (Tabebuia impetiginosa, Tabebuia roseoalba, Handroanthus chrysotrichus, Parkia pendula and Parkia platycephala and one exotic species (Adenanthera pavonina were evaluated in seven shading conditions: 35, 50 and 80% black nets (Polyolefin; green Frontinet®, red ChromatiNet® and blue ChromatiNet® of 50% shading; and full sun. Reference evapotranspiration (ETo was obtained by the Penman-Monteith FAO-56 method and the crop evapotranspiration of the seedlings (ETc was given by daily weighing. The Kc values were obtained by dividing ETo by ETc. At 135 DAT, destructive analysis was performed to determine the leaf area. In full sun conditions, ETc varied from 3.9 (P. pendula to 5.0 mm d-1 (T. roseoalba. The increase in the shading percentage promotes reduction in leaf area, ETc and Kc. Colored nets with 50% shading generate similar water demands.

  13. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Science.gov (United States)

    Skakun, Sergii; Vermote, Eric; Roger, Jean-Claude; Franch, Belen

    2017-01-01

    Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of an image every 3-5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10-30 m). This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI) from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  14. Knowledge-based decision tree approach for mapping spatial distribution of rice crop using C-band synthetic aperture radar-derived information

    Science.gov (United States)

    Mishra, Varun Narayan; Prasad, Rajendra; Kumar, Pradeep; Srivastava, Prashant K.; Rai, Praveen Kumar

    2017-10-01

    Updated and accurate information of rice-growing areas is vital for food security and investigating the environmental impact of rice ecosystems. The intent of this work is to explore the feasibility of dual-polarimetric C-band Radar Imaging Satellite-1 (RISAT-1) data in delineating rice crop fields from other land cover features. A two polarization combination of RISAT-1 backscatter, namely ratio (HH/HV) and difference (HH-HV), significantly enhanced the backscatter difference between rice and nonrice categories. With these inputs, a QUEST decision tree (DT) classifier is successfully employed to extract the spatial distribution of rice crop areas. The results showed the optimal polarization combination to be HH along with HH/HV and HH-HV for rice crop mapping with an accuracy of 88.57%. Results were further compared with a Landsat-8 operational land imager (OLI) optical sensor-derived rice crop map. Spatial agreement of almost 90% was achieved between outputs produced from Landsat-8 OLI and RISAT-1 data. The simplicity of the approach used in this work may serve as an effective tool for rice crop mapping.

  15. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale

    Directory of Open Access Journals (Sweden)

    Sergii Skakun

    2017-05-01

    Full Text Available Timely and accurate information on crop yield and production is critical to many applications within agriculture monitoring. Thanks to its coverage and temporal resolution, coarse spatial resolution satellite imagery has always been a source of valuable information for yield forecasting and assessment at national and regional scales. With availability of free images acquired by Landsat-8 and Sentinel-2 remote sensing satellites, it becomes possible to provide temporal resolution of 3–5 days, and therefore, to develop next generation agriculture products at higher spatial resolution (10–30 m. This paper explores the combined use of Landsat-8 and Sentinel-2A for winter crop mapping and winter wheat yield assessment at regional scale. For the former, we adapt a previously developed approach for the Moderate Resolution Imaging Spectroradiometer (MODIS instrument at 250 m resolution that allows automatic mapping of winter crops taking into account a priori knowledge on crop calendar. For the latter, we use a generalized winter wheat yield forecasting model that is based on estimation of the peak Normalized Difference Vegetation Index (NDVI from MODIS image time-series, and further downscaled to be applicable at 30 m resolution. We show that integration of Landsat-8 and Sentinel-2A improves both winter crop mapping and winter wheat yield assessment. In particular, the error of winter wheat yield estimates can be reduced up to 1.8 times compared to using a single satellite.

  16. Impact of Irrigation Method on Water Use Efficiency and Productivity of Fodder Crops in Nepal

    Directory of Open Access Journals (Sweden)

    Ajay K Jha

    2016-01-01

    Full Text Available Improved irrigation use efficiency is an important tool for intensifying and diversifying agriculture in Nepal, resulting in higher economic yield from irrigated farmlands with a minimum input of water. Research was conducted to evaluate the effect of irrigation method (furrow vs. drip on the productivity of nutritious fodder species during off-monsoon dry periods in different elevation zones of central Nepal. A split-block factorial design was used. The factors considered were treatment location, fodder crop, and irrigation method. Commonly used local agronomical practices were followed in all respects except irrigation method. Results revealed that location effect was significant (p < 0.01 with highest fodder productivity seen for the middle elevation site, Syangja. Species effects were also significant, with teosinte (Euchlaena mexicana having higher yield than cowpea (Vigna unguiculata. Irrigation method impacted green biomass yield (higher with furrow irrigation but both methods yielded similar dry biomass, while water use was 73% less under drip irrigation. Our findings indicated that the controlled application of water through drip irrigation is able to produce acceptable yields of nutritionally dense fodder species during dry seasons, leading to more effective utilization and resource conservation of available land, fertilizer and water. Higher productivity of these nutritional fodders resulted in higher milk productivity for livestock smallholders. The ability to grow fodder crops year-round in lowland and hill regions of Nepal with limited water storages using low-cost, water-efficient drip irrigation may greatly increase livestock productivity and, hence, the economic security of smallholder farmers.

  17. Use of isotope and radiation methods in soil and water management and crop nutrition. Manual

    International Nuclear Information System (INIS)

    2001-01-01

    This publication is a replacement for the IAEA Training Course Series No. 2 'Use of Nuclear Techniques in Studies of Soil-Plant Relationships' published in 1990. This edition, prepared by staff of the Soil Science Unit, Seibersdorf, and the Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, differs in many respects from its predecessor both in terms of content and objectives. The earlier publication provided basic information for use in interregional training courses held at regular intervals at the Seibersdorf Laboratories. Since the discontinuation of these training courses in 1996, the need for dissemination of up to date information to Member States has become more acute, particularly in view of the evolution of new methodologies during the past decade and new applications of existing methodologies to monitor the dynamics of soil, water and nutrients in cropping systems, and to pilot test interventions to conserve the natural resource base and optimize the availability of water and nutrients to crops. The present publication attempts to fulfill a part of this need. The manual provides an overview of the use of nuclear techniques in soil science and plant nutrition, balancing the need for a comprehensive coverage of a multitude of techniques involving isotopic tracers and sealed or unsealed sources, while giving sufficient depth to be of practical value to the end-users - students, technicians, scientists in national agricultural research systems and fellowship trainees. In this respect it is important to emphasize that nuclear techniques do not in themselves provide solutions to real world problems - they provide tools which when used in conjunction with other techniques, provide precise and specific information necessary to understand system dynamics and hence the value of alternative management practices to improve system productivity and resource conservation. This publication

  18. Water, soil, crops and radionuclides. Studies on the behavior of radionuclides in the terrestrial environments

    International Nuclear Information System (INIS)

    Uchida, Shigeo

    2008-01-01

    In order to predict the migration of artificially-produced radionuclides into a human body and its radiation dose rates of human body and to decrease the exposed radiation doses of human body, the behavior of radionuclides in the environment must be elucidated. In National Institute of Radiological Sciences (NIRS), the environmental radioecological research group of Nakaminato Laboratory for Marine Radioecology has progressed the survey and research on the behavior of artificially-produced radionuclides in the terrestrial environment. This article describes the research results (the radioactivity of water, soil, and crops) made so far at Nakaminato Laboratory for Marine Radioecology. (M.H.)

  19. Use of isotope and radiation methods in soil and water management and crop nutrition. Manual

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    This publication is a replacement for the IAEA Training Course Series No. 2 'Use of Nuclear Techniques in Studies of Soil-Plant Relationships' published in 1990. This edition, prepared by staff of the Soil Science Unit, Seibersdorf, and the Soil and Water Management and Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, differs in many respects from its predecessor both in terms of content and objectives. The earlier publication provided basic information for use in interregional training courses held at regular intervals at the Seibersdorf Laboratories. Since the discontinuation of these training courses in 1996, the need for dissemination of up to date information to Member States has become more acute, particularly in view of the evolution of new methodologies during the past decade and new applications of existing methodologies to monitor the dynamics of soil, water and nutrients in cropping systems, and to pilot test interventions to conserve the natural resource base and optimize the availability of water and nutrients to crops. The present publication attempts to fulfill a part of this need. The manual provides an overview of the use of nuclear techniques in soil science and plant nutrition, balancing the need for a comprehensive coverage of a multitude of techniques involving isotopic tracers and sealed or unsealed sources, while giving sufficient depth to be of practical value to the end-users - students, technicians, scientists in national agricultural research systems and fellowship trainees. In this respect it is important to emphasize that nuclear techniques do not in themselves provide solutions to real world problems - they provide tools which when used in conjunction with other techniques, provide precise and specific information necessary to understand system dynamics and hence the value of alternative management practices to improve system productivity and resource conservation. This publication

  20. Increasing Crop Yields in Water Stressed Countries by Combining Operations of Freshwater Reservoir and Wastewater Reclamation Plant

    Science.gov (United States)

    Bhushan, R.; Ng, T. L.

    2015-12-01

    Freshwater resources around the world are increasing in scarcity due to population growth, industrialization and climate change. This is a serious concern for water stressed countries, including those in Asia and North Africa where future food production is expected to be negatively affected by this. To address this problem, we investigate the potential of combining freshwater reservoir and wastewater reclamation operations. Reservoir water is the cheaper source of irrigation, but is often limited and climate sensitive. Treated wastewater is a more reliable alternative for irrigation, but often requires extensive further treatment which can be expensive. We propose combining the operations of a reservoir and a wastewater reclamation plant (WWRP) to augment the supply from the reservoir with reclaimed water for increasing crop yields in water stressed regions. The joint system of reservoir and WWRP is modeled as a multi-objective optimization problem with the double objective of maximizing the crop yield and minimizing total cost, subject to constraints on reservoir storage, spill and release, and capacity of the WWRP. We use the crop growth model Aquacrop, supported by The Food and Agriculture Organization of the United Nations (FAO), to model crop growth in response to water use. Aquacrop considers the effects of water deficit on crop growth stages, and from there estimates crop yield. We generate results comparing total crop yield under irrigation with water from just the reservoir (which is limited and often interrupted), and yield with water from the joint system (which has the potential of higher supply and greater reliability). We will present results for locations in India and Africa to evaluate the potential of the joint operations for improving food security in those areas for different budgets.

  1. Water stress indices for the sugarcane crop on different irrigated surfaces

    Directory of Open Access Journals (Sweden)

    Rodrigo G. Brunini

    Full Text Available ABSTRACT Sugarcane (Saccharum officinarum L. is a crop of vital importance to Brazil, in the production of sugar and ethanol, power generation and raw materials for various purposes. Strategic information such as topography and canopy temperature can provide management technologies accessible to farmers. The objective of this study was to determine water stress indices for sugarcane in irrigated areas, with different exposures and slopes. The daily water stress index of the plants and the water potential in the soil were evaluated and the production system was analyzed. The experiment was carried out in an “Experimental Watershed”, using six surfaces, two horizontal and the other ones with 20 and 40% North and South exposure slopes. Water stress level was determined by measuring the temperatures of the vegetation cover and the ambient air. Watering was carried out using a drip irrigation system. The results showed that water stress index of sugarcane varies according to exposure and slope of the terrain, while areas whose water stress index was above 5.0 oC had lower yield values.

