WorldWideScience

Sample records for map genic dna

  1. ‘‘Blind'' mapping of genic DNA sequence polymorphisms in Lolium perenne L. by high resolution melting curve analysis

    DEFF Research Database (Denmark)

    Studer, Bruno; Jensen, Louise Bach; Fiil, Alice

    2009-01-01

    High resolution melting curve analysis (HRM) measures dissociation of double stranded DNA of a PCR product amplified in the presence of a saturating fluorescence dye. Recently, HRM proved successful to genotype DNA sequence polymorphisms such as SSRs and SNPs based on the shape of the melting...... curves. In this study, HRM was used for simultaneous screening and genotyping of genic DNA sequence polymorphisms identified in the Lolium perenne F2 mapping population VrnA. Melting profiles of PCR products amplified from previously published gene loci and from a novel gene putatively involved...

  2. Development of polymorphic genic-SSR markers by cDNA library sequencing in boxwood, Buxus spp. (Buxaceae)

    Science.gov (United States)

    Genic microsatellites or simple sequence repeat (genic-SSR) markers were developed in boxwood (Buxus taxa) for genetic diversity analysis, identification of taxa, and to facilitate breeding. cDNA libraries were developed from mRNA extracted from leaves of Buxus sempervirens ‘Vardar Valley’ and seque...

  3. Fine mapping of the genic male-sterile ms 1 gene in Capsicum annuum L.

    Science.gov (United States)

    Jeong, Kyumi; Choi, Doil; Lee, Jundae

    2018-01-01

    The genomic region cosegregating with the genic male-sterile ms 1 gene of Capsicum annuum L. was delimited to a region of 869.9 kb on chromosome 5 through fine mapping analysis. A strong candidate gene, CA05g06780, a homolog of the Arabidopsis MALE STERILITY 1 gene that controls pollen development, was identified in this region. Genic male sterility caused by the ms 1 gene has been used for the economically efficient production of massive hybrid seeds in paprika (Capsicum annuum L.), a colored bell-type sweet pepper. Previously, a CAPS marker, PmsM1-CAPS, located about 2-3 cM from the ms 1 locus, was reported. In this study, we constructed a fine map near the ms 1 locus using high-resolution melting (HRM) markers in an F 2 population consisting of 1118 individual plants, which segregated into 867 male-fertile and 251 male-sterile plants. A total of 12 HRM markers linked to the ms 1 locus were developed from 53 primer sets targeting intraspecific SNPs derived by comparing genome-wide sequences obtained by next-generation resequencing analysis. Using this approach, we narrowed down the region cosegregating with the ms 1 gene to 869.9 kb of sequence. Gene prediction analysis revealed 11 open reading frames in this region. A strong candidate gene, CA05g06780, was identified; this gene is a homolog of the Arabidopsis MALE STERILITY 1 (MS1) gene, which encodes a PHD-type transcription factor that regulates pollen and tapetum development. Sequence comparison analysis suggested that the CA05g06780 gene is the strongest candidate for the ms 1 gene of paprika. To summarize, we developed a cosegregated marker, 32187928-HRM, for marker-assisted selection and identified a strong candidate for the ms 1 gene.

  4. The geo-genic radon potential map of the aspiring 'Buzau Land' Geo-park

    International Nuclear Information System (INIS)

    Moldovan, M. C.; Burghele, B. D.; Roba, C. A.; Sferle, T. L.; Buterez, C.; Mitrofan, H.

    2017-01-01

    Mapping the geo-genic radon potential in Buzau County is part of a research project aiming to apply research for sustainable development and economic growth following the principles of geo-conservation in order to support the 'Buzau Land' UNESCO Geo-park initiative. The mapping of geo-genic radon will be used as an overview for planning purposes. The main geological formations of the studied area were identified as Cretaceous and Paleogene flysch, included in a thin-skinned nappes pile and consisting of alternating sandstones, marls, clays and, subordinately, conglomerates, all tightly folded or faulted. Significant variations in the concentration of radon were therefore determined in the ground. However, no high values were determined, the maximum measured activity concentration being 101.6 kBq m -3 . (authors)

  5. Mapping of a rice thermosensitive genic male sterility gene from a TGMS mutant line

    Energy Technology Data Exchange (ETDEWEB)

    Vu Duc Quang; Nguyen Van Dong; Pham Ngoc Luong; Tran Duy Quy [Argicultural Genetics Institute, Hanoi (Viet Nam); Nguyen, Henry T. [Texas Tech Univ., Department of Plant and Soil Science, Lubbock TX (United States)

    2001-03-01

    At the Agricultural Genetics Institute (AGI), Hanoi, Vietnam, a number of thermo-sensitive genic male sterility (TGMS) homozygous rice lines have been developed by means of experimental mutagenesis followed by anther culture techniques. One of them (TGMS-1 indica mutant line) was used in this research. The critical temperature (at the period from pollen mother cell formation to the beginning of meiotic division) for TGMS-1 sterility was 24-25degC, below which the plants were fertile and above which the plants became sterile. Segregation analysis showed that the TGMS trait of the TGMS-1 mutant line was controlled by a single recessive gene. An F{sub 2} mapping population from a cross between TGMS-1 mutant line and CH1 (a fertile indica line) was developed for tagging and mapping the TGMS gene. From survey of 200 AFLP primer combinations in a bulked segregant analysis, 4 AFLP markers (E2/M5-200, E3/M16-400, E5/M12-600 and E5/M12-200) linked to TGMS-1 gene were identified and cloned. All except E2/M5-200 were found to be low-copy number sequences. The marker E5/M12-600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64xAzucena and CT9993xIR62666. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12-600, was sequenced so that a PCR marker can be developed for the use in marker-assisted breeding. The application of TGMS genes to the commercial two-line hybrid rice breeding system was discussed. (author)

  6. Mapping of a rice thermosensitive genic male sterility gene from a TGMS mutant line

    International Nuclear Information System (INIS)

    Vu Duc Quang; Nguyen Van Dong; Pham Ngoc Luong; Tran Duy Quy; Nguyen, Henry T.

    2001-01-01

    At the Agricultural Genetics Institute (AGI), Hanoi, Vietnam, a number of thermo-sensitive genic male sterility (TGMS) homozygous rice lines have been developed by means of experimental mutagenesis followed by anther culture techniques. One of them (TGMS-1 indica mutant line) was used in this research. The critical temperature (at the period from pollen mother cell formation to the beginning of meiotic division) for TGMS-1 sterility was 24-25degC, below which the plants were fertile and above which the plants became sterile. Segregation analysis showed that the TGMS trait of the TGMS-1 mutant line was controlled by a single recessive gene. An F 2 mapping population from a cross between TGMS-1 mutant line and CH1 (a fertile indica line) was developed for tagging and mapping the TGMS gene. From survey of 200 AFLP primer combinations in a bulked segregant analysis, 4 AFLP markers (E2/M5-200, E3/M16-400, E5/M12-600 and E5/M12-200) linked to TGMS-1 gene were identified and cloned. All except E2/M5-200 were found to be low-copy number sequences. The marker E5/M12-600 showed polymorphism in RFLP analysis and was closely linked to the TGMS gene at a distance of 3.3cM. This marker was subsequently mapped on chromosome 2 using doubled-haploid mapping populations derived from the crosses IR64xAzucena and CT9993xIR62666. Linkage of microsatellite marker RM27 with the TGMS gene further confirmed its location on chromosome 2. The closest marker, E5/M12-600, was sequenced so that a PCR marker can be developed for the use in marker-assisted breeding. The application of TGMS genes to the commercial two-line hybrid rice breeding system was discussed. (author)

  7. Analysis of cytoplasmic effects and fine-mapping of a genic male sterile line in rice.

    Directory of Open Access Journals (Sweden)

    Peng Qin

    Full Text Available Cytoplasm has substantial genetic effects on progeny and is important for yield improvement in rice breeding. Studies on the cytoplasmic effects of cytoplasmic male sterility (CMS show that most types of CMS have negative effects on yield-related traits and that these negative effects vary among CMS. Some types of genic male sterility (GMS, including photo-thermo sensitive male sterility (PTMS, have been widely used in rice breeding, but the cytoplasmic effects of GMS remain unknown. Here, we identified a GMS mutant line, h2s, which exhibited small, white anthers and failed to produce mature pollen. Unlike CMS, the h2s had significant positive cytoplasmic effects on the seed set rate, weight per panicle, yield, and general combining ability (GCA for plant height, seed set rate, weight per panicle, and yield. These effects indicated that h2s cytoplasm may show promise for the improvement of rice yield. Genetic analysis suggested that the phenotype of h2s was controlled by a single recessive locus. We mapped h2s to a 152 kb region on chromosome 6, where 22 candidate genes were predicted. None of the 22 genes had previously been reported to be responsible for the phenotypes of h2s. Sequencing analysis showed a 12 bp deletion in the sixth exon of Loc_Os06g40550 in h2s in comparison to wild type, suggesting that Loc_Os06g40550 is the best candidate gene. These results lay a strong foundation for cloning of the H2S gene to elucidate the molecular mechanism of male reproduction.

  8. Genic Microsatellite Markers in Brassica rapa: Development, Characterization, Mapping, and Their Utility in Other Cultivated and Wild Brassica Relatives

    Science.gov (United States)

    Ramchiary, Nirala; Nguyen, Van Dan; Li, Xiaonan; Hong, Chang Pyo; Dhandapani, Vignesh; Choi, Su Ryun; Yu, Ge; Piao, Zhong Yun; Lim, Yong Pyo

    2011-01-01

    Genic microsatellite markers, also known as functional markers, are preferred over anonymous markers as they reveal the variation in transcribed genes among individuals. In this study, we developed a total of 707 expressed sequence tag-derived simple sequence repeat markers (EST-SSRs) and used for development of a high-density integrated map using four individual mapping populations of B. rapa. This map contains a total of 1426 markers, consisting of 306 EST-SSRs, 153 intron polymorphic markers, 395 bacterial artificial chromosome-derived SSRs (BAC-SSRs), and 572 public SSRs and other markers covering a total distance of 1245.9 cM of the B. rapa genome. Analysis of allelic diversity in 24 B. rapa germplasm using 234 mapped EST-SSR markers showed amplification of 2 alleles by majority of EST-SSRs, although amplification of alleles ranging from 2 to 8 was found. Transferability analysis of 167 EST-SSRs in 35 species belonging to cultivated and wild brassica relatives showed 42.51% (Sysimprium leteum) to 100% (B. carinata, B. juncea, and B. napus) amplification. Our newly developed EST-SSRs and high-density linkage map based on highly transferable genic markers would facilitate the molecular mapping of quantitative trait loci and the positional cloning of specific genes, in addition to marker-assisted selection and comparative genomic studies of B. rapa with other related species. PMID:21768136

  9. Differential expression analysis of genic male sterility by cDNA-AFLP in maize

    International Nuclear Information System (INIS)

    Zhang Linbi; Rong Tingzhao; Pan Guangtang; Cao Moju

    2009-01-01

    The differential expression of male sterility induced by space flight with male fertility was studied using cDNA-AFLP technology. Total RNA was isolated from anther of male sterility and male fertility. Nine differential expression cDNA fragments were obtained with 16 primer combinations. The differential cDNA fragments were eluted, cloned and sequenced. Then half-quantitative RT-PCR was used to stuy the differential expressions of 4 development stages between sterility and fertility. Sequencing analysis shown 2 fragments from male sterility might be novel genes. Four fragments from male fertility were homology as chalcone and stilbene synthases, putative acyl CoA dehydrogenase, putative protein kinases and putative glycine decarboxylase. All these proteins might participate in the energy metabolisms, substance metabolisms or signal pollen development, Z8 took on increasing expression during the middle period of pollen development. These results just met the demand of more energy and more substance during the pollen development. (authors)

  10. Quantitive DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  11. Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh

    Science.gov (United States)

    2011-01-01

    Background Pigeonpea [Cajanus cajan (L.) Millspaugh], one of the most important food legumes of semi-arid tropical and subtropical regions, has limited genomic resources, particularly expressed sequence based (genic) markers. We report a comprehensive set of validated genic simple sequence repeat (SSR) markers using deep transcriptome sequencing, and its application in genetic diversity analysis and mapping. Results In this study, 43,324 transcriptome shotgun assembly unigene contigs were assembled from 1.696 million 454 GS-FLX sequence reads of separate pooled cDNA libraries prepared from leaf, root, stem and immature seed of two pigeonpea varieties, Asha and UPAS 120. A total of 3,771 genic-SSR loci, excluding homopolymeric and compound repeats, were identified; of which 2,877 PCR primer pairs were designed for marker development. Dinucleotide was the most common repeat motif with a frequency of 60.41%, followed by tri- (34.52%), hexa- (2.62%), tetra- (1.67%) and pentanucleotide (0.76%) repeat motifs. Primers were synthesized and tested for 772 of these loci with repeat lengths of ≥18 bp. Of these, 550 markers were validated for consistent amplification in eight diverse pigeonpea varieties; 71 were found to be polymorphic on agarose gel electrophoresis. Genetic diversity analysis was done on 22 pigeonpea varieties and eight wild species using 20 highly polymorphic genic-SSR markers. The number of alleles at these loci ranged from 4-10 and the polymorphism information content values ranged from 0.46 to 0.72. Neighbor-joining dendrogram showed distinct separation of the different groups of pigeonpea cultivars and wild species. Deep transcriptome sequencing of the two parental lines helped in silico identification of polymorphic genic-SSR loci to facilitate the rapid development of an intra-species reference genetic map, a subset of which was validated for expected allelic segregation in the reference mapping population. Conclusion We developed 550 validated genic

  12. High resolution optical DNA mapping

    Science.gov (United States)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  13. KIN17, XPC, DNA-PKCS and XRCC4 proteins in the cellular response to DNA damages. Relations between nucleotide excision repair and non-homologous end joining in a human syn-genic model

    International Nuclear Information System (INIS)

    Despras, Emmanuelle

    2006-01-01

    The response to genotoxic stress involves many cellular factors in a complex network of mechanisms that aim to preserve the genetic integrity of the organism. These mechanisms enclose the detection and repair of DNA lesions, the regulation of transcription and replication and, eventually, the setting of cell death. Among the nuclear proteins involved in this response, kin17 proteins are zinc-finger proteins conserved through evolution and activated by ultraviolet (UV) or ionizing radiations (IR). We showed that human kin17 protein (HSAkin17) is found in the cell under a soluble form and a form tightly anchored to nuclear structures. A fraction of HSAkin17 protein is directly associated with chromatin. HSAkin17 protein is recruited to nuclear structures 24 hours after treatment with various agents inducing DNA double-strand breaks (DSB) and/or replication forks blockage. Moreover, the reduction of total HSAkin17 protein level sensitizes RKO cells to IR. We also present evidence for the involvement of HSAkin17 protein in DNA replication. This hypothesis was further confirmed by the biochemical demonstration of its belonging to the replication complex. HSAkin17 protein could link DNA replication and DNA repair, a defect in the HSAkin17 pathway leading to an increased radiosensitivity. In a second part, we studied the interactions between two DNA repair mechanisms: nucleotide excision repair (NER) and non-homologous end joining (NHEJ). NER repairs a wide variety of lesions inducing a distortion of the DNA double helix including UV-induced pyrimidine dimers. NHEJ allows the repair of DSB by direct joining of DNA ends. We used a syn-genic model for DNA repair defects based on RNA interference developed in the laboratory. Epstein-Barr virus-derived vectors (pEBV) allow long-term expression of siRNA and specific extinction of the targeted gene. The reduction of the expression of genes involved in NER (XPA and XPC) or NHEJ (DNA-PKcs and XRCC4) leads to the expected

  14. Mapping of quantitative trait loci for thermosensitive genic male sterility in indica rice Mapeamento de controladores de caracteres quantitativos de macho-esterilidade gênica termossensível em arroz indica

    Directory of Open Access Journals (Sweden)

    Antonio Alberto Neves de Alcochete

    2005-12-01

    Full Text Available The objective of this work was to select and use microsatellite markers, to map genomic regions associated with the genetic control of thermosensitive genic male sterility (TGMS in rice. An F2 population, derived from the cross between fertile and TGMS indica lines, was used to construct a microsatellite-based genetic map of rice. The TGMS phenotype showed a continuous variation in the segregant population. A low level of segregation distortion was detected in the F2 (14.65%, whose cause was found to be zygotic selection. There was no evidence suggesting a cause-effect relationship between zygotic selection and the control of TGMS in this cross. A linkage map comprising 1,213.3 cM was constructed based on the segregation data of the F2 population. Ninety-five out of 116 microsatellite polymorphic markers were assembled into 11 linkage groups, with an average of 12.77 cM between two adjacent marker loci. The phenotypic and genotypic data allowed for the identification of three new quantitative trait loci (QTL for thermosensitive genic male sterility in indica rice. Two of the QTL were mapped on chromosomes that, so far, have not been associated with the genetic control of the TGMS trait (chromosomes 1 and 12. The third QTL was mapped on chromosome 7, where a TGMS locus (tms2 has recently been mapped. Allelic tests will have to be developed, in order to clarify if the two regions are the same or not.O objetivo deste estudo foi selecionar e utilizar marcadores microssatélites, para mapear as regi��es genômicas associadas ao controle genético de macho-esterilidade termossensível (TGMS em arroz. Uma popu- lação F2, derivada do cruzamento entre linhagens indica fértil e TGMS, foi usada para construir um mapa genético de arroz, baseado em marcadores microssatélites. O fenótipo TGMS analisado apresentou uma variação contínua na população segregante. Um baixo nível de distorção da segregação foi detectado na população segregante

  15. Development and validation of genic-SSR markers in sesame by RNA-seq.

    Science.gov (United States)

    Zhang, Haiyang; Wei, Libin; Miao, Hongmei; Zhang, Tide; Wang, Cuiying

    2012-07-16

    Sesame (Sesamum indicum L.) is one of the most important oil crops; however, a lack of useful molecular markers hinders current genetic research. We performed transcriptome sequencing of samples from different sesame growth and developmental stages, and mining of genic-SSR markers to identify valuable markers for sesame molecular genetics research. In this study, 75 bp and 100 bp paired-end RNA-seq was used to sequence 24 cDNA libraries, and 42,566 uni-transcripts were assembled from more than 260 million filtered reads. The total length of uni-transcript sequences was 47.99 Mb, and 7,324 SSRs (SSRs ≥15 bp) and 4,440 SSRs (SSRs ≥18 bp) were identified. On average, there was one genic-SSR per 6.55 kb (SSRs ≥15 bp) or 10.81 kb (SSRs ≥18 bp). Among perfect SSRs (≥18 bp), di-nucleotide motifs (48.01%) were the most abundant, followed by tri- (20.96%), hexa- (25.37%), penta- (2.97%), tetra- (2.12%), and mono-nucleotides (0.57%). The top four motif repeats were (AG/CT)n [1,268 (34.51%)], (CA/TG)n [281 (7.65%)], (AT/AT)n [215 (5.85%)], and (GAA/TTC)n [131 (3.57%)]. A total of 2,164 SSR primer pairs were identified in the 4,440 SSR-containing sequences (≥18 bp), and 300 SSR primer pairs were randomly chosen for validation. These SSR markers were amplified and validated in 25 sesame accessions (24 cultivated accessions, one wild species). 276 (92.0%) primer pairs yielded PCR amplification products in 24 cultivars. Thirty two primer pairs (11.59%) exhibited polymorphisms. Moreover, 203 primer pairs (67.67%) yielded PCR amplicons in the wild accession and 167 (60.51%) were polymorphic between species. A UPGMA dendrogram based on genetic similarity coefficients showed that the correlation between genotype and geographical source was low and that the genetic basis of sesame in China is narrow, as previously reported. The 32 polymorphic primer pairs were validated using an F2 mapping population; 18 primer pairs exhibited polymorphisms between the parents, and 14

  16. Super-resolution optical DNA Mapping via DNA methyltransferase-directed click chemistry

    DEFF Research Database (Denmark)

    Vranken, Charlotte; Deen, Jochem; Dirix, Lieve

    2014-01-01

    We demonstrate an approach to optical DNA mapping, which enables near single-molecule characterization of whole bacteriophage genomes. Our approach uses a DNA methyltransferase enzyme to target labelling to specific sites and copper-catalysed azide-alkyne cycloaddition to couple a fluorophore...... to the DNA. We achieve a labelling efficiency of ∼70% with an average labelling density approaching one site every 500 bp. Such labelling density bridges the gap between the output of a typical DNA sequencing experiment and the long-range information derived from traditional optical DNA mapping. We lay...... the foundations for a wider-scale adoption of DNA mapping by screening 11 methyltransferases for their ability to direct sequence-specific DNA transalkylation; the first step of the DNA labelling process and by optimizing reaction conditions for fluorophore coupling via a click reaction. Three of 11 enzymes...

  17. Recent Advancements in DNA Damage-Transcription Crosstalk and High-Resolution Mapping of DNA Breaks.

    Science.gov (United States)

    Vitelli, Valerio; Galbiati, Alessandro; Iannelli, Fabio; Pessina, Fabio; Sharma, Sheetal; d'Adda di Fagagna, Fabrizio

    2017-08-31

    Until recently, DNA damage arising from physiological DNA metabolism was considered a detrimental by-product for cells. However, an increasing amount of evidence has shown that DNA damage could have a positive role in transcription activation. In particular, DNA damage has been detected in transcriptional elements following different stimuli. These physiological DNA breaks are thought to be instrumental for the correct expression of genomic loci through different mechanisms. In this regard, although a plethora of methods are available to precisely map transcribed regions and transcription start sites, commonly used techniques for mapping DNA breaks lack sufficient resolution and sensitivity to draw a robust correlation between DNA damage generation and transcription. Recently, however, several methods have been developed to map DNA damage at single-nucleotide resolution, thus providing a new set of tools to correlate DNA damage and transcription. Here, we review how DNA damage can positively regulate transcription initiation, the current techniques for mapping DNA breaks at high resolution, and how these techniques can benefit future studies of DNA damage and transcription.

  18. Genome-wide mapping of DNA strand breaks.

    Directory of Open Access Journals (Sweden)

    Frédéric Leduc

    Full Text Available Determination of cellular DNA damage has so far been limited to global assessment of genome integrity whereas nucleotide-level mapping has been restricted to specific loci by the use of specific primers. Therefore, only limited DNA sequences can be studied and novel regions of genomic instability can hardly be discovered. Using a well-characterized yeast model, we describe a straightforward strategy to map genome-wide DNA strand breaks without compromising nucleotide-level resolution. This technique, termed "damaged DNA immunoprecipitation" (dDIP, uses immunoprecipitation and the terminal deoxynucleotidyl transferase-mediated dUTP-biotin end-labeling (TUNEL to capture DNA at break sites. When used in combination with microarray or next-generation sequencing technologies, dDIP will allow researchers to map genome-wide DNA strand breaks as well as other types of DNA damage and to establish a clear profiling of altered genes and/or intergenic sequences in various experimental conditions. This mapping technique could find several applications for instance in the study of aging, genotoxic drug screening, cancer, meiosis, radiation and oxidative DNA damage.

  19. Environmental DNA mapping of Zebra Mussel populations

    Science.gov (United States)

    Amberg, Jon J.; Merkes, Christopher

    2016-01-01

    Environmental DNA (eDNA) has become a popular tool for detecting aquatic invasive species, but advancements have made it possible to potentially answer other questions like reproduction, movement, and abundance of the targeted organism. In this study we developed a Zebra Mussel (Dreissena polymorpha) eDNA protocol. We then determined if this assay could be used to help determine Zebra Mussel biomass in a lake with a well-established population of Zebra Mussels and a lake with an emerging population of mussels. Our eDNA assay detected DNA of Zebra Mussels but not DNA from more than 20 other species of fish and mussels, many commonly found in Minnesota waters. Our assay did not predict biomass. We did find that DNA from Zebra Mussels accumulated in softer substrates in both lakes, even though the mussels were predominately on the harder substrates. Therefore, we concluded that eDNA may be useful to detect the presence of Zebra Mussels in these lakes but our assay/approach could not predict biomass.

  20. De novo transcriptomic analysis of cowpea (Vigna unguiculata L. Walp.) for genic SSR marker development.

    Science.gov (United States)

    Chen, Honglin; Wang, Lixia; Liu, Xiaoyan; Hu, Liangliang; Wang, Suhua; Cheng, Xuzhen

    2017-07-11

    Cowpea [Vigna unguiculata (L.) Walp.] is one of the most important legumes in tropical and semi-arid regions. However, there is relatively little genomic information available for genetic research on and breeding of cowpea. The objectives of this study were to analyse the cowpea transcriptome and develop genic molecular markers for future genetic studies of this genus. Approximately 54 million high-quality cDNA sequence reads were obtained from cowpea based on Illumina paired-end sequencing technology and were de novo assembled to generate 47,899 unigenes with an N50 length of 1534 bp. Sequence similarity analysis revealed 36,289 unigenes (75.8%) with significant similarity to known proteins in the non-redundant (Nr) protein database, 23,471 unigenes (49.0%) with BLAST hits in the Swiss-Prot database, and 20,654 unigenes (43.1%) with high similarity in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Further analysis identified 5560 simple sequence repeats (SSRs) as potential genic molecular markers. Validating a random set of 500 SSR markers yielded 54 polymorphic markers among 32 cowpea accessions. This transcriptomic analysis of cowpea provided a valuable set of genomic data for characterizing genes with important agronomic traits in Vigna unguiculata and a new set of genic SSR markers for further genetic studies and breeding in cowpea and related Vigna species.

  1. Genic regions of a large salamander genome contain long introns and novel genes

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2009-01-01

    Full Text Available Abstract Background The basis of genome size variation remains an outstanding question because DNA sequence data are lacking for organisms with large genomes. Sixteen BAC clones from the Mexican axolotl (Ambystoma mexicanum: c-value = 32 × 109 bp were isolated and sequenced to characterize the structure of genic regions. Results Annotation of genes within BACs showed that axolotl introns are on average 10× longer than orthologous vertebrate introns and they are predicted to contain more functional elements, including miRNAs and snoRNAs. Loci were discovered within BACs for two novel EST transcripts that are differentially expressed during spinal cord regeneration and skin metamorphosis. Unexpectedly, a third novel gene was also discovered while manually annotating BACs. Analysis of human-axolotl protein-coding sequences suggests there are 2% more lineage specific genes in the axolotl genome than the human genome, but the great majority (86% of genes between axolotl and human are predicted to be 1:1 orthologs. Considering that axolotl genes are on average 5× larger than human genes, the genic component of the salamander genome is estimated to be incredibly large, approximately 2.8 gigabases! Conclusion This study shows that a large salamander genome has a correspondingly large genic component, primarily because genes have incredibly long introns. These intronic sequences may harbor novel coding and non-coding sequences that regulate biological processes that are unique to salamanders.

  2. A Novel Audio Cryptosystem Using Chaotic Maps and DNA Encoding

    Directory of Open Access Journals (Sweden)

    S. J. Sheela

    2017-01-01

    Full Text Available Chaotic maps have good potential in security applications due to their inherent characteristics relevant to cryptography. This paper introduces a new audio cryptosystem based on chaotic maps, hybrid chaotic shift transform (HCST, and deoxyribonucleic acid (DNA encoding rules. The scheme uses chaotic maps such as two-dimensional modified Henon map (2D-MHM and standard map. The 2D-MHM which has sophisticated chaotic behavior for an extensive range of control parameters is used to perform HCST. DNA encoding technology is used as an auxiliary tool which enhances the security of the cryptosystem. The performance of the algorithm is evaluated for various speech signals using different encryption/decryption quality metrics. The simulation and comparison results show that the algorithm can achieve good encryption results and is able to resist several cryptographic attacks. The various types of analysis revealed that the algorithm is suitable for narrow band radio communication and real-time speech encryption applications.

  3. Development and characterization of genic SSR markers from low ...

    Indian Academy of Sciences (India)

    Development and characterization of genic SSR markers from low depth genome ... A variety of molecular markers are currently ... chloroform method (Sambrook et al. 1989). ..... Available online, http://www.iucnredlist.org/details/168255/0.

  4. Linkage map of the fragments of herpesvirus papio DNA.

    Science.gov (United States)

    Lee, Y S; Tanaka, A; Lau, R Y; Nonoyama, M; Rabin, H

    1981-01-01

    Herpesvirus papio (HVP), an Epstein-Barr-like virus, causes lymphoblastoid disease in baboons. The physical map of HVP DNA was constructed for the fragments produced by cleavage of HVP DNA with restriction endonucleases EcoRI, HindIII, SalI, and PvuI, which produced 12, 12, 10, and 4 fragments, respectively. The total molecular size of HVP DNA was calculated as close to 110 megadaltons. The following methods were used for construction of the map; (i) fragments near the ends of HVP DNA were identified by treating viral DNA with lambda exonuclease before restriction enzyme digestion; (ii) fragments containing nucleotide sequences in common with fragments from the second enzyme digest of HVP DNA were examined by Southern blot hybridization; and (iii) the location of some fragments was determined by isolating individual fragments from agarose gels and redigesting the isolated fragments with a second restriction enzyme. Terminal heterogeneity and internal repeats were found to be unique features of HVP DNA molecule. One to five repeats of 0.8 megadaltons were found at both terminal ends. Although the repeats of both ends shared a certain degree of homology, it was not determined whether they were identical repeats. The internal repeat sequence of HVP DNA was found in the EcoRI-C region, which extended from 8.4 to 23 megadaltons from the left end of the molecule. The average number of the repeats was calculated to be seven, and the molecular size was determined to be 1.8 megadaltons. Similar unique features have been reported in EBV DNA (D. Given and E. Kieff, J. Virol. 28:524-542, 1978). Images PMID:6261015

  5. Programmed cell death-like behavior in photoperiodsensitive genic ...

    African Journals Online (AJOL)

    This type of control of rice plant fertility can facilitate production of hybrid rice using two lines (photoperiodsensitive genic male sterile (PGMS) and restorer) system. Our objective in this study was to determine anatomical changes in PGMS rice pollen cells induced by long day length and high temperature growth conditions ...

  6. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Giulia Menconi

    2015-04-01

    Full Text Available In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TAn repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TAn repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in

  7. Global mapping of DNA conformational flexibility on Saccharomyces cerevisiae.

    Science.gov (United States)

    Menconi, Giulia; Bedini, Andrea; Barale, Roberto; Sbrana, Isabella

    2015-04-01

    In this study we provide the first comprehensive map of DNA conformational flexibility in Saccharomyces cerevisiae complete genome. Flexibility plays a key role in DNA supercoiling and DNA/protein binding, regulating DNA transcription, replication or repair. Specific interest in flexibility analysis concerns its relationship with human genome instability. Enrichment in flexible sequences has been detected in unstable regions of human genome defined fragile sites, where genes map and carry frequent deletions and rearrangements in cancer. Flexible sequences have been suggested to be the determinants of fragile gene proneness to breakage; however, their actual role and properties remain elusive. Our in silico analysis carried out genome-wide via the StabFlex algorithm, shows the conserved presence of highly flexible regions in budding yeast genome as well as in genomes of other Saccharomyces sensu stricto species. Flexibile peaks in S. cerevisiae identify 175 ORFs mapping on their 3'UTR, a region affecting mRNA translation, localization and stability. (TA)n repeats of different extension shape the central structure of peaks and co-localize with polyadenylation efficiency element (EE) signals. ORFs with flexible peaks share common features. Transcripts are characterized by decreased half-life: this is considered peculiar of genes involved in regulatory systems with high turnover; consistently, their function affects biological processes such as cell cycle regulation or stress response. Our findings support the functional importance of flexibility peaks, suggesting that the flexible sequence may be derived by an expansion of canonical TAYRTA polyadenylation efficiency element. The flexible (TA)n repeat amplification could be the outcome of an evolutionary neofunctionalization leading to a differential 3'-end processing and expression regulation in genes with peculiar function. Our study provides a new support to the functional role of flexibility in genomes and a

  8. Genetic maps of polymorphic DNA loci on rat chromosome 1

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Yan-Ping; Remmers, E.F.; Longman, R.E. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1996-09-01

    Genetic linkage maps of loci defined by polymorphic DNA markers on rat chromosome 1 were constructed by genotyping F2 progeny of F344/N x LEW/N, BN/SsN x LEW/N, and DA/Bkl x F344/Hsd inbred rat strains. In total, 43 markers were mapped, of which 3 were restriction fragment length polymorphisms and the others were simple sequence length polymorphisms. Nineteen of these markers were associated with genes. Six markers for five genes, {gamma}-aminobutyric acid receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}3 (Gabrb3), syntaxin 2 (Stx2), adrenergic receptor {beta}1 (Adrb1), carcinoembryonic antigen gene family member 1 (Cgm1), and lipogenic protein S14 (Lpgp), and 20 anonymous loci were not previously reported. Thirteen gene loci (Myl2, Aldoa, Tnt, Igf2, Prkcg, Cgm4, Calm3, Cgm3, Psbp1, Sa, Hbb, Ins1, and Tcp1) were previously mapped. Comparative mapping analysis indicated that the large portion of rat chromosome 1 is homologous to mouse chromosome 7, although the homologous to mouse chromosome 7, although the homologs of two rat genes are located on mouse chromosomes 17 and 19. Homologs of the rat chromosome 1 genes that we mapped are located on human chromosomes 6, 10, 11, 12, 15, 16, and 19. 38 refs., 1 fig., 3 tabs.

  9. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Greulich-Bode, Karin; Wang, Mei; Rhein, Andreas; Weier, Jingly; Weier, Heinz-Ulli

    2008-12-16

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-?B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  10. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Greulich-Bode, Karin M.; Wang, Mei; Rhein, Andreas P.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-12-04

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-{kappa}B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  11. Single-molecule denaturation mapping of DNA in nanofluidic channels

    DEFF Research Database (Denmark)

    Reisner, Walter; Larsen, Niels Bent; Silahtaroglu, Asli

    2010-01-01

    Here we explore the potential power of denaturation mapping as a single-molecule technique. By partially denaturing YOYO (R)-1-labeled DNA in nanofluidic channels with a combination of formamide and local heating, we obtain a sequence-dependent "barcode" corresponding to a series of local dips...... and peaks in the intensity trace along the extended molecule. We demonstrate that this structure arises from the physics of local denaturation: statistical mechanical calculations of sequence-dependent melting probability can predict the barcode to be observed experimentally for a given sequence...

  12. A MapReduce Framework for DNA Sequencing Data Processing

    Directory of Open Access Journals (Sweden)

    Samy Ghoneimy

    2016-12-01

    Full Text Available Genomics and Next Generation Sequencers (NGS like Illumina Hiseq produce data in the order of ‎‎200 billion base pairs in a single one-week run for a 60x human genome coverage, which ‎requires modern high-throughput experimental technologies that can ‎only be tackled with high performance computing (HPC and specialized software algorithms called ‎‎“short read aligners”. This paper focuses on the implementation of the DNA sequencing as a set of MapReduce programs that will accept a DNA data set as a FASTQ file and finally generate a VCF (variant call format file, which has variants for a given DNA data set. In this paper MapReduce/Hadoop along with Burrows-Wheeler Aligner (BWA, Sequence Alignment/Map (SAM ‎tools, are fully utilized to provide various utilities for manipulating alignments, including sorting, merging, indexing, ‎and generating alignments. The Map-Sort-Reduce process is designed to be suited for a Hadoop framework in ‎which each cluster is a traditional N-node Hadoop cluster to utilize all of the Hadoop features like HDFS, program ‎management and fault tolerance. The Map step performs multiple instances of the short read alignment algorithm ‎‎(BoWTie that run in parallel in Hadoop. The ordered list of the sequence reads are used as input tuples and the ‎output tuples are the alignments of the short reads. In the Reduce step many parallel instances of the Short ‎Oligonucleotide Analysis Package for SNP (SOAPsnp algorithm run in the cluster. Input tuples are sorted ‎alignments for a partition and the output tuples are SNP calls. Results are stored via HDFS, and then archived in ‎SOAPsnp format. ‎ The proposed framework enables extremely fast discovering somatic mutations, inferring population genetical ‎parameters, and performing association tests directly based on sequencing data without explicit genotyping or ‎linkage-based imputation. It also demonstrate that this method achieves comparable

  13. Genic control of honey bee dance language dialect.

    Science.gov (United States)

    Rinderer, T E; Beaman, L D

    1995-10-01

    Behavioural genetic analysis of honey bee dance language shows simple Mendelian genic control over certain dance dialect differences. Worker honey bees of one parent colony (yellow) changed from round to transition dances for foraging distances of 20 m and from transition to waggle dances at 40 m. Worker bees of the other parent colony (black) made these shifts at 30 m and 90 m, respectively. F1 colonies behaved identically to their yellow parent, suggesting dominance. Progeny of backcrossing between the F1 generation and the putative recessive black parent assorted to four classes, indicating that the dialect differences studied are regulated by genes at two unlinked loci, each having two alleles. Honey bee dance communication is complex and highly integrated behaviour. Nonetheless, analysis of a small element of this behaviour, variation in response to distance, suggests that dance communication is regulated by subsets consisting of simple genic systems.

  14. Mapped DNA probes from Ioblolly pine can be used for restriction fragment length polymorphism mapping in other conifers

    Science.gov (United States)

    M.R. Ahuja; M.E. Devey; A.T. Groover; K.D. Jermstad; D.B Neale

    1994-01-01

    A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm....

  15. Identification and characterization of genic microsatellites in Cunninghamia lanceolata (Lamb. Hook (Taxodiaceae

    Directory of Open Access Journals (Sweden)

    Xu Yang

    2016-01-01

    Full Text Available Genomic resources for conventional breeding programs are extremely limited for coniferous trees, and existing simple sequence repeat markers are usually identified through the laborious process of hybridization screening. Therefore, this study aimed to identify gene-based microsatellites in the Chinese fir, Cunninghamia lanceolata (Lamb. Hook by screening transcript data. We identified 5200 microsatellites. Trinucleotide motifs were most common (47.94% and were followed by tetranucleotide motifs (24.92%. The AG/CT motif (43.93% was the most abundant dinucleotide repeat, whereas AAG/CTT (25.07% was the most common trinucleotide repeat. A total of 411 microsatellite primer pairs were designed and 97 polymorphic loci were identified by 8 genotypes. The number of alleles per locus (Na in these polymorphic loci ranged from 2 to 5 (mean, 2.640, the Ho values were 0.000-1.000 (mean, 0.479, and the HE values were 0.125-0.775 (mean, 0.462. The polymorphic information content (PIC values were 0.110-0.715 (mean, 0.383. Seventy-two of the 97 polymorphic markers (74.23% were present within genes with predicted functions. In addition, in genetic diversity and segregation analyses of 16 genotypes, only 5.88% of the polymorphic loci displayed segregation distortion at the p<0.05 level. Transferable amplification of a randomly selected set of 30 genic microsatellites showed that transferability decreased with increasing evolutionary distance between C. lanceolata and target conifers. Thus, these 97 genic markers will be useful for genetic diversity analysis, germplasm characterization, genome mapping and marker-assisted breeding in C. lanceolata, and evolutionary genetic analysis in Taxodiaceae.

  16. Alignment of Escherichia coli K12 DNA sequences to a genomic restriction map.

    Science.gov (United States)

    Rudd, K E; Miller, W; Ostell, J; Benson, D A

    1990-01-25

    We use the extensive published information describing the genome of Escherichia coli and new restriction map alignment software to align DNA sequence, genetic, and physical maps. Restriction map alignment software is used which considers restriction maps as strings analogous to DNA or protein sequences except that two values, enzyme name and DNA base address, are associated with each position on the string. The resulting alignments reveal a nearly linear relationship between the physical and genetic maps of the E. coli chromosome. Physical map comparisons with the 1976, 1980, and 1983 genetic maps demonstrate a better fit with the more recent maps. The results of these alignments are genomic kilobase coordinates, orientation and rank of the alignment that best fits the genetic data. A statistical measure based on extreme value distribution is applied to the alignments. Additional computer analyses allow us to estimate the accuracy of the published E. coli genomic restriction map, simulate rearrangements of the bacterial chromosome, and search for repetitive DNA. The procedures we used are general enough to be applicable to other genome mapping projects.

  17. Delineating Rearrangements in Single Yeast Artificial Chromosomes by Quantitative DNA Fiber Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Weier, Heinz-Ulrich G.; Greulich-Bode, Karin M.; Wu, Jenny; Duell, Thomas

    2009-09-18

    Cloning of large chunks of human genomic DNA in recombinant systems such as yeast or bacterial artificial chromosomes has greatly facilitated the construction of physical maps, the positional cloning of disease genes or the preparation of patient-specific DNA probes for diagnostic purposes. For this process to work efficiently, the DNA cloning process and subsequent clone propagation need to maintain stable inserts that are neither deleted nor otherwise rearranged. Some regions of the human genome; however, appear to have a higher propensity than others to rearrange in any host system. Thus, techniques to detect and accurately characterize such rearrangements need to be developed. We developed a technique termed 'Quantitative DNA Fiber Mapping (QDFM)' that allows accurate tagging of sequence elements of interest with near kilobase accuracy and optimized it for delineation of rearrangements in recombinant DNA clones. This paper demonstrates the power of this microscopic approach by investigating YAC rearrangements. In our examples, high-resolution physical maps for regions within the immunoglobulin lambda variant gene cluster were constructed for three different YAC clones carrying deletions of 95 kb and more. Rearrangements within YACs could be demonstrated unambiguously by pairwise mapping of cosmids along YAC DNA molecules. When coverage by YAC clones was not available, distances between cosmid clones were estimated by hybridization of cosmids onto DNA fibers prepared from human genomic DNA. In addition, the QDFM technology provides essential information about clone stability facilitating closure of the maps of the human genome as well as those of model organisms.

  18. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Science.gov (United States)

    Craig S. Echt; Surya Saha; Konstantin V. Krutovsky; Kokulapalan Wimalanathan; John E. Erpelding; Chun Liang; C Dana Nelson

    2011-01-01

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety...

  19. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Science.gov (United States)

    Previous loblolly pine (Pinus taeda L.) genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats), also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective o...

  20. Human cDNA mapping using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  1. Mapping Base Modifications in DNA by Transverse-Current Sequencing

    Science.gov (United States)

    Alvarez, Jose R.; Skachkov, Dmitry; Massey, Steven E.; Kalitsov, Alan; Velev, Julian P.

    2018-02-01

    Sequencing DNA modifications and lesions, such as methylation of cytosine and oxidation of guanine, is even more important and challenging than sequencing the genome itself. The traditional methods for detecting DNA modifications are either insensitive to these modifications or require additional processing steps to identify a particular type of modification. Transverse-current sequencing in nanopores can potentially identify the canonical bases and base modifications in the same run. In this work, we demonstrate that the most common DNA epigenetic modifications and lesions can be detected with any predefined accuracy based on their tunneling current signature. Our results are based on simulations of the nanopore tunneling current through DNA molecules, calculated using nonequilibrium electron-transport methodology within an effective multiorbital model derived from first-principles calculations, followed by a base-calling algorithm accounting for neighbor current-current correlations. This methodology can be integrated with existing experimental techniques to improve base-calling fidelity.

  2. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley

    Directory of Open Access Journals (Sweden)

    Bartoš Jan

    2008-06-01

    Full Text Available Abstract Background Flow cytometry facilitates sorting of single chromosomes and chromosome arms which can be used for targeted genome analysis. However, the recovery of microgram amounts of DNA needed for some assays requires sorting of millions of chromosomes which is laborious and time consuming. Yet, many genomic applications such as development of genetic maps or physical mapping do not require large DNA fragments. In such cases time-consuming de novo sorting can be minimized by utilizing whole-genome amplification. Results Here we report a protocol optimized in barley including amplification of DNA from only ten thousand chromosomes, which can be isolated in less than one hour. Flow-sorted chromosomes were treated with proteinase K and amplified using Phi29 multiple displacement amplification (MDA. Overnight amplification in a 20-microlitre reaction produced 3.7 – 5.7 micrograms DNA with a majority of products between 5 and 30 kb. To determine the purity of sorted fractions and potential amplification bias we used quantitative PCR for specific genes on each chromosome. To extend the analysis to a whole genome level we performed an oligonucleotide pool assay (OPA for interrogation of 1524 loci, of which 1153 loci had known genetic map positions. Analysis of unamplified genomic DNA of barley cv. Akcent using this OPA resulted in 1426 markers with present calls. Comparison with three replicates of amplified genomic DNA revealed >99% concordance. DNA samples from amplified chromosome 1H and a fraction containing chromosomes 2H – 7H were examined. In addition to loci with known map positions, 349 loci with unknown map positions were included. Based on this analysis 40 new loci were mapped to 1H. Conclusion The results indicate a significant potential of using this approach for physical mapping. Moreover, the study showed that multiple displacement amplification of flow-sorted chromosomes is highly efficient and representative which

  3. Algorithms for mapping high-throughput DNA sequences

    DEFF Research Database (Denmark)

    Frellsen, Jes; Menzel, Peter; Krogh, Anders

    2014-01-01

    of data generation, new bioinformatics approaches have been developed to cope with the large amount of sequencing reads obtained in these experiments. In this chapter, we first introduce HTS technologies and their usage in molecular biology and discuss the problem of mapping sequencing reads...... to their genomic origin. We then in detail describe two approaches that offer very fast heuristics to solve the mapping problem in a feasible runtime. In particular, we describe the BLAT algorithm, and we give an introduction to the Burrows-Wheeler Transform and the mapping algorithms based on this transformation....

  4. Genome-wide function of H2B ubiquitylation in promoter and genic regions.

    Science.gov (United States)

    Batta, Kiran; Zhang, Zhenhai; Yen, Kuangyu; Goffman, David B; Pugh, B Franklin

    2011-11-01

    Nucleosomal organization in and around genes may contribute substantially to transcriptional regulation. The contribution of histone modifications to genome-wide nucleosomal organization has not been systematically evaluated. In the present study, we examine the role of H2BK123 ubiquitylation, a key regulator of several histone modifications, on nucleosomal organization at promoter, genic, and transcription termination regions in Saccharomyces cerevisiae. Using high-resolution MNase chromatin immunoprecipitation and sequencing (ChIP-seq), we map nucleosome positioning and occupancy in mutants of the H2BK123 ubiquitylation pathway. We found that H2B ubiquitylation-mediated nucleosome formation and/or stability inhibits the assembly of the transcription machinery at normally quiescent promoters, whereas ubiquitylation within highly active gene bodies promotes transcription elongation. This regulation does not proceed through ubiquitylation-regulated histone marks at H3K4, K36, and K79. Our findings suggest that mechanistically similar functions of H2B ubiquitylation (nucleosome assembly) elicit different functional outcomes on genes depending on its positional context in promoters (repressive) versus transcribed regions (activating).

  5. Annotating pathogenic non-coding variants in genic regions.

    Science.gov (United States)

    Gelfman, Sahar; Wang, Quanli; McSweeney, K Melodi; Ren, Zhong; La Carpia, Francesca; Halvorsen, Matt; Schoch, Kelly; Ratzon, Fanni; Heinzen, Erin L; Boland, Michael J; Petrovski, Slavé; Goldstein, David B

    2017-08-09

    Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes.While non-coding synonymous and intronic variants are often not under strong selective constraint, they can be pathogenic through affecting splicing or transcription. Here, the authors develop a score that uses sequence context alterations to predict pathogenicity of synonymous and non-coding genetic variants, and provide a web server of pre-computed scores.

  6. Development and production of Lab-on-Chip systems for DNA mapping

    DEFF Research Database (Denmark)

    Østergaard, Peter Friis

    as low as 1:200. The developed polymer systems are tested by conducting two different experiments on DNA. Since such experiments are highly sensitive, efforts have been taken in order to lower the autofluorescence of the devices, resulting in a decrease of the background signal to roughly half...... several nanochannels can be placed parallel to each other, a large number of DNA molecules can be investigated. In the second experiment, mapping is performed on human DNA in nanoslit devices. A fluorescent profile is created by heating the sample up to a temperature, where the DNA is partially denatured....... The fluorescent dye will diffuse away from the denatured regions, and by analysing these black areas, the DNA molecule can be identified and potential mutations can be found. In the nanoslits, the DNA is stretched out via a shear flow, resulting in a stretching of more than 95% of the contour length meaning...

