WorldWideScience

Sample records for map kinase cascades

  1. Gene regulation by MAP kinase cascades

    DEFF Research Database (Denmark)

    Fiil, Berthe Katrine; Petersen, Klaus; Petersen, Morten

    2009-01-01

    Mitogen-activated protein kinase (MAPK) cascades are signaling modules that transduce extracellular stimuli to a range of cellular responses. Research in yeast and metazoans has shown that MAPK-mediated phosphorylation directly or indirectly regulates the activity of transcription factors. Plant ...

  2. Tunable signal processing in synthetic MAP kinase cascades.

    Science.gov (United States)

    O'Shaughnessy, Ellen C; Palani, Santhosh; Collins, James J; Sarkar, Casim A

    2011-01-07

    The flexibility of MAPK cascade responses enables regulation of a vast array of cell fate decisions, but elucidating the mechanisms underlying this plasticity is difficult in endogenous signaling networks. We constructed insulated mammalian MAPK cascades in yeast to explore how intrinsic and extrinsic perturbations affect the flexibility of these synthetic signaling modules. Contrary to biphasic dependence on scaffold concentration, we observe monotonic decreases in signal strength as scaffold concentration increases. We find that augmenting the concentration of sequential kinases can enhance ultrasensitivity and lower the activation threshold. Further, integrating negative regulation and concentration variation can decouple ultrasensitivity and threshold from the strength of the response. Computational analyses show that cascading can generate ultrasensitivity and that natural cascades with different kinase concentrations are innately biased toward their distinct activation profiles. This work demonstrates that tunable signal processing is inherent to minimal MAPK modules and elucidates principles for rational design of synthetic signaling systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. MAP kinase cascades in Arabidopsis innate immunity

    DEFF Research Database (Denmark)

    Rasmussen, Magnus Wohlfahrt; Roux, Milena Edna; Petersen, Morten

    2012-01-01

    Plant mitogen-activated protein kinase (MAPK) cascades generally transduce extracellular stimuli into cellular responses. These stimuli include the perception of pathogen-associated molecular patterns (PAMPs) by host transmembrane pattern recognition receptors which trigger MAPK-dependent innate ...

  4. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang

    2015-04-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. Identification and characterization of an ABA-activated MAP kinase cascade in Arabidopsis thaliana

    KAUST Repository

    Danquah, Agyemang; Zé licourt, Axel de; Boudsocq, Marie; Neubauer, Jorinde; Frei Dit Frey, Nicolas; Leonhardt, Nathalie; Pateyron, Sté phanie; Gwinner, Frederik; Tamby, Jean Philippe; Ortiz-Masià , Dolores; Marcote, Marí a Jesú s; Hirt, Heribert; Colcombet, Jean

    2015-01-01

    Summary Abscisic acid (ABA) is a major phytohormone involved in important stress-related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA-triggered phosphoproteins as putative mitogen-activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA-activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3-1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA-dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR-SnRK2-PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA-induced MAPK pathway in plant stress signalling. Significance Statement We report in this article the identification of a complete MAPK module, composed of MAP3K17/18, MKK3 and MPK1/2/7/14, which is activated by ABA through the ABA core signalling complex. We showed that the activation of this module requires the MAP3K protein synthesis which occurs after hours of stress treatment, suggesting that the pathway is involved in a delayed wave of cellular responses to ABA and drought. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  6. The NDR kinase scaffold HYM1/MO25 is essential for MAK2 map kinase signaling in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Anne Dettmann

    2012-09-01

    Full Text Available Cell communication is essential for eukaryotic development, but our knowledge of molecules and mechanisms required for intercellular communication is fragmentary. In particular, the connection between signal sensing and regulation of cell polarity is poorly understood. In the filamentous ascomycete Neurospora crassa, germinating spores mutually attract each other and subsequently fuse. During these tropic interactions, the two communicating cells rapidly alternate between two different physiological states, probably associated with signal delivery and response. The MAK2 MAP kinase cascade mediates cell-cell signaling. Here, we show that the conserved scaffolding protein HYM1/MO25 controls the cell shape-regulating NDR kinase module as well as the signal-receiving MAP kinase cascade. HYM1 functions as an integral part of the COT1 NDR kinase complex to regulate the interaction with its upstream kinase POD6 and thereby COT1 activity. In addition, HYM1 interacts with NRC1, MEK2, and MAK2, the three kinases of the MAK2 MAP kinase cascade, and co-localizes with MAK2 at the apex of growing cells. During cell fusion, the three kinases of the MAP kinase module as well as HYM1 are recruited to the point of cell-cell contact. hym-1 mutants phenocopy all defects observed for MAK2 pathway mutants by abolishing MAK2 activity. An NRC1-MEK2 fusion protein reconstitutes MAK2 signaling in hym-1, while constitutive activation of NRC1 and MEK2 does not. These data identify HYM1 as a novel regulator of the NRC1-MEK2-MAK2 pathway, which may coordinate NDR and MAP kinase signaling during cell polarity and intercellular communication.

  7. An Arabidopsis kinase cascade influences auxin-responsive cell expansion.

    Science.gov (United States)

    Enders, Tara A; Frick, Elizabeth M; Strader, Lucia C

    2017-10-01

    Mitogen-activated protein kinase (MPK) cascades are conserved mechanisms of signal transduction across eukaryotes. Despite the importance of MPK proteins in signaling events, specific roles for many Arabidopsis MPK proteins remain unknown. Multiple studies have suggested roles for MPK signaling in a variety of auxin-related processes. To identify MPK proteins with roles in auxin response, we screened mpk insertional alleles and identified mpk1-1 as a mutant that displays hypersensitivity in auxin-responsive cell expansion assays. Further, mutants defective in the upstream MAP kinase kinase MKK3 also display hypersensitivity in auxin-responsive cell expansion assays, suggesting that this MPK cascade affects auxin-influenced cell expansion. We found that MPK1 interacts with and phosphorylates ROP BINDING PROTEIN KINASE 1 (RBK1), a protein kinase that interacts with members of the Rho-like GTPases from Plants (ROP) small GTPase family. Similar to mpk1-1 and mkk3-1 mutants, rbk1 insertional mutants display auxin hypersensitivity, consistent with a possible role for RBK1 downstream of MPK1 in influencing auxin-responsive cell expansion. We found that RBK1 directly phosphorylates ROP4 and ROP6, supporting the possibility that RBK1 effects on auxin-responsive cell expansion are mediated through phosphorylation-dependent modulation of ROP activity. Our data suggest a MKK3 • MPK1 • RBK1 phosphorylation cascade that may provide a dynamic module for altering cell expansion. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. MAP Kinase Cascades Regulate the Cold Response by Modulating ICE1 Protein Stability.

    Science.gov (United States)

    Zhao, Chunzhao; Wang, Pengcheng; Si, Tong; Hsu, Chuan-Chih; Wang, Lu; Zayed, Omar; Yu, Zheping; Zhu, Yingfang; Dong, Juan; Tao, W Andy; Zhu, Jian-Kang

    2017-12-04

    Mitogen-activated protein kinase cascades are important signaling modules that convert environmental stimuli into cellular responses. We show that MPK3, MPK4, and MPK6 are rapidly activated after cold treatment. The mpk3 and mpk6 mutants display increased expression of CBF genes and enhanced freezing tolerance, whereas constitutive activation of the MKK4/5-MPK3/6 cascade in plants causes reduced expression of CBF genes and hypersensitivity to freezing, suggesting that the MKK4/5-MPK3/6 cascade negatively regulates the cold response. MPK3 and MPK6 can phosphorylate ICE1, a basic-helix-loop-helix transcription factor that regulates the expression of CBF genes, and the phosphorylation promotes the degradation of ICE1. Interestingly, the MEKK1-MKK2-MPK4 pathway constitutively suppresses MPK3 and MPK6 activities and has a positive role in the cold response. Furthermore, the MAPKKK YDA and two calcium/calmodulin-regulated receptor-like kinases, CRLK1 and CRLK2, negatively modulate the cold activation of MPK3/6. Our results uncover important roles of MAPK cascades in the regulation of plant cold response. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The cAMP Signaling and MAP Kinase Pathways in Plant Pathogenic Fungi

    NARCIS (Netherlands)

    Mehrabi, R.; Zhao, X.; Kim, Y.; Xu, J.R.

    2009-01-01

    The key components of the well conserved cyclic AMP signaling and MAP kinase pathways have been functionally characterized in the corn smut Ustilago maydis, rice blast fungus Magnaporthe grisea, and a few other fungal pathogens. In general, the cAMP signaling and the MAP kinase cascade homologous to

  10. c-Jun controls the efficiency of MAP kinase signaling by transcriptional repression of MAP kinase phosphatases

    International Nuclear Information System (INIS)

    Sprowles, Amy; Robinson, Dan; Wu Yimi; Kung, H.-J.; Wisdom, Ron

    2005-01-01

    The mammalian JNK signaling pathway regulates the transcriptional response of cells to environmental stress, including UV irradiation. This signaling pathway is composed of a classical MAP kinase cascade; activation results in phosphorylation of the transcription factor substrates c-Jun and ATF2, and leads to changes in gene expression. The defining components of this pathway are conserved in the fission yeast S. pombe, where the genetic studies have shown that the ability of the JNK homolog Spc1 to be activated in response to UV irradiation is dependent on the presence of the transcription factor substrate Atf1. We have used genetic analysis to define the role of c-Jun in activation of the mammalian JNK signaling pathway. Our results show that optimal activation of JNK requires the presence of its transcription factor substrate c-Jun. Mutational analysis shows that the ability of c-Jun to support efficient activation of JNK requires the ability of Jun to bind DNA, suggesting a transcriptional mechanism. Consistent with this, we show that c-Jun represses the expression of several MAP kinase phosphatases. In the absence of c-Jun, the increased expression of MAP kinase phosphatases leads to impaired activation of the ERK, JNK, and p38 MAP kinases after pathway activation. The results show that one function of c-Jun is to regulate the efficiency of signaling by the ERK, p38, and JNK MAP kinases, a function that is likely to affect cellular responses to many different stimuli

  11. HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Wilfried Jonkers

    2014-11-01

    Full Text Available Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this

  12. A double-mutant collection targeting MAP kinase related genes in Arabidopsis for studying genetic interactions.

    Science.gov (United States)

    Su, Shih-Heng; Krysan, Patrick J

    2016-12-01

    Mitogen-activated protein kinase cascades are conserved in all eukaryotes. In Arabidopsis thaliana there are approximately 80 genes encoding MAP kinase kinase kinases (MAP3K), 10 genes encoding MAP kinase kinases (MAP2K), and 20 genes encoding MAP kinases (MAPK). Reverse genetic analysis has failed to reveal abnormal phenotypes for a majority of these genes. One strategy for uncovering gene function when single-mutant lines do not produce an informative phenotype is to perform a systematic genetic interaction screen whereby double-mutants are created from a large library of single-mutant lines. Here we describe a new collection of 275 double-mutant lines derived from a library of single-mutants targeting genes related to MAP kinase signaling. To facilitate this study, we developed a high-throughput double-mutant generating pipeline using a system for growing Arabidopsis seedlings in 96-well plates. A quantitative root growth assay was used to screen for evidence of genetic interactions in this double-mutant collection. Our screen revealed four genetic interactions, all of which caused synthetic enhancement of the root growth defects observed in a MAP kinase 4 (MPK4) single-mutant line. Seeds for this double-mutant collection are publicly available through the Arabidopsis Biological Resource Center. Scientists interested in diverse biological processes can now screen this double-mutant collection under a wide range of growth conditions in order to search for additional genetic interactions that may provide new insights into MAP kinase signaling. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  13. RhMKK9, a rose MAP KINASE KINASE gene, is involved in rehydration-triggered ethylene production in rose gynoecia.

    Science.gov (United States)

    Chen, Jiwei; Zhang, Qian; Wang, Qigang; Feng, Ming; Li, Yang; Meng, Yonglu; Zhang, Yi; Liu, Guoqin; Ma, Zhimin; Wu, Hongzhi; Gao, Junping; Ma, Nan

    2017-02-23

    Flower opening is an important process in the life cycle of flowering plants and is influenced by various endogenous and environmental factors. Our previous work demonstrated that rose (Rosa hybrida) flowers are highly sensitive to dehydration during flower opening and the water recovery process after dehydration induced ethylene production rapidly in flower gynoecia. In addition, this temporal- and spatial-specific ethylene production is attributed to a transient but robust activation of the rose MAP KINASE6-ACC SYNTHASE1 (RhMPK6-RhACS1) cascade in gynoecia. However, the upstream component of RhMPK6-RhACS1 is unknown, although RhMKK9 (MAP KINASE KINASE9), a rose homologue of Arabidopsis MKK9, could activate RhMPK6 in vitro. In this study, we monitored RhMKK2/4/5/9 expression, the potential upstream kinase to RhMPK6, in rose gynoecia during dehydration and rehydration. We found only RhMKK9 was rapidly and strongly induced by rehydration. Silencing of RhMKK9 significantly decreased rehydration-triggered ethylene production. Consistently, the expression of several ethylene-responsive genes was down regulated in the petals of RhMKK9-silenced flowers. Moreover, we detected the DNA methylation level in the promoter and gene body of RhMKK9 by Chop-PCR. The results showed that rehydration specifically elevated the DNA methylation level on the RhMKK9 gene body, whereas it resulted in hypomethylation in its promoter. Our results showed that RhMKK9 possibly acts as the upstream component of the RhMKK9-RhMPK6-RhACS1 cascade and is responsible for water recovery-triggered ethylene production in rose gynoecia, and epigenetic DNA methylation is involved in the regulation of RhMKK9 expression by rehydration.

  14. A period-doubling cascade precedes chaos for planar maps.

    Science.gov (United States)

    Sander, Evelyn; Yorke, James A

    2013-09-01

    A period-doubling cascade is often seen in numerical studies of those smooth (one-parameter families of) maps for which as the parameter is varied, the map transitions from one without chaos to one with chaos. Our emphasis in this paper is on establishing the existence of such a cascade for many maps with phase space dimension 2. We use continuation methods to show the following: under certain general assumptions, if at one parameter there are only finitely many periodic orbits, and at another parameter value there is chaos, then between those two parameter values there must be a cascade. We investigate only families that are generic in the sense that all periodic orbit bifurcations are generic. Our method of proof in showing there is one cascade is to show there must be infinitely many cascades. We discuss in detail two-dimensional families like those which arise as a time-2π maps for the Duffing equation and the forced damped pendulum equation.

  15. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  16. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans*

    Science.gov (United States)

    Andrusiak, Matthew G.; Jin, Yishi

    2016-01-01

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundworm Caenorhabditis elegans was developed as a system to study genes required for development and nervous system function. The powerful genetics of C. elegans in combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components in C. elegans. PMID:26907690

  17. A mitotically inheritable unit containing a MAP kinase module.

    Science.gov (United States)

    Kicka, Sébastien; Bonnet, Crystel; Sobering, Andrew K; Ganesan, Latha P; Silar, Philippe

    2006-09-05

    Prions are novel kinds of hereditary units, relying solely on proteins, that are infectious and inherited in a non-Mendelian fashion. To date, they are either based on autocatalytic modification of a 3D conformation or on autocatalytic cleavage. Here, we provide further evidence that in the filamentous fungus Podospora anserina, a MAP kinase cascade is probably able to self-activate and generate C, a hereditary unit that bears many similarities to prions and triggers cell degeneration. We show that in addition to the MAPKKK gene, both the MAPKK and MAPK genes are necessary for the propagation of C, and that overexpression of MAPK as that of MAPKKK facilitates the appearance of C. We also show that a correlation exists between the presence of C and localization of the MAPK inside nuclei. These data emphasize the resemblance between prions and a self-positively regulated cascade in terms of their transmission. This thus further expands the concept of protein-base inheritance to regulatory networks that have the ability to self-activate.

  18. Context Specificity of Stress-activated Mitogen-activated Protein (MAP) Kinase Signaling: The Story as Told by Caenorhabditis elegans.

    Science.gov (United States)

    Andrusiak, Matthew G; Jin, Yishi

    2016-04-08

    Stress-associated p38 and JNK mitogen-activated protein (MAP) kinase signaling cascades trigger specific cellular responses and are involved in multiple disease states. At the root of MAP kinase signaling complexity is the differential use of common components on a context-specific basis. The roundwormCaenorhabditis eleganswas developed as a system to study genes required for development and nervous system function. The powerful genetics ofC. elegansin combination with molecular and cellular dissections has led to a greater understanding of how p38 and JNK signaling affects many biological processes under normal and stress conditions. This review focuses on the studies revealing context specificity of different stress-activated MAPK components inC. elegans. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Protein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia.

    Science.gov (United States)

    Roth Flach, Rachel J; Danai, Laura V; DiStefano, Marina T; Kelly, Mark; Menendez, Lorena Garcia; Jurczyk, Agata; Sharma, Rohit B; Jung, Dae Young; Kim, Jong Hun; Kim, Jason K; Bortell, Rita; Alonso, Laura C; Czech, Michael P

    2016-07-29

    Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well as an impaired first phase of insulin secretion from islets derived from M4K4 iKO mice ex vivo After long-term high fat diet (HFD), M4K4 iKO mice pancreata also displayed reduced β cell mass, fewer proliferating β cells and reduced islet-specific gene mRNA expression compared with controls, although insulin content was normal. Interestingly, the reduced plasma insulin in M4K4 iKO mice exposed to chronic (16 weeks) HFD was not observed in response to acute HFD challenge or short term treatment with the insulin receptor antagonist S961. Furthermore, the improved insulin sensitivity in obese M4K4 iKO mice was abrogated by high exogenous insulin over the course of a euglycemic clamp study, indicating that hypoinsulinemia promotes insulin sensitivity in chronically obese M4K4 iKO mice. These results demonstrate that protein kinase Map4k4 drives obesity-induced hyperinsulinemia and insulin resistance in part by promoting insulin secretion from β cells in mice. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. A rice kinase-protein interaction map.

    Science.gov (United States)

    Ding, Xiaodong; Richter, Todd; Chen, Mei; Fujii, Hiroaki; Seo, Young Su; Xie, Mingtang; Zheng, Xianwu; Kanrar, Siddhartha; Stevenson, Rebecca A; Dardick, Christopher; Li, Ying; Jiang, Hao; Zhang, Yan; Yu, Fahong; Bartley, Laura E; Chern, Mawsheng; Bart, Rebecca; Chen, Xiuhua; Zhu, Lihuang; Farmerie, William G; Gribskov, Michael; Zhu, Jian-Kang; Fromm, Michael E; Ronald, Pamela C; Song, Wen-Yuan

    2009-03-01

    Plants uniquely contain large numbers of protein kinases, and for the vast majority of the 1,429 kinases predicted in the rice (Oryza sativa) genome, little is known of their functions. Genetic approaches often fail to produce observable phenotypes; thus, new strategies are needed to delineate kinase function. We previously developed a cost-effective high-throughput yeast two-hybrid system. Using this system, we have generated a protein interaction map of 116 representative rice kinases and 254 of their interacting proteins. Overall, the resulting interaction map supports a large number of known or predicted kinase-protein interactions from both plants and animals and reveals many new functional insights. Notably, we found a potential widespread role for E3 ubiquitin ligases in pathogen defense signaling mediated by receptor-like kinases, particularly by the kinases that may have evolved from recently expanded kinase subfamilies in rice. We anticipate that the data provided here will serve as a foundation for targeted functional studies in rice and other plants. The application of yeast two-hybrid and TAPtag analyses for large-scale plant protein interaction studies is also discussed.

  1. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity.

    Science.gov (United States)

    Kim, Dennis H; Feinbaum, Rhonda; Alloing, Geneviève; Emerson, Fred E; Garsin, Danielle A; Inoue, Hideki; Tanaka-Hino, Miho; Hisamoto, Naoki; Matsumoto, Kunihiro; Tan, Man-Wah; Ausubel, Frederick M

    2002-07-26

    A genetic screen for Caenorhabditis elegans mutants with enhanced susceptibility to killing by Pseudomonas aeruginosa led to the identification of two genes required for pathogen resistance: sek-1, which encodes a mitogen-activated protein (MAP) kinase kinase, and nsy-1, which encodes a MAP kinase kinase kinase. RNA interference assays and biochemical analysis established that a p38 ortholog, pmk-1, functions as the downstream MAP kinase required for pathogen defense. These data suggest that this MAP kinase signaling cassette represents an ancient feature of innate immune responses in evolutionarily diverse species.

  2. IDC1, a pezizomycotina-specific gene that belongs to the PaMpk1 MAP kinase transduction cascade of the filamentous fungus Podospora anserina.

    Science.gov (United States)

    Jamet-Vierny, Corinne; Debuchy, Robert; Prigent, Magali; Silar, Philippe

    2007-12-01

    Components involved in the activation of the MAPK cascades in filamentous fungi are not well known. Here, we provide evidence that IDC1, a pezizomycotina-specific gene is involved along with the PaNox1 NADPH oxidase in the nuclear localization of the PaMpk1 MAP kinase, a prerequisite for MAPK activity. Mutants of IDC1 display the same phenotypes as mutants in PaNox1 and PaMpk1, i.e., lack of pigment and of aerial hyphae, female sterility, impairment in hyphal interference and inability to develop Crippled Growth cell degeneration. As observed for the PaNox1 mutant, IDC1 mutants are hypostatic to PaMpk1 mutants. IDC1 seems to play a key role in sexual reproduction. Indeed, fertility is diminished in strains with lower level of IDC1. In strains over-expressing IDC1, protoperithecia reach a later stage of development towards perithecia without fertilization; however, upon fertilization maturation of fertile perithecia is diminished and delayed. In addition, heterokaryon construction shows that IDC1 is necessary together with PaNox1 in the perithecial envelope but not in the dikaryon resulting from fertilization.

  3. ROS and CDPK-like kinase-mediated activation of MAP kinase in rice roots exposed to lead.

    Science.gov (United States)

    Huang, Tsai-Lien; Huang, Hao-Jen

    2008-04-01

    Lead (Pb2+) is a cytotoxic metal ion in plants, the mechanism of which is not yet established. The aim of this study is to investigate the signalling pathways that are activated by elevated concentrations of Pb2+ in rice roots. Root growth was stunted and cell death was accelerated when exposed to different dosages of Pb2+ during extended time periods. Using ROS-sensitive dye and Ca2+ indicator, we demonstrated that Pb2+ induced ROS production and Ca2+ accumulation, respectively. In addition, Pb2+ elicited a remarkable increase in myelin basic protein (MBP) kinase activities. By immunoblot and immunoprecipitation analysis, 40- and 42-kDa MBP kinases that were activated by Pb2+ were identified to be mitogen-activated protein (MAP) kinases. Pre-treatment of rice roots with an antioxidant and a NADPH oxidase inhibitor, glutathione (GSH) and diphenylene iodonium (DPI), effectively reduced Pb2+-induced cell death and MAP kinase activation. Moreover, calcium-dependent protein kinase (CDPK) antagonist, W7, attenuated Pb2+-induced cell death and MAP kinase activation. These results suggested that the ROS and CDPK may function in the Pb2+-triggered cell death and MAP kinase signalling pathway in rice roots.

  4. Hsp90 inhibition differentially destabilises MAP kinase and TGF-beta signalling components in cancer cells revealed by kinase-targeted chemoproteomics

    International Nuclear Information System (INIS)

    Haupt, Armin; Dahl, Andreas; Lappe, Michael; Lehrach, Hans; Gonzalez, Cayetano; Drewes, Gerard; Lange, Bodo MH; Joberty, Gerard; Bantscheff, Marcus; Fröhlich, Holger; Stehr, Henning; Schweiger, Michal R; Fischer, Axel; Kerick, Martin; Boerno, Stefan T

    2012-01-01

    The heat shock protein 90 (Hsp90) is required for the stability of many signalling kinases. As a target for cancer therapy it allows the simultaneous inhibition of several signalling pathways. However, its inhibition in healthy cells could also lead to severe side effects. This is the first comprehensive analysis of the response to Hsp90 inhibition at the kinome level. We quantitatively profiled the effects of Hsp90 inhibition by geldanamycin on the kinome of one primary (Hs68) and three tumour cell lines (SW480, U2OS, A549) by affinity proteomics based on immobilized broad spectrum kinase inhibitors ('kinobeads'). To identify affected pathways we used the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway classification. We combined Hsp90 and proteasome inhibition to identify Hsp90 substrates in Hs68 and SW480 cells. The mutational status of kinases from the used cell lines was determined using next-generation sequencing. A mutation of Hsp90 candidate client RIPK2 was mapped onto its structure. We measured relative abundances of > 140 protein kinases from the four cell lines in response to geldanamycin treatment and identified many new potential Hsp90 substrates. These kinases represent diverse families and cellular functions, with a strong representation of pathways involved in tumour progression like the BMP, MAPK and TGF-beta signalling cascades. Co-treatment with the proteasome inhibitor MG132 enabled us to classify 64 kinases as true Hsp90 clients. Finally, mutations in 7 kinases correlate with an altered response to Hsp90 inhibition. Structural modelling of the candidate client RIPK2 suggests an impact of the mutation on a proposed Hsp90 binding domain. We propose a high confidence list of Hsp90 kinase clients, which provides new opportunities for targeted and combinatorial cancer treatment and diagnostic applications

  5. Discovery and Characterization of Non-ATP Site Inhibitors of the Mitogen Activated Protein (MAP) Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Comess, Kenneth M.; Sun, Chaohong; Abad-Zapatero, Cele; Goedken, Eric R.; Gum, Rebecca J.; Borhani, David W.; Argiriadi, Maria; Groebe, Duncan R.; Jia, Yong; Clampit, Jill E.; Haasch, Deanna L.; Smith, Harriet T.; Wang, Sanyi; Song, Danying; Coen, Michael L.; Cloutier, Timothy E.; Tang, Hua; Cheng, Xueheng; Quinn, Christopher; Liu, Bo; Xin, Zhili; Liu, Gang; Fry, Elizabeth H.; Stoll, Vincent; Ng, Teresa I.; Banach, David; Marcotte, Doug; Burns, David J.; Calderwood, David J.; Hajduk, Philip J. (Abbott)

    2012-03-02

    Inhibition of protein kinases has validated therapeutic utility for cancer, with at least seven kinase inhibitor drugs on the market. Protein kinase inhibition also has significant potential for a variety of other diseases, including diabetes, pain, cognition, and chronic inflammatory and immunologic diseases. However, as the vast majority of current approaches to kinase inhibition target the highly conserved ATP-binding site, the use of kinase inhibitors in treating nononcology diseases may require great selectivity for the target kinase. As protein kinases are signal transducers that are involved in binding to a variety of other proteins, targeting alternative, less conserved sites on the protein may provide an avenue for greater selectivity. Here we report an affinity-based, high-throughput screening technique that allows nonbiased interrogation of small molecule libraries for binding to all exposed sites on a protein surface. This approach was used to screen both the c-Jun N-terminal protein kinase Jnk-1 (involved in insulin signaling) and p38{alpha} (involved in the formation of TNF{alpha} and other cytokines). In addition to canonical ATP-site ligands, compounds were identified that bind to novel allosteric sites. The nature, biological relevance, and mode of binding of these ligands were extensively characterized using two-dimensional {sup 1}H/{sup 13}C NMR spectroscopy, protein X-ray crystallography, surface plasmon resonance, and direct enzymatic activity and activation cascade assays. Jnk-1 and p38{alpha} both belong to the MAP kinase family, and the allosteric ligands for both targets bind similarly on a ledge of the protein surface exposed by the MAP insertion present in the CMGC family of protein kinases and distant from the active site. Medicinal chemistry studies resulted in an improved Jnk-1 ligand able to increase adiponectin secretion in human adipocytes and increase insulin-induced protein kinase PKB phosphorylation in human hepatocytes, in

  6. Tiam1-Rac1 Axis Promotes Activation of p38 MAP Kinase in the Development of Diabetic Retinopathy: Evidence for a Requisite Role for Protein Palmitoylation

    Directory of Open Access Journals (Sweden)

    Rajakrishnan Veluthakal

    2015-04-01

    Full Text Available Background/Aims: Evidence in multiple tissues, including retina, suggests generation of reactive oxygen species (ROS and the ensuing oxidative stress as triggers for mitochondrial defects and cell apoptosis. We recently reported novel roles for Tiam1-Rac1-Nox2 axis in retinal mitochondrial dysfunction and cell death leading to the development of diabetic retinopathy. Herein, we tested the hypothesis that activation of p38 MAP kinase, a stress kinase, represents the downstream signaling event to Rac1-Nox2 activation in diabetes-induced metabolic stress leading to capillary cell apoptosis. Methods: Activation of p38 MAP kinase was quantified by Western blotting in retinal endothelial cells incubated with high glucose (20 mM for up to 96 hours, a duration where mitochondrial dysfunction and capillary cell apoptosis can be observed. NSC23766 and 2-bromopalmitate (2-BP were used to assess the roles of Tiam1-Rac1 and palmitoylation pathways, respectively. Results: Activation of p38 MAP kinase was observed as early as 3 hours after high glucose exposure, and continued until 96 hours. Consistent with this, p38 MAP kinase activation was significantly higher in the retina from diabetic mice compared to age-matched normal mice. NSC23766 markedly attenuated hyperglycemia-induced activation of p38 MAP kinase. Lastly, 2-BP inhibited glucose-induced Rac1, Nox2 and p38 MAP kinase activation in endothelial cells. Conclusions: Tiam1-Rac1-mediated activation of Nox2 and p38 MAP kinase constitutes early signaling events leading to mitochondrial dysfunction and the development of diabetic retinopathy. Our findings also provide the first evidence to implicate novel roles for protein palmitoylation in this signaling cascade.

  7. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee

    2016-02-01

    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  8. Database for the geologic map of upper Eocene to Holocene volcanic and related rocks in the Cascade Range, Washington

    Science.gov (United States)

    Barron, Andrew D.; Ramsey, David W.; Smith, James G.

    2014-01-01

    This geospatial database for a geologic map of the Cascades Range in Washington state is one of a series of maps that shows Cascade Range geology by fitting published and unpublished mapping into a province-wide scheme of lithostratigraphic units. Geologic maps of the Eocene to Holocene Cascade Range in California and Oregon complete the series, providing a comprehensive geologic map of the entire Cascade Range that incorporates modern field studies and that has a unified and internally consistent explanantion. The complete series will be useful for regional studies of volcanic hazards, volcanology, and tectonics.

  9. Recognition of ERK MAP kinase by PEA-15 reveals a common docking site within the death domain and death effector domain

    OpenAIRE

    Hill, Justine M.; Vaidyanathan, Hema; Ramos, Joe W.; Ginsberg, Mark H.; Werner, Milton H.

    2002-01-01

    PEA-15 is a multifunctional protein that modulates signaling pathways which control cell proliferation and cell death. In particular, PEA-15 regulates the actions of the ERK MAP kinase cascade by binding to ERK and altering its subcellular localization. The three-dimensional structure of PEA-15 has been determined using NMR spectroscopy and its interaction with ERK defined by characterization of mutants that modulate ERK function. PEA-15 is composed of an N-terminal death effector domain (DED...

  10. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation.

    Science.gov (United States)

    Kan, Wei-Chih; Lu, Te-Ling; Ling, Pin; Lee, Te-Hsiu; Cho, Chien-Yu; Huang, Chi-Ying F; Jeng, Wen-Yih; Weng, Yui-Ping; Chiang, Chun-Yen; Wu, Jin Bin; Lu, Te-Jung

    2016-07-01

    The yeast Ste20 (sterile) protein kinase, which is a serine/threonine kinase, responds to the stimulation of the G proteincoupled receptor (GPCR) pheromone receptor. Ste20 protein kinase serves as the critical component that links signaling from the GPCR/G proteins to the mitogen-activated protein kinase (MAPK) cascade in yeast. The yeast Ste20p functions as a MAP kinase kinase kinase kinase (MAP4K) in the pheromone response. Ste20-like kinases are structurally conserved from yeast to mammals. The mechanism by which MAP4K links GPCR to the MAPK pathway is less clearly defined in vertebrates. In addition to MAP4K, the tyrosine kinase cascade bridges G proteins and the MAPK pathway in vertebrate cells. Mammalian Ste20 Kinase 3 (MST3) has been categorized into the Ste20 family and has been reported to function in the regulation of cell polarity and migration. However, whether MST3 tyrosine phosphorylation regulates diverse signaling pathways is unknown. In this study, the tyrosine phosphatase inhibitor pervanadate was found to induce MST3 tyrosine phosphorylation in intact cells, and the activity of tyrosine-phosphorylated MST3 was measured. This tyrosine-directed phosphorylation was independent of MST3 activity. Parameters including protein conformation, Triton concentration and ionic concentration influenced the sensitivity of MST3 activity. Taken together, our data suggests that the serine/threonine kinase MST3 undergoes tyrosinedirected phosphorylation. The tyrosine-phosphorylated MST3 may create a docking site for the structurally conserved SH2/SH3 (Src Homology 2 and 3) domains within the Src oncoprotein. The unusual tyrosinephosphorylated MST3 may recruit MST3 to various signaling components. Copyright © 2016. Published by Elsevier Inc.

  11. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation.

    LENUS (Irish Health Repository)

    McEneaney, Victoria

    2010-01-01

    Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1\\/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1\\/2-dependent. Aldosterone induced the rapid activation of ERK1\\/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1\\/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1\\/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1\\/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1\\/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1\\/2 was inhibited in cells suppressed in the expression of PKD1.

  12. MAP kinase genes and colon and rectal cancer

    Science.gov (United States)

    Slattery, Martha L.

    2012-01-01

    Mitogen-activated protein kinase (MAPK) pathways regulate many cellular functions including cell proliferation, differentiation, migration and apoptosis. We evaluate genetic variation in the c-Jun-N-terminal kinases, p38, and extracellular regulated kinases 1/2 MAPK-signaling pathways and colon and rectal cancer risk using data from population-based case-control studies (colon: n = 1555 cases, 1956 controls; rectal: n = 754 cases, 959 controls). We assess 19 genes (DUSP1, DUSP2, DUSP4, DUSP6, DUSP7, MAP2K1, MAP3K1, MAP3K2, MAP3K3, MAP3K7, MAP3K9, MAP3K10, MAP3K11, MAPK1, MAPK3, MAPK8, MAPK12, MAPK14 and RAF1). MAP2K1 rs8039880 [odds ratio (OR) = 0.57, 95% confidence interval (CI) = 0.38, 0.83; GG versus AA genotype] and MAP3K9 rs11625206 (OR = 1.41, 95% CI = 1.14, 1.76; recessive model) were associated with colon cancer (P adj value rectal cancer (P adj cancer risk. Genetic variants had unique associations with KRAS, TP53 and CIMP+ tumors. DUSP2 rs1724120 [hazard rate ratio (HRR) = 0.72, 95%CI = 0.54, 0.96; AA versus GG/GA), MAP3K10 rs112956 (HRR = 1.40, 95% CI = 1.10, 1.76; CT/TT versus CC) and MAP3K11 (HRR = 1.76, 95% CI 1.18, 2.62 TT versus GG/GT) influenced survival after diagnosis with colon cancer; MAP2K1 rs8039880 (HRR = 2.53, 95% CI 1.34, 4.79 GG versus AG/GG) and Raf1 rs11923427 (HRR = 0.59 95% CI = 0.40, 0.86; AA versus TT/TA) were associated with rectal cancer survival. These data suggest that genetic variation in the MAPK-signaling pathway influences colorectal cancer risk and survival after diagnosis. Associations may be modified by lifestyle factors that influence inflammation and oxidative stress. PMID:23027623

  13. Insulin signaling inhibits the 5-HT2C receptor in choroid plexus via MAP kinase

    Directory of Open Access Journals (Sweden)

    Guan Kunliang

    2003-06-01

    Full Text Available Abstract Background G protein-coupled receptors (GPCRs interact with heterotrimeric GTP-binding proteins (G proteins to modulate acute changes in intracellular messenger levels and ion channel activity. In contrast, long-term changes in cellular growth, proliferation and differentiation are often mediated by tyrosine kinase receptors and certain GPCRs by activation of mitogen-activated protein (MAP kinases. Complex interactions occur between these signaling pathways, but the specific mechanisms of such regulatory events are not well-understood. In particular it is not clear whether GPCRs are modulated by tyrosine kinase receptor-MAP kinase pathways. Results Here we describe tyrosine kinase receptor regulation of a GPCR via MAP kinase. Insulin reduced the activity of the 5-HT2C receptor in choroid plexus cells which was blocked by the MAP kinase kinase (MEK inhibitor, PD 098059. We demonstrate that the inhibitory effect of insulin and insulin-like growth factor type 1 (IGF-1 on the 5-HT2C receptor is dependent on tyrosine kinase, RAS and MAP kinase. The effect may be receptor-specific: insulin had no effect on another GPCR that shares the same G protein signaling pathway as the 5-HT2C receptor. This effect is also direct: activated MAP kinase mimicked the effect of insulin, and removing a putative MAP kinase site from the 5-HT2C receptor abolished the effect of insulin. Conclusion These results show that insulin signaling can inhibit 5-HT2C receptor activity and suggest that MAP kinase may play a direct role in regulating the function of a specific GPCR.

  14. Building Keypoint Mappings on Multispectral Images by a Cascade of Classifiers with a Resurrection Mechanism

    Directory of Open Access Journals (Sweden)

    Yong Li

    2015-05-01

    Full Text Available Inspired by the boosting technique for detecting objects, this paper proposes a cascade structure with a resurrection mechanism to establish keypoint mappings on multispectral images. The cascade structure is composed of four steps by utilizing best bin first (BBF, color and intensity distribution of segment (CIDS, global information and the RANSAC process to remove outlier keypoint matchings. Initial keypoint mappings are built with the descriptors associated with keypoints; then, at each step, only a small number of keypoint mappings of a high confidence are classified to be incorrect. The unclassified keypoint mappings will be passed on to subsequent steps for determining whether they are correct. Due to the drawback of a classification rule, some correct keypoint mappings may be misclassified as incorrect at a step. Observing this, we design a resurrection mechanism, so that they will be reconsidered and evaluated by the rules utilized in subsequent steps. Experimental results show that the proposed cascade structure combined with the resurrection mechanism can effectively build more reliable keypoint mappings on multispectral images than existing methods.

  15. MAP kinase-independent signaling in angiotensin II regulation of neuromodulation in SHR neurons.

    Science.gov (United States)

    Yang, H; Raizada, M K

    1998-09-01

    Angiotensin II (Ang II), via its interaction with the angiotensin type 1 (AT1) receptor subtype, causes enhanced stimulation of norepinephrine (NE) neuromodulation. This involves increased transcription of NE transporter, tyrosine hydroxylase, and dopamine ss-hydroxylase genes in Wistar-Kyoto rat (WKY) brain neurons. AT1 receptor-mediated regulation of certain signaling events (such as activation of the Ras-Raf-1-mitogen activated protein (MAP) kinase signaling pathway, nuclear translocation of transcription factors such as Fos and Jun, and the interactions of these factors with AP-1 binding sites) is involved in this NE neuromodulation (Lu et al. J Cell Biol. 1996;135:1609-1617). The aim of this study was to compare the signal transduction mechanism of Ang II regulation of NE neuromodulation in WKY and spontaneously hypertensive rat (SHR) brain neurons, in view of the fact that AT1 receptor expression and Ang II stimulation of NE neuromodulation are higher in SHR neurons compared with WKY neurons. Despite this hyperactivity, Ang II stimulation of Ras, Raf-1, and MAP kinase activities was comparable between the neurons from WKY and SHR. Similarly, central injections of Ang II caused a comparable stimulation of MAP kinase in the hypothalamic and brain stem areas of adult WKY and SHR. Inhibition of MAP kinase by either an MAP kinase kinase inhibitor (PD98059) or an MAP kinase antisense oligonucleotide completely attenuated the stimulatory effects of Ang II on [3H]-NE uptake, NE transporter mRNA, and tyrosine hydroxylase mRNA levels in WKY neurons. These treatments resulted in only 43% to 50% inhibition of [3H]-NE uptake and NE transporter and tyrosine hydroxylase mRNAs in SHR neurons. Thus, Ang II stimulation of NE neuromodulation was completely blocked by MAP kinase inhibition in WKY neurons and only partially blocked in the SHR neurons. These observations suggest the presence of an additional signal transduction pathway involved in NE neuromodulation in SHR neurons

  16. Effects of Butyltins (BTs) on Mitogen-Activated-Protein Kinase Kinase Kinase (MAP3K) and Ras Activity in Human Natural Killer Cells

    Science.gov (United States)

    Celada, Lindsay J.; Whalen, Margaret M.

    2013-01-01

    Butyltins (BTs) contaminate the environment and are found in human blood. BTs, tributyltin (TBT) and dibutyltin (DBT), diminish the cytotoxic function and levels of key proteins of human natural killer (NK) cells. NK cells are an initial immune defense against tumors, virally-infected cells and antibody-coated cells and thus critical to human health. The signaling pathways that regulate NK cell functions include mitogen-activated protein kinases (MAPKs). Studies have shown that exposure to BTs leads to the activation of specific MAPKs and MAPK kinases (MAP2Ks) in human NK cells. MAP2K kinases (MAP3Ks) are upstream activators of MAP2Ks, which then activate MAPKs. The current study examined if BT-induced activation of MAP3Ks was responsible for MAP2K and thus, MAPK activation. This study examines the effects of TBT and DBT on the total levels of two MAP3Ks, c-Raf and ASK1, as well as activating and inhibitory phosphorylation sites on these MAP3Ks. In addition, the immediate upstream activator of c-Raf, Ras, was examined for BT-induced alterations. Our results show significant activation of the MAP3K, c-Raf, in human NK cells within 10 minutes of TBT exposure and the MAP3K, ASK1, after one hour exposures to TBT. In addition, our results suggest that both TBT and DBT are impacting the regulation of c-Raf. PMID:24038145

  17. Raf kinase inhibitory protein: a signal transduction modulator and metastasis suppressor.

    Science.gov (United States)

    Granovsky, Alexey E; Rosner, Marsha Rich

    2008-04-01

    Cells have a multitude of controls to maintain their integrity and prevent random switching from one biological state to another. Raf Kinase Inhibitory Protein (RKIP), a member of the phosphatidylethanolamine binding protein (PEBP) family, is representative of a new class of modulators of signaling cascades that function to maintain the "yin yang" or balance of biological systems. RKIP inhibits MAP kinase (Raf-MEK-ERK), G protein-coupled receptor (GPCR) kinase and NFkappaB signaling cascades. Because RKIP targets different kinases dependent upon its state of phosphorylation, RKIP also acts to integrate crosstalk initiated by multiple environmental stimuli. Loss or depletion of RKIP results in disruption of the normal cellular stasis and can lead to chromosomal abnormalities and disease states such as cancer. Since RKIP and the PEBP family have been reviewed previously, the goal of this analysis is to provide an update and highlight some of the unique features of RKIP that make it a critical player in the regulation of cellular signaling processes.

  18. Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5.

    Science.gov (United States)

    Dettmann, Anne; Heilig, Yvonne; Valerius, Oliver; Ludwig, Sarah; Seiler, Stephan

    2014-11-01

    Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell-cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell-cell communication in fungi and higher eukaryotes.

  19. The role of p38 MAP kinase and c-Jun N-terminal protein kinase signaling in the differentiation and apoptosis of immortalized neural stem cells

    International Nuclear Information System (INIS)

    Yang, Se-Ran; Cho, Sung-Dae; Ahn, Nam-Shik; Jung, Ji-Won; Park, Joon-Suk; Jo, Eun-Hye; Hwang, Jae-Woong; Kim, Sung-Hoon; Lee, Bong-Hee; Kang, Kyung-Sun; Lee, Yong-Soon

    2005-01-01

    The two distinct members of the mitogen-activated protein (MAP) kinase family c-Jun N-terminal protein kinase (JNK) and p38 MAP kinase, play an important role in central nervous system (CNS) development and differentiation. However, their role and functions are not completely understood in CNS. To facilitate in vitro study, we have established an immortal stem cell line using SV40 from fetal rat embryonic day 17. In these cells, MAP kinase inhibitors (SP600125, SB202190, and PD98059) were treated for 1, 24, 48, and 72 h to examine the roles of protein kinases. Early inhibition of JNK did not alter phenotypic or morphological changes of immortalized cells, however overexpression of Bax and decrease of phosphorylated AKT was observed. The prolonged inhibition of JNK induced polyploidization of immortalized cells, and resulted in differentiation and inhibition of cell proliferation. Moreover, JNK and p38 MAP kinase but not ERK1/2 was activated, and p21, p53, and Bax were overexpressed by prolonged inhibition of JNK. These results indicate that JNK and p38 MAP kinase could play dual roles on cell survival and apoptosis. Furthermore, this established cell line could facilitate study of the role of JNK and p38 MAP kinase on CNS development or differentiation/apoptosis

  20. Phosphorylation sites of Arabidopsis MAP Kinase Substrate 1 (MKS1)

    DEFF Research Database (Denmark)

    Caspersen, M.B.; Qiu, J.-L.; Zhang, X.

    2007-01-01

    The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified by electrophore......The Arabidopsis MAP kinase 4 (MPK4) substrate MKS1 was expressed in Escherichia coli and purified, full-length, 6x histidine (His)-tagged MKS1 was phosphorylated in vitro by hemagglutinin (HA)-tagged MPK4 immuno-precipitated from plants. MKS1 phosphorylation was initially verified...... phosphopeptide detection. As MAP kinases generally phosphorylate serine or threonine followed by proline (Ser/Thr-Pro), theoretical masses of potentially phosphorylated peptides were calculated and mass spectrometric peaks matching these masses were fragmented and searched for a neutral-loss signal...... at approximately 98 Da indicative of phosphorylation. Additionally, mass spectrometric peaks present in the MPK4-treated MKS1, but not in the control peptide map of untreated MKS1, were fragmented. Fragmentation spectra were subjected to a MASCOT database search which identified three of the twelve Ser-Pro serine...

  1. Identification of p38α MAP kinase inhibitors by pharmacophore based virtual screening

    DEFF Research Database (Denmark)

    Gangwal, Rahul P; Das, Nihar R; Thanki, Kaushik

    2014-01-01

    The p38α mitogen-activated protein (MAP) kinase plays a vital role in treating many inflammatory diseases. In the present study, a combined ligand and structure based pharmacophore model was developed to identify potential DFG-in selective p38 MAP kinase inhibitors. Conformations of co...

  2. A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation.

    Science.gov (United States)

    Dikic, I; Tokiwa, G; Lev, S; Courtneidge, S A; Schlessinger, J

    1996-10-10

    The mechanisms by which mitogenic G-protein-coupled receptors activate the MAP kinase signalling pathway are poorly understood. Candidate protein tyrosine kinases that link G-protein-coupled receptors with MAP kinase include Src family kinases, the epidermal growth factor receptor, Lyn and Syk. Here we show that lysophosphatidic acid (LPA) and bradykinin induce tyrosine phosphorylation of Pyk2 and complex formation between Pyk2 and activated Src. Moreover, tyrosine phosphorylation of Pyk2 leads to binding of the SH2 domain of Src to tyrosine 402 of Pyk2 and activation of Src. Transient overexpression of a dominant interfering mutant of Pyk2 or the protein tyrosine kinase Csk reduces LPA- or bradykinin-induced activation of MAP kinase. LPA- or bradykinin-induced MAP kinase activation was also inhibited by overexpression of dominant interfering mutants of Grb2 and Sos. We propose that Pyk2 acts with Src to link Gi- and Gq-coupled receptors with Grb2 and Sos to activate the MAP kinase signalling pathway in PC12 cells.

  3. A chimeric cyclic interferon-α2b peptide induces apoptosis by sequential activation of phosphatidylinositol 3-kinase, protein kinase Cδ and p38 MAP kinase.

    Science.gov (United States)

    Blank, V C; Bertucci, L; Furmento, V A; Peña, C; Marino, V J; Roguin, L P

    2013-06-10

    We have previously demonstrated that tyrosine phosphorylation of STAT1/3 and p38 mitogen-activated protein kinase (p38 MAPK) activation are involved in the apoptotic response triggered by a chimeric cyclic peptide of the interferon-α2b (IFN-α2b) in WISH cells. Since the peptide also induced serine phosphorylation of STAT proteins, in the present study we examined the kinase involved in serine STAT1 phosphorylation and the signaling effectors acting upstream such activation. We first found that p38 MAPK is involved in serine STAT1 phosphorylation, since a reduction of phophoserine-STAT1 levels was evident after incubating WISH cells with cyclic peptide in the presence of a p38 pharmacological inhibitor or a dominant-negative p38 mutant. Next, we demonstrated that the peptide induced activation of protein kinase Cδ (PKCδ). Based on this finding, the role of this kinase was then evaluated. After incubating WISH cells with a PKCδ inhibitor or after decreasing PKCδ expression levels by RNA interference, both peptide-induced serine STAT1 and p38 phosphorylation levels were significantly decreased, indicating that PKCδ functions as an upstream regulator of p38. We also showed that PKCδ and p38 activation stimulated by the peptide was inhibited by a specific pharmacological inhibitor of phosphatidylinositol 3-kinase (PI3K) or by a dominant-negative p85 PI3K-regulatory subunit, suggesting that PI3K is upstream in the signaling cascade. In addition, the role of PI3K and PKCδ in cyclic peptide-induced apoptosis was examined. Both signaling effectors were found to regulate the antiproliferative activity and the apoptotic response triggered by the cyclic peptide in WISH cells. In conclusion, we herein demonstrated that STAT1 serine phosphorylation is mediated by the sequential activation of PI3K, PKCδ and p38 MAPK. This signaling cascade contributes to the antitumor effect induced by the chimeric IFN-α2b cyclic peptide in WISH cells. Copyright © 2013 Elsevier Inc

  4. Structural Requirements for Yersinia YopJ Inhibition of MAP Kinase Pathways

    Science.gov (United States)

    Burdette, Dara; Mukherjee, Sohini; Keitany, Gladys; Goldsmith, Elizabeth; Orth, Kim

    2008-01-01

    MAPK signaling cascades are evolutionally conserved. The bacterial effector, YopJ, uses the unique activity of Ser/Thr acetylation to inhibit the activation of the MAPK kinase (MKK) and prevent activation by phosphorylation. YopJ is also able to block yeast MAPK signaling pathways using this mechanism. Based on these observations, we performed a genetic screen to isolate mutants in the yeast MKK, Pbs2, that suppress YopJ inhibition. One suppressor contains a mutation in a conserved tyrosine residue and bypasses YopJ inhibition by increasing the basal activity of Pbs2. Mutations on the hydrophobic face of the conserved G α-helix in the kinase domain prevent both binding and acetylation by YopJ. Corresponding mutants in human MKKs showed that they are conserved not only structurally, but also functionally. These studies reveal a conserved binding site found on the superfamily of MAPK kinases while providing insight into the molecular interactions required for YopJ inhibition. PMID:18167536

  5. Structural requirements for Yersinia YopJ inhibition of MAP kinase pathways.

    Directory of Open Access Journals (Sweden)

    Yi-Heng Hao

    2008-01-01

    Full Text Available MAPK signaling cascades are evolutionally conserved. The bacterial effector, YopJ, uses the unique activity of Ser/Thr acetylation to inhibit the activation of the MAPK kinase (MKK and prevent activation by phosphorylation. YopJ is also able to block yeast MAPK signaling pathways using this mechanism. Based on these observations, we performed a genetic screen to isolate mutants in the yeast MKK, Pbs2, that suppress YopJ inhibition. One suppressor contains a mutation in a conserved tyrosine residue and bypasses YopJ inhibition by increasing the basal activity of Pbs2. Mutations on the hydrophobic face of the conserved G alpha-helix in the kinase domain prevent both binding and acetylation by YopJ. Corresponding mutants in human MKKs showed that they are conserved not only structurally, but also functionally. These studies reveal a conserved binding site found on the superfamily of MAPK kinases while providing insight into the molecular interactions required for YopJ inhibition.

  6. Sub-nanometrically resolved chemical mappings of quantum-cascade laser active regions

    International Nuclear Information System (INIS)

    Pantzas, Konstantinos; Beaudoin, Grégoire; Patriarche, Gilles; Largeau, Ludovic; Mauguin, Olivia; Sagnes, Isabelle; Pegolotti, Giulia; Vasanelli, Angela; Calvar, Ariane; Amanti, Maria; Sirtori, Carlo

    2016-01-01

    A procedure that produces sub-nanometrically resolved chemical mappings of MOCVD-grown InGaAs/InAlAs/InP quantum cascade lasers is presented. The chemical mappings reveal that, although the structure is lattice-matched to InP, the InAlAs barriers do not attain the nominal aluminum content—48%—and are, in fact, InGaAlAs quaternaries. This information is used to adjust the aluminum precursor flow and fine-tune the composition of the barriers, resulting in a significant improvement of the fabricated lasers. (paper)

  7. The amoebal MAP kinase response to Legionella pneumophila is regulated by DupA.

    Science.gov (United States)

    Li, Zhiru; Dugan, Aisling S; Bloomfield, Gareth; Skelton, Jason; Ivens, Alasdair; Losick, Vicki; Isberg, Ralph R

    2009-09-17

    The amoeba Dictyostelium discoideum can support replication of Legionella pneumophila. Here we identify the dupA gene, encoding a putative tyrosine kinase/dual-specificity phosphatase, in a screen for D. discoideum mutants altered in allowing L. pneumophila intracellular replication. Inactivation of dupA resulted in depressed L. pneumophila growth and sustained hyperphosphorylation of the amoebal MAP kinase ERK1, consistent with loss of a phosphatase activity. Bacterial challenge of wild-type amoebae induced dupA expression and resulted in transiently increased ERK1 phosphorylation, suggesting that dupA and ERK1 are part of a response to bacteria. Indeed, over 500 of the genes misregulated in the dupA(-) mutant were regulated in response to L. pneumophila infection, including some thought to have immune-like functions. MAP kinase phosphatases are known to be highly upregulated in macrophages challenged with L. pneumophila. Thus, DupA may regulate a MAP kinase response to bacteria that is conserved from amoebae to mammals.

  8. CZK3, a MAP kinase kinase kinase homolog in Cercospora zeae-maydis, regulates cercosporin biosynthesis, fungal development, and pathogenesis.

    Science.gov (United States)

    Shim, Won-Bo; Dunkle, Larry D

    2003-09-01

    The fungus Cercospora zeae-maydis causes gray leaf spot of maize and produces cercosporin, a photosensitizing perylenequinone with toxic activity against a broad spectrum of organisms. However, little is known about the biosynthetic pathway or factors that regulate cercosporin production. Analysis of a cDNA subtraction library comprised of genes that are up-regulated during cercosporin synthesis revealed a sequence highly similar to mitogen-activated protein (MAP) kinases in other fungi. Sequencing and conceptual translation of the full-length genomic sequence indicated that the gene, which we designated CZK3, contains a 4,119-bp open reading frame devoid of introns and encodes a 1,373-amino acid sequence that is highly similar to Wis4, a MAP kinase kinase kinase in Schizosaccharomyces pombe. Targeted disruption of CZK3 suppressed expression of genes predicted to participate in cercosporin biosynthesis and abolished cercosporin production. The disrupted mutants grew faster on agar media than the wild type but were deficient in conidiation and elicited only small chlorotic spots on inoculated maize leaves compared with rectangular necrotic lesions incited by the wild type. Complementation of disruptants with the CZK3 open reading frame and flanking sequences restored wild-type levels of conidiation, growth rate, and virulence as well as the ability to produce cercosporin. The results suggest that cercosporin is a virulence factor in C. zeae-maydis during maize pathogenesis, but the pleiotropic effects of CZK3 disruption precluded definitive conclusions.

  9. Stability of cascade search

    Energy Technology Data Exchange (ETDEWEB)

    Fomenko, Tatiana N [M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics, Moscow (Russian Federation)

    2010-10-22

    We find sufficient conditions on a searching multi-cascade for a modification of the set of limit points of the cascade that satisfy an assessing inequality for the distance from each of these points to the initial point to be small, provided that the modifications of the initial point and the initial set-valued functionals or maps used to construct the multi-cascade are small. Using this result, we prove the stability (in the above sense) of the cascade search for the set of common pre-images of a closed subspace under the action of n set-valued maps, n{>=}1 (in particular, for the set of common roots of these maps and for the set of their coincidences). For n=2 we obtain generalizations of some results of A. V. Arutyunov; the very statement of the problem comes from a recent paper of his devoted to the study of the stability of the subset of coincidences of a Lipschitz map and a covering map.

  10. The Drosophila rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway.

    OpenAIRE

    Biggs, W H; Zavitz, K H; Dickson, B; van der Straten, A; Brunner, D; Hafen, E; Zipursky, S L

    1994-01-01

    Mitogen-activated protein (MAP) kinases have been proposed to play a critical role in receptor tyrosine kinase (RTK)-mediated signal transduction pathways. Although genetic and biochemical studies of RTK pathways in Caenorhabditis elegans, Drosophila melanogaster and mammals have revealed remarkable similarities, a genetic requirement for MAP kinases in RTK signaling has not been established. During retinal development in Drosophila, the sevenless (Sev) RTK is required for development of the ...

  11. HSP90 inhibitors potentiate PGF2α-induced IL-6 synthesis via p38 MAP kinase in osteoblasts.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Fujita

    Full Text Available Heat shock protein 90 (HSP90 that is ubiquitously expressed in various tissues, is recognized to be a major molecular chaperone. We have previously reported that prostaglandin F2α (PGF2α, a potent bone remodeling mediator, stimulates the synthesis of interleukin-6 (IL-6 through p44/p42 mitogen-activated protein (MAP kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells, and that Rho-kinase acts at a point upstream of p38 MAP kinase. In the present study, we investigated the involvement of HSP90 in the PGF2α-stimulated IL-6 synthesis and the underlying mechanism in MC3T3-E1 cells. Geldanamycin, an inhibitor of HSP90, significantly amplified both the PGF2α-stimulated IL-6 release and the mRNA expression levels. In addition, other HSP90 inhibitors, 17-allylamino-17demethoxy-geldanamycin (17-AAG and 17-dimethylamino-ethylamino-17-demethoxy-geldanamycin (17-DMAG and onalespib, enhanced the PGF2α-stimulated IL-6 release. Geldanamycin, 17-AAG and onalespib markedly strengthened the PGF2α-induced phosphorylation of p38 MAP kinase. Geldanamycin and 17-AAG did not affect the PGF2α-induced phosphorylation of p44/p42 MAP kinase and myosin phosphatase targeting subunit (MYPT-1, a substrate of Rho-kinase, and the protein levels of RhoA and Rho-kinase. In addition, HSP90-siRNA enhanced the PGF2α-induced phosphorylation of p38 MAP kinase. Furthermore, SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by geldanamycin, 17-AAG or 17-DMAG of the PGF2α-stimulated IL-6 release. Our results strongly suggest that HSP90 negatively regulates the PGF2α-stimulated IL-6 synthesis in osteoblasts, and that the effect of HSP90 is exerted through regulating p38 MAP kinase activation.

  12. CNNcon: improved protein contact maps prediction using cascaded neural networks.

    Directory of Open Access Journals (Sweden)

    Wang Ding

    Full Text Available BACKGROUNDS: Despite continuing progress in X-ray crystallography and high-field NMR spectroscopy for determination of three-dimensional protein structures, the number of unsolved and newly discovered sequences grows much faster than that of determined structures. Protein modeling methods can possibly bridge this huge sequence-structure gap with the development of computational science. A grand challenging problem is to predict three-dimensional protein structure from its primary structure (residues sequence alone. However, predicting residue contact maps is a crucial and promising intermediate step towards final three-dimensional structure prediction. Better predictions of local and non-local contacts between residues can transform protein sequence alignment to structure alignment, which can finally improve template based three-dimensional protein structure predictors greatly. METHODS: CNNcon, an improved multiple neural networks based contact map predictor using six sub-networks and one final cascade-network, was developed in this paper. Both the sub-networks and the final cascade-network were trained and tested with their corresponding data sets. While for testing, the target protein was first coded and then input to its corresponding sub-networks for prediction. After that, the intermediate results were input to the cascade-network to finish the final prediction. RESULTS: The CNNcon can accurately predict 58.86% in average of contacts at a distance cutoff of 8 Å for proteins with lengths ranging from 51 to 450. The comparison results show that the present method performs better than the compared state-of-the-art predictors. Particularly, the prediction accuracy keeps steady with the increase of protein sequence length. It indicates that the CNNcon overcomes the thin density problem, with which other current predictors have trouble. This advantage makes the method valuable to the prediction of long length proteins. As a result, the effective

  13. Short-term cascaded hydroelectric system scheduling based on chaotic particle swarm optimization using improved logistic map

    Science.gov (United States)

    He, Yaoyao; Yang, Shanlin; Xu, Qifa

    2013-07-01

    In order to solve the model of short-term cascaded hydroelectric system scheduling, a novel chaotic particle swarm optimization (CPSO) algorithm using improved logistic map is introduced, which uses the water discharge as the decision variables combined with the death penalty function. According to the principle of maximum power generation, the proposed approach makes use of the ergodicity, symmetry and stochastic property of improved logistic chaotic map for enhancing the performance of particle swarm optimization (PSO) algorithm. The new hybrid method has been examined and tested on two test functions and a practical cascaded hydroelectric system. The experimental results show that the effectiveness and robustness of the proposed CPSO algorithm in comparison with other traditional algorithms.

  14. The role of p38 MAP kinase in cancer cell apoptosis

    International Nuclear Information System (INIS)

    Lenassi, M.; Plemenitas, A.

    2006-01-01

    Background. Cellular behaviour in response to many extracellular stimuli is mediated through MAP kinase signalling pathways. p38 MAP kinase that is represented in mammals by four isoforms (p38α, p38β, p38γ and p38δ) is one of the four main subgroups of MAP kinases. Recent studies show that p38 activation is necessary for cancer cell death initiated by variety of anti-cancer agents. This finding connected cancer therapies previously considered to be mechanistically unrelated and raised the possibility of developing anti-cancer agents that lack the side effects caused by events upstream of p38 MAPK. Many of the details of p38 induced apoptosis still need to be elucidated. Since most of the past studies rely only on the cell culture models, all the results have to be verified using in vivo models. Also very little is known about the role of p38 mediated apoptosis on non-neoplastic cells in response to anti-cancer agents. Conclusion. Although p38 activation of cancer cell apoptosis is a very complex process, recent studies indicate a good starting point for new strategies that would increase the efficiency and decrease the toxicity of proven therapies. (author)

  15. Analysis on Invulnerability of Wireless Sensor Network towards Cascading Failures Based on Coupled Map Lattice

    Directory of Open Access Journals (Sweden)

    Xiuwen Fu

    2018-01-01

    Full Text Available Previous research of wireless sensor networks (WSNs invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML. The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network under various attack schemes (i.e., random attack, max-degree attack, and max-status attack are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.

  16. PSM/SH2-B distributes selected mitogenic receptor signals to distinct components in the PI3-kinase and MAP kinase signaling pathways.

    Science.gov (United States)

    Deng, Youping; Xu, Hu; Riedel, Heimo

    2007-02-15

    The Pro-rich, PH, and SH2 domain containing mitogenic signaling adapter PSM/SH2-B has been implicated as a cellular partner of various mitogenic receptor tyrosine kinases and related signaling mechanisms. Here, we report in a direct comparison of three peptide hormones, that PSM participates in the assembly of distinct mitogenic signaling complexes in response to insulin or IGF-I when compared to PDGF in cultured normal fibroblasts. The complex formed in response to insulin or IGF-I involves the respective peptide hormone receptor and presumably the established components leading to MAP kinase activation. However, our data suggest an alternative link from the PDGF receptor via PSM directly to MEK1/2 and consequently also to p44/42 activation, possibly through a scaffold protein. At least two PSM domains participate, the SH2 domain anticipated to link PSM to the respective receptor and the Pro-rich region in an association with an unidentified downstream component resulting in direct MEK1/2 and p44/42 regulation. The PDGF receptor signaling complex formed in response to PDGF involves PI 3-kinase in addition to the same components and interactions as described for insulin or IGF-I. PSM associates with PI 3-kinase via p85 and in addition the PSM PH domain participates in the regulation of PI 3-kinase activity, presumably through membrane interaction. In contrast, the PSM Pro-rich region appears to participate only in the MAP kinase signal. Both pathways contribute to the mitogenic response as shown by cell proliferation, survival, and focus formation. PSM regulates p38 MAP kinase activity in a pathway unrelated to the mitogenic response.

  17. Normal p21Ras/MAP kinase pathway expression and function in PBMC from patients with polycystic ovary disease.

    Science.gov (United States)

    Buchs, A; Chagag, P; Weiss, M; Kish, E; Levinson, R; Aharoni, D; Rapoport, M J

    2004-04-01

    Polycystic ovary disease (PCOD) is associated with insulin resistance and increased prevalence of type II diabetes mellitus (T2DM). The p21Ras/MAP kinase is a major intracellular signaling pathway mediating insulin signaling in insulin responsive tissues. The expression, regulation and function of the p21Ras/MAP kinase pathway in PCOD patients were examined. Peripheral blood mononuclear cells (PBMC) were isolated from ten patients with PCOD and ten controls. The expression of p21Ras and its regulatory proteins; hSOS1 and p120GAP were studied. The basal and phytohemaglutinin (PHA) or insulin stimulated phosphorylation of MAP kinase was determined. Expression of p21Ras, and its regulatory proteins hSOS1 and p120GAP were similar in PCOD patients and controls. Basal, PHA and insulin stimulated phosphorylation of MAP kinase, were also comparable in the two groups as well as their PBMC proliferative response. These data indicate that the expression and overall function of the p21Ras/MAP kinase pathway remain intact in non-diabetic patients with PCOD.

  18. 2-Aminopyridine-Based Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Inhibitors: Assessment of Mechanism-Based Safety.

    Science.gov (United States)

    Dow, Robert L; Ammirati, Mark; Bagley, Scott W; Bhattacharya, Samit K; Buckbinder, Leonard; Cortes, Christian; El-Kattan, Ayman F; Ford, Kristen; Freeman, Gary B; Guimarães, Cristiano R W; Liu, Shenping; Niosi, Mark; Skoura, Athanasia; Tess, David

    2018-04-12

    Studies have linked the serine-threonine kinase MAP4K4 to the regulation of a number of biological processes and/or diseases, including diabetes, cancer, inflammation, and angiogenesis. With a majority of the members of our lead series (e.g., 1) suffering from time-dependent inhibition (TDI) of CYP3A4, we sought design avenues that would eliminate this risk. One such approach arose from the observation that carboxylic acid-based intermediates employed in our discovery efforts retained high MAP4K4 inhibitory potency and were devoid of the TDI risk. The medicinal chemistry effort that led to the discovery of this central nervous system-impaired inhibitor together with its preclinical safety profile is described.

  19. The Ste20 Family Kinases MAP4K4, MINK1, and TNIK Converge to Regulate Stress-Induced JNK Signaling in Neurons.

    Science.gov (United States)

    Larhammar, Martin; Huntwork-Rodriguez, Sarah; Rudhard, York; Sengupta-Ghosh, Arundhati; Lewcock, Joseph W

    2017-11-15

    The c-Jun- N -terminal kinase (JNK) signaling pathway regulates nervous system development, axon regeneration, and neuronal degeneration after acute injury or in chronic neurodegenerative disease. Dual leucine zipper kinase (DLK) is required for stress-induced JNK signaling in neurons, yet the factors that initiate DLK/JNK pathway activity remain poorly defined. In the present study, we identify the Ste20 kinases MAP4K4, misshapen-like kinase 1 (MINK1 or MAP4K6) and TNIK Traf2- and Nck-interacting kinase (TNIK or MAP4K7), as upstream regulators of DLK/JNK signaling in neurons. Using a trophic factor withdrawal-based model of neurodegeneration in both male and female embryonic mouse dorsal root ganglion neurons, we show that MAP4K4, MINK1, and TNIK act redundantly to regulate DLK activation and downstream JNK-dependent phosphorylation of c-Jun in response to stress. Targeting MAP4K4, MINK1, and TNIK, but not any of these kinases individually, is sufficient to protect neurons potently from degeneration. Pharmacological inhibition of MAP4Ks blocks stabilization and phosphorylation of DLK within axons and subsequent retrograde translocation of the JNK signaling complex to the nucleus. These results position MAP4Ks as important regulators of the DLK/JNK signaling pathway. SIGNIFICANCE STATEMENT Neuronal degeneration occurs in disparate circumstances: during development to refine neuronal connections, after injury to clear damaged neurons, or pathologically during disease. The dual leucine zipper kinase (DLK)/c-Jun- N -terminal kinase (JNK) pathway represents a conserved regulator of neuronal injury signaling that drives both neurodegeneration and axon regeneration, yet little is known about the factors that initiate DLK activity. Here, we uncover a novel role for a subfamily of MAP4 kinases consisting of MAP4K4, Traf2- and Nck-interacting kinase (TNIK or MAP4K7), and misshapen-like kinase 1 (MINK1 or MAP4K6) in regulating DLK/JNK signaling in neurons. Inhibition of

  20. HOG MAP kinase regulation of alternariol biosynthesis in Alternaria alternata is important for substrate colonization.

    Science.gov (United States)

    Graf, Eva; Schmidt-Heydt, Markus; Geisen, Rolf

    2012-07-16

    Strains of the genus Alternaria are ubiquitously present and frequently found on fruits, vegetables and cereals. One of the most commonly found species from this genus is A. alternata which is able to produce the mycotoxin alternariol among others. To date only limited knowledge is available about the regulation of the biosynthesis of alternariol, especially under conditions relevant to food. Tomatoes are a typical substrate of A. alternata and have a high water activity. On the other hand cereals with moderate water activity are also frequently colonized by A. alternata. In the current analysis it was demonstrated that even minor changes in the osmotic status of the substrate affect the alternariol biosynthesis of strains from vegetables resulting in nearly complete inhibition. High osmolarity in the environment is usually transmitted to the transcriptional level of downstream regulated genes by the HOG signal cascade (high osmolarity glycerol cascade) which is a MAP kinase transduction pathway. The phosphorylation status of the A. alternata HOG (AaHOG) was determined. Various concentrations of NaCl induce the phosphorylation of AaHOG in a concentration, time and strain dependent manner. A strain with a genetically inactivated aahog gene was no longer able to produce alternariol indicating that the activity of the aahog gene is required for alternariol biosynthesis. Further experiments revealed that the biosynthesis of alternariol is important for the fungus to colonize tomato tissue. The tight water activity dependent regulation of alternariol biosynthesis ensures alternariol biosynthesis at conditions which indicate an optimal colonization substrate for the fungus. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Loss of mitogen-activated protein kinase kinase kinase 4 (MAP3K4 reveals a requirement for MAPK signalling in mouse sex determination.