  2. Evaporative demand and water requirements of the principal crops of the Guadalentin valley (SE Spain) in drought periods

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Toribio, M. I.; Garcia-Marin, R.; Conesa-Garcia, C.; Lopez-Bermudez, F.

    2010-07-01

    The drought periods that affect the province of Murcia, especially the Guadalentin Valley, are aggravated by an increase in evaporative demand. The aim of the present study was to characterize the increased water demand of woody and herbaceous crops during drought periods in the Guadalentin Valley, an agricultural zone with an excellent climate for specialty crops, which is of great economic importance for Murcia. After defining the drought periods of the last three decades in time and space by means of the standard index of rainfall drought (IESP), several methods were used to determine the reference evapotranspiration (ETo): the Penman-Monteith model (ASCE and FAO models for grass), the Hargreaves method (ETo-ASCE for alfalfa), and ETo using the FAO Radiation method. Finally, the crop water requirements for each to crop type and area of cultivation were estimated using monthly crop coefficients (K{sub c}) and the mean monthly evaporative demand values were obtained by the best fitting method. The increase in the evaporative demand reflected the increased water deficits that occur in the drought years, both in summer and winter (1.23 hm{sup 3} yr{sup -}1). Drought periods are also responsible for reducing the areas dedicated to horticultural crops, because of their high water demands and the additional costs involved, resulting an aggravated socioeconomic position and increased unemployment. (Author) 25 refs.

  3. Effects of soil and water conservation on crop productivity: Evidences from Anjenie watershed, Ethiopia

    Science.gov (United States)

    Adgo, Enyew; Teshome, Akalu

    2014-05-01

    Widespread soil and water conservation activities have been implemented in many parts of eastern Africa to control soil erosion by water and improve land productivity for the last few decades. Following the 1974 severe drought, soil and water conservation became more important to Ethiopia and the approach shifted to watershed based land management initiatives since the 1980s. To capture long-term impacts of these initiatives, a study was conducted in Anjenie Watershed of Ethiopia, assessing fanya juu terraces and grass strips constructed in a pilot project in 1984, and which are still functional nearly 30 years later. Data were collected from government records, field observations and questionnaire surveys administered to 60 farmers. Half of the respondents had terraced farms in the watershed former project area (with terrace technology) and the rest were outside the terraced area. The crops assessed were teff, barley and maize. Cost-benefit analyses were used to determine the economic benefits with and without terraces, including gross and net profit values, returns on labour, water productivity and impacts on poverty. The results indicated that soil and water conservation had improved crop productivity. The average yield on terraced fields was 0.95 t ha-1 for teff (control 0.49), 1.86 t ha-1 for barley (control 0.61), and 1.73 t ha-1 for maize (control 0.77). The net benefit was significantly higher on terraced fields, recording US 20.9 (US -112 control) for teff, US 185 (US -41 control) for barley and US -34.5 (US - 101 control) ha-1 yr-1 for maize. The returns on family labour were 2.33 for barley, 1.01 for teff, and 0.739 US per person-day for maize grown on terraced plots, compared to US 0.44, 0.27 and 0.16 per person-day for plots without terraces, respectively. Using a discount rate of 10%, the average net present value (NPV) of barley production with terrace was found to be about US 1542 over a period of 50 years. In addition, the average financial

  4. Evaluation of Agricultural Crops Water Footprint with Application of Climate Change in Urmia Lake basin

    Directory of Open Access Journals (Sweden)

    majid montaseri

    2017-02-01

    Full Text Available Introduction: The water footprint index as a complete indicator represents the actual used water in agriculture based on the climate condition, the amount of crop production, the people consumption pattern, the agriculture practices and water efficiency in any region. The water footprint in agricultural products is divided to three components, including green, blue and gray water footprint. Green water footprint is rainwater stored in soil profile and on vegetation. Blue water refers to water in rivers, lakes and aquifers which is used for irrigation purposes. Gray water footprint refers to define as the volume of contaminated water. The water footprint in arid and semiarid regions with high water requirement for plants and limited fresh water resources has considerable importance and key role in the planning and utilization of limited water resources in these regions. On the other hand, increasing the temperature and decreasing the rainfall due to climate change, are two agents which affect arid and semiarid regions. Therefore, in this research the water footprint of agriculturalcrop production in Urmia Lake basin, with application of climate change for planning, stable operating and crop pattern optimizing, was evaluated to reduce agricultural water consumption and help supplying water rights of Urmia Lake. Materials and Methods:Urmia Lake basin, as one of the main sextet basins in Iran, is located in the North West of Iran and includes large sections of West Azerbaijan, East Azerbaijan and Kurdistan areas. Thirteen major rivers are responsible to drain surface streams in Urmia Lake basin and these rivers after supplying agriculture and drinking water and residential areas in the flow path, are evacuated to the Lake. Today because of non-observance of sustainable development concept, increasing water use in different parts and climate change phenomena in Urmia Lake basin the hydrologic balance was perturbed, and Urmia Lake has been lost 90% of

  5. Mapping critical levels of ozone, sulfur dioxide and nitrogen oxide for crops, forests and natural vegetation in the United States

    International Nuclear Information System (INIS)

    Rosenbaum, B.J.; Strickland, T.C.; McDowell, M.K.

    1994-01-01

    Air pollution abatement strategies for controlling nitrogen dioxide, sulfur dioxide, and ozone emissions in the United States focus on a 'standards-based' approach. This approach places limits on air pollution by maintaining a baseline value for air quality, no matter what the ecosystem can or cannot withstand. This paper, presents example critical levels maps for the conterminous U.S. developed using the 'effects-based' mapping approach as defined by the United Nations Economic Commission for Europe's Convention on Long-Range Transboundary Air Pollution, Task Force on Mapping. This approach emphasizes the pollution level or load capacity an ecosystem can accommodate before degradation occurs, and allows for analysis of cumulative effects. Presents the first stage of an analysis that reports the distribution of exceedances of critical levels for NO 2 , SO 2 , and O 3 in sensitive forest, crop, and natural vegetation ecosystems in the contiguous United States. It is concluded that extrapolation to surrounding geographic areas requires the analysis of diverse and compounding factors that preclude simple extrapolation methods. Pollutant data depicted in this analysis are limited to locationally specific data, and would be enhanced by utilizing spatial statistics, along with converging associated anthropogenic and climatological factors. Values used for critical levels were derived from current scientific knowledge. While not intended to be a definitive value, adjustments will occur as the scientific community gains new insight to pollutant/receptor relationships. We recommend future analysis to include a refinement of sensitive receptor data coverages and to report relative proportions of exceedances at varying grid scales. 27 refs., 4 figs., 1 tab

  6. Accumulation of contaminants of emerging concern in food crops-part 1: Edible strawberries and lettuce grown in reclaimed water.

    Science.gov (United States)

    Hyland, Katherine C; Blaine, Andrea C; Dickenson, Eric R V; Higgins, Christopher P

    2015-10-01

    Contaminants of emerging concern present in domestic waste streams include a highly diverse group of potentially biologically active compounds that can be detected at trace levels in wastewater. Concerns about potential uptake into crops arise when reclaimed water is used in food crop production. The present study investigated how 9 contaminants of emerging concern in reclaimed water are taken up into edible portions of two food crops. Two flame retardant chemicals, tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) and several polar pharmaceuticals (carbamazepine, diphenhydramine, sulfamethoxazole, and trimethoprim) accumulated in a linear, concentration-dependent manner in lettuce (Lactuca sativa) irrigated with reclaimed water, suggesting passive uptake of both neutral and ionizable chemical contaminants in lettuce. Furthermore, concentration-dependent accumulation of TCEP and TCPP from reclaimed water was also observed in strawberry fruits (Fragaria ananassa). Collectively, these data suggest that highly polar or charged contaminants can be taken up by crops from water bearing contaminants of emerging concern and can be accumulated in the edible portions. Using these data, however, estimates of human exposure to these contaminants from reclaimed water food crop accumulation suggest that exposure to the contaminants of emerging concern examined in the present study is likely substantially lower than current exposure guidelines. © 2015 SETAC.

  7. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    Science.gov (United States)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  8. Globalisation of water resources: International virtual water flows in relation to international crop trade

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert; Hung, P.Q.

    2005-01-01

    The water that is used in the production process of a commodity is called the ‘virtual water’ contained in the commodity. International trade of commodities brings along international flows of virtual water. The objective of this paper is to quantify the volumes of virtual water flows between

  9. Increasing water productivity of irrigated crops under limited water supply at field scale

    NARCIS (Netherlands)

    Vazifedoust, M.; Dam, van J.C.; Feddes, R.A.; Feizi, M.

    2008-01-01

    Borkhar district is located in an and to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water

  10. Infiltration into cropped soils: effect of rain and sodium adsorption ratio-impacted irrigation water.

    Science.gov (United States)

    Suarez, Donald L; Wood, James D; Lesch, Scott M

    2008-01-01

    The sodium adsorption ratio (SAR) and salinity criteria for water suitability for irrigation have been developed for conditions where irrigation water is the only water source. It is not clear that these criteria are applicable to environments where there is a combination of rain and irrigation during the growing season. The interaction of rainfall with irrigation water is expected to result in increased sodicity hazard because of the low electrical conductivity of rain. In this study we examined the effects of irrigation waters of SAR 2, 4, 6, 8, and 10 mmol(1/2) L(-1/2) and electrical conductivities of 1 and 2 dS m(-1) on the infiltration rate of two soils with alternating cycles of rain (simulated with a rainfall sprinkler) and irrigation water, separated by drying cycles. The infiltration rate of surface samples from two soils, Kobase silty clay (fine, smectitic, frigid, Torrertic Haplustept) and Glendive very fine sandy loam (coarse-loamy, mixed superactive, calcareous, frigid Aridic Ustifluvent) were evaluated under alfalfa (Medicago sativa) cropped conditions for over 140 d and under full canopy cover. Reductions in infiltration were observed for both soils for SAR above 2, and the reductions became more severe with increasing SAR. Saturated hydraulic conductivity measurements taken from undisturbed cores at the end of the experiment were highly variable, suggesting that in situ infiltration measurements may be preferred when evaluating SAR effects.

  11. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    International Nuclear Information System (INIS)

    Kumarasinghe, K.S.; Kirda, C.; Bowen, G.D.; Zapata, F.; Awonaike, K.O.; Holmgren, E.; Arslan, A.; De Bisbal, E.C.; Mohamed, A.R.A.G.; Montenegro, A.

    1996-01-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of Δ with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of Δ with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that Δ values measured at flowering stage positively correlated with total dry matter production and percent N 2 derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use Δ values for screening of leguminous crops for high N 2 fixation potential. 13 C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of Δ with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of Δ with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. While 13 C isotope discrimination may be a valuable tool for identifying annual crops with high water use efficiency and high yield potential, it may be more attractive for tree species considering the long growth periods taken for trees

  12. Digital soil mapping as a basis for climatically oriented agriculture a thematic on the territory of the national crop testing fields of the Republic of Tatarstan, Russia

    Science.gov (United States)

    Sahabiev, I. A.; Giniyatullin, K. G.; Ryazanov, S. S.

    2018-01-01

    The concept of climate-optimized agriculture (COA) of the UN FAO implies the transformation of agriculture techniques in conditions of changing climate. It is important to implement a timely transition to the concept of COA and sustainable development of soil resources, accurate digital maps of spatial distribution of soils and soil properties are needed. Digital mapping of soil humus content was carried out on the territory of the national crop testing fields (NCTF) of the Republic of Tatarstan (Russian Federation) and the accuracy of the maps obtained was estimated.