  7. An annotated genetic map of loblolly pine based on microsatellite and cDNA markers

    Directory of Open Access Journals (Sweden)

    Wimalanathan Kokulapalan

    2011-01-01

    Full Text Available Abstract Background Previous loblolly pine (Pinus taeda L. genetic linkage maps have been based on a variety of DNA polymorphisms, such as AFLPs, RAPDs, RFLPs, and ESTPs, but only a few SSRs (simple sequence repeats, also known as simple tandem repeats or microsatellites, have been mapped in P. taeda. The objective of this study was to integrate a large set of SSR markers from a variety of sources and published cDNA markers into a composite P. taeda genetic map constructed from two reference mapping pedigrees. A dense genetic map that incorporates SSR loci will benefit complete pine genome sequencing, pine population genetics studies, and pine breeding programs. Careful marker annotation using a variety of references further enhances the utility of the integrated SSR map. Results The updated P. taeda genetic map, with an estimated genome coverage of 1,515 cM(Kosambi across 12 linkage groups, incorporated 170 new SSR markers and 290 previously reported SSR, RFLP, and ESTP markers. The average marker interval was 3.1 cM. Of 233 mapped SSR loci, 84 were from cDNA-derived sequences (EST-SSRs and 149 were from non-transcribed genomic sequences (genomic-SSRs. Of all 311 mapped cDNA-derived markers, 77% were associated with NCBI Pta UniGene clusters, 67% with RefSeq proteins, and 62% with functional Gene Ontology (GO terms. Duplicate (i.e., redundant accessory and paralogous markers were tentatively identified by evaluating marker sequences by their UniGene cluster IDs, clone IDs, and relative map positions. The average gene diversity, He, among polymorphic SSR loci, including those that were not mapped, was 0.43 for 94 EST-SSRs and 0.72 for 83 genomic-SSRs. The genetic map can be viewed and queried at http://www.conifergdb.org/pinemap. Conclusions Many polymorphic and genetically mapped SSR markers are now available for use in P. taeda population genetics, studies of adaptive traits, and various germplasm management applications. Annotating mapped

  8. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    OpenAIRE

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    2012-01-01

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it possible to map SCEs at orders-of-magnitude greater resolution than was previously possible. On average, murine embryonic stem (mES) cells exhibit eight SCEs, which are detected at a resolution of up...

  9. Color Image Encryption Using Three-Dimensional Sine ICMIC Modulation Map and DNA Sequence Operations

    Science.gov (United States)

    Liu, Wenhao; Sun, Kehui; He, Yi; Yu, Mengyao

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a three-dimensional hyperchaotic Sine ICMIC modulation map (3D-SIMM) is proposed based on a close-loop modulation coupling (CMC) method. Based on this map, a novel color image encryption algorithm is designed by employing a hybrid model of multidirectional circular permutation and deoxyribonucleic acid (DNA) masking. In this scheme, the pixel positions of image are scrambled by multidirectional circular permutation, and the pixel values are substituted by DNA sequence operations. The simulation results and security analysis show that the algorithm has good encryption effect and strong key sensitivity, and can resist brute-force, statistical, differential, known-plaintext and chosen-plaintext attacks.

  10. Cloning and restriction enzyme mapping of ribosomal DNA of Giardia duodenalis, Giardia ardeae and Giardia muris.

    Science.gov (United States)

    van Keulen, H; Campbell, S R; Erlandsen, S L; Jarroll, E L

    1991-06-01

    In an attempt to study Giardia at the DNA sequence level, the rRNA genes of three species, Giardia duodenalis, Giardia ardeae and Giardia muris were cloned and restriction enzyme maps were constructed. The rDNA repeats of these Giardia show completely different restriction enzyme recognition patterns. The size of the rDNA repeat ranges from approximately 5.6 kb in G. duodenalis to 7.6 kb in both G. muris and G. ardeae. These size differences are mainly attributable to the variation in length of the spacer. Minor differences exist among these Giardia in the sizes of their small subunit rRNA and the internal transcribed spacer between small and large subunit rRNA. The genetic maps were constructed by sequence analysis of the DNA around the 5' and 3' ends of the mature rRNA genes and between the rRNA covering the 5.8S rRNA gene and internal transcribed spacer. Comparison of the 5.8S rDNA and 3' end of large subunit rDNA from these three Giardia species showed considerable sequence variation, but the rDNA sequences of G. duodenalis and G. ardeae appear more closely related to each other than to G. muris.

  11. Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP DNA is not associated with altered MMP expression in ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Halwe Jörg M

    2011-04-01

    Full Text Available Abstract Background Mycobacterium avium subspecies paratuberculosis (MAP is suspected to be a causative agent in human Crohn's disease (CD. Recent evidence suggests that pathogenic mycobacteria and MAP can induce the expression of Matrix Metalloproteinases (MMP, which are the main proteases in the pathogenesis of mucosal ulcerations in inflammatory bowel disease (IBD. Within this study we assessed the prevalence of intestinal MAP specific DNA in patients with Crohn's disease, ulcerative colitis (UC, and healthy controls. We further analysed regulation patterns of MMPs in mucosal tissues of UC patients with and without intestinal MAP DNA detection. Methods Colonic biopsy samples were obtained from 63 Norwegian and German IBD patients and 21 healthy controls. RNA was quantified by quantitative real-time polymerase chain reaction (PCR to study MMP gene expression in both pathological and healthy mucosal specimens. The presence of MAP DNA in colonic mucosa was examined using MAP specific PCR. Results MAP DNA was detected in 20% of UC patients and 33% of healthy controls but only in 7% of patients with CD. UC patients treated with corticosteroids exhibited a significantly increased frequency of intestinal MAP DNA compared to those not receiving corticosteroids. Expression of MMP-1, -2, -7, -9, -13, -19, -28 and TNF-α did not differ between UC patients with presence of intestinal MAP DNA compared to those without. MMP-2, MMP-9 and MMP-13 were significantly decreased in UC patients receiving corticosteroids. Conclusions The presence of intestinal MAP specific DNA is not associated with altered MMP expression in UC in vivo. Corticosteroids are associated with increased detection of intestinal MAP DNA and decreased expression of certain MMPs. Frequent detection of MAP DNA in healthy controls might be attributable to the wide environmental distribution of MAP and its presence in the food-chain.

  12. Extensive mapping of PPAR binding to genomic DNA

    DEFF Research Database (Denmark)

    Nielsen, Ronni; Pedersen, Thomas Åskov; Trindade, Luisa

    processes such as adaptation to fasting and cold, muscle isotype switching and adipogenesis, underscoring the metabolic importance of these transcription factors. Although the PPARs have been subject to intensive studies for almost two decades, far from all PPAR target genes are known. In addition, only few...... analysis of the regulatory networks controlled by PPAR transcription factors, thereby allowing for a better understanding of PPAR biology. - Adenoviral expression PPARg2 and RXR induce transcription from a wide range of hepatocyte as well as non-hepatocyte PPAR target genes in the murine AML-12 hepatoma...... cell line. Only very few PPAR target genes are not induced by PPARg2/RXR. - ChIP-on-chip analysis shows ~1200 peaks on chr. 7 & 8 by peak detection software. 80% of selected peaks were positive in single ChIP experiments.   - PPARg2/RXR are recruited to DNA elements near several genes on chr. 7 & 8...

  13. Updating rDNA restriction enzyme maps of Tetrahymena reveals four new intron-containing species

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Simon, E M; Engberg, J

    1985-01-01

    an intron in the 26s rRNA coding region. The evolutionary relationship among the species of the T. pyriformis complex was examined on the basis of the rDNA maps with emphasis on similarities between two of the new species and the widely studied T. thermophila and T. pigmentosa. Examination of a large number...

  14. Genic and Intergenic SSR Database Generation, SNPs Determination and Pathway Annotations, in Date Palm (Phoenix dactylifera L.).

    Science.gov (United States)

    Mokhtar, Morad M; Adawy, Sami S; El-Assal, Salah El-Din S; Hussein, Ebtissam H A

    2016-01-01

    The present investigation was carried out aiming to use the bioinformatics tools in order to identify and characterize, simple sequence repeats within the third Version of the date palm genome and develop a new SSR primers database. In addition single nucleotide polymorphisms (SNPs) that are located within the SSR flanking regions were recognized. Moreover, the pathways for the sequences assigned by SSR primers, the biological functions and gene interaction were determined. A total of 172,075 SSR motifs was identified on date palm genome sequence with a frequency of 450.97 SSRs per Mb. Out of these, 130,014 SSRs (75.6%) were located within the intergenic regions with a frequency of 499 SSRs per Mb. While, only 42,061 SSRs (24.4%) were located within the genic regions with a frequency of 347.5 SSRs per Mb. A total of 111,403 of SSR primer pairs were designed, that represents 291.9 SSR primers per Mb. Out of the 111,403, only 31,380 SSR primers were in the genic regions, while 80,023 primers were in the intergenic regions. A number of 250,507 SNPs were recognized in 84,172 SSR flanking regions, which represents 75.55% of the total SSR flanking regions. Out of 12,274 genes only 463 genes comprising 896 SSR primers were mapped onto 111 pathways using KEGG data base. The most abundant enzymes were identified in the pathway related to the biosynthesis of antibiotics. We tested 1031 SSR primers using both publicly available date palm genome sequences as templates in the in silico PCR reactions. Concerning in vitro validation, 31 SSR primers among those used in the in silico PCR were synthesized and tested for their ability to detect polymorphism among six Egyptian date palm cultivars. All tested primers have successfully amplified products, but only 18 primers detected polymorphic amplicons among the studied date palm cultivars.

  15. Mapping yeast origins of replication via single-stranded DNA detection.

    Science.gov (United States)

    Feng, Wenyi; Raghuraman, M K; Brewer, Bonita J

    2007-02-01

    Studies in th Saccharomyces cerevisiae have provided a framework for understanding how eukaryotic cells replicate their chromosomal DNA to ensure faithful transmission of genetic information to their daughter cells. In particular, S. cerevisiae is the first eukaryote to have its origins of replication mapped on a genomic scale, by three independent groups using three different microarray-based approaches. Here we describe a new technique of origin mapping via detection of single-stranded DNA in yeast. This method not only identified the majority of previously discovered origins, but also detected new ones. We have also shown that this technique can identify origins in Schizosaccharomyces pombe, illustrating the utility of this method for origin mapping in other eukaryotes.

  16. Nonlinear microrheology and molecular imaging to map microscale deformations of entangled DNA networks

    Science.gov (United States)

    Wu, Tsai-Chin; Anderson, Rae

    We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.

  17. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication.

    Science.gov (United States)

    Feng, Wenyi; Collingwood, David; Boeck, Max E; Fox, Lindsay A; Alvino, Gina M; Fangman, Walton L; Raghuraman, Mosur K; Brewer, Bonita J

    2006-02-01

    During DNA replication one or both strands transiently become single stranded: first at the sites where initiation of DNA synthesis occurs (known as origins of replication) and subsequently on the lagging strands of replication forks as discontinuous Okazaki fragments are generated. We report a genome-wide analysis of single-stranded DNA (ssDNA) formation in the presence of hydroxyurea during DNA replication in wild-type and checkpoint-deficient rad53 Saccharomyces cerevisiae cells. In wild-type cells, ssDNA was first observed at a subset of replication origins and later 'migrated' bi-directionally, suggesting that ssDNA formation is associated with continuously moving replication forks. In rad53 cells, ssDNA was observed at virtually every known origin, but remained there over time, suggesting that replication forks stall. Telomeric regions seemed to be particularly sensitive to the loss of Rad53 checkpoint function. Replication origins in Schizosaccharomyces pombe were also mapped using our method.

  18. DNA adduct profiling of in vitro colonic meat digests to map red vs. white meat genotoxicity.

    Science.gov (United States)

    Hemeryck, Lieselot Y; Rombouts, Caroline; De Paepe, Ellen; Vanhaecke, Lynn

    2018-05-01

    The consumption of red meat has been linked to an increased colorectal cancer (CRC) risk. One of the major hypotheses states that heme iron (present in red meat) stimulates the formation of genotoxic N-nitroso compounds (NOCs) and lipid peroxidation products (LPOs). By means of DNA adductomics, chemically induced DNA adduct formation can be mapped in relation to e.g. dietary exposures. In this study, this state-of-the-art methodology was used to investigate alkylation and (lipid per)oxidation induced DNA adduct formation in in vitro red vs. white meat digests. In doing so, 90 alkylation and (lipid per)oxidation induced DNA adduct types could be (tentatively) identified. Overall, 12 NOC- and/or LPO-related DNA adduct types, i.e. dimethyl-T (or ethyl-T), hydroxymethyl-T, tetramethyl-T, methylguanine (MeG), guanidinohydantoin, hydroxybutyl-C, hydroxymethylhydantoin, malondialdehyde-x3-C, O 6 -carboxymethylguanine, hydroxyethyl-T, carboxyethyl-T and 3,N 4 -etheno-C were singled out as potential heme-rich meat digestion markers. The retrieval of these DNA adduct markers is in support of the heme, NOC and LPO hypotheses, suggesting that DNA adduct formation may indeed contribute to red meat related CRC risk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Phenology, sterility and inheritance of two environment genic male sterile (EGMS) lines for hybrid rice

    NARCIS (Netherlands)

    El-Namaky, R.; Oort, van P.A.J.

    2017-01-01

    Background: There is still limited quantitative understanding of how environmental factors affect sterility of Environment-conditioned genic male sterility (EGMS) lines. A model was developed for this purpose and tested based on experimental data from Ndiaye (Senegal) in 2013-2015. For the two

  20. DEVELOPMENT OF MELON F1 SEEDS BASED ON LINES WITH GENIC MALE STERILITY

    Directory of Open Access Journals (Sweden)

    A. S. Sokolov

    2014-01-01

    Full Text Available The perspective technology of development of melon of F1hybrids seeds by use maternal lines with an original form of genic mail sterility and marker trait (lobed leaves was studied. Elements of technology allow developing hybrid seeds of melon with hybridity of 90-95%.

  1. The GENiC architecture for integrated data centre energy management

    NARCIS (Netherlands)

    Pesch, D.; McGibney, A.; Sobonski, P.; Rea, S.; Scherer, Th.; Chen, L.; Engbersen, T.; Mehta, D.; O'Sullivan, B.; Pages, E.; Townley, J.; Kasinathan, Dh.; Torrens, J.I.; Zavrel, V.; Hensen, J.L.M.

    2015-01-01

    We present an architecture for integrated data centre energy management developed in the EC funded GENiC project. The architecture was devised to create a platform that can integrate functions for workload management, cooling, power management and control of heat recovery for future, highly

  2. Mapping of rDNA on the chromosomes of Eleusine species by fluorescence in situ hybridization.

    Science.gov (United States)

    Bisht, M S; Mukai, Y

    2000-12-01

    Mapping of rDNA sites on the chromosomes of four diploid and two tetraploid species of Eleusine has provided valuable information on genome relationship between the species. Presence of 18S-5.8S-26S rDNA on the largest pair of the chromosomes, location of 5S rDNA at four sites on two pairs of chromosomes and presence of 18S-5.8S-26S and 5S rDNA at same location on one pair of chromosomes have clearly differentiated E. multiflora from rest of the species of Eleusine. The two tetraploid species, E. coracana and E. africana have the same number of 18S-5.8S-26S and 5S rDNA sites and located at similar position on the chromosomes. Diploid species, E. indica, E. floccifolia and E. tristachya have the same 18S-5.8S-26S sites and location on the chromosomes which also resembled with the two pairs of 18S-5.8S-26S rDNA locations in tetraploid species, E. coracana and E. africana. The 5S rDNA sites on chromosomes of E. indica and E. floccifolia were also comparable to the 5S rDNA sites of E. africana and E. coracana. The similarity of the rDNA sites and their location on chromosomes in the three diploid and two polyploid species also supports the view that genome donors to tetraploid species may be from these diploid species.

  3. Mapping of gene transcripts by nuclease protection assays and cDNA primer extension

    International Nuclear Information System (INIS)

    Calzone, F.J.; Britten, R.J.; Davidson, E.J.

    1987-01-01

    An important problem often faced in the molecular characterization of genes is the precise mapping of those genomic sequences transcribed into RNA. This requires identification of the genomic site initiating gene transcription, the location of genomic sequences removed from the primary gene transcript during RNA processing, and knowledge of sequences terminating the processed gene transcript. The objective of the protocols described here is the generation of transcription maps utilizing relatively uncharacterized gene fragments. The basic approach is hybridization of a single-stranded DNA probe with cellular RNA, followed by treatment with a single-strand-specific nuclease that does not attack DNA-RNA hybrids, in order to destroy any unreacted probe sequences. Thus the probe sequences included in the hybrid duplexes are protected from nuclease digestion. The sizes of the protected probe fragments determined by gel electrophoresis correspond to the lengths of the hybridized sequence elements

  4. WHERE MULTIFUNCTIONAL DNA REPAIR PROTEINS MEET: MAPPING THE INTERACTION DOMAINS BETWEEN XPG AND WRN

    Energy Technology Data Exchange (ETDEWEB)

    Rangaraj, K.; Cooper, P.K.; Trego, K.S.

    2009-01-01

    The rapid recognition and repair of DNA damage is essential for the maintenance of genomic integrity and cellular survival. Multiple complex and interconnected DNA damage responses exist within cells to preserve the human genome, and these repair pathways are carried out by a specifi c interplay of protein-protein interactions. Thus a failure in the coordination of these processes, perhaps brought about by a breakdown in any one multifunctional repair protein, can lead to genomic instability, developmental and immunological abnormalities, cancer and premature aging. This study demonstrates a novel interaction between two such repair proteins, Xeroderma pigmentosum group G protein (XPG) and Werner syndrome helicase (WRN), that are both highly pleiotropic and associated with inherited genetic disorders when mutated. XPG is a structure-specifi c endonuclease required for the repair of UV-damaged DNA by nucleotide excision repair (NER), and mutations in XPG result in the diseases Xeroderma pigmentosum (XP) and Cockayne syndrome (CS). A loss of XPG incision activity results in XP, whereas a loss of non-enzymatic function(s) of XPG causes CS. WRN is a multifunctional protein involved in double-strand break repair (DSBR), and consists of 3’–5’ DNA-dependent helicase, 3’–5’ exonuclease, and single-strand DNA annealing activities. Nonfunctional WRN protein leads to Werner syndrome, a premature aging disorder with increased cancer incidence. Far Western analysis was used to map the interacting domains between XPG and WRN by denaturing gel electrophoresis, which separated purifi ed full length and recombinant XPG and WRN deletion constructs, based primarily upon the length of each polypeptide. Specifi c interacting domains were visualized when probed with the secondary protein of interest which was then detected by traditional Western analysis using the antibody of the secondary protein. The interaction between XPG and WRN was mapped to the C-terminal region of

  5. Enrichment of megabase-sized DNA molecules for single-molecule optical mapping and next-generation sequencing

    DEFF Research Database (Denmark)

    Łopacińska-Jørgensen, Joanna M; Pedersen, Jonas Nyvold; Bak, Mads

    2017-01-01

    Next-generation sequencing (NGS) has caused a revolution, yet left a gap: long-range genetic information from native, non-amplified DNA fragments is unavailable. It might be obtained by optical mapping of megabase-sized DNA molecules. Frequently only a specific genomic region is of interest, so...

  6. Mapping DNA damage-dependent genetic interactions in yeast via party mating and barcode fusion genetics.

    Science.gov (United States)

    Díaz-Mejía, J Javier; Celaj, Albi; Mellor, Joseph C; Coté, Atina; Balint, Attila; Ho, Brandon; Bansal, Pritpal; Shaeri, Fatemeh; Gebbia, Marinella; Weile, Jochen; Verby, Marta; Karkhanina, Anna; Zhang, YiFan; Wong, Cassandra; Rich, Justin; Prendergast, D'Arcy; Gupta, Gaurav; Öztürk, Sedide; Durocher, Daniel; Brown, Grant W; Roth, Frederick P

    2018-05-28

    Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating can also be monitored en masse for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving MAG1 , SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes

    Science.gov (United States)

    Ruderfer, Douglas M.; Hamamsy, Tymor; Lek, Monkol; Karczewski, Konrad J.; Kavanagh, David; Samocha, Kaitlin E.; Daly, Mark J.; MacArthur, Daniel G.; Fromer, Menachem; Purcell, Shaun M.

    2016-01-01

    Copy number variation (CNV) impacting protein-coding genes contributes significantly to human diversity and disease. Here we characterized the rates and properties of rare genic CNV (intolerance to CNVs that demonstrated moderate correlation with measures of genic constraint based on single-nucleotide variation (SNV) and was independently correlated with measures of evolutionary conservation. For individuals with schizophrenia, genes impacted by CNVs were more intolerant than in controls. ExAC CNV data constitutes a critical component of an integrated database spanning the spectrum of human genetic variation, aiding the interpretation of personal genomes as well as population-based disease studies. These data are freely available for download and visualization online. PMID:27533299

  8. Development of 12 genic microsatellite loci for a biofuel grass, Miscanthus sinensis (Poaceae).

    Science.gov (United States)

    Ho, Chuan-Wen; Wu, Tai-Han; Hsu, Tsai-Wen; Huang, Jao-Ching; Huang, Chi-Chun; Chiang, Tzen-Yuh

    2011-08-01

    Miscanthus, a nonfood plant with high potential as a biofuel, has been used in Europe and the United States. The selection of a cultivar with high biomass, photosynthetic efficiency, and stress resistance from wild populations has become an important issue. New genic microsatellite markers will aid the assessment of genetic diversity for different strains. Twelve polymorphic microsatellite markers derived from the transcriptome of Miscanthus sinensis fo. glaber were identified and screened on 80 individuals of M. sinensis. The number of alleles per locus ranged from 6 to 12, and the mean expected heterozygosity was 0.75. Cross-taxa transferability revealed that all loci can be applied to all varieties of M. sinensis, as well as the closely related species M. floridulus. These new genic microsatellite markers are useful for characterizing different traits in breeding programs or to select genes useful for biofuel.

  9. Premature Tapetum Degeneration: a Major Cause of Abortive Pollen Development in Photoperiod Sensitive Genic Male Sterility in Rice

    Institute of Scientific and Technical Information of China (English)

    Yinlian Shi; Sha Zhao; Jialing Yao

    2009-01-01

    Photoperiod-sensitive genic male-sterile (PSGMS) rice (Oryza sativa L.), a natural mutant found in the rice cultivar Nongken 58, is very useful for the development of hybrid rice cultivars. Despite its widespread use in breeding programs, the initial stage of the abortive development of PSGMS rice and the possible cytological mechanisms of pollen abortion have not been determined. In the present study, a systematic cytological comparison of the anther development of PSGMS rice with its normal fertile counterpart is conducted. The results show that pollen abortion in PSGMS rice first occurs before the pollen mother cell (PMC) stage, and continues during the entire process of pollen development until pollen degradation. The abortive process was closely associated with the abnormal behavior of the tapetum. Although tapetum degeneration in PSGMS rice initiates already at the PMC stage, it proceeds slowly and does not complete until the breakdown of the pollen. Such cytological observations were supported by the results of the TUNEL (TdT-mediated dUTP Nick End Labeling) assay, which detects DNA fragmentation resulting from programmed cell death (PCD), indicating that the premature tapetum degeneration is in the process of PCD.

  10. Mapping vaccinia virus DNA replication origins at nucleotide level by deep sequencing.

    Science.gov (United States)

    Senkevich, Tatiana G; Bruno, Daniel; Martens, Craig; Porcella, Stephen F; Wolf, Yuri I; Moss, Bernard

    2015-09-01

    Poxviruses reproduce in the host cytoplasm and encode most or all of the enzymes and factors needed for expression and synthesis of their double-stranded DNA genomes. Nevertheless, the mode of poxvirus DNA replication and the nature and location of the replication origins remain unknown. A current but unsubstantiated model posits only leading strand synthesis starting at a nick near one covalently closed end of the genome and continuing around the other end to generate a concatemer that is subsequently resolved into unit genomes. The existence of specific origins has been questioned because any plasmid can replicate in cells infected by vaccinia virus (VACV), the prototype poxvirus. We applied directional deep sequencing of short single-stranded DNA fragments enriched for RNA-primed nascent strands isolated from the cytoplasm of VACV-infected cells to pinpoint replication origins. The origins were identified as the switching points of the fragment directions, which correspond to the transition from continuous to discontinuous DNA synthesis. Origins containing a prominent initiation point mapped to a sequence within the hairpin loop at one end of the VACV genome and to the same sequence within the concatemeric junction of replication intermediates. These findings support a model for poxvirus genome replication that involves leading and lagging strand synthesis and is consistent with the requirements for primase and ligase activities as well as earlier electron microscopic and biochemical studies implicating a replication origin at the end of the VACV genome.

  11. Transcriptomic analysis, genic SSR development, and genetic diversity of proso millet (Panicum miliaceum; Poaceae).

    Science.gov (United States)

    Hou, Siyu; Sun, Zhaoxia; Li, Yaoshen; Wang, Yijie; Ling, Hubin; Xing, Guofang; Han, Yuanhuai; Li, Hongying

    2017-07-01

    Proso millet ( Panicum miliaceum ; Poaceae) is a minor crop with good nutritional qualities and strong tolerance to drought stress and soil infertility. However, studies on genetic diversity have been limited due to a lack of efficient genetic markers. Illumina sequencing technology was used to generate short read sequences of proso millet, and de novo transcriptome assemblies were used to develop a de novo assembly of proso millet. Genic simple sequence repeat (SSR) markers were identified and used to detect polymorphism among 56 accessions. Population structure and genetic similarity coefficient were estimated. In total, 25,341 unique gene sequences and 4724 SSR loci were obtained from the transcriptome, of which 229 pairs of SSR primers were validated, which resulted in 14 polymorphic genic SSR primers exhibiting 43 total alleles. According to the ratio of polymorphic markers (6.1%, 14/229), there are potentially 288 polymorphic genic SSR markers available for genetic assay development in the future. Bayesian population analyses showed that the 56 accessions comprised two distinct groups. A genetic structure and cluster assay indicated that the accessions from the Loess Plateau of China shared a high genetic similarity coefficient with those from other regions and that there was no correlation between genetic diversity and geographic origin. The transcriptome sequencing data and millet-specific SSR markers developed in this study establish an excellent resource for gene discovery and may improve the development of breeding programs in proso millet in the future.

  12. Transcriptomic analysis, genic SSR development, and genetic diversity of proso millet (Panicum miliaceum; Poaceae)1

    Science.gov (United States)

    Hou, Siyu; Sun, Zhaoxia; Li, Yaoshen; Wang, Yijie; Ling, Hubin; Xing, Guofang; Han, Yuanhuai; Li, Hongying

    2017-01-01

    Premise of the study: Proso millet (Panicum miliaceum; Poaceae) is a minor crop with good nutritional qualities and strong tolerance to drought stress and soil infertility. However, studies on genetic diversity have been limited due to a lack of efficient genetic markers. Methods: Illumina sequencing technology was used to generate short read sequences of proso millet, and de novo transcriptome assemblies were used to develop a de novo assembly of proso millet. Genic simple sequence repeat (SSR) markers were identified and used to detect polymorphism among 56 accessions. Population structure and genetic similarity coefficient were estimated. Results: In total, 25,341 unique gene sequences and 4724 SSR loci were obtained from the transcriptome, of which 229 pairs of SSR primers were validated, which resulted in 14 polymorphic genic SSR primers exhibiting 43 total alleles. According to the ratio of polymorphic markers (6.1%, 14/229), there are potentially 288 polymorphic genic SSR markers available for genetic assay development in the future. Bayesian population analyses showed that the 56 accessions comprised two distinct groups. Discussion: A genetic structure and cluster assay indicated that the accessions from the Loess Plateau of China shared a high genetic similarity coefficient with those from other regions and that there was no correlation between genetic diversity and geographic origin. The transcriptome sequencing data and millet-specific SSR markers developed in this study establish an excellent resource for gene discovery and may improve the development of breeding programs in proso millet in the future. PMID:28791202

  13. Development of genic SSR markers from transcriptome sequencing of pear buds.

    Science.gov (United States)

    Yue, Xiao-yan; Liu, Guo-qin; Zong, Yu; Teng, Yuan-wen; Cai, Dan-ying

    2014-04-01

    A total of 8375 genic simple sequence repeat (SSR) loci were discovered from a unigene set assembled from 116282 transcriptomic unigenes in this study. Dinucleotide repeat motifs were the most common with a frequency of 65.11%, followed by trinucleotide (32.81%). A total of 4100 primer pairs were designed from the SSR loci. Of these, 343 primer pairs (repeat length ≥15 bp) were synthesized with an M13 tail and tested for stable amplification and polymorphism in four Pyrus accessions. After the preliminary test, 104 polymorphic genic SSR markers were developed; dinucleotide and trinucleotide repeats represented 97.11% (101) of these. Twenty-eight polymorphic genic SSR markers were selected randomly to further validate genetic diversity among 28 Pyrus accessions. These markers displayed a high level of polymorphism. The number of alleles at these SSR loci ranged from 2 to 17, with a mean of 9.43 alleles per locus, and the polymorphism information content (PIC) values ranged from 0.26 to 0.91. The UPGMA (unweighted pair-group method with arithmetic average) cluster analysis grouped the 28 Pyrus accessions into two groups: Oriental pears and Occidental pears, which are congruent to the traditional taxonomy, demonstrating their effectiveness in analyzing Pyrus phylogenetic relationships, enriching rare Pyrus EST-SSR resources, and confirming the potential value of a pear transcriptome database for the development of new SSR markers.

  14. Cloning and comparative mapping of a human chromosome 4-specific alpha satellite DNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    D' Aiuto, L.; Marzella, R.; Archidiacono, N.; Rocchi, M. (Universita di Bari (Italy)); Antonacci, R. (Instituto Anatomia Umana Normale, Modena (Italy))

    1993-11-01

    The authors have isolated and characterized two human alphoid DNA clones: p4n1/4 and pZ4.1. Clone p4n1/4 identifies specifically the centromeric region of chromosome 4; pZ4.1 recognizes a subset of alphoid DNA shared by chromosomes 4 and 9. The specificity was determined using fluorescence in situ hybridization experiments on metaphase spreads and Southern blotting analysis of human-hamster somatic cell hybrids. The genomic organization of both subsets was also investigated. Comparative mapping on chimpanzee and gorilla chromosomes was performed. p4n1/4 hybridizes to chimpanzee chromosomes 11 and 13, homologs of human chromosomes 9 and 2q, respectively. On gorilla metaphase spreads, p4n1/4 hybridizes exclusively to the centromeric region of chromosome 19, partially homologous to human chromosome 17. No hybridization signal was detected on chromosome 3 of both chimpanzee and gorilla, in both species homolog of human chromosome 4. Identical comparative mapping results were obtained using pZ4.1 probe, although the latter recognizes an alphoid subset distinct from the one recognized by p4n1/4. The implications of these results in the evolution of centromeric regions of primate chromosomes are discussed. 33 refs., 4 figs.

  15. Mapping DNA methylation by transverse current sequencing: Reduction of noise from neighboring nucleotides

    Science.gov (United States)

    Alvarez, Jose; Massey, Steven; Kalitsov, Alan; Velev, Julian

    Nanopore sequencing via transverse current has emerged as a competitive candidate for mapping DNA methylation without needed bisulfite-treatment, fluorescent tag, or PCR amplification. By eliminating the error producing amplification step, long read lengths become feasible, which greatly simplifies the assembly process and reduces the time and the cost inherent in current technologies. However, due to the large error rates of nanopore sequencing, single base resolution has not been reached. A very important source of noise is the intrinsic structural noise in the electric signature of the nucleotide arising from the influence of neighboring nucleotides. In this work we perform calculations of the tunneling current through DNA molecules in nanopores using the non-equilibrium electron transport method within an effective multi-orbital tight-binding model derived from first-principles calculations. We develop a base-calling algorithm accounting for the correlations of the current through neighboring bases, which in principle can reduce the error rate below any desired precision. Using this method we show that we can clearly distinguish DNA methylation and other base modifications based on the reading of the tunneling current.

  16. Enrichment of megabase-sized DNA molecules for single-molecule optical mapping and next-generation sequencing

    DEFF Research Database (Denmark)

    Łopacińska-Jørgensen, Joanna M; Pedersen, Jonas Nyvold; Bak, Mads

    2017-01-01

    Next-generation sequencing (NGS) has caused a revolution, yet left a gap: long-range genetic information from native, non-amplified DNA fragments is unavailable. It might be obtained by optical mapping of megabase-sized DNA molecules. Frequently only a specific genomic region is of interest, so......-megabase- to megabase-sized DNA molecules were recovered from the gel and analysed by denaturation-renaturation optical mapping. Size-selected molecules from the same gel were sequenced by NGS. The optically mapped molecules and the NGS reads showed enrichment from regions defined by NotI restriction sites. We...... demonstrate that the unannotated genome can be characterized in a locus-specific manner via molecules partially overlapping with the annotated genome. The method is a promising tool for investigation of structural variants in enriched human genomic regions for both research and diagnostic purposes. Our...

  17. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami

    Science.gov (United States)

    Chikkaraddy, Rohit; Turek, V. A.; Kongsuwan, Nuttawut; Benz, Felix; Carnegie, Cloudy; van de Goor, Tim; de Nijs, Bart; Demetriadou, Angela; Hess, Ortwin; Keyser, Ulrich F.; Baumberg, Jeremy J.

    2018-01-01

    Fabricating nanocavities in which optically-active single quantum emitters are precisely positioned, is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore, and obtain enhancements of $\\geq4\\times10^3$ with high quantum yield ($\\geq50$%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of $\\pm1.5$ nm. Our approach introduces a straightforward non-invasive way to measure and quantify confined optical modes on the nanoscale.

  18. Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami.

    Science.gov (United States)

    Chikkaraddy, Rohit; Turek, V A; Kongsuwan, Nuttawut; Benz, Felix; Carnegie, Cloudy; van de Goor, Tim; de Nijs, Bart; Demetriadou, Angela; Hess, Ortwin; Keyser, Ulrich F; Baumberg, Jeremy J

    2018-01-10

    Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 10 3 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.

  19. Empirical evaluation of selective DNA pooling to map QTL in dairy cattle using a half-sib design by comparison to individual genotyping and interval mapping

    Directory of Open Access Journals (Sweden)

    Robinson Nicholas

    2007-04-01

    Full Text Available Abstract This study represents the first attempt at an empirical evaluation of the DNA pooling methodology by comparing it to individual genotyping and interval mapping to detect QTL in a dairy half-sib design. The findings indicated that the use of peak heights from the pool electropherograms without correction for stutter (shadow product and preferential amplification performed as well as corrected estimates of frequencies. However, errors were found to decrease the power of the experiment at every stage of the pooling and analysis. The main sources of errors include technical errors from DNA quantification, pool construction, inconsistent differential amplification, and from the prevalence of sire alleles in the dams. Additionally, interval mapping using individual genotyping gains information from phenotypic differences between individuals in the same pool and from neighbouring markers, which is lost in a DNA pooling design. These errors cause some differences between the markers detected as significant by pooling and those found significant by interval mapping based on individual selective genotyping. Therefore, it is recommended that pooled genotyping only be used as part of an initial screen with significant results to be confirmed by individual genotyping. Strategies for improving the efficiency of the DNA pooling design are also presented.

  20. Intragenic origins due to short G1 phases underlie oncogene-induced DNA replication stress.

    Science.gov (United States)

    Macheret, Morgane; Halazonetis, Thanos D

    2018-03-01

    Oncogene-induced DNA replication stress contributes critically to the genomic instability that is present in cancer. However, elucidating how oncogenes deregulate DNA replication has been impeded by difficulty in mapping replication initiation sites on the human genome. Here, using a sensitive assay to monitor nascent DNA synthesis in early S phase, we identified thousands of replication initiation sites in cells before and after induction of the oncogenes CCNE1 and MYC. Remarkably, both oncogenes induced firing of a novel set of DNA replication origins that mapped within highly transcribed genes. These ectopic origins were normally suppressed by transcription during G1, but precocious entry into S phase, before all genic regions had been transcribed, allowed firing of origins within genes in cells with activated oncogenes. Forks from oncogene-induced origins were prone to collapse, as a result of conflicts between replication and transcription, and were associated with DNA double-stranded break formation and chromosomal rearrangement breakpoints both in our experimental system and in a large cohort of human cancers. Thus, firing of intragenic origins caused by premature S phase entry represents a mechanism of oncogene-induced DNA replication stress that is relevant for genomic instability in human cancer.

  1. Generation of genic diversity among Streptococcus pneumoniae strains via horizontal gene transfer during a chronic polyclonal pediatric infection.

    Directory of Open Access Journals (Sweden)

    N Luisa Hiller

    2010-09-01

    Full Text Available Although there is tremendous interest in understanding the evolutionary roles of horizontal gene transfer (HGT processes that occur during chronic polyclonal infections, to date there have been few studies that directly address this topic. We have characterized multiple HGT events that most likely occurred during polyclonal infection among nasopharyngeal strains of Streptococcus pneumoniae recovered from a child suffering from chronic upper respiratory and middle-ear infections. Whole genome sequencing and comparative genomics were performed on six isolates collected during symptomatic episodes over a period of seven months. From these comparisons we determined that five of the isolates were genetically highly similar and likely represented a dominant lineage. We analyzed all genic and allelic differences among all six isolates and found that all differences tended to occur within contiguous genomic blocks, suggestive of strain evolution by homologous recombination. From these analyses we identified three strains (two of which were recovered on two different occasions that appear to have been derived sequentially, one from the next, each by multiple recombination events. We also identified a fourth strain that contains many of the genomic segments that differentiate the three highly related strains from one another, and have hypothesized that this fourth strain may have served as a donor multiple times in the evolution of the dominant strain line. The variations among the parent, daughter, and grand-daughter recombinant strains collectively cover greater than seven percent of the genome and are grouped into 23 chromosomal clusters. While capturing in vivo HGT, these data support the distributed genome hypothesis and suggest that a single competence event in pneumococci can result in the replacement of DNA at multiple non-adjacent loci.

  2. Analysis of correlations between the occurrence of anti-MAP antibodies in blood serum and the presence of DNA-MAP in milk.

    Science.gov (United States)

    Wiszniewska-Łaszczych, A; Szteyn, J; Smolińska, A

    2009-01-01

    Paratuberculosis (Johne's disease) is a chronic, infectious enteritis of both domestic and wild ruminants. Unfortunately, the problem of MAP infections is not linked only with the health status of animals and potential direct and indirect economic losses in bovine herds (of dairy cattle in particular). MAP bacilli present in food of animal origin (milk in particular) are likely to lead to the development of the disease in humans. Fast and effective diagnosis of the disease in animals, especially of its subclinical form, may prevent the transmission of the germ to humans. The study was aimed at analyzing the correlations between the occurance of seropositive and serodoubtful reaction in the ELISA test and the presence of DNA-MAP in udder milk. The results suggest that half of the population of animals with positive and doubtful serological responces against John's disease are likely to be a potential source of germ transmission into humans. The fact of detecting DNA-MAP in 1/3 of all milk samples points to the likelihood of occurrence of MAP bacilli in milk of animals not displaying seropositive or serodoubtful responses.

  3. Rapid genotyping with DNA micro-arrays for high-density linkage mapping and QTL mapping in common buckwheat (Fagopyrum esculentum Moench)

    Science.gov (United States)

    Yabe, Shiori; Hara, Takashi; Ueno, Mariko; Enoki, Hiroyuki; Kimura, Tatsuro; Nishimura, Satoru; Yasui, Yasuo; Ohsawa, Ryo; Iwata, Hiroyoshi

    2014-01-01

    For genetic studies and genomics-assisted breeding, particularly of minor crops, a genotyping system that does not require a priori genomic information is preferable. Here, we demonstrated the potential of a novel array-based genotyping system for the rapid construction of high-density linkage map and quantitative trait loci (QTL) mapping. By using the system, we successfully constructed an accurate, high-density linkage map for common buckwheat (Fagopyrum esculentum Moench); the map was composed of 756 loci and included 8,884 markers. The number of linkage groups converged to eight, which is the basic number of chromosomes in common buckwheat. The sizes of the linkage groups of the P1 and P2 maps were 773.8 and 800.4 cM, respectively. The average interval between adjacent loci was 2.13 cM. The linkage map constructed here will be useful for the analysis of other common buckwheat populations. We also performed QTL mapping for main stem length and detected four QTL. It took 37 days to process 178 samples from DNA extraction to genotyping, indicating the system enables genotyping of genome-wide markers for a few hundred buckwheat plants before the plants mature. The novel system will be useful for genomics-assisted breeding in minor crops without a priori genomic information. PMID:25914583

  4. Development of novel genic microsatellite markers from transcriptome sequencing in sugar maple (Acer saccharum Marsh.).

    Science.gov (United States)

    Harmon, Monica; Lane, Thomas; Staton, Margaret; Coggeshall, Mark V; Best, Teodora; Chen, Chien-Chih; Liang, Haiying; Zembower, Nicole; Drautz-Moses, Daniela I; Hwee, Yap Zhei; Schuster, Stephan C; Schlarbaum, Scott E; Carlson, John E; Gailing, Oliver

    2017-08-08

    Sugar maple (Acer saccharum Marsh.) is a hardwood tree species native to northeastern North America and economically valued for its wood and sap. Yet, few molecular genetic resources have been developed for this species to date. Microsatellite markers have been a useful tool in population genetics, e.g., to monitor genetic variation and to analyze gene flow patterns. The objective of this study is to develop a reference transcriptome and microsatellite markers in sugar maple. A set of 117,861 putative unique transcripts were assembled using 29.2 Gb of RNA sequencing data derived from different tissues and stress treatments. From this set of sequences a total of 1068 microsatellite motifs were identified. Out of 58 genic microsatellite markers tested on a population of 47 sugar maple trees in upper Michigan, 22 amplified well, of which 16 were polymorphic and 6 were monomorphic. Values for expected heterozygosity varied from 0.224 to 0.726 for individual loci. Of the 16 polymorphic markers, 15 exhibited transferability to other Acer L. species. Genic microsatellite markers can be applied to analyze genetic variation in potentially adaptive genes relative to genomic reference markers as a basis for the management of sugar maple genetic resources in the face of climate change.

  5. De novo assembly of pen shell ( Atrina pectinata) transcriptome and screening of its genic microsatellites

    Science.gov (United States)

    Sun, Xiujun; Li, Dongming; Liu, Zhihong; Zhou, Liqing; Wu, Biao; Yang, Aiguo

    2017-10-01

    The pen shell ( Atrina pectinata) is a large wedge-shaped bivalve, which belongs to family Pinnidae. Due to its large and nutritious adductor muscle, it is the popular seafood with high commercial value in Asia-Pacific countries. However, limiting genomic and transcriptomic data have hampered its genetic investigations. In this study, the transcriptome of A. pectinata was deeply sequenced using Illumina pair-end sequencing technology. After assembling, a total of 127263 unigenes were obtained. Functional annotation indicated that the highest percentage of unigenes (18.60%) was annotated on GO database, followed by 18.44% on PFAM database and 17.04% on NR database. There were 270 biological pathways matched with those in KEGG database. Furthermore, a total of 23452 potential simple sequence repeats (SSRs) were identified, of them the most abundant type was mono-nucleotide repeats (12902, 55.01%), which was followed by di-nucleotide (8132, 34.68%), tri-nucleotide (2010, 8.57%), tetra-nucleotide (401, 1.71%), and penta-nucleotide (7, 0.03%) repeats. Sixty SSRs were selected for validating and developing genic SSR markers, of them 23 showed polymorphism in a cultured population with the average observed and expected heterozygosities of 0.412 and 0.579, respectively. In this study, we established the first comprehensive transcript dataset of A. pectinata genes. Our results demonstrated that RNA-Seq is a fast and cost-effective method for genic SSR development in non-model species.

  6. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    Science.gov (United States)

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D.

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1–2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand breaks are introduced at random wherever two translocating enzymes form a so-called collision complex following long-range communication between a pair of target sites in inverted (head-to-head) repeat. Paradoxically, structural models for collision suggest that the nuclease domains are too far apart (>30 bp) to dimerise and produce a double-strand DNA break using just two strand-cleavage events. Here, we examined the organisation of different collision complexes and how these lead to nuclease activation. We mapped DNA cleavage when a translocating enzyme collides with a static enzyme bound to its site. By following communication between sites in both head-to-head and head-to-tail orientations, we could show that motor activity leads to activation of the nuclease domains via distant interactions of the helicase or MTase-TRD. Direct nuclease dimerization is not required. To help explain the observed cleavage patterns, we also used exonuclease footprinting to demonstrate that individual Type ISP domains can swing off the DNA. This study lends further support to a model where DNA breaks are generated by multiple random nicks due to mobility of a collision complex with an overall DNA-binding footprint of ∼30 bp. PMID:26507855

  7. Influence of genic status in relation to gamma ray and EMS induced pollen sterility in chillies (Capsicum Annum L.)

    International Nuclear Information System (INIS)

    Asha, M.S.; Nayar, N.K.

    1986-01-01

    Fifteen genotypes of the same species tested to study the effect of gamma rays and ethylmethane sulphonate showed wide variability in their effect. Pollen sterility increased with increase in dose. Gamma rays induced a higher per cent sterility compared to EMS. Genic status influenced variation was noted in the effect of mutagens in inducing pollen sterility. 7 refs. (author)

  8. Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation

    Science.gov (United States)

    Tropberger, Philipp; Mercier, Alexandre; Robinson, Margaret; Zhong, Weidong; Ganem, Don E.; Holdorf, Meghan

    2015-01-01

    Chronic hepatitis B virus (HBV) infection affects 240 million people worldwide and is a major risk factor for liver failure and hepatocellular carcinoma. Current antiviral therapy inhibits cytoplasmic HBV genomic replication, but is not curative because it does not directly affect nuclear HBV closed circular DNA (cccDNA), the genomic form that templates viral transcription and sustains viral persistence. Novel approaches that directly target cccDNA regulation would therefore be highly desirable. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications (PTMs). Here, using a new cccDNA ChIP-Seq approach, we report, to our knowledge, the first genome-wide maps of PTMs in cccDNA-containing chromatin from de novo infected HepG2 cells, primary human hepatocytes, and from HBV-infected liver tissue. We find high levels of PTMs associated with active transcription enriched at specific sites within the HBV genome and, surprisingly, very low levels of PTMs linked to transcriptional repression even at silent HBV promoters. We show that transcription and active PTMs in HBV chromatin are reduced by the activation of an innate immunity pathway, and that this effect can be recapitulated with a small molecule epigenetic modifying agent, opening the possibility that chromatin-based regulation of cccDNA transcription could be a new therapeutic approach to chronic HBV infection. PMID:26438841

  9. Mitochondrial DNA mapping of social-biological interactions in Brazilian Amazonian African-descendant populations

    Directory of Open Access Journals (Sweden)

    Bruno Maia Carvalho

    2008-01-01

    Full Text Available The formation of the Brazilian Amazonian population has historically involved three main ethnic groups, Amerindian, African and European. This has resulted in genetic investigations having been carried out using classical polymorphisms and molecular markers. To better understand the genetic variability and the micro-evolutionary processes acting in human groups in the Brazilian Amazon region we used mitochondrial DNA to investigate 159 maternally unrelated individuals from five Amazonian African-descendant communities. The mitochondrial lineage distribution indicated a contribution of 50.2% from Africans (L0, L1, L2, and L3, 46.6% from Amerindians (haplogroups A, B, C and D and a small European contribution of 1.3%. These results indicated high genetic diversity in the Amerindian and African lineage groups, suggesting that the Brazilian Amazonian African-descendant populations reflect a possible population amalgamation of Amerindian women from different Amazonian indigenous tribes and African women from different geographic regions of Africa who had been brought to Brazil as slaves. The present study partially mapped the historical biological and social interactions that had occurred during the formation and expansion of Amazonian African-descendant communities.