    Directory of Open Access Journals (Sweden)

    Debora Bogani

    2009-09-01

    Full Text Available Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY gonad, sex-determining region of the Y (SRY protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4, a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas. These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and

  2. Loss of Mitogen-Activated Protein Kinase Kinase Kinase 4 (MAP3K4) Reveals a Requirement for MAPK Signalling in Mouse Sex Determination

    Science.gov (United States)

    Bogani, Debora; Siggers, Pam; Brixey, Rachel; Warr, Nick; Beddow, Sarah; Edwards, Jessica; Williams, Debbie; Wilhelm, Dagmar; Koopman, Peter; Flavell, Richard A.; Chi, Hongbo; Ostrer, Harry; Wells, Sara; Cheeseman, Michael; Greenfield, Andy

    2009-01-01

    Sex determination in mammals is controlled by the presence or absence of the Y-linked gene SRY. In the developing male (XY) gonad, sex-determining region of the Y (SRY) protein acts to up-regulate expression of the related gene, SOX9, a transcriptional regulator that in turn initiates a downstream pathway of testis development, whilst also suppressing ovary development. Despite the requirement for a number of transcription factors and secreted signalling molecules in sex determination, intracellular signalling components functioning in this process have not been defined. Here we report a role for the phylogenetically ancient mitogen-activated protein kinase (MAPK) signalling pathway in mouse sex determination. Using a forward genetic screen, we identified the recessive boygirl (byg) mutation. On the C57BL/6J background, embryos homozygous for byg exhibit consistent XY gonadal sex reversal. The byg mutation is an A to T transversion causing a premature stop codon in the gene encoding MAP3K4 (also known as MEKK4), a mitogen-activated protein kinase kinase kinase. Analysis of XY byg/byg gonads at 11.5 d post coitum reveals a growth deficit and a failure to support mesonephric cell migration, both early cellular processes normally associated with testis development. Expression analysis of mutant XY gonads at the same stage also reveals a dramatic reduction in Sox9 and, crucially, Sry at the transcript and protein levels. Moreover, we describe experiments showing the presence of activated MKK4, a direct target of MAP3K4, and activated p38 in the coelomic region of the XY gonad at 11.5 d post coitum, establishing a link between MAPK signalling in proliferating gonadal somatic cells and regulation of Sry expression. Finally, we provide evidence that haploinsufficiency for Map3k4 accounts for T-associated sex reversal (Tas). These data demonstrate that MAP3K4-dependent signalling events are required for normal expression of Sry during testis development, and create a novel

  3. Protein kinases mediate increment of the phosphorylation of cyclic AMP -responsive element binding protein in spinal cord of rats following capsaicin injection

    Directory of Open Access Journals (Sweden)

    Li Junfa

    2005-09-01

    Full Text Available Abstract Background Strong noxious stimuli cause plastic changes in spinal nociceptive neurons. Intracellular signal transduction pathways from cellular membrane to nucleus, which may further regulate gene expression by critical transcription factors, convey peripheral stimulation. Cyclic AMP-responsive element binding protein (CREB is a well-characterized stimulus-induced transcription factor whose activation requires phosphorylation of the Serine-133 residue. Phospho-CREB can further induce gene transcription and strengthen synaptic transmission by the activation of the protein kinase cascades. However, little is known about the mechanisms by which CREB phosphorylation is regulated by protein kinases during nociception. This study was designed to use Western blot analysis to investigate the role of mitogen-activated protein (MAP/extracellular signal-regulated kinase (ERK kinase (MEK 1/2, PKA and PKC in regulating the phosphorylation of CREB in the spinal cord of rats following intraplantar capsaicin injection. Results We found that capsaicin injection significantly increased the phosphorylation level of CREB in the ipsilateral side of the spinal cord. Pharmacological manipulation of MEK 1/2, PKA and PKC with their inhibitors (U0126, H89 and NPC 15473, respectively significantly blocked this increment of CREB phosphorylation. However, the expression of CREB itself showed no change in any group. Conclusion These findings suggest that the activation of intracellular MAP kinase, PKA and PKC cascades may contribute to the regulation of phospho-CREB in central nociceptive neurons following peripheral painful stimuli.

  4. Regulation of peripheral inflammation by spinal p38 MAP kinase in rats.

    Directory of Open Access Journals (Sweden)

    David L Boyle

    2006-09-01

    Full Text Available Somatic afferent input to the spinal cord from a peripheral inflammatory site can modulate the peripheral response. However, the intracellular signaling mechanisms in the spinal cord that regulate this linkage have not been defined. Previous studies suggest spinal cord p38 mitogen-activated protein (MAP kinase and cytokines participate in nociceptive behavior. We therefore determined whether these pathways also regulate peripheral inflammation in rat adjuvant arthritis, which is a model of rheumatoid arthritis.Selective blockade of spinal cord p38 MAP kinase by administering the p38 inhibitor SB203580 via intrathecal (IT catheters in rats with adjuvant arthritis markedly suppressed paw swelling, inhibited synovial inflammation, and decreased radiographic evidence of joint destruction. The same dose of SB203580 delivered systemically had no effect, indicating that the effect was mediated by local concentrations in the neural compartment. Evaluation of articular gene expression by quantitative real-time PCR showed that spinal p38 inhibition markedly decreased synovial interleukin-1 and -6 and matrix metalloproteinase (MMP3 gene expression. Activation of p38 required tumor necrosis factor alpha (TNFalpha in the nervous system because IT etanercept (a TNF inhibitor given during adjuvant arthritis blocked spinal p38 phosphorylation and reduced clinical signs of adjuvant arthritis.These data suggest that peripheral inflammation is sensed by the central nervous system (CNS, which subsequently activates stress-induced kinases in the spinal cord via a TNFalpha-dependent mechanism. Intracellular p38 MAP kinase signaling processes this information and profoundly modulates somatic inflammatory responses. Characterization of this mechanism could have clinical and basic research implications by supporting development of new treatments for arthritis and clarifying how the CNS regulates peripheral immune responses.

  5. Heat Shock Protein 70 Negatively Regulates TGF-β-Stimulated VEGF Synthesis via p38 MAP Kinase in Osteoblasts

    Directory of Open Access Journals (Sweden)

    Go Sakai

    2017-11-01

    Full Text Available Background/Aims: We previously demonstrated that transforming growth factor-β (TGF-β stimulates the synthesis of vascular endothelial growth factor (VEGF through the activation of p38 mitogen-activated protein (MAP kinase in osteoblast-like MC3T3-E1 cells. Heat shock protein70 (HSP70 is a ubiquitously expressed molecular chaperone. In the present study, we investigated the involvement of HSP70 in the TGF-β-stimulated VEGF synthesis and the underlying mechanism in these cells. Methods: Culture MC3T3-E1 cells were stimulated by TGF-β. Released VEGF was measured using an ELISA assay. VEGF mRNA level was quantified by RT-PCR. Phosphorylation of each protein kinase was analyzed by Western blotting. Results: VER-155008 and YM-08, both of HSP70 inhibitors, significantly amplified the TGF-β-stimulated VEGF release. In addition, the expression level of VEGF mRNA induced by TGF-β was enhanced by VER-155008. These inhibitors markedly strengthened the TGF-β-induced phosphorylation of p38 MAP kinase. The TGF-β-induced phosphorylation of p38 MAP kinase was amplified in HSP70-knockdown cells. SB203580, an inhibitor of p38 MAP kinase, significantly suppressed the amplification by these inhibitors of the TGF-β-induced VEGF release. Conclusion: These results strongly suggest that HSP70 acts as a negative regulator in the TGF-β-stimulated VEGF synthesis in osteoblasts, and that the inhibitory effect of HSP70 is exerted at a point upstream of p38 MAP kinase.

  6. The Amoebal MAP Kinase Response to Legionella pneumophila Is Regulated by DupA

    OpenAIRE

    Li, Zhiru; Dugan, Aisling S.; Bloomfield, Gareth; Skelton, Jason; Ivens, Alasdair; Losick, Vicki; Isberg, Ralph R.

    2009-01-01

    The amoeba Dictyostelium discoideum can support replication of Legionella pneumophila. Here we identify the dupA gene, encoding a putative tyrosine kinase/dual-specificity phosphatase, in a screen for D. discoideum mutants altered in allowing L. pneumophila intracellular replication. Inactivation of dupA resulted in depressed L. pneumophila growth and sustained hyperphosphorylation of the amoebal MAP kinase ERK1, consistent with loss of a phosphatase activity. Bacterial challenge of wild-type...

  7. Combined 15N-Labeling and TandemMOAC Quantifies Phosphorylation of MAP Kinase Substrates Downstream of MKK7 in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Nicola V. Huck

    2017-12-01

    Full Text Available Reversible protein phosphorylation is a widespread posttranslational modification that plays a key role in eukaryotic signal transduction. Due to the dynamics of protein abundance, low stoichiometry and transient nature of protein phosphorylation, the detection and accurate quantification of substrate phosphorylation by protein kinases remains a challenge in phosphoproteome research. Here, we combine tandem metal-oxide affinity chromatography (tandemMOAC with stable isotope 15N metabolic labeling for the measurement and accurate quantification of low abundant, transiently phosphorylated peptides by mass spectrometry. Since tandemMOAC is not biased toward the enrichment of acidophilic, basophilic, or proline-directed kinase substrates, the method is applicable to identify targets of all these three types of protein kinases. The MKK7-MPK3/6 module, for example, is involved in the regulation of plant development and plant basal and systemic immune responses, but little is known about downstream cascade components. Using our here described phosphoproteomics approach we identified several MPK substrates downstream of the MKK7-MPK3/6 phosphorylation cascade in Arabidopsis. The identification and validation of dynamin-related protein 2 as a novel phosphorylation substrate of the MKK7-MPK3/6 module establishes a novel link between MPK signaling and clathrin-mediated vesicle trafficking.

  8. Inhibiting Src family tyrosine kinase activity blocks glutamate signalling to ERK1/2 and Akt/PKB but not JNK in cultured striatal neurones.

    Science.gov (United States)

    Crossthwaite, Andrew J; Valli, Haseeb; Williams, Robert J

    2004-03-01

    Glutamate receptor activation of mitogen-activated protein (MAP) kinase signalling cascades has been implicated in diverse neuronal functions such as synaptic plasticity, development and excitotoxicity. We have previously shown that Ca2+-influx through NMDA receptors in cultured striatal neurones mediates the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt/protein kinase B (PKB) through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. Exposing neurones to the Src family tyrosine kinase inhibitor PP2, but not the inactive analogue PP3, inhibited NMDA receptor-induced phosphorylation of ERK1/2 and Akt/PKB in a concentration-dependent manner, and reduced cAMP response element-binding protein (CREB) phosphorylation. To establish a link between Src family tyrosine kinase-mediated phosphorylation and PI 3-kinase signalling, affinity precipitation experiments were performed with the SH2 domains of the PI 3-kinase regulatory subunit p85. This revealed a Src-dependent phosphorylation of a focal adhesion kinase (FAK)-p85 complex on glutamate stimulation. Demonstrating that PI3-kinase is not ubiquitously involved in NMDA receptor signal transduction, the PI 3-kinase inhibitors wortmannin and LY294002 did not prevent NMDA receptor Ca2+-dependent phosphorylation of c-Jun N-terminal kinase 1/2 (JNK1/2). Further, inhibiting Src family kinases increased NMDA receptor-dependent JNK1/2 phosphorylation, suggesting that Src family kinase-dependent cascades may physiologically limit signalling to JNK. These results demonstrate that Src family tyrosine kinases and PI3-kinase are pivotal regulators of NMDA receptor signalling to ERK/Akt and JNK in striatal neurones.

  9. Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development.

    Science.gov (United States)

    Pagnussat, Gabriela Carolina; Lanteri, María Luciana; Lombardo, María Cristina; Lamattina, Lorenzo

    2004-05-01

    Recently, it was demonstrated that nitric oxide (NO) and cGMP are involved in the auxin response during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002, 2003). However, not much is known about the complex molecular network operating during the cell proliferation and morphogenesis triggered by auxins and NO in that process. Anatomical studies showed that formation of adventitious root primordia was clearly detected in indole acetic acid (IAA)- and NO-treated cucumber explants, while neither cell proliferation nor differentiation into root primordia could be observed in control explants 3 d after primary root was removed. In order to go further with signal transduction mechanisms that operate during IAA- and NO-induced adventitious root formation, experiments were designed to test the involvement of a mitogen-activated protein kinase (MAPK) cascade in that process. Cucumber explants were treated with the NO-donor sodium nitroprusside (SNP) or with SNP plus the specific NO-scavenger cPTIO. Protein extracts from those explants were assayed for protein kinase (PK) activity by using myelin basic protein (MBP) as substrate in both in vitro and in-gel assays. The activation of a PK of approximately 48 kD could be detected 1 d after NO treatment with a maximal activation after 3 d of treatment. In control explants, a PK activity was detected only after 4 d of treatment. The MBP-kinase activity was also detected in extracts from IAA-treated explants, while no signal was observed in IAA + cPTIO treatments. The PK activity could be inhibited by the cell-permeable MAPK kinase inhibitor PD098059, suggesting that the NO-dependent MBP-kinase activity is a MAPK. Furthermore, when PD098059 was administered to explants treated with SNP or IAA, it produced a delay in root emergence and a dose-dependent reduction in root number. Altogether, our results suggest that a MAPK signaling cascade is activated during the adventitious rooting process

  10. Cascade Chaotic System With Applications.

    Science.gov (United States)

    Zhou, Yicong; Hua, Zhongyun; Pun, Chi-Man; Chen, C L Philip

    2015-09-01

    Chaotic maps are widely used in different applications. Motivated by the cascade structure in electronic circuits, this paper introduces a general chaotic framework called the cascade chaotic system (CCS). Using two 1-D chaotic maps as seed maps, CCS is able to generate a huge number of new chaotic maps. Examples and evaluations show the CCS's robustness. Compared with corresponding seed maps, newly generated chaotic maps are more unpredictable and have better chaotic performance, more parameters, and complex chaotic properties. To investigate applications of CCS, we introduce a pseudo-random number generator (PRNG) and a data encryption system using a chaotic map generated by CCS. Simulation and analysis demonstrate that the proposed PRNG has high quality of randomness and that the data encryption system is able to protect different types of data with a high-security level.

  11. Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance

    DEFF Research Database (Denmark)

    Petersen, M.; Brodersen, P.; Naested, H.

    2000-01-01

    Transposon inactivation of Arabidopsis MAP kinase 4 produced the mpk4 mutant exhibiting constitutive systemic acquired resistance (SAR) including elevated salicylic acid (SA) revels, increased resistance to virulent pathogens, and constitutive pathogenesis-related gene expression shown by Northern...... of NPR1. PDF1.2 and THI2.1 gene induction by jasmonate was blocked in mpk4 expressing NahG, suggesting that MPK4 is required for jasmonic acid-responsive gene expression....

  12. Structural Bioinformatics-Based Prediction of Exceptional Selectivity of p38 MAP Kinase Inhibitor PH-797804

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Li; Shieh, Huey S.; Selness, Shaun R.; Devraj, Rajesh V.; Walker, John K.; Devadas, Balekudru; Hope, Heidi R.; Compton, Robert P.; Schindler, John F.; Hirsch, Jeffrey L.; Benson, Alan G.; Kurumbail, Ravi G.; Stegeman, Roderick A.; Williams, Jennifer M.; Broadus, Richard M.; Walden, Zara; Monahan, Joseph B.; Pfizer

    2009-07-24

    PH-797804 is a diarylpyridinone inhibitor of p38{alpha} mitogen-activated protein (MAP) kinase derived from a racemic mixture as the more potent atropisomer (aS), first proposed by molecular modeling and subsequently confirmed by experiments. On the basis of structural comparison with a different biaryl pyrazole template and supported by dozens of high-resolution crystal structures of p38{alpha} inhibitor complexes, PH-797804 is predicted to possess a high level of specificity across the broad human kinase genome. We used a structural bioinformatics approach to identify two selectivity elements encoded by the TXXXG sequence motif on the p38{alpha} kinase hinge: (i) Thr106 that serves as the gatekeeper to the buried hydrophobic pocket occupied by 2,4-difluorophenyl of PH-797804 and (ii) the bidentate hydrogen bonds formed by the pyridinone moiety with the kinase hinge requiring an induced 180{sup o} rotation of the Met109-Gly110 peptide bond. The peptide flip occurs in p38{alpha} kinase due to the critical glycine residue marked by its conformational flexibility. Kinome-wide sequence mining revealed rare presentation of the selectivity motif. Corroboratively, PH-797804 exhibited exceptionally high specificity against MAP kinases and the related kinases. No cross-reactivity was observed in large panels of kinase screens (selectivity ratio of >500-fold). In cellular assays, PH-797804 demonstrated superior potency and selectivity consistent with the biochemical measurements. PH-797804 has met safety criteria in human phase I studies and is under clinical development for several inflammatory conditions. Understanding the rationale for selectivity at the molecular level helps elucidate the biological function and design of specific p38{alpha} kinase inhibitors.

  13. Interdomain allosteric regulation of Polo kinase by Aurora B and Map205 is required for cytokinesis

    Science.gov (United States)

    Kachaner, David; Pinson, Xavier; El Kadhi, Khaled Ben; Normandin, Karine; Talje, Lama; Lavoie, Hugo; Lépine, Guillaume; Carréno, Sébastien; Kwok, Benjamin H.; Hickson, Gilles R.

    2014-01-01

    Drosophila melanogaster Polo and its human orthologue Polo-like kinase 1 fulfill essential roles during cell division. Members of the Polo-like kinase (Plk) family contain an N-terminal kinase domain (KD) and a C-terminal Polo-Box domain (PBD), which mediates protein interactions. How Plks are regulated in cytokinesis is poorly understood. Here we show that phosphorylation of Polo by Aurora B is required for cytokinesis. This phosphorylation in the activation loop of the KD promotes the dissociation of Polo from the PBD-bound microtubule-associated protein Map205, which acts as an allosteric inhibitor of Polo kinase activity. This mechanism allows the release of active Polo from microtubules of the central spindle and its recruitment to the site of cytokinesis. Failure in Polo phosphorylation results in both early and late cytokinesis defects. Importantly, the antagonistic regulation of Polo by Aurora B and Map205 in cytokinesis reveals that interdomain allosteric mechanisms can play important roles in controlling the cellular functions of Plks. PMID:25332165

  14. Geologic Map of the Cascade Head Area, Northwestern Oregon Coast Range (Neskiwin, Nestucca Bay, Hebo, and Dolph 7.5 minute Quadrangles)

    Science.gov (United States)

    Snavely, Parke D.; Niem, Alan; Wong, Florence L.; MacLeod, Norman S.; Calhoun, Tracy K.; Minasian, Diane L.; Niem, Wendy

    1996-01-01

    The geology of the Cascade Head area bridges the geology in the Tillamook Highlands to the north (Wells and others, 1994; 1995) with that of the Newport Embayment on the south (Snavely and others, 1976 a,b,c). The four 7.5-minute quadrangles (Neskowin, Nestucca Bay, Hebo, and Dolph) which comprise the Cascade Head area include significant stratigraphic, structural, and igneous data that are essential in unraveling the geology of the northern and central part of the Oregon Coast Range and of the adjacent continental shelfEarlier studies (Snavely and Vokes, 1949) were of a broad reconnaissance nature because of limited access in this rugged, densely forested part of the Siuslaw National Forest. Also, numerous thick sills of late middle Eocene diabase and middle Miocene basalt mask the Eocene stratigraphic relationships. Previous mapping was hampered by a lack of precise biostratigraphic data. However, recent advances in biostratigraphy and radiometric age dating and geochemistry have provided the necessary tools to decipher stratigraphic and structural relationships in the Eocene sedimentary and volcanic rock sequences (W.W. Rau, personal communication, 1978 to 1988; Bukry and Snavely, 1988). Many important stratigraphic and igneous relationships are displayed within the Casacde Head area: (1) turbidite sandstone of the middle Eocene Tyee Formation, which is widespread in the central and southern part of the Oregon Coast Range (Snavely and others, 1964), was not deposited in the western part of the Cascade Head, and is of limited extent north of the map area (Wells and others, 1994); (2) the late middle Eocene Yamhill Formation, which crops out along the west and east flank of the Oregon Coast Range, overlaps older strata and overlies an erosional unconformity on the lower Eocene Siletz River Volcanics (Snavely and others, 1990; 1991); (3) thick sills of late middle Eocene diabase (43 Ma) are widespread in the Cascade Head area and also form much of the eastern

  15. Phosphorylation of paxillin via the ERK mitogen-activated protein kinase cascade in EL4 thymoma cells.

    Science.gov (United States)

    Ku, H; Meier, K E

    2000-04-14

    Intracellular signals can regulate cell adhesion via several mechanisms in a process referred to as "inside-out" signaling. In phorbol ester-sensitive EL4 thymoma cells, phorbol-12-myristate 13-acetate (PMA) induces activation of extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases and promotes cell adhesion. In this study, clonal EL4 cell lines with varying abilities to activate ERKs in response to PMA were used to examine signaling events occurring downstream of ERK activation. Paxillin, a multifunctional docking protein involved in cell adhesion, was phosphorylated on serine/threonine residues in response to PMA treatment. This response was correlated with the extent and time course of ERK activation. PMA-induced phosphorylation of paxillin was inhibited by compounds that block the ERK activation pathway in EL4 cells, primary murine thymocytes, and primary murine splenocytes. Paxillin was phosphorylated in vitro by purified active ERK2. Two-dimensional electrophoresis revealed that PMA treatment generated a complex pattern of phosphorylated paxillin species in intact cells, some of which were generated by ERK-mediated phosphorylation in vitro. An ERK pathway inhibitor interfered with PMA-induced adhesion of sensitive EL4 cells to substrate. These findings describe a novel inside-out signaling pathway by which the ERK cascade may regulate events involved in adhesion.

  16. Virtual screening filters for the design of type II p38 MAP kinase inhibitors: a fragment based library generation approach.

    Science.gov (United States)

    Badrinarayan, Preethi; Sastry, G Narahari

    2012-04-01

    In this work, we introduce the development and application of a three-step scoring and filtering procedure for the design of type II p38 MAP kinase leads using allosteric fragments extracted from virtual screening hits. The design of the virtual screening filters is based on a thorough evaluation of docking methods, DFG-loop conformation, binding interactions and chemotype specificity of the 138 p38 MAP kinase inhibitors from Protein Data Bank bound to DFG-in and DFG-out conformations using Glide, GOLD and CDOCKER. A 40 ns molecular dynamics simulation with the apo, type I with DFG-in and type II with DFG-out forms was carried out to delineate the effects of structural variations on inhibitor binding. The designed docking-score and sub-structure filters were first tested on a dataset of 249 potent p38 MAP kinase inhibitors from seven diverse series and 18,842 kinase inhibitors from PDB, to gauge their capacity to discriminate between kinase and non-kinase inhibitors and likewise to selectively filter-in target-specific inhibitors. The designed filters were then applied in the virtual screening of a database of ten million (10⁷) compounds resulting in the identification of 100 hits. Based on their binding modes, 98 allosteric fragments were extracted from the hits and a fragment library was generated. New type II p38 MAP kinase leads were designed by tailoring the existing type I ATP site binders with allosteric fragments using a common urea linker. Target specific virtual screening filters can thus be easily developed for other kinases based on this strategy to retrieve target selective compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Scattering of MCF7 cells by heregulin ß-1 depends on the MEK and p38 MAP kinase pathway.

    Directory of Open Access Journals (Sweden)

    Rintaro Okoshi

    Full Text Available Heregulin (HRG β1 signaling promotes scattering of MCF7 cells by inducing breakdown of adherens and tight junctions. Here, we show that stimulation with HRG-β1 causes the F-actin backbone of junctions to destabilize prior to the loss of adherent proteins and scattering of the cells. The adherent proteins dissociate and translocate from cell-cell junctions to the cytosol. Moreover, using inhibitors we show that the MEK1 pathway is required for the disappearance of F-actin from junctions and p38 MAP kinase activity is essential for scattering of the cells. Upon treatment with a p38 MAP kinase inhibitor, adherens junction complexes immediately reassemble, most likely in the cytoplasm, and move to the plasma membrane in cells dissociated by HRG-β1 stimulation. Subsequently, tight junction complexes form, most likely in the cytoplasm, and move to the plasma membrane. Thus, the p38 MAP kinase inhibitor causes a re-aggregation of scattered cells, even in the presence of HRG-β1. These results suggest that p38 MAP kinase signaling to adherens junction proteins regulates cell aggregation, providing a novel understanding of the regulation of cell-cell adhesion.

  18. The MAP kinase substrate MKS1 is a regulator of plant defense responses

    DEFF Research Database (Denmark)

    Andreasson, E.; Jenkins, T.; Brodersen, P.

    2005-01-01

    Arabidopsis MAP kinase 4 (MPK4) functions as a regulator of pathogen defense responses, because it is required for both repression of salicylic acid (SA)-dependent resistance and for activation of jasmonate (JA)-dependent defense gene expression. To understand MPK4 signaling mechanisms, we used...

  19. Investigating the early snowmelt of 2015 in the Cascade Mountains using new MODIS-based snowmelt timing maps

    Science.gov (United States)

    O'Leary, D., III; Hall, D. K.; Medler, M. J.; Flower, A.; Matthews, R.

    2017-12-01

    The spring of 2015 brought an alarmingly early snowmelt to the Cascade Mountains, impacting flora, fauna, watersheds, and wildfire activity. It is important that we understand these events because model-based projections suggest that snowmelt may arrive an average of 10-40 days earlier across the continental US by the year 2100. Available snow measurement methods including SNOTEL stations and stream gauges offer insights into point locations and individual watersheds, but lack the detail needed to assess snowmelt anomalies across the landscape. In this study we describe our new MODIS-based snowmelt timing maps (STMs), validate them with SNOTEL measurements, then use them to explore the spatial patterns of the 2015 snowmelt in the Cascades. We found that the Cascade Mountains experienced snowmelt 41 days earlier than the 2001-2015 average, with many areas melting >70 days early. Of concern to land managers, these events may be the `new normal' in the decades to come.

  20. Specific and differential activation of mitogen-activated protein kinase cascades by unfamiliar taste in the insular cortex of the behaving rat.

    Science.gov (United States)

    Berman, D E; Hazvi, S; Rosenblum, K; Seger, R; Dudai, Y

    1998-12-01

    Rats were given to drink an unfamiliar taste solution under conditions that result in long-term memory of that taste. The insular cortex, which contains the taste cortex, was then removed and assayed for activation of mitogen-activated protein kinase (MAPK) cascades by using antibodies to the activated forms of various MAPKs. Extracellular responsive kinase 1-2 (ERK1-2) in the cortical homogenate was significantly activated within taste solution, without alteration in the total level of the ERK1-2 proteins. The activity subsided to basal levels within ERK1-2 was not activated when the taste was made familiar. The effect of the unfamiliar taste was specific to the insular cortex. Jun N-terminal kinase 1-2 (JNK1-2) was activated by drinking the taste but with a delayed time course, whereas the activity of Akt kinase and p38MAPK remained unchanged. Elk-1, a member of the ternary complex factor and an ERK/JNK downstream substrate, was activated with a time course similar to that of ERK1-2. Microinjection of a reversible inhibitor of MAPK/ERK kinase into the insular cortex shortly before exposure to the novel taste in a conditioned taste aversion training paradigm attenuated long-term taste aversion memory without significantly affecting short-term memory or the sensory, motor, and motivational faculties required to express long-term taste aversion memory. It was concluded that ERK and JNK are specifically and differentially activated in the insular cortex after exposure to a novel taste, and that this activation is required for consolidation of long-term taste memory.

  1. Comparison of different chaotic maps in particle swarm optimization algorithm for long-term cascaded hydroelectric system scheduling

    International Nuclear Information System (INIS)

    He Yaoyao; Zhou Jianzhong; Xiang Xiuqiao; Chen Heng; Qin Hui

    2009-01-01

    The goal of this paper is to present a novel chaotic particle swarm optimization (CPSO) algorithm and compares the efficiency of three one-dimensional chaotic maps within symmetrical region for long-term cascaded hydroelectric system scheduling. The introduced chaotic maps improve the global optimal capability of CPSO algorithm. Moreover, a piecewise linear interpolation function is employed to transform all constraints into restrict upriver water level for implementing the maximum of objective function. Numerical results and comparisons demonstrate the effect and speed of different algorithms on a practical hydro-system.

  2. Negative regulation of MAP kinase signaling in Drosophila by Ptp61F/PTP1B.

    Science.gov (United States)

    Tchankouo-Nguetcheu, Stéphane; Udinotti, Mario; Durand, Marjorie; Meng, Tzu-Ching; Taouis, Mohammed; Rabinow, Leonard

    2014-10-01

    PTP1B is an important negative regulator of insulin and other signaling pathways in mammals. However, the role of PTP1B in the regulation of RAS-MAPK signaling remains open to deliberation, due to conflicting evidence from different experimental systems. The Drosophila orthologue of mammalian PTP1B, PTP61F, has until recently remained largely uncharacterized. To establish the potential role of PTP61F in the regulation of signaling pathways in Drosophila and particularly to help resolve its fundamental function in RAS-MAPK signaling, we generated a new allele of Ptp61F as well as employed both RNA interference and overexpression alleles. Our results validate recent data showing that the activity of insulin and Abl kinase signaling is increased in Ptp61F mutants and RNA interference lines. Importantly, we establish negative regulation of the RAS/MAPK pathway by Ptp61F activity in whole animals. Of particular interest, our results document the modulation of hyperactive MAP kinase activity by Ptp61F alleles, showing that the phosphatase intervenes to directly or indirectly regulate MAP kinase itself.

  3. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade

    Directory of Open Access Journals (Sweden)

    Alessi Dario R

    2003-09-01

    Full Text Available Abstract Background The AMP-activated protein kinase (AMPK cascade is a sensor of cellular energy charge that acts as a 'metabolic master switch' and inhibits cell proliferation. Activation requires phosphorylation of Thr172 of AMPK within the activation loop by upstream kinases (AMPKKs that have not been identified. Recently, we identified three related protein kinases acting upstream of the yeast homolog of AMPK. Although they do not have obvious mammalian homologs, they are related to LKB1, a tumor suppressor that is mutated in the human Peutz-Jeghers cancer syndrome. We recently showed that LKB1 exists as a complex with two accessory subunits, STRADα/β and MO25α/β. Results We report the following observations. First, two AMPKK activities purified from rat liver contain LKB1, STRADα and MO25α, and can be immunoprecipitated using anti-LKB1 antibodies. Second, both endogenous and recombinant complexes of LKB1, STRADα/β and MO25α/β activate AMPK via phosphorylation of Thr172. Third, catalytically active LKB1, STRADα or STRADβ and MO25α or MO25β are required for full activity. Fourth, the AMPK-activating drugs AICA riboside and phenformin do not activate AMPK in HeLa cells (which lack LKB1, but activation can be restored by stably expressing wild-type, but not catalytically inactive, LKB1. Fifth, AICA riboside and phenformin fail to activate AMPK in immortalized fibroblasts from LKB1-knockout mouse embryos. Conclusions These results provide the first description of a physiological substrate for the LKB1 tumor suppressor and suggest that it functions as an upstream regulator of AMPK. Our findings indicate that the tumors in Peutz-Jeghers syndrome could result from deficient activation of AMPK as a consequence of LKB1 inactivation.

  4. Digital data for preliminary geologic map of the Mount Hood 30- by 60-minute quadrangle, northern Cascade Range, Oregon

    Science.gov (United States)

    Lina Ma,; Sherrod, David R.; Scott, William E.

    2014-01-01

    The Mount Hood 30- by 60-minute quadrangle covers the axis and east flank of the Cascade Range in northern Oregon. Its namesake, Mount Hood volcano, dominates the view in the northwest quarter of the quadrangle, but the entire area is underlain by Oligocene and younger volcanic and volcaniclastic rocks of the Cascade Range. Since the time of the Columbia River Basalt Group about 15 million years (m.y.) ago, the locus and composition of Cascade Range volcanism have shifted sporadically across the map area. Andesitic eruptions were predominant in the western part from about 14 to 10 m.y. ago (Salmon and Sandy Rivers area), producing the Rhododendron Formation and overlying lava flows. From about 8 to 6.5 m.y. ago, lithic pyroclastic debris of the Dalles Formation was shed by chiefly andesitic volcanoes in the north-central part of the map area (Hood River valley escarpment). Andesitic to dacitic volcanism was again predominant about 5 to 3 m.y. ago, with known eruptive centers located from Lookout Mountain westward to Lolo Pass, probably including the area now occupied by Mount Hood. A major episode of mafic volcanism-basalt and basaltic andesite-began about 3-4 m.y. ago and lasted until about 2 m.y. ago. Volcanism since about 2 m.y. ago has been concentrated along the axis of the High Cascades. North and south of Mount Hood these youngest rocks are predominantly basaltic andesite lava flows; whereas at Mount Hood itself, andesite is predominant, forming pyroclastic and debris-flow deposits and lava flows.

  5. Risk and Resilience Analysis of Complex Network Systems Considering Cascading Failure and Recovery Strategy Based on Coupled Map Lattices

    Directory of Open Access Journals (Sweden)

    Fuchun Ren

    2015-01-01

    Full Text Available Risk and resilience are important and challenging issues in complex network systems since a single failure may trigger a whole collapse of the systems due to cascading effect. New theories, models, and methods are urgently demanded to deal with this challenge. In this paper, a coupled map lattices (CML based approach is adopted to analyze the risk of cascading process in Watts-Strogatz (WS small-world network and Barabási and Albert (BA scale-free network, respectively. Then, to achieve an effective and robust system and provide guidance in countering the cascading failure, a modified CML model with recovery strategy factor is proposed. Numerical simulations are put forward based on small-world CML and scale-free CML. The simulation results reveal that appropriate recovery strategies would significantly improve the resilience of networks.

  6. Toward a Comprehensive Phylogenetic Reconstruction of the Evolutionary History of Mitogen-Activated Protein Kinases in the Plant Kingdom

    OpenAIRE

    Janitza, Philipp; Ullrich, Kristian Karsten; Quint, Marcel

    2012-01-01

    The mitogen-activated protein kinase (MAPK) pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of...

  7. Conjugation of cascades

    International Nuclear Information System (INIS)

    San Martin, Jesus; Rodriguez-Perez, Daniel

    2009-01-01

    Presented in this work are some results relative to sequences found in the logistic equation bifurcation diagram, which is the unimodal quadratic map prototype. All of the different saddle-node bifurcation cascades, associated with every last appearance p-periodic orbit (p=3,4,5,...), can also be generated from the very Feigenbaum cascade. In this way it is evidenced the relationship between both cascades. The orbits of every saddle-node bifurcation cascade, mentioned above, are located in different chaotic bands, and this determines a sequence of orbits converging to every band-merging Misiurewicz point. In turn, these accumulation points form a sequence whose accumulation point is the Myrberg-Feigenbaum point. It is also proven that the first appearance orbits in the n-chaotic band converge to the same point as the last appearance orbits of the (n + 1)-chaotic band. The symbolic sequences of band-merging Misiurewicz points are computed for any window.

  8. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States); Busenlehner, Laura [Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487 (United States); Marcus, Stevan, E-mail: smarcus@bama.ua.edu [Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2010-08-20

    Research highlights: {yields} Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. {yields} The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. {yields} Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. {yields} PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  9. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Wang, Yiwei; Gulis, Galina; Buckner, Scott; Johnson, P. Connor; Sullivan, Daniel; Busenlehner, Laura; Marcus, Stevan

    2010-01-01

    Research highlights: → Rotenone induces generation of ROS and mitochondrial fragmentation in fission yeast. → The MAPK Pmk1 and PKA are required for rotenone resistance in fission yeast. → Pmk1 and PKA are required for ROS clearance in rotenone treated fission yeast cells. → PKA plays a role in ROS clearance under normal growth conditions in fission yeast. -- Abstract: Rotenone is a widely used pesticide that induces Parkinson's disease-like symptoms in rats and death of dopaminergic neurons in culture. Although rotenone is a potent inhibitor of complex I of the mitochondrial electron transport chain, it can induce death of dopaminergic neurons independently of complex I inhibition. Here we describe effects of rotenone in the fission yeast, Schizosaccharomyces pombe, which lacks complex I and carries out rotenone-insensitive cellular respiration. We show that rotenone induces generation of reactive oxygen species (ROS) as well as fragmentation of mitochondrial networks in treated S. pombe cells. While rotenone is only modestly inhibitory to growth of wild type S. pombe cells, it is strongly inhibitory to growth of mutants lacking the ERK-type MAP kinase, Pmk1, or protein kinase A (PKA). In contrast, cells lacking the p38 MAP kinase, Spc1, exhibit modest resistance to rotenone. Consistent with these findings, we provide evidence that Pmk1 and PKA, but not Spc1, are required for clearance of ROS in rotenone treated S. pombe cells. Our results demonstrate the usefulness of S. pombe for elucidating complex I-independent molecular targets of rotenone as well as mechanisms conferring resistance to the toxin.

  10. Pancreatic cancer stimulates pancreatic stellate cell proliferation and TIMP-1 production through the MAP kinase pathway

    International Nuclear Information System (INIS)

    Yoshida, Seiya; Yokota, Tokuyasu; Ujiki, Michael; Ding Xianzhong; Pelham, Carolyn; Adrian, Thomas E.; Talamonti, Mark S.; Bell, Richard H.; Denham, Woody

    2004-01-01

    Pancreatic adenocarcinoma is characterized by an intense desmoplastic reaction that surrounds the tumor. Pancreatic stellate cells (PSCs) are thought to be responsible for production of this extracellular matrix. When activated, PSCs have a myofibroblast phenotype and produce not only components of the extracellular matrix including collagen, fibronectin, and laminin, but also matrix metalloproteinases and tissue inhibitors of metalloproteinases (TIMPs). Since PSCs are found in the stroma surrounding human pancreatic adenocarcinoma, we postulate that pancreatic cancer could impact PSC proliferation and TIMP-1 production. Rat PSCs were isolated and cultured. Isolated PSCs were exposed to PANC-1 conditioned medium (CM) and proliferation, activation of the mitogen-activated protein (MAP) kinase pathway, and TIMP-1 gene induction were determined. Exposure to PANC-1 CM increased PSC DNA synthesis, cell number, and TIMP-1 mRNA (real-time PCR) as well as activating the extracellular-regulated kinase (ERK) 1/2. Inhibition of ERK 1/2 phosphorylation (U0126) prevented the increases in growth and TIMP-1 expression. PANC-1 CM stimulates PSC proliferation and TIMP-1 through the MAP kinase (ERK 1/2) pathway

  11. MgSlt2, a cellular integrity MAP kinase of the fungal wheat pathogen Mycosphaerella graminicola, is dispensable for penetration but essential for invasive growth

    NARCIS (Netherlands)

    Mehrabi, R.; Lee, van der T.A.J.; Waalwijk, C.; Kema, G.H.J.

    2006-01-01

    Among expressed sequence tag libraries of Mycosphaerella graminicola isolate IPO323, we identified a full-length cDNA clone with high homology to the mitogen-activated protein (MAP) kinase Slt2 in Saccharomyces cerevisiae. This MAP kinase consists of a 1,242-bp open reading frame, and encodes a

  12. Regulation of the MAP kinase cascade in PC12 cells: B-Raf activates MEK-1 (MAP kinase or ERK kinase) and is inhibited by cAMP

    DEFF Research Database (Denmark)

    Peraldi, P; Frödin, M; Barnier, J V

    1995-01-01

    AMP inhibits B-Raf autokinase activity as well as its ability to phosphorylate and activate MEK-1. This inhibition is likely to be due to a direct effect since we found that PKA phosphorylates B-Raf in vitro. Further, we show that B-Raf binds to p21ras, but more important, this binding to p21ras is virtually...... abolished with B-Raf from PC12 cells treated with CPT-cAMP. Hence, these data indicate that the PKA-mediated phosphorylation of B-Raf hampers its interaction with p21ras, which is responsible for the PKA-mediated decrease in B-Raf activity. Finally, our work suggests that in PC12 cells, cAMP stimulates MAP...

  13. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  14. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    International Nuclear Information System (INIS)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald

    2015-01-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified

  15. Peptidomimetic ligands for the tandem SH2 domain of Syk kinase

    NARCIS (Netherlands)

    Kuil, J.

    2009-01-01

    The Spleen tyrosine kinase (Syk) protein functions as a switch in a number of receptor signaling cascades. One of these cascades is the high affinity IgE receptor (Fc?RI) signaling pathway. Fc?RI consists of an ?-, ?- and two ?-chains. The ?- and ?-chains have intracellular an Immunoreceptor

  16. Phosphorylation of the Yeast Choline Kinase by Protein Kinase C

    Science.gov (United States)

    Choi, Mal-Gi; Kurnov, Vladlen; Kersting, Michael C.; Sreenivas, Avula; Carman, George M.

    2005-01-01

    The Saccharomyces cerevisiae CKI1-encoded choline kinase catalyzes the committed step in phosphatidylcholine synthesis via the Kennedy pathway. The enzyme is phosphorylated on multiple serine residues, and some of this phosphorylation is mediated by protein kinase A. In this work, we examined the hypothesis that choline kinase is also phosphorylated by protein kinase C. Using choline kinase as a substrate, protein kinase C activity was dose- and time-dependent, and dependent on the concentrations of choline kinase (Km = 27 μg/ml) and ATP (Km = 15 μM). This phosphorylation, which occurred on a serine residue, was accompanied by a 1.6-fold stimulation of choline kinase activity. The synthetic peptide SRSSS25QRRHS (Vmax/Km = 17.5 mM-1 μmol min-1 mg-1) that contains the protein kinase C motif for Ser25 was a substrate for protein kinase C. A Ser25 to Ala (S25A) mutation in choline kinase resulted in a 60% decrease in protein kinase C phosphorylation of the enzyme. Phosphopeptide mapping analysis of the S25A mutant enzyme confirmed that Ser25 was a protein kinase C target site. In vivo, the S25A mutation correlated with a decrease (55%) in phosphatidylcholine synthesis via the Kennedy pathway whereas an S25D phosphorylation site mimic correlated with an increase (44%) in phosphatidylcholine synthesis. Whereas the S25A (protein kinase C site) mutation did not affect the phosphorylation of choline kinase by protein kinase A, the S30A (protein kinase A site) mutation caused a 46% reduction in enzyme phosphorylation by protein kinase C. A choline kinase synthetic peptide (SQRRHS30LTRQ) containing Ser30 was a substrate (Vmax/Km = 3.0 mM−1 μmol min−1 mg−1) for protein kinase C. Comparison of phosphopeptide maps of the wild type and S30A mutant choline kinase enzymes phosphorylated by protein kinase C confirmed that Ser30 was also a target site for protein kinase C. PMID:15919656

  17. Investigating small molecules to inhibit germinal center kinase-like kinase (GLK/MAP4K3) upstream of PKCθ phosphorylation: Potential therapy to modulate T cell dependent immunity.

    Science.gov (United States)

    May-Dracka, Tricia L; Arduini, Robert; Bertolotti-Ciarlet, Andrea; Bhisetti, Govinda; Brickelmaier, Margot; Cahir-McFarland, Ellen; Enyedy, Istvan; Fontenot, Jason D; Hesson, Thomas; Little, Kevin; Lyssikatos, Joe; Marcotte, Douglas; McKee, Timothy; Murugan, Paramasivam; Patterson, Thomas; Peng, Hairuo; Rushe, Mia; Silvian, Laura; Spilker, Kerri; Wu, Ping; Xin, Zhili; Burkly, Linda C

    2018-06-01

    Germinal center kinase-like kinase (GLK, also known as MAP4K3) has been hypothesized to have an effect on key cellular activities, including inflammatory responses. GLK is required for activation of protein kinase C-θ (PKCθ) in T cells. Controlling the activity of T helper cell responses could be valuable for the treatment of autoimmune diseases. This approach circumvents previous unsuccessful approaches to target PKCθ directly. The use of structure based drug design, aided by the first crystal structure of GLK, led to the discovery of several inhibitors that demonstrate potent inhibition of GLK biochemically and in relevant cell lines. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Mitogen-activated protein kinase signaling in plants

    DEFF Research Database (Denmark)

    Rodriguez, Maria Cristina Suarez; Petersen, Morten; Mundy, John

    2010-01-01

    crossinhibition, feedback control, and scaffolding. Plant MAPK cascades regulate numerous processes, including stress and hormonal responses, innate immunity, and developmental programs. Genetic analyses have uncovered several predominant MAPK components shared by several of these processes including...... of substrate proteins, whose altered activities mediate a wide array of responses, including changes in gene expression. Cascades may share kinase components, but their signaling specificity is maintained by spaciotemporal constraints and dynamic protein-protein interactions and by mechanisms that include...

  19. The cotton MAPK kinase GhMPK20 negatively regulates resistance to Fusarium oxysporum by mediating the MKK4-MPK20-WRKY40 cascade.

    Science.gov (United States)

    Wang, Chen; He, Xiaowen; Li, Yuzhen; Wang, Lijun; Guo, Xulei; Guo, Xingqi

    2017-11-02

    Fusarium wilt is one of the most serious diseases affecting cotton. However, the pathogenesis and mechanism by which Fusarium oxysporum overcomes plant defence responses are unclear. Here, a new group D mitogen-activated protein kinase (MAPK) gene, GhMPK20, was identified and functionally analysed in cotton. GhMPK20 expression was significantly induced by F. oxysporum. Virus-induced gene silencing (VIGS) of GhMPK20 in cotton increased the tolerance to F. oxysporum, whereas ectopic GhMPK20 overexpression in Nicotiana benthamiana reduced F. oxysporum resistance via disruption of the salicylic acid (SA)-mediated defence pathway. More importantly, an F. oxysporum-induced MAPK cascade pathway composed of GhMKK4, GhMPK20 and GhWRKY40 was identified. VIGS of GhMKK4 and GhWRKY40 also enhanced F. oxysporum resistance in cotton, and the function of GhMKK4-GhMPK20 was shown to be essential for F. oxysporum-induced GhWRKY40 expression. Together, our results indicate that the GhMKK4-GhMPK20-GhWRKY40 cascade in cotton plays an important role in the pathogenesis of F. oxysporum. This research broadens our knowledge of the negative role of the MAPK cascade in disease resistance in cotton and provides an important scientific basis for the formulation of Fusarium wilt prevention strategies. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  20. Functional Redundancy of ERK1 and ERK2 MAP Kinases during Development

    Directory of Open Access Journals (Sweden)

    Christophe Frémin

    2015-08-01

    Full Text Available ERK1 and ERK2 are the effector kinases of the ERK1/2 MAP-kinase signaling pathway, which plays a central role in transducing signals controlling cell proliferation, differentiation, and survival. Deregulated activity of the ERK1/2 pathway is linked to a group of developmental syndromes and contributes to the pathogenesis of various human diseases. One fundamental question that remains unaddressed is whether ERK1 and ERK2 have evolved unique physiological functions or whether they are used redundantly to reach a threshold of global ERK activity. Here, we show that the extent of development of the mouse placenta and embryo bearing different combinations of Erk1 and Erk2 alleles is strictly correlated with total ERK1/2 activity. We further demonstrate that transgenic expression of ERK1 fully rescues the embryonic and placental developmental defects associated with the loss of ERK2. We conclude that ERK1 and ERK2 exert redundant functions in mouse development.

  1. Determinants of cell-to-cell variability in protein kinase signaling.

    Science.gov (United States)

    Jeschke, Matthias; Baumgärtner, Stephan; Legewie, Stefan

    2013-01-01

    Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  2. Kinase inhibitors can produce off-target effects and activate linked pathways by retroactivity

    Directory of Open Access Journals (Sweden)

    Wynn Michelle L

    2011-10-01

    Full Text Available Abstract Background It has been shown in experimental and theoretical work that covalently modified signaling cascades naturally exhibit bidirectional signal propagation via a phenomenon known as retroactivity. An important consequence of retroactivity, which arises due to enzyme sequestration in covalently modified signaling cascades, is that a downstream perturbation can produce a response in a component upstream of the perturbation without the need for explicit feedback connections. Retroactivity may, therefore, play an important role in the cellular response to a targeted therapy. Kinase inhibitors are a class of targeted therapies designed to interfere with a specific kinase molecule in a dysregulated signaling pathway. While extremely promising as anti-cancer agents, kinase inhibitors may produce undesirable off-target effects by non-specific interactions or pathway cross-talk. We hypothesize that targeted therapies such as kinase inhibitors can produce off-target effects as a consequence of retroactivity alone. Results We used a computational model and a series of simple signaling motifs to test the hypothesis. Our results indicate that within physiologically and therapeutically relevant ranges for all parameters, a targeted inhibitor can naturally induce an off-target effect via retroactivity. The kinetics governing covalent modification cycles in a signaling network were more important for propagating an upstream off-target effect in our models than the kinetics governing the targeted therapy itself. Our results also reveal the surprising and crucial result that kinase inhibitors have the capacity to turn "on" an otherwise "off" parallel cascade when two cascades share an upstream activator. Conclusions A proper and detailed characterization of a pathway's structure is important for identifying the optimal protein to target as well as what concentration of the targeted therapy is required to modulate the pathway in a safe and effective

  3. Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex Cascade.

    Science.gov (United States)

    Linares, Juan F; Duran, Angeles; Reina-Campos, Miguel; Aza-Blanc, Pedro; Campos, Alex; Moscat, Jorge; Diaz-Meco, Maria T

    2015-08-25

    The mTORC1 complex is central to the cellular response to changes in nutrient availability. The signaling adaptor p62 contributes to mTORC1 activation in response to amino acids and interacts with TRAF6, which is required for the translocation of mTORC1 to the lysosome and the subsequent K63 polyubiquitination and activation of mTOR. However, the signal initiating these p62-driven processes was previously unknown. Here, we show that p62 is phosphorylated via a cascade that includes MEK3/6 and p38δ and is driven by the PB1-containing kinase MEKK3. This phosphorylation results in the recruitment of TRAF6 to p62, the ubiquitination and activation of mTOR, and the regulation of autophagy and cell proliferation. Genetic inactivation of MEKK3 or p38δ mimics that of p62 in that it leads to inhibited growth of PTEN-deficient prostate organoids. Analysis of human prostate cancer samples showed upregulation of these three components of the pathway, which correlated with enhanced mTORC1 activation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex Cascade

    Directory of Open Access Journals (Sweden)

    Juan F. Linares

    2015-08-01

    Full Text Available The mTORC1 complex is central to the cellular response to changes in nutrient availability. The signaling adaptor p62 contributes to mTORC1 activation in response to amino acids and interacts with TRAF6, which is required for the translocation of mTORC1 to the lysosome and the subsequent K63 polyubiquitination and activation of mTOR. However, the signal initiating these p62-driven processes was previously unknown. Here, we show that p62 is phosphorylated via a cascade that includes MEK3/6 and p38δ and is driven by the PB1-containing kinase MEKK3. This phosphorylation results in the recruitment of TRAF6 to p62, the ubiquitination and activation of mTOR, and the regulation of autophagy and cell proliferation. Genetic inactivation of MEKK3 or p38δ mimics that of p62 in that it leads to inhibited growth of PTEN-deficient prostate organoids. Analysis of human prostate cancer samples showed upregulation of these three components of the pathway, which correlated with enhanced mTORC1 activation.

  5. ERK5 signaling gets XIAPed: a role for ubiquitin in the disassembly of a MAPK cascade

    Science.gov (United States)

    Klein, Aileen M; Cobb, Melanie H

    2014-01-01

    Mitogen-activated protein kinase (MAPK) cascades are tightly controlled through a series of well-characterized phospho-regulatory events. In this issue, Takeda et al (2014) identify the inhibitor of apoptosis protein, XIAP, as a key regulator of ERK5 activation via uncoupling of upstream kinase activity by non-degradative ubiquitination. PMID:25012518

  6. Positional information generated by spatially distributed signaling cascades.

    Directory of Open Access Journals (Sweden)

    Javier Muñoz-García

    2009-03-01

    Full Text Available The temporal and stationary behavior of protein modification cascades has been extensively studied, yet little is known about the spatial aspects of signal propagation. We have previously shown that the spatial separation of opposing enzymes, such as a kinase and a phosphatase, creates signaling activity gradients. Here we show under what conditions signals stall in the space or robustly propagate through spatially distributed signaling cascades. Robust signal propagation results in activity gradients with long plateaus, which abruptly decay at successive spatial locations. We derive an approximate analytical solution that relates the maximal amplitude and propagation length of each activation profile with the cascade level, protein diffusivity, and the ratio of the opposing enzyme activities. The control of the spatial signal propagation appears to be very different from the control of transient temporal responses for spatially homogenous cascades. For spatially distributed cascades where activating and deactivating enzymes operate far from saturation, the ratio of the opposing enzyme activities is shown to be a key parameter controlling signal propagation. The signaling gradients characteristic for robust signal propagation exemplify a pattern formation mechanism that generates precise spatial guidance for multiple cellular processes and conveys information about the cell size to the nucleus.

  7. Activation of the Cph1-dependent MAP kinase signaling pathway induces white-opaque switching in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Bernardo Ramírez-Zavala

    Full Text Available Depending on the environmental conditions, the pathogenic yeast Candida albicans can undergo different developmental programs, which are controlled by dedicated transcription factors and upstream signaling pathways. C. albicans strains that are homozygous at the mating type locus can switch from the normal yeast form (white to an elongated cell type (opaque, which is the mating-competent form of this fungus. Both white and opaque cells use the Ste11-Hst7-Cek1/Cek2 MAP kinase signaling pathway to react to the presence of mating pheromone. However, while opaque cells employ the transcription factor Cph1 to induce the mating response, white cells recruit a different downstream transcription factor, Tec1, to promote the formation of a biofilm that facilitates mating of opaque cells in the population. The switch from the white to the opaque cell form is itself induced by environmental signals that result in the upregulation of the transcription factor Wor1, the master regulator of white-opaque switching. To get insight into the upstream signaling pathways controlling the switch, we expressed all C. albicans protein kinases from a tetracycline-inducible promoter in a switching-competent strain. Screening of this library of strains showed that a hyperactive form of Ste11 lacking its N-terminal domain (Ste11(ΔN467 efficiently stimulated white cells to switch to the opaque phase, a behavior that did not occur in response to pheromone. Ste11(ΔN467-induced switching specifically required the downstream MAP kinase Cek1 and its target transcription factor Cph1, but not Cek2 and Tec1, and forced expression of Cph1 also promoted white-opaque switching in a Wor1-dependent manner. Therefore, depending on the activation mechanism, components of the pheromone-responsive MAP kinase pathway can be reconnected to stimulate an alternative developmental program, switching of white cells to the mating-competent opaque phase.

  8. Determinants of cell-to-cell variability in protein kinase signaling.

    Directory of Open Access Journals (Sweden)

    Matthias Jeschke

    Full Text Available Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity' and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  9. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    International Nuclear Information System (INIS)

    Nishina, Atsuyoshi; Kimura, Hirokazu; Kozawa, Kunihisa; Sommen, Geoffroy; Nakamura, Takao; Heimgartner, Heinz; Koketsu, Mamoru; Furukawa, Shoei

    2011-01-01

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 μM, the O 2 − scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC 50 ) at 92.4 μM and acted as an effective and potentially useful O 2 − scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 μM or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 μM. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 μM induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: ► We newly synthesized 1,3-selenazolidin-4-ones to study their possible applications. ► Among new

  10. A superoxide anion-scavenger, 1,3-selenazolidin-4-one suppresses serum deprivation-induced apoptosis in PC12 cells by activating MAP kinase

    Energy Technology Data Exchange (ETDEWEB)

    Nishina, Atsuyoshi, E-mail: nishina@yone.ac.jp [Yonezawa Women' s Junior College, 6-15-1 Tohrimachi, Yonezawa, Yamagata 992-0025 (Japan); Kimura, Hirokazu; Kozawa, Kunihisa [Gunma Prefectural Institute of Public Health and Environmental Sciences, 378 Kamioki, Maebashi, Gunma 371-0052 (Japan); Sommen, Geoffroy [Lonza Braine SA, Chaussee de Tubize 297, B-1420 Braine l' Alleud (Belgium); Nakamura, Takao [Department of Biomedical Information Engineering, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585 (Japan); Heimgartner, Heinz [University of Zuerich, Institut of Organic Chemistry, Winterthurerstrasse 190, CH-8057 Zuerich (Switzerland); Koketsu, Mamoru [Department of Materials Science and Technology, Faculty of Engineering, Gifu University, Gifu 501-1193 (Japan); Furukawa, Shoei [Laboratory of Molecular Biology, Gifu Pharmaceutical University, 5-6-1 Mitahora-higashi, Gifu 502-8585 (Japan)

    2011-12-15

    Synthetic organic selenium compounds, such as ebselen, may show glutathione peroxidase-like antioxidant activity and have a neurotrophic effect. We synthesized 1,3-selenazolidin-4-ones, new types of synthetic organic selenium compounds (five-member ring compounds), to study their possible applications as antioxidants or neurotrophic-like molecules. Their superoxide radical scavenging effects were assessed using the quantitative, highly sensitive method of real-time kinetic chemiluminescence. At 166 {mu}M, the O{sub 2}{sup -} scavenging activity of 1,3-selenazolidin-4-ones ranged from 0 to 66.2%. 2-[3-(4-Methoxyphenyl)-4-oxo-1,3-selenazolidin-2-ylidene]malononitrile (compound b) showed the strongest superoxide anion-scavenging activity among the 6 kinds of 2-methylene-1,3-selenazolidin-4-ones examined. Compound b had a 50% inhibitory concentration (IC{sub 50}) at 92.4 {mu}M and acted as an effective and potentially useful O{sub 2}{sup -} scavenger in vitro. The effect of compound b on rat pheochromocytome cell line PC12 cells was compared with that of ebselen or nerve growth factor (NGF) by use of the MTT [3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] assay. When ebselen was added at 100 {mu}M or more, toxicity toward PC12 cells was evident. On the contrary, compound b suppressed serum deprivation-induced apoptosis in PC12 cells more effectively at a concentration of 100 {mu}M. The activity of compound b to phosphorylate mitogen-activated protein kinase/extracellular signal-regulated protein kinase (ERK) 1/2 (MAP kinase) in PC12 cells was higher than that of ebselen, and the former at 100 {mu}M induced the phosphorylation of MAP kinase to a degree similar to that induced by NGF. From these results, we conclude that this superoxide anion-scavenger, compound b, suppressed serum deprivation-induced apoptosis by promoting the phosphorylation of MAP kinase. -- Highlights: Black-Right-Pointing-Pointer We newly synthesized 1,3-selenazolidin-4-ones to

  11. Expression and purification of functional JNK2beta2: perspectives on high-level production of recombinant MAP kinases.

    Science.gov (United States)

    Savopoulos, John W; Dowd, Stephen; Armour, Carolyn; Carter, Paul S; Greenwood, Catherine J; Mills, David; Powell, David; Pettman, Gary R; Jenkins, Owen; Walsh, Frank S; Philpott, Karen L

    2002-02-01

    The mitogen-activated protein (MAP) kinases are a group of serine/threonine kinases that mediate intracellular signal transduction in response to environmental stimuli including stress, growth factors, and various cytokines. Of this family, the c-Jun N-terminal kinases (JNKs) are members which, depending on cell type, have been shown to activate the transcription of genes involved in the inflammatory response, apoptosis, and hypertrophy. Here we report the use Baculovirus/Sf9 cells to produce milligram quantities of recombinant JNK2beta2 substrate which could be purified to >90% as judged by SDS-PAGE. In addition, we report a novel method for the site-specific biotinylation for this enzyme and demonstrate that the biotinylated product is an authentic substrate of the upstream kinases MKK4 and 7 and can phosphorylate a downstream target, ATF-2. We also show that the phosphorylated product can be captured efficiently on streptavidin-coated beads for use in scintillation proximity assays. Copyright 2002 Elsevier Science (USA).

  12. Dynamics robustness of cascading systems.

    Directory of Open Access Journals (Sweden)

    Jonathan T Young

    2017-03-01

    Full Text Available A most important property of biochemical systems is robustness. Static robustness, e.g., homeostasis, is the insensitivity of a state against perturbations, whereas dynamics robustness, e.g., homeorhesis, is the insensitivity of a dynamic process. In contrast to the extensively studied static robustness, dynamics robustness, i.e., how a system creates an invariant temporal profile against perturbations, is little explored despite transient dynamics being crucial for cellular fates and are reported to be robust experimentally. For example, the duration of a stimulus elicits different phenotypic responses, and signaling networks process and encode temporal information. Hence, robustness in time courses will be necessary for functional biochemical networks. Based on dynamical systems theory, we uncovered a general mechanism to achieve dynamics robustness. Using a three-stage linear signaling cascade as an example, we found that the temporal profiles and response duration post-stimulus is robust to perturbations against certain parameters. Then analyzing the linearized model, we elucidated the criteria of when signaling cascades will display dynamics robustness. We found that changes in the upstream modules are masked in the cascade, and that the response duration is mainly controlled by the rate-limiting module and organization of the cascade's kinetics. Specifically, we found two necessary conditions for dynamics robustness in signaling cascades: 1 Constraint on the rate-limiting process: The phosphatase activity in the perturbed module is not the slowest. 2 Constraints on the initial conditions: The kinase activity needs to be fast enough such that each module is saturated even with fast phosphatase activity and upstream changes are attenuated. We discussed the relevance of such robustness to several biological examples and the validity of the above conditions therein. Given the applicability of dynamics robustness to a variety of systems, it

  13. The PIM kinases in hematological cancers.

    Science.gov (United States)

    Alvarado, Yesid; Giles, Francis J; Swords, Ronan T

    2012-02-01

    The PIM genes represent a family of proto-oncogenes that encode three different serine/threonine protein kinases (PIM1, PIM2 and PIM3) with essential roles in the regulation of signal transduction cascades, which promote cell survival, proliferation and drug resistance. PIM kinases are overexpressed in several hematopoietic tumors and support in vitro and in vivo malignant cell growth and survival, through cell cycle regulation and inhibition of apoptosis. PIM kinases do not have an identified regulatory domain, which means that these proteins are constitutively active once transcribed. They appear to be critical downstream effectors of important oncoproteins and, when overexpressed, can mediate drug resistance to available agents, such as rapamycin. Recent crystallography studies reveal that, unlike other kinases, they possess a hinge region, which creates a unique binding pocket for ATP, offering a target for an increasing number of potent small-molecule PIM kinase inhibitors. Preclinical studies in models of various hematologic cancers indicate that these novel agents show promising activity and some of them are currently being evaluated in a clinical setting. In this review, we profile the PIM kinases as targets for therapeutics in hematologic malignancies.

  14. Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Anna Cichonska

    2017-08-01

    Full Text Available Due to relatively high costs and labor required for experimental profiling of the full target space of chemical compounds, various machine learning models have been proposed as cost-effective means to advance this process in terms of predicting the most potent compound-target interactions for subsequent verification. However, most of the model predictions lack direct experimental validation in the laboratory, making their practical benefits for drug discovery or repurposing applications largely unknown. Here, we therefore introduce and carefully test a systematic computational-experimental framework for the prediction and pre-clinical verification of drug-target interactions using a well-established kernel-based regression algorithm as the prediction model. To evaluate its performance, we first predicted unmeasured binding affinities in a large-scale kinase inhibitor profiling study, and then experimentally tested 100 compound-kinase pairs. The relatively high correlation of 0.77 (p < 0.0001 between the predicted and measured bioactivities supports the potential of the model for filling the experimental gaps in existing compound-target interaction maps. Further, we subjected the model to a more challenging task of predicting target interactions for such a new candidate drug compound that lacks prior binding profile information. As a specific case study, we used tivozanib, an investigational VEGF receptor inhibitor with currently unknown off-target profile. Among 7 kinases with high predicted affinity, we experimentally validated 4 new off-targets of tivozanib, namely the Src-family kinases FRK and FYN A, the non-receptor tyrosine kinase ABL1, and the serine/threonine kinase SLK. Our sub-sequent experimental validation protocol effectively avoids any possible information leakage between the training and validation data, and therefore enables rigorous model validation for practical applications. These results demonstrate that the kernel

  15. The MAP kinase-activated protein kinase Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen Candida albicans.

    Science.gov (United States)

    Li, Xichuan; Du, Wei; Zhao, Jingwen; Zhang, Lilin; Zhu, Zhiyan; Jiang, Linghuo

    2010-06-01

    Rck2p is the Hog1p-MAP kinase-activated protein kinase required for the attenuation of protein synthesis in response to an osmotic challenge in Saccharomyces cerevisiae. Rck2p also regulates rapamycin sensitivity in both S. cerevisiae and Candida albicans. In this study, we demonstrate that the deletion of CaRCK2 renders C. albicans cells sensitive to, and CaRck2p translocates from the cytosol to the nucleus in response to, cell wall stresses caused by Congo red, Calcoflor White, elevated heat and zymolyase. However, the kinase activity of CaRck2p is not required for the cellular response to these cell wall stresses. Furthermore, transcripts of cell wall protein-encoding genes CaBGL2, CaHWP1 and CaXOG1 are reduced in C. albicans cells lacking CaRCK2. The deletion of CaRCK2 also reduces the in vitro filamentation of C. albicans and its virulence in a mouse model of systemic candidasis. The kinase activity of CaRck2p is required for the virulence, but not for the in vitro filamentation, in C. albicans. Therefore, Rck2p regulates cellular responses to cell wall stresses, filamentation and virulence in the human fungal pathogen C. albicans.

  16. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from...... MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  17. Genetic control of an epigenetic cell degeneration syndrome in Podospora anserina.

    Science.gov (United States)

    Haedens, Vicki; Malagnac, Fabienne; Silar, Philippe

    2005-06-01

    Filamentous fungi frequently present degenerative processes, whose molecular basis is very often unknown. Here, we present three mutant screens that result in the identification of 29 genes that directly or indirectly control Crippled Growth (CG), an epigenetic cell degeneration of the filamentous ascomycete Podospora anserina. Two of these genes were previously shown to encode a MAP kinase kinase kinase and an NADPH oxidase involved in a signal transduction cascade that participates in stationary phase differentiations, fruiting body development and defence against fungal competitors. The numerous genes identified can be incorporated in a model in which CG results from the sustained activation of the MAP kinase cascade. Our data also emphasize the complex regulatory network underlying three interconnected processes in P. anserina: sexual reproduction, defence against competitors, and cell degeneration.

  18. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    International Nuclear Information System (INIS)

    Klofai, Yerima; Essimbi, B Z; Jaeger, D

    2011-01-01

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  19. Long-distance pulse propagation on high-frequency dissipative nonlinear transmission lines/resonant tunneling diode line cascaded maps

    Energy Technology Data Exchange (ETDEWEB)

    Klofai, Yerima [Department of Physics, Higher Teacher Training College, University of Maroua, PO Box 46 Maroua (Cameroon); Essimbi, B Z [Department of Physics, Faculty of Science, University of Yaounde 1, PO Box 812 Yaounde (Cameroon); Jaeger, D, E-mail: bessimb@yahoo.fr [ZHO, Optoelectronik, Universitaet Duisburg-Essen, D-47048 Duisburg (Germany)

    2011-10-15

    Pulse propagation on high-frequency dissipative nonlinear transmission lines (NLTLs)/resonant tunneling diode line cascaded maps is investigated for long-distance propagation of short pulses. Applying perturbative analysis, we show that the dynamics of each line is reduced to an expanded Korteweg-de Vries-Burgers equation. Moreover, it is found by computer experiments that the soliton developed in NLTLs experiences an exponential amplitude decay on the one hand and an exponential amplitude growth on the other. As a result, the behavior of a pulse in special electrical networks made of concatenated pieces of lines is closely similar to the transmission of information in optical/electrical communication systems.

  20. A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shen-Hsi Yang

    Full Text Available Embryonic stem cells and induced pluripotent stem cells represent potentially important therapeutic agents in regenerative medicine. Complex interlinked transcriptional and signaling networks control the fate of these cells towards maintenance of pluripotency or differentiation. In this study we have focused on how mouse embryonic stem cells begin to differentiate and lose pluripotency and, in particular, the role that the ERK MAP kinase and GSK3 signaling pathways play in this process. Through a genome-wide siRNA screen we have identified more than 400 genes involved in loss of pluripotency and promoting the onset of differentiation. These genes were functionally associated with the ERK and/or GSK3 pathways, providing an important resource for studying the roles of these pathways in controlling escape from the pluripotent ground state. More detailed analysis identified MAP kinase phosphatases as a focal point of regulation and demonstrated an important role for these enzymes in controlling ERK activation kinetics and subsequently determining early embryonic stem cell fate decisions.

  1. Insulin increase in MAP kinase phosphorylation is shifted to early time-points by overexpressing APS, while Akt phosphorylation is not influenced.

    Science.gov (United States)

    Onnockx, Sheela; Xie, Jingwei; Degraef, Chantal; Erneux, Christophe; Pirson, Isabelle

    2009-09-10

    Upon insulin stimulation, the adaptor protein APS is recruited to the insulin receptor and tyrosine phosphorylated. APS initiates the insulin-induced TC10 cascade which participates to GLUT4 translocation to the plasma membrane. Nevertheless, the molecular mechanism that governs APS and its SH2 and PH domains action on the insulin transduction cascade is not yet fully understood. Here, we show that APS co-immunoprecipitates with the class I PI 3-kinase regulatory subunit p85, through its SH2 domain but that APS does not modulate neither PtdIns(3,4,5)P3 levels nor Akt phosphorylation provoked by insulin. We have confirmed a previously described positive effect of APS overexpression on insulin-induced MAPK phosphorylation upregulation. Consequently, we analyzed the role of SH2 and PH domains of APS in the APS increased MAPK phosphorylation observed upon insulin stimulation and correlated this with the membrane localization of the protein. The effect observed on MAPK phosphorylation requires the intact PH binding domain of APS as well as its SH2 domain.