  13. California State Waters Map Series: offshore of San Gregorio, California

    Science.gov (United States)

    Cochrane, Guy R.; Dartnell, Peter; Greene, H. Gary; Watt, Janet T.; Golden, Nadine E.; Endris, Charles A.; Phillips, Eleyne L.; Hartwell, Stephen R.; Johnson, Samuel Y.; Kvitek, Rikk G.; Erdey, Mercedes D.; Bretz, Carrie K.; Manson, Michael W.; Sliter, Ray W.; Ross, Stephanie L.; Dieter, Bryan E.; Chin, John L.; Cochran, Susan A.; Cochrane, Guy R.; Cochran, Susan A.

    2014-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California's State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of San Gregorio map area is located in northern California, on the Pacific coast of the San Francisco Peninsula about 50 kilometers south of the Golden Gate. The map area lies offshore of the Santa Cruz Mountains, part of the northwest-trending Coast Ranges that run roughly parallel to the San Andreas Fault Zone. The Santa Cruz Mountains lie between the San Andreas Fault Zone and the San Gregorio Fault system. The nearest significant onshore cultural centers in the map area are San Gregorio and Pescadero, both unincorporated communities with populations well under 1,000. Both communities are situated inland of state beaches that share their names. No harbor facilities are within the Offshore of San Gregorio map area. The hilly coastal area is virtually undeveloped grazing land for sheep and cattle. The coastal geomorphology is controlled by late Pleistocene and Holocene slip in the San Gregorio Fault system. A westward bend in the San Andreas Fault Zone, southeast of the map area, coupled with right-lateral movement along the San Gregorio Fault system have caused regional folding and uplift. The coastal area consists of high coastal bluffs and vertical sea cliffs. Coastal promontories in

  14. Marginal cost curves for water footprint reduction in irrigated agriculture : Guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    NARCIS (Netherlands)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-01-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce

  15. Carbon isotope discrimination as a selection tool for high water use efficiency and high crop yields

    Energy Technology Data Exchange (ETDEWEB)

    Kumarasinghe, K S; Kirda, C; Bowen, G D [Joint FAO/IAEA Div. of Nuclear Techniques in Food and Agriculture, Vienna (Austria). Soil Fertility, Irrigation and Crop Production Section; Zapata, F; Awonaike, K O; Holmgren, E; Arslan, A; De Bisbal, E C; Mohamed, A R.A.G.; Montenegro, A [FAO/IAEA Agriculture and Biotechnology Lab., Seibersdorf (Austria). Soils Science Unit

    1996-07-01

    Results of back-up research conducted at the FAO/IAEA Agriculture and Biotechnology Laboratory in support of the FAO/IAEA Co-ordinated Research Programme on the Use of Isotope Studies on Increasing and Stabilizing Plant Productivity in Low Phosphate and Semi-arid and Sub-humid Soils of the Tropics and Sub-tropics, are presented here. Neutron probe measurements confirmed the earlier reports of a strong correlation of {Delta} with grain yield and water use efficiency of wheat. High soil gypsum content and soil salinity, a wide spread problem in soils of arid and semi-arid climatic zones, do not interfere with the association of {Delta} with crop yields, provided plants are grown in similar soil water status and soil fertility level. Results of a glasshouse experiment using selected cowpea genotypes showed that {Delta} values measured at flowering stage positively correlated with total dry matter production and percent N{sub 2} derived from atmosphere (%Ndfa), contributing to an earlier report from the laboratory that it may be possible to use {Delta} values for screening of leguminous crops for high N{sub 2} fixation potential. {sup 13}C isotope discrimination in the leaves of Gliricidia sepium was measured to examine if the technique could be extended to studies with trees. Results of a glasshouse experiment with 18 provenances of Gliricidia sepium showed highly significant correlations of {Delta} with total dry matter production, water use efficiency and total N accumulated through biological nitrogen fixation. Although the correlation of {Delta} with water use efficiency and dry matter yield are relatively clear and better understood, the correlation with nitrogen fixation still needs a closer examination under different environmental conditions and with different species. (Abstract Truncated)

  16. Functional digital soil mapping for the prediction of available water capacity in Nigeria using legacy data

    NARCIS (Netherlands)

    Ugbaje, S.U.; Reuter, H.I.

    2013-01-01

    Soil information, particularly water storage capacity, is of utmost importance for assessing and managing land resources for sustainable land management. We investigated using digital soil mapping (DSM) and digital soil functional mapping (DSFM) procedures to predict available water capacity (AWC)

  17. Water Use Efficiency of Cotton and Wheat Crops at Various Management Allowed Depletion in Lower Indus Basin

    Directory of Open Access Journals (Sweden)

    KHALIFA QASIML AGHARI

    2010-10-01

    Full Text Available This paper deals with contemporary irrigation water management of major crops in Lower Indus Basin of Pakistan. Field experiments were conducted to estimate the optimum WUE (Water Use Efficiency for various MAD (Management Allowed Depletion levels including 55, 65 and 75% for cotton crop, and 45, 55 and 65% for wheat crop. The daily actual crop Etca (Evapotranspiration was observed through gypsum blocks and a drainage Lysimeter. The observed seasonal cotton crops ETca in the experiments were 486, 413, and 397 mm for 55, 65, and 75% MAD levels, respectively. Similarly, wheat crops ETca observed were 363, 359, and 332mm for 45, 55, and 65% MAD levels, respectively. The WUE determined in terms of seed-cotton yield per unit of seasonal water use were 6.0, 6.5, and 5.8kg (ha mm-1 The corresponding values of WUE for wheat were 14.1, 15.0 and 13.4kg (ha mm-1. Hence; the highest WUE was achieved with MAD at 65% for cotton and at 55% for wheat.

  18. Water-food-energy nexus index: analysis of water-energy-food nexus of crop's production system applying the indicators approach

    Science.gov (United States)

    El-Gafy, Inas

    2017-10-01

    Analysis the water-food-energy nexus is the first step to assess the decision maker in developing and evaluating national strategies that take into account the nexus. The main objective of the current research is providing a method for the decision makers to analysis the water-food-energy nexus of the crop production system at the national level and carrying out a quantitative assessment of it. Through the proposed method, indicators considering the water and energy consumption, mass productivity, and economic productivity were suggested. Based on these indicators a water-food-energy nexus index (WFENI) was performed. The study showed that the calculated WFENI of the Egyptian summer crops have scores that range from 0.21 to 0.79. Comparing to onion (the highest scoring WFENI,i.e., the best score), rice has the lowest WFENI among the summer food crops. Analysis of the water-food-energy nexus of forty-two Egyptian crops in year 2010 was caried out (energy consumed for irrigation represent 7.4% of the total energy footprint). WFENI can be applied to developed strategies for the optimal cropping pattern that minimizing the water and energy consumption and maximizing their productivity. It can be applied as a holistic tool to evaluate the progress in the water and agricultural national strategies. Moreover, WFENI could be applied yearly to evaluate the performance of the water-food-energy nexus managmant.

  19. Monitoring and modeling crop health and water use via in-situ, airborne and space-based platforms

    KAUST Repository

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  20. Impact of Future Climate Change on Regional Crop Water Requirement—A Case Study of Hetao Irrigation District, China

    Directory of Open Access Journals (Sweden)

    Tianwa Zhou

    2017-06-01

    Full Text Available Water shortage is a limiting factor for agricultural production in China, and climate change will affect agricultural water use. Studying the effects of climate change on crop irrigation requirement (CIR would help to tackle climate change, from both food security and sustainable water resource use perspectives. This paper applied SDSM (Statistical DownScaling Model to simulate future meteorological parameters in the Hetao irrigation district (HID in the time periods 2041–2070 and 2071–2099, and used the Penman–Monteith equation to calculate reference crop evapotranspiration (ET0, which was further used to calculate crop evapotranspiration (ETc and crop water requirement (CWR. CWR and predicted future precipitation were used to calculate CIR. The results show that the climate in the HID will become warmer and wetter; ET0 would would increase by 4% to 7%; ETc and CWR have the same trend as ET0, but different crops have different increase rates. CIR would increase because of the coefficient of the increase of CWR and the decrease of effective precipitation. Based on the current growing area, the CIR would increase by 198 × 106 to 242 × 106 m3 by the year 2041–2070, and by 342 × 106 to 456 × 106 m3 by the years 2071–2099 respectively. Future climate change will bring greater challenges to regional agricultural water use.

  1. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    Science.gov (United States)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  2. Aggregating available soil water holding capacity data for crop yield models

    Science.gov (United States)

    Seubert, C. E.; Daughtry, C. S. T.; Holt, D. A.; Baumgardner, M. F.

    1984-01-01

    The total amount of water available to plants that is held against gravity in a soil is usually estimated as the amount present at -0.03 MPa average water potential minus the amount present at -1.5 MPa water potential. This value, designated available water-holding capacity (AWHC), is a very important soil characteristic that is strongly and positively correlated to the inherent productivity of soils. In various applications, including assessing soil moisture status over large areas, it is necessary to group soil types or series as to their productivity. Current methods to classify AWHC of soils consider only total capacity of soil profiles and thus may group together soils which differ greatly in AWHC as a function of depth in the profile. A general approach for evaluating quantitatively the multidimensional nature of AWHC in soils is described. Data for 902 soil profiles, representing 184 soil series, in Indiana were obtained from the Soil Characterization Laboratory at Purdue University. The AWHC for each of ten 150-mm layers in each soil was established, based on soil texture and parent material. A multivariate clustering procedure was used to classify each soil profile into one of 4, 8, or 12 classes based upon ten-dimensional AWHC values. The optimum number of classes depends on the range of AWHC in the population of oil profiles analyzed and on the sensitivity of a crop to differences in distribution of water within the soil profile.

  3. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    Science.gov (United States)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  4. Water balance and fertigation for crop improvement in West Asia. Results of a technical co-operation project

    International Nuclear Information System (INIS)

    2002-01-01

    Mediterranean countries have a severe shortage of water resources for agricultural, municipal and industrial purposes. This situation is aggravated daily due to the rapidly increasing population in the area. Agriculture is the biggest consumer of water with about 80% of the renewable resource used for irrigation. Traditional irrigation methods are highly inefficient: only about one-third of the applied water is actually transpired by the crops. Clearly, there is great scope for improved irrigation management. Intensification of agricultural production to meet growing market demand requires the simultaneous application of irrigation water and fertilizers. Application of fertilizer in drip irrigation (fertigation) is an effective way to promote efficient use of these scarce and expensive resources. There is widespread interest in Mediterranean countries in fertigation. Nevertheless, information on the form and concentration of the nutrients required for different crops is presently inadequate. Moreover, the low fertilizer recoveries due to extensive fertilization practiced during the last few decades have created serious agricultural and environmental problems. High nitrate concentrations in groundwater and deterioration of some important quality parameters of agricultural products are the main concerns. Recognizing the potential role of nuclear techniques in identifying improved water and fertilizer management practices, the IAEA implemented two regional technical co-operation projects during the period 1995-2000 with eight participating countries from the West Asia region: The Islamic Republic of Iran, Jordan, Lebanon, Saudi Arabia, the Syria Arab Republic, Turkey, United Arab Emirates and Yemen. The main objective was to establish water balance and fertigation practices using nuclear techniques, with a view to improving crop production in arid and semi-arid zones. The projects aimed to compare the following parameters under conventional fertilizer and water

  5. Mapping Changes in Area and the Cropping Season of Irrigated Rice in Senegal and Mauritania between 2003 and 2014 Using the PhenoRice Algorithm and MODIS Imagery

    Science.gov (United States)

    Zwart, S.; Busetto, L.; Diagne, M.; Boschetti, M.; Nelson, A.