  10. Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups

    Directory of Open Access Journals (Sweden)

    Singh Nagendra

    2009-03-01

    Full Text Available Abstract Background Completely sequenced plant genomes provide scope for designing a large number of microsatellite markers, which are useful in various aspects of crop breeding and genetic analysis. With the objective of developing genic but non-coding microsatellite (GNMS markers for the rice (Oryza sativa L. genome, we characterized the frequency and relative distribution of microsatellite repeat-motifs in 18,935 predicted protein coding genes including 14,308 putative promoter sequences. Results We identified 19,555 perfect GNMS repeats with densities ranging from 306.7/Mb in chromosome 1 to 450/Mb in chromosome 12 with an average of 357.5 GNMS per Mb. The average microsatellite density was maximum in the 5' untranslated regions (UTRs followed by those in introns, promoters, 3'UTRs and minimum in the coding sequences (CDS. Primers were designed for 17,966 (92% GNMS repeats, including 4,288 (94% hypervariable class I types, which were bin-mapped on the rice genome. The GNMS markers were most polymorphic in the intronic region (73.3% followed by markers in the promoter region (53.3% and least in the CDS (26.6%. The robust polymerase chain reaction (PCR amplification efficiency and high polymorphic potential of GNMS markers over genic coding and random genomic microsatellite markers suggest their immediate use in efficient genotyping applications in rice. A set of these markers could assess genetic diversity and establish phylogenetic relationships among domesticated rice cultivar groups. We also demonstrated the usefulness of orthologous and paralogous conserved non-coding microsatellite (CNMS markers, identified in the putative rice promoter sequences, for comparative physical mapping and understanding of evolutionary and gene regulatory complexities among rice and other members of the grass family. The divergence between long-grained aromatics and subspecies japonica was estimated to be more recent (0.004 Mya compared to short

  11. Differential rates of genic and chromosomal evolution in bats of the family Rhinolophidae.

    Science.gov (United States)

    Qumsiyeh, M B; Owen, R D; Chesser, R K

    1988-06-01

    Data for nondifferentially stained chromosomes from 10 species of Rhinolophus (Chiroptera: Rhinolophidae) suggest a conserved chromosomal evolution. G-banded chromosomes for three well differentiated species (Rhinolophus hipposideros, Rhinolophus blasii, and Rhinolophus acuminatus) corroborate a low level of gross chromosomal rearrangements. Additionally, a comparison between G-banded chromosomes of Rhinolophus (Rhinolophidae) and Hipposideros (Hipposideridae) suggests extreme conservatism in chromosomal arms between these two distantly related groups. On the other hand, we report extensive genic divergence as assayed by starch gel electrophoresis among these 10 species, and between Rhinolophus and two hipposiderid genera (Hipposideros and Aselliscus). The present chromosomal data are not sufficient for phylogenetic analysis. Phylogenies based on electrophoretic data are in many aspects discordant with those based on the classical morphological criteria. Different (and as yet not clearly understood) evolutionary forces affecting chromosomal, morphologic, and electrophoretic variation may be the reason for the apparent lack of concordance in these independent data sets.

  12. Molecular mechanisms underlying radio-induced fibro-genic differentiation and fibrosis targeted therapies

    International Nuclear Information System (INIS)

    Bourgier, C.

    2008-01-01

    Intestinal complications after radiotherapy are caused by transmural fibrosis (RIF) that impaired the quality of life of cancer patient survivors and considered permanent and irreversible until recently but recent molecular characterization of RIF offered new targeted opportunities for the development of anti-fibrotic therapies. In this thesis work, we identified activation of the Rho/ROCK pathway which is involved in the persistence of fibro-genic signals. In addition, among the new anti-fibrotic targeted therapies, we asked whether specific inhibition of Rho pathway, by Pravastatin could elicit anti-fibrotic action. Therefore, the therapeutic relevance of pravastatin as anti-fibrotic strategy was validated using two different models of intestinal and lung fibrosis. As statins are safe and well tolerated compounds, phase II clinical trial is envisioned within the next months to reverse established fibrosis after radiotherapy. (author)

  13. Stability and inheritance of photoperiod-sensitive genic male sterility in rice

    International Nuclear Information System (INIS)

    Zhu, Y.G.; Yu, J.H.

    1990-01-01

    Full text: In 1973, a photoperiod-sensitive genic male-sterile plant was discovered in Nongken 58. It is male sterile under long day conditions and fertile under short day conditions. Under the natural photoperiod in Wuhan, plants heading before September 2 are male sterile, showing typical pollen abortion. The fertility is gradually restored after September 2. About 50% of pollen grains are normal after September 6. F 1 using 30 different varieties was fertile regardless of daylength, F 2 segregated into 3 fertile: 1 sterile types under long day condition in some crosses, less clearly in other crosses. It is concluded that photoperiod depending male sterility is monogenic recessive inherited with some influence of modifier genes. Any normal variety can be used as restorer, therefore strong heterosis combinations can easily be bred. (author)

  14. Restriction map of the single-stranded DNA genome of Kilham rat virus strain 171, a nondefective parvovirus

    International Nuclear Information System (INIS)

    Banerjee, P.T.; Rathrock, R.; Mitra, S.

    1981-01-01

    A physical map of Kilham rat virus strain 171 DNA was constructed by analyzing the sizes and locations of restriction endonuclease-generated fragments of the replicative-form viral DNA synthesized in vitro. BglI, KpnI, BamHI, SmaI, XhoI, and XorII did not appear to have any cleavage sites, whereas 11 other enzymes cleaved the genome at one to eight sites, and AluI generated more than 12 distinct fragments. The 30 restriction sites that were mapped were distributed randomly in the viral genome. A comparison of the restriction fragments of in vivo- and in vitro-replicated replicative-form DNAs showed that these DNAs were identical except in the size or configuration of the terminal fragments

  15. Tremor-genic slow slip regions may be deeper and warmer and may slip slower than non-tremor-genic regions

    Science.gov (United States)

    Montgomery-Brown, Emily; Syracuse, Ellen M.

    2015-01-01

    Slow slip events (SSEs) are observed worldwide and often coincide with tectonic tremor. Notable examples of SSEs lacking observed tectonic tremor, however, occur beneath Kīlauea Volcano, Hawaii, the Boso Peninsula, Japan, near San Juan Bautista on the San Andreas Fault, California, and recently in Central Ecuador. These SSEs are similar to other worldwide SSEs in many ways (e.g., size or duration), but lack the concurrent tectonic tremor observed elsewhere; instead, they trigger swarms of regular earthquakes. We investigate the physical conditions that may distinguish these non-tremor-genic SSEs from those associated with tectonic tremor, including slip velocity, pressure, temperature, fluids, and fault asperities, although we cannot eliminate the possibility that tectonic tremor may be obscured in highly attenuating regions. Slip velocities of SSEs at Kīlauea Volcano (∼10−6 m/s) and Boso Peninsula (∼10−7 m/s) are among the fastest SSEs worldwide. Kīlauea Volcano, the Boso Peninsula, and Central Ecuador are also among the shallowest SSEs worldwide, and thus have lower confining pressures and cooler temperatures in their respective slow slip zones. Fluids also likely contribute to tremor generation, and no corresponding zone of high vp/vs has been noted at Kīlauea or Boso. We suggest that the relatively faster slip velocities at Kīlauea Volcano and the Boso Peninsula result from specific physical conditions that may also be responsible for triggering swarms of regular earthquakes adjacent to the slow slip, while different conditions produce slower SSE velocities elsewhere and trigger tectonic tremor.

  16. Molecular couplings and energy exchange between DNA and water mapped by femtosecond infrared spectroscopy of backbone vibrations

    Directory of Open Access Journals (Sweden)

    Yingliang Liu

    2017-07-01

    Full Text Available Molecular couplings between DNA and water together with the accompanying processes of energy exchange are mapped via the ultrafast response of DNA backbone vibrations after OH stretch excitation of the water shell. Native salmon testes DNA is studied in femtosecond pump-probe experiments under conditions of full hydration and at a reduced hydration level with two water layers around the double helix. Independent of their local hydration patterns, all backbone vibrations in the frequency range from 940 to 1120 cm–1 display a quasi-instantaneous reshaping of the spectral envelopes of their fundamental absorption bands upon excitation of the water shell. The subsequent reshaping kinetics encompass a one-picosecond component, reflecting the formation of a hot ground state of the water shell, and a slower contribution on a time scale of tens of picoseconds. Such results are benchmarked by measurements with resonant excitation of the backbone modes, resulting in distinctly different absorption changes. We assign the fast changes of DNA absorption after OH stretch excitation to structural changes in the water shell which couple to DNA through the local electric fields. The second slower process is attributed to a flow of excess energy from the water shell into DNA, establishing a common heated ground state in the molecular ensemble. This interpretation is supported by theoretical calculations of the electric fields exerted by the water shell at different temperatures.

  17. Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing

    Directory of Open Access Journals (Sweden)

    Wang Nian

    2012-08-01

    Full Text Available Abstract Background Genetic mapping and QTL detection are powerful methodologies in plant improvement and breeding. Construction of a high-density and high-quality genetic map would be of great benefit in the production of superior grapes to meet human demand. High throughput and low cost of the recently developed next generation sequencing (NGS technology have resulted in its wide application in genome research. Sequencing restriction-site associated DNA (RAD might be an efficient strategy to simplify genotyping. Combining NGS with RAD has proven to be powerful for single nucleotide polymorphism (SNP marker development. Results An F1 population of 100 individual plants was developed. In-silico digestion-site prediction was used to select an appropriate restriction enzyme for construction of a RAD sequencing library. Next generation RAD sequencing was applied to genotype the F1 population and its parents. Applying a cluster strategy for SNP modulation, a total of 1,814 high-quality SNP markers were developed: 1,121 of these were mapped to the female genetic map, 759 to the male map, and 1,646 to the integrated map. A comparison of the genetic maps to the published Vitis vinifera genome revealed both conservation and variations. Conclusions The applicability of next generation RAD sequencing for genotyping a grape F1 population was demonstrated, leading to the successful development of a genetic map with high density and quality using our designed SNP markers. Detailed analysis revealed that this newly developed genetic map can be used for a variety of genome investigations, such as QTL detection, sequence assembly and genome comparison.

  18. Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

    Directory of Open Access Journals (Sweden)

    Kouji Satoh

    Full Text Available Rice (Oryza sativa L. is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE genes, 33K annotated non-expressed (ANE genes, and 5.5K non-annotated expressed (NAE genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.

  19. Human cDNA mapping using fluorescence in situ hybridization. Progress report, April 1--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-12-31

    The ultimate goal of this proposal is to create a cDNA map of the human genome. Mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach will generate 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  20. FISH-mapping of the 5S rDNA locus in chili peppers (Capsicum-Solanaceae).

    Science.gov (United States)

    Aguilera, Patricia M; Debat, Humberto J; Scaldaferro, Marisel A; Martí, Dardo A; Grabiele, Mauro

    2016-03-01

    We present here the physical mapping of the 5S rDNA locus in six wild and five cultivated taxa of Capsicum by means of a genus-specific FISH probe. In all taxa, a single 5S locus per haploid genome that persistently mapped onto the short arm of a unique metacentric chromosome pair at intercalar position, was found. 5S FISH signals of almost the same size and brightness intensity were observed in all the analyzed taxa. This is the first cytological characterization of the 5S in wild taxa of Capsicum by using a genus-derived probe, and the most exhaustive and comprehensive in the chili peppers up to now. The information provided here will aid the cytomolecular characterization of pepper germplasm to evaluate variability and can be instrumental to integrate physical, genetic and genomic maps already generated in the genus.

  1. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae

    Directory of Open Access Journals (Sweden)

    Victor Manuel Gomez-Rodriguez

    2013-08-01

    Full Text Available Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country’s economy. Cytogenetic analysis was carried out in A. tequilana Weber, 1902 ‘Azul’, A. cupreata Trelease et Berger, 1915 and A. angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH was used for physical mapping of 5S and 18S ribosomal DNA (rDNA. All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies.

  2. Physical mapping of 5S and 18S ribosomal DNA in three species of Agave (Asparagales, Asparagaceae).

    Science.gov (United States)

    Gomez-Rodriguez, Victor Manuel; Rodriguez-Garay, Benjamin; Palomino, Guadalupe; Martínez, Javier; Barba-Gonzalez, Rodrigo

    2013-01-01

    Agave Linnaeus, 1753 is endemic of America and is considered one of the most important crops in Mexico due to its key role in the country's economy. Cytogenetic analysis was carried out in Agave tequilana Weber, 1902 'Azul', Agave cupreata Trelease et Berger, 1915 and Agave angustifolia Haworth, 1812. The analysis showed that in all species the diploid chromosome number was 2n = 60, with bimodal karyotypes composed of five pairs of large chromosomes and 25 pairs of small chromosomes. Furthermore, different karyotypical formulae as well as a secondary constriction in a large chromosome pair were found in all species. Fluorescent in situ hybridization (FISH) was used for physical mapping of 5S and 18S ribosomal DNA (rDNA). All species analyzed showed that 5S rDNA was located in both arms of a small chromosome pair, while 18S rDNA was associated with the secondary constriction of a large chromosome pair. Data of FISH analysis provides new information about the position and number of rDNA loci and helps for detection of hybrids in breeding programs as well as evolutionary studies.

  3. Mapping the structural and dynamical features of multiple p53 DNA binding domains: insights into loop 1 intrinsic dynamics.

    Directory of Open Access Journals (Sweden)

    Suryani Lukman

    Full Text Available The transcription factor p53 regulates cellular integrity in response to stress. p53 is mutated in more than half of cancerous cells, with a majority of the mutations localized to the DNA binding domain (DBD. In order to map the structural and dynamical features of the DBD, we carried out multiple copy molecular dynamics simulations (totaling 0.8 μs. Simulations show the loop 1 to be the most dynamic element among the DNA-contacting loops (loops 1-3. Loop 1 occupies two major conformational states: extended and recessed; the former but not the latter displays correlations in atomic fluctuations with those of loop 2 (~24 Å apart. Since loop 1 binds to the major groove whereas loop 2 binds to the minor groove of DNA, our results begin to provide some insight into the possible mechanism underpinning the cooperative nature of DBD binding to DNA. We propose (1 a novel mechanism underlying the dynamics of loop 1 and the possible tread-milling of p53 on DNA and (2 possible mutations on loop 1 residues to restore the transcriptional activity of an oncogenic mutation at a distant site.

  4. MAP kinase-signaling controls nuclear translocation of tripeptidyl-peptidase II in response to DNA damage and oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Preta, Giulio; Klark, Rainier de; Chakraborti, Shankhamala [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden); Glas, Rickard, E-mail: rickard.glas@ki.se [Center for Molecular Medicine (CMM), Department of Medicine, Karolinska Institutet, Karolinska University Hospital, 171 76 Stockholm (Sweden)

    2010-08-27

    Research highlights: {yields} Nuclear translocation of TPPII occurs in response to different DNA damage inducers. {yields} Nuclear accumulation of TPPII is linked to ROS and anti-oxidant enzyme levels. {yields} MAPKs control nuclear accumulation of TPPII. {yields} Inhibited nuclear accumulation of TPPII decreases DNA damage-induced {gamma}-H2AX expression. -- Abstract: Reactive oxygen species (ROS) are a continuous hazard in eukaroytic cells by their ability to cause damage to biomolecules, in particular to DNA. Previous data indicated that the cytosolic serine peptidase tripeptidyl-peptidase II (TPPII) translocates into the nucleus of most tumor cell lines in response to {gamma}-irradiation and ROS production; an event that promoted p53 expression as well as caspase-activation. We here observed that nuclear translocation of TPPII was dependent on signaling by MAP kinases, including p38MAPK. Further, this was caused by several types of DNA-damaging drugs, a DNA cross-linker (cisplatinum), an inhibitor of topoisomerase II (etoposide), and to some extent also by nucleoside-analogues (5-fluorouracil, hydroxyurea). In the minority of tumor cell lines where TPPII was not translocated into the nucleus in response to DNA damage we observed reduced intracellular ROS levels, and the expression levels of redox defense systems were increased. Further, treatment with the ROS-inducer {gamma}-hexa-chloro-cyclohexane ({gamma}-HCH, lindane), an inhibitor of GAP junctions, restored nuclear translocation of TPPII in these cell lines upon {gamma}-irradiation. Moreover, blocking nuclear translocation of TPPII in etoposide-treated cells, by using a peptide-derived inhibitor (Z-Gly-Leu-Ala-OH), attenuated expression of {gamma}-H2AX in {gamma}-irradiated melanoma cells. Our results indicated a role for TPPII in MAPK-dependent DNA damage signaling.

  5. Transcriptomic Profiling Reveals Complex Molecular Regulation in Cotton Genic Male Sterile Mutant Yu98-8A.

    Directory of Open Access Journals (Sweden)

    Weiping Fang

    Full Text Available Although cotton genic male sterility (GMS plays an important role in the utilization of hybrid vigor, its precise molecular mechanism remains unclear. To characterize the molecular events of pollen abortion, transcriptome analysis, combined with histological observations, was conducted in the cotton GMS line, Yu98-8A. A total of 2,412 genes were identified as significant differentially expressed genes (DEGs before and during the critical pollen abortion stages. Bioinformatics and biochemical analysis showed that the DEGs mainly associated with sugars and starch metabolism, oxidative phosphorylation, and plant endogenous hormones play a critical and complicated role in pollen abortion. These findings extend a better understanding of the molecular events involved in the regulation of pollen abortion in genic male sterile cotton, which may provide a foundation for further research studies on cotton heterosis breeding.

  6. Genes associated with thermosensitive genic male sterility in rice identified by comparative expression profiling.

    Science.gov (United States)

    Pan, Yufang; Li, Qiaofeng; Wang, Zhizheng; Wang, Yang; Ma, Rui; Zhu, Lili; He, Guangcun; Chen, Rongzhi

    2014-12-16

    Thermosensitive genic male sterile (TGMS) lines and photoperiod-sensitive genic male sterile (PGMS) lines have been successfully used in hybridization to improve rice yields. However, the molecular mechanisms underlying male sterility transitions in most PGMS/TGMS rice lines are unclear. In the recently developed TGMS-Co27 line, the male sterility is based on co-suppression of a UDP-glucose pyrophosphorylase gene (Ugp1), but further study is needed to fully elucidate the molecular mechanisms involved. Microarray-based transcriptome profiling of TGMS-Co27 and wild-type Hejiang 19 (H1493) plants grown at high and low temperatures revealed that 15462 probe sets representing 8303 genes were differentially expressed in the two lines, under the two conditions, or both. Environmental factors strongly affected global gene expression. Some genes important for pollen development were strongly repressed in TGMS-Co27 at high temperature. More significantly, series-cluster analysis of differentially expressed genes (DEGs) between TGMS-Co27 plants grown under the two conditions showed that low temperature induced the expression of a gene cluster. This cluster was found to be essential for sterility transition. It includes many meiosis stage-related genes that are probably important for thermosensitive male sterility in TGMS-Co27, inter alia: Arg/Ser-rich domain (RS)-containing zinc finger proteins, polypyrimidine tract-binding proteins (PTBs), DEAD/DEAH box RNA helicases, ZOS (C2H2 zinc finger proteins of Oryza sativa), at least one polyadenylate-binding protein and some other RNA recognition motif (RRM) domain-containing proteins involved in post-transcriptional processes, eukaryotic initiation factor 5B (eIF5B), ribosomal proteins (L37, L1p/L10e, L27 and L24), aminoacyl-tRNA synthetases (ARSs), eukaryotic elongation factor Tu (eEF-Tu) and a peptide chain release factor protein involved in translation. The differential expression of 12 DEGs that are important for pollen

  7. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression

    DEFF Research Database (Denmark)

    Li, Xin; Zhu, Jingde; Hu, Fengyi

    2012-01-01

    DNA methylation plays important biological roles in plants and animals. To examine the rice genomic methylation landscape and assess its functional significance, we generated single-base resolution DNA methylome maps for Asian cultivated rice Oryza sativa ssp. japonica, indica and their wild rela...

  8. A DNA minor groove electronegative potential genome map based on photo-chemical probing

    DEFF Research Database (Denmark)

    Lindemose, Søren; Nielsen, Peter Eigil; Hansen, Morten

    2011-01-01

    The double-stranded DNA of the genome contains both sequence information directly relating to the protein and RNA coding as well as functional and structural information relating to protein recognition. Only recently is the importance of DNA shape in this recognition process being fully appreciat...

  9. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution

    NARCIS (Netherlands)

    Falconer, Ester; Hills, Mark; Naumann, Ulrike; Poon, Steven S. S.; Chavez, Elizabeth A.; Sanders, Ashley D.; Zhao, Yongjun; Hirst, Martin; Lansdorp, Peter M.

    DNA rearrangements such as sister chromatid exchanges (SCEs) are sensitive indicators of genomic stress and instability, but they are typically masked by single-cell sequencing techniques. We developed Strand-seq to independently sequence parental DNA template strands from single cells, making it

  10. DNA Mapping Made Simple: An Intellectual Activity about the Genetic Modification of Organisms

    Science.gov (United States)

    Marques, Miguel; Arrabaca, Joao; Chagas, Isabel

    2004-01-01

    Since the discovery of the DNA double helix (in 1953 by Watson and Crick), technologies have been developed that allow scientists to manipulate the genome of bacteria to produce human hormones, as well as the genome of crop plants to achieve high yield and enhanced flavor. The universality of the genetic code has allowed DNA isolated from a…

  11. De novo Assembly, Characterization of Immature Seed Transcriptome and Development of Genic-SSR Markers in Black Gram [Vigna mungo (L. Hepper].

    Directory of Open Access Journals (Sweden)

    J Souframanien

    Full Text Available Black gram [V. mungo (L. Hepper] is an important legume crop extensively grown in south and south-east Asia, where it is a major source of dietary protein for its predominantly vegetarian population. However, lack of genomic information and markers has become a limitation for genetic improvement of this crop. Here, we report the transcriptome sequencing of the immature seeds of black gram cv. TU94-2, by Illumina paired end sequencing technology to generate transcriptome sequences for gene discovery and genic-SSR marker development. A total of 17.2 million paired-end reads were generated and 48,291 transcript contigs (TCS were assembled with an average length of 443 bp. Based on sequence similarity search, 33,766 TCS showed significant similarity to known proteins. Among these, only 29,564 TCS were annotated with gene ontology (GO functional categories. A total number of 138 unique KEGG (Kyoto Encyclopedia of Genes and Genomes pathways were identified, of which majority of TCS are grouped into purine metabolism (678 followed by pyrimidine metabolism (263. A total of 48,291 TCS were searched for SSRs and 1,840 SSRs were identified in 1,572 TCS with an average frequency of one SSR per 11.9 kb. The tri-nucleotide repeats were most abundant (35% followed by di-nucleotide repeats (32%. PCR primer pairs were successfully designed for 933 SSR loci. Sequences analyses indicate that about 64.4% and 35.6% of the SSR motifs were present in the coding sequences (CDS and untranslated regions (UTRs respectively. Tri-nucleotide repeats (57.3% were preferentially present in the CDS. The rate of successful amplification and polymorphism were investigated using selected primers among 18 black gram accessions. Genic-SSR markers developed from the Illumina paired end sequencing of black gram immature seed transcriptome will provide a valuable resource for genetic diversity, evolution, linkage mapping, comparative genomics and marker-assisted selection in black gram.

  12. De novo Assembly, Characterization of Immature Seed Transcriptome and Development of Genic-SSR Markers in Black Gram [Vigna mungo (L.) Hepper

    Science.gov (United States)

    Souframanien, J.; Reddy, Kandali Sreenivasulu

    2015-01-01

    Black gram [V. mungo (L.) Hepper] is an important legume crop extensively grown in south and south-east Asia, where it is a major source of dietary protein for its predominantly vegetarian population. However, lack of genomic information and markers has become a limitation for genetic improvement of this crop. Here, we report the transcriptome sequencing of the immature seeds of black gram cv. TU94-2, by Illumina paired end sequencing technology to generate transcriptome sequences for gene discovery and genic-SSR marker development. A total of 17.2 million paired-end reads were generated and 48,291 transcript contigs (TCS) were assembled with an average length of 443 bp. Based on sequence similarity search, 33,766 TCS showed significant similarity to known proteins. Among these, only 29,564 TCS were annotated with gene ontology (GO) functional categories. A total number of 138 unique KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were identified, of which majority of TCS are grouped into purine metabolism (678) followed by pyrimidine metabolism (263). A total of 48,291 TCS were searched for SSRs and 1,840 SSRs were identified in 1,572 TCS with an average frequency of one SSR per 11.9 kb. The tri-nucleotide repeats were most abundant (35%) followed by di-nucleotide repeats (32%). PCR primer pairs were successfully designed for 933 SSR loci. Sequences analyses indicate that about 64.4% and 35.6% of the SSR motifs were present in the coding sequences (CDS) and untranslated regions (UTRs) respectively. Tri-nucleotide repeats (57.3%) were preferentially present in the CDS. The rate of successful amplification and polymorphism were investigated using selected primers among 18 black gram accessions. Genic-SSR markers developed from the Illumina paired end sequencing of black gram immature seed transcriptome will provide a valuable resource for genetic diversity, evolution, linkage mapping, comparative genomics and marker-assisted selection in black gram. PMID

  13. Full-length cDNA sequences from Rhesus monkey placenta tissue: analysis and utility for comparative mapping

    Directory of Open Access Journals (Sweden)

    Lee Sang-Rae

    2010-07-01

    Full Text Available Abstract Background Rhesus monkeys (Macaca mulatta are widely-used as experimental animals in biomedical research and are closely related to other laboratory macaques, such as cynomolgus monkeys (Macaca fascicularis, and to humans, sharing a last common ancestor from about 25 million years ago. Although rhesus monkeys have been studied extensively under field and laboratory conditions, research has been limited by the lack of genetic resources. The present study generated placenta full-length cDNA libraries, characterized the resulting expressed sequence tags, and described their utility for comparative mapping with human RefSeq mRNA transcripts. Results From rhesus monkey placenta full-length cDNA libraries, 2000 full-length cDNA sequences were determined and 1835 rhesus placenta cDNA sequences longer than 100 bp were collected. These sequences were annotated based on homology to human genes. Homology search against human RefSeq mRNAs revealed that our collection included the sequences of 1462 putative rhesus monkey genes. Moreover, we identified 207 genes containing exon alterations in the coding region and the untranslated region of rhesus monkey transcripts, despite the highly conserved structure of the coding regions. Approximately 10% (187 of all full-length cDNA sequences did not represent any public human RefSeq mRNAs. Intriguingly, two rhesus monkey specific exons derived from the transposable elements of AluYRa2 (SINE family and MER11B (LTR family were also identified. Conclusion The 1835 rhesus monkey placenta full-length cDNA sequences described here could expand genomic resources and information of rhesus monkeys. This increased genomic information will greatly contribute to the development of evolutionary biology and biomedical research.

  14. Fine resolution mapping of double-strand break sites for human ribosomal DNA units

    Directory of Open Access Journals (Sweden)

    Bernard J. Pope

    2016-12-01

    Full Text Available DNA breakage arises during a variety of biological processes, including transcription, replication and genome rearrangements. In the context of disease, extensive fragmentation of DNA has been described in cancer cells and during early stages of neurodegeneration (Stephens et al., 2011 Stephens et al. (2011 [5]; Blondet et al., 2001 Blondet et al. (2001 [1]. Stults et al. (2009 Stults et al. (2009 [6] reported that human rDNA gene clusters are hotspots for recombination and that rDNA restructuring is among the most common chromosomal alterations in adult solid tumours. As such, analysis of rDNA regions is likely to have significant prognostic and predictive value, clinically. Tchurikov et al. (2015a, 2016 Tchurikov et al. (2015a, 2016 [7,9] have made major advances in this direction, reporting that sites of human genome double-strand breaks (DSBs occur frequently at sites in rDNA that are tightly linked with active transcription - the authors used a RAFT (rapid amplification of forum termini protocol that selects for blunt-ended sites. They reported the relative frequency of these rDNA DSBs within defined co-ordinate ‘windows’ of varying size and made these data (as well as the relevant ‘raw’ sequencing information available to the public (Tchurikov et al., 2015b. Assay designs targeting rDNA DSB hotspots will benefit greatly from the publication of break sites at greater resolution. Here, we re-analyse public RAFT data and make available rDNA DSB co-ordinates to the single-nucleotide level.

  15. Phenology, sterility and inheritance of two environment genic male sterile (EGMS) lines for hybrid rice.

    Science.gov (United States)

    El-Namaky, R; van Oort, P A J

    2017-12-01

    There is still limited quantitative understanding of how environmental factors affect sterility of Environment-conditioned genic male sterility (EGMS) lines. A model was developed for this purpose and tested based on experimental data from Ndiaye (Senegal) in 2013-2015. For the two EGMS lines tested here, it was not clear if one or more recessive gene(s) were causing male sterility. This was tested by studying sterility segregation of the F2 populations. Daylength (photoperiod) and minimum temperatures during the period from panicle initiation to flowering had significant effects on male sterility. Results clearly showed that only one recessive gene was involved in causing male sterility. The model was applied to determine the set of sowing dates of two different EGMS lines such that both would flower at the same time the pollen would be completely sterile. In the same time the local popular variety (Sahel 108, the male pollen donor) being sufficiently fertile to produce the hybrid seeds. The model was applied to investigate the viability of the two line breeding system in the same location with climate change (+2oC) and in two other potential locations: in M'Be in Ivory Coast and in the Nile delta in Egypt. Apart from giving new insights in the relation between environment and EGMS, this study shows that these insights can be used to assess safe sowing windows and assess the suitability of sterility and fertility period of different environments for a two line hybrid rice production system.

  16. DNA Physical Mapping via the Controlled Translocation of Single Molecules through a 5-10nm Silicon Nitride Nanopore

    Science.gov (United States)

    Stein, Derek; Reisner, Walter; Jiang, Zhijun; Hagerty, Nick; Wood, Charles; Chan, Jason

    2009-03-01

    The ability to map the binding position of sequence-specific markers, including transcription-factors, protein-nucleic acids (PNAs) or deactivated restriction enzymes, along a single DNA molecule in a nanofluidic device would be of key importance for the life-sciences. Such markers could give an indication of the active genes at particular stage in a cell's transcriptional cycle, pinpoint the location of mutations or even provide a DNA barcode that could aid in genomics applications. We have developed a setup consisting of a 5-10 nm nanopore in a 20nm thick silicon nitride film coupled to an optical tweezer setup. The translocation of DNA across the nanopore can be detected via blockades in the electrical current through the pore. By anchoring one end of the translocating DNA to an optically trapped microsphere, we hope to stretch out the molecule in the nanopore and control the translocation speed, enabling us to slowly scan across the genome and detect changes in the baseline current due to the presence of bound markers.

  17. Clustering self-organizing maps (SOM) method for human papillomavirus (HPV) DNA as the main cause of cervical cancer disease

    Science.gov (United States)

    Bustamam, A.; Aldila, D.; Fatimah, Arimbi, M. D.

    2017-07-01

    One of the most widely used clustering method, since it has advantage on its robustness, is Self-Organizing Maps (SOM) method. This paper discusses the application of SOM method on Human Papillomavirus (HPV) DNA which is the main cause of cervical cancer disease, the most dangerous cancer in developing countries. We use 18 types of HPV DNA-based on the newest complete genome. By using open-source-based program R, clustering process can separate 18 types of HPV into two different clusters. There are two types of HPV in the first cluster while 16 others in the second cluster. The analyzing result of 18 types HPV based on the malignancy of the virus (the difficultness to cure). Two of HPV types the first cluster can be classified as tame HPV, while 16 others in the second cluster are classified as vicious HPV.

  18. Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification.

    Science.gov (United States)

    Liu, Jie; Milne, Richard I; Möller, Michael; Zhu, Guang-Fu; Ye, Lin-Jiang; Luo, Ya-Huang; Yang, Jun-Bo; Wambulwa, Moses Cheloti; Wang, Chun-Neng; Li, De-Zhu; Gao, Lian-Ming

    2018-05-22

    Rapid and accurate identification of endangered species is a critical component of bio-surveillance and conservation management, and potentially policing illegal trades. However, this is often not possible using traditional taxonomy, especially where only small or pre-processed parts of plants are available. Reliable identification can be achieved via a comprehensive DNA barcode reference library, accompanied by precise distribution data. However, these require extensive sampling at spatial and taxonomic scales, which has rarely been achieved for cosmopolitan taxa. Here we construct a comprehensive DNA barcode reference library, and generate distribution maps using species distribution modeling (SDM), for all 15 Taxus species worldwide. We find that trnL-trnF is the ideal barcode for Taxus: it can distinguish all Taxus species, and in combination with ITS identify hybrids. Among five analysis methods tested, NJ was the most effective. Among 4151 individuals screened for trnL-trnF, 73 haplotypes were detected, all species-specific and some population private. Taxonomical, geographical and genetic dimensions of sampling strategy were all found to affect the comprehensiveness of the resulting DNA barcode library. Maps from SDM showed that most species had allopatric distributions, except three in the Sino-Himalayan region. Using the barcode library and distribution map data, two unknown forensic samples were identified to species (and in one case, population) level, and another was determined as a putative interspecific hybrid. This integrated species identification system for Taxus can be used for bio-surveillance, conservation management and to monitor and prosecute illegal trade. Similar identification systems are recommended for other IUCN- and -CITES listed taxa. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Mouse tetranectin: cDNA sequence, tissue-specific expression, and chromosomal mapping

    DEFF Research Database (Denmark)

    Ibaraki, K; Kozak, C A; Wewer, U M

    1995-01-01

    regulation, mouse tetranectin cDNA was cloned from a 16-day-old mouse embryo library. Sequence analysis revealed a 992-bp cDNA with an open reading frame of 606 bp, which is identical in length to the human tetranectin cDNA. The deduced amino acid sequence showed high homology to the human cDNA with 76......(s) of tetranectin. The sequence analysis revealed a difference in both sequence and size of the noncoding regions between mouse and human cDNAs. Northern analysis of the various tissues from mouse, rat, and cow showed the major transcript(s) to be approximately 1 kb, which is similar in size to that observed...

  20. Mapping of 34 minisatellite loci resolved by two-dimensional DNA typing

    DEFF Research Database (Denmark)

    Børglum, Anders; Nyegaard, Mette; Kvistgaard, AB

    1997-01-01

    Two-dimensional (2-D) DNA typing is based on electrophoretic separation of genomic DNA fragments in two dimensions according to independent criteria (size and base-pair sequence), followed by hybridization analysis using multilocus probes. The technique allows simultaneous visualization of several...... could be deduced, showing no evidence of clustering. In the analysis of spot patterns, use was made of a computerized image analysis system specifically designed for 2-D DNA typing. Since experimental variations between different separation patterns were automatically corrected for with this program......, rapid and reliable scorings could be obtained. The results presented demonstrate the availability of reliable genetic information throughout the 2-D separation pattern. Adding the use of semiautomated computerized pattern analysis, this study further substantiates the applicability of 2-D DNA typing...

  1. Molecular Cytogenetic Mapping of Satellite DNA Sequences in Aegilops geniculata and Wheat

    Czech Academy of Sciences Publication Activity Database

    Koo, D.H.; Tiwari, V.K.; Hřibová, Eva; Doležel, Jaroslav; Friebe, B.; Gill, B.S.

    2016-01-01

    Roč. 148, č. 4 (2016), s. 314-321 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : in-situ hybridization * chromosome addition lines * resistance genes lr57 * repetitive dna * triticum-ovatum * powdery mildew * plant genome * bread wheat * leaf rust * identification * Aegilops geniculata * Chromosome identification * Fluorescence in situ hybridization * Satellite DNA * Wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.354, year: 2016

  2. OligoHeatMap (OHM): an online tool to estimate and display hybridizations of oligonucleotides onto DNA sequences.

    Science.gov (United States)

    Croce, Olivier; Chevenet, François; Christen, Richard

    2008-07-01

    The efficiency of molecular methods involving DNA/DNA hybridizations depends on the accurate prediction of the melting temperature (T(m)) of the duplex. Many softwares are available for T(m) calculations, but difficulties arise when one wishes to check if a given oligomer (PCR primer or probe) hybridizes well or not on more than a single sequence. Moreover, the presence of mismatches within the duplex is not sufficient to estimate specificity as it does not always significantly decrease the T(m). OHM (OligoHeatMap) is an online tool able to provide estimates of T(m) for a set of oligomers and a set of aligned sequences, not only as text files of complete results but also in a graphical way: T(m) values are translated into colors and displayed as a heat map image, either stand alone or to be used by softwares such as TreeDyn to be included in a phylogenetic tree. OHM is freely available at http://bioinfo.unice.fr/ohm/, with links to the full source code and online help.

  3. Quantification and genome-wide mapping of DNA double-strand breaks.

    Science.gov (United States)

    Grégoire, Marie-Chantal; Massonneau, Julien; Leduc, Frédéric; Arguin, Mélina; Brazeau, Marc-André; Boissonneault, Guylain

    2016-12-01

    DNA double-strand breaks (DSBs) represent a major threat to the genetic integrity of the cell. Knowing both their genome-wide distribution and number is important for a better assessment of genotoxicity at a molecular level. Available methods may have underestimated the extent of DSBs as they are based on markers specific to those undergoing active repair or may not be adapted for the large diversity of naturally occurring DNA ends. We have established conditions for an efficient first step of DNA nick and gap repair (NGR) allowing specific determination of DSBs by end labeling with terminal transferase. We used DNA extracted from HeLa cells harboring an I-SceI cassette to induce a targeted nick or DSB and demonstrated by immunocapture of 3'-OH that a prior step of NGR allows specific determination of loci-specific or genome wide DSBs. This method can be applied to the global determination of DSBs using radioactive end labeling and can find several applications aimed at understanding the distribution and kinetics of DSBs formation and repair. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Identification of two new repetitive elements and chromosomal mapping of repetitive DNA sequences in the fish Gymnothorax unicolor (Anguilliformes: Muraenidae

    Directory of Open Access Journals (Sweden)

    E. Coluccia

    2011-05-01

    Full Text Available Muraenidae is a species-rich family, with relationships among genera and species and taxonomy that have not been completely clarified. Few cytogenetic studies have been conducted on this family, and all of them showed the same diploid chromosome number (2n=42 but with conspicuous karyotypic variation among species. The Mediterranean moray eel Gymnothorax unicolor was previously cytogenetically studied using classical techniques that allowed the characterization of its karyotype structure and the constitutive heterochromatin and argyrophilic nucleolar organizer regions (Ag-NORs distribution pattern. In the present study, we describe two new repetitive elements (called GuMboI and GuDdeI obtained from restricted genomic DNA of G. unicolor that were characterized by Southern blot and physically localized by in situ hybridization on metaphase chromosomes. As they are highly repetitive DNA sequences, they map in heterochromatic regions. However, while GuDdeI was localized in the centromeric regions, the GuMboI fraction was distributed on some centromeres and was co-localized with the nucleolus organizer region (NOR. Comparative analysis with other Mediterranean species such as Muraena helena pointed out that these DNA fractions are species-specific and could potentially be used for species discrimination. As a new contribution to the karyotype of this species, we found that the major ribosomal genes are localized on acrocentric chromosome 9 and that the telomeres of each chromosome are composed of a tandem repeat derived from a poly-TTAGGG DNA sequence, as it occurs in most vertebrate species. The results obtained add new information useful in comparative genomics at the chromosomal level and contribute to the cytogenetic knowledge regarding this fish family, which has not been extensively studied.

  5. Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L Walp.

    Directory of Open Access Journals (Sweden)

    Ehlers Jeffrey D

    2011-01-01

    Full Text Available Abstract Background Macrophomina phaseolina is an emerging and devastating fungal pathogen that causes significant losses in crop production under high temperatures and drought stress. An increasing number of disease incidence reports highlight the wide prevalence of the pathogen around the world and its contribution toward crop yield suppression. In cowpea [Vigna unguiculata (L Walp.], limited sources of low-level host resistance have been identified, the genetic basis of which is unknown. In this study we report on the identification of strong sources of host resistance to M. phaseolina and the genetic mapping of putative resistance loci on a cowpea genetic map comprised of gene-derived single nucleotide polymorphisms (SNPs and amplified fragment length polymorphisms (AFLPs. Results Nine quantitative trait loci (QTLs, accounting for between 6.1 and 40.0% of the phenotypic variance (R2, were identified using plant mortality data taken over three years in field experiments and disease severity scores taken from two greenhouse experiments. Based on annotated genic SNPs as well as synteny with soybean (Glycine max and Medicago truncatula, candidate resistance genes were found within mapped QTL intervals. QTL Mac-2 explained the largest percent R2 and was identified in three field and one greenhouse experiments where the QTL peak co-located with a SNP marker derived from a pectin esterase inhibitor encoding gene. Maturity effects on the expression of resistance were indicated by the co-location of Mac-6 and Mac-7 QTLs with maturity-related senescence QTLs Mat-2 and Mat-1, respectively. Homologs of the ELF4 and FLK flowering genes were found in corresponding syntenic soybean regions. Only three Macrophomina resistance QTLs co-located with delayed drought-induced premature senescence QTLs previously mapped in the same population, suggesting that largely different genetic mechanisms mediate cowpea response to drought stress and Macrophomina infection

  6. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley

    Czech Academy of Sciences Publication Activity Database

    Šimková, Hana; Svensson, J.T.; Condamine, P.; Hřibová, Eva; Suchánková, Pavla; Bhat, P.R.; Bartoš, Jan; Šafář, Jan; Close, T.J.; Doležel, Jaroslav

    2008-01-01

    Roč. 9, č. 294 (2008), s. 1-9 ISSN 1471-2164 R&D Projects: GA ČR GD521/05/H013; GA MŠk ME 884; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : Flow cytometry * DNA amplification * Hordeum vulgare L. Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.926, year: 2008

  7. Toward allotetraploid cotton genome assembly: integration of a high-density molecular genetic linkage map with DNA sequence information

    Science.gov (United States)

    2012-01-01

    Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource

  8. GRIM-Filter: Fast seed location filtering in DNA read mapping using processing-in-memory technologies.

    Science.gov (United States)

    Kim, Jeremie S; Senol Cali, Damla; Xin, Hongyi; Lee, Donghyuk; Ghose, Saugata; Alser, Mohammed; Hassan, Hasan; Ergin, Oguz; Alkan, Can; Mutlu, Onur

    2018-05-09

    Seed location filtering is critical in DNA read mapping, a process where billions of DNA fragments (reads) sampled from a donor are mapped onto a reference genome to identify genomic variants of the donor. State-of-the-art read mappers 1) quickly generate possible mapping locations for seeds (i.e., smaller segments) within each read, 2) extract reference sequences at each of the mapping locations, and 3) check similarity between each read and its associated reference sequences with a computationally-expensive algorithm (i.e., sequence alignment) to determine the origin of the read. A seed location filter comes into play before alignment, discarding seed locations that alignment would deem a poor match. The ideal seed location filter would discard all poor match locations prior to alignment such that there is no wasted computation on unnecessary alignments. We propose a novel seed location filtering algorithm, GRIM-Filter, optimized to exploit 3D-stacked memory systems that integrate computation within a logic layer stacked under memory layers, to perform processing-in-memory (PIM). GRIM-Filter quickly filters seed locations by 1) introducing a new representation of coarse-grained segments of the reference genome, and 2) using massively-parallel in-memory operations to identify read presence within each coarse-grained segment. Our evaluations show that for a sequence alignment error tolerance of 0.05, GRIM-Filter 1) reduces the false negative rate of filtering by 5.59x-6.41x, and 2) provides an end-to-end read mapper speedup of 1.81x-3.65x, compared to a state-of-the-art read mapper employing the best previous seed location filtering algorithm. GRIM-Filter exploits 3D-stacked memory, which enables the efficient use of processing-in-memory, to overcome the memory bandwidth bottleneck in seed location filtering. We show that GRIM-Filter significantly improves the performance of a state-of-the-art read mapper. GRIM-Filter is a universal seed location filter that can be

  9. Admixture analysis of stocked brown trout populations using mapped microsatellite DNA markers: indigenous trout persist in introgressed populations

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Mensberg, Karen-Lise Dons

    2009-01-01

    , but resolution is low if genetic differentiation is weak. Here, we analyse stocked brown trout populations represented by historical (1943-1956) and contemporary (2000s) samples, where genetic differentiation between wild populations and stocked trout is weak (pair-wise F-ST of 0.047 and 0.053). By analysing...... a high number of microsatellite DNA markers (50) and making use of linkage map information, we achieve clear identification of admixed and non-admixed trout. Moreover, despite strong population-level admixture by hatchery strain trout in one of the populations (70.8%), non-admixed individuals...... nevertheless persist (7 out of 53 individuals). These remnants of the indigenous population are characterized by later spawning time than the majority of the admixed individuals. We hypothesize that isolation by time mediated by spawning time differences between wild and hatchery strain trout is a major factor...

  10. Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains

    Directory of Open Access Journals (Sweden)

    Bharti Arvind K

    2008-12-01

    Full Text Available Abstract Background Many plant genomes are resistant to whole-genome assembly due to an abundance of repetitive sequence, leading to the development of gene-rich sequencing techniques. Two such techniques are hypomethylated partial restriction (HMPR and methylation spanning linker libraries (MSLL. These libraries differ from other gene-rich datasets in having larger insert sizes, and the MSLL clones are designed to provide reads localized to "epigenetic boundaries" where methylation begins or ends. Results A large-scale study in maize generated 40,299 HMPR sequences and 80,723 MSLL sequences, including MSLL clones exceeding 100 kb. The paired end reads of MSLL and HMPR clones were shown to be effective in linking existing gene-rich sequences into scaffolds. In addition, it was shown that the MSLL clones can be used for anchoring these scaffolds to a BAC-based physical map. The MSLL end reads effectively identified epigenetic boundaries, as indicated by their preferential alignment to regions upstream and downstream from annotated genes. The ability to precisely map long stretches of fully methylated DNA sequence is a unique outcome of MSLL analysis, and was also shown to provide evidence for errors in gene identification. MSLL clones were observed to be significantly more repeat-rich in their interiors than in their end reads, confirming the correlation between methylation and retroelement content. Both MSLL and HMPR reads were found to be substantially gene-enriched, with the SalI MSLL libraries being the most highly enriched (31% align to an EST contig, while the HMPR clones exhibited exceptional depletion of repetitive DNA (to ~11%. These two techniques were compared with other gene-enrichment methods, and shown to be complementary. Conclusion MSLL technology provides an unparalleled approach for mapping the epigenetic status of repetitive blocks and for identifying sequences mis-identified as genes. Although the types and natures of

  11. DNA sequencing conference, 2

    Energy Technology Data Exchange (ETDEWEB)

    Cook-Deegan, R.M. [Georgetown Univ., Kennedy Inst. of Ethics, Washington, DC (United States); Venter, J.C. [National Inst. of Neurological Disorders and Strokes, Bethesda, MD (United States); Gilbert, W. [Harvard Univ., Cambridge, MA (United States); Mulligan, J. [Stanford Univ., CA (United States); Mansfield, B.K. [Oak Ridge National Lab., TN (United States)

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  12. Mapping biodiversity and setting conservation priorities for SE Queensland's rainforests using DNA barcoding.

    Science.gov (United States)

    Shapcott, Alison; Forster, Paul I; Guymer, Gordon P; McDonald, William J F; Faith, Daniel P; Erickson, David; Kress, W John

    2015-01-01

    Australian rainforests have been fragmented due to past climatic changes and more recently landscape change as a result of clearing for agriculture and urban spread. The subtropical rainforests of South Eastern Queensland are significantly more fragmented than the tropical World Heritage listed northern rainforests and are subject to much greater human population pressures. The Australian rainforest flora is relatively taxonomically rich at the family level, but less so at the species level. Current methods to assess biodiversity based on species numbers fail to adequately capture this richness at higher taxonomic levels. We developed a DNA barcode library for the SE Queensland rainforest flora to support a methodology for biodiversity assessment that incorporates both taxonomic diversity and phylogenetic relationships. We placed our SE Queensland phylogeny based on a three marker DNA barcode within a larger international rainforest barcode library and used this to calculate phylogenetic diversity (PD). We compared phylo- diversity measures, species composition and richness and ecosystem diversity of the SE Queensland rainforest estate to identify which bio subregions contain the greatest rainforest biodiversity, subregion relationships and their level of protection. We identified areas of highest conservation priority. Diversity was not correlated with rainforest area in SE Queensland subregions but PD was correlated with both the percent of the subregion occupied by rainforest and the diversity of regional ecosystems (RE) present. The patterns of species diversity and phylogenetic diversity suggest a strong influence of historical biogeography. Some subregions contain significantly more PD than expected by chance, consistent with the concept of refugia, while others were significantly phylogenetically clustered, consistent with recent range expansions.