  2. Plant MAPK cascades: Just rapid signaling modules?

    KAUST Repository

    Boudsocq, Marie; Danquah, Agyemang; Zé licourt, Axel de; Hirt, Heribert; Colcombet, Jean

    2015-01-01

    rapid MAPK activation, we showed that the activation of the new MAPK module is delayed and relies on the MAP3K protein synthesis. In this addendum, we discuss the role of this original and unexpected activation mechanism of MAPK cascades which suggests

  3. Sign epistasis caused by hierarchy within signalling cascades.

    Science.gov (United States)

    Nghe, Philippe; Kogenaru, Manjunatha; Tans, Sander J

    2018-04-13

    Sign epistasis is a central evolutionary constraint, but its causal factors remain difficult to predict. Here we use the notion of parameterised optima to explain epistasis within a signalling cascade, and test these predictions in Escherichia coli. We show that sign epistasis arises from the benefit of tuning phenotypic parameters of cascade genes with respect to each other, rather than from their complex and incompletely known genetic bases. Specifically, sign epistasis requires only that the optimal phenotypic parameters of one gene depend on the phenotypic parameters of another, independent of other details, such as activating or repressing nature, position within the cascade, intra-genic pleiotropy or genotype. Mutational effects change sign more readily in downstream genes, indicating that optimising downstream genes is more constrained. The findings show that sign epistasis results from the inherent upstream-downstream hierarchy between signalling cascade genes, and can be addressed without exhaustive genotypic mapping.

  4. Chitin and stress induced protein kinase activation

    DEFF Research Database (Denmark)

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  5. Transgenic Analysis of the Leishmania MAP Kinase MPK10 Reveals an Auto-inhibitory Mechanism Crucial for Stage-Regulated Activity and Parasite Viability

    DEFF Research Database (Denmark)

    Cayla, M.; Rachidi, N.; Leclercq, O.

    2014-01-01

    Protozoan pathogens of the genus Leishmania have evolved unique signaling mechanisms that can sense changes in the host environment and trigger adaptive stage differentiation essential for host cell infection. The signaling mechanisms underlying parasite development remain largely elusive even...... though Leishmania mitogen-activated protein kinases (MAPKs) have been linked previously to environmentally induced differentiation and virulence. Here, we unravel highly unusual regulatory mechanisms for Leishmania MAP kinase 10 (MPK10). Using a transgenic approach, we demonstrate that MPK10 is stage...... at position 395 that could be implicated in kinase regulation. Finally, we uncovered a feedback loop that limits MPK10 activity through dephosphorylation of the tyrosine residue of the TxY motif. Together our data reveal novel aspects of protein kinase regulation in Leishmania, and propose MPK10...

  6. Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase

    DEFF Research Database (Denmark)

    Sayed, M; Kim, S O; Salh, B S

    2000-01-01

    Protein kinase CK2 has been implicated in the regulation of a wide range of proteins that are important in cell proliferation and differentiation. Here we demonstrate that the stress signaling agents anisomycin, arsenite, and tumor necrosis factor-alpha stimulate the specific enzyme activity of CK2...... in the human cervical carcinoma HeLa cells by up to 8-fold, and this could be blocked by the p38 MAP kinase inhibitor SB203580. We show that p38alpha MAP kinase, in a phosphorylation-dependent manner, can directly interact with the alpha and beta subunits of CK2 to activate the holoenzyme through what appears...

  7. Deciphering the Arginine-binding preferences at the substrate-binding groove of Ser/Thr kinases by computational surface mapping.

    Directory of Open Access Journals (Sweden)

    Avraham Ben-Shimon

    2011-11-01

    Full Text Available Protein kinases are key signaling enzymes that catalyze the transfer of γ-phosphate from an ATP molecule to a phospho-accepting residue in the substrate. Unraveling the molecular features that govern the preference of kinases for particular residues flanking the phosphoacceptor is important for understanding kinase specificities toward their substrates and for designing substrate-like peptidic inhibitors. We applied ANCHORSmap, a new fragment-based computational approach for mapping amino acid side chains on protein surfaces, to predict and characterize the preference of kinases toward Arginine binding. We focus on positions P-2 and P-5, commonly occupied by Arginine (Arg in substrates of basophilic Ser/Thr kinases. The method accurately identified all the P-2/P-5 Arg binding sites previously determined by X-ray crystallography and produced Arg preferences that corresponded to those experimentally found by peptide arrays. The predicted Arg-binding positions and their associated pockets were analyzed in terms of shape, physicochemical properties, amino acid composition, and in-silico mutagenesis, providing structural rationalization for previously unexplained trends in kinase preferences toward Arg moieties. This methodology sheds light on several kinases that were described in the literature as having non-trivial preferences for Arg, and provides some surprising departures from the prevailing views regarding residues that determine kinase specificity toward Arg. In particular, we found that the preference for a P-5 Arg is not necessarily governed by the 170/230 acidic pair, as was previously assumed, but by several different pairs of acidic residues, selected from positions 133, 169, and 230 (PKA numbering. The acidic residue at position 230 serves as a pivotal element in recognizing Arg from both the P-2 and P-5 positions.

  8. Basic study on a diagnostic method for breast cancer using a novel radio-labelled compound and the therapeutic method with it

    International Nuclear Information System (INIS)

    Ikebuchi, Hideharu; Saito, Yoshiro; Tanaka, Toichi; Tejima, Reiko; Sawada, Junichi

    1999-01-01

    In the previous studies of this project, binding activities and growth inhibitory effects of estrogen-related compounds (EC) were investigated in breast cancer cell lines, FCM-7 and MDA-MS-231. It was shown that EC such as 2-hydroxy estron, 2-hydroxy estrogen and estrogen significantly inhibited the growth of these cells and had highly binding activities to their estrogen receptors. Here, an investigation was made on the involvement of these compounds in intracellular signaling pathways. Mitogen activated protein (MAP)-kinase cascade is regarded as one of the important intracellular signaling pathways and MAPK-kinase positioned at the most downstream region has been known to migrate from cytoplasm to the nucleus associating with progressing of a cell growth and differentiation. So, correlation of MAP-kinase with the binding activity of ERC onto breast cells or with the growth repression was investigated. Since it has been shown that MAP.- and MAPK-kinase were activated in FCM-7 cells cultured with EGF, the binding activity of ERC was assessed in the presence of EGF. The binding activities to FCM-7 cells were, however, not affected by the addition of MAP-kinase. Although significant growth inhibitory effects of 2-hydroxy estron and 2-hydroxy estrogen on FCM-7 cells were confirmed as shown in the previous study, either of treatment with PD98059, an inhibitor for MAPK-kinase or expression of MKP3, a specific phosphatase for MAPK-kinase caused a repression of cell growth. These results suggest that MAP-kinase might be involved in the growth of breast cancer cells and cancer cell growth would be also affected by activation of MAP-kinase cascade. (M.N.)

  9. The C-type lectin OCILRP2 costimulates EL4 T cell activation via the DAP12-Raf-MAP kinase pathway.

    Science.gov (United States)

    Lou, Qiang; Zhang, Wei; Liu, Guangchao; Ma, Yuanfang

    2014-01-01

    OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation.

  10. Angiotensin II regulation of neuromodulation: downstream signaling mechanism from activation of mitogen-activated protein kinase.

    Science.gov (United States)

    Lu, D; Yang, H; Raizada, M K

    1996-12-01

    Angiotensin II (Ang II) stimulates expression of tyrosine hydroxylase and norepinephrine transporter genes in brain neurons; however, the signal-transduction mechanism is not clearly defined. This study was conducted to determine the involvement of the mitogen-activated protein (MAP) kinase signaling pathway in Ang II stimulation of these genes. MAP kinase was localized in the perinuclear region of the neuronal soma. Ang II caused activation of MAP kinase and its subsequent translocation from the cytoplasmic to nuclear compartment, both effects being mediated by AT1 receptor subtype. Ang II also stimulated SRE- and AP1-binding activities and fos gene expression and its translocation in a MAP kinase-dependent process. These observations are the first demonstration of a downstream signaling pathway involving MAP kinase in Ang II-mediated neuromodulation in noradrenergic neurons.

  11. Mitogen activated protein kinase kinase kinase 3 (MAP3K3/MEKK3) overexpression is an early event in esophageal tumorigenesis and is a predictor of poor disease prognosis

    International Nuclear Information System (INIS)

    Hasan, Raghibul; Sharma, Rinu; Saraya, Anoop; Chattopadhyay, Tushar K; DattaGupta, Siddartha; Walfish, Paul G; Chauhan, Shyam S; Ralhan, Ranju

    2014-01-01

    Mitogen-activated protein kinase kinase kinase3 (MAP3K3/MEKK3) was identified to be differentially expressed in esophageal squamous cell carcinoma (ESCC) using cDNA microarrays by our laboratory. Here in we determined the clinical significance of MEKK3 in ESCC. Immunohistochemical analysis of MEKK3 expression was carried out in archived tissue sections from 93 ESCCs, 47 histologically normal and 61 dysplastic esophageal tissues and correlated with clinicopathological parameters and disease prognosis over up to 7.5 years for ESCC patients. MEKK3 expression was significantly increased in esophageal dysplasia and ESCC in comparison with normal mucosa (p trend < 0.001). Kaplan Meier survival analysis showed significantly reduced median disease free survival median DFS = 10 months in patients with MEKK3 positive ESCCs compared to patients with no immunopositivity (median DFS = 19 months, p = 0.04). ESCC patients with MEKK3 positive and lymph node positive tumors had median DFS = 9 months, as compared to median DFS = 21 months in patients who did not show the alterations (p = 0.01). In multivariate Cox regression analysis, combination of MEKK3 overexpression and node positivity [p = 0.015, hazard ratio (HR) = 2.082, 95% CI = 1.154 - 3.756] emerged as important predictor of reduced disease free survival and poor prognosticator for ESCC patients. Alterations in MEKK3 expression occur in early stages of development of ESCC and are sustained during disease progression; MEKK3 in combination with lymph node positivity has the potential to serve as adverse prognosticator in ESCC

  12. The role of MAP kinases in the induction of iNOS expression in neutrophils exposed to NDMA: the involvement transcription factors.

    Science.gov (United States)

    Ratajczak-Wrona, W; Jablonska, E; Garley, M; Jablonski, J; Radziwon, P; Iwaniuk, A

    2013-01-01

    The role of MAP kinases in the activation of AP-1 (c-Jun, c-Fos) and NF-κB p65 engaged in the regulation of iNOS expression in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was analyzed in the study. The study included a group of 20 healthy individuals. Isolated human PMN were incubated in the presence of NDMA. Selective MAP kinases inhibitors were used. The expression of proteins in the cytoplasmic and nuclear fractions was assessed using Western blot method. The results show that NDMA intensifies iNOS, c-Jun, NF-κB p65 and IκB-α expression in the analyzed PMNs. The blocking of the p38 pathway led to lower iNOS expression, and higher expression of c-Jun and c-Fos in the cytoplasmic fraction, and also lower c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. A decrease in iNOS expression in the cytoplasmic fraction, and also c-Jun in both fractions of the examined cells, was observed as a result of JNK pathway inhibition. The blocking of the ERK5 pathway led to higher iNOS, c-Jun and c-Fos expression in the cytoplasmic fraction, and higher c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. The study also demonstrated that blocking of the p38 and JNK pathways resulted in higher expression of NF-κB p65 and IκB-α in the cytoplasmic fraction and their lower expression in the nuclear fraction of these cells. Our data indicate the role of MAP kinases p38 and JNK in the activation of c-Jun and NF-κB p65 transcription factors engaged in the regulation of iNOS expression in human neutrophils exposed to NDMA. However ERK5 kinase is not involved in the regulation of iNOS and NO production by those cells.

  13. Effect of lipopolysaccharide and chlorpromazine on glucocorticoid receptor-mediated gene transcription and immunoreactivity: a possible involvement of p38-MAP kinase

    Czech Academy of Sciences Publication Activity Database

    Basta-Kaim, A.; Budziszewska, B.; Jaworska-Feil, L.; Tetich, M.; Kubera, M.; Zajícová, Alena; Holáň, Vladimír; Lasoń, W.

    2004-01-01

    Roč. 14, č. 6 (2004), s. 521-528 ISSN 0924-977X R&D Projects: GA MŠk LN00A026 Institutional research plan: CEZ:AV0Z5052915 Keywords : p38-MAP kinase, cytokines, gene transcription Subject RIV: EC - Immunology Impact factor: 3.545, year: 2004

  14. The C-type lectin OCILRP2 costimulates EL4 T cell activation via the DAP12-Raf-MAP kinase pathway.

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    Full Text Available OCILRP2 is a typical Type-II transmembrane protein that is selectively expressed in activated T lymphocytes, dendritic cells, and B cells and functions as a novel co-stimulator of T cell activation. However, the signaling pathways underlying OCILRP2 in T cell activation are still not completely understood. In this study, we found that the knockdown of OCILRP2 expression with shRNA or the blockage of its activity by an anti-OCILRP2 antagonist antibody reduced CD3/CD28-costimulated EL4 T cell viability and IL-2 production, inhibit Raf1, MAPK3, and MAPK8 activation, and impair NFAT and NF-κB transcriptional activities. Furthermore, immunoprecipitation results indicated that OCILRP2 could interact with the DAP12 protein, an adaptor containing an intracellular ITAM motif that can transduce signals to induce MAP kinase activation for T cell activation. Our data reveal that after binding with DAP12, OCILRP2 activates the Raf-MAP kinase pathways, resulting in T cell activation.

  15. Identification of ASK1, MKK4, JNK, c-Jun, and caspase-3 as a signaling cascade involved in cadmium-induced neuronal cell apoptosis

    International Nuclear Information System (INIS)

    Kim, Sun Don; Moon, Chang Kyu; Eun, Su-Yong; Ryu, Pan Dong; Jo, Sangmee Ahn

    2005-01-01

    Cd induces oxidative stress and apoptosis in various cells by activating mitogen-activated protein kinases (MAPKs), but the precise signaling components of the MAPK cascade and their role in neuronal apoptosis are still unclear. Here, we report that Cd treatment of SH-SY5Y cells caused apoptosis through sequential phosphorylation of the apoptosis signal regulating kinase 1, MAPK kinase 4, c-Jun N-terminal kinase (JNK), and c-Jun as determined by overexpression of dominant negative (DN) constructs of these genes or using a specific JNK inhibitor SP600125. Both Cd-induced JNK and c-Jun phosphorylation and apoptosis were inhibited dramatically by N-acetyl-L-cysteine, a free radical scavenger. In addition, caspase inhibitors, zDEVD and zVAD, reduced apoptosis but not JNK and c-Jun phosphorylation induced by Cd, while overexpression of DN JNK1 inhibited caspase-3 activity. Taken together, our data suggested that the JNK/c-Jun signaling cascade plays a crucial role in Cd-induced neuronal cell apoptosis and provides a molecular linkage between oxidative stress and neuronal apoptosis

  16. Induction of MAP Kinase Homologues during Growth and Morphogenetic Development of Karnal Bunt (Tilletia indica) under the Influence of Host Factor(s) from Wheat Spikes

    Science.gov (United States)

    Gupta, Atul K.; Seneviratne, J. M.; Joshi, G. K.; Kumar, Anil

    2012-01-01

    Signaling pathways that activate different mitogen-activated protein kinases (MAPKs) in response to certain environmental conditions, play important role in mating type switching (Fus3) and pathogenicity (Pmk1) in many fungi. In order to determine the roles of such regulatory genes in Tilletia indica, the causal pathogen of Karnal bunt (KB) of wheat, semi-quantitative and quantitative RT-PCR was carried out to isolate and determine the expression of MAP kinase homologues during fungal growth and development under in vitro culture. Maximum expression of TiFus3 and TiPmk1 genes were observed at 14th and 21st days of culture and decreased thereafter. To investigate whether the fungus alters the expression levels of same kinases upon interaction with plants, cultures were treated with 1% of host factors (extracted from S-2 stage of wheat spikes). Such treatment induced the expression of MAPks in time dependent manner compared to the absence of host factors. These results suggest that host factor(s) provide certain signal(s) which activate TiFus3 and TiPmk1 during morphogenetic development of T. indica. The results also provides a clue about the role of host factors in enhancing the disease potential due to induction of MAP kinases involved in fungal development and pathogenecity. PMID:22547988

  17. Heat shock protein 70 negatively regulates the heat-shock-induced suppression of the IκB/NF-κB cascade by facilitating IκB kinase renaturation and blocking its further denaturation

    International Nuclear Information System (INIS)

    Lee, Kyoung-Hee; Lee, Choon-Taek; Kim, Young Whan; Han, Sung Koo; Shim, Young-Soo; Yoo, Chul-Gyu

    2005-01-01

    Heat shock (HS) treatment has been previously shown to suppress the IκB/nuclear factor-κB (NF-κB) cascade by denaturing, and thus inactivating IκB kinase (IKK). HS is characterized by the induction of a group of heat shock proteins (HSPs). However, their role in the HS-induced suppression of the IκB/NF-κB cascade is unclear. Adenovirus-mediated HSP70 overexpression was found not to suppress the TNF-α-induced activation of the IκB/NF-κB pathway, thus suggesting that HSP70 is unlikely to suppress this pathway. When TNF-α-induced activation of the IκB/NF-κB pathway was regained 24 h after HS, HSP70 was found to be highly up-regulated. Moreover, blocking HSP70 induction delayed TNF-α-induced IκBα degradation and the resolubilization of IKK. In addition, HSP70 associated physically with IKK, suggesting that HSP70 is involved in the recovery process via molecular chaperone effect. Adenovirus-mediated HSP70 overexpression prior to HS blocked the IκBα stabilizing effect of HS by suppressing IKK insolubilization. Moreover, the up-regulation of endogenous HSP70 by preheating, suppressed this subsequent HS-induced IKK insolubilization, and this effect was abrogated by blocking HSP70 induction. These findings indicate that HSP70 accumulates during HS and negatively regulates the HS-induced suppression of the IκB/NF-κB cascade by facilitating the renaturation of IKK and blocking its further denaturation

  18. Arabidopsis MKS1 is involved in basal immunity and requires an intact N-terminal domain for proper function

    DEFF Research Database (Denmark)

    Petersen, Klaus; Qiu, Jin-Long; Lütje, Juri

    2010-01-01

    Innate immune signaling pathways in animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. MAP kinase 4 (MPK4) functions downstream of innate immune receptors via a nuclear substrate MKS1 to regulate the activity of the WRKY33 transcription factor, which in turn...

  19. LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5

    DEFF Research Database (Denmark)

    John von Freyend, Simona; Rosenqvist, Heidi; Fink, Annette

    2010-01-01

    The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identified...... LmxMKK5, a STE7-like protein kinase from L. mexicana, which phosphorylates and activates recombinant LmxMPK4 in vitro. LmxMKK5 is comprised of 525 amino acids and has a calculated molecular mass of 55.9kDa. The co-expressed, purified LmxMPK4 showed strong phosphotransferase activity in radiometric...... kinase assays and was confirmed by immunoblot and tandem mass spectrometry analyses to be phosphorylated on threonine 190 and tyrosine 192 of the typical TXY MAP kinase activation motif. The universal protein kinase inhibitor staurosporine reduced the phosphotransferase activity of co...

  20. Cellular reprogramming through mitogen-activated protein kinases

    Directory of Open Access Journals (Sweden)

    Justin eLee

    2015-10-01

    Full Text Available Mitogen-activated protein kinase (MAPK cascades are conserved eukaryote signaling modules where MAPKs, as the final kinases in the cascade, phosphorylate protein substrates to regulate cellular processes. While some progress in the identification of MAPK substrates has been made in plants, the knowledge on the spectrum of substrates and their mechanistic action is still fragmentary. In this focused review, we discuss the biological implications of the data in our original paper (Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana; Frontiers in Plant Science 5: 554 in the context of related research. In our work, we mimicked in vivo activation of two stress-activated MAPKs, MPK3 and MPK6, through transgenic manipulation of Arabidopsis thaliana and used phosphoproteomics analysis to identify potential novel MAPK substrates. Here, we plotted the identified putative MAPK substrates (and downstream phosphoproteins as a global protein clustering network. Based on a highly stringent selection confidence level, the core networks highlighted a MAPK-induced cellular reprogramming at multiple levels of gene and protein expression – including transcriptional, post-transcriptional, translational, post-translational (such as protein modification, folding and degradation steps, and also protein re-compartmentalization. Additionally, the increase in putative substrates/phosphoproteins of energy metabolism and various secondary metabolite biosynthesis pathways coincides with the observed accumulation of defense antimicrobial substances as detected by metabolome analysis. Furthermore, detection of protein networks in phospholipid or redox elements suggests activation of downstream signaling events. Taken in context with other studies, MAPKs are key regulators that reprogram cellular events to orchestrate defense signaling in eukaryotes.

  1. Identification of ATM Protein Kinase Phosphorylation Sites by Mass Spectrometry.

    Science.gov (United States)

    Graham, Mark E; Lavin, Martin F; Kozlov, Sergei V

    2017-01-01

    ATM (ataxia-telangiectasia mutated) protein kinase is a key regulator of cellular responses to DNA damage and oxidative stress. DNA damage triggers complex cascade of signaling events leading to numerous posttranslational modification on multitude of proteins. Understanding the regulation of ATM kinase is therefore critical not only for understanding the human genetic disorder ataxia-telangiectasia and potential treatment strategies, but essential for deciphering physiological responses of cells to stress. These responses play an important role in carcinogenesis, neurodegeneration, and aging. We focus here on the identification of DNA damage inducible ATM phosphorylation sites to understand the importance of autophosphorylation in the mechanism of ATM kinase activation. We demonstrate the utility of using immunoprecipitated ATM in quantitative LC-MS/MS workflow with stable isotope dimethyl labeling of ATM peptides for identification of phosphorylation sites.

  2. Chloride sensing by WNK1 kinase involves inhibition of autophosphorylation

    Science.gov (United States)

    Piala, Alexander T.; Moon, Thomas M.; Akella, Radha; He, Haixia; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2014-01-01

    WNK1 [with no lysine (K)] is a serine-threonine kinase associated with a form of familial hypertension. WNK1 is at the top of a kinase cascade leading to phosphorylation of several cotransporters, in particular those transporting sodium, potassium, and chloride (NKCC), sodium and chloride (NCC), and potassium and chloride (KCC). The responsiveness of NKCC, NCC, and KCC to changes in extracellular chloride parallels their phosphorylation state, provoking the proposal that these transporters are controlled by a chloride-sensitive protein kinase. Here, we found that chloride stabilizes the inactive conformation of WNK1, preventing kinase autophosphorylation and activation. Crystallographic studies of inactive WNK1 in the presence of chloride revealed that chloride binds directly to the catalytic site, providing a basis for the unique position of the catalytic lysine. Mutagenesis of the chloride binding site rendered the kinase less sensitive to inhibition of autophosphorylation by chloride, validating the binding site. Thus, these data suggest that WNK1 functions as a chloride sensor through direct binding of a regulatory chloride ion to the active site, which inhibits autophosphorylation. PMID:24803536

  3. Protein kinase inhibitor peptide (PKI): a family of endogenous neuropeptides that modulate neuronal cAMP-dependent protein kinase function.

    Science.gov (United States)

    Dalton, George D; Dewey, William L

    2006-02-01

    Signal transduction cascades involving cAMP-dependent protein kinase are highly conserved among a wide variety of organisms. Given the universal nature of this enzyme it is not surprising that cAMP-dependent protein kinase plays a critical role in numerous cellular processes. This is particularly evident in the nervous system where cAMP-dependent protein kinase is involved in neurotransmitter release, gene transcription, and synaptic plasticity. Protein kinase inhibitor peptide (PKI) is an endogenous thermostable peptide that modulates cAMP-dependent protein kinase function. PKI contains two distinct functional domains within its amino acid sequence that allow it to: (1) potently and specifically inhibit the activity of the free catalytic subunit of cAMP-dependent protein kinase and (2) export the free catalytic subunit of cAMP-dependent protein kinase from the nucleus. Three distinct PKI isoforms (PKIalpha, PKIbeta, PKIgamma) have been identified and each isoform is expressed in the brain. PKI modulates neuronal synaptic activity, while PKI also is involved in morphogenesis and symmetrical left-right axis formation. In addition, PKI also plays a role in regulating gene expression induced by cAMP-dependent protein kinase. Future studies should identify novel physiological functions for endogenous PKI both in the nervous system and throughout the body. Most interesting will be the determination whether functional differences exist between individual PKI isoforms which is an intriguing possibility since these isoforms exhibit: (1) cell-type specific tissue expression patterns, (2) different potencies for the inhibition of cAMP-dependent protein kinase activity, and (3) expression patterns that are hormonally, developmentally and cell-cycle regulated. Finally, synthetic peptide analogs of endogenous PKI will continue to be invaluable tools that are used to elucidate the role of cAMP-dependent protein kinase in a variety of cellular processes throughout the nervous

  4. Converging evidence that sequence variations in the novel candidate gene MAP2K7 (MKK7) are functionally associated with schizophrenia.

    Science.gov (United States)

    Winchester, Catherine L; Ohzeki, Hiromitsu; Vouyiouklis, Demetrius A; Thompson, Rhiannon; Penninger, Josef M; Yamagami, Keiji; Norrie, John D; Hunter, Robert; Pratt, Judith A; Morris, Brian J

    2012-11-15

    Schizophrenia is a debilitating psychiatric disease with a strong genetic contribution, potentially linked to altered glutamatergic function in brain regions such as the prefrontal cortex (PFC). Here, we report converging evidence to support a functional candidate gene for schizophrenia. In post-mortem PFC from patients with schizophrenia, we detected decreased expression of MKK7/MAP2K7-a kinase activated by glutamatergic activity. While mice lacking one copy of the Map2k7 gene were overtly normal in a variety of behavioural tests, these mice showed a schizophrenia-like cognitive phenotype of impaired working memory. Additional support for MAP2K7 as a candidate gene came from a genetic association study. A substantial effect size (odds ratios: ~1.9) was observed for a common variant in a cohort of case and control samples collected in the Glasgow area and also in a replication cohort of samples of Northern European descent (most significant P-value: 3 × 10(-4)). While some caution is warranted until these association data are further replicated, these results are the first to implicate the candidate gene MAP2K7 in genetic risk for schizophrenia. Complete sequencing of all MAP2K7 exons did not reveal any non-synonymous mutations. However, the MAP2K7 haplotype appeared to have functional effects, in that it influenced the level of expression of MAP2K7 mRNA in human PFC. Taken together, the results imply that reduced function of the MAP2K7-c-Jun N-terminal kinase (JNK) signalling cascade may underlie some of the neurochemical changes and core symptoms in schizophrenia.

  5. Plant MAPK cascades: Just rapid signaling modules?

    KAUST Repository

    Boudsocq, Marie

    2015-08-27

    © 2015 Taylor & Francis Group, LLC. Abscisic acid (ABA) is a major phytohormone mediating important stress-related processes. We recently unveiled an ABA-activated MAPK signaling module constituted of MAP3K17/18-MKK3-MPK1/2/7/14. Unlike classical rapid MAPK activation, we showed that the activation of the new MAPK module is delayed and relies on the MAP3K protein synthesis. In this addendum, we discuss the role of this original and unexpected activation mechanism of MAPK cascades which suggests that MAPKs can regulate both early and longterm plant stress responses.

  6. [INHIBITORS OF MAP-KINASE PATHWAY U0126 AND PD98059 DIFFERENTLY AFFECT ORGANIZATION OF TUBULIN CYTOSKELETON AFTER STIMULATION OF EGF RECEPTOR ENDOCYTOSIS].

    Science.gov (United States)

    Zlobina, M V; Steblyanko, Yu Yu; Shklyaeva, M A; Kharchenko, V V; Salova, A V; Kornilova, E S

    2015-01-01

    To confirm the hypothesis about the involvement of EGF-stimulated MAP-kinase ERK1/2 in the regulation of microtubule (MT) system, the influence of two widely used ERK1/2 inhibitors, U0126 and PD98059, on the organization of tubulin cytoskeleton in interphase HeLa cells during EGF receptor endocytosis has been investigated. We have found that addition of U0126 or PD98059 to not-stimulated with EGF ells for 30 min has no effect on radially organized MT system. However, in the case of U0126 addition before EGF endocytosis stimulation, the number of MT per cell decreased within 15 min after such stimulation and was followed by complete MT depolymerization by 60-90 min. Stimulation of EGF endocytosis in the presence of PD98059 resulted only in insignificant depolymerization of MT and it could be detected mainly from their minus-ends. At the same time, MT regions close to plasma membrane became stabilized, which was proved by increase in tubulin acetylation level. This situation was characteristic for all period of the experiment. It has been also found that the inhibitors affect endocytosis dynamics of EGF-receptor complexes. Quantitative analysis demonstrated that the stimulation of endocytosis in the presence of U0126 generated a greater number of endosomes compared to control cells, and their number did not change significantly during the experiment. All these endosomes were localized peripherally. Effect of PD98059 resulted in the formation of lower number of endosomes that in control, but they demonstrated very slow clusterization despite the presence of some intact MT. Both inhibitors decreased EGFR colocolization with early endosomal marker EEA1, which indicated a delay in endosome fusions and maturation. The inhibitors were also shown to affect differently phospho-ERK 1 and 2 forms: U0126 completely inhibited phospho-ERK1 and 2, white, in the presence of PD98059, the two ERK forms demonstrated sharp transient activation in 15 min after stimulation, but only

  7. Quantitative and Dynamic Imaging of ATM Kinase Activity.

    Science.gov (United States)

    Nyati, Shyam; Young, Grant; Ross, Brian Dale; Rehemtulla, Alnawaz

    2017-01-01

    Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including DNA double-strand breaks (DSBs). ATM activation results in the initiation of a complex cascade of events facilitating DNA damage repair, cell cycle checkpoint control, and survival. Traditionally, protein kinases have been analyzed in vitro using biochemical methods (kinase assays using purified proteins or immunological assays) requiring a large number of cells and cell lysis. Genetically encoded biosensors based on optical molecular imaging such as fluorescence or bioluminescence have been developed to enable interrogation of kinase activities in live cells with a high signal to background. We have genetically engineered a hybrid protein whose bioluminescent activity is dependent on the ATM-mediated phosphorylation of a substrate. The engineered protein consists of the split luciferase-based protein complementation pair with a CHK2 (a substrate for ATM kinase activity) target sequence and a phospho-serine/threonine-binding domain, FHA2, derived from yeast Rad53. Phosphorylation of the serine residue within the target sequence by ATM would lead to its interaction with the phospho-serine-binding domain, thereby preventing complementation of the split luciferase pair and loss of reporter activity. Bioluminescence imaging of reporter expressing cells in cultured plates or as mouse xenografts provides a quantitative surrogate for ATM kinase activity and therefore the cellular DNA damage response in a noninvasive, dynamic fashion.

  8. Photoproduction of the Cascade Baryons at GlueX

    Science.gov (United States)

    Ernst, Ashley; GlueX Collaboration

    2017-09-01

    Multi-strange baryons play an important role in understanding the strong interaction and despite their importance, little is known about such hyperons. Almost all knowledge of the Cascades today stems from Kaon-nucleon interactions in bubble chamber experiments performed in the 1960s and 1970s, of which only the octet and decuplet ground states, Ξ (1320) and Ξ (1530) respectively, are well established. This research uses the GlueX experiment at Jefferson Laboratory to map out the spectrum of doubly-strange Cascade resonances, as well as to measure the spin-parity for each of the detected resonances. The first physics run for GlueX has recently been completed and a clear signature of the Ξ (1320) is observed. The systematics of the Cascade spectrum will be presented motivated by prior discoveries in the N* program. This work was supported by the U.S. Department of Energy Grant DE-FG02-92ER40735 and National Science Foundation Grant 1449440.

  9. MAP kinases in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Olsen, Jørgen; Seidelin, Jakob Benedict

    2011-01-01

    The mammalian family of mitogen-activated protein kinases (MAPKs) is activated by diverse extracellular and intracellular stimuli, and thereby they play an essential role in connecting cell-surface receptors to changes in transcriptional programs. The MAPK signaling pathways regulate a wide range...... these signaling pathways have been exploited for the development of therapeutics and discuss the current knowledge of potential MAPK inhibitors and their anti-inflammatory effects in clinical trials related to IBD....

  10. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe

    2018-01-22

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  11. Intramolecular Crosstalk between Catalytic Activities of Receptor Kinases

    KAUST Repository

    Kwezi, Lusisizwe; Wheeler, Janet I; Marondedze, Claudius; Gehring, Christoph A; Irving, Helen R

    2018-01-01

    Signal modulation is important for the growth and development of plants and this process is mediated by a number of factors including physiological growth regulators and their associated signal transduction pathways. Protein kinases play a central role in signaling, including those involving pathogen response mechanisms. We previously demonstrated an active guanylate cyclase (GC) catalytic center in the brassinosteroid insensitive receptor (AtBRI1) within an active intracellular kinase domain resulting in dual enzymatic activity. Here we propose a novel type of receptor architecture that is characterized by a functional GC catalytic center nested in the cytosolic kinase domain enabling intramolecular crosstalk. This may be through a cGMP-AtBRI1 complex forming that may induce a negative feedback mechanism leading to desensitisation of the receptor, regulated through the cGMP production pathway. We further argue that the comparatively low but highly localized cGMP generated by the GC in response to a ligand is sufficient to modulate the kinase activity. This type of receptor therefore provides a molecular switch that directly and/or indirectly affects ligand dependent phosphorylation of downstream signaling cascades and suggests that subsequent signal transduction and modulation works in conjunction with the kinase in downstream signaling.

  12. The Syk kinase SmTK4 of Schistosoma mansoni is involved in the regulation of spermatogenesis and oogenesis.

    Directory of Open Access Journals (Sweden)

    Svenja Beckmann

    2010-02-01

    Full Text Available The signal transduction protein SmTK4 from Schistosoma mansoni belongs to the family of Syk kinases. In vertebrates, Syk kinases are known to play specialized roles in signaling pathways in cells of the hematopoietic system. Although Syk kinases were identified in some invertebrates, their role in this group of animals has not yet been elucidated. Since SmTK4 is the first Syk kinase from a parasitic helminth, shown to be predominantly expressed in the testes and ovary of adult worms, we investigated its function. To unravel signaling cascades in which SmTK4 is involved, yeast two-/three-hybrid library screenings were performed with either the tandem SH2-domain, or with the linker region including the tyrosine kinase domain of SmTK4. Besides the Src kinase SmTK3 we identified a new Src kinase (SmTK6 acting upstream of SmTK4 and a MAPK-activating protein, as well as mapmodulin acting downstream. Their identities and colocalization studies pointed to a role of SmTK4 in a signaling cascade regulating the proliferation and/or differentiation of cells in the gonads of schistosomes. To confirm this decisive role we performed biochemical and molecular approaches to knock down SmTK4 combined with a novel protocol for confocal laser scanning microscopy for morphological analyses. Using the Syk kinase-specific inhibitor Piceatannol or by RNAi treatment of adult schistosomes in vitro, corresponding phenotypes were detected in the testes and ovary. In the Xenopus oocyte system it was finally confirmed that Piceatannol suppressed the activity of the catalytic kinase domain of SmTK4. Our findings demonstrate a pivotal role of SmTK4 in gametogenesis, a new function for Syk kinases in eukaryotes.

  13. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development

    Science.gov (United States)

    2011-01-01

    Background Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Results Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Conclusions Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling. PMID:21401930

  14. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development.

    Science.gov (United States)

    Mouchel-Vielh, Emmanuèle; Rougeot, Julien; Decoville, Martine; Peronnet, Frédérique

    2011-03-14

    Mitogen-activated protein kinase (MAPK) cascades (p38, JNK, ERK pathways) are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK) in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.

  15. The MAP kinase ERK and its scaffold protein MP1 interact with the chromatin regulator Corto during Drosophila wing tissue development

    Directory of Open Access Journals (Sweden)

    Peronnet Frédérique

    2011-03-01

    Full Text Available Abstract Background Mitogen-activated protein kinase (MAPK cascades (p38, JNK, ERK pathways are involved in cell fate acquisition during development. These kinase modules are associated with scaffold proteins that control their activity. In Drosophila, dMP1, that encodes an ERK scaffold protein, regulates ERK signaling during wing development and contributes to intervein and vein cell differentiation. Functional relationships during wing development between a chromatin regulator, the Enhancer of Trithorax and Polycomb Corto, ERK and its scaffold protein dMP1, are examined here. Results Genetic interactions show that corto and dMP1 act together to antagonize rolled (which encodes ERK in the future intervein cells, thus promoting intervein fate. Although Corto, ERK and dMP1 are present in both cytoplasmic and nucleus compartments, they interact exclusively in nucleus extracts. Furthermore, Corto, ERK and dMP1 co-localize on several sites on polytene chromosomes, suggesting that they regulate gene expression directly on chromatin. Finally, Corto is phosphorylated. Interestingly, its phosphorylation pattern differs between cytoplasm and nucleus and changes upon ERK activation. Conclusions Our data therefore suggest that the Enhancer of Trithorax and Polycomb Corto could participate in regulating vein and intervein genes during wing tissue development in response to ERK signaling.

  16. STATE OF JNK AND P38 MAP-KINASE SYSTEM IN BLOOD monon uclea r le ucocytes DUR ING INFLAMMATION

    Directory of Open Access Journals (Sweden)

    N. Y. Chasovskih

    2009-01-01

    Full Text Available Abstract. Pogrammed cell death of peripheral blood mononuclear leucocytes from patients with acute inflammatory diseases (non-nosocomial pneumonia, acute appendicitis was investigated under ex vivo conditions, upon cultivation of the cells with selective inhibitors of JNK (SP600125 and р38 МАРК (ML3403. In vitro addition of SP600125 and ML3403 under oxidative stress conditions prevents increase of annexinpositive mononuclear cells numbers, thus suggesting JNK and р38 МАР-kinases to be involved into oxidative mechanisms of apoptosis deregulation. A role of JNK in IL-8 production by mononuclear leucocytes was revealed in cases of acute inflammation. Regulatory effect of JNK and p38 MAP-kinases can be mediated through activation of redox-sensitive apoptogenic signal transduction systems, as well as due to changes in cellular cytokine-producing function.

  17. Cell-type-specific activation of mitogen-activated protein kinases in PAN-induced progressive renal disease in rats

    International Nuclear Information System (INIS)

    Park, Sang-Joon; Jeong, Kyu-Shik

    2004-01-01

    We examined the time-course activation and the cell-type specific role of MAP kinases in puromycin aminonucleoside (PAN)-induced renal disease. The maximal activation of c-Jun-NH 2 -terminal kinase (JNK), extracellular signal regulated kinase (ERK), and p38 MAP kinase was detected on Days 52, 38, and 38 after PAN-treatment, respectively. p-JNK was localized in mesangial and proximal tubular cells at the early renal injury. It was expressed, therefore, in the inflammatory cells of tubulointerstitial lesions. While, p-ERK was markedly increased in the glomerular regions and macrophages p-p38 was observed in glomerular endothelial cells, tubular cells, and some inflammatory cells. The results show that the activation of MAP kinases in the early renal injury by PAN-treatment involves cellular changes such as cell proliferation or apoptosis in renal native cells. The activation of MAP kinases in infiltrated inflammatory cells and fibrotic cells plays an important role in destructive events such as glomerulosclerosis and tubulointerstitial fibrosis

  18. An ant colony based resilience approach to cascading failures in cluster supply network

    Science.gov (United States)

    Wang, Yingcong; Xiao, Renbin

    2016-11-01

    Cluster supply chain network is a typical complex network and easily suffers cascading failures under disruption events, which is caused by the under-load of enterprises. Improving network resilience can increase the ability of recovery from cascading failures. Social resilience is found in ant colony and comes from ant's spatial fidelity zones (SFZ). Starting from the under-load failures, this paper proposes a resilience method to cascading failures in cluster supply chain network by leveraging on social resilience of ant colony. First, the mapping between ant colony SFZ and cluster supply chain network SFZ is presented. Second, a new cascading model for cluster supply chain network is constructed based on under-load failures. Then, the SFZ-based resilience method and index to cascading failures are developed according to ant colony's social resilience. Finally, a numerical simulation and a case study are used to verify the validity of the cascading model and the resilience method. Experimental results show that, the cluster supply chain network becomes resilient to cascading failures under the SFZ-based resilience method, and the cluster supply chain network resilience can be enhanced by improving the ability of enterprises to recover and adjust.

  19. A Discrete Dynamical System Approach to Pathway Activation Profiles of Signaling Cascades.

    Science.gov (United States)

    Catozzi, S; Sepulchre, J-A

    2017-08-01

    In living organisms, cascades of covalent modification cycles are one of the major intracellular signaling mechanisms, allowing to transduce physical or chemical stimuli of the external world into variations of activated biochemical species within the cell. In this paper, we develop a novel method to study the stimulus-response of signaling cascades and overall the concept of pathway activation profile which is, for a given stimulus, the sequence of activated proteins at each tier of the cascade. Our approach is based on a correspondence that we establish between the stationary states of a cascade and pieces of orbits of a 2D discrete dynamical system. The study of its possible phase portraits in function of the biochemical parameters, and in particular of the contraction/expansion properties around the fixed points of this discrete map, as well as their bifurcations, yields a classification of the cascade tiers into three main types, whose biological impact within a signaling network is examined. In particular, our approach enables to discuss quantitatively the notion of cascade amplification/attenuation from this new perspective. The method allows also to study the interplay between forward and "retroactive" signaling, i.e., the upstream influence of an inhibiting drug bound to the last tier of the cascade.

  20. Neural cell adhesion molecule-stimulated neurite outgrowth depends on activation of protein kinase C and the Ras-mitogen-activated protein kinase pathway

    DEFF Research Database (Denmark)

    Kolkova, K; Novitskaya, V; Pedersen, N

    2000-01-01

    , inhibitors of the nonreceptor tyrosine kinase p59(fyn), PLC, PKC and MEK and an activator of PKC, phorbol-12-myristate-13-acetate (PMA). MEK2 transfection rescued cells treated with all inhibitors. The same was found for PMA treatment, except when cells concomitantly were treated with the MEK inhibitor....... Arachidonic acid rescued cells treated with antibodies to the FGF receptor or the PLC inhibitor, but not cells in which the activity of PKC, p59(fyn), FAK, Ras, or MEK was inhibited. Interaction of NCAM with a synthetic NCAM peptide ligand, known to induce neurite outgrowth, was shown to stimulate...... phosphorylation of the MAP kinases extracellular signal-regulated kinases ERK1 and ERK2. The MAP kinase activation was sustained, because ERK1 and ERK2 were phosphorylated in PC12-E2 cells and primary hippocampal neurons even after 24 hr of cultivation on NCAM-expressing fibroblasts. Based on these results, we...

  1. Tumor Necrosis Factor-α and Apoptosis Signal-Regulating Kinase 1 Control Reactive Oxygen Species Release, Mitochondrial Autophagy and C-Jun N-Terminal Kinase/P38 Phosphorylation During Necrotizing Enterocolitis

    Directory of Open Access Journals (Sweden)

    Naira Baregamian

    2009-01-01

    Full Text Available Background: Oxidative stress and inflammation may contribute to the disruption of the protective gut barrier through various mechanisms; mitochondrial dysfunction resulting from inflammatory and oxidative injury may potentially be a significant source of apoptosis during necrotizing enterocolitis (NEC. Tumor necrosis factor (TNFα is thought to generate reactive oxygen species (ROS and activate the apoptosis signal-regulating kinase 1 (ASK1-c-Jun N-terminal kinase (JNK/p38 pathway. Hence, the focus of our study was to examine the effects of TNFα/ROs on mitochondrial function, ASK1-JNK/p38 cascade activation in intestinal epithelial cells during NEC.

  2. PaASK1, a mitogen-activated protein kinase kinase kinase that controls cell degeneration and cell differentiation in Podospora anserina.

    Science.gov (United States)

    Kicka, Sébastien; Silar, Philippe

    2004-03-01

    MAPKKK are kinases involved in cell signaling. In fungi, these kinases are known to regulate development, pathogenicity, and the sensing of external conditions. We show here that Podospora anserina strains mutated in PaASK1, a MAPKKK of the MEK family, are impaired in the development of crippled growth, a cell degeneration process caused by C, a nonconventional infectious element. They also display defects in mycelium pigmentation, differentiation of aerial hyphae, and making of fruiting bodies, three hallmarks of cell differentiation during stationary phase in P. anserina. Overexpression of PaASK1 results in exacerbation of crippled growth. PaASK1 is a large protein of 1832 amino acids with several domains, including a region rich in proline and a 60-amino-acid-long polyglutamine stretch. Deletion analysis reveals that the polyglutamine stretch is dispensable for PaASK1 activity, whereas the region that contains the prolines is essential but insufficient to promote full activity. We discuss a model based on the hysteresis of a signal transduction cascade to account for the role of PaASK1 in both cell degeneration and stationary-phase cell differentiation.

  3. Defect production in simulated cascades: Cascade quenching and short-term annealing

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1983-01-01

    Defect production in displacement cascades in copper has been modeled using the MARLOWE code to generate cascades and the stochastic annealing code ALSOME to simulate cascade quenching and short-term annealing of isolated cascades. Quenching is accomplished by using exaggerated values for defect mobilities and for critical reaction distances in ALSOME for a very short time. The quenched cascades are then short-term annealed with normal parameter values. The quenching parameter values were empirically determined by comparison with results of resistivity measurements. Throughout the collisional, quenching and short-term annealing phases of cascade development, the high energy cascades continue to behave as a collection of independent lower energy lobes. For recoils above about 30 keV the total number of defects and the numbers of free defects scale with the damage energy. As the energy decreases from 30 keV, defect production varies with the changing nature of the cascade configuration, resulting in more defects per unit damage energy. The simulated annealing of a low fluence of interacting cascades revealed an interstitial shielding effect on depleted zones during Stage I recovery. (orig.)

  4. Targeting phosphoinositide 3-kinase δ for allergic asthma.

    Science.gov (United States)

    Rowan, Wendy C; Smith, Janet L; Affleck, Karen; Amour, Augustin

    2012-02-01

    Chronic inflammation in the lung has long been linked to the pathogenesis of asthma. Central to this airway inflammation is a T-cell response to allergens, with Th2 cytokines driving the differentiation, survival and function of the major inflammatory cells involved in the allergic cascade. PI3Kδ (phosphoinositide 3-kinase δ) is a lipid kinase, expressed predominantly in leucocytes, where it plays a critical role in immune receptor signalling. A selective PI3Kδ inhibitor is predicted to block T-cell activation in the lung, reducing the production of pro-inflammatory Th2 cytokines. PI3Kδ is also involved in B-cell and mast cell activation. Therefore the inhibition of PI3Kδ should dampen down the inflammatory cascade involved in the asthmatic response through a wide breadth of pharmacology. Current anti-inflammatory therapies, which are based on corticosteroids, are effective in controlling inflammation in mild asthmatics, but moderate/severe asthmatic patients remain poorly controlled, experiencing recurrent exacerbations. Corticosteroids have no effect on mast cell degranulation and do not act directly on B-cells, so, overall, a PI3Kδ inhibitor has the potential to deliver improvements in onset of action, efficacy and reduced exacerbations in moderate/severe asthmatics. Additionally, PI3Kδ inhibition is expected to block effects of Th17 cells, which are increasingly implicated in steroid-insensitive asthma.

  5. A non-conventional isotope separation cascade without any mixing: net cascade

    International Nuclear Information System (INIS)

    Zeng Shi; Jiang Dongjun; Ying Zhengen

    2012-01-01

    A component has different concentrations in the incoming flows at a confluent point in all existing isotope separations cascades for multi-component isotope separation and mixing is inevitable, which results in deterioration of separation performance of the separation cascade. However, realization of no-mixing at a confluent point is impossible with a conventional cascade. A non-conventional isotope separation cascade, net cascade, is found to be able to realize no mixings for all components at confluent points, and its concept is further developed here. No-mixing is fulfilled by requiring symmetrical separation of two specified key components at every stage, and the procedure of realizing no-mixing is presented in detail. Some properties of net cascade are investigated preliminarily, and the results demonstrated the no-mixing property is indeed realized. Net cascade is the only separation cascade that so far possesses the no-mixing property. (authors)

  6. Inducible Activation of ERK5 MAP Kinase Enhances Adult Neurogenesis in the Olfactory Bulb and Improves Olfactory Function

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M.; Xu, Lihong; Storm, Daniel R.

    2015-01-01

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. PMID:25995470

  7. A Myb transcription factor of Phytophthora sojae, regulated by MAP kinase PsSAK1, is required for zoospore development.

    Directory of Open Access Journals (Sweden)

    Meng Zhang

    Full Text Available PsSAK1, a mitogen-activated protein (MAP kinase from Phytophthora sojae, plays an important role in host infection and zoospore viability. However, the downstream mechanism of PsSAK1 remains unclear. In this study, the 3'-tag digital gene expression (DGE profiling method was applied to sequence the global transcriptional sequence of PsSAK1-silenced mutants during the cysts stage and 1.5 h after inoculation onto susceptible soybean leaf tissues. Compared with the gene expression levels of the recipient P. sojae strain, several candidates of Myb family were differentially expressed (up or down in response to the loss of PsSAK1, including of a R2R3-type Myb transcription factor, PsMYB1. qRT-PCR indicated that the transcriptional level of PsMYB1 decreased due to PsSAK1 silencing. The transcriptional level of PsMYB1 increased during sporulating hyphae, in germinated cysts, and early infection. Silencing of PsMYB1 results in three phenotypes: a no cleavage of the cytoplasm into uninucleate zoospores or release of normal zoospores, b direct germination of sporangia, and c afunction in zoospore-mediated plant infection. Our data indicate that the PsMYB1 transcription factor functions downstream of MAP kinase PsSAK1 and is required for zoospore development of P. sojae.

  8. The MADD-3 LAMMER Kinase Interacts with a p38 MAP Kinase Pathway to Regulate the Display of the EVA-1 Guidance Receptor in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Serena A D'Souza

    2016-04-01

    Full Text Available The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle's plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.

  9. Staphylococcal PknB as the First Prokaryotic Representative of the Proline-Directed Kinases

    NARCIS (Netherlands)

    Miller, Malgorzata; Donat, Stefanie; Rakette, Sonja; Stehle, Thilo; Kouwen, Thijs R. H. M.; Diks, Sander H.; Dreisbach, Annette; Reilman, Ewoud; Gronau, Katrin; Becher, Doerte; Peppelenbosch, Maikel P.; van Dijl, Jan Maarten; Ohlsen, Knut

    2010-01-01

    In eukaryotic cell types, virtually all cellular processes are under control of proline-directed kinases and especially MAP kinases. Serine/threonine kinases in general were originally considered as a eukaryote-specific enzyme family. However, recent studies have revealed that orthologues of

  10. Protein kinase A cascade regulates quantal release dispersion at frog muscle endplate

    Czech Academy of Sciences Publication Activity Database

    Bukharaeva, E. A.; Samigullin, D.; Nikolsky, E.; Vyskočil, František

    2002-01-01

    Roč. 538, č. 3 (2002), s. 837-848 ISSN 0022-3751 R&D Projects: GA AV ČR IAA7011902 Grant - others:EU(XC) EU Nesting; RFBR(RU) 99-04-48286 Institutional research plan: CEZ:AV0Z5011922 Keywords : EPCs * latency dispersion * protein kinase A Subject RIV: ED - Physiology Impact factor: 4.650, year: 2002

  11. TGFβ1-mediated PI3K/Akt and p38 MAP kinase dependent alternative splicing of fibronectin extra domain A in human podocyte culture.

    Science.gov (United States)

    Madne, Tarunkumar Hemraj; Dockrell, Mark Edward Carl

    2018-04-30

    Alternative splicing is an important gene regulation process to distribute proteins in health and diseases. Extra Domain A+ Fibronectin (EDA+Fn) is an alternatively spliced form of fibronectin (Fn) protein, present in the extra cellular matrix (ECM) and a recognised marker of various pathologies. TGFβ1 has been shown to induce alternative splicing of EDA+Fn in many cell types. Podocytes are spectacular cell type and play a key role in filtration and synthesise ECM proteins in renal physiology and pathology. In our previous study we have demonstrated expression and alternative splicing of EDA+Fn in basal condition in human podocytes culture. TGFβ1 further induced the basal expression and alternative splicing of EDA+Fn through Alk5 receptor and SR proteins. In this study, we have investigated TGFβ1 mediated signalling involved in alternative splicing of EDA+Fn in human podocytes. We have performed western blotting to characterise the expression of the EDA+Fn protein and other signalling proteins and RT-PCR to look for signalling pathways involved in regulation of alternative splicing of EDA+Fn in conditionally immortalised human podocytes culture.We have used TGFβ1 as a stimulator and SB431542, SB202190 and LY294002 for inhibitory studies. In this work, we have demonstrated in human podocytes culture TGFβ1 2.5ng/ml induced phosphorylation of Smad1/5/8, Smad2 and Smad3 via the ALK5 receptor. TGFβ1 significantly induced the PI3K/Akt pathway and the PI3K/Akt pathway inhibitor LY294002 significantly downregulated basal as well as TGFβ1 induced alternative splicing of EDA+Fn in human podocytes. In addition to this, TGFβ1 significantly induced the p38 MAP kinase signalling pathway and p38 MAP kinase signalling pathway inhibitor SB202190 downregulated the TGFβ1-mediated alternative splicing of EDA+Fn in human podocytes. The results with PI3K and p38 MAP kinase signalling pathway suggest that inhibiting PI3K signalling pathway downregulated the basal alternative

  12. Cross-phosphorylation of bacterial serine/threonine and tyrosine protein kinases on key regulatory residues

    Directory of Open Access Journals (Sweden)

    Lei eShi

    2014-09-01

    Full Text Available Bacteria possess protein serine/threonine and tyrosine kinases which resemble eukaryal kinases in their capacity to phosphorylate multiple substrates. We hypothesized that the analogy might extend further, and bacterial kinases may also undergo mutual phosphorylation and activation, which is currently considered as a hallmark of eukaryal kinase networks. In order to test this hypothesis, we explored the capacity of all members of four different classes of serine/threonine and tyrosine kinases present in the firmicute model organism Bacillus subtilis to phosphorylate each other in vitro and interact with each other in vivo. The interactomics data suggested a high degree of connectivity among all types of kinases, while phosphorylation assays revealed equally wide-spread cross-phosphorylation events. Our findings suggest that the Hanks-type kinases PrkC, PrkD and YabT exhibit the highest capacity to phosphorylate other B. subtilis kinases, while the BY-kinase PtkA and the two-component-like kinases RsbW and SpoIIAB show the highest propensity to be phosphorylated by other kinases. Analysis of phosphorylated residues on several selected recipient kinases suggests that most cross-phosphorylation events concern key regulatory residues. Therefore, cross-phosphorylation events are very likely to influence the capacity of recipient kinases to phosphorylate substrates downstream in the signal transduction cascade. We therefore conclude that bacterial serine/threonine and tyrosine kinases probably engage in a network-type behavior previously described only in eukaryal cells.

  13. Saw palmetto extract suppresses insulin-like growth factor-I signaling and induces stress-activated protein kinase/c-Jun N-terminal kinase phosphorylation in human prostate epithelial cells.

    Science.gov (United States)

    Wadsworth, Teri L; Carroll, Julie M; Mallinson, Rebecca A; Roberts, Charles T; Roselli, Charles E

    2004-07-01

    A common alternative therapy for benign prostatic hyperplasia (BPH) is the extract from the fruit of saw palmetto (SPE). BPH is caused by nonmalignant growth of epithelial and stromal elements of the prostate. IGF action is important for prostate growth and development, and changes in the IGF system have been documented in BPH tissues. The main signaling pathways activated by the binding of IGF-I to the IGF-I receptor (IGF-IR) are the ERK arm of the MAPK cascade and the phosphoinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) cascade. We tested the hypothesis that SPE suppresses growth and induces apoptosis in the P69 prostate epithelial cell line by inhibiting IGF-I signaling. Treatment with 150 microg/ml SPE for 24 h decreased IGF-I-induced proliferation of P69 cells and induced cleavage of the enzyme poly(ADP-ribose)polymerase (PARP), an index of apoptosis. Treatment of serum-starved P69 cells with 150 microg/ml SPE for 6 h reduced IGF-I-induced phosphorylation of Akt (assessed by Western blot) and Akt activity (assessed by an Akt kinase assay). Western blot analysis showed that SPE reduced IGF-I-induced phosphorylation of the adapter protein insulin receptor substrate-1 and decreased downstream effects of Akt activation, including increased cyclin D1 levels and phosphorylation of glycogen synthase kinase-3 and p70(s6k). There was no effect on IGF-I-induced phosphorylation of MAPK, IGF-IR, or Shc. Treatment of starved cells with SPE alone induced phosphorylation the proapoptotic protein JNK. SPE treatment may relieve symptoms of BPH, in part, by inhibiting specific components of the IGF-I signaling pathway and inducing JNK activation, thus mediating antiproliferative and proapoptotic effects on prostate epithelia.

  14. The Ser/Thr Protein Kinase Protein-Protein Interaction Map of M. tuberculosis.

    Science.gov (United States)

    Wu, Fan-Lin; Liu, Yin; Jiang, He-Wei; Luan, Yi-Zhao; Zhang, Hai-Nan; He, Xiang; Xu, Zhao-Wei; Hou, Jing-Li; Ji, Li-Yun; Xie, Zhi; Czajkowsky, Daniel M; Yan, Wei; Deng, Jiao-Yu; Bi, Li-Jun; Zhang, Xian-En; Tao, Sheng-Ce

    2017-08-01

    Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, the leading cause of death among all infectious diseases. There are 11 eukaryotic-like serine/threonine protein kinases (STPKs) in Mtb, which are thought to play pivotal roles in cell growth, signal transduction and pathogenesis. However, their underlying mechanisms of action remain largely uncharacterized. In this study, using a Mtb proteome microarray, we have globally identified the binding proteins in Mtb for all of the STPKs, and constructed the first STPK protein interaction (KPI) map that includes 492 binding proteins and 1,027 interactions. Bioinformatics analysis showed that the interacting proteins reflect diverse functions, including roles in two-component system, transcription, protein degradation, and cell wall integrity. Functional investigations confirmed that PknG regulates cell wall integrity through key components of peptidoglycan (PG) biosynthesis, e.g. MurC. The global STPK-KPIs network constructed here is expected to serve as a rich resource for understanding the key signaling pathways in Mtb, thus facilitating drug development and effective control of Mtb. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Fucoxanthin prevents H2O2-induced neuronal apoptosis via concurrently activating the PI3-K/Akt cascade and inhibiting the ERK pathway.

    Science.gov (United States)

    Yu, Jie; Lin, Jia-Jia; Yu, Rui; He, Shan; Wang, Qin-Wen; Cui, Wei; Zhang, Jin-Rong

    2017-01-01

    Background : As a natural carotenoid abundant in chloroplasts of edible brown algae, fucoxanthin possesses various health benefits, including anti-oxidative activity in particular. Objective : In the present study, we studied whether fucoxanthin protected against hydrogen peroxide (H 2 O 2 )-induced neuronal apoptosis. Design : The neuroprotective effects of fucoxanthin on H 2 O 2 -induced toxicity were studied in both SH-SY5Y cells and primary cerebellar granule neurons. Results : Fucoxanthin significantly protected against H 2 O 2 -induced neuronal apoptosis and intracellular reactive oxygen species. H 2 O 2 treatment led to the reduced activity of phosphoinositide 3-kinase (PI3-K)/Akt cascade and the increased activity of extracellular signal-regulated kinase (ERK) pathway in SH-SY5Y cells. Moreover, fucoxanthin significantly restored the altered activities of PI3-K/Akt and ERK pathways induced by H 2 O 2 . Both specific inhibitors of glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase kinase (MEK) significantly protected against H 2 O 2 -induced neuronal death. Furthermore, the neuroprotective effects of fucoxanthin against H 2 O 2 -induced neuronal death were abolished by specific PI3-K inhibitors. Conclusions : Our data strongly revealed that fucoxanthin protected against H 2 O 2 -induced neurotoxicity via concurrently activating the PI3-K/Akt cascade and inhibiting the ERK pathway, providing support for the use of fucoxanthin to treat neurodegenerative disorders induced by oxidative stress.

  16. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    Science.gov (United States)

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  17. Inhibition of MAP kinase promotes the recruitment of corepressor SMRT by tamoxifen-bound estrogen receptor alpha and potentiates tamoxifen action in MCF-7 cells

    International Nuclear Information System (INIS)

    Hong, Wei; Chen, Linfeng; Li, Juan; Yao, Zhi

    2010-01-01

    Estrogen receptor alpha (ERα), a ligand controlled transcription factor, plays an important role in breast cancer growth and endocrine therapy. Tamoxifen (TAM) antagonizes ERα activity and has been applied in breast cancer treatment. TAM-bound ERα associates with nuclear receptor-corepressors. Mitogen-activated protein kinase (MAPK) has been elucidated to result in cross-talk between growth factor and ERα mediated signaling. We show that activated MAPK represses interaction of TAM-bound ERα with silencing mediator for retinoid and thyroid hormone receptors (SMRT) and inhibits the recruitment of SMRT by ERα to certain estrogen target genes. Blockade of MAPK signaling cascade with MEK inhibitor U0126 promotes the interaction and subsequently inhibits ERα activity via enhanced recruitment of SMRT, leading to reduced expression of ERα target genes. The growth rate of MCF-7 cells was decelerated when treated with both TAM and U0126. Moreover, the growth of MCF-7 cells stably expressing SMRT showed a robust repression in the presence of TAM and U0126. These results suggest that activated MAPK signaling cascade attenuates antagonist-induced recruitment of SMRT to ERα, suggesting corepressor mediates inhibition of ERα transactivation and breast cancer cell growth by antagonist. Taken together, our finding indicates combination of antagonist and MAPK inhibitor could be a helpful approach for breast cancer therapy.

  18. Defect production in simulated cascades: cascade quenching and short-term annealing

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1982-01-01

    Defect production in high energy displacement cascades has been modeled using the computer code MARLOWE to generate the cascades and the stochastic computer code ALSOME to simulate the cascade quenching and short-term annealing of isolated cascades. The quenching is accomplished by using ALSOME with exaggerated values for defect mobilities and critical reaction distanes for recombination and clustering, which are in effect until the number of defect pairs is equal to the value determined from resistivity experiments at 4K. Then normal mobilities and reaction distances are used during short-term annealing to a point representative of Stage III recovery. Effects of cascade interactions at low fluences are also being investigated. The quenching parameter values were empirically determined for 30 keV cascades. The results agree well with experimental information throughout the range from 1 keV to 100 keV. Even after quenching and short-term annealing the high energy cascades behave as a collection of lower energy subcascades and lobes. Cascades generated in a crystal having thermal displacements were found to be in better agreement with experiments after quenching and annealing than those generated in a non-thermal crystal

  19. Geologic map of Three Sisters volcanic cluster, Cascade Range, Oregon

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy; Calvert, Andrew T.

    2012-01-01

    The cluster of glaciated stratovolcanoes called the Three Sisters—South Sister, Middle Sister, and North Sister—forms a spectacular 20-km-long reach along the crest of the Cascade Range in Oregon. The three eponymous stratocones, though contiguous and conventionally lumped sororally, could hardly display less family resemblance. North Sister (10,085 ft), a monotonously mafic edifice at least as old as 120 ka, is a glacially ravaged stratocone that consists of hundreds of thin rubbly lava flows and intercalated falls that dip radially and steeply; remnants of two thick lava flows cap its summit. Middle Sister (10,047 ft), an andesite-basalt-dacite cone built between 48 and 14 ka, is capped by a thick stack of radially dipping, dark-gray, thin mafic lava flows; asymmetrically glaciated, its nearly intact west flank contrasts sharply with its steep east face. Snow and ice-filled South Sister is a bimodal rhyolitic-intermediate edifice that was constructed between 50 ka and 2 ka; its crater (rim at 10,358 ft) was created between 30 and 22 ka, during the most recent of several explosive summit eruptions; the thin oxidized agglutinate that mantles its current crater rim protects a 150-m-thick pyroclastic sequence that helped fill a much larger crater. For each of the three, the eruptive volume is likely to have been in the range of 15 to 25 km³, but such estimates are fairly uncertain, owing to glacial erosion. The map area consists exclusively of Quaternary volcanic rocks and derivative surficial deposits. Although most of the area has been modified by glaciation, the volcanoes are young enough that the landforms remain largely constructional. Furthermore, twelve of the 145 eruptive units on the map are postglacial, younger than the deglaciation that was underway by about 17 ka. The most recent eruptions were of rhyolite near South Sister, about 2,000 years ago, and of mafic magma near McKenzie Pass, about 1,500 years ago. As observed by trailblazing volcanologist

  20. Inducible activation of ERK5 MAP kinase enhances adult neurogenesis in the olfactory bulb and improves olfactory function.

    Science.gov (United States)

    Wang, Wenbin; Lu, Song; Li, Tan; Pan, Yung-Wei; Zou, Junhui; Abel, Glen M; Xu, Lihong; Storm, Daniel R; Xia, Zhengui

    2015-05-20

    Recent discoveries have suggested that adult neurogenesis in the subventricular zone (SVZ) and olfactory bulb (OB) may be required for at least some forms of olfactory behavior in mice. However, it is unclear whether conditional and selective enhancement of adult neurogenesis by genetic approaches is sufficient to improve olfactory function under physiological conditions or after injury. Furthermore, specific signaling mechanisms regulating adult neurogenesis in the SVZ/OB are not fully defined. We previously reported that ERK5, a MAP kinase selectively expressed in the neurogenic regions of the adult brain, plays a critical role in adult neurogenesis in the SVZ/OB. Using a site-specific knock-in mouse model, we report here that inducible and targeted activation of the endogenous ERK5 in adult neural stem/progenitor cells enhances adult neurogenesis in the OB by increasing cell survival and neuronal differentiation. This conditional ERK5 activation also improves short-term olfactory memory and odor-cued associative olfactory learning under normal physiological conditions. Furthermore, these mice show enhanced recovery of olfactory function and have more adult-born neurons after a zinc sulfate-induced lesion of the main olfactory epithelium. We conclude that ERK5 MAP kinase is an important endogenous signaling pathway regulating adult neurogenesis in the SVZ/OB, and that conditional activation of endogenous ERK5 is sufficient to enhance adult neurogenesis in the OB thereby improving olfactory function both under normal conditions and after injury. Copyright © 2015 the authors 0270-6474/15/357833-17$15.00/0.

  1. Lipid Signaling via Pkh1/2 Regulates Fungal CO2 Sensing through the Kinase Sch9

    Directory of Open Access Journals (Sweden)

    Susann Pohlers

    2017-01-01

    Full Text Available Adaptation to alternating CO2 concentrations is crucial for all organisms. Carbonic anhydrases—metalloenzymes that have been found in all domains of life—enable fixation of scarce CO2 by accelerating its conversion to bicarbonate and ensure maintenance of cellular metabolism. In fungi and other eukaryotes, the carbonic anhydrase Nce103 has been shown to be essential for growth in air (~0.04% CO2. Expression of NCE103 is regulated in response to CO2 availability. In Saccharomyces cerevisiae, NCE103 is activated by the transcription factor ScCst6, and in Candida albicans and Candida glabrata, it is activated by its homologues CaRca1 and CgRca1, respectively. To identify the kinase controlling Cst6/Rca1, we screened an S. cerevisiae kinase/phosphatase mutant library for the ability to regulate NCE103 in a CO2-dependent manner. We identified ScSch9 as a potential ScCst6-specific kinase, as the sch9Δ mutant strain showed deregulated NCE103 expression on the RNA and protein levels. Immunoprecipitation revealed the binding capabilities of both proteins, and detection of ScCst6 phosphorylation by ScSch9 in vitro confirmed Sch9 as the Cst6 kinase. We could show that CO2-dependent activation of Sch9, which is part of a kinase cascade, is mediated by lipid/Pkh1/2 signaling but not TORC1. Finally, we tested conservation of the identified regulatory cascade in the pathogenic yeast species C. albicans and C. glabrata. Deletion of SCH9 homologues of both species impaired CO2-dependent regulation of NCE103 expression, which indicates a conservation of the CO2 adaptation mechanism among yeasts. Thus, Sch9 is a Cst6/Rca1 kinase that links CO2 adaptation to lipid signaling via Pkh1/2 in fungi.

  2. SAV1 promotes Hippo kinase activation through antagonizing the PP2A phosphatase STRIPAK

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sung Jun [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Ni, Lisheng [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Osinski, Adam [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Tomchick, Diana R. [Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States; Brautigam, Chad A. [Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, United States; Luo, Xuelian [Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States

    2017-10-24

    The Hippo pathway controls tissue growth and homeostasis through a central MST-LATS kinase cascade. The scaffold protein SAV1 promotes the activation of this kinase cascade, but the molecular mechanisms remain unknown. Here, we discover SAV1-mediated inhibition of the PP2A complex STRIPAKSLMAP as a key mechanism of MST1/2 activation. SLMAP binding to autophosphorylated MST2 linker recruits STRIPAK and promotes PP2A-mediated dephosphorylation of MST2 at the activation loop. Our structural and biochemical studies reveal that SAV1 and MST2 heterodimerize through their SARAH domains. Two SAV1–MST2 heterodimers further dimerize through SAV1 WW domains to form a heterotetramer, in which MST2 undergoes trans-autophosphorylation. SAV1 directly binds to STRIPAK and inhibits its phosphatase activity, protecting MST2 activation-loop phosphorylation. Genetic ablation of SLMAP in human cells leads to spontaneous activation of the Hippo pathway and alleviates the need for SAV1 in Hippo signaling. Thus, SAV1 promotes Hippo activation through counteracting the STRIPAKSLMAP PP2A phosphatase complex.