    2017-12-01

    Government policies have resulted in rapid expansion of irrigated rice area in Mauritania and Senegal through private and public investments. Farmers switch rice cultivation from the wet to the dry season to achieve higher production while rice double cropping is increasingly practiced. As a result Senegal is close to attaining self-sufficiency in the coming years. However, tools to monitor those changes are absent and this inhibits assessments on for example its impact on wetlands located in the delta area, increased water demands and climate induced risks to farmers. In this study we aimed to map changes in irrigated rice area in the wet and dry seasons. We applied the PhenoRice algorithm on a combined time-series of MODIS Aqua and Terra images obtained between 2003 and 2016 to map pixels dominated by rice and determine the start, end and length of the growing season from sowing/transplanting to maturity. Between 2002 and 2010 researchers from the Africa Rice Center interviewed annually around 100 rice farmers located in two irrigation schemes in Senegal. We extracted the reported sowing/transplanting and harvest dates from the data base and used these to validate the estimates obtained by PhenoRice. We also compared the obtained rice areas with official statistics provided by the Senegalese Ministry of Agriculture. Analysis of PhenoRice results highlighted that starting 2008, rice farmers cultivate also during the dry season; the area is steadily increasing from 2008 onwards and in the recent years approximately almost equals that of the wet season. This was confirmed by official statistics, though the total area estimated by PhenoRice is smaller than reported, most likely due to the mismatch between pixel size and the small cultivated areas. However, the algorithm was able to detect the overall trends and inter-annual variations observed in the wet (r2=0.57) and dry season rice cultivated area (r2=0.91). The start of the season, that varied maximally 4 weeks

  6. California State Waters Map Series: offshore of Santa Barbara, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Greene, H. Gary; Krigsman, Lisa M.; Kvitek, Rikk G.; Dieter, Bryan E.; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Gutierrez, Carlos I.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Conrad, James E.; Cochran, Susan A.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Santa Barbara map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and geodetic studies indicate that the region is presently undergoing north-south shortening. Uplift rates (as much as 2.2 mm/yr) that are based on studies of onland marine terraces provide further evidence of significant shortening. The city of Santa Barbara, the main coastal population center in the map area, is part of a contiguous urban area that extends from Carpinteria to Goleta. This urban area was developed on the coalescing alluvial surfaces, uplifted marine terraces, and low hills that lie south of the east-west-trending Santa Ynez Mountains. Several beaches line the actively

  7. California State Waters Map Series--Offshore of Ventura, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Krigsman, Lisa M.; Endris, Charles A.; Seitz, Gordon G.; Gutierrez, Carlos I.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Yoklavich, Mary M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Ventura map area lies within the Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the Ventura Basin, in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges, and the region is presently undergoing north-south shortening. The city of Ventura is the major cultural center in the map area. The Ventura River cuts through Ventura, draining the Santa Ynez Mountains and the coastal hills north of Ventura. Northwest of Ventura, the coastal zone is a narrow strip containing highway and railway transportation corridors and a few small residential clusters. Rincon Island, an island constructed for oil and gas production, lies offshore of Punta Gorda. Southeast of Ventura, the coastal zone consists of the mouth and broad, alluvial plains of the Santa Clara River

  8. California State Waters Map Series: offshore of Carpinteria, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Golden, Nadine E.; Phillips, Eleyne L.; Ritchie, Andrew C.; Kvitek, Rikk G.; Greene, H. Gary; Endris, Charles A.; Seitz, Gordon G.; Sliter, Ray W.; Erdey, Mercedes D.; Wong, Florence L.; Gutierrez, Carlos I.; Krigsman, Lisa M.; Draut, Amy E.; Hart, Patrick E.; Johnson, Samuel Y.; Cochran, Susan A.

    2013-01-01

    In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. The Offshore of Carpinteria map area lies within the central Santa Barbara Channel region of the Southern California Bight. This geologically complex region forms a major biogeographic transition zone, separating the cold-temperate Oregonian province north of Point Conception from the warm-temperate California province to the south. The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The small city of Carpinteria is the most significant onshore cultural center in the map area; the smaller town of Summerland lies west of Carpinteria. These communities rest on a relatively flat coastal piedmont that is surrounded on the north, east, and west by hilly relief on the flanks of the Santa Ynez Mountains. El Estero, a salt marsh on the coast west of Carpinteria, is an ecologically important coastal estuary. Southeast of Carpinteria, the coastal zone is narrow strip containing highway and railway transportation corridors

  9. Using deficit irrigation with treated wastewater to improve crop water productivity of sweet corn, chickpea, faba bean and quinoa

    Directory of Open Access Journals (Sweden)

    Abdelaziz HIRICH

    2014-07-01

    Full Text Available Several experiments were conducted in the south of Morocco (IAV-CHA, Agadir during two seasons 2010 and 2011 in order to evaluate the effect of deficit irrigation with treated wastewater on several crops (quinoa, sweet corn, faba bean and chickpeas. During the first season (2010 three crops were tested, quinoa, chickpeas and sweet corn applying 6 deficit irrigation treatments during all crop stages alternating 100% of full irrigation as non-stress condition and 50% of full irrigation as water deficit condition applied during vegetative growth, flowering and grain filling stage. For all crops, the highest water productivity and yield were obtained when deficit irrigation was applied during the vegetative growth stage. During the second season (2011 two cultivars of quinoa, faba bean and sweet corn have been cultivated applying 6 deficit irrigation treatments (rainfed, 0, 25, 50, 75 and 100% of full irrigation only during the vegetative growth stage, while in the rest of crop cycle full irrigation was provided except for rainfed treatment. For quinoa and faba bean, treatment receiving 50% of full irrigation during vegetative growth stage recorded the highest yield and water productivity, while for sweet corn applying 75% of full irrigation was the optimal treatment in terms of yield and water productivity.

  10. Root length densities of UK wheat and oilseed rape crops with implications for water capture and yield

    Science.gov (United States)

    White, Charlotte A.; Sylvester-Bradley, Roger; Berry, Peter M.

    2015-01-01

    Root length density (RLD) was measured to 1 m depth for 17 commercial crops of winter wheat (Triticum aestivum) and 40 crops of winter oilseed rape [Brassica napus; oilseed rape (OSR)] grown in the UK between 2004 and 2013. Taking the critical RLD (cRLD) for water capture as 1cm cm–3, RLDs appeared inadequate for full water capture on average below a depth of 0.32 m for winter wheat and below 0.45 m for OSR. These depths compare unfavourably (for wheat) with average depths of ‘full capture’ of 0.86 m and 0.48 m, respectively, determined for three wheat crops and one OSR crop studied in the 1970s and 1980s, and treated as references here. A simple model of water uptake and yield indicated that these shortfalls in wheat and OSR rooting compared with the reference data might be associated with shortfalls of up to 3.5 t ha–1 and 1.2 t ha–1, respectively, in grain yields under water-limited conditions, as increasingly occur through climate change. Coupled with decreased summer rainfall, poor rooting of modern arable crops could explain much of the yield stagnation that has been observed on UK farms since the 1990s. Methods of monitoring and improving rooting under commercial conditions are reviewed and discussed. PMID:25750427

  11. Water and nutrient productivity in melon crop by fertigation under subsurface drip irrigation and mulching in contrasting soils

    Directory of Open Access Journals (Sweden)

    Rodrigo Otávio Câmara Monteiro

    2014-01-01

    Full Text Available Cropping intensification and technical, economic and environmental issues require efficient application of production factors to maintain the soil productive capacity and produce good quality fruits and vegetables. The production factors, water and NPK nutrients, are the most frequent limiting factors to higher melon yields. The objective of the present study was to identify the influence of subsurface drip irrigation and mulching in a protected environment on the water and NPK nutrients productivity in melon cropped in two soil types: sandy loam and clay. The melon crop cultivated under environmental conditions with underground drip irrigation at 0.20m depth, with mulching on sandy loam soil increased water and N, P2O5 and K use efficiency.

  12. Evaluation of the dose to man in relation to the behavior of tritium from irrigation water in agricultural crops

    International Nuclear Information System (INIS)

    Kirchmann, R.; Bruwaene, R. van; Koch, G.; Grauby, A.; Delmas, J.; Athalye, V.

    1977-01-01

    A research program on the transfer of tritium from the irrigation water in the soil-plant environment provides valuable ecological information on the effects of tritium releases from nuclear installations under temperate humide and mediterranean climatic conditions. Field studies are carried out on experimental plots by spraying the crops with irrigation water contaminated with tritium on a single dose, the reference level chosen is 1 nCi/litre. The following crops are investigated: prairie, rye-grass, potato, pea, barley, carrot and sugarbeet as temperate region cultures, and vineyard, olive-tree and orange-tree as mediterranean cultures. Soil and plants samples are collected for radioassay to determine the tritium incorporation in tissue water and organic matter fractions. The tritium activity in these crops after harvest is correlated to the level of radiation dose received through human diet [fr

  13. Effect of mineral and organic fertilization on grey water footprint in a fertirrigated crop under semiarid conditions.

    Science.gov (United States)

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; Jesús Cabello Cabello, María; María Tarquis Alfonso, Ana

    2016-04-01

    The concept of "water footprint" (WF) was introduced as an indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [1]. The WF distinguishes between blue water (volume of surface and groundwater consumed), green water (rain-water consumed), and grey water (volume of freshwater that is required to assimilate the load of pollutants based on existing ambient water quality standards). In semiarid scenarios with low water quality, where the irrigation is necessary to maintain production, green WF is zero because the effective rainfall is negligible. As well as blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. The major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study is focused in assessment mineral and organic fertilization on grey WF in a fertirrigated melon crop under semiarid conditions, which is principally cultivated in the centre of Spain declared vulnerable zone to nitrate pollution by applying the Directive 91/676/CEE. During successive years, a melon crop (Cucumis melo L.) was grown under field conditions. Different doses of ammonium nitrate were used as well as compost derived from the wine-distillery industry which is relevant in this area. Acknowledgements: This project has been supported by INIA-RTA04-111-C3 and INIA-RTA2010-00110-C03. Keywords: Water footprint, nitrogen, fertirrigation, inorganic fertilizers, organic amendments, semiarid conditions. [1] Hoekstra, A.Y. 2003. Virtual water trade. Proceedings of the International Expert Meeting on Virtual Water Trade, Delft, The Netherlands, 12-13 December 2002. Value of Water Research Report Series No. 12

  14. Breeding crop plants with deep roots: their role in sustainable carbon, nutrient and water sequestration

    Science.gov (United States)

    Kell, Douglas B.