  13. Mapping Biodiversity and Setting Conservation Priorities for SE Queensland’s Rainforests Using DNA Barcoding

    Science.gov (United States)

    Shapcott, Alison; Forster, Paul I.; Guymer, Gordon P.; McDonald, William J. F.; Faith, Daniel P.; Erickson, David; Kress, W. John

    2015-01-01

    Australian rainforests have been fragmented due to past climatic changes and more recently landscape change as a result of clearing for agriculture and urban spread. The subtropical rainforests of South Eastern Queensland are significantly more fragmented than the tropical World Heritage listed northern rainforests and are subject to much greater human population pressures. The Australian rainforest flora is relatively taxonomically rich at the family level, but less so at the species level. Current methods to assess biodiversity based on species numbers fail to adequately capture this richness at higher taxonomic levels. We developed a DNA barcode library for the SE Queensland rainforest flora to support a methodology for biodiversity assessment that incorporates both taxonomic diversity and phylogenetic relationships. We placed our SE Queensland phylogeny based on a three marker DNA barcode within a larger international rainforest barcode library and used this to calculate phylogenetic diversity (PD). We compared phylo- diversity measures, species composition and richness and ecosystem diversity of the SE Queensland rainforest estate to identify which bio subregions contain the greatest rainforest biodiversity, subregion relationships and their level of protection. We identified areas of highest conservation priority. Diversity was not correlated with rainforest area in SE Queensland subregions but PD was correlated with both the percent of the subregion occupied by rainforest and the diversity of regional ecosystems (RE) present. The patterns of species diversity and phylogenetic diversity suggest a strong influence of historical biogeography. Some subregions contain significantly more PD than expected by chance, consistent with the concept of refugia, while others were significantly phylogenetically clustered, consistent with recent range expansions. PMID:25803607

  14. Karyotypes, heterochromatin, and physical mapping of 18S-26S rDNA in Cactaceae.

    Science.gov (United States)

    Las Peñas, M L; Urdampilleta, J D; Bernardello, G; Forni-Martins, E R

    2009-01-01

    Karyotype analyses in members of the four Cactaceae subfamilies were performed. Numbers and karyotype formula obtained were: Pereskioideae = Pereskiaaculeata(2n = 22; 10 m + 1 sm), Maihuenioideae = Maihuenia patagonica (2n = 22, 9 m + 2 sm; 2n = 44, 18 m + 4 sm), Opuntioideae = Cumulopuntia recurvata(2n = 44; 20 m + 2 sm), Cactoideae = Acanthocalycium spiniflorum (2n = 22; 10 m + 1 sm),Echinopsis tubiflora (2n = 22; 10 m + 1 sm), Trichocereus candicans (2n = 22, 22 m). Chromosomes were small, the average chromosome length was 2.3 mum. Diploid species and the tetraploid C. recurvata had one terminal satellite, whereas the remaining tetraploid species showed four satellited chromosomes. Karyotypes were symmetrical. No CMA(-)/DAPI(+) bands were detected, but CMA(+)/DAPI(-) bands associated with NOR were always found. Pericentromeric heterochromatin was found in C. recurvata, A. spiniflorum, and the tetraploid cytotype of M. patagonica. The locations of the 18S-26S rDNA sites in all species coincided with CMA(+)/DAPI(-) bands; the same occurred with the sizes and numbers of signals for each species. This technique was applied for the first time in metaphase chromosomes in cacti. NOR-bearing pair no.1 may be homeologous in all species examined. In Cactaceae, the 18S-26S loci seem to be highly conserved. Copyright 2009 S. Karger AG, Basel.

  15. A transcriptome map of perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Studer Bruno

    2012-04-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are increasingly becoming the DNA marker system of choice due to their prevalence in the genome and their ability to be used in highly multiplexed genotyping assays. Although needed in high numbers for genome-wide marker profiles and genomics-assisted breeding, a surprisingly low number of validated SNPs are currently available for perennial ryegrass. Results A perennial ryegrass unigene set representing 9,399 genes was used as a reference for the assembly of 802,156 high quality reads generated by 454 transcriptome sequencing and for in silico SNP discovery. Out of more than 15,433 SNPs in 1,778 unigenes fulfilling highly stringent assembly and detection parameters, a total of 768 SNP markers were selected for GoldenGate genotyping in 184 individuals of the perennial ryegrass mapping population VrnA, a population being previously evaluated for important agronomic traits. A total of 592 (77% of the SNPs tested were successfully called with a cluster separation above 0.9. Of these, 509 (86% genic SNP markers segregated in the VrnA mapping population, out of which 495 were assigned to map positions. The genetic linkage map presented here comprises a total of 838 DNA markers (767 gene-derived markers and spans 750 centi Mogan (cM with an average marker interval distance of less than 0.9 cM. Moreover, it locates 732 expressed genes involved in a broad range of molecular functions of different biological processes in the perennial ryegrass genome. Conclusions Here, we present an efficient approach of using next generation sequencing (NGS data for SNP discovery, and the successful design of a 768-plex Illumina GoldenGate genotyping assay in a complex genome. The ryegrass SNPs along with the corresponding transcribed sequences represent a milestone in the establishment of genetic and genomics resources available for this species and constitute a further step towards molecular breeding

  16. Discovery of possible gene relationships through the application of self-organizing maps to DNA microarray databases.

    Science.gov (United States)

    Chavez-Alvarez, Rocio; Chavoya, Arturo; Mendez-Vazquez, Andres

    2014-01-01

    DNA microarrays and cell cycle synchronization experiments have made possible the study of the mechanisms of cell cycle regulation of Saccharomyces cerevisiae by simultaneously monitoring the expression levels of thousands of genes at specific time points. On the other hand, pattern recognition techniques can contribute to the analysis of such massive measurements, providing a model of gene expression level evolution through the cell cycle process. In this paper, we propose the use of one of such techniques--an unsupervised artificial neural network called a Self-Organizing Map (SOM)-which has been successfully applied to processes involving very noisy signals, classifying and organizing them, and assisting in the discovery of behavior patterns without requiring prior knowledge about the process under analysis. As a test bed for the use of SOMs in finding possible relationships among genes and their possible contribution in some biological processes, we selected 282 S. cerevisiae genes that have been shown through biological experiments to have an activity during the cell cycle. The expression level of these genes was analyzed in five of the most cited time series DNA microarray databases used in the study of the cell cycle of this organism. With the use of SOM, it was possible to find clusters of genes with similar behavior in the five databases along two cell cycles. This result suggested that some of these genes might be biologically related or might have a regulatory relationship, as was corroborated by comparing some of the clusters obtained with SOMs against a previously reported regulatory network that was generated using biological knowledge, such as protein-protein interactions, gene expression levels, metabolism dynamics, promoter binding, and modification, regulation and transport of proteins. The methodology described in this paper could be applied to the study of gene relationships of other biological processes in different organisms.

  17. GateKeeper: a new hardware architecture for accelerating pre-alignment in DNA short read mapping.

    Science.gov (United States)

    Alser, Mohammed; Hassan, Hasan; Xin, Hongyi; Ergin, Oguz; Mutlu, Onur; Alkan, Can

    2017-11-01

    High throughput DNA sequencing (HTS) technologies generate an excessive number of small DNA segments -called short reads- that cause significant computational burden. To analyze the entire genome, each of the billions of short reads must be mapped to a reference genome based on the similarity between a read and 'candidate' locations in that reference genome. The similarity measurement, called alignment, formulated as an approximate string matching problem, is the computational bottleneck because: (i) it is implemented using quadratic-time dynamic programming algorithms and (ii) the majority of candidate locations in the reference genome do not align with a given read due to high dissimilarity. Calculating the alignment of such incorrect candidate locations consumes an overwhelming majority of a modern read mapper's execution time. Therefore, it is crucial to develop a fast and effective filter that can detect incorrect candidate locations and eliminate them before invoking computationally costly alignment algorithms. We propose GateKeeper, a new hardware accelerator that functions as a pre-alignment step that quickly filters out most incorrect candidate locations. GateKeeper is the first design to accelerate pre-alignment using Field-Programmable Gate Arrays (FPGAs), which can perform pre-alignment much faster than software. When implemented on a single FPGA chip, GateKeeper maintains high accuracy (on average >96%) while providing, on average, 90-fold and 130-fold speedup over the state-of-the-art software pre-alignment techniques, Adjacency Filter and Shifted Hamming Distance (SHD), respectively. The addition of GateKeeper as a pre-alignment step can reduce the verification time of the mrFAST mapper by a factor of 10. https://github.com/BilkentCompGen/GateKeeper. mohammedalser@bilkent.edu.tr or onur.mutlu@inf.ethz.ch or calkan@cs.bilkent.edu.tr. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press

  18. XenDB: Full length cDNA prediction and cross species mapping in Xenopus laevis

    Directory of Open Access Journals (Sweden)

    Giegerich Robert

    2005-09-01

    Full Text Available Abstract Background Research using the model system Xenopus laevis has provided critical insights into the mechanisms of early vertebrate development and cell biology. Large scale sequencing efforts have provided an increasingly important resource for researchers. To provide full advantage of the available sequence, we have analyzed 350,468 Xenopus laevis Expressed Sequence Tags (ESTs both to identify full length protein encoding sequences and to develop a unique database system to support comparative approaches between X. laevis and other model systems. Description Using a suffix array based clustering approach, we have identified 25,971 clusters and 40,877 singleton sequences. Generation of a consensus sequence for each cluster resulted in 31,353 tentative contig and 4,801 singleton sequences. Using both BLASTX and FASTY comparison to five model organisms and the NR protein database, more than 15,000 sequences are predicted to encode full length proteins and these have been matched to publicly available IMAGE clones when available. Each sequence has been compared to the KOG database and ~67% of the sequences have been assigned a putative functional category. Based on sequence homology to mouse and human, putative GO annotations have been determined. Conclusion The results of the analysis have been stored in a publicly available database XenDB http://bibiserv.techfak.uni-bielefeld.de/xendb/. A unique capability of the database is the ability to batch upload cross species queries to identify potential Xenopus homologues and their associated full length clones. Examples are provided including mapping of microarray results and application of 'in silico' analysis. The ability to quickly translate the results of various species into 'Xenopus-centric' information should greatly enhance comparative embryological approaches. Supplementary material can be found at http://bibiserv.techfak.uni-bielefeld.de/xendb/.

  19. Intra-genomic GC heterogeneity in sauropsids: evolutionary insights from cDNA mapping and GC3 profiling in snake

    Science.gov (United States)

    2012-01-01

    Background Extant sauropsids (reptiles and birds) are divided into two major lineages, the lineage of Testudines (turtles) and Archosauria (crocodilians and birds) and the lineage of Lepidosauria (tuatara, lizards, worm lizards and snakes). Karyotypes of these sauropsidan groups generally consist of macrochromosomes and microchromosomes. In chicken, microchromosomes exhibit a higher GC-content than macrochromosomes. To examine the pattern of intra-genomic GC heterogeneity in lepidosaurian genomes, we constructed a cytogenetic map of the Japanese four-striped rat snake (Elaphe quadrivirgata) with 183 cDNA clones by fluorescence in situ hybridization, and examined the correlation between the GC-content of exonic third codon positions (GC3) of the genes and the size of chromosomes on which the genes were localized. Results Although GC3 distribution of snake genes was relatively homogeneous compared with those of the other amniotes, microchromosomal genes showed significantly higher GC3 than macrochromosomal genes as in chicken. Our snake cytogenetic map also identified several conserved segments between the snake macrochromosomes and the chicken microchromosomes. Cross-species comparisons revealed that GC3 of most snake orthologs in such macrochromosomal segments were GC-poor (GC3 < 50%) whereas those of chicken orthologs in microchromosomes were relatively GC-rich (GC3 ≥ 50%). Conclusion Our results suggest that the chromosome size-dependent GC heterogeneity had already occurred before the lepidosaur-archosaur split, 275 million years ago. This character was probably present in the common ancestor of lepidosaurs and but lost in the lineage leading to Anolis during the diversification of lepidosaurs. We also identified several genes whose GC-content might have been influenced by the size of the chromosomes on which they were harbored over the course of sauropsid evolution. PMID:23140509

  20. Brickworx builds recurrent RNA and DNA structural motifs into medium- and low-resolution electron-density maps

    Energy Technology Data Exchange (ETDEWEB)

    Chojnowski, Grzegorz, E-mail: gchojnowski@genesilico.pl [International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw (Poland); Waleń, Tomasz [International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw (Poland); University of Warsaw, Banacha 2, 02-097 Warsaw (Poland); Piątkowski, Paweł; Potrzebowski, Wojciech [International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw (Poland); Bujnicki, Janusz M. [International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw (Poland); Adam Mickiewicz University, Umultowska 89, 61-614 Poznan (Poland)

    2015-03-01

    A computer program that builds crystal structure models of nucleic acid molecules is presented. Brickworx is a computer program that builds crystal structure models of nucleic acid molecules using recurrent motifs including double-stranded helices. In a first step, the program searches for electron-density peaks that may correspond to phosphate groups; it may also take into account phosphate-group positions provided by the user. Subsequently, comparing the three-dimensional patterns of the P atoms with a database of nucleic acid fragments, it finds the matching positions of the double-stranded helical motifs (A-RNA or B-DNA) in the unit cell. If the target structure is RNA, the helical fragments are further extended with recurrent RNA motifs from a fragment library that contains single-stranded segments. Finally, the matched motifs are merged and refined in real space to find the most likely conformations, including a fit of the sequence to the electron-density map. The Brickworx program is available for download and as a web server at http://iimcb.genesilico.pl/brickworx.

  1. Brickworx builds recurrent RNA and DNA structural motifs into medium- and low-resolution electron-density maps

    International Nuclear Information System (INIS)

    Chojnowski, Grzegorz; Waleń, Tomasz; Piątkowski, Paweł; Potrzebowski, Wojciech; Bujnicki, Janusz M.

    2015-01-01

    A computer program that builds crystal structure models of nucleic acid molecules is presented. Brickworx is a computer program that builds crystal structure models of nucleic acid molecules using recurrent motifs including double-stranded helices. In a first step, the program searches for electron-density peaks that may correspond to phosphate groups; it may also take into account phosphate-group positions provided by the user. Subsequently, comparing the three-dimensional patterns of the P atoms with a database of nucleic acid fragments, it finds the matching positions of the double-stranded helical motifs (A-RNA or B-DNA) in the unit cell. If the target structure is RNA, the helical fragments are further extended with recurrent RNA motifs from a fragment library that contains single-stranded segments. Finally, the matched motifs are merged and refined in real space to find the most likely conformations, including a fit of the sequence to the electron-density map. The Brickworx program is available for download and as a web server at http://iimcb.genesilico.pl/brickworx

  2. Mapping DNA cleavage by the Type ISP restriction-modification enzymes following long-range communication between DNA sites in different orientations

    OpenAIRE

    van Aelst, Kara; Saikrishnan, Kayarat; Szczelkun, Mark D

    2015-01-01

    The prokaryotic Type ISP restriction-modification enzymes are single-chain proteins comprising an Mrr-family nuclease, a superfamily 2 helicase-like ATPase, a coupler domain, a methyltransferase, and a DNA-recognition domain. Upon recognising an unmodified DNA target site, the helicase-like domain hydrolyzes ATP to cause site release (remodeling activity) and to then drive downstream translocation consuming 1-2 ATP per base pair (motor activity). On an invading foreign DNA, double-strand brea...

  3. Cloning of the cDNA for a human homologue of the Drosophila white gene and mapping to chromosome 21q22.3.

    OpenAIRE

    Chen, H.; Rossier, C.; Lalioti, M. D.; Lynn, A.; Chakravarti, A.; Perrin, G.; Antonarakis, S. E.

    1996-01-01

    In an effort to contribute to the transcript map of human chromosome 21 and the understanding of the pathophysiology of trisomy 21, we have used exon trapping to identify fragments of chromosome 21 genes. Two trapped exons, from pools of chromosome 21-specific cosmids, showed homology to the Drosophila white (w) gene. We subsequently cloned the corresponding cDNA for a human homologue of the Drosophila w gene (hW) from human retina and fetal brain cDNA libraries. The gene belongs to the ATP-b...

  4. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression

    Directory of Open Access Journals (Sweden)

    Li Xin

    2012-07-01

    Full Text Available Abstract Background DNA methylation plays important biological roles in plants and animals. To examine the rice genomic methylation landscape and assess its functional significance, we generated single-base resolution DNA methylome maps for Asian cultivated rice Oryza sativa ssp. japonica, indica and their wild relatives, Oryza rufipogon and Oryza nivara. Results The overall methylation level of rice genomes is four times higher than that of Arabidopsis. Consistent with the results reported for Arabidopsis, methylation in promoters represses gene expression while gene-body methylation generally appears to be positively associated with gene expression. Interestingly, we discovered that methylation in gene transcriptional termination regions (TTRs can significantly repress gene expression, and the effect is even stronger than that of promoter methylation. Through integrated analysis of genomic, DNA methylomic and transcriptomic differences between cultivated and wild rice, we found that primary DNA sequence divergence is the major determinant of methylational differences at the whole genome level, but DNA methylational difference alone can only account for limited gene expression variation between the cultivated and wild rice. Furthermore, we identified a number of genes with significant difference in methylation level between the wild and cultivated rice. Conclusions The single-base resolution methylomes of rice obtained in this study have not only broadened our understanding of the mechanism and function of DNA methylation in plant genomes, but also provided valuable data for future studies of rice epigenetics and the epigenetic differentiation between wild and cultivated rice.

  5. Novel p38α MAP kinase inhibitors identified from yoctoReactor DNA-encoded small molecule library

    DEFF Research Database (Denmark)

    Petersen, L. K.; Blakskjær, P.; Chaikuad, A.

    2016-01-01

    A highly specific and potent (7 nM cellular IC50) inhibitor of p38α kinase was identified directly from a 12.6 million membered DNA-encoded small molecule library. This was achieved using the high fidelity yoctoReactor technology (yR) for preparing the DNA-encoded library, and a homogeneous...... interactions. Moreover, the crystal structure showed, that although buried in the p38α active site, the original DNA attachment point of the compound was accessible through a channel created by the distorted P-loop conformation. This study demonstrates the usability of DNA-encoded library technologies...

  6. Leaf Transcriptome Sequencing for Identifying Genic-SSR Markers and SNP Heterozygosity in Crossbred Mango Variety 'Amrapali' (Mangifera indica L.).

    Science.gov (United States)

    Mahato, Ajay Kumar; Sharma, Nimisha; Singh, Akshay; Srivastav, Manish; Jaiprakash; Singh, Sanjay Kumar; Singh, Anand Kumar; Sharma, Tilak Raj; Singh, Nagendra Kumar

    2016-01-01

    Mango (Mangifera indica L.) is called "king of fruits" due to its sweetness, richness of taste, diversity, large production volume and a variety of end usage. Despite its huge economic importance genomic resources in mango are scarce and genetics of useful horticultural traits are poorly understood. Here we generated deep coverage leaf RNA sequence data for mango parental varieties 'Neelam', 'Dashehari' and their hybrid 'Amrapali' using next generation sequencing technologies. De-novo sequence assembly generated 27,528, 20,771 and 35,182 transcripts for the three genotypes, respectively. The transcripts were further assembled into a non-redundant set of 70,057 unigenes that were used for SSR and SNP identification and annotation. Total 5,465 SSR loci were identified in 4,912 unigenes with 288 type I SSR (n ≥ 20 bp). One hundred type I SSR markers were randomly selected of which 43 yielded PCR amplicons of expected size in the first round of validation and were designated as validated genic-SSR markers. Further, 22,306 SNPs were identified by aligning high quality sequence reads of the three mango varieties to the reference unigene set, revealing significantly enhanced SNP heterozygosity in the hybrid Amrapali. The present study on leaf RNA sequencing of mango varieties and their hybrid provides useful genomic resource for genetic improvement of mango.

  7. Quantum Mechanics/Molecular Mechanics Free Energy Maps and Nonadiabatic Simulations for a Photochemical Reaction in DNA: Cyclobutane Thymine Dimer.

    Science.gov (United States)

    Mendieta-Moreno, Jesús I; Trabada, Daniel G; Mendieta, Jesús; Lewis, James P; Gómez-Puertas, Paulino; Ortega, José

    2016-11-03

    The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.

  8. Some AFLP amplicons are highly conserved DNA sequences mapping to the same linkage groups in two F2 populations of carrot

    Directory of Open Access Journals (Sweden)

    Santos Carlos A.F.

    2002-01-01

    Full Text Available Amplified fragment length polymorphism (AFLP is a fast and reliable tool to generate a large number of DNA markers. In two unrelated F2 populations of carrot (Daucus carota L., Brasilia x HCM and B493 x QAL (wild carrot, it was hypothesized that DNA 1 digested with the same restriction endonuclease enzymes and amplified with the same primer combination and 2 sharing the same position in polyacrylamide gels should be conserved sequences. To test this hypothesis AFLP fragments from polyacrylamide gels were eluted, reamplified, separated in agarose gels, purified, cloned and sequenced. Among thirty-one paired fragments from each F2 population, twenty-six had identity greater than 91% and five presented identity of 24% to 44%. Among the twenty-six conserved AFLPs only one mapped to different linkage groups in the two populations while four of the five less-conserved bands mapped to different linkage groups. Of eight SCAR (sequence characterized amplified regions primers tested, one conserved AFLP resulted in co-dominant markers in both populations. Screening among 14 carrot inbreds or cultivars with three AFLP-SCAR primers revealed clear and polymorphic PCR products, with similar molecular sizes on agarose gels. The development of co-dominant markers based on conserved AFLP fragments will be useful to detect seed mixtures among hybrids, to improve and to merge linkage maps and to study diversity and phylogenetic relationships.

  9. Human cDNA mapping using fluorescence in situ hybridization. Progress report, April 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  10. Human cDNA mapping using fluorescence in situ hybridization. Final progress report, April 1, 1994--July 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1997-12-31

    The ultimate goal of this research is to generate and apply novel technologies to speed completion and integration of the human genome map and sequence with biomedical problems. To do this, techniques were developed and genome-wide resources generated. This includes a genome-wide Mapped and Integrated BAC/PAC Resource that has been used for gene finding, map completion and anchoring, breakpoint definition and sequencing. In the last period of the grant, the Human Mapped BAC/PAC Resource was also applied to determine regions of human variation and to develop a novel paradigm of primate evolution through to humans. Further, in order to more rapidly evaluate animal models of human disease, a BAC Map of the mouse was generated in collaboration with the MTI Genome Center, Dr. Bruce Birren.

  11. Genome-wide DNA polymorphisms in Kavuni, a traditional rice cultivar with nutritional and therapeutic properties.

    Science.gov (United States)

    Rathinasabapathi, Pasupathi; Purushothaman, Natarajan; Parani, Madasamy

    2016-05-01

    Although rice genome was sequenced in the year 2002, efforts in resequencing the large number of available accessions, landraces, traditional cultivars, and improved varieties of this important food crop are limited. We have initiated resequencing of the traditional cultivars from India. Kavuni is an important traditional rice cultivar from South India that attracts premium price for its nutritional and therapeutic properties. Whole-genome sequencing of Kavuni using Illumina platform and SNPs analysis using Nipponbare reference genome identified 1 150 711 SNPs of which 377 381 SNPs were located in the genic regions. Non-synonymous SNPs (62 708) were distributed in 19 251 genes, and their number varied between 1 and 115 per gene. Large-effect DNA polymorphisms (7769) were present in 3475 genes. Pathway mapping of these polymorphisms revealed the involvement of genes related to carbohydrate metabolism, translation, protein-folding, and cell death. Analysis of the starch biosynthesis related genes revealed that the granule-bound starch synthase I gene had T/G SNPs at the first intron/exon junction and a two-nucleotide combination, which were reported to favour high amylose content and low glycemic index. The present study provided a valuable genomics resource to study the rice varieties with nutritional and medicinal properties.

  12. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F. (Harvard Medical School, Boston, MA (USA))

    1988-08-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid {beta} precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS.

  13. Comparative mapping of DNA markers from the familial Alzheimer disease and Down syndrome regions of human chromosome 21 to mouse chromosomes 16 and 17

    International Nuclear Information System (INIS)

    Cheng, S.V.; Nadeau, J.H.; Tanzi, R.E.; Watkins, P.C.; Jagadesh, J.; Taylor, B.A.; Haines, J.L.; Sacchi, N.; Gusella, J.F.

    1988-01-01

    Mouse trisomy 16 has been proposed as an animal model of Down syndrome (DS), since this chromosome contains homologues of several loci from the q22 band of human chromosome 21. The recent mapping of the defect causing familial Alzheimer disease (FAD) and the locus encoding the Alzheimer amyloid β precursor protein (APP) to human chromosome 21 has prompted a more detailed examination of the extent of conservation of this linkage group between the two species. Using anonymous DNA probes and cloned genes from human chromosome 21 in a combination of recombinant inbred and interspecific mouse backcross analyses, the authors have established that the linkage group shared by mouse chromosome 16 includes not only the critical DS region of human chromosome 21 but also the APP gene and FAD-linked markers. Extending from the anonymous DNA locus D21S52 to ETS2, the linkage map of six loci spans 39% recombination in man but only 6.4% recombination in the mouse. A break in synteny occurs distal to ETS2, with the homologue of the human marker D21S56 mapping to mouse chromosome 17. Conservation of the linkage relationships of markers in the FAD region suggests that the murine homologue of the FAD locus probably maps to chromosome 16 and that detailed comparison of the corresponding region in both species could facilitate identification of the primary defect in this disorder. The break in synteny between the terminal portion of human chromosome 21 and mouse chromosome 16 indicates, however, that mouse trisomy 16 may not represent a complete model of DS

  14. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.).

    Science.gov (United States)

    Schönhals, E M; Ortega, F; Barandalla, L; Aragones, A; Ruiz de Galarreta, J I; Liao, J-C; Sanetomo, R; Walkemeier, B; Tacke, E; Ritter, E; Gebhardt, C

    2016-04-01

    SNPs in candidate genes Pain - 1, InvCD141 (invertases), SSIV (starch synthase), StCDF1 (transcription factor), LapN (leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker-trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker-trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes.

  15. Characterization of genic microsatellite markers derived from expressed sequence tags in Pacific abalone ( Haliotis discus hannai)

    Science.gov (United States)

    Li, Qi; Shu, Jing; Zhao, Cui; Liu, Shikai; Kong, Lingfeng; Zheng, Xiaodong

    2010-01-01

    Simple sequence repeat (SSR) markers were developed from the expressed sequence tags (ESTs) of Pacific abalone ( Haliotis discus hannai). Repeat motifs were found in 4.95% of the ESTs at a frequency of one repeat every 10.04 kb of EST sequences, after redundancy elimination. Seventeen polymorphic EST-SSRs were developed. The number of alleles per locus varied from 2-17, with an average of 6.8 alleles per locus. The expected and observed heterozygosities ranged from 0.159 to 0.928 and from 0.132 to 0.922, respectively. Twelve of the 17 loci (70.6%) were successfully amplified in H. diversicolor. Seventeen loci segregated in three families, with three showing the presence of null alleles (17.6%). The adequate level of variability and low frequency of null alleles observed in H. discus hannai, together with the high rate of transportability across Haliotis species, make this set of EST-SSR markers an important tool for comparative mapping, marker-assisted selection, and evolutionary studies, not only in the Pacific abalone, but also in related species.

  16. Comparative physical mapping of 18S rDNA in the karyotypes of six leafcutter ant species of the genera Atta and Acromyrmex (Formicidae: Myrmicinae).

    Science.gov (United States)

    Teixeira, Gisele Amaro; Barros, Luísa Antônia Campos; de Aguiar, Hilton Jeferson Alves Cardoso; das Graças Pompolo, Silvia

    2017-10-01

    Leafcutter ants of the Atta and Acromyrmex genera are important plagues in different cultures. Cytogenetic data on chromosome number, morphology, and chromosomal banding pattern are only available for 17 species of leafcutter ants. Molecular cytogenetic data for the detection of ribosomal genes by the FISH technique are scarce, and only 15 Neotropical ant species have been studied. This study aimed to physically map the 18S ribosomal RNA genes (rDNA) of six leafcutter ants belonging to the genera Atta and Acromyrmex using FISH. The results were compared with data on the fluorochrome CMA 3 currently available for these species. All analyzed species presented the 18S rDNA on one pair of chromosomes. In Acromyrmex subterraneus molestans and Ac. aspersus, FISH signals were observed in the terminal region of the short arm of the largest subtelocentric pair, while in Atta bisphaerica, A. laevigata, and A. sexdens, FISH signals were observed in the interstitial region of the long arm of the fourth metacentric pair. In Acromyrmex striatus, 18S rDNA was located in the interstitial region of the second metacentric pair. The karyotypic formula for Ac. aspersus was 2n = 38 (8m + 10sm + 16st + 4a), representing the first report in this species. The observed 18S rDNA regions in A. laevigata, A. sexdens, A. bisphaerica, Ac. aspersus, and Ac. subterraneus molestans corresponded to the CMA 3 + bands, while in Ac. striatus, several GC-rich bands and one pair of 18S rDNA bands were observed. No differential bands were visible using the DAPI fluorochrome. Karyotype uniformity with previously studied Atta spp. was also observed at the level of molecular cytogenetics using 18S rDNA FISH. A difference in the size of the chromosomal pair carrying the 18S rDNA gene was observed in Ac. striatus (2n = 22) and Atta spp. (2n = 22) highlighting the dissimilarity between these species. The results from the present study contribute to the description of 18S rDNA clusters

  17. The Mapping of Predicted Triplex DNA:RNA in the Drosophila Genome Reveals a Prominent Location in Development- and Morphogenesis-Related Genes

    Directory of Open Access Journals (Sweden)

    Claude Pasquier

    2017-07-01

    Full Text Available Double-stranded DNA is able to form triple-helical structures by accommodating a third nucleotide strand. A nucleic acid triplex occurs according to Hoogsteen rules that predict the stability and affinity of the third strand bound to the Watson–Crick duplex. The “triplex-forming oligonucleotide” (TFO can be a short sequence of RNA that binds to the major groove of the targeted duplex only when this duplex presents a sequence of purine or pyrimidine bases in one of the DNA strands. Many nuclear proteins are known to bind triplex DNA or DNA:RNA, but their biological functions are unexplored. We identified sequences that are capable of engaging as the “triplex-forming oligonucleotide” in both the pre-lncRNA and pre-mRNA collections of Drosophila melanogaster. These motifs were matched against the Drosophila genome in order to identify putative sequences of triplex formation in intergenic regions, promoters, and introns/exons. Most of the identified TFOs appear to be located in the intronic region of the analyzed genes. Computational prediction of the most targeted genes by TFOs originating from pre-lncRNAs and pre-mRNAs revealed that they are restrictively associated with development- and morphogenesis-related gene networks. The refined analysis by Gene Ontology enrichment demonstrates that some individual TFOs present genome-wide scale matches that are located in numerous genes and regulatory sequences. The triplex DNA:RNA computational mapping at the genome-wide scale suggests broad interference in the regulatory process of the gene networks orchestrated by TFO RNAs acting in association simultaneously at multiple sites.

  18. Protective action of DNA preparations on the survival of cells and yield of 8-azaguanine resistant mutations in X-irradiated cell culture of chinese hamsters

    International Nuclear Information System (INIS)

    Kuznetsova, N.N.; Feoktistova, T.P.

    1976-01-01

    A DNA preparation (molecular weight 19.6-21.0x1O 6 daltons) administered to cell culture of Chinese hamsters in concentrations of 100 to 122 μg/ml 60 minutes before and in the course of 3 days after X-irradiation (600 R) decreased the lethality of irradiated cells and reduced induction of 8-azaguanine resistant genic mutations. DNA preparations with the concentrations under study had no toxic action on cells and were not mutagenous

  19. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping

    Science.gov (United States)

    Müller, Vilhelm; Rajer, Fredrika; Frykholm, Karolin; Nyberg, Lena K.; Quaderi, Saair; Fritzsche, Joachim; Kristiansson, Erik; Ambjörnsson, Tobias; Sandegren, Linus; Westerlund, Fredrik

    2016-12-01

    Bacterial plasmids are extensively involved in the rapid global spread of antibiotic resistance. We here present an assay, based on optical DNA mapping of single plasmids in nanofluidic channels, which provides detailed information about the plasmids present in a bacterial isolate. In a single experiment, we obtain the number of different plasmids in the sample, the size of each plasmid, an optical barcode that can be used to identify and trace the plasmid of interest and information about which plasmid that carries a specific resistance gene. Gene identification is done using CRISPR/Cas9 loaded with a guide-RNA (gRNA) complementary to the gene of interest that linearizes the circular plasmids at a specific location that is identified using the optical DNA maps. We demonstrate the principle on clinically relevant extended spectrum beta-lactamase (ESBL) producing isolates. We discuss how the gRNA sequence can be varied to obtain the desired information. The gRNA can either be very specific to identify a homogeneous group of genes or general to detect several groups of genes at the same time. Finally, we demonstrate an example where we use a combination of two gRNA sequences to identify carbapenemase-encoding genes in two previously not characterized clinical bacterial samples.

  20. A hybrid genetic linkage map of two ecologically and morphologically divergent Midas cichlid fishes (Amphilophus spp.) obtained by massively parallel DNA sequencing (ddRADSeq).

    Science.gov (United States)

    Recknagel, Hans; Elmer, Kathryn R; Meyer, Axel

    2013-01-01

    Cichlid fishes are an excellent model system for studying speciation and the formation of adaptive radiations because of their tremendous species richness and astonishing phenotypic diversity. Most research has focused on African rift lake fishes, although Neotropical cichlid species display much variability as well. Almost one dozen species of the Midas cichlid species complex (Amphilophus spp.) have been described so far and have formed repeated adaptive radiations in several Nicaraguan crater lakes. Here we apply double-digest restriction-site associated DNA sequencing to obtain a high-density linkage map of an interspecific cross between the benthic Amphilophus astorquii and the limnetic Amphilophus zaliosus, which are sympatric species endemic to Crater Lake Apoyo, Nicaragua. A total of 755 RAD markers were genotyped in 343 F(2) hybrids. The map resolved 25 linkage groups and spans a total distance of 1427 cM with an average marker spacing distance of 1.95 cM, almost matching the total number of chromosomes (n = 24) in these species. Regions of segregation distortion were identified in five linkage groups. Based on the pedigree of parents to F(2) offspring, we calculated a genome-wide mutation rate of 6.6 × 10(-8) mutations per nucleotide per generation. This genetic map will facilitate the mapping of ecomorphologically relevant adaptive traits in the repeated phenotypes that evolved within the Midas cichlid lineage and, as the first linkage map of a Neotropical cichlid, facilitate comparative genomic analyses between African cichlids, Neotropical cichlids and other teleost fishes.

  1. Delimiting the origin of a B chromosome by FISH mapping, chromosome painting and DNA sequence analysis in Astyanax paranae (Teleostei, Characiformes.

    Directory of Open Access Journals (Sweden)

    Duílio M Z de A Silva

    Full Text Available Supernumerary (B chromosomes have been shown to contain a wide variety of repetitive sequences. For this reason, fluorescent in situ hybridisation (FISH is a useful tool for ascertaining the origin of these genomic elements, especially when combined with painting from microdissected B chromosomes. In order to investigate the origin of B chromosomes in the fish species Astyanax paranae, these two approaches were used along with PCR amplification of specific DNA sequences obtained from the B chromosomes and its comparison with those residing in the A chromosomes. Remarkably, chromosome painting with the one-arm metacentric B chromosome probe showed hybridization signals on entire B chromosome, while FISH mapping revealed the presence of H1 histone and 18S rDNA genes symmetrically placed in both arms of the B chromosome. These results support the hypothesis that the B chromosome of A. paranae is an isochromosome. Additionally, the chromosome pairs Nos. 2 or 23 are considered the possible B chromosome ancestors since both contain syntenic H1 and 18S rRNA sequences. The analysis of DNA sequence fragments of the histone and rRNA genes obtained from the microdissected B chromosomes showed high similarity with those obtained from 0B individuals, which supports the intraspecific origin of B chromosomes in A. paranae. Finally, the population hereby analysed showed a female-biased B chromosome presence suggesting that B chromosomes in this species could influence sex determinism.

  2. Surface-enhanced Raman spectroscopic study of DNA and 6-mercapto-1-hexanol interactions using large area mapping

    DEFF Research Database (Denmark)

    Frøhling, Kasper Bayer; Alstrøm, Tommy Sonne; Bache, Michael

    2016-01-01

    intensities and peak positions it is possible to directly inspect the interplay between DNA and 6-mercapto-1-hexanol on gold covered nanopillars. It is demonstrated that optimised functionalization parameters can be extracted from the Raman spectra directly. Using the peak-fitting approach it is possible...

  3. rDNA mapping, heterochromatin characterization and AT/GC content of Agapanthus africanus (L. Hoffmanns (Agapanthaceae

    Directory of Open Access Journals (Sweden)

    ARYANE C. REIS

    2016-01-01

    Full Text Available ABSTRACT Agapanthus (Agapanthaceae has 10 species described. However, most taxonomists differ respect to this number because the great phenotypic plasticity of the species. The cytogenetic has been an important tool to aid the plant taxon identification, and to date, all taxa of Agapanthus L'Héritier studied cytologically, presented 2n = 30. Although the species possess large chromosomes, the group is karyologically little explored. This work aimed to increase the cytogenetic knowledge of Agapanthus africanus (L. Hoffmanns by utilization of chromosome banding techniques with DAPI / CMA3 and Fluorescent in situ Hybridization (FISH. In addition, flow cytometry was used for determination of DNA content and the percentage of AT / GC nitrogenous bases. Plants studied showed 2n = 30 chromosomes, ranging from 4.34 - 8.55 µm, with the karyotype formulae (KF = 10m + 5sm. Through FISH, one 45S rDNA signal was observed proximally to centromere of the chromosome 7, while for 5S rDNA sites we observed one signal proximally to centromere of chromosome 9. The 2C DNA content estimated for the species was 2C = 24.4 with 59% of AT and 41% of GC. Our data allowed important upgrade for biology and cytotaxonomy of Agapanthus africanus (L. Hoffmanns.

  4. Human thyroid peroxidase: complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs

    International Nuclear Information System (INIS)

    Kimura, S.; Kotani, T.; McBride, O.W.; Umeki, K.; Hirai, K.; Nakayama, T.; Ohtaki, S.

    1987-01-01

    Two forms of human thyroid peroxidase cDNAs were isolated from a λgt11 cDNA library, prepared from Graves disease thyroid tissue mRNA, by use of oligonucleotides. The longest complete cDNA, designated phTPO-1, has 3048 nucleotides and an open reading frame consisting of 933 amino acids, which would encode a protein with a molecular weight of 103,026. Five potential asparagine-linked glycosylation sites are found in the deduced amino acid sequence. The second peroxidase cDNA, designated phTPO-2, is almost identical to phTPO-1 beginning 605 base pairs downstream except that it contains 1-base-pair difference and lacks 171 base pairs in the middle of the sequence. This results in a loss of 57 amino acids corresponding to a molecular weight of 6282. Interestingly, this 171-nucleotide sequence has GT and AG at its 5' and 3' boundaries, respectively, that are in good agreement with donor and acceptor splice site consensus sequences. Using specific oligonucleotide probes for the mRNAs derived from the cDNA sequences hTOP-1 and hTOP-2, the authors show that both are expressed in all thyroid tissues examined and the relative level of two mRNAs is different in each sample. The results suggest that two thyroid peroxidase proteins might be generated through alternate splicing of the same gene. By using somatic cell hybrid lines, the thyroid peroxidase gene was mapped to the short arm of human chromosome 2

  5. A first linkage map and downy mildew resistance QTL discovery for sweet basil (Ocimum basilicum) facilitated by double digestion restriction site associated DNA sequencing (ddRADseq).

    Science.gov (United States)

    Pyne, Robert; Honig, Josh; Vaiciunas, Jennifer; Koroch, Adolfina; Wyenandt, Christian; Bonos, Stacy; Simon, James

    2017-01-01

    Limited understanding of sweet basil (Ocimum basilicum L.) genetics and genome structure has reduced efficiency of breeding strategies. This is evidenced by the rapid, worldwide dissemination of basil downy mildew (Peronospora belbahrii) in the absence of resistant cultivars. In an effort to improve available genetic resources, expressed sequence tag simple sequence repeat (EST-SSR) and single nucleotide polymorphism (SNP) markers were developed and used to genotype the MRI x SB22 F2 mapping population, which segregates for response to downy mildew. SNP markers were generated from genomic sequences derived from double digestion restriction site associated DNA sequencing (ddRADseq). Disomic segregation was observed in both SNP and EST-SSR markers providing evidence of an O. basilicum allotetraploid genome structure and allowing for subsequent analysis of the mapping population as a diploid intercross. A dense linkage map was constructed using 42 EST-SSR and 1,847 SNP markers spanning 3,030.9 cM. Multiple quantitative trait loci (QTL) model (MQM) analysis identified three QTL that explained 37-55% of phenotypic variance associated with downy mildew response across three environments. A single major QTL, dm11.1 explained 21-28% of phenotypic variance and demonstrated dominant gene action. Two minor QTL dm9.1 and dm14.1 explained 5-16% and 4-18% of phenotypic variance, respectively. Evidence is provided for an additive effect between the two minor QTL and the major QTL dm11.1 increasing downy mildew susceptibility. Results indicate that ddRADseq-facilitated SNP and SSR marker genotyping is an effective approach for mapping the sweet basil genome.

  6. DMS-Seq for In Vivo Genome-wide Mapping of Protein-DNA Interactions and Nucleosome Centers.

    Science.gov (United States)

    Umeyama, Taichi; Ito, Takashi

    2017-10-03

    Protein-DNA interactions provide the basis for chromatin structure and gene regulation. Comprehensive identification of protein-occupied sites is thus vital to an in-depth understanding of genome function. Dimethyl sulfate (DMS) is a chemical probe that has long been used to detect footprints of DNA-bound proteins in vitro and in vivo. Here, we describe a genomic footprinting method, dimethyl sulfate sequencing (DMS-seq), which exploits the cell-permeable nature of DMS to obviate the need for nuclear isolation. This feature makes DMS-seq simple in practice and removes the potential risk of protein re-localization during nuclear isolation. DMS-seq successfully detects transcription factors bound to cis-regulatory elements and non-canonical chromatin particles in nucleosome-free regions. Furthermore, an unexpected preference of DMS confers on DMS-seq a unique potential to directly detect nucleosome centers without using genetic manipulation. We expect that DMS-seq will serve as a characteristic method for genome-wide interrogation of in vivo protein-DNA interactions. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Genomic Mapping of Human DNA provides Evidence of Difference in Stretch between AT and GC rich regions

    Science.gov (United States)

    Reifenberger, Jeffrey; Dorfman, Kevin; Cao, Han

    Human DNA is a not a polymer consisting of a uniform distribution of all 4 nucleic acids, but rather contains regions of high AT and high GC content. When confined, these regions could have different stretch due to the extra hydrogen bond present in the GC basepair. To measure this potential difference, human genomic DNA was nicked with NtBspQI, labeled with a cy3 like fluorophore at the nick site, stained with YOYO, loaded into a device containing an array of nanochannels, and imaged. Over 473,000 individual molecules of DNA, corresponding to roughly 30x coverage of a human genome, were collected and aligned to the human reference. Based on the known AT/GC content between aligned pairs of labels, the stretch was measured for regions of similar size but different AT/GC content. We found that regions of high GC content were consistently more stretched than regions of high AT content between pairs of labels varying in size between 2.5 kbp and 500 kbp. We measured that for every 1% increase in GC content there was roughly a 0.06% increase in stretch. While this effect is small, it is important to take into account differences in stretch between AT and GC rich regions to improve the sensitivity of detection of structural variations from genomic variations. NIH Grant: R01-HG006851.

  8. Patterns of genic diversity and structure in a species undergoing rapid chromosomal radiation: an allozyme analysis of house mice from the Madeira archipelago.

    Science.gov (United States)

    Britton-Davidian, J; Catalan, J; Lopez, J; Ganem, G; Nunes, A C; Ramalhinho, M G; Auffray, J C; Searle, J B; Mathias, M L

    2007-10-01

    The chromosomal radiation of the house mouse in the island of Madeira most likely involved a human-mediated colonization event followed by within-island geographical isolation and recurrent episodes of genetic drift. The genetic signature of such processes was assessed by an allozyme analysis of the chromosomal races from Madeira. No trace of a decrease in diversity was observed suggesting the possibility of large founder or bottleneck sizes, multiple introductions and/or a high post-colonization expansion rate. The Madeira populations were more closely related to those of Portugal than to other continental regions, in agreement with the documented human colonization of the island. Such a Portuguese origin contrasts with a study indicating a north European source of the mitochondrial haplotypes present in the Madeira mice. This apparent discrepancy may be resolved if not one but two colonization events took place, an initial north European introduction followed by a later one from Portugal. Asymmetrical reproduction between these mice would have resulted in a maternal north European signature with a nuclear Portuguese genome. The extensive chromosomal divergence of the races in Madeira is expected to contribute to their genic divergence. However, there was no significant correlation between chromosomal and allozyme distances. This low apparent chromosomal impact on genic differentiation may be related to the short time since the onset of karyotypic divergence, as the strength of the chromosomal barrier will become significant only at later stages.

  9. JNSViewer-A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures.

    Science.gov (United States)

    Shi, Jieming; Li, Xi; Dong, Min; Graham, Mitchell; Yadav, Nehul; Liang, Chun

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html.

  10. JNSViewer—A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures

    Science.gov (United States)

    Dong, Min; Graham, Mitchell; Yadav, Nehul

    2017-01-01

    Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome) were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html. PMID:28582416

  11. JNSViewer-A JavaScript-based Nucleotide Sequence Viewer for DNA/RNA secondary structures.

    Directory of Open Access Journals (Sweden)

    Jieming Shi

    Full Text Available Many tools are available for visualizing RNA or DNA secondary structures, but there is scarce implementation in JavaScript that provides seamless integration with the increasingly popular web computational platforms. We have developed JNSViewer, a highly interactive web service, which is bundled with several popular tools for DNA/RNA secondary structure prediction and can provide precise and interactive correspondence among nucleotides, dot-bracket data, secondary structure graphs, and genic annotations. In JNSViewer, users can perform RNA secondary structure predictions with different programs and settings, add customized genic annotations in GFF format to structure graphs, search for specific linear motifs, and extract relevant structure graphs of sub-sequences. JNSViewer also allows users to choose a transcript or specific segment of Arabidopsis thaliana genome sequences and predict the corresponding secondary structure. Popular genome browsers (i.e., JBrowse and BrowserGenome were integrated into JNSViewer to provide powerful visualizations of chromosomal locations, genic annotations, and secondary structures. In addition, we used StructureFold with default settings to predict some RNA structures for Arabidopsis by incorporating in vivo high-throughput RNA structure profiling data and stored the results in our web server, which might be a useful resource for RNA secondary structure studies in plants. JNSViewer is available at http://bioinfolab.miamioh.edu/jnsviewer/index.html.

  12. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients

    Science.gov (United States)

    Crujeiras, A. B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F. I.; Navas-Carretero, S.; Carreira, M. C.; Gomez, A.; Hervas, D.; Monteiro, M. P.; Casanueva, F. F.; Esteller, M.; Martinez, J. A.