  3. Purification of reversibly oxidized proteins (PROP reveals a redox switch controlling p38 MAP kinase activity.

    Directory of Open Access Journals (Sweden)

    Dennis J Templeton

    2010-11-01

    Full Text Available Oxidation of cysteine residues of proteins is emerging as an important means of regulation of signal transduction, particularly of protein kinase function. Tools to detect and quantify cysteine oxidation of proteins have been a limiting factor in understanding the role of cysteine oxidation in signal transduction. As an example, the p38 MAP kinase is activated by several stress-related stimuli that are often accompanied by in vitro generation of hydrogen peroxide. We noted that hydrogen peroxide inhibited p38 activity despite paradoxically increasing the activating phosphorylation of p38. To address the possibility that cysteine oxidation may provide a negative regulatory effect on p38 activity, we developed a biochemical assay to detect reversible cysteine oxidation in intact cells. This procedure, PROP, demonstrated in vivo oxidation of p38 in response to hydrogen peroxide and also to the natural inflammatory lipid prostaglandin J2. Mutagenesis of the potential target cysteines showed that oxidation occurred preferentially on residues near the surface of the p38 molecule. Cysteine oxidation thus controls a functional redox switch regulating the intensity or duration of p38 activity that would not be revealed by immunodetection of phosphoprotein commonly interpreted as reflective of p38 activity.

  4. Focal adhesion kinase, a downstream mediator of Raf-1 signaling, suppresses cellular adhesion, migration, and neuroendocrine markers in BON carcinoid cells.

    Science.gov (United States)

    Ning, Li; Chen, Herbert; Kunnimalaiyaan, Muthusamy

    2010-05-01

    We have recently reported that activation of the Raf-1/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase 1/2 (MEK1/2)/ERK1/2 signaling cascade in gastrointestinal carcinoid cell line (BON) alters cellular morphology and neuroendocrine phenotype. The mechanisms by which Raf-1 mediates these changes in carcinoid cells are unclear. Here, we report that activation of the Raf-1 signaling cascade in BON cells induced the expression of focal adhesion kinase (FAK) protein, suppressed the production of neuroendocrine markers, and resulted in significant decreases in cellular adhesion and migration. Importantly, inactivation of MEK1/2 by 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene or abolition of FAK induction in Raf-1-activated BON cells by targeted siRNA led to reversal of the Raf-1-mediated reduction in neuroendocrine markers and cellular adhesion and migration. Phosphorylation site-specific antibodies detected the phosphorylated FAK(Tyr407), but not FAK(Tyr397), in these Raf-1-activated cells, indicating that FAK(Tyr407) may be associated with changes in the neuroendocrine phenotype. Overexpression of constitutively active FAK plasmids (wild-type FAK or FAK(Tyr397) mutant) into BON cells reduced neuroendocrine markers, whereas the FAK(Tyr407) mutant plasmid did not show any decrease in the levels of neuroendocrine markers, indicating that phosphorylation of FAK at the Tyr(407) residue may be important for these effects. Our results showed for the first time that FAK is an essential downstream effector of the Raf-1/MEK1/2/ERK1/2 signaling cascade and negatively regulated the neuroendocrine and metastatic phenotype in BON cells. (c)2010 AACR.

  5. The cystic fibrosis transmembrane recruiter the alter ego of CFTR as a multi-kinase anchor.

    Science.gov (United States)

    Mehta, Anil

    2007-11-01

    This review focuses on a newly discovered interaction between protein kinases involved in cellular energetics, a process that may be disturbed in cystic fibrosis for unknown reasons. I propose a new model where kinase-mediated cellular transmission of energy provides mechanistic insight to a latent role of the cystic fibrosis transmembrane conductance regulator (CFTR). I suggest that CFTR acts as a multi-kinase recruiter to the apical epithelial membrane. My group finds that, in the cytosol, two protein kinases involved in cell energy homeostasis, nucleoside diphosphate kinase (NDPK) and AMP-activated kinase (AMPK), bind one another. Preliminary data suggest that both can also bind CFTR (function unclear). The disrupted role of this CFTR-kinase complex as 'membrane transmitter to the cell' is proposed as an alternative paradigm to the conventional ion transport mediated and CFTR/chloride-centric view of cystic fibrosis pathogenesis. Chloride remains important, but instead, chloride-induced control of the phosphohistidine content of one kinase component (NDPK, via a multi-kinase complex that also includes a third kinase, CK2; formerly casein kinase 2). I suggest that this complex provides the necessary near-equilibrium conditions needed for efficient transmission of phosphate energy to proteins controlling cellular energetics. Crucially, a new role for CFTR as a kinase controller is proposed with ionic concentration acting as a signal. The model posits a regulatory control relay for energy sensing involving a cascade of protein kinases bound to CFTR.

  6. Glucose, other secretagogues, and nerve growth factor stimulate mitogen-activated protein kinase in the insulin-secreting beta-cell line, INS-1

    DEFF Research Database (Denmark)

    Frödin, M; Sekine, N; Roche, E

    1995-01-01

    The signaling pathways whereby glucose and hormonal secretagogues regulate insulin-secretory function, gene transcription, and proliferation of pancreatic beta-cells are not well defined. We show that in the glucose-responsive beta-cell line INS-1, major secretagogue-stimulated signaling pathways...... converge to activate 44-kDa mitogen-activated protein (MAP) kinase. Thus, glucose-induced insulin secretion was found to be associated with a small stimulatory effect on 44-kDa MAP kinase, which was synergistically enhanced by increased levels of intracellular cAMP and by the hormonal secretagogues......-1. Phorbol ester, an activator of protein kinase C, stimulated 44-kDa MAP kinase by both Ca(2+)-dependent and -independent pathways. Nerve growth factor, independently of changes in cytosolic Ca2+, efficiently stimulated 44-kDa MAP kinase without causing insulin release, indicating that activation...

  7. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis

    Directory of Open Access Journals (Sweden)

    Horacio Bach

    2018-01-01

    Full Text Available To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP, the causative agent of Johne’s disease, as the serine/threonine protein kinase G (PknG. In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.

  8. Role of AC-cAMP-PKA Cascade in Antidepressant Action of Electroacupuncture Treatment in Rats

    Directory of Open Access Journals (Sweden)

    Jian-hua Liu

    2012-01-01

    Full Text Available Adenylyl cyclase (AC-cyclic adenosine monophosphate (cAMP-cAMP-dependent protein kinase A (PKA cascade is considered to be associated with the pathogenesis and treatment of depression. The present study was conducted to explore the role of the cAMP cascade in antidepressant action of electroacupuncture (EA treatment for chronic mild stress (CMS-induced depression model rats. The results showed that EA improved significantly behavior symptoms in depression and dysfunction of AC-cAMP-PKA signal transduction pathway induced by CMS, which was as effective as fluoxetine. Moreover, the antidepressant effects of EA rather than Fluoxetine were completely abolished by H89, a specific PKA inhibitor. Consequently, EA has a significant antidepressant treatment in CMS-induced depression model rats, and AC-cAMP-PKA signal transduction pathway is crucial for it.

  9. A phosphoinositide 3-kinase (PI3K)-serum- and glucocorticoid-inducible kinase 1 (SGK1) pathway promotes Kv7.1 channel surface expression by inhibiting Nedd4-2 protein

    DEFF Research Database (Denmark)

    Andersen, Martin Nybo; Krzystanek, Katarzyna; Petersen, Frederic

    2013-01-01

    Epithelial cell polarization involves several kinase signaling cascades that eventually divide the surface membrane into an apical and a basolateral part. One kinase, which is activated during the polarization process, is phosphoinositide 3-kinase (PI3K). In MDCK cells, the basolateral potassium...... channel Kv7.1 requires PI3K activity for surface-expression during the polarization process. Here, we demonstrate that Kv7.1 surface expression requires tonic PI3K activity as PI3K inhibition triggers endocytosis of these channels in polarized MDCK. Pharmacological inhibition of SGK1 gave similar results...... as PI3K inhibition, whereas overexpression of constitutively active SGK1 overruled it, suggesting that SGK1 is the primary downstream target of PI3K in this process. Furthermore, knockdown of the ubiquitin ligase Nedd4-2 overruled PI3K inhibition, whereas a Nedd4-2 interaction-deficient Kv7.1 mutant...

  10. Eotaxin induces degranulation and chemotaxis of eosinophils through the activation of ERK2 and p38 mitogen-activated protein kinases

    DEFF Research Database (Denmark)

    Kampen, G T; Stafford, S; Adachi, T

    2000-01-01

    Eotaxin and other CC chemokines acting via CC chemokine receptor-3 (CCR3) are believed to play an integral role in the development of eosinophilic inflammation in asthma and allergic inflammatory diseases. However, little is known about the intracellular events following agonist binding to CCR3...... and the relationship of these events to the functional response of the cell. The objectives of this study were to investigate CCR3-mediated activation of the mitogen-activated protein (MAP) kinases extracellular signal-regulated kinase-2 (ERK2), p38, and c-jun N-terminal kinase (JNK) in eosinophils and to assess...... the requirement for MAP kinases in eotaxin-induced eosinophil cationic protein (ECP) release and chemotaxis. MAP kinase activation was studied in eotaxin-stimulated eosinophils (more than 97% purity) by Western blotting and immune-complex kinase assays. ECP release was measured by radioimmunoassay. Chemotaxis...

  11. Protein Kinase Signalling in the Moss Physcomitrella patens

    DEFF Research Database (Denmark)

    Azevedo de Silva, Raquel

    Adaptation to environmental cues trigger a plethora of intracellular pathways capable of maintaining homeostasis. Receptors in the plasma membrane and in the cytosol recognize extracellular or intracellular signals initiating defense against pathogens or stress-adaptation. MAPK cascade are one...... of the pathways involved in stress signalling, phosphorylating several downstream substrates in order to produce appropriate responses. We report here that P. patens has a receptor-like kinase CERK1 responsible for chitin perception which can rescue Atcerk1 mutant. Activation of PpCERK1 triggers the activation...

  12. Damage-induced DNA replication stalling relies on MAPK-activated protein kinase 2 activity

    DEFF Research Database (Denmark)

    Köpper, Frederik; Bierwirth, Cathrin; Schön, Margarete

    2013-01-01

    knockdown of the MAP kinase-activated protein kinase 2 (MK2), a kinase currently implicated in p38 stress signaling and G2 arrest. Depletion or inhibition of MK2 also protected cells from DNA damage-induced cell death, and mice deficient for MK2 displayed decreased apoptosis in the skin upon UV irradiation...

  13. Tamm-Horsfall Glycoprotein Enhances PMN Phagocytosis by Binding to Cell Surface-Expressed Lactoferrin and Cathepsin G That Activates MAP Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Chia-Li Yu

    2011-03-01

    Full Text Available The molecular basis of polymorphonuclear neutrophil (PMN phagocytosis-enhancing activity (PEA by human purified urinary Tamm-Horsfall glyco- protein (THP has not been elucidated. In this study, we found human THP bound to lactoferrin (LF and cathepsin G (CG expressed on the surface of PMN, identified by a proteomic study with MALDI-TOF- LC/LC/mass spectrometric analysis. Pre-incubation of 10% SDS-PAGE electrophoresed PMN lysates with monoclonal anti-LF or anti-CG antibody reduced the binding with THP. To elucidate the signaling pathway of THP on PMN activation, we found THP enhanced ERK1/2 phosphorylation, reduced p38 MAP kinase phosphorylation, but had no effect on DNA binding of the five NF-kB family members in PMN. To further clarify whether the carbohydrate-side chains or protein-core structure in THP molecule is responsible for THP-PEA, THP was cleaved by different degrading enzymes with carbohydrate specificity (neuraminidase and β-galactosidase, protein specificity (V8 protease and proteinase K or glycoconjugate specificity (carboxylpeptidase Y and O-sialoglycoprotein endopeptidase. We clearly demonstrated that the intact protein-core structure in THP molecule was more important for THP-PEA than carbohydrate-side chains. Putting these results together, we conclude that THP adheres to surface-expressed LF and CG on PMN and transduces signaling via the MAP kinase pathway to enhance PMN phagocytosis.

  14. Thioredoxin-1 promotes survival in cells exposed to S-nitrosoglutathione: Correlation with reduction of intracellular levels of nitrosothiols and up-regulation of the ERK1/2 MAP Kinases

    International Nuclear Information System (INIS)

    Arai, Roberto J.; Ogata, Fernando T.; Batista, Wagner L.; Masutani, Hiroshi; Yodoi, Junji; Debbas, Victor; Augusto, Ohara; Stern, Arnold; Monteiro, Hugo P.

    2008-01-01

    Accumulating evidence indicates that post-translational protein modifications by nitric oxide and its derived species are critical effectors of redox signaling in cells. These protein modifications are most likely controlled by intracellular reductants. Among them, the importance of the 12 kDa dithiol protein thioredoxin-1 (TRX-1) has been increasingly recognized. However, the effects of TRX-1 in cells exposed to exogenous nitrosothiols remain little understood. We investigated the levels of intracellular nitrosothiols and survival signaling in HeLa cells over-expressing TRX-1 and exposed to S-nitrosoglutahione (GSNO). A role for TRX-1 expression on GSNO catabolism and cell viability was demonstrated by the concentration-dependent effects of GSNO on decreasing TRX-1 expression, activation of caspase-3, and increasing cell death. The over-expression of TRX-1 in HeLa cells partially attenuated caspase-3 activation and enhanced cell viability upon GSNO treatment. This was correlated with reduction of intracellular levels of nitrosothiols and increasing levels of nitrite and nitrotyrosine. The involvement of ERK, p38 and JNK pathways were investigated in parental cells treated with GSNO. Activation of ERK1/2 MAP kinases was shown to be critical for survival signaling. In cells over-expressing TRX-1, basal phosphorylation levels of ERK1/2 MAP kinases were higher and further increased after GSNO treatment. These results indicate that the enhanced cell viability promoted by TRX-1 correlates with its capacity to regulate the levels of intracellular nitrosothiols and to up-regulate the survival signaling pathway mediated by the ERK1/2 MAP kinases

  15. MicroRNA 27a-3p Regulates Antimicrobial Responses of Murine Macrophages Infected by Mycobacterium avium subspecies paratuberculosis by Targeting Interleukin-10 and TGF-β-Activated Protein Kinase 1 Binding Protein 2

    Directory of Open Access Journals (Sweden)

    Tariq Hussain

    2018-01-01

    Full Text Available Mycobacterium avium subspecies paratuberculosis (MAP persistently survive and replicate in mononuclear phagocytic cells by adopting various strategies to subvert host immune response. Interleukin-10 (IL-10 upregulation via inhibition of macrophage bactericidal activity is a critical step for MAP survival and pathogenesis within the host cell. Mitogen-activated protein kinase p38 signaling cascade plays a crucial role in the elevation of IL-10 and progression of MAP pathogenesis. The contribution of microRNAs (miRNAs and their influence on the activation of macrophages during MAP pathogenesis are still unclear. In the current study, we found that miRNA-27a-3p (miR-27a expression is downregulated during MAP infection both in vivo and in vitro. Moreover, miR-27a is also downregulated in toll-like receptor 2 (TLR2-stimulated murine macrophages (RAW264.7 and bone marrow-derived macrophage. ELISA and real-time qRT-PCR results confirm that overexpression of miR-27a inhibited MAP-induced IL-10 production in macrophages and upregulated pro-inflammatory cytokines, while miR-27a inhibitor counteracted these effects. Luciferase reporter assay results revealed that IL-10 and TGF-β-activated protein kinase 1 binding protein 2 (TAB 2 are potential targets of miR-27a. In addition, we demonstrated that miR-27a negatively regulates TAB 2 expression and diminishes TAB 2-dependent p38/JNK phosphorylation, ultimately downregulating IL-10 expression in MAP-infected macrophages. Furthermore, overexpression of miR-27a significantly inhibited the intracellular survival of MAP in infected macrophages. Our data show that miR-27a augments antimicrobial activities of macrophages and inhibits the expression of IL-10, demonstrating that miR-27a regulates protective innate immune responses during MAP infection and can be exploited as a novel therapeutic target in the control of intracellular pathogens, including paratuberculosis.

  16. Toward a comprehensive phylogenetic reconstruction of the evolutionary history of mitogen-activated protein kinases in the plant kingdom.

    Science.gov (United States)

    Janitza, Philipp; Ullrich, Kristian Karsten; Quint, Marcel

    2012-01-01

    The mitogen-activated protein kinase (MAPK) pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and eudicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as Mak-homologous kinases. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.

  17. The transcription factor Ste12 mediates the regulatory role of the Tmk1 MAP kinase in mycoparasitism and vegetative hyphal fusion in the filamentous fungus Trichoderma atroviride.

    Directory of Open Access Journals (Sweden)

    Sabine Gruber

    Full Text Available Mycoparasitic species of the fungal genus Trichoderma are potent antagonists able to combat plant pathogenic fungi by direct parasitism. An essential step in this mycoparasitic fungus-fungus interaction is the detection of the fungal host followed by activation of molecular weapons in the mycoparasite by host-derived signals. The Trichoderma atroviride MAP kinase Tmk1, a homolog of yeast Fus3/Kss1, plays an essential role in regulating the mycoparasitic host attack, aerial hyphae formation and conidiation. However, the transcription factors acting downstream of Tmk1 are hitherto unknown. Here we analyzed the functions of the T. atroviride Ste12 transcription factor whose orthologue in yeast is targeted by the Fus3 and Kss1 MAP kinases. Deletion of the ste12 gene in T. atroviride not only resulted in reduced mycoparasitic overgrowth and lysis of host fungi but also led to loss of hyphal avoidance in the colony periphery and a severe reduction in conidial anastomosis tube formation and vegetative hyphal fusion events. The transcription of several orthologues of Neurospora crassa hyphal fusion genes was reduced upon ste12 deletion; however, the Δste12 mutant showed enhanced expression of mycoparasitism-relevant chitinolytic and proteolytic enzymes and of the cell wall integrity MAP kinase Tmk2. Based on the comparative analyses of Δste12 and Δtmk1 mutants, an essential role of the Ste12 transcriptional regulator in mediating outcomes of the Tmk1 MAPK pathway such as regulation of the mycoparasitic activity, hyphal fusion and carbon source-dependent vegetative growth is suggested. Aerial hyphae formation and conidiation, in contrast, were found to be independent of Ste12.

  18. Sex differences in behavioral and PKA cascade responses to repeated cocaine administration.

    Science.gov (United States)

    Zhou, Luyi; Sun, Wei-Lun; Weierstall, Karen; Minerly, Ana Christina; Weiner, Jan; Jenab, Shirzad; Quinones-Jenab, Vanya

    2016-10-01

    Previous studies have shown sex different patterns in behavioral responses to cocaine. Here, we used between-subject experiment design to study whether sex differences exist in the development of behavioral sensitization and tolerance to repeated cocaine, as well as the role of protein kinase A (PKA) signaling cascade in this process. Ambulatory and rearing responses were recorded in male and female rats after 1 to 14 days of administration of saline or cocaine (15 mg/kg; ip). Correspondent PKA-associated signaling in the nucleus accumbens (NAc) and caudate-putamen (CPu) was measured at each time point. Our results showed that females exhibited higher cocaine-induced behavioral responses and developed behavioral sensitization and tolerance faster than males. Whereas females developed behavioral sensitization to cocaine after 2 days and tolerance after 14 days, male rats developed sensitization after 5 days. In addition, cocaine induced a sexual dimorphic pattern in the progression of neuronal adaptations on the PKA cascade signaling in region (NAc vs. CPu) and time (days of cocaine administration)-dependent manners. In general, more PKA signaling cascade changes were found in the NAc of males on day 5 and in the CPu of females with repeated cocaine injection. In addition, in females, behavioral activities positively correlated with FosB levels in the NAc and CPu and negatively correlated with Cdk5 and p35 in the CPu, while no correlation was observed in males. Our studies suggest that repeated cocaine administration induced different patterns of behavioral and molecular responses in the PKA cascade in male and female rats.

  19. Coordinating ERK signaling via the molecular scaffold Kinase Suppressor of Ras [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Danielle Frodyma

    2017-08-01

    Full Text Available Many cancers, including those of the colon, lung, and pancreas, depend upon the signaling pathways induced by mutated and constitutively active Ras. The molecular scaffolds Kinase Suppressor of Ras 1 and 2 (KSR1 and KSR2 play potent roles in promoting Ras-mediated signaling through the Raf/MEK/ERK kinase cascade. Here we summarize the canonical role of KSR in cells, including its central role as a scaffold protein for the Raf/MEK/ERK kinase cascade, its regulation of various cellular pathways mediated through different binding partners, and the phenotypic consequences of KSR1 or KSR2 genetic inactivation. Mammalian KSR proteins have a demonstrated role in cellular and organismal energy balance with implications for cancer and obesity. Targeting KSR1 in cancer using small molecule inhibitors has potential for therapy with reduced toxicity to the patient. RNAi and small molecule screens using KSR1 as a reference standard have the potential to expose and target vulnerabilities in cancer. Interestingly, although KSR1 and KSR2 are similar in structure, KSR2 has a distinct physiological role in regulating energy balance. Although KSR proteins have been studied for two decades, additional analysis is required to elucidate both the regulation of these molecular scaffolds and their potent effect on the spatial and temporal control of ERK activation in health and disease.

  20. Separate the inseparable one-layer mapping

    Science.gov (United States)

    Hu, Chia-Lun J.

    2000-04-01

    When the input-output mapping of a one-layered perceptron (OLP) does NOT meet the PLI condition which is the if-and- only-if, or 'IFF, condition that the mapping can be realized by a OLP, then no matter what learning rule we use, a OLP just cannot realize this mapping at all. However, because of the nature of the PLI, one can still construct a parallel- cascaded, two-layered perceptron system to realize this `illegal' mapping. Theory and design example of this novel design will be reported in detail in this paper.

  1. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK and Mitogen-Activated Protein Kinases (MAP Kinases Signaling Pathway in Keratinocytes

    Directory of Open Access Journals (Sweden)

    Yun-Hee Choi

    2015-11-01

    Full Text Available Mycosporine-like amino acids (MAAs are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS. In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH, Mycosporine-glycine (M-Gly, and Porphyra (P334 were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK, extracellular signal-regulated kinases (ERK, and c-Jun N-terminal kinases (JNK. These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies.

  2. Mycosporine-Like Amino Acids Promote Wound Healing through Focal Adhesion Kinase (FAK) and Mitogen-Activated Protein Kinases (MAP Kinases) Signaling Pathway in Keratinocytes

    Science.gov (United States)

    Choi, Yun-Hee; Yang, Dong Joo; Kulkarni, Atul; Moh, Sang Hyun; Kim, Ki Woo

    2015-01-01

    Mycosporine-like amino acids (MAAs) are secondary metabolites found in diverse marine, freshwater, and terrestrial organisms. Evidence suggests that MAAs have several beneficial effects on skin homeostasis such as protection against UV radiation and reactive oxygen species (ROS). In addition, MAAs are also involved in the modulation of skin fibroblasts proliferation. However, the regulatory function of MAAs on wound repair in human skin is not yet clearly elucidated. To investigate the roles of MAAs on the wound healing process in human keratinocytes, three MAAs, Shinorine (SH), Mycosporine-glycine (M-Gly), and Porphyra (P334) were purified from Chlamydomonas hedlyei and Porphyra yezoensis. We found that SH, M-Gly, and P334 have significant effects on the wound healing process in human keratinocytes and these effects were mediated by activation of focal adhesion kinases (FAK), extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinases (JNK). These results suggest that MAAs accelerate wound repair by activating the FAK-MAPK signaling pathways. This study also indicates that MAAs can act as a new wound healing agent and further suggests that MAAs might be a novel biomaterial for wound healing therapies. PMID:26703626

  3. Modeling of cascade and sub-cascade formation at high pka energies in irradiated fusion structural materials

    International Nuclear Information System (INIS)

    Ryazanov, A.; Metelkin, E.V.; Semenov, E.A.

    2007-01-01

    Full text of publication follows: A new theoretical model is developed for the investigations of cascade and sub-cascade formation in fusion structural materials under fast neutron irradiation at high primary knock atom (PKA) energies. Under 14 MeV neutron irradiation especially of light fusion structural materials such as Be, C, SiC materials PKA will have the energies up to 1 MeV. At such high energies it is very difficult to use the Monte Carlo or molecular dynamic simulations. The developed model is based on the analytical consideration of elastic collisions between displaced moving atoms into atomic cascades produced by a PKAs with the some kinetic energy obtained from fast neutrons. The Tomas-Fermy interaction potential is used for the describing of elastic collisions between moving atoms. The suggested model takes into account also the electronic losses for moving atoms between elastic collisions. The self consistent criterion for sub-cascade formation is suggested here which is based on the comparison of mean distance between two consequent PKA collisions and size of sub-cascade produced by PKA. The analytical relations for the most important characteristics of cascades and sub-cascade are determined including the average number of sub-cascades per one PKA in the dependence on PKA energy, the distance between sub-cascades and the average cascade and sub-cascade sizes as a function of PKA energy. The developed model allows determining the total numbers, distribution functions of cascades and sub-cascades in dependence on their sizes and generation rate of cascades and sub-cascades for different fusion neutron energy spectra. Based on the developed model the numerical calculations for main characteristics of cascades and sub-cascades in different fusion structural materials are performed using the neutron flux and PKA energy spectra for fusion reactors: ITER and DEMO. The main characteristics for cascade and sub-cascade formation are calculated here for the

  4. Contribution of PIP-5 kinase Iα to raft-based FcγRIIA signaling

    International Nuclear Information System (INIS)

    Szymanska, Ewelina; Korzeniowski, Marek; Raynal, Patrick; Sobota, Andrzej; Kwiatkowska, Katarzyna

    2009-01-01

    Receptor FcγIIA (FcγRIIA) associates with plasma membrane rafts upon activation to trigger signaling cascades leading to actin polymerization. We examined whether compartmentalization of PI(4,5)P 2 and PI(4,5)P 2 -synthesizing PIP5-kinase Iα to rafts contributes to FcγRIIA signaling. A fraction of PIP5-kinase Iα was detected in raft-originating detergent-resistant membranes (DRM) isolated from U937 monocytes and other cells. The DRM of U937 monocytes contained also a major fraction of PI(4,5)P 2 . PIP5-kinase Iα bound PI(4,5)P 2 , and depletion of the lipid displaced PIP5-kinase Iα from the DRM. Activation of FcγRIIA in BHK transfectants led to recruitment of the kinase to the plasma membrane and enrichment of DRM in PI(4,5)P 2 . Immunofluorescence studies revealed that in resting cells the kinase was associated with the plasma membrane, cytoplasmic vesicles and the nucleus. After FcγRIIA activation, PIP5-kinase Iα and PI(4,5)P 2 co-localized transiently with the activated receptor at distinct cellular locations. Immunoelectron microscopy studies revealed that PIP5-kinase Iα and PI(4,5)P 2 were present at the edges of electron-dense assemblies containing activated FcγRIIA in their core. The data suggest that activation of FcγRIIA leads to membrane rafts coalescing into signaling platforms containing PIP5-kinase Iα and PI(4,5)P 2

  5. Atom-atom collision cascades localization

    International Nuclear Information System (INIS)

    Kirsanov, V.V.

    1980-01-01

    The presence of an impurity and thermal vibration influence on the atom-atom collision cascade development is analysed by the computer simulation method (the modificated dynamic model). It is discovered that the relatively low energetic cascades are localized with the temperature increase of an irradiated crystal. On the basis of the given effect the mechanism of splitting of the high energetic cascades into subcascades is proposed. It accounts for two factors: the primary knocked atom energy and the irradiated crystal temperature. Introduction of an impurity also localizes the cascades independently from the impurity atom mass. The cascades localization leads to intensification of the process of annealing in the cascades and reduction of the post-cascade vacancy cluster sizes. (author)

  6. Identification of selective inhibitors of RET and comparison with current clinical candidates through development and validation of a robust screening cascade [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Amanda J. Watson

    2016-05-01

    Full Text Available RET (REarranged during Transfection is a receptor tyrosine kinase, which plays pivotal roles in regulating cell survival, differentiation, proliferation, migration and chemotaxis. Activation of RET is a mechanism of oncogenesis in medullary thyroid carcinomas where both germline and sporadic activating somatic mutations are prevalent.   At present, there are no known specific RET inhibitors in clinical development, although many potent inhibitors of RET have been opportunistically identified through selectivity profiling of compounds initially designed to target other tyrosine kinases. Vandetanib and cabozantinib, both multi-kinase inhibitors with RET activity, are approved for use in medullary thyroid carcinoma, but additional pharmacological activities, most notably inhibition of vascular endothelial growth factor - VEGFR2 (KDR, lead to dose-limiting toxicity. The recent identification of RET fusions present in ~1% of lung adenocarcinoma patients has renewed interest in the identification and development of more selective RET inhibitors lacking the toxicities associated with the current treatments.   In an earlier publication [Newton et al, 2016; 1] we reported the discovery of a series of 2-substituted phenol quinazolines as potent and selective RET kinase inhibitors. Here we describe the development of the robust screening cascade which allowed the identification and advancement of this chemical series.  Furthermore we have profiled a panel of RET-active clinical compounds both to validate the cascade and to confirm that none display a RET-selective target profile.

  7. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    Directory of Open Access Journals (Sweden)

    Anne N Shemon

    2009-06-01

    Full Text Available Raf Kinase Inhibitory Protein (RKIP, also PEBP1, a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function.We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/- mouse embryonic fibroblasts (MEFs to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/- MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle.These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  8. Raf Kinase Inhibitory Protein protects cells against locostatin-mediated inhibition of migration.

    Science.gov (United States)

    Shemon, Anne N; Eves, Eva M; Clark, Matthew C; Heil, Gary; Granovsky, Alexey; Zeng, Lingchun; Imamoto, Akira; Koide, Shohei; Rosner, Marsha Rich

    2009-06-24

    Raf Kinase Inhibitory Protein (RKIP, also PEBP1), a member of the Phosphatidylethanolamine Binding Protein family, negatively regulates growth factor signaling by the Raf/MAP kinase pathway. Since an organic compound, locostatin, was reported to bind RKIP and inhibit cell migration by a Raf-dependent mechanism, we addressed the role of RKIP in locostatin function. We analyzed locostatin interaction with RKIP and examined the biological consequences of locostatin binding on RKIP function. NMR studies show that a locostatin precursor binds to the conserved phosphatidylethanolamine binding pocket of RKIP. However, drug binding to the pocket does not prevent RKIP association with its inhibitory target, Raf-1, nor affect RKIP phosphorylation by Protein Kinase C at a regulatory site. Similarly, exposure of wild type, RKIP-depleted HeLa cells or RKIP-deficient (RKIP(-/-)) mouse embryonic fibroblasts (MEFs) to locostatin has no effect on MAP kinase activation. Locostatin treatment of wild type MEFs causes inhibition of cell migration following wounding. RKIP deficiency impairs migration further, indicating that RKIP protects cells against locostatin-mediated inhibition of migration. Locostatin treatment of depleted or RKIP(-/-) MEFs reveals cytoskeletal disruption and microtubule abnormalities in the spindle. These results suggest that locostatin's effects on cytoskeletal structure and migration are caused through mechanisms independent of its binding to RKIP and Raf/MAP kinase signaling. The protective effect of RKIP against drug inhibition of migration suggests a new role for RKIP in potentially sequestering toxic compounds that may have deleterious effects on cells.

  9. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    International Nuclear Information System (INIS)

    Crowe, David L; Ohannessian, Arthur

    2004-01-01

    Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK). Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK). Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC) lines. Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway

  10. Recruitment of focal adhesion kinase and paxillin to β1 integrin promotes cancer cell migration via mitogen activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Ohannessian Arthur

    2004-05-01

    Full Text Available Abstract Background Integrin-extracellular matrix interactions activate signaling cascades such as mitogen activated protein kinases (MAPK. Integrin binding to extracellular matrix increases tyrosine phosphorylation of focal adhesion kinase (FAK. Inhibition of FAK activity by expression of its carboxyl terminus decreases cell motility, and cells from FAK deficient mice also show reduced migration. Paxillin is a focal adhesion protein which is also phosphorylated on tyrosine. FAK recruitment of paxillin to the cell membrane correlates with Shc phosphorylation and activation of MAPK. Decreased FAK expression inhibits papilloma formation in a mouse skin carcinogenesis model. We previously demonstrated that MAPK activation was required for growth factor induced in vitro migration and invasion by human squamous cell carcinoma (SCC lines. Methods Adapter protein recruitment to integrin subunits was examined by co-immunoprecipitation in SCC cells attached to type IV collagen or plastic. Stable clones overexpressing FAK or paxillin were created using the lipofection technique. Modified Boyden chambers were used for invasion assays. Results In the present study, we showed that FAK and paxillin but not Shc are recruited to the β1 integrin cytoplasmic domain following attachment of SCC cells to type IV collagen. Overexpression of either FAK or paxillin stimulated cancer cell migration on type IV collagen and invasion through reconstituted basement membrane which was dependent on MAPK activity. Conclusions We concluded that recruitment of focal adhesion kinase and paxillin to β1 integrin promoted cancer cell migration via the mitogen activated protein kinase pathway.

  11. Torilin Inhibits Inflammation by Limiting TAK1-Mediated MAP Kinase and NF-κB Activation

    Directory of Open Access Journals (Sweden)

    Mehari Endale

    2017-01-01

    Full Text Available Torilin, a sesquiterpene isolated from the fruits of Torilis japonica, has shown antimicrobial, anticancer, and anti-inflammatory properties. However, data on the mechanism of torilin action against inflammation is limited. This study aimed at determining the anti-inflammatory property of torilin in LPS-induced inflammation using in vitro model of inflammation. We examined torilin’s effect on expression levels of inflammatory mediators and cytokines in LPS-stimulated RAW 264.7 macrophages. The involvement of NF-kB and AP-1, MAP kinases, and adaptor proteins were assessed. Torilin strongly inhibited LPS-induced NO release, iNOS, PGE2, COX-2, NF-α, IL-1β, IL-6, and GM-CSF gene and protein expressions. In addition, MAPKs were also suppressed by torilin pretreatment. Involvement of ERK1/2, P38MAPK, and JNK1/2 was further confirmed by PD98059, SB203580, and SP600125 mediated suppression of iNOS and COX-2 proteins. Furthermore, torilin attenuated NF-kB and AP-1 translocation, DNA binding, and reporter gene transcription. Interestingly, torilin inhibited TAK1 kinase activation with the subsequent suppression of MAPK-mediated JNK, p38, ERK1/2, and AP-1 (ATF-2 and c-jun activation and IKK-mediated I-κBα degradation, p65/p50 activation, and translocation. Together, the results revealed the suppression of NF-κB and AP-1 regulated inflammatory mediator and cytokine expressions, suggesting the test compound’s potential as a candidate anti-inflammatory agent.

  12. The molecular architecture of human N-acetylgalactosamine kinase.

    Science.gov (United States)

    Thoden, James B; Holden, Hazel M

    2005-09-23

    Galactokinase plays a key role in normal galactose metabolism by catalyzing the conversion of alpha-d-galactose to galactose 1-phosphate. Within recent years, the three-dimensional structures of human galactokinase and two bacterial forms of the enzyme have been determined. Originally, the gene encoding galactokinase in humans was mapped to chromosome 17. An additional gene, encoding a protein with sequence similarity to galactokinase, was subsequently mapped to chromosome 15. Recent reports have shown that this second gene (GALK2) encodes an enzyme with greater activity against GalNAc than galactose. This enzyme, GalNAc kinase, has been implicated in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates. Here we report the first structural analysis of a GalNAc kinase. The structure of the human enzyme was solved in the presence of MnAMPPNP and GalNAc or MgATP and GalNAc (which resulted in bound products in the active site). The enzyme displays a distinctly bilobal appearance with its active site wedged between the two domains. The N-terminal region is dominated by a seven-stranded mixed beta-sheet, whereas the C-terminal motif contains two layers of anti-parallel beta-sheet. The overall topology displayed by GalNAc kinase places it into the GHMP superfamily of enzymes, which generally function as small molecule kinases. From this investigation, the geometry of the GalNAc kinase active site before and after catalysis has been revealed, and the determinants of substrate specificity have been defined on a molecular level.

  13. The role of the C8 proton of ATP in the catalysis of shikimate kinase and adenylate kinase

    Directory of Open Access Journals (Sweden)

    Kenyon Colin P

    2012-08-01

    is therefore conceivable that kinase enzymes achieve the observed 2,500-fold variation in KM through a combination of the various conserved “push” and “pull” mechanisms associated with the release of C8-H, the proton transfer cascades unique to the class of kinase in question and the resultant/concomitant creation of a pentavalent species from the γ-phosphate group of ATP. Also demonstrated is the interplay between the role of the C8-H of ATP and the ATP concentration in the observed enzyme activity. The lability of the C8-H mediated by active site residues co-ordinated to the purine ring of ATP therefore plays a significant role in explaining the broad KM range associated with kinase steady state enzyme activities.

  14. Amide-based inhibitors of p38alpha MAP kinase. Part 2: design, synthesis and SAR of potent N-pyrimidyl amides.

    Science.gov (United States)

    Tester, Richland; Tan, Xuefei; Luedtke, Gregory R; Nashashibi, Imad; Schinzel, Kurt; Liang, Weiling; Jung, Joon; Dugar, Sundeep; Liclican, Albert; Tabora, Jocelyn; Levy, Daniel E; Do, Steven

    2010-04-15

    Optimization of a tri-substituted N-pyridyl amide led to the discovery of a new class of potent N-pyrimidyl amide based p38alpha MAP kinase inhibitors. Initial SAR studies led to the identification of 5-dihydrofuran as an optimal hydrophobic group. Additional side chain modifications resulted in the introduction of hydrogen bond interactions. Through extensive SAR studies, analogs bearing free amino groups and alternatives to the parent (S)-alpha-methyl benzyl moiety were identified. These compounds exhibited improved cellular activities and maintained balance between p38alpha and CYP3A4 inhibition. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Acute lymphoid and gastrointestinal toxicity induced by selective p38alpha map kinase and map kinase-activated protein kinase-2 (MK2) inhibitors in the dog.

    Science.gov (United States)

    Morris, Dale L; O'Neil, Shawn P; Devraj, Rajesh V; Portanova, Joseph P; Gilles, Richard W; Gross, Cindy J; Curtiss, Sandra W; Komocsar, Wendy J; Garner, Debra S; Happa, Fernando A; Kraus, Lori J; Nikula, Kristen J; Monahan, Joseph B; Selness, Shaun R; Galluppi, Gerald R; Shevlin, Kimberly M; Kramer, Jeffrey A; Walker, John K; Messing, Dean M; Anderson, David R; Mourey, Robert J; Whiteley, Laurence O; Daniels, John S; Yang, Jerry Z; Rowlands, Philip C; Alden, Carl L; Davis, John W; Sagartz, John E

    2010-06-01

    Exposure to moderately selective p38alpha mitogen-activated protein kinase (MAPK) inhibitors in the Beagle dog results in an acute toxicity consisting of mild clinical signs (decreased activity, diarrhea, and fever), lymphoid necrosis and depletion in the gut-associated lymphoid tissue (GALT), mesenteric lymph nodes and spleen, and linear colonic and cecal mucosal hemorrhages. Lymphocyte apoptosis and necrosis in the GALT is the earliest and most prominent histopathologic change observed, followed temporally by neutrophilic infiltration and acute inflammation of the lymph nodes and spleen and multifocal mucosal epithelial necrosis and linear hemorrhages in the colon and cecum. These effects are not observed in the mouse, rat, or cynomolgus monkey. To further characterize the acute toxicity in the dog, a series of in vivo, in vitro, and immunohistochemical studies were conducted to determine the relationship between the lymphoid and gastrointestinal (GI) toxicity and p38 MAPK inhibition. Results of these studies demonstrate a direct correlation between p38alpha MAPK inhibition and the acute lymphoid and gastrointestinal toxicity in the dog. Similar effects were observed following exposure to inhibitors of MAPK-activated protein kinase-2 (MK2), further implicating the role of p38alpha MAPK signaling pathway inhibition in these effects. Based on these findings, the authors conclude that p38alpha MAPK inhibition results in acute lymphoid and GI toxicity in the dog and is unique among the species evaluated in these studies.

  16. SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions.

    Science.gov (United States)

    Sugden, Peter H; McGuffin, Liam J; Clerk, Angela

    2013-08-15

    The GCKIII (germinal centre kinase III) subfamily of the mammalian Ste20 (sterile 20)-like group of serine/threonine protein kinases comprises SOK1 (Ste20-like/oxidant-stress-response kinase 1), MST3 (mammalian Ste20-like kinase 3) and MST4. Initially, GCKIIIs were considered in the contexts of the regulation of mitogen-activated protein kinase cascades and apoptosis. More recently, their participation in multiprotein heterocomplexes has become apparent. In the present review, we discuss the structure and phosphorylation of GCKIIIs and then focus on their interactions with other proteins. GCKIIIs possess a highly-conserved, structured catalytic domain at the N-terminus and a less-well conserved C-terminal regulatory domain. GCKIIIs are activated by tonic autophosphorylation of a T-loop threonine residue and their phosphorylation is regulated primarily through protein serine/threonine phosphatases [especially PP2A (protein phosphatase 2A)]. The GCKIII regulatory domains are highly disorganized, but can interact with more structured proteins, particularly the CCM3 (cerebral cavernous malformation 3)/PDCD10 (programmed cell death 10) protein. We explore the role(s) of GCKIIIs (and CCM3/PDCD10) in STRIPAK (striatin-interacting phosphatase and kinase) complexes and their association with the cis-Golgi protein GOLGA2 (golgin A2; GM130). Recently, an interaction of GCKIIIs with MO25 has been identified. This exhibits similarities to the STRADα (STE20-related kinase adaptor α)-MO25 interaction (as in the LKB1-STRADα-MO25 heterotrimer) and, at least for MST3, the interaction may be enhanced by cis-autophosphorylation of its regulatory domain. In these various heterocomplexes, GCKIIIs associate with the Golgi apparatus, the centrosome and the nucleus, as well as with focal adhesions and cell junctions, and are probably involved in cell migration, polarity and proliferation. Finally, we consider the association of GCKIIIs with a number of human diseases, particularly

  17. Mechanisms of cascade collapse

    International Nuclear Information System (INIS)

    Diaz de la Rubia, T.; Smalinskas, K.; Averback, R.S.; Robertson, I.M.; Hseih, H.; Benedek, R.

    1988-12-01

    The spontaneous collapse of energetic displacement cascades in metals into vacancy dislocation loops has been investigated by molecular dynamics (MD) computer simulation and transmission electron microscopy (TEM). Simulations of 5 keV recoil events in Cu and Ni provide the following scenario of cascade collapse: atoms are ejected from the central region of the cascade by replacement collision sequences; the central region subsequently melts; vacancies are driven to the center of the cascade during resolidification where they may collapse into loops. Whether or not collapse occurs depends critically on the melting temperature of the metal and the energy density and total energy in the cascade. Results of TEM are presented in support of this mechanism. 14 refs., 4 figs., 1 tab

  18. Rho-associated kinase is a therapeutic target in neuroblastoma.

    Science.gov (United States)

    Dyberg, Cecilia; Fransson, Susanne; Andonova, Teodora; Sveinbjörnsson, Baldur; Lännerholm-Palm, Jessika; Olsen, Thale K; Forsberg, David; Herlenius, Eric; Martinsson, Tommy; Brodin, Bertha; Kogner, Per; Johnsen, John Inge; Wickström, Malin

    2017-08-08

    Neuroblastoma is a peripheral neural system tumor that originates from the neural crest and is the most common and deadly tumor of infancy. Here we show that neuroblastoma harbors frequent mutations of genes controlling the Rac/Rho signaling cascade important for proper migration and differentiation of neural crest cells during neuritogenesis. RhoA is activated in tumors from neuroblastoma patients, and elevated expression of Rho-associated kinase (ROCK)2 is associated with poor patient survival. Pharmacological or genetic inhibition of ROCK1 and 2, key molecules in Rho signaling, resulted in neuroblastoma cell differentiation and inhibition of neuroblastoma cell growth, migration, and invasion. Molecularly, ROCK inhibition induced glycogen synthase kinase 3β-dependent phosphorylation and degradation of MYCN protein. Small-molecule inhibition of ROCK suppressed MYCN -driven neuroblastoma growth in TH- MYCN homozygous transgenic mice and MYCN gene-amplified neuroblastoma xenograft growth in nude mice. Interference with Rho/Rac signaling might offer therapeutic perspectives for high-risk neuroblastoma.

  19. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  20. Interaction of LRRK2 with kinase and GTPase signaling cascades

    Directory of Open Access Journals (Sweden)

    Joon Y Boon

    2014-07-01

    Full Text Available LRRK2 is a protein that interacts with a plethora of signaling molecules, but the complexity of LRRK2 function presents a challenge for understanding the role of LRRK2 in the pathophysiology of Parkinson’s disease. Studies of LRRK2 using over-expression in transgenic mice have been disappointing, however studies using invertebrate systems have yielded a much clearer picture, with clear effects of LRRK2 expression, knockdown or deletion in C. elegans and Drosophila on modulation of survival of dopaminergic neurons. Recent studies have begun to focus attention on particular signaling cascades that are a target of LRRK2 function. LRRK2 interacts with members of the MAPK pathway and might regulate the pathway action by acting as a scaffold that directs the location of MAPK pathway activity, without strongly affecting the amount of MAPK pathway activity. Binding to GTPases, GAPs and GEFs are another strong theme in LRRK2 biology, with LRRK2 binding to Rac1, cdc42, rab5, rab7L1, endoA, RGS2, ArfGAP1 and ArhGEF7. All of these molecules appear to feed into a function output for LRRK2 that modulates cytoskeletal outgrowth and vesicular dynamics, including autophagy. These functions likely impact modulation of α-synuclein aggregation and associated toxicity eliciting the disease processes that we term Parkinson’s disease.

  1. Involvement of stress-activated protein kinase in the cellular response to 1-beta-D-arabinofuranosylcytosine and other DNA-damaging agents.

    Science.gov (United States)

    Saleem, A; Datta, R; Yuan, Z M; Kharbanda, S; Kufe, D

    1995-12-01

    The cellular response to 1-beta-D-arabinofuranosylcytosine (ara-C) includes activation of Jun/AP-1, induction of c-jun transcription, and programmed cell death. The stress-activated protein (SAP) kinases stimulate the transactivation function of c-jun by amino terminal phosphorylation. The present work demonstrates that ara-C activates p54 SAP kinase. The finding that SAP kinase is also activated by alkylating agents (mitomycin C and cisplatinum) and the topoisomerase I inhibitor 9-amino-camptothecin supports DNA damage as an initial signal in this cascade. The results demonstrate that ara-C also induces binding of SAP kinase to the SH2/SH3-containing adapter protein Grb2. SAP kinase binds to the SH3 domains of Grb2, while interaction of the p85 alpha-subunit of phosphatidylinositol 3-kinase complex. The results also demonstrate that ara-C treatment is associated with inhibition of lipid and serine kinase activities of PI 3-kinase. The potential significance of the ara-C-induced interaction between SAP kinase and PI 3-kinase is further supported by the demonstration that Wortmannin, an inhibitor of PI 3-kinase, stimulates SAP kinase activity. The finding that Wortmannin treatment is also associated with internucleosomal DNA fragmentation may support a potential link between PI 3-kinase and regulation of both SAP kinase and programmed cell death.

  2. Kaempferol targets RSK2 and MSK1 to suppress ultraviolet radiation-induced skin cancer

    Science.gov (United States)

    Langfald, Alyssa; Yang, Ge; Zhang, Yi; Yu, Dong Hoon; Kim, Myoung Ok; Lee, Mee-Hyun; Li, Haitao; Bae, Ki Beom; Kim, Hong-Gyum; Ma, Wei-Ya; Bode, Ann M.; Dong, Ziming; Dong, Zigang

    2014-01-01

    Solar ultraviolet (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the USA. The mitogen-activated protein (MAP) kinase cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAP kinase cascades. In this study, phosphorylation of RSK and MSK1 was up-regulated in human squamous cell carcinoma (SCC) and solar UV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate solar UV-induced phosphorylation of CREB and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of solar UV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in solar UV-induced phosphorylation of cAMP response element-binding protein (CREB), c-Fos and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against solar UV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1. PMID:24994661

  3. Sugar analog synthesis by in vitro biocatalytic cascade: A comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis.

    Science.gov (United States)

    Hartley, Carol J; French, Nigel G; Scoble, Judith A; Williams, Charlotte C; Churches, Quentin I; Frazer, Andrew R; Taylor, Matthew C; Coia, Greg; Simpson, Gregory; Turner, Nicholas J; Scott, Colin

    2017-01-01

    Carbon-carbon bond formation is one of the most challenging reactions in synthetic organic chemistry, and aldol reactions catalysed by dihydroxyacetone phosphate-dependent aldolases provide a powerful biocatalytic tool for combining C-C bond formation with the generation of two new stereo-centres, with access to all four possible stereoisomers of a compound. Dihydroxyacetone phosphate (DHAP) is unstable so the provision of DHAP for DHAP-dependent aldolases in biocatalytic processes remains complicated. Our research has investigated the efficiency of several different enzymatic cascades for the conversion of glycerol to DHAP, including characterising new candidate enzymes for some of the reaction steps. The most efficient cascade for DHAP production, comprising a one-pot four-enzyme reaction with glycerol kinase, acetate kinase, glycerophosphate oxidase and catalase, was coupled with a DHAP-dependent fructose-1,6-biphosphate aldolase enzyme to demonstrate the production of several rare chiral sugars. The limitation of batch biocatalysis for these reactions and the potential for improvement using kinetic modelling and flow biocatalysis systems is discussed.

  4. Towards a comprehensive phylogenetic reconstruction of the evolutionary history of mitogen-activated protein kinases in the plant kingdom

    Directory of Open Access Journals (Sweden)

    Philipp eJanitza

    2012-12-01

    Full Text Available The mitogen-activated protein kinase (MAPK pathway is a three-tier signaling cascade that transmits cellular information from the plasma membrane to the cytoplasm where it triggers downstream responses. The MAPKs represent the last step in this cascade and are activated when both tyrosine and threonine residues in a conserved TxY motif are phosphorylated by MAPK kinases, which in turn are themselves activated by phosphorylation by MAPK kinase kinases. To understand the molecular evolution of MAPKs in the plant kingdom, we systematically conducted a Hidden-Markov-Model based screen to identify MAPKs in 13 completely sequenced plant genomes. In this analysis, we included green algae, bryophytes, lycophytes, and several mono- and dicotyledonous species covering >800 million years of evolution. The phylogenetic relationships of the 204 identified MAPKs based on Bayesian inference facilitated the retraction of the sequence of emergence of the four major clades that are characterized by the presence of a TDY or TEY-A/TEY-B/TEY-C type kinase activation loop. We present evidence that after the split of TDY- and TEY-type MAPKs, initially the TEY-C clade emerged. This was followed by the TEY-B clade in early land plants until the TEY-A clade finally emerged in flowering plants. In addition to these well characterized clades, we identified another highly conserved clade of 45 MAPK-likes, members of which were previously described as MHKs. In agreement with their essential functions, molecular population genetic analysis of MAPK genes in Arabidopsis thaliana accessions reveal that purifying selection drove the evolution of the MAPK family, implying strong functional constraints on MAPK genes. Closely related MAPKs most likely subfunctionalized, a process in which differential transcriptional regulation of duplicates may be involved.

  5. Learning optimal embedded cascades.

    Science.gov (United States)

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  6. A new cascade NN based method to short-term load forecast in deregulated electricity market

    International Nuclear Information System (INIS)

    Kouhi, Sajjad; Keynia, Farshid

    2013-01-01

    Highlights: • We are proposed a new hybrid cascaded NN based method and WT to short-term load forecast in deregulated electricity market. • An efficient preprocessor consist of normalization and shuffling of signals is presented. • In order to select the best inputs, a two-stage feature selection is presented. • A new cascaded structure consist of three cascaded NNs is used as forecaster. - Abstract: Short-term load forecasting (STLF) is a major discussion in efficient operation of power systems. The electricity load is a nonlinear signal with time dependent behavior. The area of electricity load forecasting has still essential need for more accurate and stable load forecast algorithm. To improve the accuracy of prediction, a new hybrid forecast strategy based on cascaded neural network is proposed for STLF. This method is consists of wavelet transform, an intelligent two-stage feature selection, and cascaded neural network. The feature selection is used to remove the irrelevant and redundant inputs. The forecast engine is composed of three cascaded neural network (CNN) structure. This cascaded structure can be efficiently extract input/output mapping function of the nonlinear electricity load data. Adjustable parameters of the intelligent feature selection and CNN is fine-tuned by a kind of cross-validation technique. The proposed STLF is tested on PJM and New York electricity markets. It is concluded from the result, the proposed algorithm is a robust forecast method

  7. Stimulation of casein kinase II by epidermal growth factor: Relationship between the physiological activity of the kinase and the phosphorylation state of its beta subunit

    International Nuclear Information System (INIS)

    Ackerman, P.; Osheroff, N.; Glover, C.V.C.

    1990-01-01

    To determine relationships between the hormonal activation of casein kinase II and its phosphorylation state, epidermal growth factor (EGF)-treated and EGF-naive human A-431 carcinoma cells were cultured in the presence of [ 32 P]orthophosphate. Immunoprecipitation experiments indicated that casein kinase II in the cytosol of EGF-treated cells contained approximately 3-fold more incorporated [ 32 P]phosphate than did its counterpart in untreated cells. Levels of kinase phosphorylation paralleled levels of kinase activity over a wide range of EGF concentrations as well as over a time course of hormone action. Approximately 97% of the incorporated [ 32 P]phosphate was found in the β subunit of casein kinase II. Both activated and hormone-naive kinase contained radioactive phosphoserine and phosphothreonine but no phosphotyronsine. On the basis of proteolytic mapping experiments, EGF treatment of A-431 cells led to an increase in the average [ 32 P]phosphate content (i.e., hyperphosphorylation) of casein kinase II β subunit peptides which were modified prior to hormone treatment. Finally, the effect of alkaline phosphatase on the reaction kinetics of activated casein kinase II indicated that hormonal stimulation of the kinase resulted from the increase in its phosphorylation state

  8. Whole-brain activity mapping onto a zebrafish brain atlas

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L.; Naumann, Eva A.; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E.; Portugues, Ruben; Lacoste, Alix M.B.; Riegler, Clemens; Engert, Florian; Schier, Alexander F.

    2015-01-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open source atlas containing molecular labels and anatomical region definitions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated-Extracellular signal-regulated kinase (ERK/MAPK) as a readout of neural activity, we have developed a system to create and contextualize whole brain maps of stimulus- and behavior-dependent neural activity. This MAP-Mapping (Mitogen Activated Protein kinaseMapping) assay is technically simple, fast, inexpensive, and data analysis is completely automated. Since MAP-Mapping is performed on fish that are freely swimming, it is applicable to nearly any stimulus or behavior. We demonstrate the utility of our high-throughput approach using hunting/feeding, pharmacological, visual and noxious stimuli. The resultant maps outline hundreds of areas associated with behaviors. PMID:26778924

  9. Stimulation of p38 (HOG1) kinase pathway by ionizing radiation results in downstream modulation of ATF/CREB transcription factor activity in NIH-3T3 cells

    International Nuclear Information System (INIS)

    Stevenson, Mary Ann; Yao Jin

    1997-01-01

    Purpose/Objective:p38 kinase, a member of the MAP kinase family, is activated in response to stresses such as high osmolarity and UV irradiation as well exposure to cytokines such as IL1β and TNFα. The kinase is part of a signal transduction pathway that leads from receptor activation through a three kinase cascade resulting in the activation of p38. p38 activation then leads to the phosphorylation of target proteins that include transcription factors such as nuclear factor of interleukin 6 and members of the activating transcription factor (ATF) family, and in addition, the stress protein, HSP27, via activation of MAPKAP2 kinase. In the present report, we have investigated the potential role of p38 in the response of NIH-3T3 cells to ionizing radiation. Materials and Methods:NIH-3T3 cells were grown to confluence in DMEM+10%CS and then serum deprived for 24 hours in DMEM+0.1%CS. Radiation exposures were delivered using a Philips RT250 (250Kvp X-ray tube). Activated forms of p38 kinase and ATF/CREB transcription factors were identified using immunoblotting techniques employing activation specific antibodies raised against the phosphorylated forms of the kinases/transcription factors. Kinase activity was directly measured using immunokinase assays. DNA binding of transcription factors to their respective consensus sequences was assayed by EMSA. Results:We found that p38 becomes rapidly phosphorylated and activated by exposure to ionizing radiation. Significantly, p38 is activated to a similar degree and with a similar time course by serum derpviation and entry of cells into a non-proliferating G 0 state, suggesting a causal role for p38 in quiescence. Phosphorylation of p38 directly correlated with phosphorylation and activation of ATF/CREB family members as well as DNA binding by these activated factors. Conclusion:Activation of p38 kinase and downstream transcription factors may play an important role in the response of cells to ionizing radiation. We are

  10. Modeling of cascade and sub-cascade formation at high PKA energies in irradiated fusion structural materials

    International Nuclear Information System (INIS)

    Ryazanov, A.I.; Metelkin, E.V.; Semenov, E.V.

    2009-01-01

    A new theoretical model is developed for the investigations of cascade and sub-cascade formation in fusion structural materials under fast neutron irradiation at high primary knock-on atom energies. Light fusion structural materials: such as Be, C and SiC under 14 MeV neutron irradiation in fusion reactor will have the primary knock-on atoms with the energies up to 1 MeV. It is very difficult to use at such high energies the Monte-Carlo or molecular dynamic simulations [H.L. Heinisch, B.N. Singh, Philos. Mag. A67 (1993) 407; H.L. Heinisch, B.N. Singh, J. Nucl. Mater. 251 (1997) 77]. The developed model is based on the analytical consideration of elastic collisions between displaced moving atoms produced by primary knock-on atoms with some kinetic energies obtained from fast neutrons and crystal lattice atoms. The Thomas-Fermi interaction potential is used here for the description of these elastic atomic collisions. The suggested model takes into account also the electronic losses for moving atoms between elastic collisions. The self-consistent criterion for sub-cascade formation is suggested here which is based on the comparison of mean distance of primary knock-on atoms between consequent collisions of them with the target atoms and a size of sub-cascade produced by moving secondary knock-on atoms produced in such collisions. The analytical relations for the most important characteristics of cascades and sub-cascades are determined including the average number of sub-cascades per one primary knock-on atom in the dependence on its energy, the distance between sub-cascades and the average cascade and sub-cascade sizes. The developed model allows determining the total numbers, distribution functions of cascades and sub-cascades in dependence on their sizes and generation rate of cascades and sub-cascades for the different fusion neutron energy spectra. On the basis of this developed model the numerical calculations for main characteristics of cascades and sub-cascades

  11. Lipid Signaling via Pkh1/2 Regulates Fungal CO2 Sensing through the Kinase Sch9.

    Science.gov (United States)

    Pohlers, Susann; Martin, Ronny; Krüger, Thomas; Hellwig, Daniela; Hänel, Frank; Kniemeyer, Olaf; Saluz, Hans Peter; Van Dijck, Patrick; Ernst, Joachim F; Brakhage, Axel; Mühlschlegel, Fritz A; Kurzai, Oliver

    2017-01-31

    Adaptation to alternating CO 2 concentrations is crucial for all organisms. Carbonic anhydrases-metalloenzymes that have been found in all domains of life-enable fixation of scarce CO 2 by accelerating its conversion to bicarbonate and ensure maintenance of cellular metabolism. In fungi and other eukaryotes, the carbonic anhydrase Nce103 has been shown to be essential for growth in air (~0.04% CO 2 ). Expression of NCE103 is regulated in response to CO 2 availability. In Saccharomyces cerevisiae, NCE103 is activated by the transcription factor ScCst6, and in Candida albicans and Candida glabrata, it is activated by its homologues CaRca1 and CgRca1, respectively. To identify the kinase controlling Cst6/Rca1, we screened an S. cerevisiae kinase/phosphatase mutant library for the ability to regulate NCE103 in a CO 2 -dependent manner. We identified ScSch9 as a potential ScCst6-specific kinase, as the sch9Δ mutant strain showed deregulated NCE103 expression on the RNA and protein levels. Immunoprecipitation revealed the binding capabilities of both proteins, and detection of ScCst6 phosphorylation by ScSch9 in vitro confirmed Sch9 as the Cst6 kinase. We could show that CO 2 -dependent activation of Sch9, which is part of a kinase cascade, is mediated by lipid/Pkh1/2 signaling but not TORC1. Finally, we tested conservation of the identified regulatory cascade in the pathogenic yeast species C. albicans and C. glabrata Deletion of SCH9 homologues of both species impaired CO 2 -dependent regulation of NCE103 expression, which indicates a conservation of the CO 2 adaptation mechanism among yeasts. Thus, Sch9 is a Cst6/Rca1 kinase that links CO 2 adaptation to lipid signaling via Pkh1/2 in fungi. All living organisms have to cope with alternating CO 2 concentrations as CO 2 levels range from very low in the atmosphere (0.04%) to high (5% and more) in other niches, including the human body. In fungi, CO 2 is sensed via two pathways. The first regulates virulence in

  12. The transcriptional response to the inactivation of the PaMpk1 and PaMpk2 MAP kinase pathways in Podospora anserina.

    Science.gov (United States)

    Bidard, Frédérique; Coppin, Evelyne; Silar, Philippe

    2012-08-01

    Transcription pattern during mycelium growth of Podospora anserina was assayed by microarray analysis in wild type and in mutants affected in the MAP kinase genes PaMpk1 and PaMpk2 and in the NADPH oxidase gene PaNox1. 15% of the genes have their expression modified by a factor two or more as growth proceeds in wild type. The genes whose expression is modified during growth in P. anserina are either not conserved or differently regulated in Neurospora crassa and Aspergillus niger, two fungi for which transcriptome data during growth are available. The P. anserina mutants display a similar alteration of their transcriptome profile, with nearly 1000 genes affected similarly in the three mutants, accounting for their similar growth phenotypes. Yet, each mutant has its specific set of modified transcripts, in line with particular phenotypes exhibited by each mutant. Again, there is limited conservation during evolution of the genes regulated at the transcription level by MAP kinases, as indicated by the comparison the P. anserina data, with those of Aspergillus fumigatus and N. crassa, two fungi for which gene expression data are available for mutants of the MAPK pathways. Among the genes regulated in wild type and affected in the mutants, those involved in carbohydrate and secondary metabolisms appear prominent. The vast majority of the genes differentially expressed are of unknown function. Availability of their transcription profile at various stages of development should help to decipher their role in fungal physiology and development. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Virus-specific DNA sequences present in cells which carry the herpes simplex virus thymidine kinase gene.

    Science.gov (United States)

    Minson, A C; Darby, G K; Wildy, P

    1979-11-01

    Two independently derived cell lines which carry the herpes simplex type 2 thymidine kinase gene have been examined for the presence of HSV-2-specific DNA sequences. Both cell lines contained 1 to 3 copies per cell of a sequence lying within map co-ordinates 0.2 to 0.4 of the HSV-2 genome. Revertant cells, which contained no detectable thymidine kinase, did not contain this DNA sequence. The failure of EcoR1-restricted HSV-2 DNA to act as a donor of the thymidine kinase gene in transformation experiments suggests that the gene lies close to the EcoR1 restriction site within this sequence at a map position of approx. 0.3. The HSV-2 kinase gene is therefore approximately co-linear with the HSV-1 gene.

  14. Cascade annealing: an overview

    International Nuclear Information System (INIS)

    Doran, D.G.; Schiffgens, J.O.

    1976-04-01

    Concepts and an overview of radiation displacement damage modeling and annealing kinetics are presented. Short-term annealing methodology is described and results of annealing simulations performed on damage cascades generated using the Marlowe and Cascade programs are included. Observations concerning the inconsistencies and inadequacies of current methods are presented along with simulation of high energy cascades and simulation of longer-term annealing

  15. Period adding cascades: experiment and modeling in air bubbling.

    Science.gov (United States)

    Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos

    2012-03-01

    Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.

  16. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis

    Science.gov (United States)

    Marston, Adele L.; Wassmann, Katja

    2017-01-01

    Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC) controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3), and Aurora B and C (Ipl1) will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid. PMID:29322045

  17. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis

    Directory of Open Access Journals (Sweden)

    Adele L. Marston

    2017-12-01

    Full Text Available Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3, and Aurora B and C (Ipl1 will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid.

  18. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  19. Mitogen-activated protein kinases interacting kinases are autoinhibited by a reprogrammed activation segment.

    Science.gov (United States)

    Jauch, Ralf; Cho, Min-Kyu; Jäkel, Stefan; Netter, Catharina; Schreiter, Kay; Aicher, Babette; Zweckstetter, Markus; Jäckle, Herbert; Wahl, Markus C

    2006-09-06

    Autoinhibition is a recurring mode of protein kinase regulation and can be based on diverse molecular mechanisms. Here, we show by crystal structure analysis, nuclear magnetic resonance (NMR)-based nucleotide affinity studies and rational mutagenesis that nonphosphorylated mitogen-activated protein (MAP) kinases interacting kinase (Mnk) 1 is autoinhibited by conversion of the activation segment into an autoinhibitory module. In a Mnk1 crystal structure, the activation segment is repositioned via a Mnk-specific sequence insertion at the N-terminal lobe with the following consequences: (i) the peptide substrate binding site is deconstructed, (ii) the interlobal cleft is narrowed, (iii) an essential Lys-Glu pair is disrupted and (iv) the magnesium-binding loop is locked into an ATP-competitive conformation. Consistently, deletion of the Mnk-specific insertion or removal of a conserved phenylalanine side chain, which induces a blockade of the ATP pocket, increase the ATP affinity of Mnk1. Structural rearrangements required for the activation of Mnks are apparent from the cocrystal structure of a Mnk2 D228G -staurosporine complex and can be modeled on the basis of crystal packing interactions. Our data suggest a novel regulatory mechanism specific for the Mnk subfamily.

  20. Whole-brain activity mapping onto a zebrafish brain atlas.

    Science.gov (United States)

    Randlett, Owen; Wee, Caroline L; Naumann, Eva A; Nnaemeka, Onyeka; Schoppik, David; Fitzgerald, James E; Portugues, Ruben; Lacoste, Alix M B; Riegler, Clemens; Engert, Florian; Schier, Alexander F

    2015-11-01

    In order to localize the neural circuits involved in generating behaviors, it is necessary to assign activity onto anatomical maps of the nervous system. Using brain registration across hundreds of larval zebrafish, we have built an expandable open-source atlas containing molecular labels and definitions of anatomical regions, the Z-Brain. Using this platform and immunohistochemical detection of phosphorylated extracellular signal–regulated kinase (ERK) as a readout of neural activity, we have developed a system to create and contextualize whole-brain maps of stimulus- and behavior-dependent neural activity. This mitogen-activated protein kinase (MAP)-mapping assay is technically simple, and data analysis is completely automated. Because MAP-mapping is performed on freely swimming fish, it is applicable to studies of nearly any stimulus or behavior. Here we demonstrate our high-throughput approach using pharmacological, visual and noxious stimuli, as well as hunting and feeding. The resultant maps outline hundreds of areas associated with behaviors.

  1. Corticotropin-Releasing Factor Mediates Pain-Induced Anxiety through the ERK1/2 Signaling Cascade in Locus Coeruleus Neurons

    Science.gov (United States)

    Borges, Gisela Patrícia; Micó, Juan Antonio; Neto, Fani Lourença

    2015-01-01

    Background: The corticotropin-releasing factor is a stress-related neuropeptide that modulates locus coeruleus activity. As locus coeruleus has been involved in pain and stress-related patologies, we tested whether the pain-induced anxiety is a result of the corticotropin-releasing factor released in the locus coeruleus. Methods: Complete Freund’s adjuvant-induced monoarthritis was used as inflammatory chronic pain model. α-Helical corticotropin-releasing factor receptor antagonist was microinjected into the contralateral locus coeruleus of 4-week-old monoarthritic animals. The nociceptive and anxiety-like behaviors, as well as phosphorylated extracellular signal-regulated kinases 1/2 and corticotropin-releasing factor receptors expression, were quantified in the paraventricular nucleus and locus coeruleus. Results: Monoarthritic rats manifested anxiety and increased phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus and paraventricular nucleus, although the expression of corticotropin-releasing factor receptors was unaltered. α-Helical corticotropin-releasing factor antagonist administration reversed both the anxiogenic-like behavior and the phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus. Conclusions: Pain-induced anxiety is mediated by corticotropin-releasing factor neurotransmission in the locus coeruleus through extracellular signal-regulated kinases 1/2 signaling cascade. PMID:25716783

  2. The Aspergillus fumigatus SchASCH9 kinase modulates SakAHOG1 MAP kinase activity and it is essential for virulence.

    Science.gov (United States)

    Alves de Castro, Patrícia; Dos Reis, Thaila Fernanda; Dolan, Stephen K; Oliveira Manfiolli, Adriana; Brown, Neil Andrew; Jones, Gary W; Doyle, Sean; Riaño-Pachón, Diego M; Squina, Fábio Márcio; Caldana, Camila; Singh, Ashutosh; Del Poeta, Maurizio; Hagiwara, Daisuke; Silva-Rocha, Rafael; Goldman, Gustavo H

    2016-11-01

    The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways. © 2016 John Wiley & Sons Ltd.

  3. The Structure of the MAP2K MEK6 Reveals an Autoinhibitory Dimer

    Energy Technology Data Exchange (ETDEWEB)

    Min, Xiaoshan; Akella, Radha; He, Haixia; Humphreys, John M.; Tsutakawa, Susan E.; Lee, Seung-Jae; Tainer, John A.; Cobb, Melanie H.; Goldsmith, Elizabeth J.

    2009-07-13

    MAP2Ks are dual-specificity protein kinases functioning at the center of three-tiered MAP kinase modules. The structure of the kinase domain of the MAP2K MEK6 with phosphorylation site mimetic aspartic acid mutations (MEK6/{Delta}N/DD) has been solved at 2.3 {angstrom} resolution. The structure reveals an autoinhibited elongated ellipsoidal dimer. The enzyme adopts an inactive conformation, based upon structural queues, despite the phosphomimetic mutations. Gel filtration and small-angle X-ray scattering analysis confirm that the crystallographically observed ellipsoidal dimer is a feature of MEK6/{Delta}N/DD and full-length unphosphorylated wild-type MEK6 in solution. The interface includes the phosphate binding ribbon of each subunit, part of the activation loop, and a rare 'arginine stack' between symmetry-related arginine residues in the N-terminal lobe. The autoinhibited structure likely confers specificity on active MAP2Ks. The dimer may also serve the function in unphosphorylated MEK6 of preventing activation loop phosphorylation by inappropriate kinases.