    2011-01-01

    Background The soil represents a reservoir that contains at least twice as much carbon as does the atmosphere, yet (apart from ‘root crops’) mainly just the above-ground plant biomass is harvested in agriculture, and plant photosynthesis represents the effective origin of the overwhelming bulk of soil carbon. However, present estimates of the carbon sequestration potential of soils are based more on what is happening now than what might be changed by active agricultural intervention, and tend to concentrate only on the first metre of soil depth. Scope Breeding crop plants with deeper and bushy root ecosystems could simultaneously improve both the soil structure and its steady-state carbon, water and nutrient retention, as well as sustainable plant yields. The carbon that can be sequestered in the steady state by increasing the rooting depths of crop plants and grasses from, say, 1 m to 2 m depends significantly on its lifetime(s) in different molecular forms in the soil, but calculations (http://dbkgroup.org/carbonsequestration/rootsystem.html) suggest that this breeding strategy could have a hugely beneficial effect in stabilizing atmospheric CO2. This sets an important research agenda, and the breeding of plants with improved and deep rooting habits and architectures is a goal well worth pursuing. PMID:21813565

  15. Potential microbial risk factors related to soil amendments and irrigation water of potato crops.

    Science.gov (United States)

    Selma, M V; Allende, A; López-Gálvez, F; Elizaquível, P; Aznar, R; Gil, M I

    2007-12-01

    This study assesses the potential microbial risk factors related to the use of soil amendments and irrigation water on potato crops, cultivated in one traditional and two intensive farms during two harvest seasons. The natural microbiota and potentially pathogenic micro-organisms were evaluated in the soil amendment, irrigation water, soil and produce. Uncomposted amendments and residual and creek water samples showed the highest microbial counts. The microbial load of potatoes harvested in spring was similar among the tested farms despite the diverse microbial levels of Listeria spp. and faecal coliforms in the potential risk sources. However, differences in total coliform load of potato were found between farms cultivated in the autumn. Immunochromatographic rapid tests and the BAM's reference method (Bacteriological Analytical Manual; AOAC International) were used to detect Escherichia coli O157:H7 from the potential risk sources and produce. Confirmation of the positive results by polymerase chain reaction procedures showed that the immunochromatographic assay was not reliable as it led to false-positive results. The potentially pathogenic micro-organisms of soil amendment, irrigation water and soil samples changed with the harvest seasons and the use of different agricultural practices. However, the microbial load of the produce was not always influenced by these risk sources. Improvements in environmental sample preparation are needed to avoid interferences in the use of immunochromatographic rapid tests. The potential microbial risk sources of fresh produce should be regularly controlled using reliable detection methods to guarantee their microbial safety.

  16. Introducing non-flooded crops in rice-dominated landscapes: Impact on carbon, nitrogen and water budgets

    Science.gov (United States)

    Jauker, Frank; Wassmann, Reiner; Amelung, Wulf; Breuer, Lutz; Butterbach-Bahl, Klaus; Conrad, Ralf; Ekschmitt, Klemens; Goldbach, Heiner; He, Yao; John, Katharina; Kiese, Ralf; Kraus, David; Reinhold-Hurek, Barbara; Siemens, Jan; Weller, Sebastian; Wolters, Volkmar

    2013-04-01

    Rice production consumes about 30% of all freshwater used worldwide and 45% in Asia. Turning away from permanently flooded rice cropping systems for mitigating future water scarcity and reducing methane emissions, however, will alter a variety of ecosystem services with potential adverse effects to both the environment and agricultural production. Moreover, implementing systems that alternate between flooded and non-flooded crops increases the risk of disruptive effects. The multi-disciplinary DFG research unit ICON aims at exploring and quantifying the ecological consequences of altered water regimes (flooded vs. non-flooded), crop diversification (irrigated rice vs. aerobic rice vs. maize), and different fertilization strategies (conventional, site-specific, and zero N fertilization). ICON particularly focuses on the biogeochemical cycling of carbon and nitrogen, green-house gas (GHG) emissions, water balance, soil biotic processes and other important ecosystem services. The overarching goal is to provide the basic process understanding that is necessary for balancing the revenues and environmental impacts of high-yield rice cropping systems while maintaining their vital ecosystem services. To this aim, a large-scale field experiment has been established at the experimental farm of the International Rice Research Institute (IRRI, Philippines). Ultimately, the experimental results are analyzed in the context of management scenarios by an integrated modeling of crop development (ORYZA), carbon and nitrogen cycling (MoBiLE-DNDC), and water fluxes (CMF), providing the basis for developing pathways to a conversion of rice-based systems towards higher yield potentials under minimized environmental impacts. In our presentation, we demonstrate the set-up of the controlled large-scale field experiment for simultaneous assessment of carbon and nitrogen fluxes and water budgets. We show and discuss first results for: - Quantification and assessment of the net-fluxes of CH4

  17. Multispectral atmospheric mapping sensor of mesoscale water vapor features

    Science.gov (United States)

    Menzel, P.; Jedlovec, G.; Wilson, G.; Atkinson, R.; Smith, W.

    1985-01-01

    The Multispectral atmospheric mapping sensor was checked out for specified spectral response and detector noise performance in the eight visible and three infrared (6.7, 11.2, 12.7 micron) spectral bands. A calibration algorithm was implemented for the infrared detectors. Engineering checkout flights on board the ER-2 produced imagery at 50 m resolution in which water vapor features in the 6.7 micron spectral band are most striking. These images were analyzed on the Man computer Interactive Data Access System (McIDAS). Ground truth and ancillary data was accessed to verify the calibration.

  18. Current Status and Perspectives for the Estimation of Crop Water Requirements from Earth Observation

    Directory of Open Access Journals (Sweden)

    Guido D’Urso

    2010-06-01

    Full Text Available This paper presents an overview of current techniques and recent developments in the application of Earth Observationdata for assessing crop water requirements. During recent years there has been much progress in understandingland surface-atmosphere processes and their parameterisation in the management of land and water resources.This knowledge can be combined with the potentiality of Earth Observation techniques from space, whichare able to provide detailed information for monitoring agricultural systems.As today, two main developments in the field of Earth Observation data acquisition and analysis have occurred:a availability of new generations of sensors, with enhanced spectral and spatial resolution;b detailed knowledge of the processes that determine the response of land surface as detected from remote sensorsin different regions of the electromagnetic spectrum.These advancements have made possible a “quantitative” approach in the interpretation of Earth Observation data,ready for being transferred to operative applications i.e. for irrigation scheduling and water management. Thispaper presents a review of current applications of optical data in the visible and near infrared spectral regions, withparticular emphasis to the experiences developed by the author within AQUATER and other research projectsproject.

  19. Nuclear techniques to evaluate the water use of field crops irrigated in different stages of their cycles

    International Nuclear Information System (INIS)

    Libardi, P.L.; Moraes, S.O.; Saad, M.A.; Jong Van Lier, Q.; Vieira, O.; Luis Tuon, R.

    1995-01-01

    The search for soil - water management systems that rationalize the water use of field crops should always be emphasized. The present coordinated research programme of the joint division FAO/ AEA has the objective to contribute to a better understanding of this subject by improving the use efficiency of water resources in irrigated agriculture. This project is a contribution to this programme and consisted in the identification of specified development stages of bean ( phaseolus vulgaris, L ) and corn (Zea mays, L ) crops in which plants are less sensitive to water deficit. Experiments were carried out in a tropical soil of agricultural importance in a traditional irrigation field site of the state of Sao Paulo, Brazil. Neutron probe tensiometers were used to determine the soil water balance in different treatments. 3 tabs, 16 refs, (Author)

  20. California State Waters Map Series—Offshore of Gaviota, California

    Science.gov (United States)

    Johnson, Samuel Y.; Dartnell, Peter; Cochrane, Guy R.; Hartwell, Stephen R.; Golden, Nadine E.; Kvitek, Rikk G.; Davenport, Clifton W.; Johnson, Samuel Y.; Cochran, Susan A.

    2018-04-20

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The map area is in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland. Significant clockwise rotation—at least 90°—since the early Miocene has been proposed for the Western Transverse Ranges province, and the region is presently undergoing north-south shortening. The offshore part of the map area lies south of the steep south flank of the Santa Ynez Mountains. The crest of the range, which has a maximum elevation of about 760 m in the map area, lies about 4 km north of the shoreline.Gaviota is an unincorporated community that has a sparse population (less than 100), and the coastal zone is largely open space that is locally used for cattle grazing. The Union Pacific railroad tracks extend westward along the coast through the entire map area, within a few hundred meters of the shoreline. Highway 101 crosses the eastern part of the map area, also along the coast, then turns north (inland) and travels through Cañada de la Gaviota and Gaviota Pass en route to Buellton. Gaviota State Park lies at the mouth of Cañada de la Gaviota. West of Gaviota, the onland coastal zone is occupied by the Hollister Ranch, a privately owned

  1. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops.

    Science.gov (United States)

    Wasson, A P; Richards, R A; Chatrath, R; Misra, S C; Prasad, S V Sai; Rebetzke, G J; Kirkegaard, J A; Christopher, J; Watt, M

    2012-05-01

    Wheat yields globally will depend increasingly on good management to conserve rainfall and new varieties that use water efficiently for grain production. Here we propose an approach for developing new varieties to make better use of deep stored water. We focus on water-limited wheat production in the summer-dominant rainfall regions of India and Australia, but the approach is generally applicable to other environments and root-based constraints. Use of stored deep water is valuable because it is more predictable than variable in-season rainfall and can be measured prior to sowing. Further, this moisture is converted into grain with twice the efficiently of in-season rainfall since it is taken up later in crop growth during the grain-filling period when the roots reach deeper layers. We propose that wheat varieties with a deeper root system, a redistribution of branch root density from the surface to depth, and with greater radial hydraulic conductivity at depth would have higher yields in rainfed systems where crops rely on deep water for grain fill. Developing selection systems for mature root system traits is challenging as there are limited high-throughput phenotyping methods for roots in the field, and there is a risk that traits selected in the lab on young plants will not translate into mature root system traits in the field. We give an example of a breeding programme that combines laboratory and field phenotyping with proof of concept evaluation of the trait at the beginning of the selection programme. This would greatly enhance confidence in a high-throughput laboratory or field screen, and avoid investment in screens without yield value. This approach requires careful selection of field sites and years that allow expression of deep roots and increased yield. It also requires careful selection and crossing of germplasm to allow comparison of root expression among genotypes that are similar for other traits, especially flowering time and disease and toxicity

  2. Occurrence of chemical contaminants in peri-urban agricultural irrigation waters and assessment of their phytotoxicity and crop productivity.

    Science.gov (United States)

    Margenat, Anna; Matamoros, Víctor; Díez, Sergi; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2017-12-01

    Water scarcity and water pollution have increased the pressure on water resources worldwide. This pressure is particularly important in highly populated areas where water demand exceeds the available natural resources. In this regard, water reuse has emerged as an excellent water source alternative for peri-urban agriculture. Nevertheless, it must cope with the occurrence of chemical contaminants, ranging from trace elements (TEs) to organic microcontaminants. In this study, chemical contaminants (i.e., 15 TEs, 34 contaminants of emerging concern (CECs)), bulk parameters, and nutrients from irrigation waters and crop productivity (Lycopersicon esculentum Mill. cv. Bodar and Lactuca sativa L. cv. Batavia) were seasonally surveyed in 4 farm plots in the peri-urban area of the city of Barcelona. A pristine site, where rain-groundwater is used for irrigation, was selected for background concentrations. The average concentration levels of TEs and CECs in the irrigation water impacted by treated wastewater (TWW) were 3 (35±75μgL -1 ) and 13 (553±1050ngL -1 ) times higher than at the pristine site respectively. Principal component analysis was used to classify the irrigation waters by chemical composition. To assess the impact of the occurrence of these contaminants on agriculture, a seed germination assay (Lactuca sativa L) and real field-scale study of crop productivity (i.e., lettuce and tomato) were used. Although irrigation waters from the peri-urban area exhibited a higher frequency of detection and concentration of the assessed chemical contaminants than those of the pristine site (P1), no significant differences were found in seed phytotoxicity or crop productivity. In fact, the crops impacted by TWW showed higher productivity than the other farm plots studied, which was associated with the higher nutrient availability for plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Taxonomic classification of world map units in crop producing areas of Argentina and Brazil with representative US soil series and major land resource areas in which they occur

    Science.gov (United States)

    Huckle, H. F. (Principal Investigator)

    1980-01-01

    The most probable current U.S. taxonomic classification of the soils estimated to dominate world soil map units (WSM)) in selected crop producing states of Argentina and Brazil are presented. Representative U.S. soil series the units are given. The map units occurring in each state are listed with areal extent and major U.S. land resource areas in which similar soils most probably occur. Soil series sampled in LARS Technical Report 111579 and major land resource areas in which they occur with corresponding similar WSM units at the taxonomic subgroup levels are given.