    2017-01-01

    The characterization of the epigenetic changes within the obesity-related adipose tissue will provide new insights to understand this metabolic disorder, but adipose tissue is not easy to sample in population-based studies. We aimed to evaluate the capacity of circulating leukocytes to reflect the adipose tissue-specific DNA methylation status of obesity susceptibility. DNA samples isolated from subcutaneous adipose tissue and circulating leukocytes were hybridized in the Infinium HumanMethylation 450 BeadChip. Data were compared between samples from obese (n = 45) and non-obese (n = 8–10) patients by Wilcoxon-rank test, unadjusted for cell type distributions. A global hypomethylation of the differentially methylated CpG sites (DMCpGs) was observed in the obese subcutaneous adipose tissue and leukocytes. The overlap analysis yielded a number of genes mapped by the common DMCpGs that were identified to reflect the obesity state in the leukocytes. Specifically, the methylation levels of FGFRL1, NCAPH2, PNKD and SMAD3 exhibited excellent and statistically significant efficiencies in the discrimination of obesity from non-obesity status (AUC > 0.80; p obesity-related adipose tissue pathogenesis through peripheral blood analysis, an easily accessible and minimally invasive biological material instead of adipose tissue. PMID:28211912

  13. Comprehensive mapping of the human papillomavirus (HPV) DNA integration sites in cervical carcinomas by HPV capture technology.

    Science.gov (United States)

    Liu, Ying; Lu, Zheming; Xu, Ruiping; Ke, Yang

    2016-02-02

    Integration of human papillomavirus (HPV) DNA into the host genome can be a driver mutation in cervical carcinoma. Identification of HPV integration at base resolution has been a longstanding technical challenge, largely due to sensitivity masking by HPV in episomes or concatenated forms. The aim was to enhance the understanding of the precise localization of HPV integration sites using an innovative strategy. Using HPV capture technology combined with next generation sequencing, HPV prevalence and the exact integration sites of the HPV DNA in 47 primary cervical cancer samples and 2 cell lines were investigated. A total of 117 unique HPV integration sites were identified, including HPV16 (n = 101), HPV18 (n = 7), and HPV58 (n = 9). We observed that the HPV16 integration sites were broadly located across the whole viral genome. In addition, either single or multiple integration events could occur frequently for HPV16, ranging from 1 to 19 per sample. The viral integration sites were distributed across almost all the chromosomes, except chromosome 22. All the cervical cancer cases harboring more than four HPV16 integration sites showed clinical diagnosis of stage III carcinoma. A significant enrichment of overlapping nucleotides shared between the human genome and HPV genome at integration breakpoints was observed, indicating that it may play an important role in the HPV integration process. The results expand on knowledge from previous findings on HPV16 and HPV18 integration sites and allow a better understanding of the molecular basis of the pathogenesis of cervical carcinoma.

  14. Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing.

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeon Choi

    Full Text Available BACKGROUND: Follicular lymphoma (FL is a form of non-Hodgkin's lymphoma (NHL that arises from germinal center (GC B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19(+ B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19(+ B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19(+ B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells. CONCLUSIONS/SIGNIFICANCE: This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.

  15. HapMap-based study of the DNA repair gene ERCC2 and lung cancer susceptibility in a Chinese population

    DEFF Research Database (Denmark)

    Yin, Jiaoyang; Vogel, Ulla Birgitte; Ma, Yegang

    2009-01-01

    -nucleotide polymorphisms (htSNPs) (rs238403, rs50871, rs3916840, rs238415, rs3916874 and rs1799787) from HapMap database were analyzed, which provide an almost complete coverage of the genetic variations in the ERCC2 gene. Although none of the six htSNPs was individually associated with lung cancer risk, we found that two...... ratio, OR (95% confidence interval, CI) = 2.62 (1.53–4.50), P = 0.0003 for hap4; OR (95% CI) = 3.01 (1.36–6.63), P = 0.004 for hap7]. Furthermore, diplotype analyses also strengthened the significant associations of risk haplotype 4 [OR (95% CI) = 3.56 (2.12–5.87), P

  16. Variation in Ribosomal DNA among Isolates of the Mycorrhizal Fungus Cenococcum Geophilum FR.

    Science.gov (United States)

    Lobuglio, Katherine Frances

    1990-01-01

    Cenococcum geophilum Fr., a cosmopolitan mycorrhizal fungus, is well-known for its extremely wide host and habitat range. The ecological diversity of C. geophilum sharply contrasts its present taxonomic status as a monotypic form -genus. Restriction fragment length polymorphisms (RFLPs) in nuclear ribosomal DNA (rDNA) was used to assess the degree of genetic variation among 72 isolates of C. geophilum. The probe used in this study was the rDNA repeat cloned from C. geophilum isolate A145 (pCG15). Length of the rDNA repeat was approximately 9 kb. The rDNA clone was mapped for 5 restriction endonucleases. Hybridization with cloned Saccharomyces cerevisiae rDNA (pSR118, and pSR125 containing the 18S, and 5.8-25S rRNA genes respectively), and alignment of restriction endonuclease sites conserved in the rDNA genes of other fungi, were used to position the corresponding rDNAs of C. geophilum. Southern hybridizations with EcoRI, HindIII, XhoI, and PstI digested DNAs indicated extensive variation among the C. geophilum isolates, greater than has been previously reported to occur within a fungal species. Most of the rDNA polymorphisms occurred in the IGS region. Restriction endonuclease site and length polymorphisms were also observed in the 5.8S-26S genic regions. Sixteen size categories of length mutations, 6 restriction endonuclease site additions, and 4 restriction endonuclease site deletions were determined using isolate A145 as a reference. The rDNA repeat length among the isolates varied from approximately 8.5 to 10.2 kb. RFLPs were also observed in the mitochondrial (mt) 24S rRNA gene and flanking regions of HindIII digested DNAs of C. geophilum isolates representing both geographically distinct and similar origins. Among the C. geophilum isolates analyzed there were fewer RFLPs in mt-DNA than in nuclear rDNA. EcoRI rDNA phenotypes between C. geophilum and Elaphomyces anthracinus, its proposed teleomorph or sexual state, did not correspond. In addition, the four

  17. Functional mapping of the fission yeast DNA polymerase δ B-subunit Cdc1 by site-directed and random pentapeptide insertion mutagenesis

    Directory of Open Access Journals (Sweden)

    Gray Fiona C

    2009-08-01

    Full Text Available Abstract Background DNA polymerase δ plays an essential role in chromosomal DNA replication in eukaryotic cells, being responsible for synthesising the bulk of the lagging strand. In fission yeast, Pol δ is a heterotetrameric enzyme comprising four evolutionarily well-conserved proteins: the catalytic subunit Pol3 and three smaller subunits Cdc1, Cdc27 and Cdm1. Pol3 binds directly to the B-subunit, Cdc1, which in turn binds the C-subunit, Cdc27. Human Pol δ comprises the same four subunits, and the crystal structure was recently reported of a complex of human p50 and the N-terminal domain of p66, the human orthologues of Cdc1 and Cdc27, respectively. Results To gain insights into the structure and function of Cdc1, random and directed mutagenesis techniques were used to create a collection of thirty alleles encoding mutant Cdc1 proteins. Each allele was tested for function in fission yeast and for binding of the altered protein to Pol3 and Cdc27 using the two-hybrid system. Additionally, the locations of the amino acid changes in each protein were mapped onto the three-dimensional structure of human p50. The results obtained from these studies identify amino acid residues and regions within the Cdc1 protein that are essential for interaction with Pol3 and Cdc27 and for in vivo function. Mutations specifically defective in Pol3-Cdc1 interactions allow the identification of a possible Pol3 binding surface on Cdc1. Conclusion In the absence of a three-dimensional structure of the entire Pol δ complex, the results of this study highlight regions in Cdc1 that are vital for protein function in vivo and provide valuable clues to possible protein-protein interaction surfaces on the Cdc1 protein that will be important targets for further study.

  18. Mapping recessive ophthalmic diseases: linkage of the locus for Usher syndrome type II to a DNA marker on chromosome 1q.

    Science.gov (United States)

    Lewis, R A; Otterud, B; Stauffer, D; Lalouel, J M; Leppert, M

    1990-06-01

    Usher syndrome is a heterogeneous group of autosomal recessive disorders that combines variably severe congenital neurosensory hearing impairment with progressive night-blindness and visual loss similar to that in retinitis pigmentosa. Usher syndrome type I is distinguished by profound congenital (preverbal) deafness and retinal disease with onset in the first decade of life. Usher syndrome type II is characterized by partial hearing impairment and retinal dystrophy that occurs in late adolescence or early adulthood. The chromosomal assignment and the regional localization of the genetic mutation(s) causing the Usher syndromes are unknown. We analyzed a panel of polymorphic genomic markers for linkage to the disease gene among six families with Usher syndrome type I and 22 families with Usher syndrome type II. Significant linkage was established between Usher syndrome type II and the DNA marker locus THH33 (D1S81), which maps to chromosome 1q. The most likely location of the disease gene is at a map distance of 9 cM from THH33 (lod score 6.5). The same marker failed to show linkage in families segregating an allele for Usher syndrome type I. These data confirm the provisional assignment of the locus for Usher syndrome type II to the distal end of chromosome 1q and demonstrate that the clinical heterogeneity between Usher types I and II is caused by mutational events at different genetic loci. Regional localization has the potential to improve carrier detection and to provide antenatal diagnosis in families at risk for the disease.

  19. Improving Blast Resistance of a Thermo-Sensitive Genic Male Sterile Rice Line GD-8S by Molecular Marker-Assisted Selection

    Directory of Open Access Journals (Sweden)

    Wu-ge LIU

    2008-09-01

    Full Text Available The broad-spectrum blast resistance gene Pi-1, from donor line BL122, was introduced into a thermo-sensitive genic male sterile rice line GD-8S, which possessed good grain quality but high susceptibility to rice blast, by using backcross breeding and molecular marker-assisted selection. Five elite improved male sterile lines, RGD8S-1, RGD8S-2, RGD8S-3, RGD8S-4 and RGD8S-5, were selected based on the results of molecular marker analysis, spikelet sterility, recovery rate of genetic background and agronomic traits. Thirty-three representative blast isolates collected from Guangdong Province, China were used to inoculate the improved lines and the original line GD-8S artificially. The resistance frequencies of the improved lines ranged from 76.47% to 100%, much higher than that of the original line GD-8S (9.09%. On the agronomic characters, there were no significant differences between the improved lines and GD-8S except for flag leaf length and panicle number per plant. The improved lines could be used for breeding hybrid rice with high blast resistance.

  20. Leaf Transcriptome Sequencing for Identifying Genic-SSR Markers and SNP Heterozygosity in Crossbred Mango Variety ‘Amrapali’ (Mangifera indica L.)

    Science.gov (United States)

    Mahato, Ajay Kumar; Sharma, Nimisha; Singh, Akshay; Srivastav, Manish; Jaiprakash; Singh, Sanjay Kumar; Singh, Anand Kumar; Sharma, Tilak Raj; Singh, Nagendra Kumar

    2016-01-01

    Mango (Mangifera indica L.) is called “king of fruits” due to its sweetness, richness of taste, diversity, large production volume and a variety of end usage. Despite its huge economic importance genomic resources in mango are scarce and genetics of useful horticultural traits are poorly understood. Here we generated deep coverage leaf RNA sequence data for mango parental varieties ‘Neelam’, ‘Dashehari’ and their hybrid ‘Amrapali’ using next generation sequencing technologies. De-novo sequence assembly generated 27,528, 20,771 and 35,182 transcripts for the three genotypes, respectively. The transcripts were further assembled into a non-redundant set of 70,057 unigenes that were used for SSR and SNP identification and annotation. Total 5,465 SSR loci were identified in 4,912 unigenes with 288 type I SSR (n ≥ 20 bp). One hundred type I SSR markers were randomly selected of which 43 yielded PCR amplicons of expected size in the first round of validation and were designated as validated genic-SSR markers. Further, 22,306 SNPs were identified by aligning high quality sequence reads of the three mango varieties to the reference unigene set, revealing significantly enhanced SNP heterozygosity in the hybrid Amrapali. The present study on leaf RNA sequencing of mango varieties and their hybrid provides useful genomic resource for genetic improvement of mango. PMID:27736892

  1. Genome-Wide Mapping of Growth-Related Quantitative Trait Loci in Orange-Spotted Grouper (Epinephelus coioides) Using Double Digest Restriction-Site Associated DNA Sequencing (ddRADseq).

    Science.gov (United States)

    Yu, Hui; You, Xinxin; Li, Jia; Liu, Hankui; Meng, Zining; Xiao, Ling; Zhang, Haifa; Lin, Hao-Ran; Zhang, Yong; Shi, Qiong

    2016-04-06

    Mapping of quantitative trait loci (QTL) is essential for the discovery of genetic structures that related to complex quantitative traits. In this study, we identified 264,072 raw SNPs (single-nucleotide polymorphisms) by double digest restriction site associated DNA sequencing (ddRADseq), and utilized 3029 of these SNPs to construct a genetic linkage map in orange-spotted grouper (Epinephelus coioides) using a regression mapping algorithm. The genetic map contained 24 linkage groups (LGs) spanning a total genetic distance of 1231.98 cM. Twenty-seven significant growth-related QTLs were identified. Furthermore, we identified 17 genes (fez2, alg3, ece2, arvcf, sla27a4, sgk223, camk2, prrc2b, mchr1, sardh, pappa, syk, tert, wdrcp91, ftz-f1, mate1 and notch1) including three (tert, ftz-f1 and notch1) that have been reported to be involved in fish growth. To summarize, we mapped growth-related QTLs in the orange-spotted grouper. These QTLs will be useful in marker-assisted selection (MAS) efforts to improve growth-related traits in this economically important fish.

  2. [The development of reagents set in the format of DNA-chip for genetic typing of strains of Vibrio cholerae].

    Science.gov (United States)

    Pudova, E A; Markelov, M L; Dedkov, V G; Tchekanova, T A; Sadjin, A I; Kirdiyashkina, N P; Bekova, M V; Deviyatkin, A A

    2014-05-01

    The necessity of development of methods of genic diagnostic of cholera is conditioned by continuation of the Seventh pandemic of cholera, taxonomic variability of strains of Vibrio cholerae involved into pandemic and also permanent danger of delivery of disease to the territory of the Russian Federation. The methods of genic diagnostic of cholera make it possible in a comparatively short time to maximally minutely characterize strains isolated from patients or their environment. The article presents information about working out reagents set for genetic typing of agents of cholera using DNA-chip. The makeup of DNA-chip included oligonucleotide probes making possible to differentiate strains of V. cholerae on serogroups and biovars and to determine their pathogenicity. The single DNA-chip makes it possible to genetically type up to 12 samples concurrently. At that, duration of analysis without accounting stage of DNA separation makes up to 5 hours. In the progress of work, 23 cholera and non-cholera strains were analyzed. The full compliance of DNA-chip typing results to previously known characteristics of strains. Hence, there is a reason to consider availability of further development of reagents set and possibility of its further application in laboratories of regional level and reference centers.

  3. Dna fingerprinting - review paper

    OpenAIRE

    Blundell, Renald

    2006-01-01

    Before the Polymerase Chain Reaction (PCR) was established, DNA fingerprinting technology has relied for years on Restriction Fragment Length Polymorphism (RFLP) and Variable Number of Tandom Repeats (VNTR) analysis, a very efficient technique but quite laborious and not suitable for high throughput mapping. Since its, development, PCR has provided a new and powerful tool for DNA fingerprinting.

  4. Ancient DNA

    DEFF Research Database (Denmark)

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair......ancient DNA, palaeontology, palaeoecology, archaeology, population genetics, DNA damage and repair...

  5. Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K oligomeric chip.

    Directory of Open Access Journals (Sweden)

    Xiangshu Dong

    Full Text Available To identify genes associated with genic male sterility (GMS that could be useful for hybrid breeding in Chinese cabbage (Brassicarapa ssp. pekinensis, floral bud transcriptome analysis was carried out using a B. rapa microarray with 300,000 probes (Br300K. Among 47,548 clones deposited on a Br300K microarray with seven probes of 60 nt length within the 3' 150 bp region, a total of 10,622 genes were differentially expressed between fertile and sterile floral buds; 4,774 and 5,848 genes were up-regulated over 2-fold in fertile and sterile buds, respectively. However, the expression of 1,413 and 199 genes showed fertile and sterile bud-specific features, respectively. Genes expressed specifically in fertile buds, possibly GMS-related genes, included homologs of several Arabidopsis male sterility-related genes, genes associated with the cell wall and synthesis of its surface proteins, pollen wall and coat components, signaling components, and nutrient supplies. However, most early genes for pollen development, genes for primexine and callose formation, and genes for pollen maturation and anther dehiscence showed no difference in expression between fertile and sterile buds. Some of the known genes associated with Arabidopsis pollen development showed similar expression patterns to those seen in this study, while others did not. BrbHLH89 and BrMYP99 are putative GMS genes. Additionally, 17 novel genes identified only in B. rapa were specifically and highly expressed only in fertile buds, implying the possible involvement in male fertility. All data suggest that Chinese cabbage GMS might be controlled by genes acting in post-meiotic tapetal development that are different from those known to be associated with Arabidopsis male sterility.

  6. A Targeted Capture Linkage Map Anchors the Genome of the Schistosomiasis Vector Snail, Biomphalaria glabrata.

    Science.gov (United States)

    Tennessen, Jacob A; Bollmann, Stephanie R; Blouin, Michael S

    2017-07-05

    The aquatic planorbid snail Biomphalaria glabrata is one of the most intensively-studied mollusks due to its role in the transmission of schistosomiasis. Its 916 Mb genome has recently been sequenced and annotated, but it remains poorly assembled. Here, we used targeted capture markers to map over 10,000 B. glabrata scaffolds in a linkage cross of 94 F1 offspring, generating 24 linkage groups (LGs). We added additional scaffolds to these LGs based on linkage disequilibrium (LD) analysis of targeted capture and whole-genome sequences of 96 unrelated snails. Our final linkage map consists of 18,613 scaffolds comprising 515 Mb, representing 56% of the genome and 75% of genic and nonrepetitive regions. There are 18 large (> 10 Mb) LGs, likely representing the expected 18 haploid chromosomes, and > 50% of the genome has been assigned to LGs of at least 17 Mb. Comparisons with other gastropod genomes reveal patterns of synteny and chromosomal rearrangements. Linkage relationships of key immune-relevant genes may help clarify snail-schistosome interactions. By focusing on linkage among genic and nonrepetitive regions, we have generated a useful resource for associating snail phenotypes with causal genes, even in the absence of a complete genome assembly. A similar approach could potentially improve numerous poorly-assembled genomes in other taxa. This map will facilitate future work on this host of a serious human parasite. Copyright © 2017 Tennessen et al.

  7. Human Genome Research: Decoding DNA

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Human Genome Research: Decoding DNA Resources with of the DNA double helix during April 2003. James D. Watson, Francis Crick, and Maurice Wilkins were company Celera announced the completion of a "working draft" reference DNA sequence of the human

  8. Mapping out Map Libraries

    Directory of Open Access Journals (Sweden)

    Ferjan Ormeling

    2008-09-01

    Full Text Available Discussing the requirements for map data quality, map users and their library/archives environment, the paper focuses on the metadata the user would need for a correct and efficient interpretation of the map data. For such a correct interpretation, knowledge of the rules and guidelines according to which the topographers/cartographers work (such as the kind of data categories to be collected, and the degree to which these rules and guidelines were indeed followed are essential. This is not only valid for the old maps stored in our libraries and archives, but perhaps even more so for the new digital files as the format in which we now have to access our geospatial data. As this would be too much to ask from map librarians/curators, some sort of web 2.0 environment is sought where comments about data quality, completeness and up-to-dateness from knowledgeable map users regarding the specific maps or map series studied can be collected and tagged to scanned versions of these maps on the web. In order not to be subject to the same disadvantages as Wikipedia, where the ‘communis opinio’ rather than scholarship, seems to be decisive, some checking by map curators of this tagged map use information would still be needed. Cooperation between map curators and the International Cartographic Association ( ICA map and spatial data use commission to this end is suggested.

  9. Use of reiterative primer extension methodology to map UV-induced photoproducts at the nucleotide level in the laci gene from genomic DNA

    International Nuclear Information System (INIS)

    Chandrasekhar, D.; Houten, B. Van

    1994-01-01

    A newly developed reiterative primer extension assay has been employed to examine photoproduct formation and repair at the nucleotide level. Analysis of UV-induced DNA photoproduct hotspots in the first 184 base pairs of the laci genes of genomic E. coli DNA has revealed that photoproducts are formed linearly with dose and display a sequence-dependent increase. Generally, pyrimdine dimers were twice as frequent as all other UV-induced photoproducts. However, specific sites showed differing distributions. A post-irradiation recovery period revealed differences in the repair efficiency at individual nucleotides. Repair of photoproducts on the transcribed strand was generally twice as efficient as repair of photoproducts on the nontranscribed strand, indicating that strand-specific DNA repair occurs in the constitutively transcribed laci gene of E. coli. The UV-induced DNA photoproduct distribution following repair was well correlated with an established UV-induced mutation spectrum for wild-type E. coli cells. This analysis revealed that photoproduct hotspots on the efficiently repaired transcribed strand did not correlate with mutagenic hotspots. These data strongly support the hypothesis that mutations arise at inefficiently repaired sites on the nontranscribed strand

  10. Gene mapping of 28S and 5S rDNA sites in chromosomes of two Barbus species and their F1 hybrids (Teleostei, Cyprinidae

    Directory of Open Access Journals (Sweden)

    Aneta Spoz

    2015-11-01

    Chromosomal location of ribosomal DNA sequences is useful for comparative cytogenetic fish studies due to their relatively fast rate of evolution. The results of species from the family Barbinae comparatively presented here for the first time, and they may support further taxonomical studies of the Barbus species.

  11. In silico analysis, mapping of regulatory elements and corresponding dna-protein interaction in polyphenol oxidase gene promoter from different rice varieties

    International Nuclear Information System (INIS)

    Mahmood, T.; Rehman, M.; Aziz, E.

    2015-01-01

    Polyphenol oxidase (PPO) is an important enzyme that has positive impact regarding plant resistance against different biotic and abiotic stresses. In the present study PPO promoter from six different rice varieties was amplified and then analyzed for cis- and trans-acting elements. The study revealed a total of 79 different cis-acting regulatory elements including 11 elements restricted to only one or other variety. Among six varieties Pakhal-Basmati had highest number (5) of these elements, whereas C-622 and Rachna-Basmati have no such sequences. Rachna-Basmati, IR-36-Basmati and Kashmir- Basmati had 1, 2 and 3 unique elements, respectively. Different elementsrelated to pathogen, salt and water stresses were found, which may be helpful in controlling PPO activity according to changing environment. Moreover, HADDOCK was used to understand molecular mechanism of PPO regulation and it was found that DNA-protein interactions are stabilized by many potential hydrogen bonds. Adenine and arginine were the most reactive residues in DNA and proteins respectively.Structural comparison of different protein-DNA complexes show that even a highly conserved transcriptional factor can adopt different conformations when they contact a different DNA binding sequence, however their stable interactions depend on the number of hydrogen bonds formed and distance. (author)

  12. Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences

    Directory of Open Access Journals (Sweden)

    De Marzo Angelo M

    2011-06-01

    Full Text Available Abstract Background DNA methylation has been linked to genome regulation and dysregulation in health and disease respectively, and methods for characterizing genomic DNA methylation patterns are rapidly emerging. We have developed/refined methods for enrichment of methylated genomic fragments using the methyl-binding domain of the human MBD2 protein (MBD2-MBD followed by analysis with high-density tiling microarrays. This MBD-chip approach was used to characterize DNA methylation patterns across all non-repetitive sequences of human chromosomes 21 and 22 at high-resolution in normal and malignant prostate cells. Results Examining this data using computational methods that were designed specifically for DNA methylation tiling array data revealed widespread methylation of both gene promoter and non-promoter regions in cancer and normal cells. In addition to identifying several novel cancer hypermethylated 5' gene upstream regions that mediated epigenetic gene silencing, we also found several hypermethylated 3' gene downstream, intragenic and intergenic regions. The hypermethylated intragenic regions were highly enriched for overlap with intron-exon boundaries, suggesting a possible role in regulation of alternative transcriptional start sites, exon usage and/or splicing. The hypermethylated intergenic regions showed significant enrichment for conservation across vertebrate species. A sampling of these newly identified promoter (ADAMTS1 and SCARF2 genes and non-promoter (downstream or within DSCR9, C21orf57 and HLCS genes hypermethylated regions were effective in distinguishing malignant from normal prostate tissues and/or cell lines. Conclusions Comparison of chromosome-wide DNA methylation patterns in normal and malignant prostate cells revealed significant methylation of gene-proximal and conserved intergenic sequences. Such analyses can be easily extended for genome-wide methylation analysis in health and disease.

  13. ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments.

    Science.gov (United States)

    Chèneby, Jeanne; Gheorghe, Marius; Artufel, Marie; Mathelier, Anthony; Ballester, Benoit

    2018-01-04

    With this latest release of ReMap (http://remap.cisreg.eu), we present a unique collection of regulatory regions in human, as a result of a large-scale integrative analysis of ChIP-seq experiments for hundreds of transcriptional regulators (TRs) such as transcription factors, transcriptional co-activators and chromatin regulators. In 2015, we introduced the ReMap database to capture the genome regulatory space by integrating public ChIP-seq datasets, covering 237 TRs across 13 million (M) peaks. In this release, we have extended this catalog to constitute a unique collection of regulatory regions. Specifically, we have collected, analyzed and retained after quality control a total of 2829 ChIP-seq datasets available from public sources, covering a total of 485 TRs with a catalog of 80M peaks. Additionally, the updated database includes new search features for TR names as well as aliases, including cell line names and the ability to navigate the data directly within genome browsers via public track hubs. Finally, full access to this catalog is available online together with a TR binding enrichment analysis tool. ReMap 2018 provides a significant update of the ReMap database, providing an in depth view of the complexity of the regulatory landscape in human. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Karyotypes, male meiosis and comparative FISH mapping of 18S ribosomal DNA and telomeric (TTAGGn repeat in eight species of true bugs (Hemiptera, Heteroptera

    Directory of Open Access Journals (Sweden)

    Snejana Grozeva

    2011-11-01

    Full Text Available Eight species belonging to five true bug families were analyzed using DAPI/CMA3-staining and fluorescence in situ hybridization (FISH with telomeric (TTAGGn and 18S rDNA probes. Standard chromosomal complements are reported for the first time for Deraeocoris rutilus (Herrich-Schäffer, 1838 (2n=30+2m+XY and D. ruber (Linnaeus, 1758 (2n=30+2m+XY from the family Miridae. Using FISH, the location of a 18S rDNA cluster was detected in these species and in five more species: Megaloceroea recticornis (Geoffroy, 1785 (2n=30+XY from the Miridae; Oxycarenus lavaterae (Fabricius, 1787 (2n=14+2m+XY from the Lygaeidae s.l.; Pyrrhocoris apterus (Linnaeus, 1758 (2n=22+X from the Pyrrhocoridae; Eurydema oleracea (Linnaeus, 1758 (2n=12+XY and Graphosoma lineatum (Linnaeus, 1758 (2n=12+XY from the Pentatomidae. The species were found to differ with respect to location of a 18S rRNA gene cluster which resides on autosomes in O. lavaterae and P. apterus, whereas it locates on sex chromosomes in other five species. The 18S rDNA location provides the first physical landmark of the genomes of the species studied. The insect consensus telomeric pentanucleotide (TTAGGn was demonstrated to be absent in all the species studied in this respect, D. rutilus, M. recticornis, Cimex lectularius Linnaeus, 1758 (Cimicidae, E. oleracea, and G. lineatum, supporting the hypothesis that this motif was lost in early evolution of the Heteroptera and secondarily replaced with another motif (yet unknown or the alternative telomerase-independent mechanisms of telomere maintenance. Dot-blot hybridization analysis of the genomic DNA from C. lectularius, Nabis sp. and O. lavaterae with (TTAGGn and six other telomeric probes likewise provided a negative result.

  15. Development and Integration of Genome-Wide Polymorphic Microsatellite Markers onto a Reference Linkage Map for Constructing a High-Density Genetic Map of Chickpea.

    Directory of Open Access Journals (Sweden)

    Yash Paul Khajuria

    Full Text Available The identification of informative in silico polymorphic genomic and genic microsatellite markers by comparing the genome and transcriptome sequences of crop genotypes is a rapid, cost-effective and non-laborious approach for large-scale marker validation and genotyping applications, including construction of high-density genetic maps. We designed 1494 markers, including 1016 genomic and 478 transcript-derived microsatellite markers showing in-silico fragment length polymorphism between two parental genotypes (Cicer arietinum ICC4958 and C. reticulatum PI489777 of an inter-specific reference mapping population. High amplification efficiency (87%, experimental validation success rate (81% and polymorphic potential (55% of these microsatellite markers suggest their effective use in various applications of chickpea genetics and breeding. Intra-specific polymorphic potential (48% detected by microsatellite markers in 22 desi and kabuli chickpea genotypes was lower than inter-specific polymorphic potential (59%. An advanced, high-density, integrated and inter-specific chickpea genetic map (ICC4958 x PI489777 having 1697 map positions spanning 1061.16 cM with an average inter-marker distance of 0.625 cM was constructed by assigning 634 novel informative transcript-derived and genomic microsatellite markers on eight linkage groups (LGs of our prior documented, 1063 marker-based genetic map. The constructed genome map identified 88, including four major (7-23 cM longest high-resolution genomic regions on LGs 3, 5 and 8, where the maximum number of novel genomic and genic microsatellite markers were specifically clustered within 1 cM genetic distance. It was for the first time in chickpea that in silico FLP analysis at genome-wide level was carried out and such a large number of microsatellite markers were identified, experimentally validated and further used in genetic mapping. To best of our knowledge, in the presently constructed genetic map, we mapped

  16. Detection of DNA oligonucleotides with base mutations by terahertz spectroscopy and microstructures.

    Directory of Open Access Journals (Sweden)

    Mingjie Tang

    Full Text Available DNA oligonucleotides with a 5-base mutation at the 3'-terminus were investigated by terahertz (THz spectroscopy in a marker-free manner. The four single-stranded oligonucleotides with 17nt have been detected with specificity on a microfluidic chip, and corroborated by spectral measurements with split-ring resonators. The number of hydrogen bonds formed between the oligonucleotide and its surrounding water molecules, deemed a key contribution to the THz absorption of biological solutions, was explored by molecular dynamics simulations to explain the experimental findings. Our work underlies the feasibility of THz spectroscopy combined with microstructures for marker-free detection of DNA, which may form the basis of a prospective diagnostic tool for studying genic mutation.

  17. Genetic mapping of centromeres in the nine Citrus clementina chromosomes using half-tetrad analysis and recombination patterns in unreduced and haploid gametes.

    Science.gov (United States)

    Aleza, Pablo; Cuenca, José; Hernández, María; Juárez, José; Navarro, Luis; Ollitrault, Patrick

    2015-03-08

    Mapping centromere locations in plant species provides essential information for the analysis of genetic structures and population dynamics. The centromere's position affects the distribution of crossovers along a chromosome and the parental heterozygosity restitution by 2n gametes is a direct function of the genetic distance to the centromere. Sexual polyploidisation is relatively frequent in Citrus species and is widely used to develop new seedless triploid cultivars. The study's objectives were to (i) map the positions of the centromeres of the nine Citrus clementina chromosomes; (ii) analyse the crossover interference in unreduced gametes; and (iii) establish the pattern of genetic recombination in haploid clementine gametes along each chromosome and its relationship with the centromere location and distribution of genic sequences. Triploid progenies were derived from unreduced megagametophytes produced by second-division restitution. Centromere positions were mapped genetically for all linkage groups using half-tetrad analysis. Inference of the physical locations of centromeres revealed one acrocentric, four metacentric and four submetacentric chromosomes. Crossover interference was observed in unreduced gametes, with variation seen between chromosome arms. For haploid gametes, a strong decrease in the recombination rate occurred in centromeric and pericentromeric regions, which contained a low density of genic sequences. In chromosomes VIII and IX, these low recombination rates extended beyond the pericentromeric regions. The genomic region corresponding to a genetic distance recombination pattern along each chromosome. However, regions with low recombination rates extended beyond the pericentromeric regions of some chromosomes into areas richer in genic sequences. The persistence of strong linkage disequilibrium between large numbers of genes promotes the stability of epistatic interactions and multilocus-controlled traits over successive generations but

  18. Reduction of techno-genic load on the interior of the earth and environment due to development of hydrocarbon fields; La reduction de l'impact technologique sur le sous-sol et l'environnement lors du developpement de gisements d'hydrocarbures

    Energy Technology Data Exchange (ETDEWEB)

    Dmitrievsky, A.I.; Basniev, K.S.; Sedykh, A.D.; Zhidenko, G.G.; Sidorov, V.A. [Russian Academy of Sciences, Institute of Oil and Gas Problems of Russian Academy of Sciences, I.M. Gubkin Russian State, Moscow (Russian Federation)

    2000-07-01

    The present-day stage of industrial advance is associated with a risk of occurrence of anomalous and catastrophic natural and techno-genic events. The process of hydrocarbon field development can result in adverse consequences for the interior of the earth and for the environment in general. Two factors that complement and intensify each other can be conducive to that: the natural factor (geodynamic conditions) and the techno-genic factor (engineering and technological solutions employed for the development of formations). The lithosphere undergoes current geodynamic processes of high activity. Tectonic flexure faults bring about leakage from the wells and from the reservoirs in the process of fluid withdrawal. Man changes inevitably the interior of the earth and, as a consequence, the face of the planet while producing significant volumes of oil, gas and water. It is necessary to minimize the damage from penetration into the earth required to find very much needed energy. Negative after-effects are examined, in particular rock subsidence, failure of well casing strings, hydrodynamic changes in gas-bearing formations, techno-genic and induced earthquakes, etc. Cited are methods to reduce the after-effects that have already been worked out. It is emphasized that there is a need in registering and forecasting the environmental consequences of the natural and techno-genic events. (authors)

  19. Intense genomic reorganization in the genus Oecomys (Rodentia, Sigmodontinae): comparison between DNA barcoding and mapping of repetitive elements in three species of the Brazilian Amazon.

    Science.gov (United States)

    Gomes Júnior, Renan Gabriel; Schneider, Carlos Henrique; de Lira, Thatianna; Carvalho, Natália Dayane Moura; Feldberg, Eliana; da Silva, Maria Nazareth Ferreira; Gross, Maria Claudia

    2016-01-01

    Oecomys Thomas, 1906 is one of the most diverse and widely distributed genera within the tribe Oryzomyini. At least sixteen species in this genus have been described to date, but it is believed this genus contains undescribed species. Morphological, molecular and cytogenetic study has revealed an uncertain taxonomic status for several Oecomys species, suggesting the presence of a complex of species. The present work had the goal of contributing to the genetic characterization of the genus Oecomys in the Brazilian Amazon. Thirty specimens were collected from four locations in the Brazilian Amazon and three nominal species recognized: Oecomys auyantepui (Tate, 1939), Oecomys bicolor (Tomes, 1860) and Oecomys rutilus (Anthony, 1921). COI sequence analysis grouped Oecomys auyantepui , Oecomys bicolor and Oecomys rutilus specimens into one, three and two clades, respectively, which is consistent with their geographic distribution. Cytogenetic data for Oecomys auyantepui revealed the sympatric occurrence of two different diploid numbers, 2n=64/NFa=110 and 2n=66/NFa=114, suggesting polymorphism while Oecomys bicolor exhibited 2n=80/NFa=142 and Oecomys rutilus 2n=54/NFa=90. The distribution of constitutive heterochromatin followed a species-specific pattern. Interspecific variation was evident in the chromosomal location and number of 18S rDNA loci. However, not all loci showed signs of activity. All three species displayed a similar pattern for 5S rDNA, with only one pair carrying this locus. Interstitial telomeric sites were found only in Oecomys auyantepui . The data presented in this work reinforce intra- and interspecific variations observed in the diploid number of Oecomys species and indicate that chromosomal rearrangements have led to the appearance of different diploid numbers and karyotypic formulas.

  20. Intense genomic reorganization in the genus Oecomys (Rodentia, Sigmodontinae: comparison between DNA barcoding and mapping of repetitive elements in three species of the Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Renan Gabriel Gomes Junior

    2016-09-01

    Full Text Available Oecomys Thomas, 1906 is one of the most diverse and widely distributed genera within the tribe Oryzomyini. At least sixteen species in this genus have been described to date, but it is believed this genus contains undescribed species. Morphological, molecular and cytogenetic study has revealed an uncertain taxonomic status for several Oecomys species, suggesting the presence of a complex of species. The present work had the goal of contributing to the genetic characterization of the genus Oecomys in the Brazilian Amazon. Thirty specimens were collected from four locations in the Brazilian Amazon and three nominal species recognized: Oecomys auyantepui (Tate, 1939, O. bicolor (Tomes, 1860 and O. rutilus (Anthony, 1921. COI sequence analysis grouped O. auyantepui, O. bicolor and O. rutilus specimens into one, three and two clades, respectively, which is consistent with their geographic distribution. Cytogenetic data for O. auyantepui revealed the sympatric occurrence of two different diploid numbers, 2n=64/NFa=110 and 2n=66/NFa=114, suggesting polymorphism while O. bicolor exhibited 2n=80/NFa=142 and O. rutilus 2n=54/NFa=90. The distribution of constitutive heterochromatin followed a species-specific pattern. Interspecific variation was evident in the chromosomal location and number of 18S rDNA loci. However, not all loci showed signs of activity. All three species displayed a similar pattern for 5S rDNA, with only one pair carrying this locus. Interstitial telomeric sites were found only in O. auyantepui. The data presented in this work reinforce intra- and interspecific variations observed in the diploid number of Oecomys species and indicate that chromosomal rearrangements have led to the appearance of different diploid numbers and karyotypic formulas.

  1. cDNA cloning and characterization of the human THRAP2 gene which maps to chromosome 12q24, and its mouse ortholog Thrap2.

    Science.gov (United States)

    Musante, Luciana; Bartsch, Oliver; Ropers, Hans-Hilger; Kalscheuer, Vera M

    2004-05-12

    Characterization of a balanced t(2;12)(q37;q24) translocation in a patient with suspicion of Noonan syndrome revealed that the chromosome 12 breakpoint lies in the vicinity of a novel human gene, thyroid hormone receptor-associated protein 2 (THRAP2). We therefore characterized this gene and its mouse counterpart in more detail. Human and mouse THRAP2/Thrap2 span a genomic region of about 310 and >170 kilobases (kb), and both contain 31 exons. Corresponding transcripts are approximately 9.5 kb long. Their open reading frames code for proteins of 2210 and 2203 amino acids, which are 93% identical. By northern blot analysis, human and mouse THRAP2/Thrap2 genes showed ubiquitous expression. Transcripts were most abundant in human skeletal muscle and in mouse heart. THRAP2 protein is 56% identical to human TRAP240, which belongs to the thyroid hormone receptor associated protein (TRAP) complex and is evolutionary conserved up to yeast. This complex is involved in transcriptional regulation and is believed to serve as adapting interface between regulatory proteins bound to specific DNA sequences and RNA polymerase II.

  2. Spliced DNA Sequences in the Paramecium Germline: Their Properties and Evolutionary Potential

    Science.gov (United States)

    Catania, Francesco; McGrath, Casey L.; Doak, Thomas G.; Lynch, Michael

    2013-01-01

    Despite playing a crucial role in germline-soma differentiation, the evolutionary significance of developmentally regulated genome rearrangements (DRGRs) has received scant attention. An example of DRGR is DNA splicing, a process that removes segments of DNA interrupting genic and/or intergenic sequences. Perhaps, best known for shaping immune-system genes in vertebrates, DNA splicing plays a central role in the life of ciliated protozoa, where thousands of germline DNA segments are eliminated after sexual reproduction to regenerate a functional somatic genome. Here, we identify and chronicle the properties of 5,286 sequences that putatively undergo DNA splicing (i.e., internal eliminated sequences [IESs]) across the genomes of three closely related species of the ciliate Paramecium (P. tetraurelia, P. biaurelia, and P. sexaurelia). The study reveals that these putative IESs share several physical characteristics. Although our results are consistent with excision events being largely conserved between species, episodes of differential IES retention/excision occur, may have a recent origin, and frequently involve coding regions. Our findings indicate interconversion between somatic—often coding—DNA sequences and noncoding IESs, and provide insights into the role of DNA splicing in creating potentially functional genetic innovation. PMID:23737328

  3. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, N.; Wienberg, J.; Ermert, K. [Universitaet Muenchen (Germany)] [and others

    1995-03-01

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore, be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.

  4. Cloning of a cDNA encoding the rat high molecular weight neurofilament peptide (NF-H): Developmental and tissue expression in the rat, and mapping of its human homologue to chromosomes 1 and 22

    International Nuclear Information System (INIS)

    Lieberburg, I.; Spinner, N.; Snyder, S.

    1989-01-01

    Neurofilaments (NFs) are the intermediate filaments specific to nervous tissue. Three peptides with apparent molecular masses of approximately 68 (NF-L), 145 (NF-M), and 200 (NF-H) kDa appear to be the major components of NF. The expression of these peptides is specific to nervous tissue and is developmentally regulated. Recently, complete cDNAs encoding NF-L and NF-M, and partial cDNAs encoding NF-H, have been described. To better understand the normal pathophysiology of NFs the authors chose to clone the cDNA encoding the rat NF-H peptide. Using monoclonal antibodies that recognized NF-H, they screened a rat brain λgt11 library and identified a clone that contained a 2,100-nucleotide cDNA insert representing the carboxyl-terminal portion of the NF-H protein. Levels of NF-H mRNA varied 20-fold among brain regions, with highest levels in pons/medulla, spinal cord, and cerebellum, and lowest levels in olfactory bulb and hypothalamus. Based on these results, the authors infer that half of the developmental increase and most of the interregional variation in the levels of the NF-H mRNA are mediated through message stabilization. Sequence information revealed that the carboxyl-terminal region of the NF-H peptide contained a unique serine-, proline-, alanine-, glutamic acid-, and lysine-rich repeat. Genomic blots revealed a single copy of the gene in the rat genome and two copies in the human genome. In situ hybridizations performed on human chromosomes mapped the NF-H gene to chromosomes 1 and 22

  5. BAC-HAPPY mapping (BAP mapping: a new and efficient protocol for physical mapping.

    Directory of Open Access Journals (Sweden)

    Giang T H Vu

    2010-02-01

    Full Text Available Physical and linkage mapping underpin efforts to sequence and characterize the genomes of eukaryotic organisms by providing a skeleton framework for whole genome assembly. Hitherto, linkage and physical "contig" maps were generated independently prior to merging. Here, we develop a new and easy method, BAC HAPPY MAPPING (BAP mapping, that utilizes BAC library pools as a HAPPY mapping panel together with an Mbp-sized DNA panel to integrate the linkage and physical mapping efforts into one pipeline. Using Arabidopsis thaliana as an exemplar, a set of 40 Sequence Tagged Site (STS markers spanning approximately 10% of chromosome 4 were simultaneously assembled onto a BAP map compiled using both a series of BAC pools each comprising 0.7x genome coverage and dilute (0.7x genome samples of sheared genomic DNA. The resultant BAP map overcomes the need for polymorphic loci to separate genetic loci by recombination and allows physical mapping in segments of suppressed recombination that are difficult to analyze using traditional mapping techniques. Even virtual "BAC-HAPPY-mapping" to convert BAC landing data into BAC linkage contigs is possible.

  6. Incidence of genome structure, DNA asymmetry, and cell physiology on T-DNA integration in chromosomes of the phytopathogenic fungus Leptosphaeria maculans.

    Science.gov (United States)

    Bourras, Salim; Meyer, Michel; Grandaubert, Jonathan; Lapalu, Nicolas; Fudal, Isabelle; Linglin, Juliette; Ollivier, Benedicte; Blaise, Françoise; Balesdent, Marie-Hélène; Rouxel, Thierry

    2012-08-01

    The ever-increasing generation of sequence data is accompanied by unsatisfactory functional annotation, and complex genomes, such as those of plants and filamentous fungi, show a large number of genes with no predicted or known function. For functional annotation of unknown or hypothetical genes, the production of collections of mutants using Agrobacterium tumefaciens-mediated transformation (ATMT) associated with genotyping and phenotyping has gained wide acceptance. ATMT is also widely used to identify pathogenicity determinants in pathogenic fungi. A systematic analysis of T-DNA borders was performed in an ATMT-mutagenized collection of the phytopathogenic fungus Leptosphaeria maculans to evaluate the features of T-DNA integration in its particular transposable element-rich compartmentalized genome. A total of 318 T-DNA tags were recovered and analyzed for biases in chromosome and genic compartments, existence of CG/AT skews at the insertion site, and occurrence of microhomologies between the T-DNA left border (LB) and the target sequence. Functional annotation of targeted genes was done using the Gene Ontology annotation. The T-DNA integration mainly targeted gene-rich, transcriptionally active regions, and it favored biological processes consistent with the physiological status of a germinating spore. T-DNA integration was strongly biased toward regulatory regions, and mainly promoters. Consistent with the T-DNA intranuclear-targeting model, the density of T-DNA insertion correlated with CG skew near the transcription initiation site. The existence of microhomologies between promoter sequences and the T-DNA LB flanking sequence was also consistent with T-DNA integration to host DNA mediated by homologous recombination based on the microhomology-mediated end-joining pathway.

  7. DNA Protecting Activities of Nymphaea nouchali (Burm. f Flower Extract Attenuate t-BHP-Induced Oxidative Stress Cell Death through Nrf2-Mediated Induction of Heme Oxygenase-1 Expression by Activating MAP-Kinases

    Directory of Open Access Journals (Sweden)

    Md Badrul Alam

    2017-09-01

    Full Text Available This study was performed to investigate the antioxidant activities of Nymphaea nouchali flower (NNF extract and the underlying mechanism using RAW 264.7 cells. The presence of gallic acid, catechin, epicatechin, epigallocatechin, epicatechin gallate, caffeic acid, quercetin, and apigenin in the NNF was confirmed by high-performance liquid chromatography (HPLC. The extract had a very potent capacity to scavenge numerous free radicals. NNF extract was also able to prevent DNA damage and quench cellular reactive oxygen species (ROS generation induced by tert-Butyl hydroperoxide (t-BHP with no signs of toxicity. The NNF extract was able to augment the expression of both primary and phase II detoxifying enzyme, resulting in combat the oxidative stress. This is accomplished by phosphorylation of mitogen-activated protein kinase (MAP kinase (p38 kinase and extracellular signal-regulated kinase (ERK followed by enhancing the nuclear translocation of the nuclear factor erythroid 2-related factor 2 (Nrf2. This attenuates cellular ROS generation and confers protection from cell death. Altogether, the results of current study revealed that Nymphaea nouchali flower could be a source of natural phytochemicals that could lead to the development of new therapeutic agents for preventing oxidative stress associated diseases and attenuating disease progression.

  8. Single Molecule Scanning of DNA Radiation Oxidative Damage, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal will develop an assay to map genomic DNA, at the single molecule level and in a nanodevice, for oxidative DNA damage arising from radiation exposure;...

  9. Modeling DNA

    Science.gov (United States)

    Robertson, Carol

    2016-01-01

    Deoxyribonucleic acid (DNA) is life's most amazing molecule. It carries the genetic instructions that almost every organism needs to develop and reproduce. In the human genome alone, there are some three billion DNA base pairs. The most difficult part of teaching DNA structure, however, may be getting students to visualize something as small as a…

  10. Organization of Replication of Ribosomal DNA in Saccharomyces cerevisiae

    NARCIS (Netherlands)

    Linskens, Maarten H.K.; Huberman, Joel A.

    1988-01-01

    Using recently developed replicon mapping techniques, we have analyzed the replication of the ribosomal DNA in Saccharomyces cerevisiae. The results show that (i) the functional origin of replication colocalizes with an autonomously replicating sequence element previously mapped to the

  11. PDA: Pooled DNA analyzer

    Directory of Open Access Journals (Sweden)

    Lin Chin-Yu

    2006-04-01

    Full Text Available Abstract Background Association mapping using abundant single nucleotide polymorphisms is a powerful tool for identifying disease susceptibility genes for complex traits and exploring possible genetic diversity. Genotyping large numbers of SNPs individually is performed routinely but is cost prohibitive for large-scale genetic studies. DNA pooling is a reliable and cost-saving alternative genotyping method. However, no software has been developed for complete pooled-DNA analyses, including data standardization, allele frequency estimation, and single/multipoint DNA pooling association tests. This motivated the development of the software, 'PDA' (Pooled DNA Analyzer, to analyze pooled DNA data. Results We develop the software, PDA, for the analysis of pooled-DNA data. PDA is originally implemented with the MATLAB® language, but it can also be executed on a Windows system without installing the MATLAB®. PDA provides estimates of the coefficient of preferential amplification and allele frequency. PDA considers an extended single-point association test, which can compare allele frequencies between two DNA pools constructed under different experimental conditions. Moreover, PDA also provides novel chromosome-wide multipoint association tests based on p-value combinations and a sliding-window concept. This new multipoint testing procedure overcomes a computational bottleneck of conventional haplotype-oriented multipoint methods in DNA pooling analyses and can handle data sets having a large pool size and/or large numbers of polymorphic markers. All of the PDA functions are illustrated in the four bona fide examples. Conclusion PDA is simple to operate and does not require that users have a strong statistical background. The software is available at http://www.ibms.sinica.edu.tw/%7Ecsjfann/first%20flow/pda.htm.