  4. Apoptosis and inactivation of the PI3-kinase pathway by tetrocarcin A in breast cancers

    International Nuclear Information System (INIS)

    Nakajima, Hiroo; Sakaguchi, Koichi; Fujiwara, Ikuya; Mizuta, Mitsuhiko; Tsuruga, Mie; Magae, Junji; Mizuta, Naruhiko

    2007-01-01

    A survival kinase, Akt, is a downstream factor in the phosphatidylinositide-3'-kinase-dependent pathway, which mediates many biological responses including glucose uptake, protein synthesis and the regulation of proliferation and apoptosis, which is assumed to contribute to acquisition of malignant properties of human cancers. Here we find that an anti-tumor antibiotic, tetrocarcin A, directly induces apoptosis of human breast cancer cells. The apoptosis is accompanied by the activation of a proteolytic cascade of caspases including caspase-3 and -9, and concomitantly decreases phosphorylation of Akt, PDK1, and PTEN, a tumor suppressor that regulates the activity of Akt through the dephosphorylation of polyphosphoinositides. Tetrocarcin A affected neither expression of Akt, PDK1, or PTEN, nor did it affect the expression of Bcl family members including Bcl-2, Bcl-X L , and Bax. These results suggest that tetrocarcin A could be a potent chemotherapeutic agent for human breast cancer targeting the phosphatidylinositide-3'-kinase/Akt signaling pathway

  5. Sequence Classification: 890824 [

    Lifescience Database Archive (English)

    Full Text Available hyphal/invasive growth pathways; cooperates with Tec1p transcription factor to regulate genes specific for invasive growth; Ste12p || http://www.ncbi.nlm.nih.gov/protein/6321876 ... ...ion factor that is activated by a MAP kinase signaling cascade, activates genes involved in mating or pseudo

  6. Molecular Imaging of the ATM Kinase Activity

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Terence M. [Department of Radiation Oncology, Ohio State University, Columbus, Ohio (United States); Nyati, Shyam [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Ross, Brian D. [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Rehemtulla, Alnawaz, E-mail: alnawaz@umich.edu [Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Center for Molecular Imaging, University of Michigan Medical Center, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan Medical Center, Ann Arbor, Michigan (United States)

    2013-08-01

    Purpose: Ataxia telangiectasia mutated (ATM) is a serine/threonine kinase critical to the cellular DNA-damage response, including from DNA double-strand breaks. ATM activation results in the initiation of a complex cascade of events including DNA damage repair, cell cycle checkpoint control, and survival. We sought to create a bioluminescent reporter that dynamically and noninvasively measures ATM kinase activity in living cells and subjects. Methods and Materials: Using the split luciferase technology, we constructed a hybrid cDNA, ATM-reporter (ATMR), coding for a protein that quantitatively reports on changes in ATM kinase activity through changes in bioluminescence. Results: Treatment of ATMR-expressing cells with ATM inhibitors resulted in a dose-dependent increase in bioluminescence activity. In contrast, induction of ATM kinase activity upon irradiation resulted in a decrease in reporter activity that correlated with ATM and Chk2 activation by immunoblotting in a time-dependent fashion. Nuclear targeting improved ATMR sensitivity to both ATM inhibitors and radiation, whereas a mutant ATMR (lacking the target phosphorylation site) displayed a muted response. Treatment with ATM inhibitors and small interfering (si)RNA-targeted knockdown of ATM confirm the specificity of the reporter. Using reporter expressing xenografted tumors demonstrated the ability of ATMR to report in ATM activity in mouse models that correlated in a time-dependent fashion with changes in Chk2 activity. Conclusions: We describe the development and validation of a novel, specific, noninvasive bioluminescent reporter that enables monitoring of ATM activity in real time, in vitro and in vivo. Potential applications of this reporter include the identification and development of novel ATM inhibitors or ATM-interacting partners through high-throughput screens and in vivo pharmacokinetic/pharmacodynamic studies of ATM inhibitors in preclinical models.

  7. Artificial earthquake record generation using cascade neural network

    Directory of Open Access Journals (Sweden)

    Bani-Hani Khaldoon A.

    2017-01-01

    Full Text Available This paper presents the results of using artificial neural networks (ANN in an inverse mapping problem for earthquake accelerograms generation. This study comprises of two parts: 1-D site response analysis; performed for Dubai Emirate at UAE, where eight earthquakes records are selected and spectral matching are performed to match Dubai response spectrum using SeismoMatch software. Site classification of Dubai soil is being considered for two classes C and D based on shear wave velocity of soil profiles. Amplifications factors are estimated to quantify Dubai soil effect. Dubai’s design response spectra are developed for site classes C & D according to International Buildings Code (IBC -2012. In the second part, ANN is employed to solve inverse mapping problem to generate time history earthquake record. Thirty earthquakes records and their design response spectrum with 5% damping are used to train two cascade forward backward neural networks (ANN1, ANN2. ANN1 is trained to map the design response spectrum to time history and ANN2 is trained to map time history records to the design response spectrum. Generalized time history earthquake records are generated using ANN1 for Dubai’s site classes C and D, and ANN2 is used to evaluate the performance of ANN1.

  8. Calcium Hydroxide-induced Proliferation, Migration, Osteogenic Differentiation, and Mineralization via the Mitogen-activated Protein Kinase Pathway in Human Dental Pulp Stem Cells.

    Science.gov (United States)

    Chen, Luoping; Zheng, Lisha; Jiang, Jingyi; Gui, Jinpeng; Zhang, Lingyu; Huang, Yan; Chen, Xiaofang; Ji, Jing; Fan, Yubo

    2016-09-01

    Calcium hydroxide has been extensively used as the gold standard for direct pulp capping in clinical dentistry. It induces proliferation, migration, and mineralization in dental pulp stem cells (DPSCs), but the underlying mechanisms are still unclear. The aim of this study was to investigate the role of the mitogen-activated protein (MAP) kinase pathway in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Human DPSCs between passages 3 and 6 were used. DPSCs were preincubated with inhibitors of MAP kinases and cultured with calcium hydroxide. The phosphorylated MAP kinases were detected by Western blot analysis. Cell viability was analyzed via the methylthiazol tetrazolium assay. Cell migration was estimated using the wound healing assay. Alkaline phosphatase (ALP) expression was analyzed using the ALP staining assay. Mineralization was studied by alizarin red staining analysis. Calcium hydroxide significantly promoted the phosphorylation of the c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase. The inhibition of JNK and p38 signaling abolished calcium hydroxide-induced proliferation of DPSCs. The inhibition of JNK, p38, and extracellular signal-regulated kinase signaling suppressed the migration, ALP expression, and mineralization of DPSCs. Our study showed that the MAP kinase pathway was involved in calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization in human DPSCs. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  10. Energy cascades in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, A. C.; Brown, T. D.

    1979-03-15

    Combining energy uses in a cascade can result in significant overall reductions in fuel requirements. The simplest applications for a cascade are in the recovery of waste heat from existing processes using special boilers or turbines. Specific applications of more-complex energy cascades for Canada are discussed. A combined-cycle plant at a chemical refinery in Ontario is world leader in energy efficiency. Total-energy systems for commercial buildings, such as one installed in a school in Western Canada, offer attractive energy and operating cost benefits. A cogeneration plant proposed for the National Capital Region, generating electricity as well as steam for district heating, allows the use of a low-grade fossil fuel (coal), greatly improves energy-transformation efficiency, and also utilizes an effectively renewable resource (municipal garbage). Despite the widespread availability of equipment and technology of energy cascades, the sale of steam and electricity across plant boundaries presents a barrier. More widespread use of cascades will require increased cooperation among industry, electric utilities and the various levels of government if Canada is to realize the high levels of energy efficiency potential available.

  11. Cascade reactor: introduction

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1985-01-01

    Cascade is a concept for an ultrasafe, highly efficient, easily built reactor to convert inertial-confinement fusion energy into electrical power. The Cascade design includes a rotating double-cone-shaped chamber in which a moving, 1-m-thick ceramic granular blanket is held against the reactor wall by centrifugal action. The granular material absorbs energy from the fusion reactions. Accomplishments this year associated with Cascade included improvements to simplify chamber design and lower activation. The authors switched from a steel chamber wall to one made from silicon-carbide (SiC) panels held in compression by SiC-fiber/Al-composite tendons that gird the chamber both circumferentially and axially. The authors studies a number of heat-exchanger designs and selected a gravity-flow cascade design with a vacuum on the primary side. This design allows granules leaving the chamber to be transported to the heat exchangers using their own peripheral speed. The granules transfer their thermal energy and return to the chamber gravitationally: no vacuum locks or conveyors are needed

  12. Review: Mitogen-Activated Protein kinases in nutritional signaling in Arabidopsis

    KAUST Repository

    Chardin, Camille; Schenk, Sebastian T.; Hirt, Heribert; Colcombet, Jean; Krapp, Anne

    2017-01-01

    Mitogen-Activated Protein Kinase (MAPK) cascades are functional modules widespread among eukaryotic organisms. In plants, these modules are encoded by large multigenic families and are involved in many biological processes ranging from stress responses to cellular differentiation and organ development. Furthermore, MAPK pathways are involved in the perception of environmental and physiological modifications. Interestingly, some MAPKs play a role in several signaling networks and could have an integrative function for the response of plants to their environment. In this review, we describe the classification of MAPKs and highlight some of their biochemical actions. We performed an in silico analysis of MAPK gene expression in response to nutrients supporting their involvement in nutritional signaling. While several MAPKs have been identified as players in sugar, nitrogen, phosphate, iron and potassium-related signaling pathways, their biochemical functions are yet mainly unknown. The integration of these regulatory cascades in the current understanding of nutrient signaling is discussed and potential new avenues for approaches toward plants with higher nutrient use efficiencies are evoked.

  13. Review: Mitogen-Activated Protein kinases in nutritional signaling in Arabidopsis

    KAUST Repository

    Chardin, Camille

    2017-04-14

    Mitogen-Activated Protein Kinase (MAPK) cascades are functional modules widespread among eukaryotic organisms. In plants, these modules are encoded by large multigenic families and are involved in many biological processes ranging from stress responses to cellular differentiation and organ development. Furthermore, MAPK pathways are involved in the perception of environmental and physiological modifications. Interestingly, some MAPKs play a role in several signaling networks and could have an integrative function for the response of plants to their environment. In this review, we describe the classification of MAPKs and highlight some of their biochemical actions. We performed an in silico analysis of MAPK gene expression in response to nutrients supporting their involvement in nutritional signaling. While several MAPKs have been identified as players in sugar, nitrogen, phosphate, iron and potassium-related signaling pathways, their biochemical functions are yet mainly unknown. The integration of these regulatory cascades in the current understanding of nutrient signaling is discussed and potential new avenues for approaches toward plants with higher nutrient use efficiencies are evoked.

  14. Cascade quantum teleportation

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nan-run; GONG Li-hua; LIU Ye

    2006-01-01

    In this letter a cascade quantum teleportation scheme is proposed. The proposed scheme needs less local quantum operations than those of quantum multi-teleportation. A quantum teleportation scheme based on entanglement swapping is presented and compared with the cascade quantum teleportation scheme. Those two schemes can effectively teleport quantum information and extend the distance of quantum communication.

  15. Membrane Transfer from Mononuclear Cells to Polymorphonuclear Neutrophils Transduces Cell Survival and Activation Signals in the Recipient Cells via Anti-Extrinsic Apoptotic and MAP Kinase Signaling Pathways.

    Science.gov (United States)

    Li, Ko-Jen; Wu, Cheng-Han; Shen, Chieh-Yu; Kuo, Yu-Min; Yu, Chia-Li; Hsieh, Song-Chou

    2016-01-01

    The biological significance of membrane transfer (trogocytosis) between polymorphonuclear neutrophils (PMNs) and mononuclear cells (MNCs) remains unclear. We investigated the biological/immunological effects and molecular basis of trogocytosis among various immune cells in healthy individuals and patients with active systemic lupus erythematosus (SLE). By flow cytometry, we determined that molecules in the immunological synapse, including HLA class-I and-II, CD11b and LFA-1, along with CXCR1, are exchanged among autologous PMNs, CD4+ T cells, and U937 cells (monocytes) after cell-cell contact. Small interfering RNA knockdown of the integrin adhesion molecule CD11a in U937 unexpectedly enhanced the level of total membrane transfer from U937 to PMN cells. Functionally, phagocytosis and IL-8 production by PMNs were enhanced after co-culture with T cells. Total membrane transfer from CD4+ T to PMNs delayed PMN apoptosis by suppressing the extrinsic apoptotic molecules, BAX, MYC and caspase 8. This enhancement of activities of PMNs by T cells was found to be mediated via p38- and P44/42-Akt-MAP kinase pathways and inhibited by the actin-polymerization inhibitor, latrunculin B, the clathrin inhibitor, Pitstop-2, and human immunoglobulin G, but not by the caveolin inhibitor, methyl-β-cyclodextrin. In addition, membrane transfer from PMNs enhanced IL-2 production by recipient anti-CD3/anti-CD28 activated MNCs, and this was suppressed by inhibitors of mitogen-activated protein kinase (PD98059) and protein kinase C (Rottlerin). Of clinical significance, decreased total membrane transfer from PMNs to MNCs in patients with active SLE suppressed mononuclear IL-2 production. In conclusion, membrane transfer from MNCs to PMNs, mainly at the immunological synapse, transduces survival and activation signals to enhance PMN functions and is dependent on actin polymerization, clathrin activation, and Fcγ receptors, while membrane transfer from PMNs to MNCs depends on MAP kinase and

  16. Membrane Transfer from Mononuclear Cells to Polymorphonuclear Neutrophils Transduces Cell Survival and Activation Signals in the Recipient Cells via Anti-Extrinsic Apoptotic and MAP Kinase Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Ko-Jen Li

    Full Text Available The biological significance of membrane transfer (trogocytosis between polymorphonuclear neutrophils (PMNs and mononuclear cells (MNCs remains unclear. We investigated the biological/immunological effects and molecular basis of trogocytosis among various immune cells in healthy individuals and patients with active systemic lupus erythematosus (SLE. By flow cytometry, we determined that molecules in the immunological synapse, including HLA class-I and-II, CD11b and LFA-1, along with CXCR1, are exchanged among autologous PMNs, CD4+ T cells, and U937 cells (monocytes after cell-cell contact. Small interfering RNA knockdown of the integrin adhesion molecule CD11a in U937 unexpectedly enhanced the level of total membrane transfer from U937 to PMN cells. Functionally, phagocytosis and IL-8 production by PMNs were enhanced after co-culture with T cells. Total membrane transfer from CD4+ T to PMNs delayed PMN apoptosis by suppressing the extrinsic apoptotic molecules, BAX, MYC and caspase 8. This enhancement of activities of PMNs by T cells was found to be mediated via p38- and P44/42-Akt-MAP kinase pathways and inhibited by the actin-polymerization inhibitor, latrunculin B, the clathrin inhibitor, Pitstop-2, and human immunoglobulin G, but not by the caveolin inhibitor, methyl-β-cyclodextrin. In addition, membrane transfer from PMNs enhanced IL-2 production by recipient anti-CD3/anti-CD28 activated MNCs, and this was suppressed by inhibitors of mitogen-activated protein kinase (PD98059 and protein kinase C (Rottlerin. Of clinical significance, decreased total membrane transfer from PMNs to MNCs in patients with active SLE suppressed mononuclear IL-2 production. In conclusion, membrane transfer from MNCs to PMNs, mainly at the immunological synapse, transduces survival and activation signals to enhance PMN functions and is dependent on actin polymerization, clathrin activation, and Fcγ receptors, while membrane transfer from PMNs to MNCs depends on

  17. Sugar analog synthesis by in vitro biocatalytic cascade: A comparison of alternative enzyme complements for dihydroxyacetone phosphate production as a precursor to rare chiral sugar synthesis.

    Directory of Open Access Journals (Sweden)

    Carol J Hartley

    Full Text Available Carbon-carbon bond formation is one of the most challenging reactions in synthetic organic chemistry, and aldol reactions catalysed by dihydroxyacetone phosphate-dependent aldolases provide a powerful biocatalytic tool for combining C-C bond formation with the generation of two new stereo-centres, with access to all four possible stereoisomers of a compound. Dihydroxyacetone phosphate (DHAP is unstable so the provision of DHAP for DHAP-dependent aldolases in biocatalytic processes remains complicated. Our research has investigated the efficiency of several different enzymatic cascades for the conversion of glycerol to DHAP, including characterising new candidate enzymes for some of the reaction steps. The most efficient cascade for DHAP production, comprising a one-pot four-enzyme reaction with glycerol kinase, acetate kinase, glycerophosphate oxidase and catalase, was coupled with a DHAP-dependent fructose-1,6-biphosphate aldolase enzyme to demonstrate the production of several rare chiral sugars. The limitation of batch biocatalysis for these reactions and the potential for improvement using kinetic modelling and flow biocatalysis systems is discussed.

  18. Cascade theory in isotopic separation processes; Theorie des cascades en separation isotopique

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, J P

    1994-06-01

    Three main areas are developed within the scope of this work: - the first one is devoted to fundamentals: separative power, value function, ideal cascade and square cascade. Applications to two main cases are carried out, namely: Study of binary isotopic mix, Study of processes with a small enrichment coefficient. - The second one is devoted to cascade coupling -high-flux coupling (more widely used and better known) as well as low-flux coupling are presented and compared to one another. - The third one is an outlook on problems linked to cascade transients. Those problem are somewhat intricate and their interest lies mainly into two areas: economics where the start-up time may have a large influence on the interests paid during the construction and start-up period, military productions where the start-up time has a direct bearing on the production schedule. (author). 50 figs. 3 annexes. 12 refs. 6 tabs.

  19. Grid generation method to calculate the flow field in a three-dimensional cascade of blades. Sanjigen yokuretsu nagare keisan no tame no koshi keisei

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, K [National Aerospace Laboratory, Tokyo (Japan)

    1992-05-01

    For the purpose of developing a fan for an engine with ultra-high by-pass ratio, the design code of three-dimensional cascade of blades based on the Navier-Stokes equation has already been developed. This paper describes a method created by calculation grids which are part of this design code. This method is to generate boundary fitted grids to calculate the flow field across a cascade of blades placed radially in the axially symmetric space between hub and casing. In this method, one-period domain of the cascade of blades is mapped on a box in computational space by a series of combined streching transformation and conformal mapping. The grid in physical space is then obtained by successive inverse conformal mapping on the grid points in computational space. The grid obtained in this method is H-type and has a periodicity which includes the inclination of grid lines at the periodic boundary. As an example of the grid generated by this method, grids for primary and secondary models of the fan with ultra-high by-pass ratio are shown. 6 refs., 12 figs.

  20. Grid generation method to calculate the flow field in a three-dimensional cascade of blades; Sanjigen yokuretsu nagare keisan no tame no koshi keisei

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, K [National Aerospace Laboratory, Tokyo (Japan)

    1992-05-01

    For the purpose of developing a fan for an engine with ultra-high by-pass ratio, the design code of three-dimensional cascade of blades based on the Navier-Stokes equation has already been developed. This paper describes a method created by calculation grids which are part of this design code. This method is to generate boundary fitted grids to calculate the flow field across a cascade of blades placed radially in the axially symmetric space between hub and casing. In this method, one-period domain of the cascade of blades is mapped on a box in computational space by a series of combined streching transformation and conformal mapping. The grid in physical space is then obtained by successive inverse conformal mapping on the grid points in computational space. The grid obtained in this method is H-type and has a periodicity which includes the inclination of grid lines at the periodic boundary. As an example of the grid generated by this method, grids for primary and secondary models of the fan with ultra-high by-pass ratio are shown. 6 refs., 12 figs.

  1. KSR1 is a functional protein kinase capable of serine autophosphorylation and direct phosphorylation of MEK1

    International Nuclear Information System (INIS)

    Goettel, Jeremy A.; Liang, Dongchun; Hilliard, Valda C.; Edelblum, Karen L.; Broadus, Matthew R.; Gould, Kathleen L.; Hanks, Steven K.; Polk, D. Brent

    2011-01-01

    The extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway is a highly conserved signaling pathway that regulates diverse cellular processes including differentiation, proliferation, and survival. Kinase suppressor of Ras-1 (KSR1) binds each of the three ERK cascade components to facilitate pathway activation. Even though KSR1 contains a C-terminal kinase domain, evidence supporting the catalytic function of KSR1 remains controversial. In this study, we produced recombinant wild-type or kinase-inactive (D683A/D700A) KSR1 proteins in Escherichia coli to test the hypothesis that KSR1 is a functional protein kinase. Recombinant wild-type KSR1, but not recombinant kinase-inactive KSR1, underwent autophosphorylation on serine residue(s), phosphorylated myelin basic protein (MBP) as a generic substrate, and phosphorylated recombinant kinase-inactive MAPK/ERK kinase-1 (MEK1). Furthermore, FLAG immunoprecipitates from KSR1 -/- colon epithelial cells stably expressing FLAG-tagged wild-type KSR1 (+KSR1), but not vector (+vector) or FLAG-tagged kinase-inactive KSR1 (+D683A/D700A), were able to phosphorylate kinase-inactive MEK1. Since TNF activates the ERK pathway in colon epithelial cells, we tested the biological effects of KSR1 in the survival response downstream of TNF. We found that +vector and +D683A/D700A cells underwent apoptosis when treated with TNF, whereas +KSR1 cells were resistant. However, +KSR1 cells were sensitized to TNF-induced cell loss in the absence of MEK kinase activity. These data provide clear evidence that KSR1 is a functional protein kinase, MEK1 is an in vitro substrate of KSR1, and the catalytic activities of both proteins are required for eliciting cell survival responses downstream of TNF.

  2. Potential role of p21 Activated Kinase 1 (PAK1) in the invasion and motility of oral cancer cells

    International Nuclear Information System (INIS)

    Parvathy, Muraleedharan; Sreeja, Sreeharshan; Kumar, Rakesh; Pillai, Madhavan Radhakrishna

    2016-01-01

    Oral cancer malignancy consists of uncontrolled division of cells primarily in and around the floor of the oral cavity, gingiva, oropharynx, lower lip and base of the tongue. According to GLOBOCAN 2012 report, oral cancer is one of the most common cancers among males and females in India. Even though significant advancements have been made in the field of oral cancer treatment modalities, the overall prognosis for the patients has not improved in the past few decades and hence, this demands a new thrust for the identification of novel therapeutic targets in oral cancer. p21 Activated Kinases (PAKs) are potential therapeutic targets that are involved in numerous physiological functions. PAKs are serine-threonine kinases and they serve as important regulators of cytoskeletal dynamics and cell motility, transcription through MAP kinase cascades, death and survival signalling, and cell-cycle progression. Although PAKs are known to play crucial roles in cancer progression, the role and clinical significance of PAKs in oral cancer remains poorly understood. Our results suggest that PAK1 is over-expressed in oral cancer cell lines. Stimulation of Oral Squamous Cell Carcinoma (OSCC) cells with serum growth factors leads to PAK1 re-localization and might cause a profound cytoskeletal remodelling. PAK1 was also found to be involved in the invasion, migration and cytoskeletal remodelling of OSCC cells. Our study revealed that PAK1 may play a crucial role in the progression of OSCC. Studying the role of PAK1 and its substrates is likely to enhance our understanding of oral carcinogenesis and potential therapeutic value of PAKs in oral cancer. The online version of this article (doi:10.1186/s12885-016-2263-8) contains supplementary material, which is available to authorized users

  3. A role for the tyrosine kinase ACK1 in neurotrophin signaling and neuronal extension and branching

    Science.gov (United States)

    La Torre, A; del Mar Masdeu, M; Cotrufo, T; Moubarak, R S; del Río, J A; Comella, J X; Soriano, E; Ureña, J M

    2013-01-01

    Neurotrophins are involved in many crucial cellular functions, including neurite outgrowth, synapse formation, and plasticity. Although these events have long been known, the molecular determinants underlying neuritogenesis have not been fully characterized. Ack1 (activated Cdc42-associated tyrosine kinase) is a non-receptor tyrosine kinase that is highly expressed in the brain. Here, we demonstrate that Ack1 is a molecular constituent of neurotrophin signaling cascades in neurons and PC12 cells. We report that Ack1 interacts with Trk receptors and becomes tyrosine phosphorylated and its kinase activity is increased in response to neurotrophins. Moreover, our data indicate that Ack1 acts upstream of the Akt and MAPK pathways. We show that Ack1 overexpression induces neuritic outgrowth and promotes branching in neurotrophin-treated neuronal cells, whereas the expression of Ack1 dominant negatives or short-hairpin RNAs counteract neurotrophin-stimulated differentiation. Our results identify Ack1 as a novel regulator of neurotrophin-mediated events in primary neurons and in PC12 cells. PMID:23598414

  4. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin

    International Nuclear Information System (INIS)

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja; Joseph, Binoy; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Yin, Yuanqin; Roy, Ram Vinod; Lu, Jian; Zhang, Zhuo; Wang, Yitao

    2014-01-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE 2 and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. - Highlights: • C3G inhibited UVB-induced oxidative damage and inflammation. • C3G inhibited UVB-induced COX-2, iNOS and PGE 2 production. • C3G inhibited

  5. Cyanidin-3-glucoside inhibits UVB-induced oxidative damage and inflammation by regulating MAP kinase and NF-κB signaling pathways in SKH-1 hairless mice skin

    Energy Technology Data Exchange (ETDEWEB)

    Pratheeshkumar, Poyil; Son, Young-Ok; Wang, Xin; Divya, Sasidharan Padmaja [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Joseph, Binoy [Spinal Cord and Brain Injury Research Center and Department of Physiology, University of Kentucky, Lexington, KY 40536-0509 (United States); Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Yin, Yuanqin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Cancer Institute, The First Affiliated Hospital, China Medical University, Shenyang (China); Roy, Ram Vinod [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Lu, Jian [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013 (China); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Wang, Yitao [State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau (China); and others

    2014-10-01

    Skin cancer is one of the most commonly diagnosed cancers in the United States. Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Cyanidin-3-glucoside (C3G), a member of the anthocyanin family, is present in various vegetables and fruits especially in edible berries, and displays potent antioxidant and anticarcinogenic properties. In this study, we have assessed the in vivo effects of C3G on UVB irradiation induced chronic inflammatory responses in SKH-1 hairless mice, a well-established model for UVB-induced skin carcinogenesis. Here, we show that C3G inhibited UVB-induced skin damage and inflammation in SKH-1 hairless mice. Our results indicate that C3G inhibited glutathione depletion, lipid peroxidation and myeloperoxidation in mouse skin by chronic UVB exposure. C3G significantly decreased the production of UVB-induced pro-inflammatory cytokines, such as IL-6 and TNF-α, associated with cutaneous inflammation. Likewise, UVB-induced inflammatory responses were diminished by C3G as observed by a remarkable reduction in the levels of phosphorylated MAP kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, C3G also decreased UVB-induced cyclooxygenase-2 (COX-2), PGE{sub 2} and iNOS levels, which are well-known key mediators of inflammation and cancer. Treatment with C3G inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mice skin. Immunofluorescence assay revealed that topical application of C3G inhibited the expression of 8-hydroxy-2′-deoxyguanosine, proliferating cell nuclear antigen, and cyclin D1 in chronic UVB exposed mouse skin. Collectively, these data indicates that C3G can provide substantial protection against the adverse effects of UVB radiation by modulating UVB-induced MAP kinase and NF-κB signaling pathways. - Highlights: • C3G inhibited UVB-induced oxidative damage and inflammation. • C3G inhibited UVB-induced COX-2, iNOS and PGE{sub 2} production. • C3G

  6. Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years.

    Science.gov (United States)

    Engelberg, David; Perlman, Riki; Levitzki, Alexander

    2014-12-01

    In the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades. The pivotal findings concerning those pathways undoubtedly contributed to the realization that yeast is a relevant model for understanding signal transduction in higher eukaryotes. Consequently, the last 25 years have witnessed the discovery of many signal transduction pathways in S. cerevisiae, including the high osmotic glycerol (Hog1), Stl2/Mpk1 and Smk1 mitogen-activated protein (MAP) kinase pathways, the TOR, AMPK/Snf1, SPS, PLC1 and Pkr/Gcn2 cascades, and systems that sense and respond to various types of stress. For many cascades, orthologous pathways were identified in mammals following their discovery in yeast. Here we review advances in the understanding of signaling in S. cerevisiae over the last 25 years. When all pathways are analyzed together, some prominent themes emerge. First, wiring of signaling cascades may not be identical in all S. cerevisiae strains, but is probably specific to each genetic background. This situation complicates attempts to decipher and generalize these webs of reactions. Secondly, the Ras/cAMP and the TOR cascades are pivotal pathways that affect all processes of the life of the yeast cell, whereas the yeast MAP kinase pathways are not essential. Yeast cells deficient in all MAP kinases proliferate normally. Another theme is the existence of central molecular hubs, either as single proteins (e.g., Msn2/4, Flo11) or as multisubunit complexes (e.g., TORC1/2), which are controlled by numerous pathways and in turn determine the fate of the cell. It is also apparent that

  7. Trichinella spiralis infection enhances protein kinase C phosphorylation in guinea pig alveolar macrophages.

    Science.gov (United States)

    Dzik, J M; Zieliński, Z; Cieśla, J; Wałajtys-Rode, E

    2010-03-01

    To learn more about the signalling pathways involved in superoxide anion production in guinea pig alveolar macrophages, triggered by Trichinella spiralis infection, protein level and phosphorylation of mitogen activated protein (MAP) kinases and protein kinase C (PKC) were investigated. Infection with T. spiralis, the nematode having 'lung phase' during colonization of the host, enhances PKC phosphorylation in guinea pig alveolar macrophages. Isoenzymes beta and delta of PKC have been found significantly phosphorylated, although their location was not changed as a consequence of T. spiralis infection. Neither in macrophages from T. spiralis-infected guinea pig nor in platelet-activating factor (PAF)-stimulated macrophages from uninfected animals, participation of MAP kinases in respiratory burst activation was statistically significant. The parasite antigens seem to act through macrophage PAF receptors, transducing a signal for enhanced NADPH oxidase activity, as stimulating effect of newborn larvae homogenate on respiratory burst was abolished by specific PAF receptor antagonist CV 6209. A suppressive action of T. spiralis larvae on host alveolar macrophage innate immunological response was reflected by diminished protein level of ERK2 kinase and suppressed superoxide anion production, in spite of high level of PKC phosphorylation.

  8. The role of MAP4K3 in lifespan regulation of Caenorhabditiselegans

    International Nuclear Information System (INIS)

    Khan, Maruf H.; Hart, Matthew J.; Rea, Shane L.

    2012-01-01

    Highlights: ► Inhibition of MAP4K3 by RNAi leads to increased mean lifespan in Caenorhabditis elegans. ► Mutation in the citron homology domain of MAP4K3 leads to increased mean lifespan. ► Mutation in the kinase domain of MAP4K3 has no significant effect on mean lifespan. -- Abstract: The TOR pathway is a kinase signaling pathway that regulates cellular growth and proliferation in response to nutrients and growth factors. TOR signaling is also important in lifespan regulation – when this pathway is inhibited, either naturally, by genetic mutation, or by pharmacological means, lifespan is extended. MAP4K3 is a Ser/Thr kinase that has recently been found to be involved in TOR activation. Unexpectedly, the effect of this protein is not mediated via Rheb, the more widely known TOR activation pathway. Given the role of TOR in growth and lifespan control, we looked at how inhibiting MAP4K3 in Caenorhabditiselegans affects lifespan. We used both feeding RNAi and genetic mutants to look at the effect of MAP4K3 deficiency. Our results show a small but significant increase in mean lifespan in MAP4K3 deficient worms. MAP4K3 thus represents a new target in the TOR pathway that can be targeted for pharmacological intervention to control lifespan.

  9. The role of MAP4K3 in lifespan regulation of Caenorhabditiselegans

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Maruf H. [Barshop Institute for Longevity and Aging Studies, Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78240 (United States); Hart, Matthew J., E-mail: HartMJ@uthscsa.edu [Barshop Institute for Longevity and Aging Studies, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78240 (United States); Rea, Shane L., E-mail: reas3@uthscsa.edu [Barshop Institute for Longevity and Aging Studies, Department of Physiology, University of Texas Health Science Center, San Antonio, TX 78240 (United States)

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Inhibition of MAP4K3 by RNAi leads to increased mean lifespan in Caenorhabditis elegans. Black-Right-Pointing-Pointer Mutation in the citron homology domain of MAP4K3 leads to increased mean lifespan. Black-Right-Pointing-Pointer Mutation in the kinase domain of MAP4K3 has no significant effect on mean lifespan. -- Abstract: The TOR pathway is a kinase signaling pathway that regulates cellular growth and proliferation in response to nutrients and growth factors. TOR signaling is also important in lifespan regulation - when this pathway is inhibited, either naturally, by genetic mutation, or by pharmacological means, lifespan is extended. MAP4K3 is a Ser/Thr kinase that has recently been found to be involved in TOR activation. Unexpectedly, the effect of this protein is not mediated via Rheb, the more widely known TOR activation pathway. Given the role of TOR in growth and lifespan control, we looked at how inhibiting MAP4K3 in Caenorhabditiselegans affects lifespan. We used both feeding RNAi and genetic mutants to look at the effect of MAP4K3 deficiency. Our results show a small but significant increase in mean lifespan in MAP4K3 deficient worms. MAP4K3 thus represents a new target in the TOR pathway that can be targeted for pharmacological intervention to control lifespan.

  10. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System

    Directory of Open Access Journals (Sweden)

    Alessandro Cannavo

    2017-08-01

    Full Text Available The sphingosine kinases 1 and 2 (SphK1 and 2 catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P. The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull’s eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.

  11. Cyclin dependent kinase 5 regulates endocytosis in nerve terminals via dynamin I phosphorylation

    International Nuclear Information System (INIS)

    Tan, T.C.; Hansra, G.; Calova, V.; Cousin, M.; Robinson, P.J.

    2002-01-01

    Full text: Synaptic vesicle endocytosis (SVE) in nerve terminals is essential for normal synaptic transmission and for memory retrieval. Dynamin I is a 96kDa nerve terminal phosphoprotein necessary for synaptic vesicle endocytosis in the nerve terminal. Dynamin I is dephosphorylated and rephosphorylated in a cyclical fashion with nerve terminal depolarisation and repolarisation. A number of kinases phosphorylate dynamin I in vitro including PKC, MAP kinase and cdc2. PKC phosphorylates dynamin in the proline rich domain on Ser 795 and is also thought to be the in vivo kinase for dynamin I. Another candidate is the neuron specific kinase cdk5, crucial for CNS development. The aim of this study is to identify the kinase which phosphorylates dynamin I in intact nerve terminals. Here we show that cyclin-dependent kinase 5 (cdk5) phosphorylates dynamin I in the proline-rich tail on Ser-774 or Ser-778. The phosphorylation of these sites but not Ser-795 also occurred in intact nerve terminals suggesting that cdk5 is the physiologically relevant enzyme for dynamin I. Synaptosomes prepared from rat brains (after cervical dislocations) and labelled with 32 Pi, were incubated with 100 M roscovitine (a selective inhibitor of cdks), 10 M Ro 31-8220 (a selective PKC inhibitor) and 100 M PD 98059 (a MEK kinase inhibitor). Dynamin rephosphorylation during repolarisation was reduced in synaptosomes treated with roscovitine and Ro 38-8220 but not in synaptosomes treated with PD 98059. Fluorimetric experiments on intact synaptosomes utilising FM-210 (a fluorescent dye) indicate that endocytosis was reduced in synaptosomes treated with 100 M roscovitine. Our results suggest that dynamin phosphorylation in intact nerve terminals may not be regulated by PKC or MAP kinase and that dynamin phosphorylation by cdk5 may regulate endocytosis. Copyright (2002) Australian Neuroscience Society

  12. Cascading costs: an economic nitrogen cycle.

    Science.gov (United States)

    Moomaw, William R; Birch, Melissa B L

    2005-09-01

    The chemical nitrogen cycle is becoming better characterized in terms of fluxes and reservoirs on a variety of scales. Galloway has demonstrated that reactive nitrogen can cascade through multiple ecosystems causing environmental damage at each stage before being denitrified to N(2). We propose to construct a parallel economic nitrogen cascade (ENC) in which economic impacts of nitrogen fluxes can be estimated by the costs associated with each stage of the chemical cascade. Using economic data for the benefits of damage avoided and costs of mitigation in the Chesapeake Bay basin, we have constructed an economic nitrogen cascade for the region. Since a single ton of nitrogen can cascade through the system, the costs also cascade. Therefore evaluating the benefits of mitigating a ton of reactive nitrogen released needs to consider the damage avoided in all of the ecosystems through which that ton would cascade. The analysis reveals that it is most cost effective to remove a ton of nitrogen coming from combustion since it has the greatest impact on human health and creates cascading damage through the atmospheric, terrestrial, aquatic and coastal ecosystems. We will discuss the implications of this analysis for determining the most cost effective policy option for achieving environmental quality goals.

  13. Contingency Analysis of Cascading Line Outage Events

    Energy Technology Data Exchange (ETDEWEB)

    Thomas L Baldwin; Magdy S Tawfik; Miles McQueen

    2011-03-01

    As the US power systems continue to increase in size and complexity, including the growth of smart grids, larger blackouts due to cascading outages become more likely. Grid congestion is often associated with a cascading collapse leading to a major blackout. Such a collapse is characterized by a self-sustaining sequence of line outages followed by a topology breakup of the network. This paper addresses the implementation and testing of a process for N-k contingency analysis and sequential cascading outage simulation in order to identify potential cascading modes. A modeling approach described in this paper offers a unique capability to identify initiating events that may lead to cascading outages. It predicts the development of cascading events by identifying and visualizing potential cascading tiers. The proposed approach was implemented using a 328-bus simplified SERC power system network. The results of the study indicate that initiating events and possible cascading chains may be identified, ranked and visualized. This approach may be used to improve the reliability of a transmission grid and reduce its vulnerability to cascading outages.

  14. Fragment-based drug discovery of potent and selective MKK3/6 inhibitors.

    Science.gov (United States)

    Adams, Mark; Kobayashi, Toshitake; Lawson, J David; Saitoh, Morihisa; Shimokawa, Kenichiro; Bigi, Simone V; Hixon, Mark S; Smith, Christopher R; Tatamiya, Takayuki; Goto, Masayuki; Russo, Joseph; Grimshaw, Charles E; Swann, Steven

    2016-02-01

    The MAPK signaling cascade, comprised of several linear and intersecting pathways, propagates signaling into the nucleus resulting in cytokine and chemokine release. The Map Kinase Kinase isoforms 3 and 6 (MKK3 and MKK6) are responsible for the phosphorylation and activation of p38, and are hypothesized to play a key role in regulating this pathway without the redundancy seen in downstream effectors. Using FBDD, we have discovered efficient and selective inhibitors of MKK3 and MKK6 that can serve as tool molecules to help further understand the role of these kinases in MAPK signaling, and the potential impact of inhibiting kinases upstream of p38. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells

    International Nuclear Information System (INIS)

    Robbins, Eric W; Travanty, Emily A; Yang, Kui; Iczkowski, Kenneth A

    2008-01-01

    Dysregulated expression and splicing of cell adhesion marker CD44 is found in many types of cancer. In prostate cancer (PC) specifically, the standard isoform (CD44s) has been found to be downregulated compared with benign tissue whereas predominant variant isoform CD44v7-10 is upregulated. Mitogen-activated protein kinase pathways and paracrine calcitonin are two common factors linked to dysregulated expression and splicing of CD44 in cancer. Calcitonin has been found to increase proliferation and invasion in PC acting through the protein kinase A pathway. In androgen-independent PC with known high CD44v7-10 expression, CD44 total and CD44v7-10 RNA or protein were assessed in response to exogenous and endogenous calcitonin and to inhibitors of protein kinase A, MEK, JNK, or p38 kinase. Benign cells and calcitonin receptor-negative PC cells were also tested. MEK or p38 but not JNK reduced CD44 total RNA by 40%–65% in cancer and benign cells. Inhibition of protein kinase A reduced CD44 total and v7-10 protein expression. In calcitonin receptor-positive cells only, calcitonin increased CD44 variant RNA and protein by 3 h and persisting to 48 h, apparently dependent on an uninhibited p38 pathway. Cells with constitutive CT expression showed an increase in CD44v7-10 mRNA but a decrease in CD44 total RNA. The MEK pathway increases CD44 RNA, while calcitonin, acting through the protein kinase A and p38 pathway, facilitates variant splicing. These findings could be used in the formulation of therapeutic methods for PC targeting CD44 alternate splicing

  16. Unbinding Kinetics of a p38 MAP Kinase Type II Inhibitor from Metadynamics Simulations.

    Science.gov (United States)

    Casasnovas, Rodrigo; Limongelli, Vittorio; Tiwary, Pratyush; Carloni, Paolo; Parrinello, Michele

    2017-04-05

    Understanding the structural and energetic requisites of ligand binding toward its molecular target is of paramount relevance in drug design. In recent years, atomistic free energy calculations have proven to be a valid tool to complement experiments in characterizing the thermodynamic and kinetic properties of protein/ligand interaction. Here, we investigate, through a recently developed metadynamics-based protocol, the unbinding mechanism of an inhibitor of the pharmacologically relevant target p38 MAP kinase. We provide a thorough description of the ligand unbinding pathway identifying the most stable binding mode and other thermodynamically relevant poses. From our simulations, we estimated the unbinding rate as k off = 0.020 ± 0.011 s -1 . This is in good agreement with the experimental value (k off = 0.14 s -1 ). Next, we developed a Markov state model that allowed identifying the rate-limiting step of the ligand unbinding process. Our calculations further show that the solvation of the ligand and that of the active site play crucial roles in the unbinding process. This study paves the way to investigations on the unbinding dynamics of more complex p38 inhibitors and other pharmacologically relevant inhibitors in general, demonstrating that metadynamics can be a powerful tool in designing new drugs with engineered binding/unbinding kinetics.

  17. Simulation of concentration spikes in cascades

    International Nuclear Information System (INIS)

    Wood, H.G.

    2006-01-01

    Research has been conducted to investigate the maximum possible enrichment that might be temporarily achieved in a facility that is producing enriched uranium for fuel for nuclear power reactors. The purpose is to provide information to evaluate if uranium enrichment facilities are producing 235 U enriched within declared limits appropriate for power reactors or if the facilities are actually producing more highly enriched uranium. The correlation between feed rate and separation factor in a gas centrifuge cascade shows that as flow decreases, the separation factor increases, thereby, creating small amounts of higher enriched uranium than would be found under optimum design operating conditions. The research uses a number of cascade enrichment programs to model the phenomenon and determine the maximum enrichment possible during the time transient of a gas centrifuge cascade. During cascade start-up, the flow through the centrifuges begins at lower than centrifuge design stage flow rates. Steady-state cascade models have been used to study the maximum 235 U concentrations that would be predicted in the cascade. These calculations should produce an upper bound of product concentrations expected during the transient phase of start-up. Due to the fact that there are different ways in which to start a cascade, several methods are used to determine the maximum enrichment during the time transient. Model cascades were created for gas centrifuges with several product to .feed assay separation factors. With this information, the models were defined and the equilibrium programs were used to determine the maximum enrichment level during the time transient. The calculations predict in a cascade with separation factor 1.254 designed to produce enriched uranium for the purpose of supplying reactor fuel, it would not be unreasonable to see some 235 U in the range of 12-15%. Higher assays produced during the start-up period might lead inspectors to believe the cascade is being

  18. p56Lck and p59Fyn Regulate CD28 Binding to Phosphatidylinositol 3-Kinase, Growth Factor Receptor-Bound Protein GRB-2, and T Cell-Specific Protein-Tyrosine Kinase ITK: Implications for T-Cell Costimulation

    Science.gov (United States)

    Raab, Monika; Cai, Yun-Cai; Bunnell, Stephen C.; Heyeck, Stephanie D.; Berg, Leslie J.; Rudd, Christopher E.

    1995-09-01

    T-cell activation requires cooperative signals generated by the T-cell antigen receptor ξ-chain complex (TCRξ-CD3) and the costimulatory antigen CD28. CD28 interacts with three intracellular proteins-phosphatidylinositol 3-kinase (PI 3-kinase), T cell-specific protein-tyrosine kinase ITK (formerly TSK or EMT), and the complex between growth factor receptor-bound protein 2 and son of sevenless guanine nucleotide exchange protein (GRB-2-SOS). PI 3-kinase and GRB-2 bind to the CD28 phosphotyrosine-based Tyr-Met-Asn-Met motif by means of intrinsic Src-homology 2 (SH2) domains. The requirement for tyrosine phosphorylation of the Tyr-Met-Asn-Met motif for SH2 domain binding implicates an intervening protein-tyrosine kinase in the recruitment of PI 3-kinase and GRB-2 by CD28. Candidate kinases include p56Lck, p59Fyn, ξ-chain-associated 70-kDa protein (ZAP-70), and ITK. In this study, we demonstrate in coexpression studies that p56Lck and p59Fyn phosphorylate CD28 primarily at Tyr-191 of the Tyr-Met-Asn-Met motif, inducing a 3- to 8-fold increase in p85 (subunit of PI 3-kinase) and GRB-2 SH2 binding to CD28. Phosphatase digestion of CD28 eliminated binding. In contrast to Src kinases, ZAP-70 and ITK failed to induce these events. Further, ITK binding to CD28 was dependent on the presence of p56Lck and is thus likely to act downstream of p56Lck/p59Fyn in a signaling cascade. p56Lck is therefore likely to be a central switch in T-cell activation, with the dual function of regulating CD28-mediated costimulation as well as TCR-CD3-CD4 signaling.

  19. Interaction between protein kinase C and protein kinase A can modulate transmitter release at the rat neuromuscular synapse.

    Science.gov (United States)

    Santafé, M M; Garcia, N; Lanuza, M A; Tomàs, M; Tomàs, J

    2009-02-15

    We used intracellular recording to investigate the functional interaction between protein kinase C (PKC) and protein kinase A (PKA) signal transduction cascades in the control of transmitter release in the neuromuscular synapses from adult rats. Our results indicate that: 1) PKA and PKC are independently involved in asynchronous release. 2) Evoked acetylcholine (ACh) release is enhanced with the PKA agonist Sp-8-BrcAMP and the PKC agonist phorbol ester (PMA). 3) PKA has a constitutive role in promoting a component of normal evoked transmitter release because, when the kinase is inhibited with H-89, the release diminishes. However, the PKC inhibitor calphostin C (CaC) does not affect ACh release. 4) PKA regulates neurotransmission without PKC involvement because, after PMA or CaC modulation of the PKC activity, coupling to the ACh release of PKA can normally be stimulated with Sp-8-BrcAMP or inhibited with H-89. 5) After PKA inhibition with H-89, PKC stimulation with PMA (or inhibition with CaC) does not lead to any change in evoked ACh release. However, in PKA-stimulated preparations with Sp-8-BrcAMP, PKC becomes tonically active, thus potentiating a component of release that can now be blocked with CaC. In normal conditions, therefore, PKA was able to modulate ACh release independently of PKC activity, whereas PKA stimulation caused the PKC coupling to evoked release. In contrast, PKA inhibition prevent PKC stimulation (with the phorbol ester) and coupling to ACh output. There was therefore some dependence of PKC on PKA activity in the fine control of the neuromuscular synaptic functionalism and ACh release.

  20. Genetic algorithm based separation cascade optimization

    International Nuclear Information System (INIS)

    Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.

    2008-01-01

    The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)

  1. Ion-implantation dense cascade data

    International Nuclear Information System (INIS)

    Winterbon, K.B.

    1983-04-01

    A tabulation is given of data useful in estimating various aspects of ion-implantation cascades in the nuclear stopping regime, particularly with respect to nonlinearity of the cascade at high energy densities. The tabulation is restricted to self-ion implantation. Besides power-cross-section cascade dimensions, various material properties are included. Scaling of derived quantities with input data is noted, so one is not limited to the values assumed by the author

  2. Pascal (Yang Hui) triangles and power laws in the logistic map

    International Nuclear Information System (INIS)

    Velarde, Carlos; Robledo, Alberto

    2015-01-01

    We point out the joint occurrence of Pascal triangle patterns and power-law scaling in the standard logistic map, or more generally, in unimodal maps. It is known that these features are present in its two types of bifurcation cascades: period and chaotic-band doubling of attractors. Approximate Pascal triangles are exhibited by the sets of lengths of supercycle diameters and by the sets of widths of opening bands. Additionally, power-law scaling manifests along periodic attractor supercycle positions and chaotic band splitting points. Consequently, the attractor at the mutual accumulation point of the doubling cascades, the onset of chaos, displays both Gaussian and power-law distributions. Their combined existence implies both ordinary and exceptional statistical-mechanical descriptions of dynamical properties. (paper)

  3. Role of phosphatidylinositol 3-kinase in angiotensin II regulation of norepinephrine neuromodulation in brain neurons of the spontaneously hypertensive rat.

    Science.gov (United States)

    Yang, H; Raizada, M K

    1999-04-01

    Chronic stimulation of norepinephrine (NE) neuromodulation by angiotensin II (Ang II) involves activation of the Ras-Raf-MAP kinase signal transduction pathway in Wistar Kyoto (WKY) rat brain neurons. This pathway is only partially responsible for this heightened action of Ang II in the spontaneously hypertensive rat (SHR) brain neurons. In this study, we demonstrate that the MAP kinase-independent signaling pathway in the SHR neuron involves activation of PI3-kinase and protein kinase B (PKB/Akt). Ang II stimulated PI3-kinase activity in both WKY and SHR brain neurons and was accompanied by its translocation from the cytoplasmic to the nuclear compartment. Although the magnitude of stimulation by Ang II was comparable, the stimulation was more persistent in the SHR neuron compared with the WKY rat neuron. Inhibition of PI3-kinase had no significant effect in the WKY rat neuron. However, it caused a 40-50% attenuation of the Ang II-induced increase in norepinephrine transporter (NET) and tyrosine hydroxylase (TH) mRNAs and [3H]-NE uptake in the SHR neuron. In contrast, inhibition of MAP kinase completely attenuated Ang II stimulation of NET and TH mRNA levels in the WKY rat neuron, whereas it caused only a 45% decrease in the SHR neuron. However, an additive attenuation was observed when both kinases of the SHR neurons were inhibited. Ang II also stimulated PKB/Akt activity in both WKY and SHR neurons. This stimulation was 30% higher and lasted longer in the SHR neuron compared with the WKY rat neuron. In conclusion, these observations demonstrate an exclusive involvement of PI3-kinase-PKB-dependent signaling pathway in a heightened NE neuromodulatory action of Ang II in the SHR neuron. Thus, this study offers an excellent potential for the development of new therapies for the treatment of centrally mediated hypertension.

  4. Hadron cascades produced by electromagnetic cascades

    International Nuclear Information System (INIS)

    Nelson, W.R.; Jenkins, T.M.; Ranft, J.

    1986-12-01

    A method for calculating high energy hadron cascades induced by multi-GeV electron and photon beams is described. Using the EGS4 computer program, high energy photons in the EM shower are allowed to interact hadronically according to the vector meson dominance (VMD) model, facilitated by a Monte Carlo version of the dual multistring fragmentation model which is used in the hadron cascade code FLUKA. The results of this calculation compare very favorably with experimental data on hadron production in photon-proton collisions and on the hadron production by electron beams on targets (i.e., yields in secondary particle beam lines). Electron beam induced hadron star density contours are also presented and are compared with those produced by proton beams. This FLUKA-EGS4 coupling technique could find use in the design of secondary beams, in the determination high energy hadron source terms for shielding purposes, and in the estimation of induced radioactivity in targets, collimators and beam dumps

  5. Accurate calculation of mutational effects on the thermodynamics of inhibitor binding to p38α MAP kinase: a combined computational and experimental study.

    Science.gov (United States)

    Zhu, Shun; Travis, Sue M; Elcock, Adrian H

    2013-07-09

    A major current challenge for drug design efforts focused on protein kinases is the development of drug resistance caused by spontaneous mutations in the kinase catalytic domain. The ubiquity of this problem means that it would be advantageous to develop fast, effective computational methods that could be used to determine the effects of potential resistance-causing mutations before they arise in a clinical setting. With this long-term goal in mind, we have conducted a combined experimental and computational study of the thermodynamic effects of active-site mutations on a well-characterized and high-affinity interaction between a protein kinase and a small-molecule inhibitor. Specifically, we developed a fluorescence-based assay to measure the binding free energy of the small-molecule inhibitor, SB203580, to the p38α MAP kinase and used it measure the inhibitor's affinity for five different kinase mutants involving two residues (Val38 and Ala51) that contact the inhibitor in the crystal structure of the inhibitor-kinase complex. We then conducted long, explicit-solvent thermodynamic integration (TI) simulations in an attempt to reproduce the experimental relative binding affinities of the inhibitor for the five mutants; in total, a combined simulation time of 18.5 μs was obtained. Two widely used force fields - OPLS-AA/L and Amber ff99SB-ILDN - were tested in the TI simulations. Both force fields produced excellent agreement with experiment for three of the five mutants; simulations performed with the OPLS-AA/L force field, however, produced qualitatively incorrect results for the constructs that contained an A51V mutation. Interestingly, the discrepancies with the OPLS-AA/L force field could be rectified by the imposition of position restraints on the atoms of the protein backbone and the inhibitor without destroying the agreement for other mutations; the ability to reproduce experiment depended, however, upon the strength of the restraints' force constant

  6. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae.

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M

    2016-12-16

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1-77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1-77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Phosphorylation of Dgk1 Diacylglycerol Kinase by Casein Kinase II Regulates Phosphatidic Acid Production in Saccharomyces cerevisiae*

    Science.gov (United States)

    Qiu, Yixuan; Hassaninasab, Azam; Han, Gil-Soo; Carman, George M.

    2016-01-01

    In the yeast Saccharomyces cerevisiae, Dgk1 diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidic acid (PA). The enzyme in conjunction with Pah1 PA phosphatase controls the levels of PA and DAG for the synthesis of triacylglycerol and membrane phospholipids, the growth of the nuclear/endoplasmic reticulum membrane, and the formation of lipid droplets. Little is known about how DAG kinase activity is regulated by posttranslational modification. In this work, we examined the phosphorylation of Dgk1 DAG kinase by casein kinase II (CKII). When phosphate groups were globally reduced using nonspecific alkaline phosphatase, Triton X-100-solubilized membranes from DGK1-overexpressing cells showed a 7.7-fold reduction in DAG kinase activity; the reduced enzyme activity could be increased 5.5-fold by treatment with CKII. Dgk1(1–77) expressed heterologously in Escherichia coli was phosphorylated by CKII on a serine residue, and its phosphorylation was dependent on time as well as on the concentrations of CKII, ATP, and Dgk1(1–77). We used site-specific mutagenesis, coupled with phosphorylation analysis and phosphopeptide mapping, to identify Ser-45 and Ser-46 of Dgk1 as the CKII target sites, with Ser-46 being the major phosphorylation site. In vivo, the S46A and S45A/S46A mutations of Dgk1 abolished the stationary phase-dependent stimulation of DAG kinase activity. In addition, the phosphorylation-deficient mutations decreased Dgk1 function in PA production and in eliciting pah1Δ phenotypes, such as the expansion of the nuclear/endoplasmic reticulum membrane, reduced lipid droplet formation, and temperature sensitivity. This work demonstrates that the CKII-mediated phosphorylation of Dgk1 regulates its function in the production of PA. PMID:27834677

  8. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.

    2011-09-27

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  9. Cascade Organic Solar Cells

    KAUST Repository

    Schlenker, Cody W.; Barlier, Vincent S.; Chin, Stephanie W.; Whited, Matthew T.; McAnally, R. Eric; Forrest, Stephen R.; Thompson, Mark E.

    2011-01-01

    We demonstrate planar organic solar cells consisting of a series of complementary donor materials with cascading exciton energies, incorporated in the following structure: glass/indium-tin-oxide/donor cascade/C 60/bathocuproine/Al. Using a tetracene layer grown in a descending energy cascade on 5,6-diphenyl-tetracene and capped with 5,6,11,12-tetraphenyl- tetracene, where the accessibility of the π-system in each material is expected to influence the rate of parasitic carrier leakage and charge recombination at the donor/acceptor interface, we observe an increase in open circuit voltage (Voc) of approximately 40% (corresponding to a change of +200 mV) compared to that of a single tetracene donor. Little change is observed in other parameters such as fill factor and short circuit current density (FF = 0.50 ± 0.02 and Jsc = 2.55 ± 0.23 mA/cm2) compared to those of the control tetracene-C60 solar cells (FF = 0.54 ± 0.02 and Jsc = 2.86 ± 0.23 mA/cm2). We demonstrate that this cascade architecture is effective in reducing losses due to polaron pair recombination at donor-acceptor interfaces, while enhancing spectral coverage, resulting in a substantial increase in the power conversion efficiency for cascade organic photovoltaic cells compared to tetracene and pentacene based devices with a single donor layer. © 2011 American Chemical Society.

  10. Ischemic preconditioning negatively regulates plenty of SH3s-mixed lineage kinase 3-Rac1 complex and c-Jun N-terminal kinase 3 signaling via activation of Akt.

    Science.gov (United States)

    Zhang, Q-G; Han, D; Xu, J; Lv, Q; Wang, R; Yin, X-H; Xu, T-L; Zhang, G-Y

    2006-12-01

    Activation of Akt/protein kinase B has been recently reported to play an important role in ischemic tolerance. We here demonstrate that the decreased protein expression and phosphorylation of phosphatase and tensin homolog deleted from chromosome 10 (PTEN) underlie the increased Akt-Ser-473 phosphorylation in the hippocampal CA1 subfield in ischemic preconditioning (IPC). Co-immunoprecipitation analysis reveals that Akt physically interacts with Rac1, a small Rho family GTPase required for mixed lineage kinase 3 (MLK3) autophosphorylation, and both this interaction and Rac1-Ser-71 phosphorylation induced by Akt are promoted in preconditioned rats. In addition, we show that Akt activation results in the disassembly of the plenty of SH3s (POSH)-MLK3-Rac1 signaling complex and down-regulation of the activation of MLK3/c-Jun N-terminal kinase (JNK) pathway. Akt activation results in decreased serine phosphorylation of 14-3-3, a cytoplasmic anchor of Bax, and prevents ischemia-induced mitochondrial translocation of Bax, release of cytochrome c, and activation of caspase-3. The expression of Fas ligand is also decreased in the CA1 region. Akt activation protects against apoptotic neuronal death as shown in TUNEL staining following IPC. Intracerebral infusion of LY294002 before IPC reverses the increase in Akt phosphorylation and the decrease in JNK signaling activation, as well as the neuroprotective action of IPC. Our results suggest that activation of pro-apoptotic MLK3/JNK3 cascade can be suppressed through activating anti-apoptotic phosphoinositide 3-kinase/Akt pathway induced by a sublethal ischemic insult, which provides a functional link between Akt and the JNK family of stress-activated kinases in ischemic tolerance.

  11. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt.

    Directory of Open Access Journals (Sweden)

    Tamas Kiss

    Full Text Available Pulmonary arterial hypertension (PH is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt pathway and nuclear factor (NF-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-1α, lipopolysaccharide induced CXC chemokine (LIX, monokine induced by gamma interferon (MIG, macrophage inflammatory protein (MIP-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.

  12. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  13. TAM receptor tyrosine kinase function and the immunopathology of liver disease.

    Science.gov (United States)

    Mukherjee, S K; Wilhelm, A; Antoniades, C G

    2016-06-01

    Tyro3, Axl, MERTK (TAM) receptor tyrosine kinases are implicated in the regulation of the innate immune response through clearance of apoptotic cellular debris and control of cytokine signaling cascades. As a result they are pivotal in regulating the inflammatory response to tissue injury. Within the liver, immune regulatory signaling is employed to prevent the overactivation of innate immunity in response to continual antigenic challenge from the gastrointestinal tract. In this review we appraise current understanding of the role of TAM receptor function in the regulation of both innate and adaptive immunity, with a focus on its impact upon hepatic inflammatory pathology. Copyright © 2016 the American Physiological Society.

  14. Expression Analysis of the Hippo Cascade Indicates a Role in Pituitary Stem Cell Development

    Directory of Open Access Journals (Sweden)

    Emily J Lodge

    2016-03-01

    Full Text Available The pituitary gland is a primary endocrine organ that controls major physiological processes. Abnormal development or homeostatic disruptions can lead to human disorders such as hypopituitarism or tumours. Multiple signalling pathways, including WNT, BMP, FGF and SHH regulate pituitary development but the role of the Hippo-YAP1/TAZ cascade is currently unknown. In multiple tissues, the Hippo kinase cascade underlies neoplasias; it influences organ size through the regulation of proliferation and apoptosis, and has roles in determining stem cell potential. We have used a sensitive mRNA in situ hybridisation method (RNAscope to determine the expression patterns of the Hippo pathway components during mouse pituitary development. We have also carried out immunolocalisation studies to determine when YAP1 and TAZ, the transcriptional effectors of the Hippo pathway, are active. We find that YAP1/TAZ are active in the stem/progenitor cell population throughout development and at postnatal stages, consistent with their role in promoting the stem cell state. Our results demonstrate for the first time the collective expression of major components of the Hippo pathway during normal embryonic and postnatal development of the pituitary gland.

  15. Cascaded Bragg scattering in fiber optics.

    Science.gov (United States)

    Xu, Y Q; Erkintalo, M; Genty, G; Murdoch, S G

    2013-01-15

    We report on a theoretical and experimental study of cascaded Bragg scattering in fiber optics. We show that the usual energy-momentum conservation of Bragg scattering can be considerably relaxed via cascade-induced phase-matching. Experimentally we demonstrate frequency translation over six- and 11-fold cascades, in excellent agreement with derived phase-matching conditions.

  16. Cascade redox flow battery systems

    Science.gov (United States)

    Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

    2014-07-22

    A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

  17. Cascade of links in complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Yeqian; Sun, Bihui [Department of Management Science, School of Government, Beijing Normal University, 100875 Beijing (China); Zeng, An, E-mail: anzeng@bnu.edu.cn [School of Systems Science, Beijing Normal University, 100875 Beijing (China)

    2017-01-30

    Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.

  18. Cascade of links in complex networks

    International Nuclear Information System (INIS)

    Feng, Yeqian; Sun, Bihui; Zeng, An

    2017-01-01

    Cascading failure is an important process which has been widely used to model catastrophic events such as blackouts and financial crisis in real systems. However, so far most of the studies in the literature focus on the cascading process on nodes, leaving the possibility of link cascade overlooked. In many real cases, the catastrophic events are actually formed by the successive disappearance of links. Examples exist in the financial systems where the firms and banks (i.e. nodes) still exist but many financial trades (i.e. links) are gone during the crisis, and the air transportation systems where the airports (i.e. nodes) are still functional but many airlines (i.e. links) stop operating during bad weather. In this letter, we develop a link cascade model in complex networks. With this model, we find that both artificial and real networks tend to collapse even if a few links are initially attacked. However, the link cascading process can be effectively terminated by setting a few strong nodes in the network which do not respond to any link reduction. Finally, a simulated annealing algorithm is used to optimize the location of these strong nodes, which significantly improves the robustness of the networks against the link cascade. - Highlights: • We propose a link cascade model in complex networks. • Both artificial and real networks tend to collapse even if a few links are initially attacked. • The link cascading process can be effectively terminated by setting a few strong nodes. • A simulated annealing algorithm is used to optimize the location of these strong nodes.

  19. Diacylglycerol kinases in T cell tolerance and effector function

    Directory of Open Access Journals (Sweden)

    Shelley S Chen

    2016-11-01

    Full Text Available Diacylglycerol kinases (DGKs are a family of enzymes that regulate the relative levels of diacylglycerol (DAG and phosphatidic acid (PA in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR signal by recruiting multiple effector molecules such as RasGRP1, PKC, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms,  and , in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.

  20. The comparison of extraction of energy in two-cascade and one-cascade targets

    Energy Technology Data Exchange (ETDEWEB)

    Dolgoleva, G. V., E-mail: dolgg@list.ru [National Research Tomsk State University, 36, Lenin Ave., 634050, Tomsk (Russian Federation); Ponomarev, I. V., E-mail: wingof17@mail.ru [Moscow State University, Department of Mechanics and Mathematics, 1, Vorobyovy Gory, Moscow,119961 (Russian Federation)

    2016-01-15

    The paper is devoted to numerical designing of cylindrical microtargets on the basis of shock-free compression. When designing microtargets for the controlled thermonuclear fusion, the core tasks are to select geometry and make-up of layers, and the law of energy embedding as well, which allow receiving of “burning” of deuterium- tritium mix, that is, the existence of thermonuclear reactions of working area. Yet, the energy yield as a result of thermonuclear reactions has to be more than the embedded energy (the coefficient of amplification is more than a unit). So, an important issue is the value of the embedded energy. The purpose of the present paper is to study the extraction of energy by working DT area in one-cascade and two-cascade targets. A bigger extraction of energy will contribute to a better burning of DT mix and a bigger energy yield as a result of thermonuclear reactions. The comparison of analytical results to numerical calculations is carried out. The received results show advantages of a two-cascade target compared to a one-cascade one.

  1. Cloning and characterization of GETS-1, a goldfish Ets family member that functions as a transcriptional repressor in muscle.

    Science.gov (United States)

    Goldman, D; Sapru, M K; Stewart, S; Plotkin, J; Libermann, T A; Wasylyk, B; Guan, K

    1998-10-15

    An Ets transcription factor family member, GETS-1, was cloned from a goldfish retina cDNA library. GETS-1 contains a conserved Ets DNA-binding domain at its N-terminus and is most similar to ternary complex factor (TCF) serum-response-factor protein-1a (SAP-1a). GETS-1 is expressed in many tissues, but is enriched in retina and brain. As with the TCFs SAP-1a and ets-related protein (ERP), overexpression of the GETS-1 promoter suppresses nicotinic acetylcholine receptor epsilon-subunit gene expression in cultured muscle cells. A consensus Ets binding site sequence in the promoter of the epsilon-subunit gene is required for GETS-1-mediated repression. GETS-1 repressor activity is abrogated by overexpression of an activated Ras/mitogen-activated protein kinase (MAP kinase) or by mutation of Ser-405, a MAP kinase phosphorylation site in GETS-1. Fusion proteins created between GETS-1 and the Gal4 DNA-binding domain show that, like other TCFs, GETS-1 contains a C-terminal activation domain that is activated by a Ras/MAP kinase signalling cascade. Interestingly, mutation of Ser-405 located within this activation domain abrogated transcriptional activation of the fusion protein.

  2. Volatile emissions from Cascade cinder cone eruptions: Implications for future hazard assessments in the Central and Southern Cascades

    Science.gov (United States)

    Walsh, L. K.; Wallace, P. J.; Cashman, K. V.

    2012-12-01

    An abundance of hazardous effects including ash fall out, basaltic lava flows and poisonous volcanic gas have been documented at active volcanic centers (e.g. Auckland Volcanic Field, New Zealand; Bebbington and Cronin 2011) and have been inferred using tools such as geologic mapping and geochemical analyses for prehistoric eruptions (e.g. Cerro Negro, Nicaragua; Hill et al. 1995; McKnight and Williams 1997). The Cascades volcanic history is also dominated by prehistoric eruptions; however the associated hazards have yet to be studied in-depth. Short recurrence rates of cinder cone volcanism (1x10-5 to 5x10-4 events/yr; Smid et al. 2009) likely intensify the probability of human experience with cinder cone hazards. Hence, it is important to understand the effects that cinder cone volcanism can have on communities near the Cascades. In this study, we estimate volatile fluxes of prehistoric Cascade cinder cone eruptions by analyzing olivine-hosted melt inclusions and rapidly quenched tephra matrix glass. The melt inclusions provide pre-eruptive volatile concentrations whereas tephra groundmass glass provides post-eruptive volatile concentrations. By comparing initial and final concentrations we can determine the amounts of sulfur, chlorine and fluorine released into the atmosphere. We have analyzed S, Cl and F concentrations in melt inclusions from cinder cones in the Central Oregon Cascades (Collier Cone, Yapoah Crater, Four-in-One Fissure, Garrison Butte) and in Northern California near Mt. Lassen (Cinder Cone, Basalt of Old Railroad Grade, Basalt of Highway 44). Analyses of volatiles in melt inclusions and matrix glasses were done using the Cameca SX100 electron microprobe at the University of Oregon. Melt inclusions and matrix glass were run under 15kV, 50nA, and 10μm-beam conditions. For F analyses, a use of an LTAP crystal and relatively long counting times (160 sec. on peak) resulted in good analytical precision. Preliminary results for melt inclusions from

  3. Experimental study of flow through compressor Cascade

    Directory of Open Access Journals (Sweden)

    Satyam Panchal

    2017-09-01

    Full Text Available The objective of this research work is to study the behaviour of flow at the inlet, within the blade passage and at the exit of a compressor cascade. For this purpose, a cascade with six numbers of aerofoil blades was designed and constructed. The cascade was fitted on the cascade test tunnel. Out of six blades two were instrumented for measuring the pressure distribution on the pressure and suction surface. The blades had a parabolic camber line, with a maximum camber position at 40% of the chord from the leading edge of the blade. The profile of the blade was C4, height of the blade was 160 mm, chord length was 80 mm, camber angle was 45° and stagger angle was 30°. Similarly, the length of the cascade was 300 mm, span was 160 mm, pitch was 60 mm, the actual chord of the cascade was 80 mm, the axial chord of the cascade was 70 mm, the stagger angle of the cascade was 30° and the pitch-chord ratio was 0.75. The data was taken and analyzed at −500% of the axial chord before the cascade, −25% of the axial chord before the leading edge, 25%, 50%, 75% and 150% of the axial chord from the leading edge of the blade. The readings were taken from the cascade wall to the mid span position along the pitch wise direction. The angle of incidence was also changed during the experiment and varied from i=−50°, −30°, −10° to 5°.