  4. Marginal cost curves for water footprint reduction in irrigated agriculture: a policy and decision making guide for efficient water use in crop production

    Science.gov (United States)

    Chukalla, Abebe; Krol, Maarten; Hoekstra, Arjen

    2016-04-01

    Reducing water footprints (WF) in irrigated crop production is an essential element in water management, particularly in water-scarce areas. To achieve this, policy and decision making need to be supported with information on marginal cost curves that rank measures to reduce the WF according to their cost-effectiveness and enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a certain reasonable WF benchmark. This paper aims to develop marginal cost curves (MCC) for WF reduction. The AquaCrop model is used to explore the effect of different measures on evapotranspiration and crop yield and thus WF that is used as input in the MCC. Measures relate to three dimensions of management practices: irrigation techniques (furrow, sprinkler, drip and subsurface drip); irrigation strategies (full and deficit irrigation); and mulching practices (no mulching, organic and synthetic mulching). A WF benchmark per crop is calculated as resulting from the best-available production technology. The marginal cost curve is plotted using the ratios of the marginal cost to WF reduction of the measures as ordinate, ranking with marginal costs rise with the increase of the reduction effort. For each measure, the marginal cost to reduce WF is estimated by comparing the associated WF and net present value (NPV) to the reference case (furrow irrigation, full irrigation, no mulching). The NPV for each measure is based on its capital costs, operation and maintenances costs (O&M) and revenues. A range of cases is considered, including: different crops, soil types and different environments. Key words: marginal cost curve, water footprint benchmark, soil water balance, crop growth, AquaCrop

  5. Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images.

    Science.gov (United States)

    Wang, Jie; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Zhou, Yuting; Zhang, Yao

    2015-05-12

    As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural-urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first identified several main types of non-cropland land cover and then identified paddy rice fields by selecting pixels that were inundated only during paddy rice flooding periods. These key temporal windows were determined based on MODIS Land Surface Temperature and vegetation indices. The resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and revealed more details about their distribution. These results demonstrate the efficacy of using images from multiple sources to generate paddy rice maps for two-crop rotation systems.

  6. Biological soil attributes in oilseed crops irrigated with oilfield produced water in the semi-arid region

    Directory of Open Access Journals (Sweden)

    Ana Clarice Melo Azevedo de Meneses

    Full Text Available ABSTRACT Wastewater from oil is the main residue of the oil industry. Studies have shown that wastewater, or produced water, can be treated and used as an alternative source for the irrigation of oilseed crops. The aim of this work was to evaluate the effect of treated produced water on the biological properties of soil cultivated with the castor bean cv. BRS Energy and the sunflower cv. BRS 321 respectively, for two and three successive cycles of grain production. The first cycle in the sunflower and castor bean corresponds to the dry season and the second cycle to the rainy season. The third crop cycle in the sunflower relates to the dry season. The research was carried out from August 2012 to October 2013, in the town of Aracati, in the State of Ceará (Brazil, where both crops were submitted to irrigation with filtered produced water (FPW, produced water treated by reverse osmosis (OPW, or groundwater water from the Açu aquifer (ACW, and to no irrigation (RFD. The treatments, with three replications, were evaluated during the periods of pre-cultivation and plant reproduction for soil respiration (Rs, total organic carbon (TOC and the population density of bacteria (Bact and filamentous fungi (Fung in the soil. In the sunflower crop, these soil attributes are sensitive to the irrigation water used. Irrigation of the castor bean affects soil respiration. Under the conditions of this study, irrigation with FPW may be a short-term alternative in the castor bean and sunflower crops.

  7. An assessment of crop water deficits of the plants growing on the Małopolska Upland (Poland

    Directory of Open Access Journals (Sweden)

    Kowalczyk Agnieszka

    2016-06-01

    Full Text Available The problem of water scarcity is unfavourable for the economy, with the most significant water deficits felt by agriculture. In Poland water deficits in agriculture are occurring more frequently, causing losses in yield, not only in the Lowland areas but also in the Uplands. This paper presents an assessment of the water deficits at various excedance probability levels for four varieties of field crop and for soil types with various water retention capacity, which occur in the Małopolska Upland. Calculations were performed by balancing the amount of available soil water in the root zone. The study was based on the meteorological data from the Institute of Meteorology and Water Management for the years 1971–2010. Daily precipitation data from six rainfall stations: Borusowa, Igołomia, Książ Wielki, Miechów, Olewin and Sielec was utilised as well as average decadal air temperature, water vapour pressure, wind speed and sunshine hours from the meteorological station at Kraków–Balice. The water deficits at an excedance probability level of 20% fluctuated during the growing season from 5 mm (Phaeozems to 190 mm (Leptosols. In the Małopolska Upland in soils with a medium capacity to retain water (110–160 mm, water deficits have occurred even in years of average rainfall (with probability 50%. This study confirms the considerable impact of the high variability of the soil and pluvial conditions in the region on the water deficits of the field crops.

  8. Evaluating Landsat 8 evapotranspiration for water use mapping in the Colorado River Basin

    Science.gov (United States)

    Senay, Gabriel; Friedrichs, MacKenzie O.; Singh, Ramesh K.; Velpuri, Naga Manohar

    2016-01-01

    Evapotranspiration (ET) mapping at the Landsat spatial resolution (100 m) is essential to fully understand water use and water availability at the field scale. Water use estimates in the Colorado River Basin (CRB), which has diverse ecosystems and complex hydro-climatic regions, will be helpful to water planners and managers. Availability of Landsat 8 images, starting in 2013, provides the opportunity to map ET in the CRB to assess spatial distribution and patterns of water use. The Operational Simplified Surface Energy Balance (SSEBop) model was used with 528 Landsat 8 images to create seamless monthly and annual ET estimates at the inherent 100 m thermal band resolution. Annual ET values were summarized by land use/land cover classes. Croplands were the largest consumer of “blue” water while shrublands consumed the most “green” water. Validation using eddy covariance (EC) flux towers and water balance approaches showed good accuracy levels with R2 ranging from 0.74 to 0.95 and the Nash–Sutcliffe model efficiency coefficient ranging from 0.66 to 0.91. The root mean square error (and percent bias) ranged from 0.48 mm (13%) to 0.60 mm (22%) for daily (days of satellite overpass) ET and from 7.75 mm (2%) to 13.04 mm (35%) for monthly ET. The spatial and temporal distribution of ET indicates the utility of Landsat 8 for providing important information about ET dynamics across the landscape. Annual crop water use was estimated for five selected irrigation districts in the Lower CRB where annual ET per district ranged between 681 mm to 772 mm. Annual ET by crop type over the Maricopa Stanfield irrigation district ranged from a low of 384 mm for durum wheat to a high of 990 mm for alfalfa fields. A rainfall analysis over the five districts suggested that, on average, 69% of the annual ET was met by irrigation. Although the enhanced cloud-masking capability of Landsat 8 based on the cirrus band and utilization of the Fmask algorithm improved the

  9. Beneficial Use of Produced Water from Oil and Gas Operations for Agriculture: Effects on Crop Health and Crop Uptake of Contaminants

    Science.gov (United States)

    Sedlacko, E.; Blaine, A. C.; Haynes, K. M.; Higgins, C. P.

    2016-12-01

    The balance between water conservation and energy generation is difficult to maintain. Oil and gas (O&G) companies look to dispose of produced water in safe, economical ways, while farmers desperate for water seek plentiful sources to maintain their fields. The solution seems simple—purify the water from O&G operations and deliver it to the farmers for irrigation to ensure a reliable source of food. Unfortunately, little research has been conducted to date that could provide purification guidelines, risk warnings, or standard methods for how to implement this solution. In addition, multiple barriers to implementation including regulatory, economic, liability, and social license considerations, must be addressed. This presentation contains data regarding the uptake of compounds two crops, Triticum aestivum (spring wheat) and Helianthus annus (sunflower), grown in a controlled greenhouse environment and irrigated with different dilutions of raw and treated produced water from O&G operations. Differences in plant height, plant color, leaf area, and plant mass were examined, and additional laboratory analyses were conducted on the plants to detect uptake of inorganic and organic substances. Plant stress was also assessed both qualitatively and through plant hormone analysis. In addition, this project provided the opportunity for K-12 teachers to become involved in university research through a new National Science Foundation Research Experience for Teachers (RET) program at Colorado School of Mines. The subsequent impacts of this food-energy-water nexus research on local communities and local STEM curricula via the RET program will also be highlighted.

  10. Crop coefficient approaches based on fixed estimates of leaf resistance are not appropriate for estimating water use of citrus

    CSIR Research Space (South Africa)

    Taylor, NJ

    2015-03-01

    Full Text Available necessitates the use of water use models. The FAO-56 procedure is a simple, convenient and reproducible method, but as canopy cover and height vary greatly among different orchards, crop coefficients may not be readily transferrable from one orchard to another...

  11. Weed control in organic rice using plastic mulch and water seeding methods in addition to cover crops

    Science.gov (United States)

    Weeds are a major yield limiting factor in organic rice farming and are more problematic than in conventional production systems. Water seeding is a common method of reducing weed pressure in rice fields as many weeds connot tolerate flooded field conditions. The use of cover crops is another method...

  12. Determination of the Water Requirements of Garlic (Alium Sativum L. and Its Relationship With the Crop's Development

    Directory of Open Access Journals (Sweden)

    Hugo Eduardo Castro Franco

    2014-11-01

    Full Text Available Despite the importance of garlic (Allium sativum L., there is not enough information available about the water requirements for garlic crop in the country. The present study is to identify the crop water requirements for each phenological stage and set a watering schedule according to environmental conditions offered in Tunja-Boyacá. This research was conducted during the first half of 2013, on the farm called “La Maria", which is located in the Pedagogical and Technological University of Colombia. The assessment of the phenological stages in garlic was developed through a stratified sampling design and a destructive sampling design, which were carried out every 7 days after transplant. The value of Kc was determined through the FAO-56 methodology, in which the method was used to find the crop evapotranspiration. In order to establish crop water use, two lysimeters of 1 m3 of capacity were installed. The result of ETo was obtained through the weather station data, these data were analyzed with the Penman-Monteith equation, using the Cropwat software. Three phenological stages for growing garlic (Allium sativum L. were established, from the transplant to the harvest. These stages were: vegetative Growth and development, Bulb initiation and Maturation. Kc values for each phenological stage were 0.95, 0.97 and 0.68 respectively.