  12. Construction of High Density Sweet Cherry (Prunus avium L. Linkage Maps Using Microsatellite Markers and SNPs Detected by Genotyping-by-Sequencing (GBS.

    Directory of Open Access Journals (Sweden)

    Verónica Guajardo

    Full Text Available Linkage maps are valuable tools in genetic and genomic studies. For sweet cherry, linkage maps have been constructed using mainly microsatellite markers (SSRs and, recently, using single nucleotide polymorphism markers (SNPs from a cherry 6K SNP array. Genotyping-by-sequencing (GBS, a new methodology based on high-throughput sequencing, holds great promise for identification of high number of SNPs and construction of high density linkage maps. In this study, GBS was used to identify SNPs from an intra-specific sweet cherry cross. A total of 8,476 high quality SNPs were selected for mapping. The physical position for each SNP was determined using the peach genome, Peach v1.0, as reference, and a homogeneous distribution of markers along the eight peach scaffolds was obtained. On average, 65.6% of the SNPs were present in genic regions and 49.8% were located in exonic regions. In addition to the SNPs, a group of SSRs was also used for construction of linkage maps. Parental and consensus high density maps were constructed by genotyping 166 siblings from a 'Rainier' x 'Rivedel' (Ra x Ri cross. Using Ra x Ri population, 462, 489 and 985 markers were mapped into eight linkage groups in 'Rainier', 'Rivedel' and the Ra x Ri map, respectively, with 80% of mapped SNPs located in genic regions. Obtained maps spanned 549.5, 582.6 and 731.3 cM for 'Rainier', 'Rivedel' and consensus maps, respectively, with an average distance of 1.2 cM between adjacent markers for both 'Rainier' and 'Rivedel' maps and of 0.7 cM for Ra x Ri map. High synteny and co-linearity was observed between obtained maps and with Peach v1.0. These new high density linkage maps provide valuable information on the sweet cherry genome, and serve as the basis for identification of QTLs and genes relevant for the breeding of the species.

  13. Topographic mapping

    Science.gov (United States)

    ,

    2008-01-01

    The U.S. Geological Survey (USGS) produced its first topographic map in 1879, the same year it was established. Today, more than 100 years and millions of map copies later, topographic mapping is still a central activity for the USGS. The topographic map remains an indispensable tool for government, science, industry, and leisure. Much has changed since early topographers traveled the unsettled West and carefully plotted the first USGS maps by hand. Advances in survey techniques, instrumentation, and design and printing technologies, as well as the use of aerial photography and satellite data, have dramatically improved mapping coverage, accuracy, and efficiency. Yet cartography, the art and science of mapping, may never before have undergone change more profound than today.

  14. Physical mapping of the 5S and 18S rDNA in ten species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae): evolutionary tendencies in the genus.

    Science.gov (United States)

    Bueno, Vanessa; Venere, Paulo César; Thums Konerat, Jocicléia; Zawadzki, Cláudio Henrique; Vicari, Marcelo Ricardo; Margarido, Vladimir Pavan

    2014-01-01

    Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH) with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus.

  15. Physical Mapping of the 5S and 18S rDNA in Ten Species of Hypostomus Lacépède 1803 (Siluriformes: Loricariidae: Evolutionary Tendencies in the Genus

    Directory of Open Access Journals (Sweden)

    Vanessa Bueno

    2014-01-01

    Full Text Available Hypostomus is a diverse group with unclear aspects regarding its biology, including the mechanisms that led to chromosome diversification within the group. Fluorescence in situ hybridization (FISH with 5S and 18S rDNA probes was performed on ten Hypostomini species. Hypostomus faveolus, H. cochliodon, H. albopunctatus, H. aff. paulinus, and H. topavae had only one chromosome pair with 18S rDNA sites, while H. ancistroides, H. commersoni, H. hermanni, H. regani, and H. strigaticeps had multiple 18S rDNA sites. Regarding the 5S rDNA genes, H. ancistroides, H. regani, H. albopunctatus, H. aff. paulinus, and H. topavae had 5S rDNA sites on only one chromosome pair and H. faveolus, H. cochliodon, H. commersoni, H. hermanni, and H. strigaticeps had multiple 5S rDNA sites. Most species had 18S rDNA sites in the telomeric region of the chromosomes. All species but H. cochliodon had 5S rDNA in the centromeric/pericentromeric region of one metacentric pair. Obtained results are discussed based on existent phylogenies for the genus, with comments on possible dispersion mechanisms to justify the variability of the rDNA sites in Hypostomus.

  16. DNA Camouflage

    Science.gov (United States)

    2016-01-08

    1 DNA Camouflage Supplementary Information Bijan Zakeri1,2*, Timothy K. Lu1,2*, Peter A. Carr2,3* 1Department of Electrical Engineering and...ll.mit.edu). Distribution A: Public Release   2 Supplementary Figure 1 DNA camouflage with the 2-state device. (a) In the presence of Cre, DSD-2[α...10 1 + Cre 1 500 1,000 length (bp) chromatogram alignment template − Cre   4 Supplementary Figure 3 DNA camouflage with a switchable

  17. In-silico mining, type and frequency analysis of genic microsatellites of finger millet (Eleusine coracana (L.) Gaertn.): a comparative genomic analysis of NBS-LRR regions of finger millet with rice.

    Science.gov (United States)

    Kalyana Babu, B; Pandey, Dinesh; Agrawal, P K; Sood, Salej; Kumar, Anil

    2014-05-01

    In recent years, the increased availability of the DNA sequences has given the possibility to develop and explore the expressed sequence tags (ESTs) derived SSR markers. In the present study, a total of 1956 ESTs of finger millet were used to find the microsatellite type, distribution, frequency and developed a total of 545 primer pairs from the ESTs of finger millet. Thirty-two EST sequences had more than two microsatellites and 1357 sequences did not have any SSR repeats. The most frequent type of repeats was trimeric motif, however the second place was occupied by dimeric motif followed by tetra-, hexa- and penta repeat motifs. The most common dimer repeat motif was GA and in case of trimeric SSRs, it was CGG. The EST sequences of NBS-LRR region of finger millet and rice showed higher synteny and were found on nearly same positions on the rice chromosome map. A total of eight, out of 15 EST based SSR primers were polymorphic among the selected resistant and susceptible finger millet genotypes. The primer FMBLEST5 could able to differentiate them into resistant and susceptible genotypes. The alleles specific to the resistant and susceptible genotypes were sequenced using the ABI 3130XL genetic analyzer and found similarity to NBS-LRR regions of rice and finger millet and contained the characteristic kinase-2 and kinase 3a motifs of plant R-genes belonged to NBS-LRR region. The In-silico and comparative analysis showed that the genes responsible for blast resistance can be identified, mapped and further introgressed through molecular breeding approaches for enhancing the blast resistance in finger millet.

  18. Comparative genomic mapping of the bovine Fragile Histidine Triad (FHIT tumour suppressor gene: characterization of a 2 Mb BAC contig covering the locus, complete annotation of the gene, analysis of cDNA and of physiological expression profiles

    Directory of Open Access Journals (Sweden)

    Boussaha Mekki

    2006-05-01

    Full Text Available Abstract Background The Fragile Histidine Triad gene (FHIT is an oncosuppressor implicated in many human cancers, including vesical tumors. FHIT is frequently hit by deletions caused by fragility at FRA3B, the most active of human common fragile sites, where FHIT lays. Vesical tumors affect also cattle, including animals grazing in the wild on bracken fern; compounds released by the fern are known to induce chromosome fragility and may trigger cancer with the interplay of latent Papilloma virus. Results The bovine FHIT was characterized by assembling a contig of 78 BACs. Sequence tags were designed on human exons and introns and used directly to select bovine BACs, or compared with sequence data in the bovine genome database or in the trace archive of the bovine genome sequencing project, and adapted before use. FHIT is split in ten exons like in man, with exons 5 to 9 coding for a 149 amino acids protein. VISTA global alignments between bovine genomic contigs retrieved from the bovine genome database and the human FHIT region were performed. Conservation was extremely high over a 2 Mb region spanning the whole FHIT locus, including the size of introns. Thus, the bovine FHIT covers about 1.6 Mb compared to 1.5 Mb in man. Expression was analyzed by RT-PCR and Northern blot, and was found to be ubiquitous. Four cDNA isoforms were isolated and sequenced, that originate from an alternative usage of three variants of exon 4, revealing a size very close to the major human FHIT cDNAs. Conclusion A comparative genomic approach allowed to assemble a contig of 78 BACs and to completely annotate a 1.6 Mb region spanning the bovine FHIT gene. The findings confirmed the very high level of conservation between human and bovine genomes and the importance of comparative mapping to speed the annotation process of the recently sequenced bovine genome. The detailed knowledge of the genomic FHIT region will allow to study the role of FHIT in bovine cancerogenesis

  19. Comparative genomic mapping of the bovine Fragile Histidine Triad (FHIT) tumour suppressor gene: characterization of a 2 Mb BAC contig covering the locus, complete annotation of the gene, analysis of cDNA and of physiological expression profiles.

    Science.gov (United States)

    Uboldi, Cristina; Guidi, Elena; Roperto, Sante; Russo, Valeria; Roperto, Franco; Di Meo, Giulia Pia; Iannuzzi, Leopoldo; Floriot, Sandrine; Boussaha, Mekki; Eggen, André; Ferretti, Luca

    2006-05-23

    The Fragile Histidine Triad gene (FHIT) is an oncosuppressor implicated in many human cancers, including vesical tumors. FHIT is frequently hit by deletions caused by fragility at FRA3B, the most active of human common fragile sites, where FHIT lays. Vesical tumors affect also cattle, including animals grazing in the wild on bracken fern; compounds released by the fern are known to induce chromosome fragility and may trigger cancer with the interplay of latent Papilloma virus. The bovine FHIT was characterized by assembling a contig of 78 BACs. Sequence tags were designed on human exons and introns and used directly to select bovine BACs, or compared with sequence data in the bovine genome database or in the trace archive of the bovine genome sequencing project, and adapted before use. FHIT is split in ten exons like in man, with exons 5 to 9 coding for a 149 amino acids protein. VISTA global alignments between bovine genomic contigs retrieved from the bovine genome database and the human FHIT region were performed. Conservation was extremely high over a 2 Mb region spanning the whole FHIT locus, including the size of introns. Thus, the bovine FHIT covers about 1.6 Mb compared to 1.5 Mb in man. Expression was analyzed by RT-PCR and Northern blot, and was found to be ubiquitous. Four cDNA isoforms were isolated and sequenced, that originate from an alternative usage of three variants of exon 4, revealing a size very close to the major human FHIT cDNAs. A comparative genomic approach allowed to assemble a contig of 78 BACs and to completely annotate a 1.6 Mb region spanning the bovine FHIT gene. The findings confirmed the very high level of conservation between human and bovine genomes and the importance of comparative mapping to speed the annotation process of the recently sequenced bovine genome. The detailed knowledge of the genomic FHIT region will allow to study the role of FHIT in bovine cancerogenesis, especially of vesical papillomavirus-associated cancers of

  20. Participatory Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    2016-01-01

    practice. In particular, mapping environmental damage, endangered species, and human-made disasters has become one focal point for environmental knowledge production. This type of digital map has been highlighted as a processual turn in critical cartography, whereas in related computational journalism...... of a geo-visualization within information mapping that enhances embodiment in the experience of the information. InfoAmazonia is defined as a digitally created map-space within which journalistic practice can be seen as dynamic, performative interactions between journalists, ecosystems, space, and species...

  1. Microbial genome sequencing using optical mapping and Illumina sequencing

    Science.gov (United States)

    Introduction Optical mapping is a technique in which strands of genomic DNA are digested with one or more restriction enzymes, and a physical map of the genome constructed from the resulting image. In outline, genomic DNA is extracted from a pure culture, linearly arrayed on a specialized glass sli...

  2. DNA glue

    DEFF Research Database (Denmark)

    Filichev, Vyacheslav V; Astakhova, Irina V.; Malakhov, Andrei D.

    2008-01-01

    Significant alterations in thermal stability of parallel DNA triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in the structure of phenylmethylglycerol inserted as a bulge into DNA (TINA). Insertions of two ortho-TINAs as a pseudo...

  3. Hyperstretching DNA

    NARCIS (Netherlands)

    Schakenraad, Koen; Biebricher, Andreas S.; Sebregts, Maarten; Ten Bensel, Brian; Peterman, Erwin J.G.; Wuite, Gijs J L; Heller, Iddo; Storm, Cornelis; Van Der Schoot, Paul

    2017-01-01

    The three-dimensional structure of DNA is highly susceptible to changes by mechanical and biochemical cues in vivo and in vitro. In particular, large increases in base pair spacing compared to regular B-DNA are effected by mechanical (over)stretching and by intercalation of compounds that are widely

  4. Concept Mapping

    Science.gov (United States)

    Technology & Learning, 2005

    2005-01-01

    Concept maps are graphical ways of working with ideas and presenting information. They reveal patterns and relationships and help students to clarify their thinking, and to process, organize and prioritize. Displaying information visually--in concept maps, word webs, or diagrams--stimulates creativity. Being able to think logically teaches…

  5. Genomic DNA Enrichment Using Sequence Capture Microarrays: a Novel Approach to Discover Sequence Nucleotide Polymorphisms (SNP) in Brassica napus L

    Science.gov (United States)

    Clarke, Wayne E.; Parkin, Isobel A.; Gajardo, Humberto A.; Gerhardt, Daniel J.; Higgins, Erin; Sidebottom, Christine; Sharpe, Andrew G.; Snowdon, Rod J.; Federico, Maria L.; Iniguez-Luy, Federico L.

    2013-01-01

    Targeted genomic selection methodologies, or sequence capture, allow for DNA enrichment and large-scale resequencing and characterization of natural genetic variation in species with complex genomes, such as rapeseed canola (Brassica napus L., AACC, 2n=38). The main goal of this project was to combine sequence capture with next generation sequencing (NGS) to discover single nucleotide polymorphisms (SNPs) in specific areas of the B. napus genome historically associated (via quantitative trait loci –QTL– analysis) to traits of agronomical and nutritional importance. A 2.1 million feature sequence capture platform was designed to interrogate DNA sequence variation across 47 specific genomic regions, representing 51.2 Mb of the Brassica A and C genomes, in ten diverse rapeseed genotypes. All ten genotypes were sequenced using the 454 Life Sciences chemistry and to assess the effect of increased sequence depth, two genotypes were also sequenced using Illumina HiSeq chemistry. As a result, 589,367 potentially useful SNPs were identified. Analysis of sequence coverage indicated a four-fold increased representation of target regions, with 57% of the filtered SNPs falling within these regions. Sixty percent of discovered SNPs corresponded to transitions while 40% were transversions. Interestingly, fifty eight percent of the SNPs were found in genic regions while 42% were found in intergenic regions. Further, a high percentage of genic SNPs was found in exons (65% and 64% for the A and C genomes, respectively). Two different genotyping assays were used to validate the discovered SNPs. Validation rates ranged from 61.5% to 84% of tested SNPs, underpinning the effectiveness of this SNP discovery approach. Most importantly, the discovered SNPs were associated with agronomically important regions of the B. napus genome generating a novel data resource for research and breeding this crop species. PMID:24312619

  6. DNA adducts in senescent cells

    International Nuclear Information System (INIS)

    Gaubatz, J.W.

    1987-01-01

    Perturbations in DNA repair and other metabolic processes during development and aging might affect the steady-state level of genomic damage. The persistence or accumulation of DNA lesions in postmitotic cells could have a significant impact on proper cellular function, interfering with gene regulation for example. To test the notion that DNA damage increases as a function of age in non-dividing cells, DNA was purified from heart tissue of C57BL/6Nia mice at different ages and analyzed by post labeling techniques to detect DNA adducts. In the present experiments, four-dimensional, thin-layer chromatography was used to isolate aromatic adducts that were labeled with carrier-free (γ- 32 P) ATP under DNA-P excess conditions. The complexity and frequency of aromatic adducts varied between DNA samples. Several adducts were present in all preparations and were clearly more abundant in nucleotide maps of mature and old heart DNA. However, a direct correlation with age was not observed. In contrast, experiments in which aromatic adducts were first isolated by phase-transfer to 1-butanol, then labeled with excess (γ- 32 P)ATP indicated that there was an age-related increase in these adducts. The results are consistent with their earlier studies that showed alkyl adducts increased during aging of mouse myocardium and suggest that a common repair pathway might be involved

  7. DNA probes

    International Nuclear Information System (INIS)

    Castelino, J.

    1992-01-01

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with 32 P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism's genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens

  8. DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Castelino, J

    1993-12-31

    The creation of DNA probes for detection of specific nucleotide segments differs from ligand detection in that it is a chemical rather than an immunological reaction. Complementary DNA or RNA is used in place of the antibody and is labelled with {sup 32}P. So far, DNA probes have been successfully employed in the diagnosis of inherited disorders, infectious diseases, and for identification of human oncogenes. The latest approach to the diagnosis of communicable and parasitic infections is based on the use of deoxyribonucleic acid (DNA) probes. The genetic information of all cells is encoded by DNA and DNA probe approach to identification of pathogens is unique because the focus of the method is the nucleic acid content of the organism rather than the products that the nucleic acid encodes. Since every properly classified species has some unique nucleotide sequences that distinguish it from every other species, each organism`s genetic composition is in essence a finger print that can be used for its identification. In addition to this specificity, DNA probes offer other advantages in that pathogens may be identified directly in clinical specimens 10 figs, 2 tabs

  9. Mapping racism.

    Science.gov (United States)

    Moss, Donald B

    2006-01-01

    The author uses the metaphor of mapping to illuminate a structural feature of racist thought, locating the degraded object along vertical and horizontal axes. These axes establish coordinates of hierarchy and of distance. With the coordinates in place, racist thought begins to seem grounded in natural processes. The other's identity becomes consolidated, and parochialism results. The use of this kind of mapping is illustrated via two patient vignettes. The author presents Freud's (1905, 1927) views in relation to such a "mapping" process, as well as Adorno's (1951) and Baldwin's (1965). Finally, the author conceptualizes the crucial status of primitivity in the workings of racist thought.

  10. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  11. DNA data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Raw DNA chromatogram data produced by the ABI 373, 377, 3130 and 3730 automated sequencing machines in ABI format. These are from fish (primarily Sebastes spp.,...

  12. DNA nanotechnology

    Science.gov (United States)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  13. Sorting fluorescent nanocrystals with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  14. DNA expressions - A formal notation for DNA

    NARCIS (Netherlands)

    Vliet, Rudy van

    2015-01-01

    We describe a formal notation for DNA molecules that may contain nicks and gaps. The resulting DNA expressions denote formal DNA molecules. Different DNA expressions may denote the same molecule. Such DNA expressions are called equivalent. We examine which DNA expressions are minimal, which

  15. Genetic Mapping

    Science.gov (United States)

    ... greatly advanced genetics research. The improved quality of genetic data has reduced the time required to identify a ... cases, a matter of months or even weeks. Genetic mapping data generated by the HGP's laboratories is freely accessible ...

  16. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  17. Two potential Petunia hybrida mitochondrial DNA replication origins show structural and in vitro functional homology with the animal mitochondrial DNA heavy and light strand replication origins

    NARCIS (Netherlands)

    Haas, Jan M. de; Hille, Jacques; Kors, Frank; Meer, Bert van der; Kool, Ad J.; Folkerts, Otto; Nijkamp, H. John J.

    1991-01-01

    Four Petunia hybrida mitochondrial (mt) DNA fragments have been isolated, sequenced, localized on the physical map and analyzed for their ability to initiate specific DNA synthesis. When all four mtDNA fragments were tested as templates in an in vitro DNA synthesizing lysate system, developed from

  18. A Probabilistic Approach for Improved Sequence Mapping in Metatranscriptomic Studies

    Science.gov (United States)

    Mapping millions of short DNA sequences a reference genome is a necessary step in many experiments designed to investigate the expression of genes involved in disease resistance. This is a difficult task in which several challenges often arise resulting in a suboptimal mapping. This mapping process ...

  19. Preliminary genetic linkage map of Miscanthus sinensis with RAPD markers

    NARCIS (Netherlands)

    Atienza, S.G.; Satovic, Z.; Petersen, K.K.; Dolstra, O.; Martin, A.

    2002-01-01

    We have used an "offspring cross" mapping strategy in combination with the random amplified polymorphic DNA (RAPD) assay to construct the first genetic map of the species Miscanthus sinensis (2n = 2x = 38). This map is based on an outbred population of 89 individuals resulting from the cross between

  20. A DNA Structure-Based Bionic Wavelet Transform and Its Application to DNA Sequence Analysis

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2003-01-01

    Full Text Available DNA sequence analysis is of great significance for increasing our understanding of genomic functions. An important task facing us is the exploration of hidden structural information stored in the DNA sequence. This paper introduces a DNA structure-based adaptive wavelet transform (WT – the bionic wavelet transform (BWT – for DNA sequence analysis. The symbolic DNA sequence can be separated into four channels of indicator sequences. An adaptive symbol-to-number mapping, determined from the structural feature of the DNA sequence, was introduced into WT. It can adjust the weight value of each channel to maximise the useful energy distribution of the whole BWT output. The performance of the proposed BWT was examined by analysing synthetic and real DNA sequences. Results show that BWT performs better than traditional WT in presenting greater energy distribution. This new BWT method should be useful for the detection of the latent structural features in future DNA sequence analysis.

  1. What Is Mitochondrial DNA?

    Science.gov (United States)

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  2. Molecular mechanisms of DNA photodamage

    Energy Technology Data Exchange (ETDEWEB)

    Starrs, S.M

    2000-05-01

    Photodamage in DNA, caused by ultraviolet (UV) light, can occur by direct excitation of the nucleobases or indirectly via the action of photosensitisers. Such, DNA photodamage can be potentially mutagenic or lethal. Among the methods available for detecting UV-induced DNA damage, gel sequencing protocols, utilising synthetic oligodeoxyribonucleotides as targets for UV radiation, allow photolesions to be mapped at nucleotide resolution. This approach has been applied to investigate both DNA damage mechanisms. Following a general overview of DNA photoreactivity, and a description of the main experimental procedures, Chapter 3 identifies the origin of an anomalous mobility shift observed in purine chemical sequence ladders that can confuse the interpretation of DNA cleavage results; measures to abolish this shift are also described. Chapters 4 and 5 examine the alkali-labile DNA damage photosensitised by representative nonsteroidal antiinflammatory drugs (NSAIDs) and the fluoroquinolone antibiotics. Suprofen was the most photoactive NSAID studied, producing different patterns of guanine-specific damage in single-stranded and duplex DNA. Uniform modification of guanine bases, typifying attack by singlet oxygen, was observed in single-stranded oligodeoxyribonucleotides. In duplex molecules, modification was limited to the 5'-G of GG doublets, which is indicative of an electron transfer. The effect of quenchers and photoproduct analysis substantiated these findings. The quinolone, nalidixic acid, behaves similarly. The random base cleavage photosensitised by the fluoroquinolones, has been attributed to free radicals produced during their photodecomposition. Chapter 6 addresses the photoreactivity of purines within unusual DNA structures formed by the repeat sequences (GGA){sub n} and (GA){sub n}, and a minihairpin. There was no definitive evidence for enhanced purine reactivity caused by direct excitation. Finally, Chapter 7 investigates the mutagenic potential of a

  3. Molecular mechanisms of DNA photodamage

    International Nuclear Information System (INIS)

    Starrs, S.M.

    2000-05-01

    Photodamage in DNA, caused by ultraviolet (UV) light, can occur by direct excitation of the nucleobases or indirectly via the action of photosensitisers. Such, DNA photodamage can be potentially mutagenic or lethal. Among the methods available for detecting UV-induced DNA damage, gel sequencing protocols, utilising synthetic oligodeoxyribonucleotides as targets for UV radiation, allow photolesions to be mapped at nucleotide resolution. This approach has been applied to investigate both DNA damage mechanisms. Following a general overview of DNA photoreactivity, and a description of the main experimental procedures, Chapter 3 identifies the origin of an anomalous mobility shift observed in purine chemical sequence ladders that can confuse the interpretation of DNA cleavage results; measures to abolish this shift are also described. Chapters 4 and 5 examine the alkali-labile DNA damage photosensitised by representative nonsteroidal antiinflammatory drugs (NSAIDs) and the fluoroquinolone antibiotics. Suprofen was the most photoactive NSAID studied, producing different patterns of guanine-specific damage in single-stranded and duplex DNA. Uniform modification of guanine bases, typifying attack by singlet oxygen, was observed in single-stranded oligodeoxyribonucleotides. In duplex molecules, modification was limited to the 5'-G of GG doublets, which is indicative of an electron transfer. The effect of quenchers and photoproduct analysis substantiated these findings. The quinolone, nalidixic acid, behaves similarly. The random base cleavage photosensitised by the fluoroquinolones, has been attributed to free radicals produced during their photodecomposition. Chapter 6 addresses the photoreactivity of purines within unusual DNA structures formed by the repeat sequences (GGA) n and (GA) n , and a minihairpin. There was no definitive evidence for enhanced purine reactivity caused by direct excitation. Finally, Chapter 7 investigates the mutagenic potential of a dimeric

  4. Projective mapping

    DEFF Research Database (Denmark)

    Dehlholm, Christian; Brockhoff, Per B.; Bredie, Wender Laurentius Petrus

    2012-01-01

    by the practical testing environment. As a result of the changes, a reasonable assumption would be to question the consequences caused by the variations in method procedures. Here, the aim is to highlight the proven or hypothetic consequences of variations of Projective Mapping. Presented variations will include...... instructions and influence heavily the product placements and the descriptive vocabulary (Dehlholm et.al., 2012b). The type of assessors performing the method influences results with an extra aspect in Projective Mapping compared to more analytical tests, as the given spontaneous perceptions are much dependent......Projective Mapping (Risvik et.al., 1994) and its Napping (Pagès, 2003) variations have become increasingly popular in the sensory field for rapid collection of spontaneous product perceptions. It has been applied in variations which sometimes are caused by the purpose of the analysis and sometimes...

  5. DNA AND ITS METAPHORES

    Directory of Open Access Journals (Sweden)

    Jan Domaradzki

    2015-04-01

    Full Text Available The aim of the present paper is to describe the main metaphors presented in genetic discourse: DNA as text, information, language, book, code, project/blueprint, map, computer, music, and cooking. It also analyses the social implication of these metaphors. The author of this article argues that metaphors are double-edged swords: while they brighten difficult and abstract genetic concepts, they also lead to the misunderstanding and misinterpretation of the reality. The reason for this is that most of these metaphors are of deterministic, reductionist, and fatalistic character. Consequently, they shift the attention from complexity of genetic processes. Moreover, as they appeal to emotions, ascetics, and morality they may involve exaggeration: while they bring hope, they also create an atmosphere of fear over the misuse of genetic knowledge. The author of this article states that the genetic metaphors do not simply reflect the social ideas on DNA, but also shape our understanding of genetics and imagination on the social application of genetic knowledge. Due to this reason, DNA should be understood not only as a biological code, but as a cultural as well.

  6. Mapping the space of genomic signatures.

    Directory of Open Access Journals (Sweden)

    Lila Kari

    Full Text Available We propose a computational method to measure and visualize interrelationships among any number of DNA sequences allowing, for example, the examination of hundreds or thousands of complete mitochondrial genomes. An "image distance" is computed for each pair of graphical representations of DNA sequences, and the distances are visualized as a Molecular Distance Map: Each point on the map represents a DNA sequence, and the spatial proximity between any two points reflects the degree of structural similarity between the corresponding sequences. The graphical representation of DNA sequences utilized, Chaos Game Representation (CGR, is genome- and species-specific and can thus act as a genomic signature. Consequently, Molecular Distance Maps could inform species identification, taxonomic classifications and, to a certain extent, evolutionary history. The image distance employed, Structural Dissimilarity Index (DSSIM, implicitly compares the occurrences of oligomers of length up to k (herein k = 9 in DNA sequences. We computed DSSIM distances for more than 5 million pairs of complete mitochondrial genomes, and used Multi-Dimensional Scaling (MDS to obtain Molecular Distance Maps that visually display the sequence relatedness in various subsets, at different taxonomic levels. This general-purpose method does not require DNA sequence alignment and can thus be used to compare similar or vastly different DNA sequences, genomic or computer-generated, of the same or different lengths. We illustrate potential uses of this approach by applying it to several taxonomic subsets: phylum Vertebrata, (superkingdom Protista, classes Amphibia-Insecta-Mammalia, class Amphibia, and order Primates. This analysis of an extensive dataset confirms that the oligomer composition of full mtDNA sequences can be a source of taxonomic information. This method also correctly finds the mtDNA sequences most closely related to that of the anatomically modern human (the Neanderthal

  7. Affective Maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    . In particular, mapping environmental damage, endangered species, and human made disasters has become one of the focal point of affective knowledge production. These ‘more-than-humangeographies’ practices include notions of species, space and territory, and movement towards a new political ecology. This type...... of digital cartographies has been highlighted as the ‘processual turn’ in critical cartography, whereas in related computational journalism it can be seen as an interactive and iterative process of mapping complex and fragile ecological developments. This paper looks at computer-assisted cartography as part...

  8. Adaptive genic evolution in the Drosophila genomes

    DEFF Research Database (Denmark)

    Shapiro, Joshua A; Huang, Wei; Zhang, Chenhui

    2007-01-01

    and stable population. In this study, we sequenced 419 genes from 24 lines of Drosophila melanogaster and its close relatives. Together with data from Drosophila simulans, these data reveal the following. (i) Approximately 10% of the loci in regions of normal recombination are much less polymorphic at silent...... sites than expected, hinting at the action of selective sweeps. (ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species...

  9. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  10. DNA Investigations.

    Science.gov (United States)

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  11. Energetic map

    International Nuclear Information System (INIS)

    2012-01-01

    This report explains the energetic map of Uruguay as well as the different systems that delimits political frontiers in the region. The electrical system importance is due to the electricity, oil and derived , natural gas, potential study, biofuels, wind and solar energy

  12. Necklace maps

    NARCIS (Netherlands)

    Speckmann, B.; Verbeek, K.A.B.

    2010-01-01

    Statistical data associated with geographic regions is nowadays globally available in large amounts and hence automated methods to visually display these data are in high demand. There are several well-established thematic map types for quantitative data on the ratio-scale associated with regions:

  13. Participatory maps

    DEFF Research Database (Denmark)

    Salovaara-Moring, Inka

    towards a new political ecology. This type of digital cartographies has been highlighted as the ‘processual turn’ in critical cartography, whereas in related computational journalism it can be seen as an interactive and iterative process of mapping complex and fragile ecological developments. This paper...

  14. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  15. Radiation hybrid mapping of human chromosome 18

    International Nuclear Information System (INIS)

    Francke, U.; Moon, A.J.; Chang, E.; Foellmer, B.; Strauss, B.; Haschke, A.; Chihlin Hsieh; Geigl, E.M.; Welch, S.

    1990-01-01

    The authors have generated a Chinese hamster V79/380-6 HPRT minus x human leukocyte hybrid cell line (18/V79) with chromosome 18 as the only human chromosome that is retained at high frequency without specific selection. Hybrid cells were selected in HAT medium, and 164 individual colonies were isolated. Of 110 colonies screened for human DNA by PCR amplification using a primer specific for human Alu repeats 67 (61%) were positive. These were expanded in culture for large-scale DNA preparations. Retesting expanded clones by PCR with Alu and LINE primers has revealed unique patterns of amplification products. In situ hybridization of biotin labelled total human DNA to metaphase spreads from various hybrids revealed the presence of one or more human DNA fragments integrated in hamster chromosomes. The authors have generated a resource that should allow the construction of a radiation map, to be compared with the YAC contig map also under construction in their laboratory

  16. Suppressors of DnaAATP imposed overinitiation in Escherichia coli

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Riber, Leise; Cohen, Malene

    2011-01-01

    Chromosome replication in Escherichia coli is limited by the supply of DnaA associated with ATP. Cells deficient in RIDA (Regulatory Inactivation of DnaA) due to a deletion of the hda gene accumulate suppressor mutations (hsm) to counteract the overinitiation caused by an elevated DnaAATP level....... Eight spontaneous hda suppressor mutations were identified by whole-genome sequencing, and three of these were analysed further. Two mutations (hsm-2 and hsm-4) mapped in the dnaA gene and led to a reduced ability to initiate replication from oriC. One mutation (hsm-1) mapped to the seqA promoter...

  17. Comprehensive mapping of the effects of azacitidine on DNA methylation, repressive/permissive histone marks and gene expression in primary cells from patients with MDS and MDS-related disease.

    Science.gov (United States)

    Tobiasson, Magnus; Abdulkadir, Hani; Lennartsson, Andreas; Katayama, Shintaro; Marabita, Francesco; De Paepe, Ayla; Karimi, Mohsen; Krjutskov, Kaarel; Einarsdottir, Elisabet; Grövdal, Michael; Jansson, Monika; Ben Azenkoud, Asmaa; Corddedu, Lina; Lehmann, Sören; Ekwall, Karl; Kere, Juha; Hellström-Lindberg, Eva; Ungerstedt, Johanna

    2017-04-25

    Azacitidine (Aza) is first-line treatment for patients with high-risk myelodysplastic syndromes (MDS), although its precise mechanism of action is unknown. We performed the first study to globally evaluate the epigenetic effects of Aza on MDS bone marrow progenitor cells assessing gene expression (RNA seq), DNA methylation (Illumina 450k) and the histone modifications H3K18ac and H3K9me3 (ChIP seq). Aza induced a general increase in gene expression with 924 significantly upregulated genes but this increase showed no correlation with changes in DNA methylation or H3K18ac, and only a weak association with changes in H3K9me3. Interestingly, we observed activation of transcripts containing 15 endogenous retroviruses (ERVs) confirming previous cell line studies. DNA methylation decreased moderately in 99% of all genes, with a median β-value reduction of 0.018; the most pronounced effects seen in heterochromatin. Aza-induced hypomethylation correlated significantly with change in H3K9me3. The pattern of H3K18ac and H3K9me3 displayed large differences between patients and healthy controls without any consistent pattern induced by Aza. We conclude that the marked induction of gene expression only partly could be explained by epigenetic changes, and propose that activation of ERVs may contribute to the clinical effects of Aza in MDS.

  18. Epitopes of human testis-specific lactate dehydrogenase deduced from a cDNA sequence

    International Nuclear Information System (INIS)

    Millan, J.L.; Driscoll, C.E.; LeVan, K.M.; Goldberg, E.

    1987-01-01

    The sequence and structure of human testis-specific L-lactate dehydrogenase [LDHC 4 , LDHX; (L)-lactate:NAD + oxidoreductase, EC 1.1.1.27] has been derived from analysis of a complementary DNA (cDNA) clone comprising the complete protein coding region of the enzyme. From the deduced amino acid sequence, human LDHC 4 is as different from rodent LDHC 4 (73% homology) as it is from human LDHA 4 (76% homology) and porcine LDHB 4 (68% homology). Subunit homologies are consistent with the conclusion that the LDHC gene arose by at least two independent duplication events. Furthermore, the lower degree of homology between mouse and human LDHC 4 and the appearance of this isozyme late in evolution suggests a higher rate of mutation in the mammalian LDHC genes than in the LDHA and -B genes. Comparison of exposed amino acid residues of discrete anti-genic determinants of mouse and human LDHC 4 reveals significant differences. Knowledge of the human LDHC 4 sequence will help design human-specific peptides useful in the development of a contraceptive vaccine

  19. DNA repair

    International Nuclear Information System (INIS)

    Setlow, R.

    1978-01-01

    Some topics discussed are as follows: difficulty in extrapolating data from E. coli to mammalian systems; mutations caused by UV-induced changes in DNA; mutants deficient in excision repair; other postreplication mechanisms; kinds of excision repair systems; detection of repair by biochemical or biophysical means; human mutants deficient in repair; mutagenic effects of UV on XP cells; and detection of UV-repair defects among XP individuals

  20. Genetic maps and physical units

    International Nuclear Information System (INIS)

    Karunakaran, V.; Holt, G.

    1976-01-01

    The relationships between physical and genetic units are examined. Genetic mapping involves the detection of linkage of genes and the measurement of recombination frequencies. The genetic distance is measured in map units and is proportional to the recombination frequencies between linked markers. Physical mapping of genophores, particularly the simple genomes of bacteriophages and bacterial plasmids can be achieved through heteroduplex analysis. Genetic distances are dependent on recombination frequencies and, therefore, can only be correlated accurately with physical unit lengths if the recombination frequency is constant throughout the entire genome. Methods are available to calculate the equivalent length of DNA per average map unit in different organisms. Such estimates indicate significant differences from one organism to another. Gene lengths can also be calculated from the number of amino acids in a specified polypeptide and relating this to the number of nucleotides required to code for such a polypeptide. Many attempts have been made to relate microdosimetric measurements to radiobiological data. For irradiation effects involving deletion of genetic material such a detailed correlation may be possible in systems where heteroduplex analysis or amino acid sequencing can be performed. The problems of DNA packaging and other functional associations within the cell in interpreting data is discussed

  1. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression.

    Science.gov (United States)

    Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo

    2016-06-01

    Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.

  2. MAPPING INNOVATION

    DEFF Research Database (Denmark)

    Thuesen, Christian Langhoff; Koch, Christian

    2011-01-01

    By adopting a theoretical framework from strategic niche management research (SNM) this paper presents an analysis of the innovation system of the Danish Construction industry. The analysis shows a multifaceted landscape of innovation around an existing regime, built around existing ways of working...... and developed over generations. The regime is challenged from various niches and the socio-technical landscape through trends as globalization. Three niches (Lean Construction, BIM and System Deliveries) are subject to a detailed analysis showing partly incompatible rationales and various degrees of innovation...... potential. The paper further discusses how existing policymaking operates in a number of tensions one being between government and governance. Based on the concepts from SNM the paper introduces an innovation map in order to support the development of meta-governance policymaking. By mapping some...

  3. Mapping filmmaking

    DEFF Research Database (Denmark)

    Gilje, Øystein; Frølunde, Lisbeth; Lindstrand, Fredrik

    2010-01-01

    This chapter concerns mapping patterns in regards to how young filmmakers (age 15 – 20) in the Scandinavian countries learn about filmmaking. To uncover the patterns, we present portraits of four young filmmakers who participated in the Scandinavian research project Making a filmmaker. The focus ...... is on their learning practices and how they create ‘learning paths’ in relation to resources in diverse learning contexts, whether formal, non-formal and informal contexts.......This chapter concerns mapping patterns in regards to how young filmmakers (age 15 – 20) in the Scandinavian countries learn about filmmaking. To uncover the patterns, we present portraits of four young filmmakers who participated in the Scandinavian research project Making a filmmaker. The focus...

  4. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand.

    Science.gov (United States)

    Yasukawa, Takehiro; Reyes, Aurelio; Cluett, Tricia J; Yang, Ming-Yao; Bowmaker, Mark; Jacobs, Howard T; Holt, Ian J

    2006-11-15

    Using two-dimensional agarose gel electrophoresis, we show that mitochondrial DNA (mtDNA) replication of birds and mammals frequently entails ribonucleotide incorporation throughout the lagging strand (RITOLS). Based on a combination of two-dimensional agarose gel electrophoretic analysis and mapping of 5' ends of DNA, initiation of RITOLS replication occurs in the major non-coding region of vertebrate mtDNA and is effectively unidirectional. In some cases, conversion of nascent RNA strands to DNA starts at defined loci, the most prominent of which maps, in mammalian mtDNA, in the vicinity of the site known as the light-strand origin.

  5. DNA repair

    International Nuclear Information System (INIS)

    Van Zeeland, A.A.

    1984-01-01

    In this chapter a series of DNA repair pathways are discussed which are available to the cell to cope with the problem of DNA damaged by chemical or physical agents. In the case of microorganisms our knowledge about the precise mechanism of each DNA repair pathway and the regulation of it has been improved considerably when mutants deficient in these repair mechanisms became available. In the case of mammalian cells in culture, until recently there were very little repair deficient mutants available, because in almost all mammalian cells in culture at least the diploid number of chromosomes is present. Therefore the frequency of repair deficient mutants in such populations is very low. Nevertheless because replica plating techniques are improving some mutants from Chinese hamsters ovary cells and L5178Y mouse lymphoma cells are now available. In the case of human cells, cultures obtained from patients with certain genetic diseases are available. A number of cells appear to be sensitive to some chemical or physical mutagens. These include cells from patients suffering from xeroderma pigmentosum, Ataxia telangiectasia, Fanconi's anemia, Cockayne's syndrome. However, only in the case of xeroderma pigmentosum cells, has the sensitivity to ultraviolet light been clearly correlated with a deficiency in excision repair of pyrimidine dimers. Furthermore the work with strains obtained from biopsies from man is difficult because these cells generally have low cloning efficiencies and also have a limited lifespan in vitro. It is therefore very important that more repair deficient mutants will become available from established cell lines from human or animal origin

  6. Mapping Resilience

    DEFF Research Database (Denmark)

    Carruth, Susan

    2015-01-01

    by planners when aiming to construct resilient energy plans. It concludes that a graphical language has the potential to be a significant tool, flexibly facilitating cross-disciplinary communication and decision-making, while emphasising that its role is to support imaginative, resilient planning rather than...... the relationship between resilience and energy planning, suggesting that planning in, and with, time is a core necessity in this domain. It then reviews four examples of graphically mapping with time, highlighting some of the key challenges, before tentatively proposing a graphical language to be employed...

  7. Comparative genomics and association mapping approaches for blast resistant genes in finger millet using SSRs.

    Directory of Open Access Journals (Sweden)

    B Kalyana Babu

    Full Text Available The major limiting factor for production and productivity of finger millet crop is blast disease caused by Magnaporthe grisea. Since, the genome sequence information available in finger millet crop is scarce, comparative genomics plays a very important role in identification of genes/QTLs linked to the blast resistance genes using SSR markers. In the present study, a total of 58 genic SSRs were developed for use in genetic analysis of a global collection of 190 finger millet genotypes. The 58 SSRs yielded ninety five scorable alleles and the polymorphism information content varied from 0.186 to 0.677 at an average of 0.385. The gene diversity was in the range of 0.208 to 0.726 with an average of 0.487. Association mapping for blast resistance was done using 104 SSR markers which identified four QTLs for finger blast and one QTL for neck blast resistance. The genomic marker RM262 and genic marker FMBLEST32 were linked to finger blast disease at a P value of 0.007 and explained phenotypic variance (R² of 10% and 8% respectively. The genomic marker UGEP81 was associated to finger blast at a P value of 0.009 and explained 7.5% of R². The QTLs for neck blast was associated with the genomic SSR marker UGEP18 at a P value of 0.01, which explained 11% of R². Three QTLs for blast resistance were found common by using both GLM and MLM approaches. The resistant alleles were found to be present mostly in the exotic genotypes. Among the genotypes of NW Himalayan region of India, VHC3997, VHC3996 and VHC3930 were found highly resistant, which may be effectively used as parents for developing blast resistant cultivars in the NW Himalayan region of India. The markers linked to the QTLs for blast resistance in the present study can be further used for cloning of the full length gene, fine mapping and their further use in the marker assisted breeding programmes for introgression of blast resistant alleles into locally adapted cultivars.

  8. Comparative genomics and association mapping approaches for blast resistant genes in finger millet using SSRs.

    Science.gov (United States)

    Babu, B Kalyana; Dinesh, Pandey; Agrawal, Pawan K; Sood, S; Chandrashekara, C; Bhatt, Jagadish C; Kumar, Anil

    2014-01-01

    The major limiting factor for production and productivity of finger millet crop is blast disease caused by Magnaporthe grisea. Since, the genome sequence information available in finger millet crop is scarce, comparative genomics plays a very important role in identification of genes/QTLs linked to the blast resistance genes using SSR markers. In the present study, a total of 58 genic SSRs were developed for use in genetic analysis of a global collection of 190 finger millet genotypes. The 58 SSRs yielded ninety five scorable alleles and the polymorphism information content varied from 0.186 to 0.677 at an average of 0.385. The gene diversity was in the range of 0.208 to 0.726 with an average of 0.487. Association mapping for blast resistance was done using 104 SSR markers which identified four QTLs for finger blast and one QTL for neck blast resistance. The genomic marker RM262 and genic marker FMBLEST32 were linked to finger blast disease at a P value of 0.007 and explained phenotypic variance (R²) of 10% and 8% respectively. The genomic marker UGEP81 was associated to finger blast at a P value of 0.009 and explained 7.5% of R². The QTLs for neck blast was associated with the genomic SSR marker UGEP18 at a P value of 0.01, which explained 11% of R². Three QTLs for blast resistance were found common by using both GLM and MLM approaches. The resistant alleles were found to be present mostly in the exotic genotypes. Among the genotypes of NW Himalayan region of India, VHC3997, VHC3996 and VHC3930 were found highly resistant, which may be effectively used as parents for developing blast resistant cultivars in the NW Himalayan region of India. The markers linked to the QTLs for blast resistance in the present study can be further used for cloning of the full length gene, fine mapping and their further use in the marker assisted breeding programmes for introgression of blast resistant alleles into locally adapted cultivars.

  9. Mutagenic DNA repair in enterobacteria

    International Nuclear Information System (INIS)

    Sedgwick, S.G.; Chao Ho; Woodgate, R.

    1991-01-01

    Sixteen species of enterobacteria have been screened for mutagenic DNA repair activity. In Escherichia coli, mutagenic DNA repair is encoded by the umuDC operon. Synthesis of UmuD and UmuC proteins is induced as part of the SOS response to DNA damage, and after induction, the UmuD protein undergoes an autocatalytic cleavage to produce the carboxy-terminal UmuD' fragment needed for induced mutagenesis. The presence of a similar system in other species was examined by using a combined approach of inducible-mutagenesis assays, cross-reactivity to E. coli UmuD and UmuD' antibodies to test for induction and cleavage of UmuD-like proteins, and hybridization with E. coli and Salmonella typhimurium u mu DNA probes to map umu-like genes. The results indicate a more widespread distribution of mutagenic DNA repair in other species than was previously thought. They also show that umu loci can be more complex in other species than in E. coli. Differences in UV-induced mutability of more than 200-fold were seen between different species of enteric bacteria and even between multiple natural isolates of E. coli, and yet some of the species which display a poorly mutable phenotype still have umu-like genes and proteins. It is suggested that umuDC genes can be curtailed in their mutagenic activities but that they may still participate in some other, unknown process which provides the continued stimulus for their retention

  10. Mapping of

    Directory of Open Access Journals (Sweden)

    Sayed M. Arafat

    2014-06-01

    Full Text Available Land cover map of North Sinai was produced based on the FAO-Land Cover Classification System (LCCS of 2004. The standard FAO classification scheme provides a standardized system of classification that can be used to analyze spatial and temporal land cover variability in the study area. This approach also has the advantage of facilitating the integration of Sinai land cover mapping products to be included with the regional and global land cover datasets. The total study area is covering a total area of 20,310.4 km2 (203,104 hectare. The landscape classification was based on SPOT4 data acquired in 2011 using combined multispectral bands of 20 m spatial resolution. Geographic Information System (GIS was used to manipulate the attributed layers of classification in order to reach the maximum possible accuracy. GIS was also used to include all necessary information. The identified vegetative land cover classes of the study area are irrigated herbaceous crops, irrigated tree crops and rain fed tree crops. The non-vegetated land covers in the study area include bare rock, bare soils (stony, very stony and salt crusts, loose and shifting sands and sand dunes. The water bodies were classified as artificial perennial water bodies (fish ponds and irrigated canals and natural perennial water bodies as lakes (standing. The artificial surfaces include linear and non-linear features.