  4. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  5. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    International Nuclear Information System (INIS)

    Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi

    2014-01-01

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells

  6. Small Molecule Tyrosine Kinase Inhibitors of ErbB2/HER2/Neu in the Treatment of Aggressive Breast Cancer

    Directory of Open Access Journals (Sweden)

    Richard L. Schroeder

    2014-09-01

    Full Text Available The human epidermal growth factor receptor 2 (HER2 is a member of the erbB class of tyrosine kinase receptors. These proteins are normally expressed at the surface of healthy cells and play critical roles in the signal transduction cascade in a myriad of biochemical pathways responsible for cell growth and differentiation. However, it is widely known that amplification and subsequent overexpression of the HER2 encoding oncogene results in unregulated cell proliferation in an aggressive form of breast cancer known as HER2-positive breast cancer. Existing therapies such as trastuzumab (Herceptin® and lapatinib (Tyverb/Tykerb®, a monoclonal antibody inhibitor and a dual EGFR/HER2 kinase inhibitor, respectively, are currently used in the treatment of HER2-positive cancers, although issues with high recurrence and acquired resistance still remain. Small molecule tyrosine kinase inhibitors provide attractive therapeutic targets, as they are able to block cell signaling associated with many of the proposed mechanisms for HER2 resistance. In this regard we aim to present a review on the available HER2 tyrosine kinase inhibitors, as well as those currently in development. The use of tyrosine kinase inhibitors as sequential or combinatorial therapeutic strategies with other HER family inhibitors is also discussed.

  7. A comparison of methods for cascade prediction

    OpenAIRE

    Guo, Ruocheng; Shakarian, Paulo

    2016-01-01

    Information cascades exist in a wide variety of platforms on Internet. A very important real-world problem is to identify which information cascades can go viral. A system addressing this problem can be used in a variety of applications including public health, marketing and counter-terrorism. As a cascade can be considered as compound of the social network and the time series. However, in related literature where methods for solving the cascade prediction problem were proposed, the experimen...

  8. Computer simulation of displacement cascades in copper

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1983-06-01

    More than 500 displacement cascades in copper have been generated with the computer simulation code MARLOWE over an energy range pertinent to both fission and fusion neutron spectra. Three-dimensional graphical depictions of selected cascades, as well as quantitative analysis of cascade shapes and sizes and defect densities, illustrate cascade behavior as a function of energy. With increasing energy, the transition from production of single compact damage regions to widely spaced multiple damage regions is clearly demonstrated

  9. Cascade Error Projection Learning Algorithm

    Science.gov (United States)

    Duong, T. A.; Stubberud, A. R.; Daud, T.

    1995-01-01

    A detailed mathematical analysis is presented for a new learning algorithm termed cascade error projection (CEP) and a general learning frame work. This frame work can be used to obtain the cascade correlation learning algorithm by choosing a particular set of parameters.

  10. Cascaded face alignment via intimacy definition feature

    Science.gov (United States)

    Li, Hailiang; Lam, Kin-Man; Chiu, Man-Yau; Wu, Kangheng; Lei, Zhibin

    2017-09-01

    Recent years have witnessed the emerging popularity of regression-based face aligners, which directly learn mappings between facial appearance and shape-increment manifolds. We propose a random-forest based, cascaded regression model for face alignment by using a locally lightweight feature, namely intimacy definition feature. This feature is more discriminative than the pose-indexed feature, more efficient than the histogram of oriented gradients feature and the scale-invariant feature transform feature, and more compact than the local binary feature (LBF). Experimental validation of our algorithm shows that our approach achieves state-of-the-art performance when testing on some challenging datasets. Compared with the LBF-based algorithm, our method achieves about twice the speed, 20% improvement in terms of alignment accuracy and saves an order of magnitude on memory requirement.

  11. Ultrarelativistic cascades and strangeness production

    International Nuclear Information System (INIS)

    Kahana, D.E.; Kahana, S.H.

    1998-02-01

    A two phase cascade, LUCIFER II, developed for the treatment of ultra high energy Ion-Ion collisions is applied to the production of strangeness at SPS energies. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy ion experiments at the CERN SPS

  12. Effects of phorbol ester on mitogen-activated protein kinase kinase activity in wild-type and phorbol ester-resistant EL4 thymoma cells.

    Science.gov (United States)

    Gause, K C; Homma, M K; Licciardi, K A; Seger, R; Ahn, N G; Peterson, M J; Krebs, E G; Meier, K E

    1993-08-05

    Phorbol ester-sensitive and -resistant EL4 thymoma cell lines differ in their ability to activate mitogen-activated protein kinase (MAPK) in response to phorbol ester. Treatment of wild-type EL4 cells with phorbol ester results in the rapid activations of MAPK and pp90rsk kinase, a substrate for MAPK, while neither kinase is activated in response to phorbol ester in variant EL4 cells. This study examines the activation of MAPK kinase (MAPKK), an activator of MAPK, in wild-type and variant EL4 cells. Phosphorylation of a 40-kDa substrate, identified as MAPK, was observed following in vitro phosphorylation reactions using cytosolic extracts or Mono Q column fractions prepared from phorbol ester-treated wild-type EL4 cells. MAPKK activity coeluted with a portion of the inactive MAPK upon Mono Q anion-exchange chromatography, permitting detection of the MAPKK activity in fractions containing both kinases. This MAPKK activity was present in phorbol ester-treated wild-type cells, but not in phorbol ester-treated variant cells or in untreated wild-type or variant cells. The MAPKK from wild-type cells was able to activate MAPK prepared from either wild-type or variant cells. MAPKK activity could be stimulated in both wildtype and variant EL4 cells in response to treatment of cells with okadaic acid. These results indicate that the failure of variant EL4 cells to activate MAP kinase in response to phorbol ester is due to a failure to activate MAPKK. Therefore, the step that confers phorbol ester resistance to variant EL4 cells lies between the activation of protein kinase C and the activation of MAPKK.

  13. Inferring network structure from cascades

    Science.gov (United States)

    Ghonge, Sushrut; Vural, Dervis Can

    2017-07-01

    Many physical, biological, and social phenomena can be described by cascades taking place on a network. Often, the activity can be empirically observed, but not the underlying network of interactions. In this paper we offer three topological methods to infer the structure of any directed network given a set of cascade arrival times. Our formulas hold for a very general class of models where the activation probability of a node is a generic function of its degree and the number of its active neighbors. We report high success rates for synthetic and real networks, for several different cascade models.

  14. Abnormal cascading failure spreading on complex networks

    International Nuclear Information System (INIS)

    Wang, Jianwei; Sun, Enhui; Xu, Bo; Li, Peng; Ni, Chengzhang

    2016-01-01

    Applying the mechanism of the preferential selection of the flow destination, we develop a new method to quantify the initial load on an edge, of which the flow is transported along the path with the shortest edge weight between two nodes. Considering the node weight, we propose a cascading model on the edge and investigate cascading dynamics induced by the removal of the edge with the largest load. We perform simulated attacks on four types of constructed networks and two actual networks and observe an interesting and counterintuitive phenomenon of the cascading spreading, i.e., gradually improving the capacity of nodes does not lead to the monotonous increase in the robustness of these networks against cascading failures. The non monotonous behavior of cascading dynamics is well explained by the analysis on a simple graph. We additionally study the effect of the parameter of the node weight on cascading dynamics and evaluate the network robustness by a new metric.

  15. Geologic map of the Beacon Rock quadrangle, Skamania County, Washington

    Science.gov (United States)

    Evarts, Russell C.; Fleck, Robert J.

    2017-06-06

    The Beacon Rock 7.5′ quadrangle is located approximately 50 km east of Portland, Oregon, on the north side of the Columbia River Gorge, a scenic canyon carved through the axis of the Cascade Range by the Columbia River. Although approximately 75,000 people live within the gorge, much of the region remains little developed and is encompassed by the 292,500-acre Columbia River Gorge National Scenic Area, managed by a consortium of government agencies “to pro­tect and provide for the enhancement of the scenic, cultural, recreational and natural resources of the Gorge and to protect and support the economy of the Columbia River Gorge area.” As the only low-elevation corridor through the Cascade Range, the gorge is a critical regional transportation and utilities corridor (Wang and Chaker, 2004). Major state and national highways and rail lines run along both shores of the Columbia River, which also provides important water access to ports in the agricultural interior of the Pacific Northwest. Transmission lines carry power from hydroelectric facilities in the gorge and farther east to the growing urban areas of western Oregon and Washington, and natural-gas pipelines transect the corridor (Wang and Chaker, 2004). These lifelines are highly vulnerable to disruption by earthquakes, landslides, and floods. A major purpose of the work described here is to identify and map geologic hazards, such as faults and landslide-prone areas, to provide more accurate assessments of the risks associated with these features.The steep canyon walls of the map area reveal exten­sive outcrops of Miocene flood-basalt flows of the Columbia River Basalt Group capped by fluvial deposits of the ances­tral Columbia River, Pliocene lavas erupted from the axis of the Cascade arc to the east, and volcanic rocks erupted from numerous local vents. The Columbia River Basalt Group unconformably rests on a sequence of late Oligocene and early Miocene rocks of the ancestral Cascade volcanic arc

  16. Analysis of the Mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer

    International Nuclear Information System (INIS)

    Davis, Sally J; Choong, David YH; Ramakrishna, Manasa; Ryland, Georgina L; Campbell, Ian G; Gorringe, Kylie L

    2011-01-01

    MAP2K4 is a putative tumor and metastasis suppressor gene frequently found to be deleted in various cancer types. We aimed to conduct a comprehensive analysis of this gene to assess its involvement in ovarian cancer. We screened for mutations in MAP2K4 using High Resolution Melt analysis of 149 primary ovarian tumors and methylation at the promoter using Methylation-Specific Single-Stranded Conformation Polymorphism analysis of 39 tumors. We also considered the clinical impact of changes in MAP2K4 using publicly available expression and copy number array data. Finally, we used siRNA to measure the effect of reducing MAP2K4 expression in cell lines. In addition to 4 previously detected homozygous deletions, we identified a homozygous 16 bp truncating deletion and a heterozygous 4 bp deletion, each in one ovarian tumor. No promoter methylation was detected. The frequency of MAP2K4 homozygous inactivation was 5.6% overall, and 9.8% in high-grade serous cases. Hemizygous deletion of MAP2K4 was observed in 38% of samples. There were significant correlations of copy number and expression in three microarray data sets. There was a significant correlation between MAP2K4 expression and overall survival in one expression array data set, but this was not confirmed in an independent set. Treatment of JAM and HOSE6.3 cell lines with MAP2K4 siRNA showed some reduction in proliferation. MAP2K4 is targeted by genetic inactivation in ovarian cancer and restricted to high grade serous and endometrioid carcinomas in our cohort

  17. Methodological Framework for Analysing Cascading Effects from Flood Events: The Case of Sukhumvit Area, Bangkok, Thailand

    Directory of Open Access Journals (Sweden)

    Geofrey Hilly

    2018-01-01

    Full Text Available Impacts from floods in urban areas can be diverse and wide ranging. These can include the loss of human life, infrastructure and property damages, as well as other kinds of nuisance and inconvenience to urban life. Hence, the ability to identify and quantify wider ranging effects from floods is of the utmost importance to urban flood managers and infrastructure operators. The present work provides a contribution in this direction and describes a methodological framework for analysing cascading effects from floods that has been applied for the Sukhumvit area in Bangkok (Thailand. It demonstrates that the effects from floods can be much broader in their reach and magnitude than the sole impacts incurred from direct and immediate losses. In Sukhumvit, these include loss of critical services, assets and goods, traffic congestion and delays in transportation, loss of business and income, disturbances and discomfort to the residents, and all these can be traced with the careful analysis of cascading effects. The present work explored the use of different visualization options to present the findings. These include a casual loop diagram, a HAZUR resilience map, a tree diagram and GIS maps.

  18. Gas separation performance of tapered cascade with membrane

    International Nuclear Information System (INIS)

    Ohno, Masayoshi; Morisue, Tetsuo; Ozaki, Osamu; Miyauchi, Terukatsu.

    1978-01-01

    Membrane gas separation cascades are analyzed at steady state. The method of calculating the flow rate and concentration profiles in the cascade are examined, using formulas expressing the various membrane separation cell characteristics. The method adopted is applicable to relatively high concentrations and separation factors. Considerations are further given on the steady state performance of four theoretical forms of cascade: (a) with common value of cut for all stages, (b) with symmetric separation cells, (c) with no mixing at the junction at each stage, and (d) ideal cascade. The analysis showed that, with membrane cells, the ideal cascade would have a pressure ratio varying from stage to stage. The symmetric separation cascade would provide a separation performance lower than the ideal cascade on account of the mixing at the junctions of streams possessing different concentrations, whereas the cut and separation factor of the no-mixing cascade requiring minimum membrane area exhibits zig-zag curves when plotted against stage number. Both these circumstances contribute to the lower separation performance obtained with these two forms as compared with the ideal cascade, and results in larger total membrane area; but these semi-ideal forms retain the advantage of easy practical treatment with their pressure ratio common to all stages. (auth.)

  19. Ultrarelativistic cascades and strangeness production

    Energy Technology Data Exchange (ETDEWEB)

    Kahana, D.E. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Physics; Kahana, S.H. [Brookhaven National Lab., Upton, NY (United States). Physics Dept.

    1998-08-24

    A two-phase cascade code, LUCIFER II, developed for the treatment of ultra high energy-ion-ion collisions is applied to the production of strangeness at SPS energies {radical}(s)=17-20. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy-ion experiments at the CERN SPS. (orig.) 26 refs.

  20. Ultrarelativistic cascades and strangeness production

    International Nuclear Information System (INIS)

    Kahana, D.E.; Kahana, S.H.

    1998-01-01

    A two-phase cascade code, LUCIFER II, developed for the treatment of ultra high energy-ion-ion collisions is applied to the production of strangeness at SPS energies √(s)=17-20. This simulation is able to simultaneously describe both hard processes such as Drell-Yan and slower, soft processes such as the production of light mesons by separating the dynamics into two steps, a fast cascade involving only the nucleons in the original colliding relativistic ions followed, after an appropriate delay, by a normal multiscattering of the resulting excited baryons and mesons produced virtually in the first step. No energy loss can take place in the short time interval over which the first cascade takes place. The chief result is a reconciliation of the important Drell-Yan measurements with the apparent success of standard cascades to describe the nucleon stopping and meson production in heavy-ion experiments at the CERN SPS. (orig.)

  1. FvBck1, a Component of Cell Wall Integrity MAP Kinase Pathway, is Required for Virulence and Oxidative Stress Response in Sugarcane Pokkah Boeng Pathogen

    Directory of Open Access Journals (Sweden)

    Chengkang eZhang

    2015-10-01

    Full Text Available Fusarium verticillioides (formerly F. moniliforme is suggested as one of the causal agents of Pokkah Boeng, a serious disease of sugarcane worldwide. Currently, detailed molecular and physiological mechanism of pathogenesis is unknown. In this study, we focused on cell wall integrity MAPK pathway as one of the potential signaling mechanisms associated with Pokkah Boeng pathogenesis. We identified FvBCK1 gene that encodes a MAP kinase kinase kinase homolog and determined that it is not only required for growth, micro- and macro-conidia production, and cell wall integrity but also for response to osmotic and oxidative stresses. The deletion of FvBCK1 caused a significant reduction in virulence and FB1 production, a carcinogenic mycotoxin produced by the fungus. Moreover, we found the expression levels of three genes, which are known to be involved in superoxide scavenging, were down regulated in the mutant. We hypothesized that the loss of superoxide scavenging capacity was one of the reasons for reduced virulence, but overexpression of catalase or peroxidase gene failed to restore the virulence defect in the deletion mutant. When we introduced Magnaporthe oryzae MCK1 into the FvBck1 deletion mutant, while certain phenotypes were restored, the complemented strain failed to gain full virulence. In summary, FvBck1 plays a diverse role in F. verticillioides, and detailed investigation of downstream signaling pathways will lead to a better understanding of how this MAPK pathway regulates Pokkah Boeng on sugarcane.

  2. Association analysis between mitogen-activated protein/extracellular signal-regulated kinase (MEK) gene polymorphisms and depressive disorder in the Han Chinese population.

    Science.gov (United States)

    Hu, Yingyan; Hong, Wu; Smith, Alicia; Yu, Shunying; Li, Zezhi; Wang, Dongxiang; Yuan, Chengmei; Cao, Lan; Wu, Zhiguo; Huang, Jia; Fralick, Drew; Phillips, Michael Robert; Fang, Yiru

    2017-11-01

    Recent research findings suggest that BDNF and BDNF signaling pathways participate in the development of major depressive disorder. Mitogen-activated extracellular signal-regulated kinase (MEK) is the most important kinase in the extracellular signal-regulated kinase pathway, and the extracellular signal-regulated kinase pathway is the key signaling pathway of BDNF, so it may play a role in development of depressive disorder. The aim of this study is to investigate the association between polymorphisms of the MAP2K1 (also known as MEK) gene and depressive disorder. Three single nucleotide polymorphisms (SNPs), were significantly associated with depressive disorder: rs1549854 (p = 0.006), rs1432441 (p = 0.025), and rs7182853 (p = 0.039). When subdividing the sample by gender, two of the SNPs remained statistically associated with depressive disorder in females: rs1549854 (p = 0.013) and rs1432441 (p = 0.04). The rs1549854 and rs1432441 polymorphisms of the MAP2K1 gene may be associated with major depressive disorder, especially in females. This study is the first to report that the MAP2K1 gene may be a genetic marker for depressive disorder. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Exploring the Genomic Roadmap and Molecular Phylogenetics Associated with MODY Cascades Using Computational Biology.

    Science.gov (United States)

    Chakraborty, Chiranjib; Bandyopadhyay, Sanghamitra; Doss, C George Priya; Agoramoorthy, Govindasamy

    2015-04-01

    Maturity onset diabetes of the young (MODY) is a metabolic and genetic disorder. It is different from type 1 and type 2 diabetes with low occurrence level (1-2%) among all diabetes. This disorder is a consequence of β-cell dysfunction. Till date, 11 subtypes of MODY have been identified, and all of them can cause gene mutations. However, very little is known about the gene mapping, molecular phylogenetics, and co-expression among MODY genes and networking between cascades. This study has used latest servers and software such as VarioWatch, ClustalW, MUSCLE, G Blocks, Phylogeny.fr, iTOL, WebLogo, STRING, and KEGG PATHWAY to perform comprehensive analyses of gene mapping, multiple sequences alignment, molecular phylogenetics, protein-protein network design, co-expression analysis of MODY genes, and pathway development. The MODY genes are located in chromosomes-2, 7, 8, 9, 11, 12, 13, 17, and 20. Highly aligned block shows Pro, Gly, Leu, Arg, and Pro residues are highly aligned in the positions of 296, 386, 437, 455, 456 and 598, respectively. Alignment scores inform us that HNF1A and HNF1B proteins have shown high sequence similarity among MODY proteins. Protein-protein network design shows that HNF1A, HNF1B, HNF4A, NEUROD1, PDX1, PAX4, INS, and GCK are strongly connected, and the co-expression analyses between MODY genes also show distinct association between HNF1A and HNF4A genes. This study has used latest tools of bioinformatics to develop a rapid method to assess the evolutionary relationship, the network development, and the associations among eleven MODY genes and cascades. The prediction of sequence conservation, molecular phylogenetics, protein-protein network and the association between the MODY cascades enhances opportunities to get more insights into the less-known MODY disease.

  4. Calcium-Oxidant Signaling Network Regulates AMP-activated Protein Kinase (AMPK) Activation upon Matrix Deprivation*

    Science.gov (United States)

    Sundararaman, Ananthalakshmy; Amirtham, Usha; Rangarajan, Annapoorni

    2016-01-01

    The AMP-activated protein kinase (AMPK) has recently been implicated in anoikis resistance. However, the molecular mechanisms that activate AMPK upon matrix detachment remain unexplored. In this study, we show that AMPK activation is a rapid and sustained phenomenon upon matrix deprivation, whereas re-attachment to the matrix leads to its dephosphorylation and inactivation. Because matrix detachment leads to loss of integrin signaling, we investigated whether integrin signaling negatively regulates AMPK activation. However, modulation of focal adhesion kinase or Src, the major downstream components of integrin signaling, failed to cause a corresponding change in AMPK signaling. Further investigations revealed that the upstream AMPK kinases liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ) contribute to AMPK activation upon detachment. In LKB1-deficient cells, we found AMPK activation to be predominantly dependent on CaMKKβ. We observed no change in ATP levels under detached conditions at early time points suggesting that rapid AMPK activation upon detachment was not triggered by energy stress. We demonstrate that matrix deprivation leads to a spike in intracellular calcium as well as oxidant signaling, and both these intracellular messengers contribute to rapid AMPK activation upon detachment. We further show that endoplasmic reticulum calcium release-induced store-operated calcium entry contributes to intracellular calcium increase, leading to reactive oxygen species production, and AMPK activation. We additionally show that the LKB1/CaMKK-AMPK axis and intracellular calcium levels play a critical role in anchorage-independent cancer sphere formation. Thus, the Ca2+/reactive oxygen species-triggered LKB1/CaMKK-AMPK signaling cascade may provide a quick, adaptable switch to promote survival of metastasizing cancer cells. PMID:27226623

  5. Defect accumulation under cascade damage conditions

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, B.N.; Woo, C.H.

    1994-01-01

    in terms of this reaction kinetics taking into account cluster production, dissociation, migration and annihilation at extended sinks. Microstructural features which are characteristic of cascade damage and cannot be explained in terms of the conventional single defect reaction kinetics are emphasized......There is now ample evidence from both experimental and computer simulation studies that in displacement cascades not only intense recombination takes place but also efficient clustering of both self-interstitial atoms (SIAs) and vacancies. The size distributions of the two types of defects produced...... reactions kinetics associated with the specific features of cascade damage is described, with emphasis on asymmetries between SIA and vacancy type defects concerning their production, stability, mobility and interactions with other defects. Defect accumulation under cascade damage conditions is discussed...

  6. DNA Protecting Activities of Nymphaea nouchali (Burm. f Flower Extract Attenuate t-BHP-Induced Oxidative Stress Cell Death through Nrf2-Mediated Induction of Heme Oxygenase-1 Expression by Activating MAP-Kinases

    Directory of Open Access Journals (Sweden)

    Md Badrul Alam

    2017-09-01

    Full Text Available This study was performed to investigate the antioxidant activities of Nymphaea nouchali flower (NNF extract and the underlying mechanism using RAW 264.7 cells. The presence of gallic acid, catechin, epicatechin, epigallocatechin, epicatechin gallate, caffeic acid, quercetin, and apigenin in the NNF was confirmed by high-performance liquid chromatography (HPLC. The extract had a very potent capacity to scavenge numerous free radicals. NNF extract was also able to prevent DNA damage and quench cellular reactive oxygen species (ROS generation induced by tert-Butyl hydroperoxide (t-BHP with no signs of toxicity. The NNF extract was able to augment the expression of both primary and phase II detoxifying enzyme, resulting in combat the oxidative stress. This is accomplished by phosphorylation of mitogen-activated protein kinase (MAP kinase (p38 kinase and extracellular signal-regulated kinase (ERK followed by enhancing the nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2. This attenuates cellular ROS generation and confers protection from cell death. Altogether, the results of current study revealed that Nymphaea nouchali flower could be a source of natural phytochemicals that could lead to the development of new therapeutic agents for preventing oxidative stress associated diseases and attenuating disease progression.

  7. Protein kinase C and extracellular signal-regulated kinase regulate movement, attachment, pairing and egg release in Schistosoma mansoni.

    Directory of Open Access Journals (Sweden)

    Margarida Ressurreição

    2014-06-01

    Full Text Available Protein kinases C (PKCs and extracellular signal-regulated kinases (ERKs are evolutionary conserved cell signalling enzymes that coordinate cell function. Here we have employed biochemical approaches using 'smart' antibodies and functional screening to unravel the importance of these enzymes to Schistosoma mansoni physiology. Various PKC and ERK isotypes were detected, and were differentially phosphorylated (activated throughout the various S. mansoni life stages, suggesting isotype-specific roles and differences in signalling complexity during parasite development. Functional kinase mapping in adult worms revealed that activated PKC and ERK were particularly associated with the adult male tegument, musculature and oesophagus and occasionally with the oesophageal gland; other structures possessing detectable activated PKC and/or ERK included the Mehlis' gland, ootype, lumen of the vitellaria, seminal receptacle and excretory ducts. Pharmacological modulation of PKC and ERK activity in adult worms using GF109203X, U0126, or PMA, resulted in significant physiological disturbance commensurate with these proteins occupying a central position in signalling pathways associated with schistosome muscular activity, neuromuscular coordination, reproductive function, attachment and pairing. Increased activation of ERK and PKC was also detected in worms following praziquantel treatment, with increased signalling associated with the tegument and excretory system and activated ERK localizing to previously unseen structures, including the cephalic ganglia. These findings support roles for PKC and ERK in S. mansoni homeostasis, and identify these kinase groups as potential targets for chemotherapeutic treatments against human schistosomiasis, a neglected tropical disease of enormous public health significance.

  8. Inhibition of Curcumin on ZAKα Activity Resultant in Apoptosis and Anchorage-Independent Growth in Cancer Cells.

    Science.gov (United States)

    Lee, Jin-Sun; Wang, Tsu-Shing; Lin, Ming Cheng; Lin, Wei-Wen; Yang, Jaw-Ji

    2017-10-31

    Curcumin, a popular yellow pigment of the dietary spice turmeric, has been reported to inhibit cell growth and to induce apoptosis in a wide variety of cancer cells. Although numerous studies have investigated anticancer effects of curcumin, the precise molecular mechanism of action remains unidentified. Whereas curcumin mediates cell survival and apoptosis through mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling cascades, its impact on the upstream regulation of MAPK is unclear. The leucine-zipper and sterile-α motif kinase alpha (ZAKα), a mitogen-activated protein kinase kinase kinase (MAP3K), activates the c-Jun N-terminal kinase (JNK) and NF-κB pathway. This paper investigated the prospective involvement of ZAKα in curcumin-induced effects on cancer cells. Our results suggest that the antitumor activity of curcumin is mediated via a mechanism involving inhibition of ZAKα activity.

  9. Molecular mechanisms of responses to radiation through protein kinase C

    International Nuclear Information System (INIS)

    Nakajima, Tetsuo

    2005-01-01

    Described are the activation and cascade of the protein kinase C (PKC) which mediating the control of radiation-induced apoptosis. PKC is a family of c-, n- and a-subtypes and plays a major role in responding to the radiation exposure for DNA repair, cell cycle arrest and apoptosis. The author has conducted studies of mouse thymic lymphoma cells which have a property to respond even to low dose radiation, and has showed that, in the highly radiosensitive cell strain, 3SBH5 where apoptosis occurs in 50 and 90% post 0.5 and 2 Gy exposure, respectively, cPKC works as a surviving signal without intracellular movement after irradiation. In contrast, PKC has been alternatively shown to participate in apoptosis induction, showing that different enzyme species in the subtypes work specifically depending on passing time. Comparison with the radio-resistant cell strain, XR223, has revealed that the difference in the localization controls of PKCδ in the cell determines the radiosensitivity, however, the control mechanism is found to be separate from Atm pathway by which PKCδ is usually regulated. Recent studies have revealed that PKC performs the intracellular cross-talk in various phosphorylation cascades. Studies of PKC can be toward their uses for radiation effect assessment, radiotherapy and medicare for urgent exposure. (S.I.)

  10. Calcium-Dependent Protein Kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates

    Directory of Open Access Journals (Sweden)

    Amy eCurran

    2011-08-01

    Full Text Available The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca2+-dependent protein kinases (CPKs. While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16 and 34. Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with KM ~70 µM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites. Of these, 74 (27% were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies.

  11. Protein kinase Cα deletion causes hypotension and decreased vascular contractility.

    Science.gov (United States)

    Wynne, Brandi M; McCarthy, Cameron G; Szasz, Theodora; Molina, Patrick A; Chapman, Arlene B; Webb, R Clinton; Klein, Janet D; Hoover, Robert S

    2018-03-01

    Protein kinase Cα (PKCα) is a critical regulator of multiple cell signaling pathways including gene transcription, posttranslation modifications and activation/inhibition of many signaling kinases. In regards to the control of blood pressure, PKCα causes increased vascular smooth muscle contractility, while reducing cardiac contractility. In addition, PKCα has been shown to modulate nephron ion transport. However, the role of PKCα in modulating mean arterial pressure (MAP) has not been investigated. In this study, we used a whole animal PKCα knock out (PKC KO) to test the hypothesis that global PKCα deficiency would reduce MAP, by a reduction in vascular contractility. Radiotelemetry measurements of ambulatory blood pressure (day/night) were obtained for 18 h/day during both normal chow and high-salt (4%) diet feedings. PKCα mice had a reduced MAP, as compared with control, which was not normalized with high-salt diet (14 days). Metabolic cage studies were performed to determine urinary sodium excretion. PKC KO mice had a significantly lower diastolic, systolic and MAP as compared with control. No significant differences in urinary sodium excretion were observed between the PKC KO and control mice, whether fed normal chow or high-salt diet. Western blot analysis showed a compensatory increase in renal sodium chloride cotransporter expression. Both aorta and mesenteric vessels were removed for vascular reactivity studies. Aorta and mesenteric arteries from PKC KO mice had a reduced receptor-independent relaxation response, as compared with vessels from control. Vessels from PKC KO mice exhibited a decrease in maximal contraction, compared with controls. Together, these data suggest that global deletion of PKCα results in reduced MAP due to decreased vascular contractility.

  12. Multilayered tori in a system of two coupled logistic maps

    DEFF Research Database (Denmark)

    Zhusubaliyev, Zhanybai; Mosekilde, Erik

    2009-01-01

    of two coupled logistic maps through period-doubling or pitchfork bifurcations of the saddle cycle on an ordinary resonance torus. We hereafter present two different scenarios by which a multilayered torus can be destructed. One scenario involves a cascade of period-doubling bifurcations of both...

  13. PRO40 is a scaffold protein of the cell wall integrity pathway, linking the MAP kinase module to the upstream activator protein kinase C.

    Directory of Open Access Journals (Sweden)

    Ines Teichert

    2014-09-01

    Full Text Available Mitogen-activated protein kinase (MAPK pathways are crucial signaling instruments in eukaryotes. Most ascomycetes possess three MAPK modules that are involved in key developmental processes like sexual propagation or pathogenesis. However, the regulation of these modules by adapters or scaffolds is largely unknown. Here, we studied the function of the cell wall integrity (CWI MAPK module in the model fungus Sordaria macrospora. Using a forward genetic approach, we found that sterile mutant pro30 has a mutated mik1 gene that encodes the MAPK kinase kinase (MAPKKK of the proposed CWI pathway. We generated single deletion mutants lacking MAPKKK MIK1, MAPK kinase (MAPKK MEK1, or MAPK MAK1 and found them all to be sterile, cell fusion-deficient and highly impaired in vegetative growth and cell wall stress response. By searching for MEK1 interaction partners via tandem affinity purification and mass spectrometry, we identified previously characterized developmental protein PRO40 as a MEK1 interaction partner. Although fungal PRO40 homologs have been implicated in diverse developmental processes, their molecular function is currently unknown. Extensive affinity purification, mass spectrometry, and yeast two-hybrid experiments showed that PRO40 is able to bind MIK1, MEK1, and the upstream activator protein kinase C (PKC1. We further found that the PRO40 N-terminal disordered region and the central region encompassing a WW interaction domain are sufficient to govern interaction with MEK1. Most importantly, time- and stress-dependent phosphorylation studies showed that PRO40 is required for MAK1 activity. The sum of our results implies that PRO40 is a scaffold protein for the CWI pathway, linking the MAPK module to the upstream activator PKC1. Our data provide important insights into the mechanistic role of a protein that has been implicated in sexual and asexual development, cell fusion, symbiosis, and pathogenicity in different fungal systems.

  14. 2,2',4,4'-Tetrachlorobiphenyl upregulates cyclooxygenase-2 in HL-60 cells via p38 mitogen-activated protein kinase and NF-κB

    International Nuclear Information System (INIS)

    Bezdecny, Steven A.; Karmaus, Peer; Roth, Robert A.; Ganey, Patricia E.

    2007-01-01

    Polychlorinated biphenyls (PCBs) are ubiquitous, persistent environmental contaminants that affect a number of cellular systems, including neutrophils. Among the effects caused by the noncoplanar PCB 2,2',4,4'-tetrachlorobiphenyl (2244-TCB) in granulocytic HL-60 cells are increases in superoxide anion production, activation of phospholipase A 2 with subsequent release of arachidonic acid (AA) and upregulation of the inflammatory gene cyclooxygenase-2 (COX-2). The objective of this study was to determine the signal transduction pathways involved in the upregulation of COX-2 by 2244-TCB. Treatment of HL-60 cells with 2244-TCB led to increased expression of COX-2 mRNA. This increase was prevented by the transcriptional inhibitor actinomycin D in cells pretreated with 2244-TCB for 10 min. The increase in COX-2 mRNA was associated with release of 3 H-AA, phosphorylation of p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinases, increased levels of nuclear NF-κB and increased superoxide anion production. Bromoenol lactone, an inhibitor of the calcium-independent phospholipase A 2 , reduced 3 H-AA release but had no effect on COX-2 mRNA, protein or activity. Pretreatment with SB-202190 or SB-203580, inhibitors of the p38 MAP kinase pathway, prevented the 2244-TCB-mediated induction of COX-2 and phosphorylation of p38 and ERK MAP kinases. These inhibitors did not alter 3 H-AA release. Treatment with PD 98059 or U 0126, inhibitors of the MAP/ERK (MEK) pathway, prevented the 2244-TCB-mediated activation of ERK but had no effect on COX-2 induction or p38 phosphorylation. 2244-TCB treatment did not affect c-Jun N-terminal kinase (JNK) phosphorylation. 2244-TCB exposure increased the amount of nuclear NF-κB. This increase was prevented by pretreatment with p38 MAP kinase inhibitors, but not by pretreatment with MEK inhibitors. Pretreatment with inhibitors of NF-κB prevented the 2244-TCB-mediated induction of COX-2 mRNA. 2244-TCB

  15. Cascade Error Projection: An Efficient Hardware Learning Algorithm

    Science.gov (United States)

    Duong, T. A.

    1995-01-01

    A new learning algorithm termed cascade error projection (CEP) is presented. CEP is an adaption of a constructive architecture from cascade correlation and the dynamical stepsize of A/D conversion from the cascade back propagation algorithm.

  16. Noise propagation in two-step series MAPK cascade.

    Directory of Open Access Journals (Sweden)

    Venkata Dhananjaneyulu

    Full Text Available Series MAPK enzymatic cascades, ubiquitously found in signaling networks, act as signal amplifiers and play a key role in processing information during signal transduction in cells. In activated cascades, cell-to-cell variability or noise is bound to occur and thereby strongly affects the cellular response. Commonly used linearization method (LM applied to Langevin type stochastic model of the MAPK cascade fails to accurately predict intrinsic noise propagation in the cascade. We prove this by using extensive stochastic simulations for various ranges of biochemical parameters. This failure is due to the fact that the LM ignores the nonlinear effects on the noise. However, LM provides a good estimate of the extrinsic noise propagation. We show that the correct estimate of intrinsic noise propagation in signaling networks that contain at least one enzymatic step can be obtained only through stochastic simulations. Noise propagation in the cascade depends on the underlying biochemical parameters which are often unavailable. Based on a combination of global sensitivity analysis (GSA and stochastic simulations, we developed a systematic methodology to characterize noise propagation in the cascade. GSA predicts that noise propagation in MAPK cascade is sensitive to the total number of upstream enzyme molecules and the total number of molecules of the two substrates involved in the cascade. We argue that the general systematic approach proposed and demonstrated on MAPK cascade must accompany noise propagation studies in biological networks.

  17. Interplay between calcineurin and the Slt2 MAP-kinase in mediating cell wall integrity, conidiation and virulence in the insect fungal pathogen Beauveria bassiana.

    Science.gov (United States)

    Huang, Shuaishuai; He, Zhangjiang; Zhang, Shiwei; Keyhani, Nemat O; Song, Yulin; Yang, Zhi; Jiang, Yahui; Zhang, Wenli; Pei, Yan; Zhang, Yongjun

    2015-10-01

    The entomopathogenic fungus, Beauveria bassiana, is of environmental and economic importance as an insect pathogen, currently used for the biological control of a number of pests. Cell wall integrity and conidiation are critical parameters for the ability of the fungus to infect insects and for production of the infectious propagules. The contribution of calcineurin and the Slt2 MAP kinase to cell wall integrity and development in B. bassiana was investigated. Gene knockouts of either the calcineurin CNA1 subunit or the Slt2 MAP kinase resulted in decreased tolerance to calcofluor white and high temperature. In contrast, the Δcna1 strain was more tolerant to Congo red but more sensitive to osmotic stress (NaCl, sorbitol) than the wild type, whereas the Δslt2 strain had the opposite phenotype. Changes in cell wall structure and composition were seen in the Δslt2 and Δcna1 strains during growth under cell wall stress as compared to the wild type. Both Δslt2 and Δcna1 strains showed significant alterations in growth, conidiation, and viability. Elevation of intracellular ROS levels, and decreased conidial hydrophobicity and adhesion to hydrophobic surfaces, were also seen for both mutants, as well as decreased virulence. Under cell wall stress conditions, inactivation of Slt2 significantly repressed CN-mediated phosphatase activity suggesting some level of cross talk between the two pathways. Comparative transcriptome profiling of the Δslt2 and Δcna1 strains revealed alterations in the expression of distinct gene sets, with overlap in transcripts involved in cell wall integrity, stress response, conidiation and virulence. These data illustrate convergent and divergent phenotypes and targets of the calcineurin and Slt2 pathways in B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Assessment on tracking error performance of Cascade P/PI, NPID and N-Cascade controller for precise positioning of xy table ballscrew drive system

    International Nuclear Information System (INIS)

    Abdullah, L; Jamaludin, Z; Rafan, N A; Jamaludin, J; Chiew, T H

    2013-01-01

    At present, positioning plants in machine tools are looking for high degree of accuracy and robustness attributes for the purpose of compensating various disturbance forces. The objective of this paper is to assess the tracking performance of Cascade P/PI, Nonlinear PID (NPID) and Nonlinear cascade (N-Cascade) controller with the existence of disturbance forces in the form of cutting forces. Cutting force characteristics at different cutting parameters; such as spindle speed rotations is analysed using Fast Fourier Transform. The tracking performance of a Nonlinear cascade controller in presence of these cutting forces is compared with NPID controller and Cascade P/PI controller. Robustness of these controllers in compensating different cutting characteristics is compared based on reduction in the amplitudes of cutting force harmonics using Fast Fourier Transform. It is found that the N-cascade controller performs better than both NPID controller and Cascade P/PI controller. The average percentage error reduction between N-cascade controller and Cascade P/PI controller is about 65% whereas the average percentage error reduction between cascade controller and NPID controller is about 82% at spindle speed of 3000 rpm spindle speed rotation. The finalized design of N-cascade controller could be utilized further for machining application such as milling process. The implementation of N-cascade in machine tools applications will increase the quality of the end product and the productivity in industry by saving the machining time. It is suggested that the range of the spindle speed could be made wider to accommodate the needs for high speed machining

  19. A targeted enzyme approach to sensitization of tyrosine kinase inhibitor-resistant breast cancer cells.

    Science.gov (United States)

    Giordano, Courtney R; Mueller, Kelly L; Terlecky, Laura J; Krentz, Kendra A; Bollig-Fischer, Aliccia; Terlecky, Stanley R; Boerner, Julie L

    2012-10-01

    Gefitinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) of potential use in patients with breast cancer. Unfortunately, in clinical studies, gefitinib is often ineffective indicating that resistance to EGFR inhibitors may be a common occurrence in cancer of the breast. EGFR has been shown to be overexpressed in breast cancer, and in particular remains hyperphosphorylated in cell lines such as MDA-MB-468 that are resistant to EGFR inhibitors. Here, we investigate the cause of this sustained phosphorylation and the molecular basis for the ineffectiveness of gefitinib. We show that reactive oxygen species (ROS), known to damage cellular macromolecules and to modulate signaling cascades in a variety of human diseases including cancers, appear to play a critical role in mediating EGFR TKI-resistance. Furthermore, elimination of these ROS through use of a cell-penetrating catalase derivative sensitizes the cells to gefitinib. These results suggest a new approach for the treatment of TKI-resistant breast cancer patients specifically, the targeting of ROS and attendant downstream oxidative stress and their effects on signaling cascades. Copyright © 2012. Published by Elsevier Inc.

  20. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    Science.gov (United States)

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  1. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    Science.gov (United States)

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases.

    Science.gov (United States)

    Yoshizumi, Masanori; Abe, Jun-Ichi; Tsuchiya, Koichiro; Berk, Bradford C; Tamaki, Toshiaki

    2003-03-01

    Atherosclerosis preferentially occurs in areas of turbulent blood flow and low fluid shear stress, whereas laminar blood flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent findings suggest a steady laminar blood flow decreases EC apoptosis and inhibits TNF-mediated EC activation. EC apoptosis or activation is suggested to be involved in plaque erosion, which may lead to platelet aggregation. TNF-alpha regulates gene expression in ECs, in part, by stimulating mitogen-activated protein (MAP) kinases, which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAP kinases in ECs. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm(2)) on TNF-alpha-stimulated activity of three MAP kinases in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. TNF-alpha activated ERK1/2, JNK, and p38 maximally at 15 min in HUVEC. Pre-exposing HUVEC for 10 min to flow inhibited TNF-alpha activation of JNK, but showed no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, a specific ERK1/2 inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Transfection studies with dominant-negative constructs of the protein kinase MEK5 suggested an important role for big mitogen-activated protein kinase 1 (BMK1) in flow-mediated regulation of EC activation by TNF-alpha. Understanding the mechanisms by which steady laminar flow regulates JNK activation by cytokines may provide insight into the atheroprotective mechanisms induced by laminar blood flow.

  3. The role of c-AMP-dependent protein kinase in spinal cord and post synaptic dorsal column neurons in a rat model of visceral pain

    OpenAIRE

    Wu, Jing; Su, Guangxiao; Ma, Long; Zhang, Xuan; Lei, Yongzhong; Lin, Qing; Nauta, Haring J.W.; Li, Junfa; Fang, Li

    2007-01-01

    Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the ...

  4. Multi-scale interactions of geological processes during mineralization: cascade dynamics model and multifractal simulation

    Directory of Open Access Journals (Sweden)

    L. Yao

    2011-03-01

    Full Text Available Relations between mineralization and certain geological processes are established mostly by geologist's knowledge of field observations. However, these relations are descriptive and a quantitative model of how certain geological processes strengthen or hinder mineralization is not clear, that is to say, the mechanism of the interactions between mineralization and the geological framework has not been thoroughly studied. The dynamics behind these interactions are key in the understanding of fractal or multifractal formations caused by mineralization, among which singularities arise due to anomalous concentration of metals in narrow space. From a statistical point of view, we think that cascade dynamics play an important role in mineralization and studying them can reveal the nature of the various interactions throughout the process. We have constructed a multiplicative cascade model to simulate these dynamics. The probabilities of mineral deposit occurrences are used to represent direct results of mineralization. Multifractal simulation of probabilities of mineral potential based on our model is exemplified by a case study dealing with hydrothermal gold deposits in southern Nova Scotia, Canada. The extent of the impacts of certain geological processes on gold mineralization is related to the scale of the cascade process, especially to the maximum cascade division number nmax. Our research helps to understand how the singularity occurs during mineralization, which remains unanswered up to now, and the simulation may provide a more accurate distribution of mineral deposit occurrences that can be used to improve the results of the weights of evidence model in mapping mineral potential.

  5. Time structure of cascade showers

    International Nuclear Information System (INIS)

    Nakatsuka, Takao

    1984-01-01

    Interesting results have been reported on the time structure of the electromagnetic components of air showers which have been obtained by using recent fast electronic circuit technology. However, these analyses and explanations seem not very persuasive. One of the reasons is that there is not satisfactory theoretical calculation yet to explain the delay of electromagnetic components in cascade processes which are the object of direct observation. Therefore, Monte Carlo calculation was attempted for examining the relationship between the altitude at which high energy γ-ray is generated up in the air and the time structure of cascade showers at the level of observation. The investigation of a dominant factor over the delay of electromagnetic components indicated that the delay due to the multiple scattering of electrons was essential. The author used the analytical solution found by himself of C. N. Yang's equation for the study on the delay due to multiple scattering. The results were as follows: The average delay time and the spread of distribution of electromagnetic cascades were approximately in linear relationship with the mass of a material having passed in a thin uniform medium; the rise time of arrival time distribution for electromagnetic cascade showers was very steep under the condition that they were generated up in the air and observed on the ground; the subpeaks delayed by tens of ns in arrival time may sometimes appear due to the perturbation in electromagnetic cascade processes. (Wakatsuki, Y.)

  6. Bifurcation analysis of the logistic map via two periodic impulsive forces

    International Nuclear Information System (INIS)

    Jiang Hai-Bo; Li Tao; Zeng Xiao-Liang; Zhang Li-Ping

    2014-01-01

    The complex dynamics of the logistic map via two periodic impulsive forces is investigated in this paper. The influences of the system parameter and the impulsive forces on the dynamics of the system are studied respectively. With the parameter varying, the system produces the phenomenon such as periodic solutions, chaotic solutions, and chaotic crisis. Furthermore, the system can evolve to chaos by a cascading of period-doubling bifurcations. The Poincaré map of the logistic map via two periodic impulsive forces is constructed and its bifurcation is analyzed. Finally, the Floquet theory is extended to explore the bifurcation mechanism for the periodic solutions of this non-smooth map. (general)

  7. Autoregulation of kinase dephosphorylation by ATP binding in AGC protein kinases.

    Science.gov (United States)

    Chan, Tung O; Pascal, John M; Armen, Roger S; Rodeck, Ulrich

    2012-02-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non- ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.

  8. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Diogo Ricardo da, E-mail: diogo_cost@hotmail.com [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Hansen, Matheus [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Instituto de Física, Univ. São Paulo, Rua do Matão, Cidade Universitária, 05314-970, São Paulo – SP (Brazil); Guarise, Gustavo [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Medrano-T, Rene O. [Departamento de Ciências Exatas e da Terra, UNIFESP – Universidade Federal de São Paulo, Rua São Nicolau, 210, Centro, 09913-030, Diadema, SP (Brazil); Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom); Leonel, Edson D. [Departamento de Física, UNESP – Universidade Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, 34151 Trieste (Italy)

    2016-04-22

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  9. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    International Nuclear Information System (INIS)

    Costa, Diogo Ricardo da; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-01-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems. - Highlights: • Extreme orbits and the organization of periodic regions in parameter space. • One-dimensional dissipative mappings. • The circle map and also a time perturbed logistic map were studied.

  10. Stretch activates myosin light chain kinase in arterial smooth muscle

    International Nuclear Information System (INIS)

    Barany, K.; Rokolya, A.; Barany, M.

    1990-01-01

    Stretching of porcine carotid arterial muscle increased the phosphorylation of the 20 kDa myosin light chain from 0.23 to 0.68 mol [32P]phosphate/mol light chain, whereas stretching of phorbol dibutyrate treated muscle increased the phosphorylation from 0.30 to 0.91 mol/mol. Two-dimensional gel electrophoresis followed by two-dimensional tryptic phosphopeptide mapping was used to identify the enzyme involved in the stretch-induced phosphorylation. Quantitation of the [32P]phosphate content of the peptides revealed considerable light chain phosphorylation by protein kinase C only in the phorbol dibutyrate treated arterial muscle, whereas most of the light chain phosphorylation was attributable to myosin light chain kinase. Upon stretch of either the untreated or treated muscle, the total increment in [32P]phosphate incorporation into the light chain could be accounted for by peptides characteristic for myosin light chain kinase catalyzed phosphorylation, demonstrating that the stretch-induced phosphorylation is caused by this enzyme exclusively

  11. Formalism of continual integrals for cascade processes with particle fusion

    International Nuclear Information System (INIS)

    Gedalin, Eh.V.

    1987-01-01

    Formalism of continuous integrals for description of cascade processes, in which besides cascade particle reproduction, their synthesis and coalescence take place, is used. Account of cascade particle coalescence leads to the fact that the development of some cascade branches cannot be independent and main equations of the cascade process become functional instead of integral. The method of continuous intagrals permits to construct in the closed form producing functionals for the cascade process and to obtain the rules of their calculation using diagrams. Analytical expressions in the form of continuous integrals for producing functionals describing cascade development are obtained

  12. Autoregulation of kinase dephosphorylation by ATP binding to AGC protein kinases

    Science.gov (United States)

    Pascal, John M; Armen, Roger S

    2012-01-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non-ATP-competitive kinase inhibitors that discriminate within and between protein kinase families. PMID:22262182

  13. Identification and analysis of a novel protein-tyrosine kinase from bovine thymus

    International Nuclear Information System (INIS)

    Zioncheck, T.F.; Harrison, M.L.; Geahlen, R.L.

    1986-01-01

    A cytosolic protein-tyrosine kinase has been identified and purified to near homogeneity from calf thymus by using the phosphorylation of the tyrosine-containing peptide angiotensin I as an assay. Specific peptide phosphorylating activity was enhanced by carrying out the assay at high ionic strength (2M NaCl). The inclusion of NaCl at this concentration acts to stimulate endogenous protein-tyrosine kinase activity while simultaneously inhibiting other endogenous kinases. The purification procedure involved extraction of the enzyme from calf-thymus and sequential chromatography on columns of DEAE-cellulose, heparin-agarose, casein-sepharose, butylagarose, and Sephadex G-75. Analysis of the most highly purified preparations by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single Coomassie blue-stained band of 41 KDa. This molecular weight was consistent with results obtained from gel filtration, indicating that the enzyme exists as a monomer. The enzyme has also been found to catalyze an autophosphorylation reaction. Incubation of the enzyme with Mn 2+ and [γ- 32 P]ATP led to its modification on a tyrosine residue. Phosphopeptide mapping experiments indicated that the 41 KDa kinase was distinct from p56, the major membrane-associated protein-tyrosine kinase in T lymphocytes

  14. Evolution of volcaniclastic apron during initiation of Cascade volcanism in southern Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Bestland, E.A.

    1986-05-01

    The Oligocene Colestin Formation consists of volcaniclastic apron sequence that records the initiation of Cascade volcanism in the western Cascade Range of southern Oregon. The formation in the type area is largely confined to an east-west-trending graben approximately 8 km wide. This graben and other smaller grabens within it developed to the west of and perpendicular to the axis of the Oligocene Cascade arc. The apron, which fills and locally overflows the graben, consists of coalesced lobes of volcaniclastic and pyroclastic deposits and lesser amounts of lava flows. Abrupt lateral facies changes on a scale of tens to hundreds of meters were produced by the lobe style of deposition and contemporaneous basin faulting. Interstratified with the discontinuous apron sediments are marker units that consist of pyroclastic flows, paleosols, and lava-flow sequences. In the upper half of the formation, the apron can be subdivided into informal members (lobes and sequences of lobes), which can be mapped according to their composition and stratigraphic position. Each member formed during a distinct interval of volcanism. An epiclastic lobe in the upper part of the formation, containing debris-flow and hyperconcentrated flood-flow deposits, represents a period of effusive or mildly explosive andesitic and basaltic volcanism. This epiclastic lobe pinches out to the south under a member that consists of tuffaceous sandstones and interbedded welded and nonwelded pyroclastic flows. The pulselike style of apron growth was produced by the episodic shifting of volcanism along the arc.

  15. KCl cotransport regulation and protein kinase G in cultured vascular smooth muscle cells.

    Science.gov (United States)

    Adragna, N C; Zhang, J; Di Fulvio, M; Lincoln, T M; Lauf, P K

    2002-05-15

    K-Cl cotransport is activated by vasodilators in erythrocytes and vascular smooth muscle cells and its regulation involves putative kinase/phosphatase cascades. N-ethylmaleimide (NEM) activates the system presumably by inhibiting a protein kinase. Nitrovasodilators relax smooth muscle via cGMP-dependent activation of protein kinase G (PKG), a regulator of membrane channels and transporters. We investigated whether PKG regulates K-Cl cotransport activity or mRNA expression in normal, PKG-deficient-vector-only-transfected (PKG-) and PKG-catalytic-domain-transfected (PKG+) rat aortic smooth muscle cells. K-Cl cotransport was calculated as the Cl-dependent Rb influx, and mRNA was determined by semiquantitative RT-PCR. Baseline K-Cl cotransport was higher in PKG+ than in PKG- cells (p <0.01). At 0.5 mM, NEM stimulated K-Cl cotransport by 5-fold in PKG- but not in PKG+ cells. However, NEM was more potent although less effective to activate K-Cl cotransport in normal (passage 1-3) and PKG+ than in PKG- cells. In PKG- cells, [(dihydroindenyl) oxy] alkanoic acid (300 mM) but not furosemide (1 mM) inhibited K-Cl cotransport. Furthermore, no difference in K-Cl cotransport mRNA expression was observed between these cells. In conclusion, this study shows that manipulation of PKG expression in vascular smooth muscle cells affects K-Cl cotransport activity and its activation by NEM.

  16. Cascade theory in isotopic separation processes

    International Nuclear Information System (INIS)

    Agostini, J.P.

    1994-06-01

    Three main areas are developed within the scope of this work: - the first one is devoted to fundamentals: separative power, value function, ideal cascade and square cascade. Applications to two main cases are carried out, namely: Study of binary isotopic mix, Study of processes with a small enrichment coefficient. - The second one is devoted to cascade coupling -high-flux coupling (more widely used and better known) as well as low-flux coupling are presented and compared to one another. - The third one is an outlook on problems linked to cascade transients. Those problem are somewhat intricate and their interest lies mainly into two areas: economics where the start-up time may have a large influence on the interests paid during the construction and start-up period, military productions where the start-up time has a direct bearing on the production schedule. (author). 50 figs. 3 annexes. 12 refs. 6 tabs

  17. Inhibition of a NEDD8 Cascade Restores Restriction of HIV by APOBEC3G.

    Directory of Open Access Journals (Sweden)

    David J Stanley

    2012-12-01

    Full Text Available Cellular restriction factors help to defend humans against human immunodeficiency virus (HIV. HIV accessory proteins hijack at least three different Cullin-RING ubiquitin ligases, which must be activated by the small ubiquitin-like protein NEDD8, in order to counteract host cellular restriction factors. We found that conjugation of NEDD8 to Cullin-5 by the NEDD8-conjugating enzyme UBE2F is required for HIV Vif-mediated degradation of the host restriction factor APOBEC3G (A3G. Pharmacological inhibition of the NEDD8 E1 by MLN4924 or knockdown of either UBE2F or its RING-protein binding partner RBX2 bypasses the effect of Vif, restoring the restriction of HIV by A3G. NMR mapping and mutational analyses define specificity determinants of the UBE2F NEDD8 cascade. These studies demonstrate that disrupting host NEDD8 cascades presents a novel antiretroviral therapeutic approach enhancing the ability of the immune system to combat HIV.

  18. Kinases and Cancer

    OpenAIRE

    Jonas Cicenas; Egle Zalyte; Amos Bairoch; Pascale Gaudet

    2018-01-01

    Protein kinases are a large family of enzymes catalyzing protein phosphorylation. The human genome contains 518 protein kinase genes, 478 of which belong to the classical protein kinase family and 40 are atypical protein kinases [...

  19. Ion-irradiation studies of cascade damage in metals

    International Nuclear Information System (INIS)

    Averback, R.S.

    1982-03-01

    Ion-irradiation studies of the fundamental aspects of cascade damage in metals are reviewed. The emphasis of these studies has been the determination of the primary state of damage (i.e. the arrangement of atoms in the cascade region prior to thermal migration of defects). Progress has been made towards understanding the damage function (i.e. the number of Frenkel pairs produced as a function of primary recoil atom energy), the spatial configuration of vacancies and interstitials in the cascade and the cascade-induced mixing of atoms. It is concluded for these studies that the agitation of the lattice in the vicinity of energetic displacement cascades stimulates the defect motion and that such thermal spike motion induces recombination and clustering of Frenkel defects. 9 figures

  20. Regulation of mTORC1 Signaling by Src Kinase Activity Is Akt1-Independent in RSV-Transformed Cells

    Directory of Open Access Journals (Sweden)

    Martina Vojtěchová

    2008-02-01

    Full Text Available Increased activity of the Src tyrosine protein kinase that has been observed in a large number of human malignancies appears to be a promising target for drug therapy. In the present study, a critical role of the Src activity in the deregulation of mTOR signaling pathway in Rous sarcoma virus (RSV-transformed hamster fibroblasts, H19 cells, was shown using these cells treated with the Src-specific inhibitor, SU6656, and clones of fibroblasts expressing either the active Src or the dominant-negative Src kinase-dead mutant. Disruption of the Src kinase activity results in substantial reduction of the phosphorylation and activity of the Akt/protein kinase B (PKB, phosphorylation of tuberin (TSC2, mammalian target of rapamycin (mTOR, S6K1, ribosomal protein S6, and eukaryotic initiation factor 4E-binding protein 4E-BP1. The ectopic, active Akt1 that was expressed in Src-deficient cells significantly enhanced phosphorylation of TSC2 in these cells, but it failed to activate the inhibited components of the mTOR pathway that are downstream of TSC2. The data indicate that the Src kinase activity is essential for the activity of mTOR-dependent signaling pathway and suggest that mTOR targets may be controlled by Src independently of Akt1/TSC2 cascade in cells expressing hyperactive Src protein. These observations might have an implication in drug resistance to mTOR inhibitor-based cancer therapy in certain cell types.

  1. Extracellular signal-regulated kinase activation is required for consolidation and reconsolidation of memory at an early stage of ontogenesis.

    Science.gov (United States)

    Languille, Solène; Davis, Sabrina; Richer, Paulette; Alcacer, Cristina; Laroche, Serge; Hars, Bernard

    2009-11-01

    The ability to form long-term memories exists very early during ontogeny; however, the properties of early memory processes, brain structures involved and underlying cellular mechanisms are poorly defined. Here, we examine the role of extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase/ERK signaling cascade, which is crucial for adult memory, in the consolidation and reconsolidation of an early memory using a conditioned taste aversion paradigm in 3-day-old rat pups. We show that intraperitoneal injection of SL327, the upstream mitogen-activated protein kinase kinase inhibitor, impairs both consolidation and reconsolidation of early memory, leaving short-term memory after acquisition and after reactivation intact. The amnesic effect of SL327 diminishes with increasing delays after acquisition and reactivation. Biochemical analyses revealed ERK hyperphosphorylation in the amygdala but not the hippocampus following acquisition, suggesting functional activation of the amygdala as early as post-natal day 3, although there was no clear evidence for amygdalar ERK activation after reactivation. These results indicate that, despite an immature brain, the basic properties of memory and at least some of the molecular mechanisms and brain structures implicated in aversion memory share a number of similarities with the adult and emerge very early during ontogeny.

  2. Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism▿ †

    Science.gov (United States)

    Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-01-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740

  3. The signaling cascades of Ganoderma lucidum extracts in stimulating non-amyloidogenic protein secretion in human neuroblastoma SH-SY5Y cell lines.

    Science.gov (United States)

    Pinweha, Sirinthorn; Wanikiat, Payong; Sanvarinda, Yupin; Supavilai, Porntip

    2008-12-19

    Ganoderma lucidum (GL) is a medicinal mushroom that possesses various pharmacological properties which are also documented in the ancient reports where GL is praised for its effects on the promotion of health and longevity. In this study, we have investigated the effect of GL mycelia extracts on the non-amyloidogenic protein secretion (sAPPalpha) and the amyloid precursor protein (APP) expression in SH-SY5Y neuroblastoma cells. In order to characterize the signaling pathway which mediates GL-enhanced sAPPalpha secretion, we used inhibitors of nerve growth factor (NGF) signaling pathways, phosphatidylinositol 3 kinase (PI3K), phospholipase Cgamma1 (PLCgamma1), protein kinase C (PKC) and extracellular signal-regulated kinase (ERK1/2), to block GL-mediated sAPPalpha secretion as well as ERK1/2 and PKC activation by using Western blot analysis. Our results provided for the first time evidence that GL mycelia extracts increased APP expression and promoted sAPPalpha secretion. In addition, GL extracts activated ERK1/2 and PKC phosphorylation. The complex signaling cascades of PI3K and ERK may be responsible for GL-mediated sAPPalpha secretion.

  4. Cascading failure in the wireless sensor scale-free networks

    Science.gov (United States)

    Liu, Hao-Ran; Dong, Ming-Ru; Yin, Rong-Rong; Han, Li

    2015-05-01

    In the practical wireless sensor networks (WSNs), the cascading failure caused by a failure node has serious impact on the network performance. In this paper, we deeply research the cascading failure of scale-free topology in WSNs. Firstly, a cascading failure model for scale-free topology in WSNs is studied. Through analyzing the influence of the node load on cascading failure, the critical load triggering large-scale cascading failure is obtained. Then based on the critical load, a control method for cascading failure is presented. In addition, the simulation experiments are performed to validate the effectiveness of the control method. The results show that the control method can effectively prevent cascading failure. Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. F2014203239), the Autonomous Research Fund of Young Teacher in Yanshan University (Grant No. 14LGB017) and Yanshan University Doctoral Foundation, China (Grant No. B867).

  5. Geologic map of the Yacolt quadrangle, Clark County, Washington

    Science.gov (United States)

    Evarts, R.C.

    2006-01-01

    The Yacolt 7.5' quadrangle is situated in the foothills of the western Cascade Range of southwestern Washington approximately 35 km northeast of Portland, Oregon. Since late Eocene time, the Cascade Range has been the locus of an active volcanic arc associated with underthrusting of oceanic lithosphere beneath the North American continent along the Cascadia Subduction Zone. Volcanic and shallow-level intrusive rocks emplaced early in the history of the arc underlie most of the Yacolt quadrangle, forming a dissected and partly glaciated terrain with elevations between 250 and 2180 ft (75 and 665 m). The bedrock surface slopes irregularly but steeply to the southwest, forming the eastern margin of the Portland Basin, and weakly consolidated Miocene and younger basin-fill sediments lap up against the bedrock terrain in the southern part of the map area. A deep canyon, carved by the East Fork Lewis River that flows westward out of the Cascade Range, separates Yacolt and Bells Mountains, the two highest points in the quadrangle. Just west of the quadrangle, the river departs from its narrow bedrock channel and enters a wide alluvial floodplain. Bedrock of the Yacolt quadrangle consists of near-horizontal strata of Oligocene volcanic and volcaniclastic rocks that comprise early products of the Cascade volcanic arc. Basalt and basaltic andesite flows predominate. Most were emplaced on the flanks of a large mafic shield volcano and are interfingered with crudely bedded sections of volcanic breccia of probable lahar origin and a variety of well bedded epiclastic sedimentary rocks. At Yacolt Mountain, the volcanogenic rocks are intruded by a body of Miocene quartz diorite that is compositionally distinct from any volcanic rocks in the map area. The town of Yacolt sits in a north-northwest-trending valley apparently formed within a major fault zone. Several times during the Pleistocene, mountain glaciers moved down the Lewis River valley and spread southward into the map area

  6. Energy and carbon balances of wood cascade chains

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, SE-831 25 OEstersund (Sweden)

    2006-07-15

    In this study we analyze the energy and carbon balances of various cascade chains for recovered wood lumber. Post-recovery options include reuse as lumber, reprocessing as particleboard, pulping to form paper products, and burning for energy recovery. We compare energy and carbon balances of chains of cascaded products to the balances of products obtained from virgin wood fiber or from non-wood material. We describe and quantify several mechanisms through which cascading can affect the energy and carbon balances: direct cascade effects due to different properties and logistics of virgin and recovered materials, substitution effects due to the reduced demand for non-wood materials when wood is cascaded, and land use effects due to alternative possible land uses when less timber harvest is needed because of wood cascading. In some analyses we assume the forest is a limiting resource, and in others we include a fixed amount of forest land from which biomass can be harvested for use as material or biofuel. Energy and carbon balances take into account manufacturing processes, recovery and transportation energy, material recovery losses, and forest processes. We find that land use effects have the greatest impact on energy and carbon balances, followed by substitution effects, while direct cascade effects are relatively minor. (author)

  7. Polygalasaponin XXXII from Polygala tenuifolia root improves hippocampal-dependent learning and memory.

    Science.gov (United States)

    Xue, Wei; Hu, Jin-feng; Yuan, Yu-he; Sun, Jian-dong; Li, Bo-yu; Zhang, Dong-ming; Li, Chuang-jun; Chen, Nai-hong

    2009-09-01

    The aim of this study was to investigate the cognition-enhancing activity and underlying mechanisms of a triterpenoid saponin (polygalasaponin XXXII, PGS32) isolated from the roots of Polygala tenuifolia Willd. The Morris water maze was used to evaluate the spatial learning and memory of mice. To detect the basic properties of synaptic transmission and long-term potentiation (LTP) in the dentate gyrus of rats, electrophysiological recordings were made of evoked potentials. Western blotting analysis and immunofluorescence assays were used to determine the phosphorylation of extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), synapsin I and the expression of brain derived neurotrophic factor (BDNF). When administered at 0.125, 0.5, or 2 mg/kg, PGS32 could significantly prevent scopolamine-induced cognitive impairments in mice. Intracerebroventricular (icv) administration of PGS32 greatly enhanced basic synaptic transmission in the dentate gyrus of rats and induced LTP. In primary hippocampal neurons, as well as in the hippocampus of maze-trained mice, PGS32 activated the mitogen-activated protein (MAP) kinase cascade by promoting phosphorylation of ERK, CREB and synapsin I. The expression of BDNF was also greatly enhanced in the hippocampus. Our findings suggest that PGS32 can improve hippocampus-dependent learning and memory, possibly through improvement of synaptic transmission, activation of the MAP kinase cascade and enhancement of the level of BDNF. Therefore, PGS32 shows promise as a potential cognition-enhancing therapeutic drug.

  8. Reconstruction of the Chemotaxis Receptor-Kinase Assembly

    International Nuclear Information System (INIS)

    Park, S.; Borbat, P.; Gonzalez-Bonet, G.; Bhatnagar, J.; Pollard, A.; Freed, J.; Bilwes, A.; Crane, B.

    2006-01-01

    In bacterial chemotaxis, an assembly of transmembrane receptors, the CheA histidine kinase and the adaptor protein CheW processes environmental stimuli to regulate motility. The structure of a Thermotoga maritima receptor cytoplasmic domain defines CheA interaction regions and metal ion-coordinating charge centers that undergo chemical modification to tune receptor response. Dimeric CheA-CheW, defined by crystallography and pulsed ESR, positions two CheWs to form a cleft that is lined with residues important for receptor interactions and sized to clamp one receptor dimer. CheW residues involved in kinase activation map to interfaces that orient the CheW clamps. CheA regulatory domains associate in crystals through conserved hydrophobic surfaces. Such CheA self-contacts align the CheW receptor clamps for binding receptor tips. Linking layers of ternary complexes with close-packed receptors generates a lattice with reasonable component ratios, cooperative interactions among receptors and accessible sites for modification enzymes

  9. Curcumin Induced Human Gastric Cancer BGC-823 Cells Apoptosis by ROS-Mediated ASK1-MKK4-JNK Stress Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Tao Liang

    2014-09-01

    Full Text Available The signaling mediated by stress-activated MAP kinases (MAPK, c-Jun N-terminal kinase (JNK has well-established importance in cancer. In the present report, we investigated the effects of curcumin on the signaling pathway in human gastric cancer BGC-823 cells. Curcumin induced reactive oxygen species (ROS production and BGC-823 cells apoptosis. Inhibition of ROS generation by antioxidant (NAC or Trion significantly prevented curcumin-mediated apoptosis. Notably, we observed that curcumin activated ASK1, a MAPKKK that is oxidative stress sensitive and responsible to phosphorylation of JNK via triggering cascades, up-regulated an upstream effector of the JNK, MKK4, and phosphorylated JNK protein expression in BGC-823 cells. However, curcumin induced ASK1-MKK4-JNK signaling was attenuated by NAC. All the findings confirm the possibility that oxidative stress-activated ASK1-MKK4-JNK signaling cascade promotes the apoptotic response in curcumin-treated BGC-823 cells.

  10. Cascaded impedance networks for NPC inverter

    DEFF Research Database (Denmark)

    Li, Ding; Gao, Feng; Loh, Poh Chiang

    2010-01-01

    they are subject to the renewable sources. To date, three distinct types of impedance networks can be summarized for implementing a hybrid source impedance network, which can in principle be combined and cascaded before connected to a NPC inverter by proposed two ways. The resulting cascaded impedance network NPC...

  11. Germline mutations in MAP3K6 are associated with familial gastric cancer.

    Directory of Open Access Journals (Sweden)

    Daniel Gaston

    2014-10-01

    Full Text Available Gastric cancer is among the leading causes of cancer-related deaths worldwide. While heritable forms of gastric cancer are relatively rare, identifying the genes responsible for such cases can inform diagnosis and treatment for both hereditary and sporadic cases of gastric cancer. Mutations in the E-cadherin gene, CDH1, account for 40% of the most common form of familial gastric cancer (FGC, hereditary diffuse gastric cancer (HDGC. The genes responsible for the remaining forms of FGC are currently unknown. Here we examined a large family from Maritime Canada with FGC without CDH1 mutations, and identified a germline coding variant (p.P946L in mitogen-activated protein kinase kinase kinase 6 (MAP3K6. Based on conservation, predicted pathogenicity and a known role of the gene in cancer predisposition, MAP3K6 was considered a strong candidate and was investigated further. Screening of an additional 115 unrelated individuals with non-CDH1 FGC identified the p.P946L MAP3K6 variant, as well as four additional coding variants in MAP3K6 (p.F849Sfs*142, p.P958T, p.D200Y and p.V207G. A somatic second-hit variant (p.H506Y was present in DNA obtained from one of the tumor specimens, and evidence of DNA hypermethylation within the MAP3K6 gene was observed in DNA from the tumor of another affected individual. These findings, together with previous evidence from mouse models that MAP3K6 acts as a tumor suppressor, and studies showing the presence of somatic mutations in MAP3K6 in non-hereditary gastric cancers and gastric cancer cell lines, point towards MAP3K6 variants as a predisposing factor for FGC.