  13. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.

    Science.gov (United States)

    Truong, Sandra K; McCormick, Ryan F; Mullet, John E

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  14. Calculating crop water requirement satisfaction in the West Africa Sahel with remotely sensed soil moisture

    Science.gov (United States)

    McNally, Amy; Gregory J. Husak,; Molly Brown,; Carroll, Mark L.; Funk, Christopher C.; Soni Yatheendradas,; Kristi Arsenault,; Christa Peters-Lidard,; Verdin, James

    2015-01-01

    The Soil Moisture Active Passive (SMAP) mission will provide soil moisture data with unprecedented accuracy, resolution, and coverage, enabling models to better track agricultural drought and estimate yields. In turn, this information can be used to shape policy related to food and water from commodity markets to humanitarian relief efforts. New data alone, however, do not translate to improvements in drought and yield forecasts. New tools will be needed to transform SMAP data into agriculturally meaningful products. The objective of this study is to evaluate the possibility and efficiency of replacing the rainfall-derived soil moisture component of a crop water stress index with SMAP data. The approach is demonstrated with 0.1°-resolution, ~10-day microwave soil moisture from the European Space Agency and simulated soil moisture from the Famine Early Warning Systems Network Land Data Assimilation System. Over a West Africa domain, the approach is evaluated by comparing the different soil moisture estimates and their resulting Water Requirement Satisfaction Index values from 2000 to 2010. This study highlights how the ensemble of indices performs during wet versus dry years, over different land-cover types, and the correlation with national-level millet yields. The new approach is a feasible and useful way to quantitatively assess how satellite-derived rainfall and soil moisture track agricultural water deficits. Given the importance of soil moisture in many applications, ranging from agriculture to public health to fire, this study should inspire other modeling communities to reformulate existing tools to take advantage of SMAP data.

  15. Biomass and biomass water use efficiency in oilseed crop (Brassica juncea L.) under semi-arid microenvironments

    International Nuclear Information System (INIS)

    Adak, Tarun; Kumar, Gopal; Chakravarty, N.V.K.; Katiyar, R.K.; Deshmukh, P.S.; Joshi, H.C.

    2013-01-01

    Biomass production in arid and semi-arid regions requires a special attention owing to spatiotemporal scarcity of irrigation water wherein improved water use efficiency (WUE) of the crop is targeted. Under field conditions, the crop undergoes dynamic changes in near ground or within-canopy microenvironments. This changed microclimatic condition may have an impact on phenological response of the oilseed crop which in turn would affect biomass productivity, economic seed yield and water use efficiency of the crop. Henceforth, quantification of biomass production and its WUE of oilseed Brassica crop is essentially required owing to have better understanding of the crop water requirement under the era of climate change. Following a 2 years field experiment, it was revealed that the changes in leaf area index were explained by about 68–74%. The best fit polynomial third order regression analysis indicated >93% prediction in biomass production as a function of time factor. Improved biomass partitioning into economic sinks was also observed. Small scale change in near ground microenvironment may reduce the prediction of biomass variability to the extent of 3%. The mean ET variations were observed as 2.4, 1.5 and 3.2 mm day −1 during the critical phenological stages. Mean seed yield, biomass WUE and seed yield WUE ranged between 2.71 and 2.87 Mg ha −1 , 11.4 and 13.1 g m −2 mm −1 and 19.3 and 22.9 kg ha −1 mm −1 respectively. Variations in both biomass and seed yield water use efficiencies due to small scale change in near ground microclimates were revealed. -- Highlights: ► Assessing biomass productivity and its water use efficiency under arid and semi-arid regions is important. ► Under field conditions, the crop undergoes dynamic changes in near ground or within-canopy microenvironments. ► We have estimated changes in seasonal ET, within-canopy micrometeorological dynamics. ► Biomass productivity, partitioning and water use efficiencies were

  16. Transfer of atmospheric tritiated water to foliage and fruit of crops

    International Nuclear Information System (INIS)

    Fellows, R.J.; Cataldo, D.A.; Ligotke, M.W.; Napier, B.A.

    1993-01-01

    Tritiated water (THO) released to the environment from the effluent streams of nuclear reactors may be easily assimilated by organisms through metabolic fixation following foliar interception of THO vapor. This study was initiated to characterize atmospheric THO exchange parameters in two crops agronomically important to eastern Washington, grape (Vitus vinifera) and alfalfa (Medicago sativa). Short-term exposures using atmospheric THO concentrations ranging from 458 to 1,300,900 pCi/m 3 indicated no statistically significant concentration influences on THO exchange into the leaf tissue free-water (TFW) and organically bound tritium (OBT) of the leaves of either species. Long-term exposures indicated that equilibration of the leaf TFW with atmospheric THO concentrations occurred within 24 to 48 h for both species while equilibration of grape TFW appeared to take over 20 days. The rate of THO saturation of the foliage TFW appeared to be directly related to the stomatal resistance of the leaves and fruit. Desorption rates from both leaves and fruit were greater in the light than in the dark, again correlating with stomatal resistance. More than 90% of the absorbed THO was lost from the leaf TFW pool within 24 h following cessation of exposure for both species, while loss of THO from grape TFW and OBT pools was minimal. It appeared that more than 95 to 98% of the THO found in the TFW and OBT pools of the grape fruit was of atmospheric origin and not from transport from other parts of the plant

  17. Can a change in cropping patterns produce water savings and social gains: A case study from the Fergana Valley, Central Asia

    Directory of Open Access Journals (Sweden)

    Karimov Akmal Kh.

    2018-06-01

    Full Text Available The study examines possible water savings by replacing alfalfa with winter wheat in the Fergana Valley, located upstream of the Syrdarya River in Central Asia. Agricultural reforms since the 1990s have promoted this change in cropping patterns in the Central Asian states to enhance food security and social benefits. The water use of alfalfa, winter wheat/fallow, and winter wheat/green gram (double cropping systems is compared for high-deficit, low-deficit, and full irrigation scenarios using hydrological modeling with the HYDRUS-1D software package. Modeling results indicate that replacing alfalfa with winter wheat in the Fergana Valley released significant water resources, mainly by reducing productive crop transpiration when abandoning alfalfa in favor of alternative cropping systems. However, the winter wheat/fallow cropping system caused high evaporation losses from fallow land after harvesting of winter wheat. Double cropping (i.e., the cultivation of green gram as a short duration summer crop after winter wheat harvesting reduced evaporation losses, enhanced crop output and hence food security, while generating water savings that make more water available for other productive uses. Beyond water savings, this paper also discusses the economic and social gains that double cropping produces for the public within a broader developmental context.

  18. Mapping Wheat Growing Areas of Turkey by Integrating Multi-Temporal NDVI Data and Official Crop Statistics

    NARCIS (Netherlands)

    Unal, E.; de Bie, C.A.J.M.

    2017-01-01

    Wheat is the most widely cultivated crop in the world providing critical food source of most countries. It exceeds most of the grain crops in acreage and production because of its ability to grow in wide range of climatic and geographic conditions. Timely and reliable information on wheat acreages

  19. Effects of climate change on water requirements and phenological period of major crops in Heihe River basin, China - Based on the accumulated temperature threshold method

    Science.gov (United States)

    Han, Dongmei; Xu, Xinyi; Yan, Denghua

    2016-04-01

    In recent years, global climate change has significantly caused a serious crisis of water resources throughout the world. However, mainly through variations in temperature, climate change will affect water requirements of crop. It is obvious that the rise of temperature affects growing period and phenological period of crop directly, then changes the water demand quota of crop. Methods including accumulated temperature threshold and climatic tendency rate were adopted, which made up for the weakness of phenological observations, to reveal the response of crop phenological change during the growing period. Then using Penman-Menteith model and crop coefficients from the United Nations Food& Agriculture Organization (FAO), the paper firstly explored crop water requirements in different growth periods, and further forecasted quantitatively crop water requirements in Heihe River Basin, China under different climate change scenarios. Results indicate that: (i) The results of crop phenological change established in the method of accumulated temperature threshold were in agreement with measured results, and (ii) there were many differences in impacts of climate warming on water requirement of different crops. The growth periods of wheat and corn had tendency of shortening as well as the length of growth periods. (ii)Results of crop water requirements under different climate change scenarios showed: when temperature increased by 1°C, the start time of wheat growth period changed, 2 days earlier than before, and the length of total growth period shortened 2 days. Wheat water requirements increased by 1.4mm. However, corn water requirements decreased by almost 0.9mm due to the increasing temperature of 1°C. And the start time of corn growth period become 3 days ahead, and the length of total growth period shortened 4 days. Therefore, the contradiction between water supply and water demands are more obvious under the future climate warming in Heihe River Basin, China.

  20. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill. Trees via Thermal Imaging Camera Connected to Smartphone

    Directory of Open Access Journals (Sweden)

    Iván Francisco García-Tejero

    2018-03-01

    Full Text Available Different tools are being implemented in order to improve the water management in agricultural irrigated areas of semiarid environments. Thermography has been progressively introduced as a promising technique for irrigation scheduling and the assessing of crop-water status, especially when deficit irrigation is being implemented. However, an important limitation is related to the cost of the actual cameras, this being a severe limitation to its practical usage by farmers and technicians. This work evaluates the potential and the robustness of a thermal imaging camera that is connected to smartphone (Flir One recently developed by Flir Systems Inc. as a first step to assess the crop water status. The trial was developed in mature almond (Prunus dulcis Mill. trees that are subjected to different irrigation treatments. Thermal information obtained by the Flir One camera was deal with the thermal information obtained with a conventional Thermal Camera (Flir SC660 with a high resolution, and subsequently, confronted with other related plant physiological parameters (leaf water potential, Ψleaf, and stomatal conductance, gs. Thermal imaging camera connected to smartphone provided useful information in estimating the crop-water status in almond trees, being a potential promising tool to accelerate the monitoring process and thereby enhance water-stress management of almond orchards.

  1. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone.

    Science.gov (United States)

    García-Tejero, Iván Francisco; Ortega-Arévalo, Carlos José; Iglesias-Contreras, Manuel; Moreno, José Manuel; Souza, Luciene; Tavira, Simón Cuadros; Durán-Zuazo, Víctor Hugo

    2018-03-31

    Different tools are being implemented in order to improve the water management in agricultural irrigated areas of semiarid environments. Thermography has been progressively introduced as a promising technique for irrigation scheduling and the assessing of crop-water status, especially when deficit irrigation is being implemented. However, an important limitation is related to the cost of the actual cameras, this being a severe limitation to its practical usage by farmers and technicians. This work evaluates the potential and the robustness of a thermal imaging camera that is connected to smartphone (Flir One) recently developed by Flir Systems Inc. as a first step to assess the crop water status. The trial was developed in mature almond ( Prunus dulcis Mill.) trees that are subjected to different irrigation treatments. Thermal information obtained by the Flir One camera was deal with the thermal information obtained with a conventional Thermal Camera (Flir SC660) with a high resolution, and subsequently, confronted with other related plant physiological parameters (leaf water potential, Ψ leaf , and stomatal conductance, g s ). Thermal imaging camera connected to smartphone provided useful information in estimating the crop-water status in almond trees, being a potential promising tool to accelerate the monitoring process and thereby enhance water-stress management of almond orchards.