  11. Relationship of the demethylation of the DNA with the induction of the sister chromatid exchanges (SCE) In vivo

    International Nuclear Information System (INIS)

    Toribio E, E.

    2005-01-01

    The methylation of the DNA is an epigenetic modification that has an important paper in the regulation of the functionality of the genome of the organisms. It can be altered by demethylation processes, either natural or experimentally induced. The 5-azacytidine (Aza) is a compound that causes the demethylation of the DNA (dm-DNA), inducing with it, expression genic and increase in the frequency of the Sister Chromatid Exchange (SCE). The SCE is a genotoxicity indicator, caused by diverse mutagens and carcinogen. Since the biological meaning and the formation mechanism of this phenomenon has not been totally illustrious, the exploration of the relation between the dm-DNA and the induction of SCE, it could offer new knowledge to explain those queries. The purpose of this work was to study in cells of the mouse bone marrow In vivo, the effect of the Aza on the induction of SCE, based on two aspects: 1) dose answer and 2) the effectiveness of multiple exhibition. To six groups of three to five animals, they are administered Aza to dose of 5, 10, 15 or 20 mg/Kg of weight; in sharp or multiple form, previously to the bromodeoxyuridine supply and 24 h was sacrificed after this; 2 h after an injection with colchicine. Preparations of those metaphases were made, those which were dyed by means of a technique of fluorescence more Giemsa. It was observed that to sharp low dose, the Aza produced an increment in the frequency of SCE that although small it was proportional and statistically significant. To sharp and multiple high doses, the Aza doesn't cause additional increments of SCE, but if toxicity at cellular level and of individuals. It is concluded that a relationship exists between the dm-DNA and the induction of SCE. It is suggested that the total demethylation of the DNA causes 2 SCE/Cell in cells of the mouse bone marrow, or that the cytotoxicity prevents to evidence a bigger induction. (Author)

  12. Close sequence identity between ribosomal DNA episomes of the ...

    Indian Academy of Sciences (India)

    Unknown

    The restriction map of the E. dispar rDNA circle showed close simi- larity to EhR1 .... for 30 cycles in a DNA Thermal cycler (MJ Research,. USA). 3. .... by asterisk. The gaps show the variation between E. dispar and E. histolytica sequences.

  13. 49. Brazilian congress on genetics. DNA double helix. Abstracts

    International Nuclear Information System (INIS)

    2003-01-01

    Use of radioisotopes and ionizing radiations in genetics is presented. Several aspects related to men, animals, plants and microorganisms are reported highlighting biological radiation effects, evolution, mutagenesis and genetic engineering. Genetic mapping, gene mutations, genetic diversity, DNA hybridization, DNA sequencing, plant cultivation and plant grow are studied as well

  14. Concentrating Genomic Length DNA in a Microfabricated Array

    DEFF Research Database (Denmark)

    Chen, Yu; Abrams, Ezra S.; Boles, T. Christian

    2015-01-01

    the DNA molecules to minimal coil size using polyethylene glycol (PEG) derived depletion forces. We map out the sweet spot, where concentration occurs, as a function of PEG concentration and flow speed using a combination of theoretical analysis and experiment. Purification of DNA from enzymatic reactions...

  15. Sequence finishing and mapping of Drosophila melanogasterheterochromatin

    Energy Technology Data Exchange (ETDEWEB)

    Hoskins, Roger A.; Carlson, Joseph W.; Kennedy, Cameron; Acevedo,David; Evans-Holm, Martha; Frise, Erwin; Wan, Kenneth H.; Park, Soo; Mendez-Lago, Maria; Rossi, Fabrizio; Villasante, Alfredo; Dimitri,Patrizio; Karpen, Gary H.; Celniker, Susan E.

    2007-06-15

    Genome sequences for most metazoans are incomplete due tothe presence of repeated DNA in the pericentromeric heterochromatin. Theheterochromatic regions of D. melanogaster contain 20 Mb of sequenceamenable to mapping, sequence assembly and finishing. Here we describethe generation of 15 Mb of finished or improved heterochromatic sequenceusing available clone resources and assembly and mapping methods. We alsoconstructed a BAC-based physical map that spans approximately 13 Mb ofthe pericentromeric heterochromatin, and a cytogenetic map that positionsapproximately 11 Mb of BAC contigs and sequence scaffolds in specificchromosomal locations. The integrated sequence assembly and maps greatlyimprove our understanding of the structure and composition of this poorlyunderstood fraction of a metazoan genome and provide a framework forfunctional analyses.

  16. The hunt for origins of DNA replication in multicellular eukaryotes

    DEFF Research Database (Denmark)

    Urban, J. M.; Foulk, M. S.; Casella, Cinzia

    2015-01-01

    Origins of DNA replication (ORIs) occur at defined regions in the genome. Although DNA sequence defines the position of ORIs in budding yeast, the factors for ORI specification remain elusive in metazoa. Several methods have been used recently to map ORIs in metazoan genomes with the hope...... that features for ORI specification might emerge. These methods are reviewed here with analysis of their advantages and shortcomings. The various factors that may influence ORI selection for initiation of DNA replication are discussed....

  17. Interference, heterogeneity and disease gene mapping

    Energy Technology Data Exchange (ETDEWEB)

    Keats, B. [Louisiana State Univ. Medical Center, New Orleans, LA (United States)

    1996-12-31

    The Human Genome Project has had a major impact on genetic research over the past five years. The number of mapped genes is now over 3,000 compared with approximately 1,600 in 1989 and only about 260 ten years before that. The realization that extensive variation could be detected in anonymous DNA segments greatly enhanced the potential for mapping by linkage analysis. Previously, linkage studies had depended on polymorphisms that could be detected in red blood cell antigens, proteins (revealed by electrophoresis and isoelectric focusing), and cytogenetic heteromorphisms. The identification of thousands of polymorphic DNA markers throughout the human genome has led to the construction of high density genetic linkage maps. These maps provide the data necessary to test hypotheses concerning differences in recombination rates and levels of interference. They are also important for disease gene mapping because the existence of these genes must be inferred from the phenotype. Showing linkage of a disease gene to a DNA marker is the first step towards isolating the disease gene, determining its protein product, and developing effective therapies. However, interpretation of results is not always straightforward. Factors such as etiological heterogeneity and undetected irregular segregation can lead to confusing linkage results and incorrect conclusions about the locations of disease genes. This paper will discuss these phenomena and present examples that illustrate the problems, as well as approaches to dealing with them. 23 refs., 3 figs., 3 tabs.

  18. Diversity arrays technology (DArT) markers in apple for genetic linkage maps.

    Science.gov (United States)

    Schouten, Henk J; van de Weg, W Eric; Carling, Jason; Khan, Sabaz Ali; McKay, Steven J; van Kaauwen, Martijn P W; Wittenberg, Alexander H J; Koehorst-van Putten, Herma J J; Noordijk, Yolanda; Gao, Zhongshan; Rees, D Jasper G; Van Dyk, Maria M; Jaccoud, Damian; Considine, Michael J; Kilian, Andrzej

    2012-03-01

    Diversity Arrays Technology (DArT) provides a high-throughput whole-genome genotyping platform for the detection and scoring of hundreds of polymorphic loci without any need for prior sequence information. The work presented here details the development and performance of a DArT genotyping array for apple. This is the first paper on DArT in horticultural trees. Genetic mapping of DArT markers in two mapping populations and their integration with other marker types showed that DArT is a powerful high-throughput method for obtaining accurate and reproducible marker data, despite the low cost per data point. This method appears to be suitable for aligning the genetic maps of different segregating populations. The standard complexity reduction method, based on the methylation-sensitive PstI restriction enzyme, resulted in a high frequency of markers, although there was 52-54% redundancy due to the repeated sampling of highly similar sequences. Sequencing of the marker clones showed that they are significantly enriched for low-copy, genic regions. The genome coverage using the standard method was 55-76%. For improved genome coverage, an alternative complexity reduction method was examined, which resulted in less redundancy and additional segregating markers. The DArT markers proved to be of high quality and were very suitable for genetic mapping at low cost for the apple, providing moderate genome coverage. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-011-9579-5) contains supplementary material, which is available to authorized users.

  19. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair

    International Nuclear Information System (INIS)

    Thomas, S.M.; Sedgwick, S.G.

    1989-01-01

    Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli

  20. DNA Repair Systems

    Indian Academy of Sciences (India)

    DNA molecule which makes it ideal for storage and propagation of genetic information. ... of these errors are broadly referred to as DNA repair. DNA can ... changes occur in the human genome per day. ..... nails, frequent physical and mental.

  1. Web mapping GIS: GPS under the GIS umbrella for Aedes species dengue and chikungunya vector mosquito surveillance and control

    Directory of Open Access Journals (Sweden)

    M. Palaniyandi

    2014-09-01

    Full Text Available The mosquito nuisance and the mosquito borne diseases have become major important challenging public health problems in India especially in the fast developing city like Pondicherry urban agglomeration. The Pondicherry government has been implemented full-fledged mosquito control measures, however, dengue and chikungunya epidemics was accelerating trend in Pondicherry for the recent years, and therefore, the directorate of public health, Pondicherry was requested vector control research centre (VCRC, to conduct a mosquito control evaluation survey. A team of field staff of VCRC headed by the author, Pondicherry, have conducted a detailed reconnaissance survey for collecting the site specifications of houses and the streetwise mosquito data for analyzing the density of vector mosquitoes in the wards / blocks and delineating the areas vulnerable to disease epidemics in the urban areas. The GPS GARMIN 12 XL was used to collect the field data. The ARC GIS 10.0 software was used to map the site locations (houses with mosquito’s data. The digital map of block boundary of Pondicherry was used for mapping purpose. A systematic grid sampling was applied to conduct a rapid survey for mapping Aedes species mosquito genic condition in the urban areas and the coordinates of sites of house information with breeding habitats positive in the grid sectors was collected using GPS, and the mean value of positive habitats was analyzed by quintiles method for mapping. The four blocks were selected for Aedes mosquito survey where the mosquito problem was identified as comparatively high, four numbers of wards were selected from each block, and the 40 number of houses was selected with 100 meter interval distance for mosquito breeding survey in the domestic and peripheral domestic areas in each wards. The problematic areas were identified, highlighted and recommended for web mapping GIS for Aedes mosquito surveillance continuously for monitoring the mosquito control

  2. Synthesis of DNA

    Science.gov (United States)

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  3. Human Mind Maps

    Science.gov (United States)

    Glass, Tom

    2016-01-01

    When students generate mind maps, or concept maps, the maps are usually on paper, computer screens, or a blackboard. Human Mind Maps require few resources and little preparation. The main requirements are space where students can move around and a little creativity and imagination. Mind maps can be used for a variety of purposes, and Human Mind…

  4. Molecular cloning and restriction analysis of EcoRI-fragments of Vicia faba rDNA

    International Nuclear Information System (INIS)

    Yakura, Kimitaka; Tanifuji, Shigeyuki.

    1983-01-01

    EcoRI-fragments of Vicia faba rDNA were cloned in plasmid pBR325. Southern blot hybridization of BamHI-digests of these cloned plasmids and Vicia genomic DNA led to the determination of relative positions of BamHI sites in the rDNA and the physical map that had been tentatively made is corrected. (author)

  5. Multi-color fluorescent DNA analysis in an integrated optofluidic lab-on-a-chip

    NARCIS (Netherlands)

    Dongre, C.; van Weerd, J.; van Weeghel, R.; Martinez-Vazquez, R.; Osellame, R.; Cerullo, G.; Besselink, G.A.J.; van den Vlekkert, H.H.; Hoekstra, Hugo; Pollnau, Markus

    Sorting and sizing of DNA molecules within the human genome project has enabled the genetic mapping of various illnesses. By employing tiny lab-on-a-chip devices for such DNA analysis, integrated DNA sequencing and genetic diagnostics have become feasible. However, such diagnostic chips typically

  6. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    Directory of Open Access Journals (Sweden)

    Diane I Schroeder

    2015-08-01

    Full Text Available Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs and highly methylated domains (HMDs with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo.

  7. Maps & minds : mapping through the ages

    Science.gov (United States)

    ,

    1984-01-01

    Throughout time, maps have expressed our understanding of our world. Human affairs have been influenced strongly by the quality of maps available to us at the major turning points in our history. "Maps & Minds" traces the ebb and flow of a few central ideas in the mainstream of mapping. Our expanding knowledge of our cosmic neighborhood stems largely from a small number of simple but grand ideas, vigorously pursued.

  8. Comparative genome analysis and resistance gene mapping in grain legumes

    International Nuclear Information System (INIS)

    Young, N.D.

    1998-01-01

    Using, DNA markers and genome organization, several important disease resistance genes have been analyzed in mungbean (Vigna radiata), cowpea (Vigna unguiculata), common bean (Phaseolus vulgaris), and soybean (Glycine max). In the process, medium-density linkage maps consisting of restriction fragment length polymorphism (RFLP) markers were constructed for both mungbean and cowpea. Comparisons between these maps, as well as the maps of soybean and common bean, indicate that there is significant conservation of DNA marker order, though the conserved blocks in soybean are much shorter than in the others. DNA mapping results also indicate that a gene for seed weight may be conserved between mungbean and cowpea. Using the linkage maps, genes that control bruchid (genus Callosobruchus) and powdery mildew (Erysiphe polygoni) resistance in mungbean, aphid resistance in cowpea (Aphis craccivora), and cyst nematode (Heterodera glycines) resistance in soybean have all been mapped and characterized. For some of these traits resistance was found to be oligogenic and DNA mapping uncovered multiple genes involved in the phenotype. (author)

  9. Lunar Map Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Map Catalog includes various maps of the moon's surface, including Apollo landing sites; earthside, farside, and polar charts; photography index maps; zone...

  10. Baby Brain Map

    Science.gov (United States)

    ... a Member Home Resources & Services Professional Resource Baby Brain Map Mar 17, 2016 The Brain Map was adapted in 2006 by ZERO TO ... supports Adobe Flash Player. To view the Baby Brain Map, please visit this page on a browser ...

  11. Snapshots for Semantic Maps

    National Research Council Canada - National Science Library

    Nielsen, Curtis W; Ricks, Bob; Goodrich, Michael A; Bruemmer, David; Few, Doug; Walton, Miles

    2004-01-01

    .... Semantic maps are a relatively new approach to information presentation. Semantic maps provide more detail about an environment than typical maps because they are augmented by icons or symbols that provide meaning for places or objects of interest...

  12. Decomposing Oncogenic Transcriptional Signatures to Generate Maps of Divergent Cellular States.

    Science.gov (United States)

    Kim, Jong Wook; Abudayyeh, Omar O; Yeerna, Huwate; Yeang, Chen-Hsiang; Stewart, Michelle; Jenkins, Russell W; Kitajima, Shunsuke; Konieczkowski, David J; Medetgul-Ernar, Kate; Cavazos, Taylor; Mah, Clarence; Ting, Stephanie; Van Allen, Eliezer M; Cohen, Ofir; Mcdermott, John; Damato, Emily; Aguirre, Andrew J; Liang, Jonathan; Liberzon, Arthur; Alexe, Gabriella; Doench, John; Ghandi, Mahmoud; Vazquez, Francisca; Weir, Barbara A; Tsherniak, Aviad; Subramanian, Aravind; Meneses-Cime, Karina; Park, Jason; Clemons, Paul; Garraway, Levi A; Thomas, David; Boehm, Jesse S; Barbie, David A; Hahn, William C; Mesirov, Jill P; Tamayo, Pablo

    2017-08-23

    The systematic sequencing of the cancer genome has led to the identification of numerous genetic alterations in cancer. However, a deeper understanding of the functional consequences of these alterations is necessary to guide appropriate therapeutic strategies. Here, we describe Onco-GPS (OncoGenic Positioning System), a data-driven analysis framework to organize individual tumor samples with shared oncogenic alterations onto a reference map defined by their underlying cellular states. We applied the methodology to the RAS pathway and identified nine distinct components that reflect transcriptional activities downstream of RAS and defined several functional states associated with patterns of transcriptional component activation that associates with genomic hallmarks and response to genetic and pharmacological perturbations. These results show that the Onco-GPS is an effective approach to explore the complex landscape of oncogenic cellular states across cancers, and an analytic framework to summarize knowledge, establish relationships, and generate more effective disease models for research or as part of individualized precision medicine paradigms. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. mapDamage

    DEFF Research Database (Denmark)

    Ginolhac, Aurélien; Rasmussen, Morten; Gilbert, Tom

    2011-01-01

    Ancient DNA extracts consist of a mixture of contaminant DNA molecules, most often originating from environmental microbes, and endogenous fragments exhibiting substantial levels of DNA damage. The latter introduce specific nucleotide misincorporations and DNA fragmentation signatures in sequenci...... of the SAMtools suite and R environment and has been validated on both GNU/Linux and MacOSX operating systems....

  14. A first generation integrated physical and genetic map of the rainbow trout genome

    Science.gov (United States)

    The rainbow trout physical map was previously constructed from DNA fingerprinting of 192,096 BAC clones using the 4-color high-information content fingerprinting (HICF) method. The clones were assembled into physical map contigs using the finger-printing contig (FPC) program. The map is composed of ...

  15. Improving the goat long-read assembly with optical mapping

    Science.gov (United States)

    Reference genome assemblies provide important context in genetics by standardizing the order of genes and providing a universal set of coordinates for individual nucleotides. Often due to the high complexity of genic regions and higher copy number of genes involved in immune function, immunity-relat...

  16. Mapping the Heart

    Science.gov (United States)

    Hulse, Grace

    2012-01-01

    In this article, the author describes how her fourth graders made ceramic heart maps. The impetus for this project came from reading "My Map Book" by Sara Fanelli. This book is a collection of quirky, hand-drawn and collaged maps that diagram a child's world. There are maps of her stomach, her day, her family, and her heart, among others. The…

  17. USGS Map Indices Overlay Map Service from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Map Indices service from The National Map (TNM) consists of 1x1 Degree, 30x60 Minute (100K), 15 Minute (63K), 7.5 Minute (24K), and 3.75 Minute grid...

  18. 7. Annex II: Maps

    OpenAIRE

    Aeberli, Annina

    2012-01-01

    Map 1: States of South Sudan UN OCHA (2012) Republic of South Sudan – States, as of 15 July 2012, Reliefweb http://reliefweb.int/map/south-sudan-republic/republic-south-sudan-states-15-july-2012-reference-map, accessed 31 July 2012. Map 2: Counties of South Sudan UN OCHA (2012) Republic of South Sudan – Counties, as of 16 July 2012, Reliefweb http://reliefweb.int/map/south-sudan-republic/republic-south-sudan-counties-16-july-2012-reference-map, accessed 31 July 2012. Map 3: Eastern Equato...

  19. Applicability of vulnerability maps

    International Nuclear Information System (INIS)

    Andersen, L.J.; Gosk, E.

    1989-01-01

    A number of aspects to vulnerability maps are discussed: the vulnerability concept, mapping purposes, possible users, and applicability of vulnerability maps. Problems associated with general-type vulnerability mapping, including large-scale maps, universal pollutant, and universal pollution scenario are also discussed. An alternative approach to vulnerability assessment - specific vulnerability mapping for limited areas, specific pollutant, and predefined pollution scenario - is suggested. A simplification of the vulnerability concept is proposed in order to make vulnerability mapping more objective and by this means more comparable. An extension of the vulnerability concept to the rest of the hydrogeological cycle (lakes, rivers, and the sea) is proposed. Some recommendations regarding future activities are given

  20. Differential maps, difference maps, interpolated maps, and long term prediction

    International Nuclear Information System (INIS)

    Talman, R.

    1988-06-01

    Mapping techniques may be thought to be attractive for the long term prediction of motion in accelerators, especially because a simple map can approximately represent an arbitrarily complicated lattice. The intention of this paper is to develop prejudices as to the validity of such methods by applying them to a simple, exactly solveable, example. It is shown that a numerical interpolation map, such as can be generated in the accelerator tracking program TEAPOT, predicts the evolution more accurately than an analytically derived differential map of the same order. Even so, in the presence of ''appreciable'' nonlinearity, it is shown to be impractical to achieve ''accurate'' prediction beyond some hundreds of cycles of oscillation. This suggests that the value of nonlinear maps is restricted to the parameterization of only the ''leading'' deviation from linearity. 41 refs., 6 figs

  1. How to determine local stretching and tension in a flow-stretched DNA molecule

    DEFF Research Database (Denmark)

    Pedersen, Jonas Nyvold; Marie, Rodolphe; Kristensen, Anders

    2016-01-01

    We determine the nonuniform stretching of and tension in amega base pairs-long fragment of deoxyribonucleic acid (DNA) that is flow stretched in a nanofluidic chip. We use no markers, do not know the contour length of the DNA, and do not have the full DNA molecule inside our field of view. Instead......, we analyze the transverse thermal motion of the DNA. Tension at the center of the DNA adds up to 16 pN, giving almost fully stretched DNA. This method was devised for optical mapping of DNA, specifically, DNA denaturation patterns. It may be useful also for other studies, e.g., DNA......-protein interactions, specifically, their tension dependence. Generally, wherever long strands of DNA—e.g., native DNA extracted from human cells or bacteria—must be stretched with ease for inspection, this method applies....

  2. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  3. Entropic fluctuations in DNA sequences

    Science.gov (United States)

    Thanos, Dimitrios; Li, Wentian; Provata, Astero

    2018-03-01

    The Local Shannon Entropy (LSE) in blocks is used as a complexity measure to study the information fluctuations along DNA sequences. The LSE of a DNA block maps the local base arrangement information to a single numerical value. It is shown that despite this reduction of information, LSE allows to extract meaningful information related to the detection of repetitive sequences in whole chromosomes and is useful in finding evolutionary differences between organisms. More specifically, large regions of tandem repeats, such as centromeres, can be detected based on their low LSE fluctuations along the chromosome. Furthermore, an empirical investigation of the appropriate block sizes is provided and the relationship of LSE properties with the structure of the underlying repetitive units is revealed by using both computational and mathematical methods. Sequence similarity between the genomic DNA of closely related species also leads to similar LSE values at the orthologous regions. As an application, the LSE covariance function is used to measure the evolutionary distance between several primate genomes.

  4. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  5. Global mapping of transposon location.

    Directory of Open Access Journals (Sweden)

    Abram Gabriel

    2006-12-01

    Full Text Available Transposable genetic elements are ubiquitous, yet their presence or absence at any given position within a genome can vary between individual cells, tissues, or strains. Transposable elements have profound impacts on host genomes by altering gene expression, assisting in genomic rearrangements, causing insertional mutations, and serving as sources of phenotypic variation. Characterizing a genome's full complement of transposons requires whole genome sequencing, precluding simple studies of the impact of transposition on interindividual variation. Here, we describe a global mapping approach for identifying transposon locations in any genome, using a combination of transposon-specific DNA extraction and microarray-based comparative hybridization analysis. We use this approach to map the repertoire of endogenous transposons in different laboratory strains of Saccharomyces cerevisiae and demonstrate that transposons are a source of extensive genomic variation. We also apply this method to mapping bacterial transposon insertion sites in a yeast genomic library. This unique whole genome view of transposon location will facilitate our exploration of transposon dynamics, as well as defining bases for individual differences and adaptive potential.

  6. Chromosome mapping by FISH to metaphase and interphase nuclei. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Trask, B.

    1997-08-01

    The overall specific aims of this project were: (1) to determine the large-scale structure of interphase and metaphase chromosomes, in order to establish new capabilities for genome mapping by fluorescence in situ hybridization (FISH); (2) to detect chromosome abnormalities associated with genetic disease and map DNA sequences relative to them in order to facilitate the identification of new genes with disease-causing mutations; (3) to establish medium resolution physical maps of selected chromosomal regions using a combined metaphase and interphase mapping strategy and to corroborate physical and genetic maps and integrate these maps with the cytogenetic map; (4) to analyze the polymorphism and sequence evolution of subtelomeric regions of human chromosomes; (5) to establish a state-of-the-art FISH and image processing facility in the Department of Molecular Biotechnology, University of Washington, in order to map DNA sequences rapidly and accurately to benefit the Human Genome Project.

  7. Antibody recognition of Z-DNA

    International Nuclear Information System (INIS)

    Lafer, E.M.; Moeller, A.; Valle, R.P.C.; Nordheim, V.A.; Rich, A.; Stollar, B.D.; Massachusetts Inst. of Tech., Cambridge)

    1983-01-01

    To measure serological reactions under physiological ionic strength, we prepared a brominated (Bl) poly(dG-dC).poly(dG-dC), which forms a stable Z helix in solutions of low salt concentration. Mice and rabbits were immunized with this polymer complexed with the basic protein methylated bovine serum albumin (MBSA), and it was discovered that the Z-DNA helix is a strong immunogen. Various antibody populations were purified from the rabbit serum by quantitative immunoprecipitation. Spleen cells from the mice were used for the preparation of hybridoma cell lines secreting monoclonal antibodies. Anti-Z-DNA antibodies were also raised by immunizing animals with poly(dG-dm 5 C).poly(dG-dm 5 C) under conditions where it was reported to be in the left-handed Z conformation as well as unmodified poly(dG-dC).poly(dG-dC) that was in the right-handed B conformation: both were complexed with MBSA. Z-DNA reactive antibodies were found in both murine and human SLE. A Z-DNA-specific as well as a dDNA and Z-DNA cross-reactive antibody population were distinguished by affinity chromatography of the SLE sera. The specificities of the various anti-Z-DNA antibody populations were measured by direct-binding and competitive radioimmunoassays, using synthetic polymers of defined structure under various ionic strengths. These studies allow us to map the possible antigenic sites for these antibodies, which serve as a model for DNA-protein recognition. The findings also established the usefulness of the antibodies as biochemical probes for Z-DNA. 29 references, 6 figures, 1 table

  8. Single-molecule optical genome mapping of a human HapMap and a colorectal cancer cell line.

    Science.gov (United States)

    Teo, Audrey S M; Verzotto, Davide; Yao, Fei; Nagarajan, Niranjan; Hillmer, Axel M

    2015-01-01

    Next-generation sequencing (NGS) technologies have changed our understanding of the variability of the human genome. However, the identification of genome structural variations based on NGS approaches with read lengths of 35-300 bases remains a challenge. Single-molecule optical mapping technologies allow the analysis of DNA molecules of up to 2 Mb and as such are suitable for the identification of large-scale genome structural variations, and for de novo genome assemblies when combined with short-read NGS data. Here we present optical mapping data for two human genomes: the HapMap cell line GM12878 and the colorectal cancer cell line HCT116. High molecular weight DNA was obtained by embedding GM12878 and HCT116 cells, respectively, in agarose plugs, followed by DNA extraction under mild conditions. Genomic DNA was digested with KpnI and 310,000 and 296,000 DNA molecules (≥ 150 kb and 10 restriction fragments), respectively, were analyzed per cell line using the Argus optical mapping system. Maps were aligned to the human reference by OPTIMA, a new glocal alignment method. Genome coverage of 6.8× and 5.7× was obtained, respectively; 2.9× and 1.7× more than the coverage obtained with previously available software. Optical mapping allows the resolution of large-scale structural variations of the genome, and the scaffold extension of NGS-based de novo assemblies. OPTIMA is an efficient new alignment method; our optical mapping data provide a resource for genome structure analyses of the human HapMap reference cell line GM12878, and the colorectal cancer cell line HCT116.

  9. DNA preservation in silk.

    Science.gov (United States)

    Liu, Yawen; Zheng, Zhaozhu; Gong, He; Liu, Meng; Guo, Shaozhe; Li, Gang; Wang, Xiaoqin; Kaplan, David L

    2017-06-27

    The structure of DNA is susceptible to alterations at high temperature and on changing pH, irradiation and exposure to DNase. Options to protect and preserve DNA during storage are important for applications in genetic diagnosis, identity authentication, drug development and bioresearch. In the present study, the stability of total DNA purified from human dermal fibroblast cells, as well as that of plasmid DNA, was studied in silk protein materials. The DNA/silk mixtures were stabilized on filter paper (silk/DNA + filter) or filter paper pre-coated with silk and treated with methanol (silk/DNA + PT-filter) as a route to practical utility. After air-drying and water extraction, 50-70% of the DNA and silk could be retrieved and showed a single band on electrophoretic gels. 6% silk/DNA + PT-filter samples provided improved stability in comparison with 3% silk/DNA + filter samples and DNA + filter samples for DNA preservation, with ∼40% of the band intensity remaining at 37 °C after 40 days and ∼10% after exposure to UV light for 10 hours. Quantitative analysis using the PicoGreen assay confirmed the results. The use of Tris/borate/EDTA (TBE) buffer enhanced the preservation and/or extraction of the DNA. The DNA extracted after storage maintained integrity and function based on serving as a functional template for PCR amplification of the gene for zinc finger protein 750 (ZNF750) and for transgene expression of red fluorescence protein (dsRed) in HEK293 cells. The high molecular weight and high content of a crystalline beta-sheet structure formed on the coated surfaces likely accounted for the preservation effects observed for the silk/DNA + PT-filter samples. Although similar preservation effects were also obtained for lyophilized silk/DNA samples, the rapid and simple processing available with the silk-DNA-filter membrane system makes it appealing for future applications.

  10. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  11. DNA damage and autophagy

    International Nuclear Information System (INIS)

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Panayiotidis, Mihalis I.; Franco, Rodrigo

    2011-01-01

    Both exogenous and endogenous agents are a threat to DNA integrity. Exogenous environmental agents such as ultraviolet (UV) and ionizing radiation, genotoxic chemicals and endogenous byproducts of metabolism including reactive oxygen species can cause alterations in DNA structure (DNA damage). Unrepaired DNA damage has been linked to a variety of human disorders including cancer and neurodegenerative disease. Thus, efficient mechanisms to detect DNA lesions, signal their presence and promote their repair have been evolved in cells. If DNA is effectively repaired, DNA damage response is inactivated and normal cell functioning resumes. In contrast, when DNA lesions cannot be removed, chronic DNA damage triggers specific cell responses such as cell death and senescence. Recently, DNA damage has been shown to induce autophagy, a cellular catabolic process that maintains a balance between synthesis, degradation, and recycling of cellular components. But the exact mechanisms by which DNA damage triggers autophagy are unclear. More importantly, the role of autophagy in the DNA damage response and cellular fate is unknown. In this review we analyze evidence that supports a role for autophagy as an integral part of the DNA damage response.

  12. DNA Open states and DNA hydratation

    International Nuclear Information System (INIS)

    Lema-Larre, B. de; Martin-Landrove, M

    1995-01-01

    It is a very well-known fact that an protonic exchange exists among natural DNA filaments and synthetic polynucleotides with the solvent (1--2). The existence of DNA open states, that is to say states for which the interior of the DNA molecule is exposed to the external environment, it has been demonstrated by means of proton-deuterium exchange (3). This work has carried out experiments measuring the dispersion of the traverse relaxation rate (4), as a pulsation rate function in a Carr-Purcell-Meiboom-Gill (CPMG) pulses sequence rate, to determine changes in the moist layer of the DNA molecule. The experiments were carried out under different experimental conditions in order to vary the probability that open states occurs, such as temperature or the exposure to electromagnetic fields. Some theoretical models were supposed to adjust the experimental results including those related to DNA non linear dynamic [es

  13. Long term economic relationships from cointegration maps

    Science.gov (United States)

    Vicente, Renato; Pereira, Carlos de B.; Leite, Vitor B. P.; Caticha, Nestor

    2007-07-01

    We employ the Bayesian framework to define a cointegration measure aimed to represent long term relationships between time series. For visualization of these relationships we introduce a dissimilarity matrix and a map based on the sorting points into neighborhoods (SPIN) technique, which has been previously used to analyze large data sets from DNA arrays. We exemplify the technique in three data sets: US interest rates (USIR), monthly inflation rates and gross domestic product (GDP) growth rates.

  14. Expanding Thurston maps

    CERN Document Server

    Bonk, Mario

    2017-01-01

    This monograph is devoted to the study of the dynamics of expanding Thurston maps under iteration. A Thurston map is a branched covering map on a two-dimensional topological sphere such that each critical point of the map has a finite orbit under iteration. It is called expanding if, roughly speaking, preimages of a fine open cover of the underlying sphere under iterates of the map become finer and finer as the order of the iterate increases. Every expanding Thurston map gives rise to a fractal space, called its visual sphere. Many dynamical properties of the map are encoded in the geometry of this visual sphere. For example, an expanding Thurston map is topologically conjugate to a rational map if and only if its visual sphere is quasisymmetrically equivalent to the Riemann sphere. This relation between dynamics and fractal geometry is the main focus for the investigations in this work.

  15. Immunoassay of DNA damage

    International Nuclear Information System (INIS)

    Gasparro, F.P.; Santella, R.M.

    1988-01-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA). (author)

  16. Immunoassay of DNA damage

    Energy Technology Data Exchange (ETDEWEB)

    Gasparro, F P; Santella, R M

    1988-09-01

    The direct photomodification of DNA by ultraviolet light or the photo-induced addition of exogenous compounds to DNA components results in alterations of DNA structure ranging from subtle to profound. There are two consequences of these conformational changes. First, cells in which the DNA has been damaged are capable of executing repair steps. Second, the DNA which is usually of very low immunogenicity now becomes highly antigenic. This latter property has allowed the production of a series of monoclonal antibodies that recognize photo-induced DNA damage. Monoclonal antibodies have been generated that recognize the 4',5'-monoadduct and the crosslink of 8-methoxypsoralen in DNA. In addition, another antibody has been prepared which recognizes the furan-side monoadduct of 6,4,4'-trimethylangelicin in DNA. These monoclonal antibodies have been characterized as to sensitivity and specificity using non-competitive and competitive enzyme-linked-immunosorbent assays (ELISA).

  17. DNA computing models

    CERN Document Server

    Ignatova, Zoya; Zimmermann, Karl-Heinz

    2008-01-01

    In this excellent text, the reader is given a comprehensive introduction to the field of DNA computing. The book emphasizes computational methods to tackle central problems of DNA computing, such as controlling living cells, building patterns, and generating nanomachines.

  18. DNA tagged microparticles

    Science.gov (United States)

    Farquar, George Roy; Leif, Roald N; Wheeler, Elizabeth

    2015-05-05

    A simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the simulant.

  19. Modeling DNA Replication.

    Science.gov (United States)

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  20. Detection and spatial characterization of carbon steel pitting corrosion in anaerobic sulpho-genic medium; Detection et caracterisation spatiale de la corrosion localisee des aciers au carbone en milieu anaerobie sulfurogene

    Energy Technology Data Exchange (ETDEWEB)

    Festy, D.; Forest, B. [Institut francais de Recherche pour l' Exploitation de la Mer - IFREMER, Centre de Brest, Service Materiaux et Structures, 29 - Plouzane (France); Keddam, M.; Monfort Moros, N.; Tribollet, B. [UPR 15 du CNRS Lab. de Physique des Liquides et Electrochimie, 75 - Paris (France); Marchal, R.; Monfort Moros, N. [Institut Francais du Petrole (IFP), Div. Chimie et Physico-Chimie Appliquee, Dept. Microbiologie, 92 - Rueil-Malmaison (France)

    2002-07-01

    The bio-film developing on carbon steel surfaces in anaerobic condition may induce localised corrosion. To be able to better understand this type of bio-corrosion, this piper presents a new electrochemical technique, which has been developed in collaboration between IFREMER and the Laboratory for liquid physic and electrochemistry. Focussed on local aspect of this phenomenon, the described technique enables surface torrent density mapping to be performed and anodic or cathodic zones to be identified. A double micro-electrode probe is placed closed to the steel simple surface and potential difference between them is measured. This value is directly connected to ohmic drop within electrolyte and consequently, to local torrent. By scanning the substrate surface, local torrent repartition is visualized and one tan detect and characterise Localised corrosion attacks. After presenting the technique and the calibration procedure, a bio-corrosion phenomenon induced by stripping a bio-film at a carbon steel simple surface is analysed by successively drawing localised torrent maps, included biocide efficiency assessment. (authors)

  1. Mapping in the cloud

    CERN Document Server

    Peterson, Michael P

    2014-01-01

    This engaging text provides a solid introduction to mapmaking in the era of cloud computing. It takes students through both the concepts and technology of modern cartography, geographic information systems (GIS), and Web-based mapping. Conceptual chapters delve into the meaning of maps and how they are developed, covering such topics as map layers, GIS tools, mobile mapping, and map animation. Methods chapters take a learn-by-doing approach to help students master application programming interfaces and build other technical skills for creating maps and making them available on the Internet. Th

  2. Mapping with Drupal

    CERN Document Server

    Palazzolo, Alan

    2011-01-01

    Build beautiful interactive maps on your Drupal website, and tell engaging visual stories with your data. This concise guide shows you how to create custom geographical maps from top to bottom, using Drupal 7 tools and out-of-the-box modules. You'll learn how mapping works in Drupal, with examples on how to use intuitive interfaces to map local events, businesses, groups, and other custom data. Although building maps with Drupal can be tricky, this book helps you navigate the system's complexities for creating sophisticated maps that match your site design. Get the knowledge and tools you ne

  3. The Fanconi anemia/BRCA gene network in zebrafish: Embryonic expression and comparative genomics

    OpenAIRE

    Titus, Tom A.; Yan, Yi-Lin; Wilson, Catherine; Starks, Amber M.; Frohnmayer, Jonathan D.; Canestro, Cristian; Rodriguez-Mari, Adriana; He, Xinjun; Postlethwait, John H.

    2008-01-01

    Fanconi anemia (FA) is a genic disease resulting in bone marrow failure, high cancer risks, and infertility, and developmental anomalies including microphthalmia, microcephaly, hypoplastic radius and thumb. Here we present cDNA sequences, genetic mapping, and genomic analyses for the four previously undescribed zebrafish FA genes (fanci, fancj, fancm, and fancn, and show that they reverted to single copy after the teleost genome duplication. We tested the hypothesis that FA genes are expresse...

  4. DNA: Structure and function

    DEFF Research Database (Denmark)

    Sinden, Richard R.; E. Pearson, Christopher; N. Potaman, Vladimir

    1998-01-01

    This chapter discusses the structure and function of DNA. DNA occupies a critical role in cells, because it is the source of all intrinsic genetic information. Chemically, DNA is a very stable molecule, a characteristic important for a macromolecule that may have to persist in an intact form...

  5. Replicating animal mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Emily A. McKinney

    2013-01-01

    Full Text Available The field of mitochondrial DNA (mtDNA replication has been experiencing incredible progress in recent years, and yet little is certain about the mechanism(s used by animal cells to replicate this plasmid-like genome. The long-standing strand-displacement model of mammalian mtDNA replication (for which single-stranded DNA intermediates are a hallmark has been intensively challenged by a new set of data, which suggests that replication proceeds via coupled leading-and lagging-strand synthesis (resembling bacterial genome replication and/or via long stretches of RNA intermediates laid on the mtDNA lagging-strand (the so called RITOLS. The set of proteins required for mtDNA replication is small and includes the catalytic and accessory subunits of DNA polymerase y, the mtDNA helicase Twinkle, the mitochondrial single-stranded DNA-binding protein, and the mitochondrial RNA polymerase (which most likely functions as the mtDNA primase. Mutations in the genes coding for the first three proteins are associated with human diseases and premature aging, justifying the research interest in the genetic, biochemical and structural properties of the mtDNA replication machinery. Here we summarize these properties and discuss the current models of mtDNA replication in animal cells.

  6. Meso(topoclimatic maps and mapping

    Directory of Open Access Journals (Sweden)

    Ladislav Plánka

    2007-06-01

    Full Text Available The atmospheric characteristics can be studied from many points of view, most often we talk about time and spatial standpoint. Application of time standpoint leads either to different kinds of the synoptic and prognostic maps production, which presents actual state of atmosphere in short time section in the past or in the near future or to the climatic maps production which presents longterm weather regime. Spatial standpoint then differs map works according to natural phenomenon proportions, whereas the scale of their graphic presentation can be different. It depends on production purpose of each work.In the paper there are analysed methods of mapping and climatic maps production, which display longterm regime of chosen atmospheric features. These athmosphere features are formed in interaction with land surface and also have direct influence on people and their activities throughout the country. At the same time they’re influenced by anthropogenic intervention to the landscape.

  7. Mitochondrial DNA evolution in the genus Equus.

    Science.gov (United States)

    George, M; Ryder, O A

    1986-11-01

    Employing mitochondrial DNA (mtDNA) restriction-endonuclease maps as the basis of comparison, we have investigated the evolutionary affinities of the seven species generally recognized as the genus Equus. Individual species' cleavage maps contained an average of 60 cleavage sites for 16 enzymes, of which 29 were invariant for all species. Based on an average divergence rate of 2%/Myr, the variation between species supports a divergence of extant lineages from a common ancestor approximately 3.9 Myr before the present. Comparisons of cleavage maps between Equus przewalskii (Mongolian wild horse) and E. caballus (domestic horse) yielded estimates of nucleotide sequence divergence ranging from 0.27% to 0.41%. This range was due to intraspecific variation, which was noted only for E. caballus. For pairwise comparisons within this family, estimates of sequence divergence ranged from 0% (E. hemionus onager vs. E. h. kulan) to 7.8% (E. przewalskii vs. E. h. onager). Trees constructed according to the parsimony principle, on the basis of 31 phylogenetically informative restriction sites, indicate that the three extant zebra species represent a monophyletic group with E. grevyi and E. burchelli antiquorum diverging most recently. The phylogenetic relationships of E. africanus and E. hemionus remain enigmatic on the basis of the mtDNA analysis, although a recent divergence is unsupported.

  8. Active Fire Mapping Program

    Science.gov (United States)

    Active Fire Mapping Program Current Large Incidents (Home) New Large Incidents Fire Detection Maps MODIS Satellite Imagery VIIRS Satellite Imagery Fire Detection GIS Data Fire Data in Google Earth ...

  9. Using maps in genealogy

    Science.gov (United States)

    ,

    2002-01-01

    In genealogical research, maps can provide clues to where our ancestors may have lived and where to look for written records about them. Beginners should master basic genealogical research techniques before starting to use topographic maps.

  10. NGS Survey Control Map

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Survey Control Map provides a map of the US which allows you to find and display geodetic survey control points stored in the database of the National...

  11. National Pipeline Mapping System

    Data.gov (United States)

    Department of Transportation — The NPMS Public Map Viewer allows the general public to view maps of transmission pipelines, LNG plants, and breakout tanks in one selected county. Distribution and...

  12. NAIP Status Maps Gallery

    Data.gov (United States)

    Farm Service Agency, Department of Agriculture — NAIP Status Maps Gallery. These maps illustrate what aerial imagery collection is planned, whats been collected, when it is available and how it is available. These...

  13. Mapping Medicare Disparities Tool

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Office of Minority Health has designed an interactive map, the Mapping Medicare Disparities Tool, to identify areas of disparities between subgroups of...

  14. Recovery Action Mapping Tool

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Recovery Action Mapping Tool is a web map that allows users to visually interact with and query actions that were developed to recover species listed under the...

  15. Letter of Map Revision

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  16. Fast phylogenetic DNA barcoding

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Boomsma, Wouter Krogh; Willerslev, Eske

    2008-01-01

    We present a heuristic approach to the DNA assignment problem based on phylogenetic inferences using constrained neighbour joining and non-parametric bootstrapping. We show that this method performs as well as the more computationally intensive full Bayesian approach in an analysis of 500 insect...... DNA sequences obtained from GenBank. We also analyse a previously published dataset of environmental DNA sequences from soil from New Zealand and Siberia, and use these data to illustrate the fact that statistical approaches to the DNA assignment problem allow for more appropriate criteria...... for determining the taxonomic level at which a particular DNA sequence can be assigned....

  17. Radiation and DNA

    Energy Technology Data Exchange (ETDEWEB)

    Riabchenko, N I

    1979-01-01

    Consideration is given to the effects of ionizing radiation on the structure of DNA. Physical and chemical methods of determining radiation damage to the primary (polynucleotide chain and nitrogenous base) and secondary (helical) structure of DNA are discussed, and the effects of ionizing radiation on deoxyribonucleoprotein complexes are considered. The radiolysis of DNA in vitro and in bacterial and mammalian cells is examined and cellular mechanisms for the repair of radiation-damaged DNA are considered, taking into account single-strand and double-strand breaks, gamma-radiation damage and deoxyribonucleoprotein-membrane complex damage. Postradiation DNA degradation in bacteria and lymphatic cells is also discussed.

  18. DNA-Mediated Electrochemistry

    Science.gov (United States)

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  19. CpDNA haplotype variation reveals strong human influence on oak stands of the Veluwe forest in the Netherlands

    NARCIS (Netherlands)

    Buiteveld, J.; Koelewijn, H.P.

    2006-01-01

    We examined chloroplast DNA (cpDNA) variation in 78 oak stands of an important forest complex (the Veluwe) in The Netherlands. Based on historical maps and information oak stands were classified as planted or autochthonous. A genetic study by means of cpDNA haplotype characterisation was carried out

  20. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1999-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....

  1. DNA fragmentation in spermatozoa

    DEFF Research Database (Denmark)

    Rex, A S; Aagaard, J.; Fedder, J

    2017-01-01

    Sperm DNA Fragmentation has been extensively studied for more than a decade. In the 1940s the uniqueness of the spermatozoa protein complex which stabilizes the DNA was discovered. In the fifties and sixties, the association between unstable chromatin structure and subfertility was investigated....... In the seventies, the impact of induced DNA damage was investigated. In the 1980s the concept of sperm DNA fragmentation as related to infertility was introduced as well as the first DNA fragmentation test: the Sperm Chromatin Structure Assay (SCSA). The terminal deoxynucleotidyl transferase nick end labelling...... (TUNEL) test followed by others was introduced in the nineties. The association between DNA fragmentation in spermatozoa and pregnancy loss has been extensively investigated spurring the need for a therapeutic tool for these patients. This gave rise to an increased interest in the aetiology of DNA damage...

  2. Biophysics of DNA

    CERN Document Server

    Vologodskii, Alexander

    2015-01-01

    Surveying the last sixty years of research, this book describes the physical properties of DNA in the context of its biological functioning. It is designed to enable both students and researchers of molecular biology, biochemistry and physics to better understand the biophysics of DNA, addressing key questions and facilitating further research. The chapters integrate theoretical and experimental approaches, emphasising throughout the importance of a quantitative knowledge of physical properties in building and analysing models of DNA functioning. For example, the book shows how the relationship between DNA mechanical properties and the sequence specificity of DNA-protein binding can be analyzed quantitatively by using our current knowledge of the physical and structural properties of DNA. Theoretical models and experimental methods in the field are critically considered to enable the reader to engage effectively with the current scientific literature on the physical properties of DNA.

  3. Multi-moment maps

    DEFF Research Database (Denmark)

    Swann, Andrew Francis; Madsen, Thomas Bruun

    2012-01-01

    We introduce a notion of moment map adapted to actions of Lie groups that preserve a closed three-form. We show existence of our multi-moment maps in many circumstances, including mild topological assumptions on the underlying manifold. Such maps are also shown to exist for all groups whose second...

  4. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  5. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  6. On parabolic external maps

    DEFF Research Database (Denmark)

    Lomonaco, Luna; Petersen, Carsten Lunde; Shen, Weixiao

    2017-01-01

    We prove that any C1+BV degree d ≥ 2 circle covering h having all periodic orbits weakly expanding, is conjugate by a C1+BV diffeomorphism to a metrically expanding map. We use this to connect the space of parabolic external maps (coming from the theory of parabolic-like maps) to metrically expan...

  7. Digitised Maps in the Danish Map Collection

    OpenAIRE

    Annie Lenschau-Teglers; Vivi Gade Rønsberg

    2005-01-01

    As in the rest of the library world, The Royal Library in Copenhagen is in the process of digitising its collections. At the moment we are mainly working on the handwritten manual catalogue - but digitising the material is also a major working assignment. The Map Collection at The Royal Library has today divided the effort in digitising its materials into 3 groups: 1. Digitised maps as a vital addition to the records in our bibliographic database REX 2. Digitised maps presented as a Digital F...