  12. Dual Regulation of a Chimeric Plant Serine/Threonine Kinase by Calcium and Calcium/Calmodulin

    Science.gov (United States)

    Takezawa, D.; Ramachandiran, S.; Paranjape, V.; Poovaiah, B. W.

    1996-01-01

    A chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) gene characterized by a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca(2+)-binding domain was recently cloned from plants. The Escherichia coli-expressed CCaMK phosphorylates various protein and peptide substrates in a Ca(2+)/calmodulin-dependent manner. The calmodulin-binding region of CCAMK has similarity to the calmodulin-binding region of the alpha-subunit of multifunctional Ca(2+)/calmodulin-dependent protein kinase (CaMKII). CCaMK exhibits basal autophosphorylation at the threonine residue(s) (0.098 mol of P-32/mol) that is stimulated 3.4-fold by Ca(2+) (0.339 mol of P-32/mol), while calmodulin inhibits Ca(2+)-stimulated autophosphorylation to the basal level. A deletion mutant lacking the visinin-like domain did not show Ca(2+)-simulated autophosphorylation activity but retained Ca(2+)/calmodulin-dependent protein kinase activity at a reduced level. Ca(2+)-dependent mobility shift assays using E.coli-expressed protein from residues 358-520 revealed that Ca(2+) binds to the visinin-like domain. Studies with site-directed mutants of the visinin-like domain indicated that EF-hands II and III are crucial for Ca(2+)-induced conformational changes in the visinin-like domain. Autophosphorylation of CCaMK increases Ca(2+)/calmodulin-dependent protein kinase activity by about 5-fold, whereas it did not affect its C(2+)-independent activity. This report provides evidence for the existence of a protein kinase in plants that is modulated by Ca(2+) and Ca(2+)/calmodulin. The presence of a visinin-like Ca(2+)-binding domain in CCaMK adds an additional Ca(2+)-sensing mechanism not previously known to exist in the Ca(2+)/calmodulin-mediated signaling cascade in plants.

  13. The frequencies and clinical implications of mutations in 33 kinase-related genes in locally advanced rectal cancer: a pilot study.

    LENUS (Irish Health Repository)

    Abdul-Jalil, Khairun I

    2014-08-01

    Locally advanced rectal cancer (LARC: T3\\/4 and\\/or node-positive) is treated with preoperative\\/neoadjuvant chemoradiotherapy (CRT), but responses are not uniform. The phosphatidylinositol 3-kinase (PI3K), MAP kinase (MAPK), and related pathways are implicated in rectal cancer tumorigenesis. Here, we investigated the association between genetic mutations in these pathways and LARC clinical outcomes.

  14. Conditional deletion of ERK5 MAP kinase in the nervous system impairs pheromone information processing and pheromone-evoked behaviors.

    Directory of Open Access Journals (Sweden)

    Junhui Zou

    Full Text Available ERK5 MAP kinase is highly expressed in the developing nervous system but absent in most regions of the adult brain. It has been implicated in regulating the development of the main olfactory bulb and in odor discrimination. However, whether it plays an essential role in pheromone-based behavior has not been established. Here we report that conditional deletion of the Mapk7 gene which encodes ERK5 in mice in neural stem cells impairs several pheromone-mediated behaviors including aggression and mating in male mice. These deficits were not caused by a reduction in the level of testosterone, by physical immobility, by heightened fear or anxiety, or by depression. Using mouse urine as a natural pheromone-containing solution, we provide evidence that the behavior impairment was associated with defects in the detection of closely related pheromones as well as with changes in their innate preference for pheromones related to sexual and reproductive activities. We conclude that expression of ERK5 during development is critical for pheromone response and associated animal behavior in adult mice.

  15. The MpkB MAP kinase plays a role in autolysis and conidiation of Aspergillus nidulans.

    Science.gov (United States)

    Kang, Ji Young; Chun, Jeesun; Jun, Sang-Cheol; Han, Dong-Min; Chae, Keon-Sang; Jahng, Kwang Yeop

    2013-12-01

    The mpkB gene of Aspergillus nidulans encodes a MAP kinase homologous to Fus3p of Saccharomyces cerevisiae which is involved in conjugation process. MpkB is required for completing the sexual development at the anastomosis and post-karyogamy stages. The mpkB deletion strain could produce conidia under the repression condition of conidiation such as sealing and even in the submerged culture concomitant with persistent brlA expression, implying that MpkB might have a role in timely regulation of brlA expression. The submerged culture of the deletion strain showed typical autolytic phenotypes including decrease in dry cell mass (DCM), disorganization of mycelial balls, and fragmentation of hyphae. The chiB, engA and pepJ genes which are encoding cell wall hydrolytic enzymes were transcribed highly in the submerged culture. Also, we observed that the enzyme activity of chitinase and glucanase in the submerged culture of mpkB deletion strain was much higher than that of wild type. The deletion of mpkB also caused a precocious germination of conidia and reduction of spore viability. The expression of the vosA gene, a member of velvet gene family, was not observed in the mpkB deletion strain. These results suggest that MpkB should have multiple roles in germination and viability of conidia, conidiation and autolysis through regulating the expression of vosA and brlA. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Learning Cascading

    CERN Document Server

    Covert, Michael

    2015-01-01

    This book is intended for software developers, system architects and analysts, big data project managers, and data scientists who wish to deploy big data solutions using the Cascading framework. You must have a basic understanding of the big data paradigm and should be familiar with Java development techniques.

  17. Information cascade on networks

    Science.gov (United States)

    Hisakado, Masato; Mori, Shintaro

    2016-05-01

    In this paper, we discuss a voting model by considering three different kinds of networks: a random graph, the Barabási-Albert (BA) model, and a fitness model. A voting model represents the way in which public perceptions are conveyed to voters. Our voting model is constructed by using two types of voters-herders and independents-and two candidates. Independents conduct voting based on their fundamental values; on the other hand, herders base their voting on the number of previous votes. Hence, herders vote for the majority candidates and obtain information relating to previous votes from their networks. We discuss the difference between the phases on which the networks depend. Two kinds of phase transitions, an information cascade transition and a super-normal transition, were identified. The first of these is a transition between a state in which most voters make the correct choices and a state in which most of them are wrong. The second is a transition of convergence speed. The information cascade transition prevails when herder effects are stronger than the super-normal transition. In the BA and fitness models, the critical point of the information cascade transition is the same as that of the random network model. However, the critical point of the super-normal transition disappears when these two models are used. In conclusion, the influence of networks is shown to only affect the convergence speed and not the information cascade transition. We are therefore able to conclude that the influence of hubs on voters' perceptions is limited.

  18. CBL-interacting protein kinase 6 negatively regulates immune response to Pseudomonas syringae in Arabidopsis.

    Science.gov (United States)

    Sardar, Atish; Nandi, Ashis Kumar; Chattopadhyay, Debasis

    2017-06-15

    Cytosolic calcium ion (Ca2+) is an essential mediator of the plant innate immune response. Here, we report that a calcium-regulated protein kinase Calcineurin B-like protein (CBL)-interacting protein kinase 6 (CIPK6) functions as a negative regulator of immunity against the bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana. Arabidopsis lines with compromised expression of CIPK6 exhibited enhanced disease resistance to the bacterial pathogen and to P. syringae harboring certain but not all avirulent effectors, while restoration of CIPK6 expression resulted in abolition of resistance. Plants overexpressing CIPK6 were more susceptible to P. syringae. Enhanced resistance in the absence of CIPK6 was accompanied by increased accumulation of salicylic acid and elevated expression of defense marker genes. Salicylic acid accumulation was essential for improved immunity in the absence of CIPK6. CIPK6 negatively regulated the oxidative burst associated with perception of pathogen-associated microbial patterns (PAMPs) and bacterial effectors. Accelerated and enhanced activation of the mitogen-activated protein kinase cascade in response to bacterial and fungal elicitors was observed in the absence of CIPK6. The results of this study suggested that CIPK6 negatively regulates effector-triggered and PAMP-triggered immunity in Arabidopsis. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Opposite effects of Ha-Ras and Ki-Ras on radiation-induced apoptosis via differential activation of PI3K/Akt and Rac/p38 mitogen-activated protein kinase signaling

    International Nuclear Information System (INIS)

    Choi, J.-A.; Kang, C.-M.; Lee, Y.-S.; Lee, S.-J.; Bae, S.-W.; Cho, C.-K.

    2003-01-01

    It has been well known that Ras signaling is involved in various cellular processes, including proliferation, differentiation, and apoptosis. However, distinct cellular functions of Ras isozymes are not fully understood. Here we show the opposing roles of Ha-Ras and Ki-Ras genes in the modulation of cell sensitivity to ionizing radiation. Overexpression of active isoform of Ha-Ras (12V-Ha- Ras) in Rat2 cells increases resistance to the ionizing radiation. Constitutive activation of phosphoinositide-3-kinase (PI3K) and Akt is detected specifically in 12V-Ha-Ras-overexpressing cells. The specific PI3K inhibitor LY294002 inhibits PI3K/Akt signaling and potentiates the radiation-induced apoptosis, suggesting that activation of PI3K/Akt signaling pathway is involved in the increased radio-resistance in cells overexpressing 12V-Ha-Ras. Overexpression of activated Ki-Ras (12V-Ki-Ras), on the other hand, markedly increases radiation sensitivity. The p38 mitogen-activated protein (MAP) kinase activity is selectively enhanced by ionizing radiation in cells overexpressing 12V-Ki-Ras. The specific p38 MAP kinase inhibitor, PD169316, or dominant-negative p38 MAP kinase decreases radiation-induced cell death. We further show that the mechanism that underlies potentiation of cell death in cells overexpressing 12V-Ki-Ras involves Bax translocation to the mitochondrial membrane. Elevated Bax translocation following ionizing irradiation in 12V-Ki-Ras-overexpressing cells is completely inhibited by PD169316 or dominant-negative p38 MAP kinase. In addition, introduction of cells with RacN17, a dominant negative mutant of Rac, resulted in a marked inhibition of radiation-induced Bax translocation and apoptotic cell death as well as p38 MAP kinase activation. Taken together, these findings explain the opposite effects of Ha-Ras and Ki-Ras on modulation of radio-sensitivity, and suggest that differential activation of PI3K/Akt and Rac/p38 MAP kinase signaling by Ha-Ras and Ki-Ras may

  20. Computation of inverse magnetic cascades

    International Nuclear Information System (INIS)

    Montgomery, D.

    1981-10-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed

  1. A New MAP Kinase Protein Involved in Estradiol-Stimulated Reproduction of the Helminth Parasite Taenia crassiceps

    Science.gov (United States)

    Escobedo, Galileo; Soldevila, Gloria; Ortega-Pierres, Guadalupe; Chávez-Ríos, Jesús Ramsés; Nava, Karen; Fonseca-Liñán, Rocío; López-Griego, Lorena; Hallal-Calleros, Claudia; Ostoa-Saloma, Pedro; Morales-Montor, Jorge

    2010-01-01

    MAP kinases (MAPK) are involved in the regulation of cellular processes such as reproduction and growth. In parasites, the role of MAPK has been scarcely studied. Here, we describe the participation of an ERK-like protein in estrogen-dependent reproduction of the helminth parasite Taenia crassiceps. Our results show that 17β-estradiol induces a concentration-dependent increase in the bud number of in vitro cultured cysticerci. If parasites are also incubated in presence of an ERK-inhibitor, the stimulatory effect of estrogen is blocked. The expression of ERK-like mRNA and its corresponding protein was detected in the parasite. The ERK-like protein was over-expressed by all treatments. Nevertheless, a strong induction of phosphorylation of this protein was observed only in response to 17β-estradiol. Cross-contamination by host cells was discarded by flow cytometry analysis. Parasite cells expressing the ERK-like protein were exclusively located at the subtegument tissue by confocal microscopy. Finally, the ERK-like protein was separated by bidimensional electrophoresis and then sequenced, showing the conserved TEY activation motif, typical of all known ERK 1/2 proteins. Our results show that an ERK-like protein is involved in the molecular signalling during the interaction between the host and T. crassiceps, and may be considered as target for anti-helminth drugs design. PMID:20145710

  2. The ERK MAP kinase-PEA3/ETV4-MMP-1 axis is operative in oesophageal adenocarcinoma

    LENUS (Irish Health Repository)

    Keld, Richard

    2010-12-09

    Abstract Background Many members of the ETS-domain transcription factor family are important drivers of tumourigenesis. In this context, their activation by Ras-ERK pathway signaling is particularly relevant to the tumourigenic properties of many ETS-domain transcription factors. The PEA3 subfamily of ETS-domain transcription factors have been implicated in tumour metastasis in several different cancers. Results Here, we have studied the expression of the PEA3 subfamily members PEA3\\/ETV4 and ER81\\/ETV1 in oesophageal adenocarcinomas and determined their role in oesophageal adenocarcinoma cell function. PEA3 plays an important role in controlling both the proliferation and invasive properties of OE33 oesophageal adenocarcinoma cells. A key target gene is MMP-1. The ERK MAP kinase pathway activates PEA3 subfamily members and also plays a role in these PEA3 controlled events, establishing the ERK-PEA3-MMP-1 axis as important in OE33 cells. PEA3 subfamily members are upregulated in human adenocarcinomas and expression correlates with MMP-1 expression and late stage metastatic disease. Enhanced ERK signaling is also more prevalent in late stage oesophageal adenocarcinomas. Conclusions This study shows that the ERK-PEA3-MMP-1 axis is upregulated in oesophageal adenocarcinoma cells and is a potentially important driver of the metastatic progression of oesophageal adenocarcinomas.

  3. A Map/INS/Wi-Fi Integrated System for Indoor Location-Based Service Applications.

    Science.gov (United States)

    Yu, Chunyang; Lan, Haiyu; Gu, Fuqiang; Yu, Fei; El-Sheimy, Naser

    2017-06-02

    In this research, a new Map/INS/Wi-Fi integrated system for indoor location-based service (LBS) applications based on a cascaded Particle/Kalman filter framework structure is proposed. Two-dimension indoor map information, together with measurements from an inertial measurement unit (IMU) and Received Signal Strength Indicator (RSSI) value, are integrated for estimating positioning information. The main challenge of this research is how to make effective use of various measurements that complement each other in order to obtain an accurate, continuous, and low-cost position solution without increasing the computational burden of the system. Therefore, to eliminate the cumulative drift caused by low-cost IMU sensor errors, the ubiquitous Wi-Fi signal and non-holonomic constraints are rationally used to correct the IMU-derived navigation solution through the extended Kalman Filter (EKF). Moreover, the map-aiding method and map-matching method are innovatively combined to constrain the primary Wi-Fi/IMU-derived position through an Auxiliary Value Particle Filter (AVPF). Different sources of information are incorporated through a cascaded structure EKF/AVPF filter algorithm. Indoor tests show that the proposed method can effectively reduce the accumulation of positioning errors of a stand-alone Inertial Navigation System (INS), and provide a stable, continuous and reliable indoor location service.

  4. A historical overview of protein kinases and their targeted small molecule inhibitors.

    Science.gov (United States)

    Roskoski, Robert

    2015-10-01

    Protein kinases play a predominant regulatory role in nearly every aspect of cell biology and they can modify the function of a protein in almost every conceivable way. Protein phosphorylation can increase or decrease enzyme activity and it can alter other biological activities such as transcription and translation. Moreover, some phosphorylation sites on a given protein are stimulatory while others are inhibitory. The human protein kinase gene family consists of 518 members along with 106 pseudogenes. Furthermore, about 50 of the 518 gene products lack important catalytic residues and are called protein pseudokinases. The non-catalytic allosteric interaction of protein kinases and pseudokinases with other proteins has added an important regulatory feature to the biochemistry and cell biology of the protein kinase superfamily. With rare exceptions, a divalent cation such as Mg2+ is required for the reaction. All protein kinases exist in a basal state and are activated only as necessary by divergent regulatory stimuli. The mechanisms for switching between dormant and active protein kinases can be intricate. Phosphorylase kinase was the first protein kinase to be characterized biochemically and the mechanism of its regulation led to the discovery of cAMP-dependent protein kinase (protein kinase A, or PKA), which catalyzes the phosphorylation and activation of phosphorylase kinase. This was the first protein kinase cascade or signaling module to be elucidated. The epidermal growth factor receptor-Ras-Raf-MEK-ERK signaling module contains protein-tyrosine, protein-serine/threonine, and dual specificity protein kinases. PKA has served as a prototype of this enzyme family and more is known about this enzyme than any other protein kinase. The inactive PKA holoenzyme consists of two regulatory and two catalytic subunits. After binding four molecules of cAMP, the holoenzyme dissociates into a regulatory subunit dimer (each monomer binds two cAMP) and two free and active

  5. Identification and characterization of a novel serine-threonine kinase gene from the Xp22 region.

    Science.gov (United States)

    Montini, E; Andolfi, G; Caruso, A; Buchner, G; Walpole, S M; Mariani, M; Consalez, G; Trump, D; Ballabio, A; Franco, B

    1998-08-01

    Eukaryotic protein kinases are part of a large and expanding family of proteins. Through our transcriptional mapping effort in the Xp22 region, we have isolated and sequenced the full-length transcript of STK9, a novel cDNA highly homologous to serine-threonine kinases. A number of human genetic disorders have been mapped to the region where STK9 has been localized including Nance-Horan (NH) syndrome, oral-facial-digital syndrome type 1 (OFD1), and a novel locus for nonsyndromic sensorineural deafness (DFN6). To evaluate the possible involvement of STK9 in any of the above-mentioned disorders, a 2416-bp full-length cDNA was assembled. The entire genomic structure of the gene, which is composed of 20 coding exons, was determined. Northern analysis revealed a transcript larger than 9.5 kb in several tissues including brain, lung, and kidney. The mouse homologue (Stk9) was identified and mapped in the mouse in the region syntenic to human Xp. This location is compatible with the location of the Xcat mutant, which shows congenital cataracts very similar to those observed in NH patients. Sequence homologies, expression pattern, and mapping information in both human and mouse make STK9 a candidate gene for the above-mentioned disorders. Copyright 1998 Academic Press.

  6. Non-spill control squared cascade

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Suemori, Nobuo.

    1974-01-01

    Object: To reduce a mixed loss thus enhancing separating efficiency by the provision of a simple arrangement wherein a reflux portion in a conventional spill control squared cascade is replaced by a special stage including centrifugal separators. Structure: Steps in the form of a square cascade, in which a plurality of centrifugal separators are connected by pipe lines, are accumulated in multistage fashion to form a squared cascade. Between the adjoining steps is disposed a special stage including a centrifugal separator which receives both lean flow from the upper step and rich flow from the lower step. The centrifugal separator in the special stage has its rich side connected to the upper step and its lean side connected to the lower step. Special stages are each disposed at the upper side of the uppermost step and at the lower side of the lowermost step. (Kamimura, M.)

  7. Molecular dynamics simulation of displacement cascades in iron-alpha; Cascades de deplacements atomiques dans le FER-alpha simulation par dynamique moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Vascon, R

    1997-12-31

    Radiation damage by neutrons or ions in bcc iron has been investigated by molecular dynamics simulations using an embedded atom type many-body potential (EAM). Displacement cascades with energies of 1 to 30 keV were generated in the microcanonical system where the number of atoms (up to 1.5 million) is chosen high enough to compensate the fact that the dissipation of energy is not taken into account in our model. The defect number at the end of cascade lifetime was found to be 60 percent of the NRT standard value. This tendency is in good agreement with experimental data. However, compared with other simulations in iron, we found significant differences in the defect production and distribution. The comparison with results obtained form simulations of cascades in other metals, leads on the one hand to a higher value of the defect number in bcc iron than in fcc metals like copper or nickel, and on the other hand to a ratio, between the number of replacements and the number of defects, lower in iron ( 100). We observed the transient melting of the core of the cascade during simulations. We showed that a higher value of the initial iron crystal temperature, as the mass difference between the components of an artificial binary alloy Fe-X(X=Al,Sb,Au,U) both produce a `cascade effect`: a decrease of the number of defects and an increase of the number of replacements. We also showed up the quasi-channeling of some atoms in high energy cascades. They are at the origin of sub-cascades formation; as a result they induce an opposite effect to the `cascade effect`. (author). 286 refs.

  8. Cascade fuzzy control for gas engine driven heat pump

    International Nuclear Information System (INIS)

    Li Shuze; Zhang Wugao; Zhang Rongrong; Lv Dexu; Huang Zhen

    2005-01-01

    In addition to absorption chillers, today's gas cooling technology includes gas engine driven heat pump systems (GEHP) in a range of capacities and temperature capacities suitable for most commercial air conditioning and refrigeration applications. Much is expected from GEHPs as a product that would help satisfy the air conditioning system demand from medium and small sized buildings, restrict electric power demand peaks in summer and save energy in general. This article describes a kind of control strategy for a GEHP, a cascade fuzzy control. GEHPs have large and varying time constants and their dynamic modeling cannot be easily achieved. A cascade control strategy is effective for systems that have large time constants and disturbances, and a fuzzy control strategy is fit for a system that lacks an accurate model. This cascade fuzzy control structure brings together the best merits of fuzzy control and cascade control structures. The performance of the cascade fuzzy control is compared to that of a cascade PI (proportional and integral) control strategy, and it is shown by example that the cascade fuzzy control strategy gives a better performance, reduced reaction time and smaller overshoot temperature

  9. Regulation of glycogen synthase kinase-3{beta} (GSK-3{beta}) after ionizing radiation; Regulation der Glykogen Synthase Kinase-3{beta} (GSK-3{beta}) nach ionisierender Strahlung

    Energy Technology Data Exchange (ETDEWEB)

    Boehme, K.A.

    2006-12-15

    Glycogen Synthase Kinase-3{beta} (GSK-3{beta}) phosphorylates the Mdm2 protein in the central domain. This phosphorylation is absolutely required for p53 degradation. Ionizing radiation inactivates GSK-3{beta} by phosphorylation at serine 9 and in consequence prevents Mdm2 mediated p53 degradation. During the work for my PhD I identified Akt/PKB as the kinase that phosphorylates GSK-3{beta} at serine 9 after ionizing radiation. Ionizing radiation leads to phosphorylation of Akt/PKB at threonine 308 and serine 473. The PI3 Kinase inhibitor LY294002 completely abolished Akt/PKB serine 473 phosphorylation and prevented the induction of GSK-3{beta} serine 9 phosphorylation after ionizing radiation. Interestingly, the most significant activation of Akt/PKB after ionizing radiation occurred in the nucleus while cytoplasmic Akt/PKB was only weakly activated after radiation. By using siRNA, I showed that Akt1/PKBa, but not Akt2/PKB{beta}, is required for phosphorylation of GSK- 3{beta} at serine 9 after ionizing radiation. Phosphorylation and activation of Akt/PKB after ionizing radiation depends on the DNA dependent protein kinase (DNA-PK), a member of the PI3 Kinase family, that is activated by free DNA ends. Both, in cells from SCID mice and after knockdown of the catalytic subunit of DNA-PK by siRNA in osteosarcoma cells, phosphorylation of Akt/PKB at serine 473 and of GSK-3{beta} at serine 9 was completely abolished. Consistent with the principle that phosphorylation of GSK-3 at serine 9 contributes to p53 stabilization after radiation, the accumulation of p53 in response to ionizing radiation was largely prevented by downregulation of DNA-PK. From these results I conclude, that ionizing radiation induces a signaling cascade that leads to Akt1/PKBa activation mediated by DNA-PK dependent phosphorylation of serine 473. After activation Akt1/PKBa phosphorylates and inhibits GSK-3{beta} in the nucleus. The resulting hypophosphorylated form of Mdm2 protein is no longer

  10. Fine time course expression analysis identifies cascades of activation and repression and maps a putative regulator of mammalian sex determination.

    Directory of Open Access Journals (Sweden)

    Steven C Munger

    Full Text Available In vertebrates, primary sex determination refers to the decision within a bipotential organ precursor to differentiate as a testis or ovary. Bifurcation of organ fate begins between embryonic day (E 11.0-E12.0 in mice and likely involves a dynamic transcription network that is poorly understood. To elucidate the first steps of sexual fate specification, we profiled the XX and XY gonad transcriptomes at fine granularity during this period and resolved cascades of gene activation and repression. C57BL/6J (B6 XY gonads showed a consistent ~5-hour delay in the activation of most male pathway genes and repression of female pathway genes relative to 129S1/SvImJ, which likely explains the sensitivity of the B6 strain to male-to-female sex reversal. Using this fine time course data, we predicted novel regulatory genes underlying expression QTLs (eQTLs mapped in a previous study. To test predictions, we developed an in vitro gonad primary cell assay and optimized a lentivirus-based shRNA delivery method to silence candidate genes and quantify effects on putative targets. We provide strong evidence that Lmo4 (Lim-domain only 4 is a novel regulator of sex determination upstream of SF1 (Nr5a1, Sox9, Fgf9, and Col9a3. This approach can be readily applied to identify regulatory interactions in other systems.

  11. A cryogenic distillation column cascade for a fusion reactor

    International Nuclear Information System (INIS)

    Kinoshita, M.

    1984-01-01

    A cryogenic distillation column cascade composed of only two columns is proposed. Compared with the Tritium Systems Test Assembly (TSTA) cascade, the tritium inventory is about 1.5 times more and the packed height of the highest column increases by about 40%. However, the number of the columns is halved with the separation performance unchanged. The number of the instruments needed and the number of the process parameters to be monitored are also reduced. Unlike in the case of the TSTA cascade, the performance of the proposed cascade is not subject to the flow rate of the neutral beam injector recycle stream. The high performance can be maintained even if the protium percentage in the raw fuel input increases significantly (e.g., from 1 to 3%), just by adjusting the flow rates of the top, bottom, and side streams. Because of this great flexibility, it is worthwhile to build and study the proposed cascade as a possible alternative to the TSTA cascade

  12. Mechanisms of Altered Control of Proliferation by Cyclic Amp/Protein Kinase A During Mammary Tumor Progression

    National Research Council Canada - National Science Library

    Imagawa, Walter

    1999-01-01

    We hypothesize that alterations in the regulation of growth by growth factors and cAMP during mammary tumor progression are related to MAP kinase signaling pathways known to be affected by cAMP and pertussis toxin (PT...

  13. MOLECULAR DYNAMICS SIMULATIONS OF DISPLACEMENT CASCADES IN MOLYBDENUM

    International Nuclear Information System (INIS)

    Smith, Richard Whiting

    2003-01-01

    Molecular dynamics calculations have been employed to simulate displacement cascades in neutron irradiated Mo. A total of 90 simulations were conducted for PKA energies between 1 and 40 keV and temperatures from 298 to 923K. The results suggest very little effect of temperature on final defect count and configuration, but do display a temperature effect on peak defect generation prior to cascade collapse. Cascade efficiency, relative to the NRT model, is computed to lie between 1/4 and 1/3 in agreement with simulations performed on previous systems. There is a tendency for both interstitials and vacancies to cluster together following cascade collapse producing vacancy rich regions surrounded by interstitials. Although coming to rest in close proximity, the point defects comprising the clusters generally do not lie within the nearest neighbor positions of one another, except for the formation of dumbbell di-interstitials. Cascades produced at higher PKA energies (20 or 40 keV) exhibit the formation of subcascades

  14. Role of guanosine kinase in the utilization of guanosine for nucleotide synthesis in Escherichia coli

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Nygaard, Per

    1989-01-01

    Using purine auxotrophic strains of Escherichia coli with additional genetic lesions in the pathways of interconversion and salvage of purine compounds, we demonstrated the in vivo function of guanosine kinase and inosine kinase. Mutants with increased ability to utilize guanosine were isolated b...... a purF, a purL or a purM mutation. A revised map location of the gsk gene is presented and the gene order established as proC-acrA-apt-adk-gsk-purE....

  15. Stochastic background of atmospheric cascades

    International Nuclear Information System (INIS)

    Wilk, G.; Wlodarczyk, Z.

    1993-01-01

    Fluctuations in the atmospheric cascades developing during the propagation of very high energy cosmic rays through the atmosphere are investigated using stochastic branching model of pure birth process with immigration. In particular, we show that the multiplicity distributions of secondaries emerging from gamma families are much narrower than those resulting from hadronic families. We argue that the strong intermittent like behaviour found recently in atmospheric families results from the fluctuations in the cascades themselves and are insensitive to the details of elementary interactions

  16. Structurally Controlled Geothermal Systems in the Central Cascades Arc-Backarc Regime, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wannamaker, Philip E. [Univ. of Utah, Salt Lake City, UT (United States). Energy and Geoscience Inst. (EGI)

    2016-07-31

    The goal of this project has been to analyze available magnetotelluric (MT) geophysical surveys, structural geology based on mapping and LiDAR, and fluid geochemical data, to identify high-temperature fluid upwellings, critically stressed rock volumes, and other evidence of structurally-controlled geothermal resources. Data were to be integrated to create conceptual models of volcanic-hosted geothermal resources along the Central Cascades arc segment, especially in the vicinity of Mt. Jefferson to Three Sisters. LiDAR data sets available at Oregon State University (OSU) allowed detailed structural geology modeling through forest canopy. Copious spring and well fluid chemistries, including isotopes, were modeled using Geo-T and TOUGHREACT software.

  17. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Benjamin

    2017-01-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  18. Volcano geodesy in the Cascade arc, USA

    Science.gov (United States)

    Poland, Michael P.; Lisowski, Michael; Dzurisin, Daniel; Kramer, Rebecca; McLay, Megan; Pauk, Ben

    2017-08-01

    Experience during historical time throughout the Cascade arc and the lack of deep-seated deformation prior to the two most recent eruptions of Mount St. Helens might lead one to infer that Cascade volcanoes are generally quiescent and, specifically, show no signs of geodetic change until they are about to erupt. Several decades of geodetic data, however, tell a different story. Ground- and space-based deformation studies have identified surface displacements at five of the 13 major Cascade arc volcanoes that lie in the USA (Mount Baker, Mount St. Helens, South Sister, Medicine Lake, and Lassen volcanic center). No deformation has been detected at five volcanoes (Mount Rainier, Mount Hood, Newberry Volcano, Crater Lake, and Mount Shasta), and there are not sufficient data at the remaining three (Glacier Peak, Mount Adams, and Mount Jefferson) for a rigorous assessment. In addition, gravity change has been measured at two of the three locations where surveys have been repeated (Mount St. Helens and Mount Baker show changes, while South Sister does not). Broad deformation patterns associated with heavily forested and ice-clad Cascade volcanoes are generally characterized by low displacement rates, in the range of millimeters to a few centimeters per year, and are overprinted by larger tectonic motions of several centimeters per year. Continuous GPS is therefore the best means of tracking temporal changes in deformation of Cascade volcanoes and also for characterizing tectonic signals so that they may be distinguished from volcanic sources. Better spatial resolution of volcano deformation can be obtained through the use of campaign GPS, semipermanent GPS, and interferometric synthetic aperture radar observations, which leverage the accumulation of displacements over time to improve signal to noise. Deformation source mechanisms in the Cascades are diverse and include magma accumulation and withdrawal, post-emplacement cooling of recent volcanic deposits, magmatic

  19. Geothermal segmentation of the Cascade Range in the USA

    Science.gov (United States)

    Guffanti, Marianne; Muffler, L.J.; Mariner, R.H.; Sherrod, D.R.; Smith, James G.; Blackwell, D.D.; Weaver, C.S.

    1990-01-01

    Characteristics of the crustal thermal regime of the Quaternary Cascades vary systematically along the range. Spatially congruent changes in volcanic vent distribution, volcanic extrusion rate, hydrothermal discharge rate, and regional conductive heat flow define 5 geothermal segments. These segments are, from north to south: (1) the Washington Cascades north of Mount Rainier, (2) the Cascades from Mount Rainier to Mount Hood, (3) the Oregon Cascades from south of Mount Hood to the California border, (4) northernmost California, including Mount Shasta and Medicine Lake volcano, and (5) the Lassen region of northern California. This segmentation indicates that geothermal resource potential is not uniform in the Cascade Range. Potential varies from high in parts of Oregon to low in Washington north of Mount Rainier.

  20. Characterization of a Francisella tularensis-Caenorhabditis elegans Pathosystem for the Evaluation of Therapeutic Compounds

    OpenAIRE

    Jayamani, Elamparithi; Tharmalingam, Nagendran; Rajamuthiah, Rajmohan; Coleman, Jeffrey J.; Kim, Wooseong; Okoli, Ikechukwu; Hernandez, Ana M.; Lee, Kiho; Nau, Gerard J.; Ausubel, Frederick M.; Mylonakis, Eleftherios

    2017-01-01

    Francisella tularensis is a highly infectious Gram-negative intracellular pathogen that causes tularemia. Because of its potential as a bioterrorism agent, there is a need for new therapeutic agents. We therefore developed a whole-animal Caenorhabditis elegans-F. tularensis pathosystem for high-throughput screening to identify and characterize potential therapeutic compounds. We found that the C. elegans p38 mitogen-activate protein (MAP) kinase cascade is involved in the immune response to F...

  1. The cell wall and endoplasmic reticulum stress responses are coordinately regulated in Saccharomyces cerevisiae

    OpenAIRE

    Krysan, Damian J

    2009-01-01

    The unfolded protein response (UPR) is an intracellular signaling pathway that regulates the cellular response to the accumulation of misfolded proteins in eukaryotes. Our group has demonstrated that cell wall stress activates UPR in yeast through signals transmitted by the cell wall integrity (CWI) mitogen-activated protein (MAP) kinase cascade. The UPR is required to maintain cell wall integrity; mutants lacking a functional UPR have defects in cell wall biosynthesis and are hypersensitive ...

  2. Oncogenic Receptor Tyrosine Kinases Directly Phosphorylate Focal Adhesion Kinase (FAK) as a Resistance Mechanism to FAK-Kinase Inhibitors.

    Science.gov (United States)

    Marlowe, Timothy A; Lenzo, Felicia L; Figel, Sheila A; Grapes, Abigail T; Cance, William G

    2016-12-01

    Focal adhesion kinase (FAK) is a major drug target in cancer and current inhibitors targeted to the ATP-binding pocket of the kinase domain have entered clinical trials. However, preliminary results have shown limited single-agent efficacy in patients. Despite these unfavorable data, the molecular mechanisms that drive intrinsic and acquired resistance to FAK-kinase inhibitors are largely unknown. We have demonstrated that receptor tyrosine kinases (RTK) can directly bypass FAK-kinase inhibition in cancer cells through phosphorylation of FAK's critical tyrosine 397 (Y397). We also showed that HER2 forms a direct protein-protein interaction with the FAK-FERM-F1 lobe, promoting direct phosphorylation of Y397. In addition, FAK-kinase inhibition induced two forms of compensatory RTK reprogramming: (i) the rapid phosphorylation and activation of RTK signaling pathways in RTK High cells and (ii) the long-term acquisition of RTKs novel to the parental cell line in RTK Low cells. Finally, HER2 +: cancer cells displayed resistance to FAK-kinase inhibition in 3D growth assays using a HER2 isogenic system and HER2 + cancer cell lines. Our data indicate a novel drug resistance mechanism to FAK-kinase inhibitors whereby HER2 and other RTKs can rescue and maintain FAK activation (pY397) even in the presence of FAK-kinase inhibition. These data may have important ramifications for existing clinical trials of FAK inhibitors and suggest that individual tumor stratification by RTK expression would be important to predict patient response to FAK-kinase inhibitors. Mol Cancer Ther; 15(12); 3028-39. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding.

    Directory of Open Access Journals (Sweden)

    Jean-Marc Taymans

    Full Text Available Leucine rich repeat kinase 2 (LRRK2 is a Parkinson's disease (PD gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.

  4. Cascade processes in kaonic and muonic atoms

    International Nuclear Information System (INIS)

    Faifman, M.P.; Men'shikov, L.I.

    2003-01-01

    Cascade processes in exotic (kaonic and muonic) hydrogen/deuterium have been studied with the quantum-classical Monte Carlo code (QCMC) developed for 'ab initio' - calculations. It has been shown that the majority of kaonic hydrogen atoms during cascade are accelerated to high energies E ∼ 100 eV, which leads to a much lower value for the calculated yields Y of x-rays than predicted by the 'standard cascade model'. The modified QCMC scheme has been applied to the study of the cascade in μp and μd muonic atoms. A comparison of the calculated yields for K-series x-rays with experimental data directly indicates that the molecular structure of the hydrogen target and new types of non-radiative transitions are essential for the light muonic atoms, while they are negligible for heavy (kaonic) atoms. These processes have been considered and estimates of their probabilities are presented. (author)

  5. Rescuing Ecosystems from Extinction Cascades

    Science.gov (United States)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  6. A simple model of global cascades on random networks

    Science.gov (United States)

    Watts, Duncan J.

    2002-04-01

    The origin of large but rare cascades that are triggered by small initial shocks is a phenomenon that manifests itself as diversely as cultural fads, collective action, the diffusion of norms and innovations, and cascading failures in infrastructure and organizational networks. This paper presents a possible explanation of this phenomenon in terms of a sparse, random network of interacting agents whose decisions are determined by the actions of their neighbors according to a simple threshold rule. Two regimes are identified in which the network is susceptible to very large cascadesherein called global cascadesthat occur very rarely. When cascade propagation is limited by the connectivity of the network, a power law distribution of cascade sizes is observed, analogous to the cluster size distribution in standard percolation theory and avalanches in self-organized criticality. But when the network is highly connected, cascade propagation is limited instead by the local stability of the nodes themselves, and the size distribution of cascades is bimodal, implying a more extreme kind of instability that is correspondingly harder to anticipate. In the first regime, where the distribution of network neighbors is highly skewed, it is found that the most connected nodes are far more likely than average nodes to trigger cascades, but not in the second regime. Finally, it is shown that heterogeneity plays an ambiguous role in determining a system's stability: increasingly heterogeneous thresholds make the system more vulnerable to global cascades; but an increasingly heterogeneous degree distribution makes it less vulnerable.

  7. Basic characteristics of a low uranium enrichment cascade by centrifugation, (2)

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi

    1975-01-01

    The theory for a cascade of centrifuges described in the preceding report of the same general title is further developed. First, equations describing the distributions of the flow and the mole concentration are derived from the material balance relations for a square cascade. Corresponding equations are next obtained to cover a squared-off cascade consisting of a series of square cascades. A computer program is outlined which makes it possible to obtain the shape of the most efficient squared-off cascade. The efficiency of the current form of squared-off centrifuge cascade with reflux pipes is found to be lower than obtainable with gaseous diffusion. The efficiency can be improved by the adoption of a tapered squared-off cascade with centrifuges provided with eccentric cuts to take the place of reflux pipes. The dynamic characteristics are also discussed. Analysis of the start-up behavior reveals that the equilibrium time of the centrifuge cascade is much shorter than for a coresponding gaseous diffusion cascade, and that the mole concentration of the product rapidly rises to attain steady state condition. It is also found that even when the feed flow rate fluctuates, the mole concentration of the product is relatively stable. The effect of a centrifuge failure in the cascade is examined. The optimum mole concentration for the waste effluent discarded from the cascade is calculated from the viewpoint of cost. (auth.)

  8. Suppression of inflammatory and infection responses in lung macrophages by eucalyptus oil and its constituent 1,8-cineole: Role of pattern recognition receptors TREM-1 and NLRP3, the MAP kinase regulator MKP-1, and NFκB.

    Directory of Open Access Journals (Sweden)

    Niket Yadav

    Full Text Available Eucalyptus oil (EO used in traditional medicine continues to prove useful for aroma therapy in respiratory ailments; however, there is a paucity of information on its mechanism of action and active components. In this direction, we investigated EO and its dominant constituent 1,8-cineole (eucalyptol using the murine lung alveolar macrophage (AM cell line MH-S. In an LPS-induced AM inflammation model, pre-treatment with EO significantly reduced (P ≤0.01or 0.05 the pro-inflammatory mediators TNF-α, IL-1 (α and β, and NO, albeit at a variable rate and extent; 1,8-cineole diminished IL-1 and IL-6. In a mycobacterial-infection AM model, EO pre-treatment or post-treatment significantly enhanced (P ≤0.01 the phagocytic activity and pathogen clearance. 1,8-cineole also significantly enhanced the pathogen clearance though the phagocytic activity was not significantly altered. EO or 1,8-cineole pre-treatment attenuated LPS-induced inflammatory signaling pathways at various levels accompanied by diminished inflammatory response. Among the pattern recognition receptors (PRRs involved in LPS signaling, the TREM pathway surface receptor (TREM-1 was significantly downregulated. Importantly, the pre-treatments significantly downregulated (P ≤0.01 the intracellular PRR receptor NLRP3 of the inflammasome, which is consistent with the decrease in IL-1β secretion. Of the shared downstream signaling cascade for these PRR pathways, there was significant attenuation of phosphorylation of the transcription factor NF-κB and p38 (but increased phosphorylation of the other two MAP kinases, ERK1/2 and JNK1/2. 1,8-cineole showed a similar general trend except for an opposite effect on NF-κB and JNK1/2. In this context, either pre-treatment caused a significant downregulation of MKP-1 phosphatase, a negative regulator of MAPKs. Collectively, our results demonstrate that the anti-inflammatory activity of EO and 1,8-cineole is modulated via selective downregulation

  9. Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory.

    Science.gov (United States)

    Chen, Adele P; Ohno, Masuo; Giese, K Peter; Kühn, Ralf; Chen, Rachel L; Silva, Alcino J

    2006-01-01

    Raf kinases are downstream effectors of Ras and upstream activators of the MEK-ERK cascade. Ras and MEK-ERK signaling play roles in learning and memory (L&M) and neural plasticity, but the roles of Raf kinases in L&M and plasticity are unclear. Among Raf isoforms, B-raf is preferentially expressed in the brain. To determine whether B-raf has a role in synaptic plasticity and L&M, we used the Cre-LoxP gene targeting system to derive forebrain excitatory neuron B-raf knockout mice. This conditional knockout resulted in deficits in ERK activation and hippocampal long-term potentiation (LTP) and impairments in hippocampus-dependent L&M, including spatial learning and contextual discrimination. Despite the widespread expression of B-raf, this mutation did not disrupt other forms of L&M, such as cued fear conditioning and conditioned taste aversion. Our findings demonstrate that B-raf plays a role in hippocampal ERK activation, synaptic plasticity, and L&M.

  10. A lipid binding domain in sphingosine kinase 2

    International Nuclear Information System (INIS)

    Don, Anthony S.; Rosen, Hugh

    2009-01-01

    The lipid second messenger sphingosine 1-phosphate (S1P) is a critical mediator of cellular proliferation and survival signals, and is essential for vasculogenesis and neurogenesis. S1P formation is catalysed by sphingosine kinases 1 and 2 (Sphk1 and Sphk2). We have found that the endogenous glycolipid sulfatide (3-O-sulfogalactosylceramide) binds to and inhibits the activity of Sphk2 and the closely related ceramide kinase (Cerk), but not Sphk1. Using sulfatide as a probe, we mapped the lipid binding domain to the N-terminus of Sphk2 (residues 1-175), a region of sequence that is absent in Sphk1, but aligns with a pleckstrin homology domain in Cerk. Accordingly, Sphk2 bound to phosphatidylinositol monophosphates but not to abundant cellular phospholipids. Deleting the N-terminal domain reduced Sphk2 membrane localisation in cells. We have therefore identified a lipid binding domain in Sphk2 that is important for the enzyme's sub-cellular localisation.

  11. Molecular dynamics studies of displacement cascades

    International Nuclear Information System (INIS)

    Averback, R.S.; Hsieh, Horngming; Diaz de la Rubia, T.

    1990-02-01

    Molecular-dynamics simulations of cascades in Cu and Ni with primary-knock-on energies up to 5 keV and lattice temperatures in the range 0 K--700 K are described. Interatomic forces were represented by either the Gibson II (Cu) or Johnson-Erginsoy (Ni) potentials in most of this work, although some simulations using ''Embedded Atom Method'' potentials, e.g., for threshold events in Ni 3 Al, are also presented. The results indicate that the primary state of damage produced by displacement cascades is controlled by two phenomena, replacement collision sequences during the collisional phase of the cascade and local melting during the thermal spike. As expected, the collisional phase is rather similar in Cu and Ni, however, the thermal spike is of longer duration and has a more pronounced influence in Cu than Ni. When the ambient temperature of the lattice is increased, the melt zones are observed to both increase in size and cool more slowly. This has the effect of reducing defect production and enhancing atomic mixing and disordering. The implications of these results for defect production, cascade collapse, atomic disordering will be discussed. 34 refs., 7 figs., 2 tabs

  12. Forecasting Social Unrest Using Activity Cascades.

    Science.gov (United States)

    Cadena, Jose; Korkmaz, Gizem; Kuhlman, Chris J; Marathe, Achla; Ramakrishnan, Naren; Vullikanti, Anil

    2015-01-01

    Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011) to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach.

  13. Forecasting Social Unrest Using Activity Cascades.

    Directory of Open Access Journals (Sweden)

    Jose Cadena

    Full Text Available Social unrest is endemic in many societies, and recent news has drawn attention to happenings in Latin America, the Middle East, and Eastern Europe. Civilian populations mobilize, sometimes spontaneously and sometimes in an organized manner, to raise awareness of key issues or to demand changes in governing or other organizational structures. It is of key interest to social scientists and policy makers to forecast civil unrest using indicators observed on media such as Twitter, news, and blogs. We present an event forecasting model using a notion of activity cascades in Twitter (proposed by Gonzalez-Bailon et al., 2011 to predict the occurrence of protests in three countries of Latin America: Brazil, Mexico, and Venezuela. The basic assumption is that the emergence of a suitably detected activity cascade is a precursor or a surrogate to a real protest event that will happen "on the ground." Our model supports the theoretical characterization of large cascades using spectral properties and uses properties of detected cascades to forecast events. Experimental results on many datasets, including the recent June 2013 protests in Brazil, demonstrate the effectiveness of our approach.

  14. The prevention of mother-to-child transmission of HIV cascade analysis tool: supporting health managers to improve facility-level service delivery.

    Science.gov (United States)

    Gimbel, Sarah; Voss, Joachim; Mercer, Mary Anne; Zierler, Brenda; Gloyd, Stephen; Coutinho, Maria de Joana; Floriano, Florencia; Cuembelo, Maria de Fatima; Einberg, Jennifer; Sherr, Kenneth

    2014-10-21

    The objective of the prevention of Mother-to-Child Transmission (pMTCT) cascade analysis tool is to provide frontline health managers at the facility level with the means to rapidly, independently and quantitatively track patient flows through the pMTCT cascade, and readily identify priority areas for clinic-level improvement interventions. Over a period of six months, five experienced maternal-child health managers and researchers iteratively adapted and tested this systems analysis tool for pMTCT services. They prioritized components of the pMTCT cascade for inclusion, disseminated multiple versions to 27 health managers and piloted it in five facilities. Process mapping techniques were used to chart PMTCT cascade steps in these five facilities, to document antenatal care attendance, HIV testing and counseling, provision of prophylactic anti-retrovirals, safe delivery, safe infant feeding, infant follow-up including HIV testing, and family planning, in order to obtain site-specific knowledge of service delivery. Seven pMTCT cascade steps were included in the Excel-based final tool. Prevalence calculations were incorporated as sub-headings under relevant steps. Cells not requiring data inputs were locked, wording was simplified and stepwise drop-offs and maximization functions were included at key steps along the cascade. While the drop off function allows health workers to rapidly assess how many patients were lost at each step, the maximization function details the additional people served if only one step improves to 100% capacity while others stay constant. Our experience suggests that adaptation of a cascade analysis tool for facility-level pMTCT services is feasible and appropriate as a starting point for discussions of where to implement improvement strategies. The resulting tool facilitates the engagement of frontline health workers and managers who fill out, interpret, apply the tool, and then follow up with quality improvement activities. Research on

  15. Inhibition of the MEK-1/p42 MAP kinase reduces aryl hydrocarbon receptor-DNA interactions

    International Nuclear Information System (INIS)

    Yim, Sujin; Oh, Myoungsuk; Choi, Su Mi; Park, Hyunsung

    2004-01-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces expression of the cytochrome P450 1A1 gene, cyp1a1, by binding to its receptor, aryl hydrocarbon receptor (AhR). TCDD-bound AhR translocates to the nucleus and forms a heterodimer with its partner protein, AhR nuclear translocator (Arnt). The AhR/Arnt heterodimer then binds to the dioxin-response elements (DREs) in the cyp1a1 enhancer and stimulates transcription of cyp1a1. We tested whether kinase pathways are involved in this process by treating Hepa1c1c7 cells with kinase inhibitors. The MEK-1 inhibitor PD98059 reduced TCDD-induced transcription of cyp1a1. TCDD treatment results in phosphorylation of p44/p42 mitogen-activated protein kinase (MAPK), a substrate of MEK-1. Overexpression of dominant negative form of p42 MAPK suppressed TCDD-dependent transcription of a reporter gene controlled by dioxin-response elements (DREs), and pretreatment with PD98059 also blocked this transcription. PD98059 pretreatment also inhibited TCDD-induced DRE binding of the AhR/Arnt heterodimer. Together these results indicate that TCDD activates the MEK-1/p44/p42 MAPK pathway, which in turn activates AhR and so facilitates binding of AhR to the cyp1a1 DRE

  16. Solution Structure and Backbone Dynamics of the Pleckstrin Homology Domain of the Human Protein Kinase B (PKB/Akt). Interaction with Inositol Phosphates

    International Nuclear Information System (INIS)

    Auguin, Daniel; Barthe, Philippe; Auge-Senegas, Marie-Therese; Stern, Marc-Henri; Noguchi, Masayuki; Roumestand, Christian

    2004-01-01

    The programmed cell death occurs as part of normal mammalian development. The induction of developmental cell death is a highly regulated process and can be suppressed by a variety of extracellular stimuli. Recently, the ability of trophic factors to promote survival have been attributed, at least in part, to the phosphatidylinositide 3'-OH kinase (PI3K)/Protein Kinase B (PKB, also named Akt) cascade. Several targets of the PI3K/PKB signaling pathway have been identified that may underlie the ability of this regulatory cascade to promote cell survival. PKB possesses a N-terminal Pleckstrin Homology (PH) domain that binds specifically and with high affinity to PtIns(3,4,5)P 3 and PtIns(3,4)P 2 , the PI3K second messengers. PKB is then recruited to the plasma membrane by virtue of its interaction with 3'-OH phosphatidylinositides and activated. Recent evidence indicates that PKB is active in various types of human cancer; constitutive PKB signaling activation is believed to promote proliferation and increased cell survival, thereby contributing to cancer progression. Thus, it has been shown that induction of PKB activity is augmented by the TCL1/MTCP1 oncoproteins through a physical association requiring the PKB PH domain. Here we present the three-dimensional solution structure of the PH domain of the human protein PKB (isoform β). PKBβ-PH is an electrostatically polarized molecule that adopts the same fold and topology as other PH-domains, consisting of a β-sandwich of seven strands capped on one top by an α-helix. The opposite face presents three variable loops that appear poorly defined in the NMR structure. Measurements of 15 N spin relaxation times and heteronuclear 15 N{ 1 H}NOEs showed that this poor definition is due to intrinsic flexibility, involving complex motions on different time scales. Chemical shift mapping studies correctly defined the binding site of Ins(1,3,4,5)P 4 (the head group of PtIns(3,4,5)P 3 ), as was previously proposed from a

  17. The role of extreme orbits in the global organization of periodic regions in parameter space for one dimensional maps

    Science.gov (United States)

    da Costa, Diogo Ricardo; Hansen, Matheus; Guarise, Gustavo; Medrano-T, Rene O.; Leonel, Edson D.

    2016-04-01

    We show that extreme orbits, trajectories that connect local maximum and minimum values of one dimensional maps, play a major role in the parameter space of dissipative systems dictating the organization for the windows of periodicity, hence producing sets of shrimp-like structures. Here we solve three fundamental problems regarding the distribution of these sets and give: (i) their precise localization in the parameter space, even for sets of very high periods; (ii) their local and global distributions along cascades; and (iii) the association of these cascades to complicate sets of periodicity. The extreme orbits are proved to be a powerful indicator to investigate the organization of windows of periodicity in parameter planes. As applications of the theory, we obtain some results for the circle map and perturbed logistic map. The formalism presented here can be extended to many other different nonlinear and dissipative systems.

  18. Simulated annealing of displacement cascades in FCC metals. 1. Beeler cascades

    International Nuclear Information System (INIS)

    Doran, D.G.; Burnett, R.A.

    1974-09-01

    An important source of damage to structural materials in fast reactors is the displacement of atoms from normal lattice sites. A high energy neutron may impart sufficient energy to an atom to initiate a displacement cascade consisting of a localized high density of hundreds of interstitials and vacancies. These defects subsequently interact to form clusters and to reduce their density by mutual annihilation. This short term annealing of an isolated cascade has been simulated at high and low temperatures using a correlated random walk model. The cascade representations used were developed by Beeler and the point defect properties were based on the model of γ-iron by Johnson. Low temperature anneals, characterized by no vacancy migration and a 104 site annihilation region (AR), resulted in 49 defect pairs at 20 keV and 11 pairs at 5 keV. High temperature anneals, characterized by both interstitial and vacancy migration and a 32 site AR, resulted in 68 pairs at 20 keV and 18 pairs at 5 keV when no cluster dissociation was permitted; most of the vacancies were in immobile clusters. These high temperature values dropped to 40 and 14 upon dissolution of the vacancy clusters. Parameter studies showed that, at a given temperature, the large AR resulted in about one-half as many defects as the small AR. Cluster size distributions and examples of spatial configurations are included. (U.S.)

  19. Nitric oxide/cGMP/PKG signaling pathway activated by M1-type muscarinic acetylcholine receptor cascade inhibits Na+-activated K+ currents in Kenyon cells

    Science.gov (United States)

    Hasebe, Masaharu

    2016-01-01

    The interneurons of the mushroom body, known as Kenyon cells, are essential for the long-term memory of olfactory associative learning in some insects. Some studies have reported that nitric oxide (NO) is strongly related to this long-term memory in Kenyon cells. However, the target molecules and upstream and downstream NO signaling cascades are not completely understood. Here we analyzed the effect of the NO signaling cascade on Na+-activated K+ (KNa) channel activity in Kenyon cells of crickets (Gryllus bimaculatus). We found that two different NO donors, S-nitrosoglutathione (GSNO) and S-nitroso-N-acetyl-dl-penicillamine (SNAP), strongly suppressed KNa channel currents. Additionally, this inhibitory effect of GSNO on KNa channel activity was diminished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase (sGC), and KT5823, an inhibitor of protein kinase G (PKG). Next, we analyzed the role of ACh in the NO signaling cascade. ACh strongly suppressed KNa channel currents, similar to NO donors. Furthermore, this inhibitory effect of ACh was blocked by pirenzepine, an M1 muscarinic ACh receptor antagonist, but not by 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP) and mecamylamine, an M3 muscarinic ACh receptor antagonist and a nicotinic ACh receptor antagonist, respectively. The ACh-induced inhibition of KNa channel currents was also diminished by the PLC inhibitor U73122 and the calmodulin antagonist W-7. Finally, we found that ACh inhibition was blocked by the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (l-NAME). These results suggested that the ACh signaling cascade promotes NO production by activating NOS and NO inhibits KNa channel currents via the sGC/cGMP/PKG signaling cascade in Kenyon cells. PMID:26984419

  20. Quantum Cascade Lasers Modulation and Applications

    Science.gov (United States)

    Luzhansky, Edward

    The mid-wave IR (MWIR) spectral band, extending from 3 to 5 microns, is considered to be a low loss atmospheric window. There are several spectral sub-bands with relatively low atmospheric attenuation in this region making it popular for various commercial and military applications. Relatively low thermal and solar background emissions, effective penetration through the natural and anthropogenic obscurants and eye safety add to the long list of advantages of MWIR wavelengths. Quantum Cascade Lasers are compact semiconductor devices capable of operating in MWIR spectrum. They are based on inter-subband transitions in a multiple-quantum-well (QW) hetero-structure, designed by means of band-structure engineering. The inter-subband nature of the optical transition has several key advantages. First, the emission wavelength is primarily a function of the QW thickness. This characteristic allows choosing well-understood and reliable semiconductors for the generation of light in a wavelength range of interest. Second, a cascade process in which tens of photons are generated per injected electron. This cascading process is behind the intrinsic high-power capabilities of QCLs. This dissertation is focused on modulation properties of Quantum Cascade Lasers. Both amplitude and phase/frequency modulations were studied including modulation bandwidth, modulation efficiency and chirp linearity. Research was consisted of the two major parts. In the first part we describe the theory of frequency modulation (FM) response of Distributed Feedback Quantum Cascade Lasers (DFB QCL). It includes cascading effect on the QCL's maximum modulation frequency. The "gain levering" effect for the maximum FM response of the two section QCLs was studied as well. In the second part of research we concentrated on the Pulse Position Amplitude Modulation of a single section QCL. The low complexity, low size, weight and power Mid-Wavelength Infra-Red optical communications transceiver concept is

  1. Bursting behaviours in cascaded stimulated Brillouin scattering

    International Nuclear Information System (INIS)

    Liu Zhan-Jun; He Xian-Tu; Zheng Chun-Yang; Wang Yu-Gang

    2012-01-01

    Stimulated Brillouin scattering is studied by numerically solving the Vlasov—Maxwell system. A cascade of stimulated Brillouin scattering can occur when a linearly polarized laser pulse propagates in a plasma. It is found that a stimulated Brillouin scattering cascade can reduce the scattering and increase the transmission of light, as well as introduce a bursting behaviour in the evolution of the laser-plasma interaction. The bursting time in the reflectivity is found to be less than half the ion acoustic period. The ion temperature can affect the stimulated Brillouin scattering cascade, which can repeat several times at low ion temperatures and can be completely eliminated at high ion temperatures. For stimulated Brillouin scattering saturation, higher-harmonic generation and wave—wave interaction of the excited ion acoustic waves can restrict the amplitude of the latter. In addition, stimulated Brillouin scattering cascade can restrict the amplitude of the scattered light. (physics of gases, plasmas, and electric discharges)

  2. Cascades on a stochastic pulse-coupled network

    Science.gov (United States)

    Wray, C. M.; Bishop, S. R.

    2014-09-01

    While much recent research has focused on understanding isolated cascades of networks, less attention has been given to dynamical processes on networks exhibiting repeated cascades of opposing influence. An example of this is the dynamic behaviour of financial markets where cascades of buying and selling can occur, even over short timescales. To model these phenomena, a stochastic pulse-coupled oscillator network with upper and lower thresholds is described and analysed. Numerical confirmation of asynchronous and synchronous regimes of the system is presented, along with analytical identification of the fixed point state vector of the asynchronous mean field system. A lower bound for the finite system mean field critical value of network coupling probability is found that separates the asynchronous and synchronous regimes. For the low-dimensional mean field system, a closed-form equation is found for cascade size, in terms of the network coupling probability. Finally, a description of how this model can be applied to interacting agents in a financial market is provided.

  3. Human CD180 Transmits Signals via the PIM-1L Kinase.

    Directory of Open Access Journals (Sweden)

    Nicole Egli

    Full Text Available Toll-like receptors (TLRs are important sensors of the innate immune system that recognize conserved structural motifs and activate cells via a downstream signaling cascade. The CD180/MD1 molecular complex is an unusual member of the TLR family, since it lacks the components that are normally required for signal transduction by other TLRs. Therefore the CD180/MD 1 complex has been considered of being incapable of independently initiating cellular signals. Using chemogenetic approaches we identified specifically the membrane bound long form of PIM-1 kinase, PIM-1L as the mediator of CD180-dependent signaling. A dominant negative isoform of PIM-1L, but not of other PIM kinases, inhibited signaling elicited by cross-linking of CD180, and this effect was phenocopied by PIM inhibitors. PIM-1L was directed to the cell membrane by its N-terminal extension, where it colocalized and physically associated with CD180. Triggering CD180 also induced increased phosphorylation of the anti-apoptotic protein BAD in a PIM kinase-dependent fashion. Also in primary human B cells, which are the main cells expressing CD180 in man, cross-linking of CD180 by monoclonal antibodies stimulated cell survival and proliferation that was abrogated by specific inhibitors. By associating with PIM-1L, CD180 can thus obtain autonomous signaling capabilities, and this complex is then channeling inflammatory signals into B cell survival programs. Pharmacological inhibition of PIM-1 should therefore provide novel therapeutic options in diseases that respond to innate immune stimulation with subsequently increased B cell activity, such as lupus erythematosus or myasthenia gravis.

  4. Framework for cascade size calculations on random networks

    Science.gov (United States)

    Burkholz, Rebekka; Schweitzer, Frank

    2018-04-01

    We present a framework to calculate the cascade size evolution for a large class of cascade models on random network ensembles in the limit of infinite network size. Our method is exact and applies to network ensembles with almost arbitrary degree distribution, degree-degree correlations, and, in case of threshold models, for arbitrary threshold distribution. With our approach, we shift the perspective from the known branching process approximations to the iterative update of suitable probability distributions. Such distributions are key to capture cascade dynamics that involve possibly continuous quantities and that depend on the cascade history, e.g., if load is accumulated over time. As a proof of concept, we provide two examples: (a) Constant load models that cover many of the analytically tractable casacade models, and, as a highlight, (b) a fiber bundle model that was not tractable by branching process approximations before. Our derivations cover the whole cascade dynamics, not only their steady state. This allows us to include interventions in time or further model complexity in the analysis.

  5. Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation, and MAP kinase tyrosine dephosphorylation by dibenzyl trisulphide.

    Science.gov (United States)

    Rösner, H; Williams, L A; Jung, A; Kraus, W

    2001-08-22

    Dibenzyl trisulphide (DTS), a main lipophilic compound in Petiveria alliacea L. (Phytolaccaceae), was identified as one of the active immunomodulatory compounds in extracts of the plant. To learn more about its biological activities and molecular mechanisms, we conducted one-dimensional NMR interaction studies with bovine serum albumin (BSA) and tested DTS and related compounds in two well-established neuronal cell-and-tissue culture systems. We found that DTS preferentially binds to an aromatic region of BSA which is rich in tyrosyl residues. In SH-SY5Y neuroblastoma cells, DTS attenuates the dephosphorylation of tyrosyl residues of MAP kinase (erk1/erk2). In the same neuroblastoma cell line and in Wistar 38 human lung fibroblasts, DTS causes a reversible disassembly of microtubules, but it did not affect actin dynamics. Probably due to the disruption of the microtubule dynamics, DTS also inhibits neuroblastoma cell proliferation and neurite outgrowth from spinal cord explants. Related dibenzyl compounds with none, one, or two sulphur atoms were found to be significantly less effective. These data confirmed that the natural compound DTS has a diverse spectrum of biological properties, including cytostatic and neurotoxic actions in addition to immunomodulatory activities.

  6. Systems Analysis of Adaptive Responses to MAP Kinase Pathway Blockade in BRAF Mutant Melanoma.

    Directory of Open Access Journals (Sweden)

    Brian J Capaldo

    Full Text Available Fifty percent of cutaneous melanomas are driven by activated BRAFV600E, but tumors treated with RAF inhibitors, even when they respond dramatically, rapidly adapt and develop resistance. Thus, there is a pressing need to identify the major mechanisms of intrinsic and adaptive resistance and develop drug combinations that target these resistance mechanisms. In a combinatorial drug screen on a panel of 12 treatment-naïve BRAFV600E mutant melanoma cell lines of varying levels of resistance to mitogen-activated protein kinase (MAPK pathway inhibition, we identified the combination of PLX4720, a targeted inhibitor of mutated BRaf, and lapatinib, an inhibitor of the ErbB family of receptor tyrosine kinases, as synergistically cytotoxic in the subset of cell lines that displayed the most resistance to PLX4720. To identify potential mechanisms of resistance to PLX4720 treatment and synergy with lapatinib treatment, we performed a multi-platform functional genomics analysis to profile the genome as well as the transcriptional and proteomic responses of these cell lines to treatment with PLX4720. We found modest levels of resistance correlated with the zygosity of the BRAF V600E allele and receptor tyrosine kinase (RTK mutational status. Layered over base-line resistance was substantial upregulation of many ErbB pathway genes in response to BRaf inhibition, thus generating the vulnerability to combination with lapatinib. The transcriptional responses of ErbB pathway genes are associated with a number of transcription factors, including ETS2 and its associated cofactors that represent a convergent regulatory mechanism conferring synergistic drug susceptibility in the context of diverse mutational landscapes.

  7. SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice.

    Science.gov (United States)

    Duan, Penggen; Rao, Yuchun; Zeng, Dali; Yang, Yaolong; Xu, Ran; Zhang, Baolan; Dong, Guojun; Qian, Qian; Li, Yunhai

    2014-02-01

    Although grain size is one of the most important components of grain yield, little information is known about the mechanisms that determine final grain size in crops. Here we characterize rice small grain1 (smg1) mutants, which exhibit small and light grains, dense and erect panicles and comparatively slightly shorter plants. The short grain and panicle phenotypes of smg1 mutants are caused by a defect in cell proliferation. The smg1 mutations were identified, using a map-based cloning approach, in mitogen-activated protein kinase kinase 4 (OsMKK4). Relatively higher expression of OsMKK4/SMG1 was detected in younger organs than in older ones, consistent with its role in cell proliferation. Green fluorescent protein (GFP)-OsMKK4/SMG1 fusion proteins appear to be distributed ubiquitously in plant cells. Further results revealed that OsMKK4 influenced brassinosteroid (BR) responses and the expression of BR-related genes. Thus, our findings have identified OsMKK4 as a factor for grain size, and suggest a possible link between the MAPK pathways and BRs in grain growth. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  8. Increasing sensitivity of MOS dosemeters in cascade connection

    International Nuclear Information System (INIS)

    Vychytil, F.; Cechak, T.; Gerndt, J.; Petr, I.

    1978-01-01

    The possibilities of increasing the sensitivity of MOS transistors in their cascade connection were studied theoretically and experimentally. The measurements confirmed the presumption that the instability of cascade-connected MOS transistors increased with the square of the number of transistors in the system. This allows systems to be formed with different sensitivity to ionizing radiation by encasing 10 to 10 4 transistors connected in cascade, which is technologically feasible. The procedure is also acceptable from the point of view of cost. (Z.M.)

  9. Evaluation of refrigerating and air-conditioning technologies in heat cascading systems under the carbon dioxide emissions constraint: the proposal of the energy cascade balance table

    International Nuclear Information System (INIS)

    Shimazaki, Yoichi

    2003-01-01

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both heat cascading systems and thermal recycling systems in industries located around urban areas. It is necessary to introduce heat cascading systems in the industrial sector in Japan to reduce carbon dioxide emissions. The concept of heat cascading is the multi-stage use of thermal energy by temperature level. This paper introduces three energy policies for introducing the heat cascading systems. The author develops an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Carbon dioxide emission constraints result in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature heat is shifted to refrigeration. It was found that increasing the amount of garbage combustion waste heat could reduce electric power for the turbo compression refrigerator by promoting waste heat driven ammonia absorption refrigerator. In addition, this study proposes an energy cascade balance table with respect to the temperature level

  10. The rise and fall of social communities: Cascades of followers triggered by innovators

    Science.gov (United States)

    Hu, Yanqing; Havlin, Shlomo; Makse, Hernan

    2013-03-01

    New scientific ideas as well as key political messages, consumer products, advertisement strategies and art trends are originally adopted by a small number of pioneers who innovate and develop the ``new ideas''. When these innovators migrate to develop the novel idea, their former social network gradually weakens its grips as followers migrate too. As a result, an internal ``cascade of followers'' starts immediately thereafter speeding up the extinction of the entire original network. A fundamental problem in network theory is to determine the minimum number of pioneers that, upon leaving, will disintegrate their social network. Here, we first employ empirical analyses of collaboration networks of scientists to show that these communities are extremely fragile with regard to the departure of a few pioneers. This process can be mapped out on a percolation model in a correlated graph crucially augmented with outgoing ``influence links''. Analytical solutions predict phase transitions, either abrupt or continuous, where networks are disintegrated through cascades of followers as in the empirical data. The theory provides a framework to predict the vulnerability of a large class of networks containing influence links ranging from social and infrastructure networks to financial systems and markets.

  11. On the trajectories of CRL...LR...R orbits, their period-doubling cascades and saddle-node bifurcation cascades

    International Nuclear Information System (INIS)

    Cerrada, Lucia; San Martin, Jesus

    2011-01-01

    In this Letter, it is shown that from a two region partition of the phase space of a one-dimensional dynamical system, a p-region partition can be obtained for the CRL...LR...R orbits. That is, permutations associated with symbolic sequences are obtained. As a consequence, the trajectory in phase space is directly deduced from permutation. From this permutation other permutations associated with period-doubling and saddle-node bifurcation cascades are derived, as well as other composite permutations. - Research highlights: → Symbolic sequences are the usual topological approach to dynamical systems. → Permutations bear more physical information than symbolic sequences. → Period-doubling cascade permutations associated with original sequences are obtained. → Saddle-node cascade permutations associated with original sequences are obtained. → Composite permutations are derived.

  12. Engineering of kinase-based protein interacting devices: active expression of tyrosine kinase domains

    KAUST Repository

    Diaz Galicia, Miriam Escarlet

    2018-05-01

    Protein-protein interactions modulate cellular processes in health and disease. However, tracing weak or rare associations or dissociations of proteins is not a trivial task. Kinases are often regulated through interaction partners and, at the same time, themselves regulate cellular interaction networks. The use of kinase domains for creating a synthetic sensor device that reads low concentration protein-protein interactions and amplifies them to a higher concentration interaction which is then translated into a FRET (Fluorescence Resonance Energy Transfer) signal is here proposed. To this end, DNA constructs for interaction amplification (split kinases), positive controls (intact kinase domains), scaffolding proteins and phosphopeptide - SH2-domain modules for the reading of kinase activity were assembled and expression protocols for fusion proteins containing Lyn, Src, and Fak kinase domains in bacterial and in cell-free systems were optimized. Also, two non-overlapping methods for measuring the kinase activity of these proteins were stablished and, finally, a protein-fragment complementation assay with the split-kinase constructs was tested. In conclusion, it has been demonstrated that features such as codon optimization, vector design and expression conditions have an impact on the expression yield and activity of kinase-based proteins. Furthermore, it has been found that the defined PURE cell-free system is insufficient for the active expression of catalytic kinase domains. In contrast, the bacterial co-expression with phosphatases produced active kinase fusion proteins for two out of the three tested Tyrosine kinase domains.