  2. Optimal Use of Agricultural Water and Land Resources through Reconfiguring Crop Planting Structure under Socioeconomic and Ecological Objectives

    Directory of Open Access Journals (Sweden)

    Qian Tan

    2017-07-01

    Full Text Available Many economic, social and ecological problems can be attributed to the scarcity and mismanagement of water and land resources. In this study, a multi-objective fuzzy–robust programming (MOFRP method was developed for supporting the optimal use of land and water resources in agriculture. MOFRP improved existing methods through taking ecological services of crop cultivation into account. It was also capable of reflecting fuzziness in preferences, priorities and parameters that were largely neglected in previous agricultural decision making. This method was applied to address a case in arid northwestern China. Optimal plans of crop cultivation reconfiguration were generated for sustaining local development under economic, ecological and social objectives as well as physical restraints in water and land resources. Compared to the status quo, the optimized plan would increase economic and ecological benefits by 12.2% and 18.8%, respectively. The efficiency of irrigation water could also be enhanced with the economic and ecological benefits per unit water being raised and the water consumption per unit land being reduced. The comparisons of the MOFRP model to four alternatives validated that it was capable of achieving satisfactory benefits and reducing system-violation risks without neglecting valuable uncertain information and ecological services of crops. The proposed method was also applicable to other multi-objective management problems under uncertainty without loss of generality.

  3. A particle swarm optimized kernel-based clustering method for crop mapping from multi-temporal polarimetric L-band SAR observations

    Science.gov (United States)

    Tamiminia, Haifa; Homayouni, Saeid; McNairn, Heather; Safari, Abdoreza

    2017-06-01

    Polarimetric Synthetic Aperture Radar (PolSAR) data, thanks to their specific characteristics such as high resolution, weather and daylight independence, have become a valuable source of information for environment monitoring and management. The discrimination capability of observations acquired by these sensors can be used for land cover classification and mapping. The aim of this paper is to propose an optimized kernel-based C-means clustering algorithm for agriculture crop mapping from multi-temporal PolSAR data. Firstly, several polarimetric features are extracted from preprocessed data. These features are linear polarization intensities, and several statistical and physical based decompositions such as Cloude-Pottier, Freeman-Durden and Yamaguchi techniques. Then, the kernelized version of hard and fuzzy C-means clustering algorithms are applied to these polarimetric features in order to identify crop types. The kernel function, unlike the conventional partitioning clustering algorithms, simplifies the non-spherical and non-linearly patterns of data structure, to be clustered easily. In addition, in order to enhance the results, Particle Swarm Optimization (PSO) algorithm is used to tune the kernel parameters, cluster centers and to optimize features selection. The efficiency of this method was evaluated by using multi-temporal UAVSAR L-band images acquired over an agricultural area near Winnipeg, Manitoba, Canada, during June and July in 2012. The results demonstrate more accurate crop maps using the proposed method when compared to the classical approaches, (e.g. 12% improvement in general). In addition, when the optimization technique is used, greater improvement is observed in crop classification, e.g. 5% in overall. Furthermore, a strong relationship between Freeman-Durden volume scattering component, which is related to canopy structure, and phenological growth stages is observed.

  4. Distribution of natural and artificial radioactivity in soils, water and tuber crops.

    Science.gov (United States)

    Darko, Godfred; Faanu, Augustine; Akoto, Osei; Acheampong, Akwasi; Goode, Eric Jude; Gyamfi, Opoku

    2015-06-01

    Activity concentrations of radionuclides in water, soil and tuber crops of a major food-producing area in Ghana were investigated. The average gross alpha and beta activities were 0.021 and 0.094 Bq/L, respectively, and are below the guidelines for drinking water and therefore not expected to pose any significant health risk. The average annual effective dose due to ingestion of radionuclide in water ranged from 20.08 to 53.45 μSv/year. The average activity concentration of (238)U, (232)Th, (40)K and (137)Cs in the soil from different farmlands in the study area was 23.19, 31.10, 143.78 and 2.88 Bq/kg, respectively, which is lower than world averages. The determined absorbed dose rate for the farmlands ranged from 23.63 to 50.51 nGy/year, which is within worldwide range of 18 to 93 nGy/year. The activity concentration of (238)U, (232)Th, (40)K and (137)Cs in cassava ranges from 0.38 to 6.73, 1.82 to 10.32, 17.65 to 41.01 and 0.38 to 1.02 Bq/kg, respectively. Additionally, the activity concentration of (238)U, (232)Th, (40)K and (137)Cs in yam also ranges from 0.47 to 4.89, 0.93 to 5.03, 14.19 to 35.07 and 0.34 to 0.89 Bq/kg, respectively. The average concentration ratio for (238)U, (232)Th and (40)K in yam was 0.12, 0.11 and 0.17, respectively, and in cassava was 0.11, 0.12 and 0.2, respectively. None of the radioactivity is expected to cause significant health problems to human beings.

  5. Manipulating Crop Density to Optimize Nitrogen and Water Use: An Application of Precision Agroecology

    Science.gov (United States)

    Brown, T. T.; Huggins, D. R.; Smith, J. L.; Keller, C. K.; Kruger, C.

    2011-12-01

    Rising levels of reactive nitrogen (Nr) in the environment coupled with increasing population positions agriculture as a major contributor for supplying food and ecosystem services to the world. The concept of Precision Agroecology (PA) explicitly recognizes the importance of time and place by combining the principles of precision farming with ecology creating a framework that can lead to improvements in Nr use efficiency. In the Palouse region of the Pacific Northwest, USA, relationships between productivity, N dynamics and cycling, water availability, and environmental impacts result from intricate spatial and temporal variations in soil, ecosystem processes, and socioeconomic factors. Our research goal is to investigate N use efficiency (NUE) in the context of factors that regulate site-specific environmental and economic conditions and to develop the concept of PA for use in sustainable agroecosystems and science-based Nr policy. Nitrogen and plant density field trials with winter wheat (Triticum aestivum L.) were conducted at the Washington State University Cook Agronomy Farm near Pullman, WA under long-term no-tillage management in 2010 and 2011. Treatments were imposed across environmentally heterogeneous field conditions to assess soil, crop and environmental interactions. Microplots with a split N application using 15N-labeled fertilizer were established in 2011 to examine the impact of N timing on uptake of fertilizer and soil N throughout the growing season for two plant density treatments. Preliminary data show that plant density manipulation combined with precision N applications regulated water and N use and resulted in greater wheat yield with less seed and N inputs. These findings indicate that improvements to NUE and agroecosystem sustainability should consider landscape-scale patterns driving productivity (e.g., spatial and temporal dynamics of water availability and N transformations) and would benefit from policy incentives that promote a PA

  6. Changing Land Use from Cotton to Bioenergy Crops in the Southern Great Plains: Implications on Carbon and Water Vapor Fluxes

    Science.gov (United States)

    Rajan, N.; Sharma, S.

    2016-12-01

    We are facing an unprecedented challenge in securing America's energy future. To address this challenge, increased biofuel crop production is needed. Although first-generation biofuels like corn ethanol are available, second-generation biofuels are gaining importance because they don't directly compete with food production. Second-generation biofuels are made from the by-products of intensive agriculture or from less-intensive agriculture on more marginal lands. The Southwestern U.S. Cotton Belt can play a significant role in this effort through a change from more conventional crops (like continuous cotton) to second-generation biofuel feedstocks (biomass sorghum and perennial grasses). While we believe there would be environmental benefits associated with this change in land use, their exact nature and magnitude have not been investigated for this region. The overall goal of the proposed study was to investigate the water and carbon (C) fluxes associated with the change in agricultural land use to biofuels-dominated cropping systems in the semi-arid Southwestern U.S. Cotton Belt region. Eddy covariance flux towers were established at selected producer fields (cotton, perennial grasses and biomass sorghum) in the Southern Great Plains region. The fluxes of carbon dioxide, water vapor and sensible heat between the surface and the atmosphere will be measured throughout the year. The results have demonstrated that the dynamics of C and water vapor fluxes for these agroecosystems were strongly affected by environmental variables, management factors, and crop phenology. Detailed results will be presented at the meeting.

  7. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Directory of Open Access Journals (Sweden)

    A. D. Chukalla

    2017-07-01

    Full Text Available Reducing the water footprint (WF of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha−1 per season or to a certain WF benchmark (expressed in m3  t−1 of crop. This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip; irrigation strategy (full or deficit irrigation; and mulching practice (no, organic or synthetic mulching. The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour. Different cases are considered, including three crops (maize, tomato and potato; four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel; three hydrologic years (wet, normal and dry years and three soil types (loam, silty clay loam and sandy loam. For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF

  8. Marginal cost curves for water footprint reduction in irrigated agriculture: guiding a cost-effective reduction of crop water consumption to a permit or benchmark level

    Science.gov (United States)

    Chukalla, Abebe D.; Krol, Maarten S.; Hoekstra, Arjen Y.

    2017-07-01

    Reducing the water footprint (WF) of the process of growing irrigated crops is an indispensable element in water management, particularly in water-scarce areas. To achieve this, information on marginal cost curves (MCCs) that rank management packages according to their cost-effectiveness to reduce the WF need to support the decision making. MCCs enable the estimation of the cost associated with a certain WF reduction target, e.g. towards a given WF permit (expressed in m3  ha-1 per season) or to a certain WF benchmark (expressed in m3  t-1 of crop). This paper aims to develop MCCs for WF reduction for a range of selected cases. AquaCrop, a soil-water-balance and crop-growth model, is used to estimate the effect of different management packages on evapotranspiration and crop yield and thus the WF of crop production. A management package is defined as a specific combination of management practices: irrigation technique (furrow, sprinkler, drip or subsurface drip); irrigation strategy (full or deficit irrigation); and mulching practice (no, organic or synthetic mulching). The annual average cost for each management package is estimated as the annualized capital cost plus the annual costs of maintenance and operations (i.e. costs of water, energy and labour). Different cases are considered, including three crops (maize, tomato and potato); four types of environment (humid in UK, sub-humid in Italy, semi-arid in Spain and arid in Israel); three hydrologic years (wet, normal and dry years) and three soil types (loam, silty clay loam and sandy loam). For each crop, alternative WF reduction pathways were developed, after which the most cost-effective pathway was selected to develop the MCC for WF reduction. When aiming at WF reduction one can best improve the irrigation strategy first, next the mulching practice and finally the irrigation technique. Moving from a full to deficit irrigation strategy is found to be a no-regret measure: it reduces the WF by reducing water

  9. Heat capacity mapping mission (HCMM) thermal surface water mapping and its correlation to LANDSAT

    International Nuclear Information System (INIS)

    Colvocoresses, A.P.

    1980-03-01

    Graphics are presented which show HCMM mapped water-surface temperature in Lake Anna, a 13,000 dendrically-shaped lake which provides cooling for a nuclear power plant in Virginia. The HCMM digital data, produced by NASA were processed by NOAA/NESS into image and line-printer form. A LANDSAT image of the lake illustrates the relationship between MSS band 7 data and the HCMM data as processed by the NASA image processing facility which transforms the data to the same distortion-free hotline oblique Mercator projection. Spatial correlation of the two images is relatively simple by either digital or analog means and the HCMM image has a potential accuracy approaching the 80 m of the original LANDSAT data. While it is difficult to get readings that are not diluted by radiation from cooler adjacent land areas in narrow portions of the lake, digital data indicated by the line-printer display five different temperatures for open-water areas. Where the