  13. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    International Nuclear Information System (INIS)

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod; Kim, Donghern; Dai, Jin; Hitron, John Andrew; Wang, Lei; Asha, Padmaja; Shi, Xianglin; Zhang, Zhuo

    2015-01-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm 2 ) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E 2 (PGE 2 ), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion. • Blackberry

  14. Blackberry extract inhibits UVB-induced oxidative damage and inflammation through MAP kinases and NF-κB signaling pathways in SKH-1 mice skin

    Energy Technology Data Exchange (ETDEWEB)

    Divya, Sasidharan Padmaja; Wang, Xin; Pratheeshkumar, Poyil; Son, Young-Ok; Roy, Ram Vinod [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Shi, Xianglin [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Zhang, Zhuo, E-mail: zhuo.zhang@uky.edu [Department of Toxicology and Cancer Biology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2015-04-01

    Extensive exposure of solar ultraviolet-B (UVB) radiation to skin induces oxidative stress and inflammation that play a crucial role in the induction of skin cancer. Photochemoprevention with natural products represents a simple but very effective strategy for the management of cutaneous neoplasia. In this study, we investigated whether blackberry extract (BBE) reduces chronic inflammatory responses induced by UVB irradiation in SKH-1 hairless mice skin. Mice were exposed to UVB radiation (100 mJ/cm{sup 2}) on alternate days for 10 weeks, and BBE (10% and 20%) was applied topically a day before UVB exposure. Our results show that BBE suppressed UVB-induced hyperplasia and reduced infiltration of inflammatory cells in the SKH-1 hairless mice skin. BBE treatment reduced glutathione (GSH) depletion, lipid peroxidation (LPO), and myeloperoxidase (MPO) in mouse skin by chronic UVB exposure. BBE significantly decreased the level of pro-inflammatory cytokines IL-6 and TNF-α in UVB-exposed skin. Likewise, UVB-induced inflammatory responses were diminished by BBE as observed by a remarkable reduction in the levels of phosphorylated MAP Kinases, Erk1/2, p38, JNK1/2 and MKK4. Furthermore, BBE also reduced inflammatory mediators such as cyclooxygenase-2 (COX-2), prostaglandin E{sub 2} (PGE{sub 2}), and inducible nitric oxide synthase (iNOS) levels in UVB-exposed skin. Treatment with BBE inhibited UVB-induced nuclear translocation of NF-κB and degradation of IκBα in mouse skin. Immunohistochemistry analysis revealed that topical application of BBE inhibited the expression of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), cyclobutane pyrimidine dimers (CPD), proliferating cell nuclear antigen (PCNA), and cyclin D1 in UVB-exposed skin. Collectively, these data indicate that BBE protects from UVB-induced oxidative damage and inflammation by modulating MAP kinase and NF-κB signaling pathways. - Highlights: • Blackberry extract inhibits UVB-induced glutathione depletion.

  15. Structure of the human protein kinase MPSK1 reveals an atypical activation loop architecture.

    Science.gov (United States)

    Eswaran, Jeyanthy; Bernad, Antonio; Ligos, Jose M; Guinea, Barbara; Debreczeni, Judit E; Sobott, Frank; Parker, Sirlester A; Najmanovich, Rafael; Turk, Benjamin E; Knapp, Stefan

    2008-01-01

    The activation segment of protein kinases is structurally highly conserved and central to regulation of kinase activation. Here we report an atypical activation segment architecture in human MPSK1 comprising a beta sheet and a large alpha-helical insertion. Sequence comparisons suggested that similar activation segments exist in all members of the MPSK1 family and in MAST kinases. The consequence of this nonclassical activation segment on substrate recognition was studied using peptide library screens that revealed a preferred substrate sequence of X-X-P/V/I-phi-H/Y-T*-N/G-X-X-X (phi is an aliphatic residue). In addition, we identified the GTPase DRG1 as an MPSK1 interaction partner and specific substrate. The interaction domain in DRG1 was mapped to the N terminus, leading to recruitment and phosphorylation at Thr100 within the GTPase domain. The presented data reveal an atypical kinase structural motif and suggest a role of MPSK1 regulating DRG1, a GTPase involved in regulation of cellular growth.

  16. Development of a New Cascade Voltage-Doubler for Voltage Multiplication

    OpenAIRE

    Toudeshki, Arash; Mariun, Norman; Hizam, Hashim; Abdul Wahab, Noor Izzri

    2014-01-01

    For more than eight decades, cascade voltage-doubler circuits are used as a method to produce DC output voltage higher than the input voltage. In this paper, the topological developments of cascade voltage-doublers are reviewed. A new circuit configuration for cascade voltage-doubler is presented. This circuit can produce a higher value of the DC output voltage and better output quality compared to the conventional cascade voltage-doubler circuits, with the same number of stages.

  17. A Novel Concept for Three-Phase Cascaded Multilevel Inverter Topologies

    Directory of Open Access Journals (Sweden)

    Md Mubashwar Hasan

    2018-01-01

    Full Text Available One of the key challenges in multilevel inverters (MLIs design is to reduce the number of components used in the implementation while maximising the number of output voltage levels. This paper proposes a new concept that facilitates a device count reduction technique of existing cascaded MLIs. Moreover, the proposed concept can be utilised to extend existing single phase cascaded MLI topologies to three-phase structure without tripling the number of semiconductor components and input dc-supplies as per the current practice. The new generalized concept involves two stages; namely, cascaded stage and phase generator stage. The phase generator stage is a combination of a conventional three-phase two level inverter and three bi-directional switches while the cascaded stage can employ any existing cascaded topology. A laboratory prototype model is built and extensive experimental analyses are conducted to validate the feasibility of the proposed cascaded MLI concept.

  18. Alkali metals in addition to acidic pH activate the EvgS histidine kinase sensor in Escherichia coli.

    Science.gov (United States)

    Eguchi, Yoko; Utsumi, Ryutaro

    2014-09-01

    Two-component signal transduction systems (TCSs) in bacteria perceive environmental stress and transmit the information via phosphorelay to adjust multiple cellular functions for adaptation. The EvgS/EvgA system is a TCS that confers acid resistance to Escherichia coli cells. Activation of the EvgS sensor initiates a cascade of transcription factors, EvgA, YdeO, and GadE, which induce the expression of a large group of acid resistance genes. We searched for signals activating EvgS and found that a high concentration of alkali metals (Na(+), K(+)) in addition to low pH was essential for the activation. EvgS is a histidine kinase, with a large periplasmic sensor region consisting of two tandem PBPb (bacterial periplasmic solute-binding protein) domains at its N terminus. The periplasmic sensor region of EvgS was necessary for EvgS activation, and Leu152, located within the first PBPb domain, was involved in the activation. Furthermore, chimeras of EvgS and PhoQ histidine kinases suggested that alkali metals were perceived at the periplasmic sensor region, whereas the cytoplasmic linker domain, connecting the transmembrane region and the histidine kinase domain, was required for low-pH perception. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Molecular dynamics simulation of displacement cascades in iron-alpha

    International Nuclear Information System (INIS)

    Vascon, R.

    1997-01-01

    Radiation damage by neutrons or ions in bcc iron has been investigated by molecular dynamics simulations using an embedded atom type many-body potential (EAM). Displacement cascades with energies of 1 to 30 keV were generated in the microcanonical system where the number of atoms (up to 1.5 million) is chosen high enough to compensate the fact that the dissipation of energy is not taken into account in our model. The defect number at the end of cascade lifetime was found to be 60 percent of the NRT standard value. This tendency is in good agreement with experimental data. However, compared with other simulations in iron, we found significant differences in the defect production and distribution. The comparison with results obtained form simulations of cascades in other metals, leads on the one hand to a higher value of the defect number in bcc iron than in fcc metals like copper or nickel, and on the other hand to a ratio, between the number of replacements and the number of defects, lower in iron ( 100). We observed the transient melting of the core of the cascade during simulations. We showed that a higher value of the initial iron crystal temperature, as the mass difference between the components of an artificial binary alloy Fe-X(X=Al,Sb,Au,U) both produce a 'cascade effect': a decrease of the number of defects and an increase of the number of replacements. We also showed up the quasi-channeling of some atoms in high energy cascades. They are at the origin of sub-cascades formation; as a result they induce an opposite effect to the 'cascade effect'. (author)

  20. Design concept of Hydro cascade control system

    International Nuclear Information System (INIS)

    Fustik, Vangel; Kiteva, Nevenka

    2006-01-01

    In this paper a design concept of the comple hydro cascade scheme is presented with the design parameters of the main technical features. The cascade control system architecture is designed considering up-to-date communication and information technology. The control algorithm is based on Pond Level Control and Economic Load Allocation concepts.

  1. On calculating of squared-off cascades for multicomponent isotope separation

    International Nuclear Information System (INIS)

    Potapov, D.V.; Soulaberidze, G.A.; Chuzhinov, V.A.; Filipppov, I.G.

    1996-01-01

    Calculation on a cascade of specified configuration (specified number of stages and flows in the enriching and stripping sections of the cascade) is performed with two approaches. The first one, which is advisable to use for for calculation of so-called 'long' cascades (for example, squared-off cascades of distillation columns), is based on either analytical transitions enabling the problem to be reduced to to the algebraic transcendental equations, or based on the direct integration of the equations describing the cascade separation process, with the subsequent iteration on the boundary conditions and the balance equations. This approach also involves the orthogonal-collocation technique consisting in the approximation of the differential equations solution by an Lagrangian polynomial interpolation

  2. Sample Selection for Training Cascade Detectors.

    Science.gov (United States)

    Vállez, Noelia; Deniz, Oscar; Bueno, Gloria

    2015-01-01

    Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.

  3. The temporal development of collision cascades in the binary collision approximation

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1989-07-01

    A modified binary collision approximation (BCA) was developed to allow explicit evaluation of the times at which projectiles in a collision cascade reach significant points in their trajectories, without altering the ''event-driven'' character of the model. The modified BCA was used to study the temporal development of cascades in copper and gold, initiated by primary atoms of up to 10 keV initial kinetic energy. Cascades generated with time-ordered collisions show fewer ''distant'' Frenkel pairs than do cascades generated with velocity-ordered collisions. In the former, the slower projectiles tend to move in less-damaged crystal than they do in the latter. The effect is larger in Au than in Cu and increases with primary energy. As an approach to cascade nonlinearities, cascades were generated in which stopped cascade atoms were allowed to be redisplaced in later encounters. There were many more redisplacements in time-ordered cascades than in velocity-ordered ones. Because of the additional stopping introduced by the redisplacement events, the cascades in which they were allowed had fewer defects than occurred otherwise. This effect also was larger in Au than in Cu and larger at high energies although most of the redisplacement encounters involved only low-energy particles. 13 refs., 5 figs., 4 tabs

  4. Detection of phosphorylated mitogen-activated protein kinase in the developing spinal cord of the mouse embryo

    International Nuclear Information System (INIS)

    Teraishi, Toshiya; Miura, Kenji

    2011-01-01

    Highlights: → We detected physiologically phosphorylated MAPKs in developing spinal cord. → We detected physiologically phosphorylated MAPKs by an improved method. → p-ERK1/2 and p-JNK1/2 were detected in the marginal layer and the dorsal horn. → p-ERK1/2 and p-JNK1/2 might play critical roles in the developing spinal cord. → Constructing phosphoprotein atlases will be possible if expanding this work. -- Abstract: Global understanding of the proteome is a major research topic. The comprehensive visualization of the distribution of proteins in vivo or the construction of in situ protein atlases may be a valuable strategy for proteomic researchers. Information about the distribution of various proteins under physiological and pathological conditions should be extremely valuable for the basic and clinical sciences. The mitogen-activated protein kinase (MAPK) cascade plays an essential role in intracellular signaling in organisms. This cascade also regulates biological processes involving development, differentiation, and proliferation. Phosphorylation and dephosphorylation are integral reactions in regulating the activity of MAPKs. Changes in the phosphorylation state of MAPKs are rapid and reversible; therefore, the localizations of physiologically phosphorylated MAPKs in vivo are difficult to accurately detect. Furthermore, phosphorylated MAPKs are likely to change phosphorylated states through commonly used experimental manipulations. In the present study, as a step toward the construction of in situ phosphoprotein atlases, we attempted to detect physiologically phosphorylated MAPKs in vivo in developing spinal cords of mice. We previously reported an improved immunohistochemical method for detecting unstable phosphorylated MAPKs. The distribution patterns of phosphorylated MAPKs in the spinal cords of embryonic mice from embryonic day 13 (E13) to E17 were observed with an improved immunohistochemical method. Phosphorylated extracellular signal

  5. All passive architecture for high efficiency cascaded Raman conversion

    Science.gov (United States)

    Balaswamy, V.; Arun, S.; Chayran, G.; Supradeepa, V. R.

    2018-02-01

    Cascaded Raman fiber lasers have offered a convenient method to obtain scalable, high-power sources at various wavelength regions inaccessible with rare-earth doped fiber lasers. A limitation previously was the reduced efficiency of these lasers. Recently, new architectures have been proposed to enhance efficiency, but this came at the cost of enhanced complexity, requiring an additional low-power, cascaded Raman laser. In this work, we overcome this with a new, all-passive architecture for high-efficiency cascaded Raman conversion. We demonstrate our architecture with a fifth-order cascaded Raman converter from 1117nm to 1480nm with output power of ~64W and efficiency of 60%.

  6. Minimum Entropy-Based Cascade Control for Governing Hydroelectric Turbines

    Directory of Open Access Journals (Sweden)

    Mifeng Ren

    2014-06-01

    Full Text Available In this paper, an improved cascade control strategy is presented for hydroturbine speed governors. Different from traditional proportional-integral-derivative (PID control and model predictive control (MPC strategies, the performance index of the outer controller is constructed by integrating the entropy and mean value of the tracking error with the constraints on control energy. The inner controller is implemented by a proportional controller. Compared with the conventional PID-P and MPC-P cascade control methods, the proposed cascade control strategy can effectively decrease fluctuations of hydro-turbine speed under non-Gaussian disturbance conditions in practical hydropower plants. Simulation results show the advantages of the proposed cascade control method.

  7. Minor abnormalities of testis development in mice lacking the gene encoding the MAPK signalling component, MAP3K1.

    Directory of Open Access Journals (Sweden)

    Nick Warr

    2011-05-01

    Full Text Available In mammals, the Y chromosome is a dominant male determinant, causing the bipotential gonad to develop as a testis. Recently, cases of familial and spontaneous 46,XY disorders of sex development (DSD have been attributed to mutations in the human gene encoding mitogen-activated protein kinase kinase kinase 1, MAP3K1, a component of the mitogen-activated protein kinase (MAPK signal transduction pathway. In individuals harbouring heterozygous mutations in MAP3K1, dysregulation of MAPK signalling was observed in lymphoblastoid cell lines, suggesting a causal role for these mutations in disrupting XY sexual development. Mice lacking the cognate gene, Map3k1, are viable and exhibit the eyes open at birth (EOB phenotype on a mixed genetic background, but on the C57BL/6J genetic background most mice die at around 14.5 dpc due to a failure of erythropoiesis in the fetal liver. However, no systematic examination of sexual development in Map3k1-deficient mice has been described, an omission that is especially relevant in the case of C57BL/6J, a genetic background that is sensitized to disruptions to testis determination. Here, we report that on a mixed genetic background mice lacking Map3k1 are fertile and exhibit no overt abnormalities of testis development. On C57BL/6J, significant non-viability is observed with very few animals surviving to adulthood. However, an examination of development in Map3k1-deficient XY embryos on this genetic background revealed no significant defects in testis determination, although minor abnormalities were observed, including an increase in gonadal length. Based on these observations, we conclude that MAP3K1 is not required for mouse testis determination. We discuss the significance of these data for the functional interpretation of sex-reversing MAP3K1 mutations in humans.

  8. Space-time evolution of electron cascades in diamond

    International Nuclear Information System (INIS)

    Ziaja, Beata; Szoeke, Abraham; Spoel, David van der; Hajdu, Janos

    2002-01-01

    The impact of a primary electron initiates a cascade of secondary electrons in solids, and these cascades play a significant role in the dynamics of ionization. Here we describe model calculations to follow the spatiotemporal evolution of secondary electron cascades in diamond. The band structure of the insulator has been explicitly incorporated into the calculations as it affects ionizations from the valence band. A Monte Carlo model was constructed to describe the path of electrons following the impact of a single electron of energy E∼250 eV. This energy is similar to the energy of an Auger electron from carbon. Two limiting cases were considered: the case in which electrons transmit energy to the lattice, and the case where no such energy transfer is permitted. The results show the evolution of the secondary electron cascades in terms of the number of electrons liberated, the spatial distribution of these electrons, and the energy distribution among the electrons as a function of time. The predicted ionization rates (∼5-13 electrons in 100 fs) lie within the limits given by experiments and phenomenological models. Calculation of the local electron density and the corresponding Debye length shows that the latter is systematically larger than the radius of the electron cloud, and it increases exponentially with the radial size of the cascade. This means that the long-range Coulomb field is not shielded within this cloud, and the electron gas generated does not represent a plasma in a single impact cascade triggered by an electron of E∼250 eV energy. This is important as it justifies the independent-electron approximation used in the model. At 1 fs, the (average) spatial distribution of secondary electrons is anisotropic with the electron cloud elongated in the direction of the primary impact. The maximal radius of the cascade is about 50 A at this time. At 10 fs the cascade has a maximal radius of ∼70 A, and is already dominated by low-energy electrons

  9. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma.

    Directory of Open Access Journals (Sweden)

    Ting-Lei Gu

    Full Text Available Cholangiocarcinoma, also known as bile duct cancer, is the second most common primary hepatic carcinoma with a median survival of less than 2 years. The molecular mechanisms underlying the development of this disease are not clear. To survey activated tyrosine kinases signaling in cholangiocarcinoma, we employed immunoaffinity profiling coupled to mass spectrometry and identified DDR1, EPHA2, EGFR, and ROS tyrosine kinases, along with over 1,000 tyrosine phosphorylation sites from about 750 different proteins in primary cholangiocarcinoma patients. Furthermore, we confirmed the presence of ROS kinase fusions in 8.7% (2 out of 23 of cholangiocarcinoma patients. Expression of the ROS fusions in 3T3 cells confers transforming ability both in vitro and in vivo, and is responsive to its kinase inhibitor. Our data demonstrate that ROS kinase is a promising candidate for a therapeutic target and for a diagnostic molecular marker in cholangiocarcinoma. The identification of ROS tyrosine kinase fusions in cholangiocarcinoma, along with the presence of other ROS kinase fusions in lung cancer and glioblastoma, suggests that a more broadly based screen for activated ROS kinase in cancer is warranted.

  10. Energy cascading in the beat-wave accelerator

    International Nuclear Information System (INIS)

    McKinstrie, C.J.; Batha, S.H.

    1987-01-01

    A review is given of energy cascading in the beat-wave accelerator. The properties of the electromagnetic cascade and the corresponding plasma-wave evolution are well understood within the framework of an approximate analytic model. Based on this model, idealized laser-plasma coupling efficiencies of the order of 10% do not seem unreasonable. 28 refs

  11. Simulation of short-term annealing of displacement cascades in FCC metals

    International Nuclear Information System (INIS)

    Heinisch, H.L.; Doran, D.G.; Schwartz, D.M.

    1980-01-01

    Computer models have been developed for the simulation of high energy displacement cascades. The objective is the generation of defect production functions for use in correlation analysis of radiation effects in fusion reactor materials. In particular, the stochastic cascade annealing simulation code SCAS has been developed and used to model the short-term annealing behavior of simulated cascades in FCC metals. The code is fast enough to make annealing of high energy cascades practical. Sets of cascades from 5 keV to 100 keV in copper were generated by the binary collision code MARLOWE

  12. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase.

    Directory of Open Access Journals (Sweden)

    Mutsuki Amano

    Full Text Available BACKGROUND: Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. METHODOLOGY/PRINCIPAL FINDINGS: We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.

  13. Involvement of AMPK signaling cascade in capsaicin-induced apoptosis of HT-29 colon cancer cells.

    Science.gov (United States)

    Kim, Young Min; Hwang, Jin-Taek; Kwak, Dong Wook; Lee, Yun Kyung; Park, Ock Jin

    2007-01-01

    Adenosine monophosphate (AMP)-activated protein kinase (AMPK) is activated during ATP-depleting metabolic states, such as hypoxia, heat shock, oxidative stress, and exercise. As a highly conserved heterotrimeric kinase that functions as a major metabolic switch to maintain energy homeostasis, AMPK has been shown to exert as an intrinsic regulator of mammalian cell cycle. Moreover, AMPK cascade has emerged as an important pathway implicated in cancer control. In this article, we have investigated the effects of capsaicin on apoptosis in relation to AMPK activation in colon cancer cell. Capsaicin-induced apoptosis was revealed by the presence of nucleobodies in the capsaicin-treated HT-29 colon cancer cells. Concomitantly, the activation of AMPK and the increased expression of the inactive form of acetyl-CoA carboxylase (ACC) were detected in capsaicin-treated colon cancer cells. We showed that both capsaicin and 5'-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR), an AMPK activator possess the AMPK-activating capacity as well as apoptosis-inducing properties. Evidence of the association between AMPK activation and the increased apoptosis in HT-29 colon cancer cells by capsaicin treatment, and further findings of the correlation of the activated AMPK and the elevated apoptosis by cotreatment of AICAR and capsaicin support AMPK as an important component of apoptosis, as well as a possible target of cancer control.

  14. HECTD3 Mediates an HSP90-Dependent Degradation Pathway for Protein Kinase Clients

    Directory of Open Access Journals (Sweden)

    Zhaobo Li

    2017-06-01

    Full Text Available Inhibition of the ATPase cycle of the HSP90 chaperone promotes ubiquitylation and proteasomal degradation of its client proteins, which include many oncogenic protein kinases. This provides the rationale for HSP90 inhibitors as cancer therapeutics. However, the mechanism by which HSP90 ATPase inhibition triggers ubiquitylation is not understood, and the E3 ubiquitin ligases involved are largely unknown. Using a siRNA screen, we have identified components of two independent degradation pathways for the HSP90 client kinase CRAF. The first requires CUL5, Elongin B, and Elongin C, while the second requires the E3 ligase HECTD3, which is also involved in the degradation of MASTL and LKB1. HECTD3 associates with HSP90 and CRAF in cells via its N-terminal DOC domain, which is mutationally disrupted in tumor cells with activated MAP kinase signaling. Our data implicate HECTD3 as a tumor suppressor modulating the activity of this important oncogenic signaling pathway.

  15. Optimization of the cascade with gas centrifuges for uranium enrichment

    International Nuclear Information System (INIS)

    Ozaki, N.; Harada, I.

    1976-01-01

    Computer programs to optimize the step and tapered-step cascades with gas centrifuges are developed. The 'Complex Method', one of the direct search method, is employed to find the optimum of the nonlinear function of several variables within a constrained region. The separation characteristics of the optimized step and tapered-step cascades are discussed in comparison with that of the ideal cascade. The local optima of the cascade profile, the convergence of the object function, and the stopping criterion for the optimization trial are also discussed. (author)

  16. Centrifugal separator cascade connected in zigzag manner

    International Nuclear Information System (INIS)

    Kai, Tsunetoshi; Inoue, Yoshiya; Oya, Akio; Nagakura, Masaaki.

    1974-01-01

    Object: To effectively accommodate centrifugal separators of the entire cascade within the available space in a plant by freely selecting perpendicular direction of connection of the centrifugal separator. Structure: Centrifugal separators are connected in zigzag fashion by using a single header for each stage so that in a rectangular shape the entire cascade is arranged. (Kamimura, M.)

  17. Cloning and Sequencing of Protein Kinase cDNA from Harbor Seal (Phoca vitulina Lymphocytes

    Directory of Open Access Journals (Sweden)

    Jennifer C. C. Neale

    2004-01-01

    Full Text Available Protein kinases (PKs play critical roles in signal transduction and activation of lymphocytes. The identification of PK genes provides a tool for understanding mechanisms of immunotoxic xenobiotics. As part of a larger study investigating persistent organic pollutants in the harbor seal and their possible immunomodulatory actions, we sequenced harbor seal cDNA fragments encoding PKs. The procedure, using degenerate primers based on conserved motifs of human protein tyrosine kinases (PTKs, successfully amplified nine phocid PK gene fragments with high homology to human and rodent orthologs. We identified eight PTKs and one dual (serine/threonine and tyrosine kinase. Among these were several PKs important in early signaling events through the B- and T-cell receptors (FYN, LYN, ITK and SYK and a MAP kinase involved in downstream signal transduction. V-FGR, RET and DDR2 were also expressed. Sequential activation of protein kinases ultimately induces gene transcription leading to the proliferation and differentiation of lymphocytes critical to adaptive immunity. PKs are potential targets of bioactive xenobiotics, including persistent organic pollutants of the marine environment; characterization of these molecules in the harbor seal provides a foundation for further research illuminating mechanisms of action of contaminants speculated to contribute to large-scale die-offs of marine mammals via immunosuppression.

  18. Diverse roles of ERECTA family genes in plant development.

    Science.gov (United States)

    Shpak, Elena D

    2013-12-01

    Multiple receptor-like kinases (RLKs) enable intercellular communication that coordinates growth and development of plant tissues. ERECTA family receptors (ERfs) are an ancient family of leucine-rich repeat RLKs that in Arabidopsis consists of three genes: ERECTA, ERL1, and ERL2. ERfs sense secreted cysteine-rich peptides from the EPF/EPFL family and transmit the signal through a MAP kinase cascade. This review discusses the functions of ERfs in stomata development, in regulation of longitudinal growth of aboveground organs, during reproductive development, and in the shoot apical meristem. In addition the role of ERECTA in plant responses to biotic and abiotic factors is examined. Elena D. Shpak (Corresponding author). © 2013 Institute of Botany, Chinese Academy of Sciences.

  19. Database for the geologic map of the Bend 30- x 60-minute quadrangle, central Oregon

    Science.gov (United States)

    Koch, Richard D.; Ramsey, David W.; Sherrod, David R.; Taylor, Edward M.; Ferns, Mark L.; Scott, William E.; Conrey, Richard M.; Smith, Gary A.

    2010-01-01

    The Bend 30- x 60-minute quadrangle has been the locus of volcanism, faulting, and sedimentation for the past 35 million years. It encompasses parts of the Cascade Range and Blue Mountain geomorphic provinces, stretching from snowclad Quaternary stratovolcanoes on the west to bare rocky hills and sparsely forested juniper plains on the east. The Deschutes River and its large tributaries, the Metolius and Crooked Rivers, drain the area. Topographic relief ranges from 3,157 m (10,358 ft) at the top of South Sister to 590 m (1,940 ft) at the floor of the Deschutes and Crooked Rivers where they exit the area at the north-central edge of the map area. The map encompasses a part of rapidly growing Deschutes County. The city of Bend, which has over 70,000 people living in its urban growth boundary, lies at the south-central edge of the map. Redmond, Sisters, and a few smaller villages lie scattered along the major transportation routes of U.S. Highways 97 and 20. This geologic map depicts the geologic setting as a basis for structural and stratigraphic analysis of the Deschutes basin, a major hydrologic discharge area on the east flank of the Cascade Range. The map also provides a framework for studying potentially active faults of the Sisters fault zone, which trends northwest across the map area from Bend to beyond Sisters. This digital release contains all of the information used to produce the geologic map published as U.S. Geological Survey Geologic Investigations Series I-2683 (Sherrod and others, 2004). The main component of this digital release is a geologic map database prepared using ArcInfo GIS. This release also contains files to view or print the geologic map and accompanying descriptive pamphlet from I-2683.

  20. Sample Selection for Training Cascade Detectors.

    Directory of Open Access Journals (Sweden)

    Noelia Vállez

    Full Text Available Automatic detection systems usually require large and representative training datasets in order to obtain good detection and false positive rates. Training datasets are such that the positive set has few samples and/or the negative set should represent anything except the object of interest. In this respect, the negative set typically contains orders of magnitude more images than the positive set. However, imbalanced training databases lead to biased classifiers. In this paper, we focus our attention on a negative sample selection method to properly balance the training data for cascade detectors. The method is based on the selection of the most informative false positive samples generated in one stage to feed the next stage. The results show that the proposed cascade detector with sample selection obtains on average better partial AUC and smaller standard deviation than the other compared cascade detectors.

  1. Multilevel Inverter by Cascading Industrial VSI

    DEFF Research Database (Denmark)

    Teodorescu, Remus; Blaabjerg, Frede; Pedersen, John Kim

    2002-01-01

    In this paper the modularity concept applied to medium-voltage adjustable speed drives is addressed. First, the single-phase cascaded voltage-source inverter that uses series connection of IGBT H-bridge modules with isolated dc-buses is presented. Next, a novel three-phase cascaded voltage......-source inverter that uses three IGBT triphase inverter modules along with an output transformer to obtain a 3 p.u. multilevel output voltage is introduced. The system yields in high-quality multistep voltage with up to 4 levels and low dv/dt, balanced operation of the inverter modules, each supplying a third...... of the motor rated kVA. The concept of using cascaded inverters is further extended to a new modular motor-modular inverter system where the motor winding connections are reconnected into several three-phase groups, either six-lead or 12-lead connection according to the voltage level, each powered...

  2. Particle fluxes in atomic collision cascades

    International Nuclear Information System (INIS)

    Sckerl, B.W.; Sigmund, P.; Vicanek, M.

    1996-01-01

    The flux of recoil atoms in atomic collision cascades induced by an ion beam or another source of energetic particles in a material is known to approach isotropy at kinetic energies far below the beam energy. A variety of irradiation effects can be explained satisfactorily on the basis of an isotropic particle flux, but significant deviations from this simple behavior are known to exist. While numerous examples have been studied by numerical simulation of cascade processes, the systematics is, by and large, unknown. The present study aims at general scaling properties and estimates of the magnitude of moderate deviations from isotropy and their spatial dependence for a wide range of beam and material parameters. Anisotropies introduced by crystal structure are ignored. Although it is well established that cascade anisotropy is related to the momentum of beam particles, previous attempts to quantify this relation have failed. We have found that there are two leading correction terms to the isotropic particle flux, a well-known term centered around the beam direction as a symmetry axis and a new term proportional to the gradient of the deposited-energy density. As a general rule the two contributions are either both significant or both negligible. Specific situations in which the gradient term dominates are, however, of considerable interest in applications. The parameters which characterize the anisotropy of collision cascades also determine the deposition of momentum, but the connection is less straightforward than asserted hitherto. General principles are first illustrated on the specific case of elastic-collision cascades under self-bombardment which contains the essentials. Thereafter several generalizations are made, including atomic binding forces and inelasticity as well as allowance for multicomponent materials. Application areas in mixing and sputtering are outlined. (au) 58 refs

  3. Cascading Generative Adversarial Networks for Targeted

    KAUST Repository

    Hamdi, Abdullah

    2018-01-01

    Abundance of labelled data played a crucial role in the recent developments in computer vision, but that faces problems like scalability and transferability to the wild. One alternative approach is to utilize the data without labels, i.e. unsupervised learning, in learning valuable information and put it in use to tackle vision problems. Generative Adversarial Networks (GANs) have gained momentum for their ability to model image distributions in unsupervised manner. They learn to emulate the training set and that enables sampling from that domain and using the knowledge learned for useful applications. Several methods proposed enhancing GANs, including regularizing the loss with some feature matching. We seek to push GANs beyond the data in the training and try to explore unseen territory in the image manifold. We first propose a new regularizer for GAN based on K-Nearest Neighbor (K-NN) selective feature matching to a target set Y in high-level feature space, during the adversarial training of GAN on the base set X, and we call this novel model K-GAN. We show that minimizing the added term follows from cross-entropy minimization between the distributions of GAN and set Y. Then, we introduce a cascaded framework for GANs that try to address the task of imagining a new distribution that combines the base set X and target set Y by cascading sampling GANs with translation GANs, and we dub the cascade of such GANs as the Imaginative Adversarial Network (IAN). Several cascades are trained on a collected dataset Zoo-Faces and generated innovative samples are shown, including from K-GAN cascade. We conduct an objective and subjective evaluation for different IAN setups in the addressed task of generating innovative samples and we show the effect of regularizing GAN on different scores. We conclude with some useful applications for these IANs, like multi-domain manifold traversing.

  4. Cascading Generative Adversarial Networks for Targeted

    KAUST Repository

    Hamdi, Abdullah

    2018-04-09

    Abundance of labelled data played a crucial role in the recent developments in computer vision, but that faces problems like scalability and transferability to the wild. One alternative approach is to utilize the data without labels, i.e. unsupervised learning, in learning valuable information and put it in use to tackle vision problems. Generative Adversarial Networks (GANs) have gained momentum for their ability to model image distributions in unsupervised manner. They learn to emulate the training set and that enables sampling from that domain and using the knowledge learned for useful applications. Several methods proposed enhancing GANs, including regularizing the loss with some feature matching. We seek to push GANs beyond the data in the training and try to explore unseen territory in the image manifold. We first propose a new regularizer for GAN based on K-Nearest Neighbor (K-NN) selective feature matching to a target set Y in high-level feature space, during the adversarial training of GAN on the base set X, and we call this novel model K-GAN. We show that minimizing the added term follows from cross-entropy minimization between the distributions of GAN and set Y. Then, we introduce a cascaded framework for GANs that try to address the task of imagining a new distribution that combines the base set X and target set Y by cascading sampling GANs with translation GANs, and we dub the cascade of such GANs as the Imaginative Adversarial Network (IAN). Several cascades are trained on a collected dataset Zoo-Faces and generated innovative samples are shown, including from K-GAN cascade. We conduct an objective and subjective evaluation for different IAN setups in the addressed task of generating innovative samples and we show the effect of regularizing GAN on different scores. We conclude with some useful applications for these IANs, like multi-domain manifold traversing.

  5. Establishment and evaluation of operation function model for cascade hydropower station

    OpenAIRE

    Chang-ming Ji; Ting Zhou; Hai-tao Huang

    2010-01-01

    Toward solving the actual operation problems of cascade hydropower stations under hydrologic uncertainty, this paper presents the process of extraction of statistical characteristics from long-term optimal cascade operation, and proposes a monthly operation function algorithm for the actual operation of cascade hydropower stations through the identification, processing, and screening of available information during long-term optimal operation. Applying the operation function to the cascade hy...

  6. Andrographolide inhibits nuclear factor-κB activation through JNK-Akt-p65 signaling cascade in tumor necrosis factor-α-stimulated vascular smooth muscle cells.

    Science.gov (United States)

    Chen, Yu-Ying; Hsu, Ming-Jen; Hsieh, Cheng-Ying; Lee, Lin-Wen; Chen, Zhih-Cherng; Sheu, Joen-Rong

    2014-01-01

    Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs) exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α). Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK), Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  7. Andrographolide Inhibits Nuclear Factor-κB Activation through JNK-Akt-p65 Signaling Cascade in Tumor Necrosis Factor-α-Stimulated Vascular Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Yu-Ying Chen

    2014-01-01

    Full Text Available Critical vascular inflammation leads to vascular dysfunction and cardiovascular diseases, including abdominal aortic aneurysms, hypertension, and atherosclerosis. Andrographolide is the most active and critical constituent isolated from the leaves of Andrographis paniculata, a herbal medicine widely used for treating anti-inflammation in Asia. In this study, we investigated the mechanisms of the inhibitory effects of andrographolide in vascular smooth muscle cells (VSMCs exposed to a proinflammatory stimulus, tumor necrosis factor-α (TNF-α. Treating TNF-α-stimulated VSMCs with andrographolide suppressed the expression of inducible nitric oxide synthase in a concentration-dependent manner. A reduction in TNF-α-induced c-Jun N-terminal kinase (JNK, Akt, and p65 phosphorylation was observed in andrographolide-treated VSMCs. However, andrographolide affected neither IκBα degradation nor p38 mitogen-activated protein kinase or extracellular signal-regulated kinase 1/2 phosphorylation under these conditions. Both treatment with LY294002, a phosphatidylinositol 3-kinase/Akt inhibitor, and treatment with SP600125, a JNK inhibitor, markedly reversed the andrographolide-mediated inhibition of p65 phosphorylation. In addition, LY294002 and SP600125 both diminished Akt phosphorylation, whereas LY294002 had no effects on JNK phosphorylation. These results collectively suggest that therapeutic interventions using andrographolide can benefit the treatment of vascular inflammatory diseases, and andrographolide-mediated inhibition of NF-κB activity in TNF-α-stimulated VSMCs occurs through the JNK-Akt-p65 signaling cascade, an IκBα-independent mechanism.

  8. SCO2 induces p53-mediated apoptosis by Thr845 phosphorylation of ASK-1 and dissociation of the ASK-1-Trx complex.

    Science.gov (United States)

    Madan, Esha; Gogna, Rajan; Kuppusamy, Periannan; Bhatt, Madan; Mahdi, Abbas Ali; Pati, Uttam

    2013-04-01

    p53 prevents cancer via cell cycle arrest, apoptosis, and the maintenance of genome stability. p53 also regulates energy-generating metabolic pathways such as oxidative phosphorylation (OXPHOS) and glycolysis via transcriptional regulation of SCO2 and TIGAR. SCO2, a cytochrome c oxidase assembly factor, is a metallochaperone which is involved in the biogenesis of cytochrome c oxidase subunit II. Here we have shown that SCO2 functions as an apoptotic protein in tumor xenografts, thus providing an alternative pathway for p53-mediated apoptosis. SCO2 increases the generation of reactive oxygen species (ROS) and induces dissociation of the protein complex between apoptosis signal-regulating kinase 1 (ASK-1) (mitogen-activated protein kinase kinase kinase [MAPKKK]) and its cellular inhibitor, the redox-active protein thioredoxin (Trx). Furthermore, SCO2 induces phosphorylation of ASK-1 at the Thr(845) residue, resulting in the activation of the ASK-1 kinase pathway. The phosphorylation of ASK-1 induces the activation of mitogen-activated protein kinase kinases 4 and 7 (MAP2K4/7) and MAP2K3/6, which switches the c-Jun N-terminal protein kinase (JNK)/p38-dependent apoptotic cascades in cancer cells. Exogenous addition of the SCO2 gene to hypoxic cancer cells and hypoxic tumors induces apoptosis and causes significant regression of tumor xenografts. We have thus discovered a novel apoptotic function of SCO2, which activates the ASK-1 kinase pathway in switching "on" an alternate mode of p53-mediated apoptosis. We propose that SCO2 might possess a novel tumor suppressor function via the ROS-ASK-1 kinase pathway and thus could be an important candidate for anticancer gene therapy.

  9. Rho-Kinase Inhibition Ameliorates Dasatinib-Induced Endothelial Dysfunction and Pulmonary Hypertension

    Directory of Open Access Journals (Sweden)

    Csilla Fazakas

    2018-05-01

    Full Text Available The multi-kinase inhibitor dasatinib is used for treatment of imatinib-resistant chronic myeloid leukemia, but is prone to induce microvascular dysfunction. In lung this can manifest as capillary leakage with pleural effusion, pulmonary edema or even pulmonary arterial hypertension. To understand how dasatinib causes endothelial dysfunction we examined the effects of clinically relevant concentrations of dasatinib on both human pulmonary arterial macro- and microvascular endothelial cells (ECs. The effects of dasatinib was compared to imatinib and nilotinib, two other clinically used BCR/Abl kinase inhibitors that do not inhibit Src. Real three-dimensional morphology and high resolution stiffness mapping revealed softening of both macro- and microvascular ECs upon dasatinib treatment, which was not observed in response to imatinib. In a dose-dependent manner, dasatinib decreased transendothelial electrical resistance/impedance and caused a permeability increase as well as disruption of tight adherens junctions in both cell types. In isolated perfused and ventilated rat lungs, dasatinib increased mean pulmonary arterial pressure, which was accompanied by a gain in lung weight. The Rho-kinase inhibitor Y27632 partly reversed the dasatinib-induced changes in vitro and ex vivo, presumably by acting downstream of Src. Co-administration of the Rho-kinase inhibitor Y27632 completely blunted the increased pulmonary pressure in response to dasatinib. In conclusion, a dasatinib-induced permeability increase in human pulmonary arterial macro- and microvascular ECs might explain many of the adverse effects of dasatinib in patients. Rho-kinase inhibition might be suitable to ameliorate these effects.

  10. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo simulation of tungsten cascade aging

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar, E-mail: giridhar.nandipati@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA (United States); Setyawan, Wahyu; Heinisch, Howard L. [Pacific Northwest National Laboratory, Richland, WA (United States); Roche, Kenneth J. [Pacific Northwest National Laboratory, Richland, WA (United States); Department of Physics, University of Washington, Seattle, WA 98195 (United States); Kurtz, Richard J. [Pacific Northwest National Laboratory, Richland, WA (United States); Wirth, Brian D. [University of Tennessee, Knoxville, TN (United States)

    2015-07-15

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.

  11. Displacement cascades and defect annealing in tungsten, Part II: Object kinetic Monte Carlo Simulation of Tungsten Cascade Aging

    Energy Technology Data Exchange (ETDEWEB)

    Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.; Roche, Kenneth J.; Kurtz, Richard J.; Wirth, Brian D.

    2015-07-01

    The results of object kinetic Monte Carlo (OKMC) simulations of the annealing of primary cascade damage in bulk tungsten using a comprehensive database of cascades obtained from molecular dynamics (Setyawan et al.) are described as a function of primary knock-on atom (PKA) energy at temperatures of 300, 1025 and 2050 K. An increase in SIA clustering coupled with a decrease in vacancy clustering with increasing temperature, in addition to the disparate mobilities of SIAs versus vacancies, causes an interesting effect of temperature on cascade annealing. The annealing efficiency (the ratio of the number of defects after and before annealing) exhibits an inverse U-shape curve as a function of temperature. The capabilities of the newly developed OKMC code KSOME (kinetic simulations of microstructure evolution) used to carry out these simulations are described.

  12. Regulation of Schistosoma mansoni development and reproduction by the mitogen-activated protein kinase signaling pathway.

    Science.gov (United States)

    Andrade, Luiza Freire de; Mourão, Marina de Moraes; Geraldo, Juliana Assis; Coelho, Fernanda Sales; Silva, Larissa Lopes; Neves, Renata Heisler; Volpini, Angela; Machado-Silva, José Roberto; Araujo, Neusa; Nacif-Pimenta, Rafael; Caffrey, Conor R; Oliveira, Guilherme

    2014-06-01

    Protein kinases are proven targets for drug development with an increasing number of eukaryotic Protein Kinase (ePK) inhibitors now approved as drugs. Mitogen-activated protein kinase (MAPK) family members connect cell-surface receptors to regulatory targets within cells and influence a number of tissue-specific biological activities such as cell proliferation, differentiation and survival. However, the contributions of members of the MAPK pathway to schistosome development and survival are unclear. We employed RNA interference (RNAi) to elucidate the functional roles of five S. mansoni genes (SmCaMK2, SmJNK, SmERK1, SmERK2 and SmRas) involved in MAPK signaling pathway. Mice were injected with post-infective larvae (schistosomula) subsequent to RNAi and the development of adult worms observed. The data demonstrate that SmJNK participates in parasite maturation and survival of the parasites, whereas SmERK are involved in egg production as infected mice had significantly lower egg burdens with female worms presenting underdeveloped ovaries. Furthermore, it was shown that the c-fos transcription factor was overexpressed in parasites submitted to RNAi of SmERK1, SmJNK and SmCaMK2 indicating its putative involvement in gene regulation in this parasite's MAPK signaling cascade. We conclude that MAPKs proteins play important roles in the parasite in vivo survival, being essential for normal development and successful survival and reproduction of the schistosome parasite. Moreover SmERK and SmJNK are potential targets for drug development.

  13. Inhibition of stress-activated MAP kinases induces clinical improvement in moderate to severe Crohn's disease

    NARCIS (Netherlands)

    Hommes, Daan; van den Blink, Bernt; Plasse, Terry; Bartelsman, Joep; Xu, Cuiping; Macpherson, Bret; Tytgat, Guido; Peppelenbosch, Mailkel; van Deventer, Sander

    2002-01-01

    Background & Aims: We investigated if inhibition of mitogen-activated protein kinases (MAPKs) was beneficial in Crohn's disease. Methods: Inhibition of JNK and p38 MAPK activation with CNI-1493, a guanylhydrazone, was tested in vitro. Twelve patients with severe Crohn's disease (mean baseline, CDAI

  14. A thermal modelling of displacement cascades in uranium dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Martin, G., E-mail: guillaume.martin@cea.fr [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Garcia, P.; Sabathier, C. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France); Devynck, F.; Krack, M. [Laboratory for Reactor Physics and Systems Behaviour, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Maillard, S. [CEA – DEN/DEC/SESC/LLCC, Bât. 352, 13108 Saint-Paul-Lez-Durance Cedex (France)

    2014-05-01

    The space and time dependent temperature distribution was studied in uranium dioxide during displacement cascades simulated by classical molecular dynamics (MD). The energy for each simulated radiation event ranged between 0.2 keV and 20 keV in cells at initial temperatures of 700 K or 1400 K. Spheres into which atomic velocities were rescaled (thermal spikes) have also been simulated by MD to simulate the thermal excitation induced by displacement cascades. Equipartition of energy was shown to occur in displacement cascades, half of the kinetic energy of the primary knock-on atom being converted after a few tenths of picoseconds into potential energy. The kinetic and potential parts of the system energy are however subjected to little variations during dedicated thermal spike simulations. This is probably due to the velocity rescaling process, which impacts a large number of atoms in this case and would drive the system away from a dynamical equilibrium. This result makes questionable MD simulations of thermal spikes carried out up to now (early 2014). The thermal history of cascades was compared to the heat equation solution of a punctual thermal excitation in UO{sub 2}. The maximum volume brought to a temperature above the melting temperature during the simulated cascade events is well reproduced by this simple model. This volume eventually constitutes a relevant estimate of the volume affected by a displacement cascade in UO{sub 2}. This definition of the cascade volume could also make sense in other materials, like iron.

  15. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  16. Criticality safety study of shutdown diffusion cascade coolers

    International Nuclear Information System (INIS)

    Paschal, L.S.; Basoglu, B.; Bentley, C.L.; Dunn, M.E.

    1996-01-01

    Gaseous diffusion plants use cascade coolers in the production of highly enriched uranium (HEU) to remove heat from the enriched stream of UF 6 . The cascade coolers operate like shell and tube heat exchangers with the UF 6 on the shell side and Freon on the tube side. Recirculating cooling water (RCW) in condensers is used to cool the Freon. A criticality safety analysis was previously performed for cascade coolers during normal operation. The purpose of this paper is to evaluate several different hypothetical accidents regarding RCW ingress into the cooler to determine whether criticality safety concerns exist

  17. Digital Geologic Map Database of Medicine Lake Volcano, Northern California

    Science.gov (United States)

    Ramsey, D. W.; Donnelly-Nolan, J. M.; Felger, T. J.

    2010-12-01

    Medicine Lake volcano, located in the southern Cascades ~55 km east-northeast of Mount Shasta, is a large rear-arc, shield-shaped volcano with an eruptive history spanning nearly 500 k.y. Geologic mapping of Medicine Lake volcano has been digitally compiled as a spatial database in ArcGIS. Within the database, coverage feature classes have been created representing geologic lines (contacts, faults, lava tubes, etc.), geologic unit polygons, and volcanic vent location points. The database can be queried to determine the spatial distributions of different rock types, geologic units, and other geologic and geomorphic features. These data, in turn, can be used to better understand the evolution, growth, and potential hazards of this large, rear-arc Cascades volcano. Queries of the database reveal that the total area covered by lavas of Medicine Lake volcano, which range in composition from basalt through rhyolite, is about 2,200 km2, encompassing all or parts of 27 U.S. Geological Survey 1:24,000-scale topographic quadrangles. The maximum extent of these lavas is about 80 km north-south by 45 km east-west. Occupying the center of Medicine Lake volcano is a 7 km by 12 km summit caldera in which nestles its namesake, Medicine Lake. The flanks of the volcano, which are dotted with cinder cones, slope gently upward to the caldera rim, which reaches an elevation of nearly 2,440 m. Approximately 250 geologic units have been mapped, only half a dozen of which are thin surficial units such as alluvium. These volcanic units mostly represent eruptive events, each commonly including a vent (dome, cinder cone, spatter cone, etc.) and its associated lava flow. Some cinder cones have not been matched to lava flows, as the corresponding flows are probably buried, and some flows cannot be correlated with vents. The largest individual units on the map are all basaltic in composition, including the late Pleistocene basalt of Yellowjacket Butte (296 km2 exposed), the largest unit on the

  18. The Phytochemical Bergenin Enhances T Helper 1 Responses and Anti-Mycobacterial Immunity by Activating the MAP Kinase Pathway in Macrophages

    Directory of Open Access Journals (Sweden)

    Debprasad Chattopadhyay

    2017-05-01

    Full Text Available Tuberculosis (TB remains one of the greatest health concerns worldwide, which has hindered socioeconomic development in certain parts of the world for many centuries. Although current TB therapy, “Directly Observed Treatment Short-course,” is effective, it is associated with unwanted side effects and the risk for the generation of drug-resistant organisms. The majority of infected individuals successfully confine the mycobacterial organisms and remain asymptotic unless immune responses are perturbed. Thus, host immunity can protect against TB and immunomodulation is therefore an attractive therapeutic option. Previous studies have shown that TNF-α and Nitric Oxide (NO in conjunction with IFN-γ-producing T helper 1 (Th1 cells play critical roles in host protection against TB. Here, we show that bergenin, a phytochemical isolated from tender leaves of Shorea robusta, activates the MAP kinase and ERK pathways and induces TNF-α, NO and IL-12 production in infected macrophages. We further show that bergenin induces Th1 immune responses and potently inhibits bacillary growth in a murine model of Mycobacterium tuberculosis infection. These findings identify bergenin as a potential adjunct to TB therapy.

  19. Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival.

    Directory of Open Access Journals (Sweden)

    Daniel Thomas

    Full Text Available The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K, promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3 and granulocyte macrophage colony stimulating factor (GM-CSF receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting

  20. The flow analysis of supercavitating cascade by linear theory

    Energy Technology Data Exchange (ETDEWEB)

    Park, E.T. [Sung Kyun Kwan Univ., Seoul (Korea, Republic of); Hwang, Y. [Seoul National Univ., Seoul (Korea, Republic of)

    1996-06-01

    In order to reduce damages due to cavitation effects and to improve performance of fluid machinery, supercavitation around the cascade and the hydraulic characteristics of supercavitating cascade must be analyzed accurately. And the study on the effects of cavitation on fluid machinery and analysis on the performances of supercavitating hydrofoil through various elements governing flow field are critically important. In this study comparison of experiment results with the computed results of linear theory using singularity method was obtainable. Specially singularity points like sources and vortexes on hydrofoil and freestreamline were distributed to analyze two dimensional flow field of supercavitating cascade, and governing equations of flow field were derived and hydraulic characteristics of cascade were calculated by numerical analysis of the governing equations. 7 refs., 6 figs.

  1. Negative regulatory role of PI3-kinase in TNF-induced tumor necrosis.

    Science.gov (United States)

    Matschurat, Susanne; Blum, Sabine; Mitnacht-Kraus, Rita; Dijkman, Henry B P M; Kanal, Levent; De Waal, Robert M W; Clauss, Matthias

    2003-10-20

    Tissue factor is the prime initiator of blood coagulation. Expression of tissue factor in tumor endothelial cells leads to thrombus formation, occlusion of vessels and development of hemorrhagic infarctions in the tumor tissue, often followed by regression of the tumor. Tumor cells produce endogenous vascular endothelial growth factor (VEGF), which sensitizes endothelial cells for systemically administered tumor necrosis factor alpha (TNF alpha) and synergistically enhances the TNF-induced expression of tissue factor. We have analyzed the pathways involved in the induction of tissue factor in human umbilical cord vein endothelial cells (HUVECs) after combined stimulation with TNF and VEGF. By using specific low molecular weight inhibitors, we demonstrated that protein kinase C (PKC), p44/42 and p38 mitogen-activated protein (MAP) kinases, and stress-activated protein kinase (JNK) are essentially involved in the induction of tissue factor. In contrast, the application of wortmannin, an inhibitor of phosphatidylinositol 3 (PI3)-kinase, led to strongly enhanced expression of tissue factor in TNF- and VEGF-treated cells, implicating a negative regulatory role for PI3-kinase. In vivo, the application of wortmannin promoted the formation of TNF-induced hemorrhages and intratumoral necroses in murine meth A tumors. The co-injection of wortmannin lowered the effective dose of applied TNF. Therefore, it is conceivable that the treatment of TNF-sensitive tumors with a combination of TNF and wortmannin will ensure the selective damage of the tumor endothelium and minimize the risk of systemic toxicity of TNF. TNF-treatment in combination with specific inhibition of PI3-kinase is a novel concept in anti-cancer therapy. Copyright 2003 Wiley-Liss, Inc.

  2. Computer simulation of high energy displacement cascades

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1990-01-01

    A methodology developed for modeling many aspects of high energy displacement cascades with molecular level computer simulations is reviewed. The initial damage state is modeled in the binary collision approximation (using the MARLOWE computer code), and the subsequent disposition of the defects within a cascade is modeled with a Monte Carlo annealing simulation (the ALSOME code). There are few adjustable parameters, and none are set to physically unreasonable values. The basic configurations of the simulated high energy cascades in copper, i.e., the number, size and shape of damage regions, compare well with observations, as do the measured numbers of residual defects and the fractions of freely migrating defects. The success of these simulations is somewhat remarkable, given the relatively simple models of defects and their interactions that are employed. The reason for this success is that the behavior of the defects is very strongly influenced by their initial spatial distributions, which the binary collision approximation adequately models. The MARLOWE/ALSOME system, with input from molecular dynamics and experiments, provides a framework for investigating the influence of high energy cascades on microstructure evolution. (author)

  3. Influence of non-binary effects on intranuclear cascade method

    International Nuclear Information System (INIS)

    Gomes, E.H.C.

    1985-01-01

    The importance of non binary process effects in the intranuclear cascade method is analysed. It is shown that, in the higher density steps, the non binary collisions lead to baryon density distribution and rapidity differents from the one obtained using the usual intranuclear cascade method (limited to purely binary collisions). The validity of the applications of binary intranuclear cascade method to the simulation of the thermal equilibrium, nuclear transparency and particle production, is discussed. (M.C.K.) [pt

  4. A virtual component method in numerical computation of cascades for isotope separation

    International Nuclear Information System (INIS)

    Zeng Shi; Cheng Lu

    2014-01-01

    The analysis, optimization, design and operation of cascades for isotope separation involve computations of cascades. In analytical analysis of cascades, using virtual components is a very useful analysis method. For complicated cases of cascades, numerical analysis has to be employed. However, bound up to the conventional idea that the concentration of a virtual component should be vanishingly small, virtual component is not yet applied to numerical computations. Here a method of introducing the method of using virtual components to numerical computations is elucidated, and its application to a few types of cascades is explained and tested by means of numerical experiments. The results show that the concentration of a virtual component is not restrained at all by the 'vanishingly small' idea. For the same requirements on cascades, the cascades obtained do not depend on the concentrations of virtual components. (authors)

  5. Biphasic Estradiol-induced AKT Phosphorylation Is Modulated by PTEN via MAP Kinase in HepG2 Cells

    Science.gov (United States)

    Marino, Maria; Acconcia, Filippo; Trentalance, Anna

    2003-01-01

    We reported previously in HepG2 cells that estradiol induces cell cycle progression throughout the G1–S transition by the parallel stimulation of both PKC-α and ERK signaling molecules. The analysis of the cyclin D1 gene expression showed that only the MAP kinase pathway was involved. Here, the presence of rapid/nongenomic, estradiol-regulated, PI3K/AKT signal transduction pathway, its modulation by the levels of the tumor suppressor PTEN, its cross-talk with the ERK pathway, and its involvement in DNA synthesis and cyclin D1 gene promoter activity have all been studied in HepG2 cells. 17β-Estradiol induced the rapid and biphasic phosphorylation of AKT. These phosphorylations were independent of each other, being the first wave of activation independent of the estrogen receptor (ER), whereas the second was dependent on ER. Both activations were dependent on PI3K activity; furthermore, the ERK pathway modulated AKT phosphorylation by acting on the PTEN levels. The results showed that the PI3K pathway, as well as ER, were strongly involved in both G1–S progression and cyclin D1 promoter activity by acting on its proximal region (-254 base pairs). These data indicate that in HepG2 cells, different rapid/nongenomic estradiol-induced signal transduction pathways modulate the multiple steps of G1–S phase transition. PMID:12808053

  6. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation.

    Science.gov (United States)

    Filippakopoulos, Panagis; Kofler, Michael; Hantschel, Oliver; Gish, Gerald D; Grebien, Florian; Salah, Eidarus; Neudecker, Philipp; Kay, Lewis E; Turk, Benjamin E; Superti-Furga, Giulio; Pawson, Tony; Knapp, Stefan

    2008-09-05

    The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.

  7. Cascade ICF power reactor

    International Nuclear Information System (INIS)

    Hogan, W.J.; Pitts, J.H.

    1986-01-01

    The double-cone-shaped Cascade reaction chamber rotates at 50 rpm to keep a blanket of ceramic granules in place against the wall as they slide from the poles to the exit slots at the equator. The 1 m-thick blanket consists of layers of carbon, beryllium oxide, and lithium aluminate granules about 1 mm in diameter. The x rays and debris are stopped in the carbon granules; the neutrons are multiplied and moderated in the BeO and breed tritium in the LiAlO 2 . The chamber wall is made up of SiO tiles held in compression by a network of composite SiC/Al tendons. Cascade operates at a 5 Hz pulse rate with 300 MJ in each pulse. The temperature in the blanket reaches 1600 K on the inner surface and 1350 K at the outer edge. The granules are automatically thrown into three separate vacuum heat exchangers where they give up their energy to high pressure helium. The helium is used in a Brayton cycle to obtain a thermal-to-electric conversion efficiency of 55%. Studies have been done on neutron activation, debris recovery, vaporization and recondensation of blanket material, tritium control and recovery, fire safety, and cost. These studies indicate that Cascade appears to be a promising ICF reactor candidate from all standpoints. At the 1000 MWe size, electricity could be made for about the same cost as in a future fission reactor

  8. The Link between Protein Kinase CK2 and Atypical Kinase Rio1

    Directory of Open Access Journals (Sweden)

    Konrad Kubiński

    2017-02-01

    Full Text Available The atypical kinase Rio1 is widespread in many organisms, ranging from Archaebacteria to humans, and is an essential factor in ribosome biogenesis. Little is known about the protein substrates of the enzyme and small-molecule inhibitors of the kinase. Protein kinase CK2 was the first interaction partner of Rio1, identified in yeast cells. The enzyme from various sources undergoes CK2-mediated phosphorylation at several sites and this modification regulates the activity of Rio1. The aim of this review is to present studies of the relationship between the two different kinases, with respect to CK2-mediated phosphorylation of Rio1, regulation of Rio1 activity, and similar susceptibility of the kinases to benzimidazole inhibitors.

  9. Regulation of glycogen synthase kinase-3β (GSK-3β) after ionizing radiation

    International Nuclear Information System (INIS)

    Boehme, K.A.

    2006-12-01

    Glycogen Synthase Kinase-3β (GSK-3β) phosphorylates the Mdm2 protein in the central domain. This phosphorylation is absolutely required for p53 degradation. Ionizing radiation inactivates GSK-3β by phosphorylation at serine 9 and in consequence prevents Mdm2 mediated p53 degradation. During the work for my PhD I identified Akt/PKB as the kinase that phosphorylates GSK-3β at serine 9 after ionizing radiation. Ionizing radiation leads to phosphorylation of Akt/PKB at threonine 308 and serine 473. The PI3 Kinase inhibitor LY294002 completely abolished Akt/PKB serine 473 phosphorylation and prevented the induction of GSK-3β serine 9 phosphorylation after ionizing radiation. Interestingly, the most significant activation of Akt/PKB after ionizing radiation occurred in the nucleus while cytoplasmic Akt/PKB was only weakly activated after radiation. By using siRNA, I showed that Akt1/PKBa, but not Akt2/PKBβ, is required for phosphorylation of GSK- 3β at serine 9 after ionizing radiation. Phosphorylation and activation of Akt/PKB after ionizing radiation depends on the DNA dependent protein kinase (DNA-PK), a member of the PI3 Kinase family, that is activated by free DNA ends. Both, in cells from SCID mice and after knockdown of the catalytic subunit of DNA-PK by siRNA in osteosarcoma cells, phosphorylation of Akt/PKB at serine 473 and of GSK-3β at serine 9 was completely abolished. Consistent with the principle that phosphorylation of GSK-3 at serine 9 contributes to p53 stabilization after radiation, the accumulation of p53 in response to ionizing radiation was largely prevented by downregulation of DNA-PK. From these results I conclude, that ionizing radiation induces a signaling cascade that leads to Akt1/PKBa activation mediated by DNA-PK dependent phosphorylation of serine 473. After activation Akt1/PKBa phosphorylates and inhibits GSK-3β in the nucleus. The resulting hypophosphorylated form of Mdm2 protein is no longer able to degrade p53 which in

  10. A cascading failure model for analyzing railway accident causation

    Science.gov (United States)

    Liu, Jin-Tao; Li, Ke-Ping

    2018-01-01

    In this paper, a new cascading failure model is proposed for quantitatively analyzing the railway accident causation. In the model, the loads of nodes are redistributed according to the strength of the causal relationships between the nodes. By analyzing the actual situation of the existing prevention measures, a critical threshold of the load parameter in the model is obtained. To verify the effectiveness of the proposed cascading model, simulation experiments of a train collision accident are performed. The results show that the cascading failure model can describe the cascading process of the railway accident more accurately than the previous models, and can quantitatively analyze the sensitivities and the influence of the causes. In conclusion, this model can assist us to reveal the latent rules of accident causation to reduce the occurrence of railway accidents.

  11. Cascade Structure of Digital Predistorter for Power Amplifier Linearization

    Directory of Open Access Journals (Sweden)

    E. B. Solovyeva

    2015-12-01

    Full Text Available In this paper, a cascade structure of nonlinear digital predistorter (DPD synthesized by the direct learning adaptive algorithm is represented. DPD is used for linearization of power amplifier (PA characteristic, namely for compensation of PA nonlinear distortion. Blocks of the cascade DPD are described by different models: the functional link artificial neural network (FLANN, the polynomial perceptron network (PPN and the radially pruned Volterra model (RPVM. At synthesis of the cascade DPD there is possibility to overcome the ill conditionality problem due to reducing the dimension of DPD nonlinear operator approximation. Results of compensating nonlinear distortion in Wiener–Hammerstein model of PA at the GSM–signal with four carriers are shown. The highest accuracy of PA linearization is produced by the cascade DPD containing PPN and RPVM.

  12. Regulation of Autophagy by Kinases

    International Nuclear Information System (INIS)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets

  13. Regulation of Autophagy by Kinases

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda, E-mail: alakananda.basu@unthsc.edu [Department of Molecular Biology and Immunology, Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, TX 76107 (United States)

    2011-06-09

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  14. Regulation of Autophagy by Kinases

    Science.gov (United States)

    Sridharan, Savitha; Jain, Kirti; Basu, Alakananda

    2011-01-01

    Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated protein kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK) and protein kinase C that are often deregulated in cancer and are important therapeutic targets. PMID:24212825

  15. Regulation of Autophagy by Kinases

    Directory of Open Access Journals (Sweden)

    Savitha Sridharan

    2011-06-01

    Full Text Available Autophagy is a process of self-degradation that maintains cellular viability during periods of metabolic stress. Although autophagy is considered a survival mechanism when faced with cellular stress, extensive autophagy can also lead to cell death. Aberrations in autophagy are associated with several diseases, including cancer. Therapeutic exploitation of this process requires a clear understanding of its regulation. Although the core molecular components involved in the execution of autophagy are well studied there is limited information on how cellular signaling pathways, particularly kinases, regulate this complex process. Protein kinases are integral to the autophagy process. Atg1, the first autophagy-related protein identified, is a serine/threonine kinase and it is regulated by another serine/threonine kinase mTOR. Emerging studies suggest the participation of many different kinases in regulating various components/steps of this catabolic process. This review focuses on the regulation of autophagy by several kinases with particular emphasis on serine/threonine protein kinases such as mTOR, AMP-activated kinase, Akt, mitogen-activated protein kinase (ERK, p38 and JNK and protein kinase C that are often deregulated in cancer and are important therapeutic targets.

  16. Increase of transient lower esophageal sphincter relaxation associated with cascade stomach

    Science.gov (United States)

    Kawada, Akiyo; Kusano, Motoyasu; Hosaka, Hiroko; Kuribayashi, Shiko; Shimoyama, Yasuyuki; Kawamura, Osamu; Akiyama, Junichi; Yamada, Masanobu; Akuzawa, Masako

    2017-01-01

    We previously reported that cascade stomach was associated with reflux symptoms and esophagitis. Delayed gastric emptying has been believed to initiate transient lower esophageal sphincter relaxation (TLESR). We hypothesized that cascade stomach may be associated with frequent TLESR with delayed gastric emptying. Eleven subjects with cascade stomach and 11 subjects without cascade stomach were enrolled. Postprandial gastroesophageal manometry and gastric emptying using a continuous 13C breath system were measured simultaneously after a liquid test meal. TLESR events were counted in early period (0–60 min), late period (60–120 min), and total monitoring period. Three parameters of gastric emptying were calculated: the half emptying time, lag time, and gastric emptying coefficient. The median frequency of TLESR events in the cascade stomach and non-cascade stomach groups was 6.0 (median), 4.6 (interquartile range) vs 5.0, 3.0 in the early period, 5.0, 3.2 vs 3.0, 1.8 in the late period, and 10.0, 6.2 vs 8.0, 5.0 in the total monitoring period. TLESR events were significantly more frequent in the cascade stomach group during the late and total monitoring periods. In contrast, gastric emptying parameters showed no significant differences between the two groups. We concluded that TLESR events were significantly more frequent in persons with cascade stomach without delayed gastric emptying. PMID:28584403

  17. Elucidating the roles of MAP kinases in the moss Physcomitrella patens

    DEFF Research Database (Denmark)

    Stanimirovic, Sabrina

    changes of plant immunity required for the conquest of land by plants. I describe the role of MPKs (MPK3, MPK5, RAK1 & double knockout RAK1/RAK2) upon abiotic stress by characterizing the phenotypes and morphological changes there may be during stress treatments. I characterized the mutant phenotypes...... during treatment with phytohormones and osmotic and light stress. This thesis contains of a general introduction to plant immunity and the role of MPKs in signaling processes related to immunity, abiotic stress, and plant development in both vascular and non-vascular plants. The focus in this thesis......-Acetyltransferase-Kinase). This thesis and work on these MPK mutants gives the laboratory a great start on several future publications, since many of the mutant lines have interesting phenotypes with and without exposure to abiotic stresses...

  18. Mitogen activated protein kinase 6 and MAP kinase phosphatase 1 are involved in the response of Arabidopsis roots to L-glutamate.

    Science.gov (United States)

    López-Bucio, Jesús Salvador; Raya-González, Javier; Ravelo-Ortega, Gustavo; Ruiz-Herrera, León Francisco; Ramos-Vega, Maricela; León, Patricia; López-Bucio, José; Guevara-García, Ángel Arturo

    2018-03-01

    The function and components of L-glutamate signaling pathways in plants have just begun to be elucidated. Here, using a combination of genetic and biochemical strategies, we demonstrated that a MAPK module is involved in the control of root developmental responses to this amino acid. Root system architecture plays an essential role in plant adaptation to biotic and abiotic factors via adjusting signal transduction and gene expression. L-Glutamate (L-Glu), an amino acid with neurotransmitter functions in animals, inhibits root growth, but the underlying genetic mechanisms are poorly understood. Through a combination of genetic analysis, in-gel kinase assays, detailed cell elongation and division measurements and confocal analysis of expression of auxin, quiescent center and stem cell niche related genes, the critical roles of L-Glu in primary root growth acting through the mitogen-activated protein kinase 6 (MPK6) and the dual specificity serine-threonine-tyrosine phosphatase MKP1 could be revealed. In-gel phosphorylation assays revealed a rapid and dose-dependent induction of MPK6 and MPK3 activities in wild-type Arabidopsis seedlings in response to L-Glu. Mutations in MPK6 or MKP1 reduced or increased root cell division and elongation in response to L-Glu, possibly modulating auxin transport and/or response, but in a PLETHORA1 and 2 independent manner. Our data highlight MPK6 and MKP1 as components of an L-Glu pathway linking the auxin response, and cell division for primary root growth.

  19. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth

    Directory of Open Access Journals (Sweden)

    DiAntonio Aaron

    2007-08-01

    Full Text Available Abstract Background The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK. To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. Results We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. Conclusion The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses.

  20. On peculiarities of the cascade γ decay of heavy nuclei

    International Nuclear Information System (INIS)

    Boneva, S.T.; Khitrov, V.A.; Popov, Yu.P.; Sukhovoj, A.M.; Vasil'eva, E.V.; Yazvitskij, Yu.S.

    1987-01-01

    Comparison of measured and calculated by statistical theory sums of two-quanta cascade intensities in compound-nuclei 163 ≤ A ≤ 183 points to the dependence of cascade intensity on the structure of initial and intermediate levels. The dependence of two-quanta cascade intensity sum on reduced neutron widths of compound states of even-even nuclei-targets of rare earth regions is detected. In 175 Yb and 179 Hf nuclei a considerable increase in the intensity of two-quanta cascades at the energy of their intermediate level in the range of the calculated position of one-quasiparticle states of the Saxon-Woods deformed potential is observed