  8. Genetic characterization and linkage disequilibrium mapping of resistance to gray leaf spot in maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Liyu Shi

    2014-04-01

    Full Text Available Gray leaf spot (GLS, caused by Cercospora zeae-maydis, is an important foliar disease of maize (Zea mays L. worldwide, resistance to which is controlled by multiple quantitative trait loci (QTL. To gain insights into the genetic architecture underlying the resistance to this disease, an association mapping population consisting of 161 inbred lines was evaluated for resistance to GLS in a plant pathology nursery at Shenyang in 2010 and 2011. Subsequently, a genome-wide association study, using 41,101 single-nucleotide polymorphisms (SNPs, identified 51 SNPs significantly (P < 0.001 associated with GLS resistance, which could be converted into 31 QTL. In addition, three candidate genes related to plant defense were identified, including nucleotide-binding-site/leucine-rich repeat, receptor-like kinase genes similar to those involved in basal defense. Two genic SNPs, PZE-103142893 and PZE-109119001, associated with GLS resistance in chromosome bins 3.07 and 9.07, can be used for marker-assisted selection (MAS of GLS resistance. These results provide an important resource for developing molecular markers closely linked with the target trait, enhancing breeding efficiency.

  9. Mapping of wine industry

    OpenAIRE

    Віліна Пересадько; Надія Максименко; Катерина Біла

    2016-01-01

    Having reviewed a variety of approaches to understanding the essence of wine industry, having studied the modern ideas about the future of wine industry, having analyzed more than 50 maps from the Internet we have set the trends and special features of wine industry mapping in the world, such as: - the vast majority of maps displays the development of the industry at regional or national level, whereas there are practically no world maps; - wine-growing regions are represented on maps very un...

  10. Development of Gene Expression Fingerprints for Identification of Environmental Contaminants Using cDNA Arrays

    National Research Council Canada - National Science Library

    Inouye, L

    2004-01-01

    ...) to develop cDNA array-based assays that map gene expression from contaminant exposures. Results substantiate that distinct gene expression profiles exist for major contaminant classes such as PARs, PCBs, and PCDD/Fs...

  11. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2002-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch ...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved.......A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...

  12. Beyond DNA repair: DNA-PK function in cancer

    OpenAIRE

    Goodwin, Jonathan F.; Knudsen, Karen E.

    2014-01-01

    The DNA-dependent protein kinase (DNA-PK) is a pivotal component of the DNA repair machinery that governs the response to DNA damage, serving to maintain genome integrity. However, the DNA-PK kinase component was initially isolated with transcriptional complexes, and recent findings have illuminated the impact of DNA-PK-mediated transcriptional regulation on tumor progression and therapeutic response. DNA-PK expression has also been correlated with poor outcome in selected tumor types, furthe...

  13. A Novel Image Encryption Algorithm Based on DNA Subsequence Operation

    Directory of Open Access Journals (Sweden)

    Qiang Zhang

    2012-01-01

    Full Text Available We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc. combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.

  14. Static and Dynamic Properties of DNA Confined in Nanochannels

    Science.gov (United States)

    Gupta, Damini

    Next-generation sequencing (NGS) techniques have considerably reduced the cost of high-throughput DNA sequencing. However, it is challenging to detect large-scale genomic variations by NGS due to short read lengths. Genome mapping can easily detect large-scale structural variations because it operates on extremely large intact molecules of DNA with adequate resolution. One of the promising methods of genome mapping is based on confining large DNA molecules inside a nanochannel whose cross-sectional dimensions are approximately 50 nm. Even though this genome mapping technology has been commercialized, the current understanding of the polymer physics of DNA in nanochannel confinement is based on theories and lacks much needed experimental support. The results of this dissertation are aimed at providing a detailed experimental understanding of equilibrium properties of nanochannel-confined DNA molecules. The results are divided into three parts. In first part, we evaluate the role of channel shape on thermodynamic properties of channel confined DNA molecules using a combination of fluorescence microscopy and simulations. Specifically, we show that high aspect ratio of rectangular channels significantly alters the chain statistics as compared to an equivalent square channel with same cross-sectional area. In the second part, we present experimental evidence that weak excluded volume effects arise in DNA nanochannel confinement, which form the physical basis for the extended de Gennes regime. We also show how confinement spectroscopy and simulations can be combined to reduce molecular weight dispersity effects arising from shearing, photo-cleavage, and nonuniform staining of DNA. Finally, the third part of the thesis concerns the dynamic properties of nanochannel confined DNA. We directly measure the center-of-mass diffusivity of single DNA molecules in confinement and show that that it is necessary to modify the classical results of de Gennes to account for local chain

  15. DNA topology and transcription

    Science.gov (United States)

    Kouzine, Fedor; Levens, David; Baranello, Laura

    2014-01-01

    Chromatin is a complex assembly that compacts DNA inside the nucleus while providing the necessary level of accessibility to regulatory factors conscripted by cellular signaling systems. In this superstructure, DNA is the subject of mechanical forces applied by variety of molecular motors. Rather than being a rigid stick, DNA possesses dynamic structural variability that could be harnessed during critical steps of genome functioning. The strong relationship between DNA structure and key genomic processes necessitates the study of physical constrains acting on the double helix. Here we provide insight into the source, dynamics, and biology of DNA topological domains in the eukaryotic cells and summarize their possible involvement in gene transcription. We emphasize recent studies that might inspire and impact future experiments on the involvement of DNA topology in cellular functions. PMID:24755522

  16. Eukaryotic DNA Replication Fork.

    Science.gov (United States)

    Burgers, Peter M J; Kunkel, Thomas A

    2017-06-20

    This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

  17. A unique regulatory phase of DNA methylation in the early mammalian embryo

    OpenAIRE

    Smith, Zachary D.; Chan, Michelle M.; Mikkelsen, Tarjei S.; Gu, Hongcang; Gnirke, Andreas; Regev, Aviv; Meissner, Alexander

    2012-01-01

    Summary DNA methylation is highly dynamic during mammalian embryogenesis. It is broadly accepted that the paternal genome is actively depleted of 5-methyl cytosine at fertilization, followed by passive loss that reaches a minimum at the blastocyst stage. However, this model is based on limited data, and to date no base-resolution maps exist to support and refine it. Here, we generated genome-scale DNA methylation maps in mouse gametes and through post-implantation embryogenesis. We find that ...

  18. DNA-based machines.

    Science.gov (United States)

    Wang, Fuan; Willner, Bilha; Willner, Itamar

    2014-01-01

    The base sequence in nucleic acids encodes substantial structural and functional information into the biopolymer. This encoded information provides the basis for the tailoring and assembly of DNA machines. A DNA machine is defined as a molecular device that exhibits the following fundamental features. (1) It performs a fuel-driven mechanical process that mimics macroscopic machines. (2) The mechanical process requires an energy input, "fuel." (3) The mechanical operation is accompanied by an energy consumption process that leads to "waste products." (4) The cyclic operation of the DNA devices, involves the use of "fuel" and "anti-fuel" ingredients. A variety of DNA-based machines are described, including the construction of "tweezers," "walkers," "robots," "cranes," "transporters," "springs," "gears," and interlocked cyclic DNA structures acting as reconfigurable catenanes, rotaxanes, and rotors. Different "fuels", such as nucleic acid strands, pH (H⁺/OH⁻), metal ions, and light, are used to trigger the mechanical functions of the DNA devices. The operation of the devices in solution and on surfaces is described, and a variety of optical, electrical, and photoelectrochemical methods to follow the operations of the DNA machines are presented. We further address the possible applications of DNA machines and the future perspectives of molecular DNA devices. These include the application of DNA machines as functional structures for the construction of logic gates and computing, for the programmed organization of metallic nanoparticle structures and the control of plasmonic properties, and for controlling chemical transformations by DNA machines. We further discuss the future applications of DNA machines for intracellular sensing, controlling intracellular metabolic pathways, and the use of the functional nanostructures for drug delivery and medical applications.

  19. DNA repair and cancer

    International Nuclear Information System (INIS)

    Rathore, Shakuntla; Joshi, Pankaj Kumar; Gaur, Sudha

    2012-01-01

    DNA repair refers to a collection of processes by which a cell identifies and corrects damage to the DNA molecule that encode it's genome. In human cells, both normal metabolic activities and environmental factors such as UV light and radiation can cause DNA damage, resulting in as many one million individual molecular lesions per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions include potentially harmful mutation in cell's genome which affect the survival of it's daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. Inherited mutation that affect DNA repair genes are strongly associated with high cancer risks in humans. Hereditary non polyposis colorectal cancer (HNPCC) is strongly associated with specific mutation in the DNA mismatch repair pathway. BRCA1, BRCA2 two famous mutation conferring a hugely increased risk of breast cancer on carrier, are both associated with a large number of DNA repair pathway, especially NHEJ and homologous recombination. Cancer therapy procedures such as chemotherapy and radiotherapy work by overwhelming the capacity of the cell to repair DNA damage, resulting in cell death. Cells that are most rapidly dividing most typically cancer cells are preferentially affected. The side effect is that other non-cancerous but rapidly dividing cells such as stem cells in the bone marrow are also affected. Modern cancer treatment attempt to localize the DNA damage to cells and tissue only associated with cancer, either by physical means (concentrating the therapeutic agent in the region of the tumor) or by biochemical means (exploiting a feature unique to cancer cells in the body). (author)

  20. Automated Processing of 2-D Gel Electrophoretograms of Genomic DNA for Hunting Pathogenic DNA Molecular Changes.

    Science.gov (United States)

    Takahashi; Nakazawa; Watanabe; Konagaya

    1999-01-01

    We have developed the automated processing algorithms for 2-dimensional (2-D) electrophoretograms of genomic DNA based on RLGS (Restriction Landmark Genomic Scanning) method, which scans the restriction enzyme recognition sites as the landmark and maps them onto a 2-D electrophoresis gel. Our powerful processing algorithms realize the automated spot recognition from RLGS electrophoretograms and the automated comparison of a huge number of such images. In the final stage of the automated processing, a master spot pattern, on which all the spots in the RLGS images are mapped at once, can be obtained. The spot pattern variations which seemed to be specific to the pathogenic DNA molecular changes can be easily detected by simply looking over the master spot pattern. When we applied our algorithms to the analysis of 33 RLGS images derived from human colon tissues, we successfully detected several colon tumor specific spot pattern changes.

  1. On palaeogeographic map

    Directory of Open Access Journals (Sweden)

    Zeng-Zhao Feng

    2016-01-01

    Full Text Available The palaeogeographic map is a graphic representation of physical geographical characteristics in geological history periods and human history periods. It is the most important result of palaeogeographic study. The author, as the Editor-in-Chief of Journal of Palaeogeography, Chinese Edition and English Edition, aimed at the problems of the articles submitted to and published in the Journal of Palaeogeography in recent years and the relevant papers and books of others, and integrated with his practice of palaeogeographic study and mapping, wrote this paper. The content mainly includes the data of palaeogeographic mapping, the problems of palaeogeographic mapping method, the “Single factor analysis and multifactor comprehensive mapping method —— Methodology of quantitative lithofacies palaeogeography”, i.e., the “4 steps mapping method”, the nomenclature of each palaeogeographic unit in palaeogeographic map, the explanation of each palaeogeographic unit in palaeogeographic map, the explanation of significance of palaeogeographic map and palaeogeographic article, the evaluative standards of palaeogeographic map and palaeogeographic article, and the self-evaluation. Criticisms and corrections are welcome.

  2. Mapping Urban Social Divisions

    Directory of Open Access Journals (Sweden)

    Susan Ball

    2010-05-01

    Full Text Available Against the background of increased levels of interest in space and images beyond the field of geography, this article (re- introduces earlier work on the semiotics of maps undertaken by geographers in the 1960s. The data limitations, purpose and cultural context in which a user interprets a map's codes and conventions are highlighted in this work, which remains relevant to the interpretation of maps—new and old—forty years later. By means of drawing on geography's contribution to the semiotics of maps, the article goes on to examine the concept of urban social divisions as represented in map images. Using a small number of map images, including two of the most widely known maps of urban social division in Europe and North America, the roles of context, data and purpose in the production and interpretation of maps are discussed. By presenting the examples chronologically the article shows that although advances in data collection and manipulation have allowed researchers to combine different social variables in maps of social division, and to interact with map images, work by geographers on the semiotics of maps is no less relevant today than when it was first proposed forty years ago. URN: urn:nbn:de:0114-fqs1002372

  3. Nonisotopic DNA probe techniques

    National Research Council Canada - National Science Library

    Kricka, Larry J

    1992-01-01

    The objective of this book is to bring together descriptions of the principal nonisotopic methods for DNA hybridization assays, together with experimental details of the methods, including labelling...

  4. DNA replication and cancer

    DEFF Research Database (Denmark)

    Boyer, Anne-Sophie; Walter, David; Sørensen, Claus Storgaard

    2016-01-01

    A dividing cell has to duplicate its DNA precisely once during the cell cycle to preserve genome integrity avoiding the accumulation of genetic aberrations that promote diseases such as cancer. A large number of endogenous impacts can challenge DNA replication and cells harbor a battery of pathways...... causing DNA replication stress and genome instability. Further, we describe cellular and systemic responses to these insults with a focus on DNA replication restart pathways. Finally, we discuss the therapeutic potential of exploiting intrinsic replicative stress in cancer cells for targeted therapy....

  5. Forensic DNA testing.

    Science.gov (United States)

    Butler, John M

    2011-12-01

    Forensic DNA testing has a number of applications, including parentage testing, identifying human remains from natural or man-made disasters or terrorist attacks, and solving crimes. This article provides background information followed by an overview of the process of forensic DNA testing, including sample collection, DNA extraction, PCR amplification, short tandem repeat (STR) allele separation and sizing, typing and profile interpretation, statistical analysis, and quality assurance. The article concludes with discussions of possible problems with the data and other forensic DNA testing techniques.

  6. Structure of DNA toroids and electrostatic attraction of DNA duplexes

    International Nuclear Information System (INIS)

    Cherstvy, A G

    2005-01-01

    DNA-DNA electrostatic attraction is considered as the driving force for the formation of DNA toroids in the presence of DNA condensing cations. This attraction comes from the DNA helical charge distribution and favours hexagonal toroidal cross-sections. The latter is in agreement with recent cryo-electron microscopy studies on DNA condensed with cobalt hexammine. We treat the DNA-DNA interactions within the modern theory of electrostatic interaction between helical macromolecules. The size and thickness of the toroids is calculated within a simple model; other models of stability of DNA toroids are discussed and compared

  7. DNA repair and radiation sensitivity in mammalian cells

    International Nuclear Information System (INIS)

    Chen, D.J.C.; Stackhouse, M.; Chen, D.S.

    1993-01-01

    Ionizing radiation induces various types of damage in mammalian cells including DNA single-strand breaks, DNA double-strand breaks (DSB), DNA-protein cross links, and altered DNA bases. Although human cells can repair many of these lesions there is little detailed knowledge of the nature of the genes and the encoded enzymes that control these repair processes. We report here on the cellular and genetic analyses of DNA double-strand break repair deficient mammalian cells. It has been well established that the DNA double-strand break is one of the major lesions induced by ionizing radiation. Utilizing rodent repair-deficient mutant, we have shown that the genes responsible for DNA double-strand break repair are also responsible for the cellular expression of radiation sensitivity. The molecular genetic analysis of DSB repair in rodent/human hybrid cells indicate that at least 6 different genes in mammalian cells are responsible for the repair of radiation-induced DNA double-strand breaks. Mapping and the prospect of cloning of human radiation repair genes are reviewed. Understanding the molecular and genetic basis of radiation sensitivity and DNA repair in man will provide a rational foundation to predict the individual risk associated with radiation exposure and to prevent radiation-induced genetic damage in the human population

  8. Relationship of the demethylation of the DNA with the induction of the sister chromatid exchanges (SCE) In vivo; Relacion de la desmetilacion del ADN con la induccion de intercambios en las cromatidas hermanas (ICH) In vivo

    Energy Technology Data Exchange (ETDEWEB)

    Toribio E, E

    2005-07-01

    The methylation of the DNA is an epigenetic modification that has an important paper in the regulation of the functionality of the genome of the organisms. It can be altered by demethylation processes, either natural or experimentally induced. The 5-azacytidine (Aza) is a compound that causes the demethylation of the DNA (dm-DNA), inducing with it, expression genic and increase in the frequency of the Sister Chromatid Exchange (SCE). The SCE is a genotoxicity indicator, caused by diverse mutagens and carcinogen. Since the biological meaning and the formation mechanism of this phenomenon has not been totally illustrious, the exploration of the relation between the dm-DNA and the induction of SCE, it could offer new knowledge to explain those queries. The purpose of this work was to study in cells of the mouse bone marrow In vivo, the effect of the Aza on the induction of SCE, based on two aspects: 1) dose answer and 2) the effectiveness of multiple exhibition. To six groups of three to five animals, they are administered Aza to dose of 5, 10, 15 or 20 mg/Kg of weight; in sharp or multiple form, previously to the bromodeoxyuridine supply and 24 h was sacrificed after this; 2 h after an injection with colchicine. Preparations of those metaphases were made, those which were dyed by means of a technique of fluorescence more Giemsa. It was observed that to sharp low dose, the Aza produced an increment in the frequency of SCE that although small it was proportional and statistically significant. To sharp and multiple high doses, the Aza doesn't cause additional increments of SCE, but if toxicity at cellular level and of individuals. It is concluded that a relationship exists between the dm-DNA and the induction of SCE. It is suggested that the total demethylation of the DNA causes 2 SCE/Cell in cells of the mouse bone marrow, or that the cytotoxicity prevents to evidence a bigger induction. (Author)

  9. Research on Image Encryption Based on DNA Sequence and Chaos Theory

    Science.gov (United States)

    Tian Zhang, Tian; Yan, Shan Jun; Gu, Cheng Yan; Ren, Ran; Liao, Kai Xin

    2018-04-01

    Nowadays encryption is a common technique to protect image data from unauthorized access. In recent years, many scientists have proposed various encryption algorithms based on DNA sequence to provide a new idea for the design of image encryption algorithm. Therefore, a new method of image encryption based on DNA computing technology is proposed in this paper, whose original image is encrypted by DNA coding and 1-D logistic chaotic mapping. First, the algorithm uses two modules as the encryption key. The first module uses the real DNA sequence, and the second module is made by one-dimensional logistic chaos mapping. Secondly, the algorithm uses DNA complementary rules to encode original image, and uses the key and DNA computing technology to compute each pixel value of the original image, so as to realize the encryption of the whole image. Simulation results show that the algorithm has good encryption effect and security.

  10. Mapping of wine industry

    Directory of Open Access Journals (Sweden)

    Віліна Пересадько

    2016-10-01

    Full Text Available Having reviewed a variety of approaches to understanding the essence of wine industry, having studied the modern ideas about the future of wine industry, having analyzed more than 50 maps from the Internet we have set the trends and special features of wine industry mapping in the world, such as: - the vast majority of maps displays the development of the industry at regional or national level, whereas there are practically no world maps; - wine-growing regions are represented on maps very unevenly; - all existing maps of the industry could be classified as analytical ascertaining inventory type; - the dominant ways of cartographic representation are area method and qualitative background method, sign method and collation maps are rarely used; - basically all the Internet maps have low quality as they are scanned images with poor resolution; - the special feature of maps published lately is lack of geographical basis (except for state borders and coastline. We created wine production and consumption world map «Wine Industry» in the scale of 1:60 000 000 with simple geographical basis (state names, state borders, major rivers, coastline. It was concluded that from the methodological point of view it is incorrect not to show geographical basis on maps of wine industry. Analysis of this map allowed us to identify areas of traditional wine-making, potential wine-making areas and countries which claim to be the world leaders in the field of wine production. We found disbalans between wine production and wine consumption - increasing wine production in South America, China and the United States and increasing wine consumption (mainly due to the import products in countries where the grape is not the primary agricultural product.

  11. Stability of the human sperm DNA methylome to folic acid fortification and short-term supplementation.

    Science.gov (United States)

    Chan, D; McGraw, S; Klein, K; Wallock, L M; Konermann, C; Plass, C; Chan, P; Robaire, B; Jacob, R A; Greenwood, C M T; Trasler, J M

    2017-02-01

    , no significant changes were observed in individual probes following low-level supplementation; when compared with those of the post-fortification cohort, there were also few differences in methylation despite exposure to years of fortified foods. Illumina HumanMethylation450 BeadChip data from this study have been submitted to the NCBI Gene Expression Omnibus under the accession number GSE89781. This study was limited to the number of participants available in each cohort, in particular those who were not exposed to early (pre-1998) fortification of food with folic acid. While genome-wide DNA methylation was assessed with several techniques that targeted genic and CpG-rich regions, intergenic regions were less well interrogated. Overall, our findings provide evidence that short-term exposure to low-dose folic acid supplements of 400 μg/day, over a period of 3 months, a duration of time that might occur during infertility treatments, has no major impact on the sperm DNA methylome. This work was supported by a grant to J.M.T. from the Canadian Institutes of Health Research (CIHR: MOP-89944). The authors have no conflicts of interest to declare. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. Multi-color fluorescent DNA analysis in an integrated optofluidic lab on a chip

    NARCIS (Netherlands)

    Dongre, C.

    2010-01-01

    Abstract: Sorting and sizing of DNA molecules within the human genome project has enabled the genetic mapping of various illnesses. Furthermore by employing tiny lab-on-a-chip device, integrated DNA sequencing and genetic diagnostics have become feasible. We present the combination of capillary

  13. DNA Probe Pooling for Rapid Delineation of Chromosomal Breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chun-Mei; Kwan, Johnson; Baumgartner, Adolf; Weier, Jingly F.; Wang, Mei; Escudero, Tomas; Munne' , Santiago; Zitzelsberger, Horst F.; Weier, Heinz-Ulrich

    2009-01-30

    Structural chromosome aberrations are hallmarks of many human genetic diseases. The precise mapping of translocation breakpoints in tumors is important for identification of genes with altered levels of expression, prediction of tumor progression, therapy response, or length of disease-free survival as well as the preparation of probes for detection of tumor cells in peripheral blood. Similarly, in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for carriers of balanced, reciprocal translocations benefit from accurate breakpoint maps in the preparation of patient-specific DNA probes followed by a selection of normal or balanced oocytes or embryos. We expedited the process of breakpoint mapping and preparation of case-specific probes by utilizing physically mapped bacterial artificial chromosome (BAC) clones. Historically, breakpoint mapping is based on the definition of the smallest interval between proximal and distal probes. Thus, many of the DNA probes prepared for multi-clone and multi-color mapping experiments do not generate additional information. Our pooling protocol described here with examples from thyroid cancer research and PGD accelerates the delineation of translocation breakpoints without sacrificing resolution. The turnaround time from clone selection to mapping results using tumor or IVF patient samples can be as short as three to four days.

  14. RatMap--rat genome tools and data.

    Science.gov (United States)

    Petersen, Greta; Johnson, Per; Andersson, Lars; Klinga-Levan, Karin; Gómez-Fabre, Pedro M; Ståhl, Fredrik

    2005-01-01

    The rat genome database RatMap (http://ratmap.org or http://ratmap.gen.gu.se) has been one of the main resources for rat genome information since 1994. The database is maintained by CMB-Genetics at Goteborg University in Sweden and provides information on rat genes, polymorphic rat DNA-markers and rat quantitative trait loci (QTLs), all curated at RatMap. The database is under the supervision of the Rat Gene and Nomenclature Committee (RGNC); thus much attention is paid to rat gene nomenclature. RatMap presents information on rat idiograms, karyotypes and provides a unified presentation of the rat genome sequence and integrated rat linkage maps. A set of tools is also available to facilitate the identification and characterization of rat QTLs, as well as the estimation of exon/intron number and sizes in individual rat genes. Furthermore, comparative gene maps of rat in regard to mouse and human are provided.

  15. Introduction to "Mapping Vietnameseness"

    OpenAIRE

    Hue-Tam Ho Tai

    2016-01-01

    Vietnam and China are currently engaged in a map war, with each country using ancient maps to buttress its claims to territorial sovereignty over some uninhabited islands in the South China Sea (in Chinese terminology), also known as the Eastern Sea (in Vietnamese). But what do maps in fact represent? What is meant by “territory”? How are territorial limits conceived? These questions were raised in a May 2015 workshop inspired by Thongchai Winichakul’s Siam Mapped: A History of the Geo-Body o...

  16. North America pipeline map

    International Nuclear Information System (INIS)

    Anon.

    2005-01-01

    This map presents details of pipelines currently in place throughout North America. Fifty-nine natural gas pipelines are presented, as well as 16 oil pipelines. The map also identifies six proposed natural gas pipelines. Major cities, roads and highways are included as well as state and provincial boundaries. The National Petroleum Reserve is identified, as well as the Arctic National Wildlife Refuge. The following companies placed advertisements on the map with details of the services they provide relating to pipeline management and construction: Ferus Gas Industries Trust; Proline; SulfaTreat Direct Oxidation; and TransGas. 1 map

  17. Open land use map

    OpenAIRE

    Mildorf, T.; Charvát, K.; Jezek, J.; Templer, Simon; Malewski, Christian

    2014-01-01

    Open Land Use Map is an initiative that has been started by the Plan4business project and that will be extended as part of the SDI4Apps project in the future. This service aims to create an improved worldwide land use map. The initial map will be prepared using the CORINE Land Cover, Global Cover dataset and Open Street Map. Contributors, mainly volunteers, will able to change the geometry and assign up-to-date land use according to the HILUCS specification. For certain regions more detailed ...

  18. Martini Coarse-Grained Force Field : Extension to DNA

    NARCIS (Netherlands)

    Uusitalo, Jaakko J.; Ingolfsson, Helgi I.; Akhshi, Parisa; Tieleman, D. Peter; Marrink, Siewert J.

    We systematically parameterized a coarsegrained (CG) model for DNA that is compatible with the Martini force field. The model maps each nucleotide into six to seven CG beads and is parameterized following the Martini philosophy. The CG nonbonded interactions are based on partitioning of the

  19. Electrochemical single-molecule conductivity of duplex and quadruplex DNA

    DEFF Research Database (Denmark)

    Zhang, Ling; Zhang, Jingdong; Ulstrup, Jens

    2017-01-01

    Photoinduced and electrochemical charge transport in DNA (oligonucleotides, OGNs) and the notions “hopping”, superexchange, polaron, and vibrationally gated charge transport have been in focus over more than two decades. In recent years mapping of electrochemical charge transport of pure and redo...

  20. Extended DNA Tile Actuators

    DEFF Research Database (Denmark)

    Kristiansen, Martin; Kryger, Mille; Zhang, Zhao

    2012-01-01

    A dynamic linear DNA tile actuator is expanded to three new structures of higher complexity. The original DNA actuator was constructed from a central roller strand which hybridizes with two piston strands by forming two half-crossover junctions. A linear expansion of the actuator is obtained...

  1. DNA Repair Systems

    Indian Academy of Sciences (India)

    Thanks to the pioneering research work of Lindahl, Sancar, Modrich and their colleagues, we now have an holistic awareness of how DNA damage occurs and how the damage is rectified in bacteria as well as in higher organisms including human beings. A comprehensive understanding of DNA repair has proven crucial ...

  2. DNA repair genes

    International Nuclear Information System (INIS)

    Morimyo, Mitsuoki

    1995-01-01

    Fission yeast S. pombe is assumed to be a good model for cloning of human DNA repair genes, because human gene is normally expressed in S. pombe and has a very similar protein sequence to yeast protein. We have tried to elucidate the DNA repair mechanisms of S. pombe as a model system for those of mammals. (J.P.N.)

  3. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2018-05-15

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  4. Characterization of muntjac DNA

    International Nuclear Information System (INIS)

    Davis, R.C.

    1981-01-01

    Sister chromatid exchange (SCE) in muntjac chromosomes is generally proportional to the chromosomal DNA content, but the SCE frequency is reduced in the heterochromatic neck region of the X chromosome. The physical properties of muntjac DNA and the kinetics of repair of UV damage in muntjac heterochromatin and euchromatin were examined and compared with the distribution of sister chromatid exchange

  5. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  6. Characterization of muntjac DNA

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.C.

    1981-05-27

    Sister chromatid exchange (SCE) in muntjac chromosomes is generally proportional to the chromosomal DNA content, but the SCE frequency is reduced in the heterochromatic neck region of the X chromosome. The physical properties of muntjac DNA and the kinetics of repair of UV damage in muntjac heterochromatin and euchromatin were examined and compared with the distribution of sister chromatid exchange.

  7. Multi-color fluorescent DNA analysis in an integrated optofluidic lab-on-a-chip

    OpenAIRE

    Dongre, C.; van Weerd, J.; van Weeghel, R.; Martinez-Vazquez, R.; Osellame, R.; Cerullo, G.; Besselink, G.A.J.; van den Vlekkert, H.H.; Hoekstra, Hugo; Pollnau, Markus

    2010-01-01

    Sorting and sizing of DNA molecules within the human genome project has enabled the genetic mapping of various illnesses. By employing tiny lab-on-a-chip devices for such DNA analysis, integrated DNA sequencing and genetic diagnostics have become feasible. However, such diagnostic chips typically lack integrated sensing capability. We address this issue by combining microfluidic capillary electrophoresis with laser-induced fluorescence detection resulting in optofluidic integration towards an...

  8. DNA labeled during phosphonoacetate inhibition and following its reversal in herpesvirus infected cells

    International Nuclear Information System (INIS)

    Jacob, R.J.

    1984-01-01

    Human embryonic lung cells were pre-equilibrated with phosphonoacetate and 32 P orthophosphate label, then infected with phosphonoacetate-sensitive herpes simplex virus (HSV) type 1. Analyses of viral DNA produced in these cells showed the following. i) Viral DNA was synthesized in infected cells exposed to 100 μg of the drug per ml of medium but not in cells exposed to four-fold higher concentrations of the drug. ii) At 300 μg/ml a region of the DNA between 0.58 and 0.69 map units became transiently labeled, but the restriction endonuclease fragment containing these sequences migrated more slowly than the corresponding fragment from virion DNA. iii) Viral DNA extracted from infected cells 1.5 hours post drug withdrawal (300 μg/ml) was preferentially labeled in 2 regions of the genome mapping between 0.17 and 0.23 and 0.58-0.69 map units. This finding is in agreement with a report of Friedman et al. suggesting that HSV DNA contains two different sites if initiation. In addition a 4.8 x 10 6 molecular weight fragment was also preferentially labeled. This fragment could represent a smaller, aberrantly migrating fragment from the 0.17-0.27 map unit region of the DNA. iv) Viral DNA extracted from infected cells at longer intervals after drug withdrawal showed an increasing gradient of radioactivity progressively labeling the genome. These results are consistent with the hypothesis that viral DNA has at least two sites of initiation of DNA synthesis and that both sites are within the L component of the DNA. Alternatively, the results could be interpreted as two sites of localized synthesis (repair) that are detected at high concentrations of phosphonoacetate and immediately following reversal of inhibition of DNA synthesis. The results do not exclude the possibility that secondary sites in both L and S are utilized late in infection or in untreated cells. (Author)

  9. The DNA-encoded nucleosome organization of a eukaryotic genome.

    Science.gov (United States)

    Kaplan, Noam; Moore, Irene K; Fondufe-Mittendorf, Yvonne; Gossett, Andrea J; Tillo, Desiree; Field, Yair; LeProust, Emily M; Hughes, Timothy R; Lieb, Jason D; Widom, Jonathan; Segal, Eran

    2009-03-19

    Nucleosome organization is critical for gene regulation. In living cells this organization is determined by multiple factors, including the action of chromatin remodellers, competition with site-specific DNA-binding proteins, and the DNA sequence preferences of the nucleosomes themselves. However, it has been difficult to estimate the relative importance of each of these mechanisms in vivo, because in vivo nucleosome maps reflect the combined action of all influencing factors. Here we determine the importance of nucleosome DNA sequence preferences experimentally by measuring the genome-wide occupancy of nucleosomes assembled on purified yeast genomic DNA. The resulting map, in which nucleosome occupancy is governed only by the intrinsic sequence preferences of nucleosomes, is similar to in vivo nucleosome maps generated in three different growth conditions. In vitro, nucleosome depletion is evident at many transcription factor binding sites and around gene start and end sites, indicating that nucleosome depletion at these sites in vivo is partly encoded in the genome. We confirm these results with a micrococcal nuclease-independent experiment that measures the relative affinity of nucleosomes for approximately 40,000 double-stranded 150-base-pair oligonucleotides. Using our in vitro data, we devise a computational model of nucleosome sequence preferences that is significantly correlated with in vivo nucleosome occupancy in Caenorhabditis elegans. Our results indicate that the intrinsic DNA sequence preferences of nucleosomes have a central role in determining the organization of nucleosomes in vivo.

  10. Sequence periodicity in nucleosomal DNA and intrinsic curvature.

    Science.gov (United States)

    Nair, T Murlidharan

    2010-05-17

    Most eukaryotic DNA contained in the nucleus is packaged by wrapping DNA around histone octamers. Histones are ubiquitous and bind most regions of chromosomal DNA. In order to achieve smooth wrapping of the DNA around the histone octamer, the DNA duplex should be able to deform and should possess intrinsic curvature. The deformability of DNA is a result of the non-parallelness of base pair stacks. The stacking interaction between base pairs is sequence dependent. The higher the stacking energy the more rigid the DNA helix, thus it is natural to expect that sequences that are involved in wrapping around the histone octamer should be unstacked and possess intrinsic curvature. Intrinsic curvature has been shown to be dictated by the periodic recurrence of certain dinucleotides. Several genome-wide studies directed towards mapping of nucleosome positions have revealed periodicity associated with certain stretches of sequences. In the current study, these sequences have been analyzed with a view to understand their sequence-dependent structures. Higher order DNA structures and the distribution of molecular bend loci associated with 146 base nucleosome core DNA sequence from C. elegans and chicken have been analyzed using the theoretical model for DNA curvature. The curvature dispersion calculated by cyclically permuting the sequences revealed that the molecular bend loci were delocalized throughout the nucleosome core region and had varying degrees of intrinsic curvature. The higher order structures associated with nucleosomes of C.elegans and chicken calculated from the sequences revealed heterogeneity with respect to the deviation of the DNA axis. The results points to the possibility of context dependent curvature of varying degrees to be associated with nucleosomal DNA.

  11. Genetic and physical mapping of two centromere-proximal regions of chromosome IV in Aspergillus nidulans

    DEFF Research Database (Denmark)

    Aleksenko, Alexei Y.; Nielsen, Michael Lynge; Clutterbuck, A.J.

    2001-01-01

    revision of the genetic map of the chromosome, including the position of the centromere, Comparison of physical and genetic maps indicates that meiotic recombination is low in subcentromeric DNA, its frequency being reduced from 1 crossover per 0.8 Mb to approximately 1 crossover per 5 Mb per meiosis...

  12. Whose DNA is this?

    DEFF Research Database (Denmark)

    Taroni, Franco; Biedermann, Alex; Vuille, Joëlle

    2013-01-01

    This communication seeks to draw the attention of researchers and practitioners dealing with forensic DNA profiling analyses to the following question: is a scientist's report, offering support to a hypothesis according to which a particular individual is the source of DNA detected during...... evoked during the international conference "The hidden side of DNA profiles. Artifacts, errors and uncertain evidence" held in Rome (April 27th to 28th, 2012). Indeed, despite the fact that this conference brought together some of the world's leading forensic DNA specialists, it appeared clearly...... talk considerably different languages. It thus is fundamental to address this issue of communication about results of forensic DNA analyses, and open a dialogue with practicing non-scientists at large who need to make meaningful use of scientific results to approach and help solve judicial cases...

  13. DNA repair protocols

    DEFF Research Database (Denmark)

    Bjergbæk, Lotte

    In its 3rd edition, this Methods in Molecular Biology(TM) book covers the eukaryotic response to genomic insult including advanced protocols and standard techniques in the field of DNA repair. Offers expert guidance for DNA repair, recombination, and replication. Current knowledge of the mechanisms...... that regulate DNA repair has grown significantly over the past years with technology advances such as RNA interference, advanced proteomics and microscopy as well as high throughput screens. The third edition of DNA Repair Protocols covers various aspects of the eukaryotic response to genomic insult including...... recent advanced protocols as well as standard techniques used in the field of DNA repair. Both mammalian and non-mammalian model organisms are covered in the book, and many of the techniques can be applied with only minor modifications to other systems than the one described. Written in the highly...

  14. Racemic DNA crystallography.

    Science.gov (United States)

    Mandal, Pradeep K; Collie, Gavin W; Kauffmann, Brice; Huc, Ivan

    2014-12-22

    Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of L- and D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propensity of racemic DNA mixtures to form racemic crystals. We describe racemic crystal structures of various DNA sequences and folded conformations, including duplexes, quadruplexes, and a four-way junction, showing that the advantages of racemic crystallography should extend to DNA. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ancient mtDNA genetic variants modulate mtDNA transcription and replication.

    Directory of Open Access Journals (Sweden)

    Sarit Suissa

    2009-05-01

    Full Text Available Although the functional consequences of mitochondrial DNA (mtDNA genetic backgrounds (haplotypes, haplogroups have been demonstrated by both disease association studies and cell culture experiments, it is not clear which of the mutations within the haplogroup carry functional implications and which are "evolutionary silent hitchhikers". We set forth to study the functionality of haplogroup-defining mutations within the mtDNA transcription/replication regulatory region by in vitro transcription, hypothesizing that haplogroup-defining mutations occurring within regulatory motifs of mtDNA could affect these processes. We thus screened >2500 complete human mtDNAs representing all major populations worldwide for natural variation in experimentally established protein binding sites and regulatory regions comprising a total of 241 bp in each mtDNA. Our screen revealed 77/241 sites showing point mutations that could be divided into non-fixed (57/77, 74% and haplogroup/sub-haplogroup-defining changes (i.e., population fixed changes, 20/77, 26%. The variant defining Caucasian haplogroup J (C295T increased the binding of TFAM (Electro Mobility Shift Assay and the capacity of in vitro L-strand transcription, especially of a shorter transcript that maps immediately upstream of conserved sequence block 1 (CSB1, a region associated with RNA priming of mtDNA replication. Consistent with this finding, cybrids (i.e., cells sharing the same nuclear genetic background but differing in their mtDNA backgrounds harboring haplogroup J mtDNA had a >2 fold increase in mtDNA copy number, as compared to cybrids containing haplogroup H, with no apparent differences in steady state levels of mtDNA-encoded transcripts. Hence, a haplogroup J regulatory region mutation affects mtDNA replication or stability, which may partially account for the phenotypic impact of this haplogroup. Our analysis thus demonstrates, for the first time, the functional impact of particular mtDNA

  16. Amplification of pico-scale DNA mediated by bacterial carrier DNA for small-cell-number transcription factor ChIP-seq

    DEFF Research Database (Denmark)

    Jakobsen, Janus S; Bagger, Frederik O; Hasemann, Marie S

    2015-01-01

    BACKGROUND: Chromatin-Immunoprecipitation coupled with deep sequencing (ChIP-seq) is used to map transcription factor occupancy and generate epigenetic profiles genome-wide. The requirement of nano-scale ChIP DNA for generation of sequencing libraries has impeded ChIP-seq on in vivo tissues of low...... transcription factor (CEBPA) and histone mark (H3K4me3) ChIP. We further demonstrate that genomic profiles are highly resilient to changes in carrier DNA to ChIP DNA ratios. CONCLUSIONS: This represents a significant advance compared to existing technologies, which involve either complex steps of pre...... cell numbers. RESULTS: We describe a robust, simple and scalable methodology for ChIP-seq of low-abundant cell populations, verified down to 10,000 cells. By employing non-mammalian genome mapping bacterial carrier DNA during amplification, we reliably amplify down to 50 pg of ChIP DNA from...

  17. Whole-genome shotgun optical mapping of rhodospirillumrubrum

    Energy Technology Data Exchange (ETDEWEB)

    Reslewic, Susan; Zhou, Shiguo; Place, Mike; Zhang, Yaoping; Briska, Adam; Goldstein, Steve; Churas, Chris; Runnheim, Rod; Forrest,Dan; Lim, Alex; Lapidus, Alla; Han, Cliff S.; Roberts, Gary P.; Schwartz,David C.

    2004-07-01

    Rhodospirillum rubrum is a phototrophic purple non-sulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems, and as a source of hydrogen and biodegradable plastics production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction maps (Xba I, Nhe I, and Hind III) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction maps from randomly sheared genomic DNA molecules extracted directly from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the Hind III map acted as a scaffold for high resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and validation of genome sequence, our work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a ''molecular cytogenetics'' approach to solving problems in genomic analysis.

  18. Objective and Comprehensive Evaluation of Bisulfite Short Read Mapping Tools

    Directory of Open Access Journals (Sweden)

    Hong Tran

    2014-01-01

    Full Text Available Background. Large-scale bisulfite treatment and short reads sequencing technology allow comprehensive estimation of methylation states of Cs in the genomes of different tissues, cell types, and developmental stages. Accurate characterization of DNA methylation is essential for understanding genotype phenotype association, gene and environment interaction, diseases, and cancer. Aligning bisulfite short reads to a reference genome has been a challenging task. We compared five bisulfite short read mapping tools, BSMAP, Bismark, BS-Seeker, BiSS, and BRAT-BW, representing two classes of mapping algorithms (hash table and suffix/prefix tries. We examined their mapping efficiency (i.e., the percentage of reads that can be mapped to the genomes, usability, running time, and effects of changing default parameter settings using both real and simulated reads. We also investigated how preprocessing data might affect mapping efficiency. Conclusion. Among the five programs compared, in terms of mapping efficiency, Bismark performs the best on the real data, followed by BiSS, BSMAP, and finally BRAT-BW and BS-Seeker with very similar performance. If CPU time is not a constraint, Bismark is a good choice of program for mapping bisulfite treated short reads. Data quality impacts a great deal mapping efficiency. Although increasing the number of mismatches allowed can increase mapping efficiency, it not only significantly slows down the program, but also runs the risk of having increased false positives. Therefore, users should carefully set the related parameters depending on the quality of their sequencing data.

  19. Whole-genome shotgun optical mapping of Rhodospirillum rubrum

    Energy Technology Data Exchange (ETDEWEB)

    Reslewic, S. [Univ. Wisc.-Madison; Zhou, S. [Univ. Wisc.-Madison; Place, M. [Univ. Wisc.-Madison; Zhang, Y. [Univ. Wisc.-Madison; Briska, A. [Univ. Wisc.-Madison; Goldstein, S. [Univ. Wisc.-Madison; Churas, C. [Univ. Wisc.-Madison; Runnheim, R. [Univ. Wisc.-Madison; Forrest, D. [Univ. Wisc.-Madison; Lim, A. [Univ. Wisc.-Madison; Lapidus, A. [Univ. Wisc.-Madison; Han, C. S. [Univ. Wisc.-Madison; Roberts, G. P. [Univ. Wisc.-Madison; Schwartz, D. C. [Univ. Wisc.-Madison

    2005-09-01

    Rhodospirillum rubrum is a phototrophic purple nonsulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems and as a source of hydrogen and biodegradable plastic production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction endonuclease maps (XbaI, NheI, and HindIII) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction endonuclease maps from randomly sheared genomic DNA molecules extracted from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the HindIII map acted as a scaffold for high-resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and confirmation of genome sequence, this work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a "molecular cytogenetics" approach to solving problems in genomic analysis.

  20. On circle map coupled map lattice

    CERN Document Server

    Ahmed, E

    2002-01-01

    Circle map in one and two dimensions is studied. Both its stability, synchronization using bounded control and persistence is discussed. This work is expected to be applicable in ecology where spatial effects are known to be important. Also it will be relevant to systems where delay effects are not negligible.

  1. Mapping online consumer search

    NARCIS (Netherlands)

    Bronnenberg, B.J.; Kim, J.; Albuquerque, P.

    2011-01-01

    The authors propose a new method to visualize browsing behavior in so-called product search maps. Manufacturers can use these maps to understand how consumers search for competing products before choice, including how information acquisition and product search are organized along brands, product

  2. Map of Nasca Geoglyphs

    Science.gov (United States)

    Hanzalová, K.; Pavelka, K.

    2013-07-01

    The Czech Technical University in Prague in the cooperation with the University of Applied Sciences in Dresden (Germany) work on the Nasca Project. The cooperation started in 2004 and much work has been done since then. All work is connected with Nasca lines in southern Peru. The Nasca project started in 1995 and its main target is documentation and conservation of the Nasca lines. Most of the project results are presented as WebGIS application via Internet. In the face of the impending destruction of the soil drawings, it is possible to preserve this world cultural heritage for the posterity at least in a digital form. Creating of Nasca lines map is very useful. The map is in a digital form and it is also available as a paper map. The map contains planimetric component of the map, map lettering and altimetry. Thematic folder in this map is a vector layer of the geoglyphs in Nasca/Peru. Basis for planimetry are georeferenced satellite images, altimetry is created from digital elevation model. This map was created in ArcGis software.

  3. Mapping of Outdoor Classrooms.

    Science.gov (United States)

    Horvath, Victor G.

    Mapping symbols adopted by the Michigan Department of Natural Resources are presented with their explanations. In an effort to provide standardization and familiarity teachers and other school people involved in an outdoor education program are encouraged to utilize the same symbols in constructing maps. (DK)

  4. MAP OF NASCA GEOGLYPHS

    Directory of Open Access Journals (Sweden)

    K. Hanzalová

    2013-07-01

    Full Text Available The Czech Technical University in Prague in the cooperation with the University of Applied Sciences in Dresden (Germany work on the Nasca Project. The cooperation started in 2004 and much work has been done since then. All work is connected with Nasca lines in southern Peru. The Nasca project started in 1995 and its main target is documentation and conservation of the Nasca lines. Most of the project results are presented as WebGIS application via Internet. In the face of the impending destruction of the soil drawings, it is possible to preserve this world cultural heritage for the posterity at least in a digital form. Creating of Nasca lines map is very useful. The map is in a digital form and it is also available as a paper map. The map contains planimetric component of the map, map lettering and altimetry. Thematic folder in this map is a vector layer of the geoglyphs in Nasca/Peru. Basis for planimetry are georeferenced satellite images, altimetry is created from digital elevation model. This map was created in ArcGis software.

  5. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Sporring, Jon; Fogh Olsen, Ole

    2008-01-01

    . To address this problem, we introduce a photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way, we preserve important illumination features, while...

  6. Maps between Grassmann manifolds

    Indian Academy of Sciences (India)

    Parameswaran Sankaran Institute of Mathematical Sciences Chennai, India sankaran@imsc.res.in Indian Academy of Sciences Platinum Jubilee Meeting Hyderabad

    2009-07-02

    Jul 2, 2009 ... Classification of all manifolds (or maps between them) is an impossible task. The coarser, homotopical classification, is relatively easier–but only relatively! Homotopy is, roughly speaking, the study of properties of spaces and maps invariant under continuous deformations. Denote by [X, Y ] the set of all ...

  7. Constructing Maps Collaboratively.

    Science.gov (United States)

    Leinhardt, Gaea; Stainton, Catherine; Bausmith, Jennifer Merriman

    1998-01-01

    Summarizes a study that maintains that students who work together in small groups had a better understanding of map concepts. Discusses why making maps in groups can enhance students' conceptual geographic understanding and offers suggestions for improving geography instructions using small group configurations. Includes statistical and graphic…

  8. Algorithms for necklace maps

    NARCIS (Netherlands)

    Speckmann, B.; Verbeek, K.A.B.

    2015-01-01

    Necklace maps visualize quantitative data associated with regions by placing scaled symbols, usually disks, without overlap on a closed curve (the necklace) surrounding the map regions. Each region is projected onto an interval on the necklace that contains its symbol. In this paper we address the

  9. Text 2 Mind Map

    OpenAIRE

    Iona, John

    2017-01-01

    This is a review of the web resource 'Text 2 Mind Map' www.Text2MindMap.com. It covers what the resource is, and how it might be used in Library and education context, in particular for School Librarians.

  10. Formal genetic maps

    African Journals Online (AJOL)

    Mohammad Saad Zaghloul Salem

    2014-12-24

    Dec 24, 2014 ... ome/transcriptome/proteome, experimental induced maps that are intentionally designed and con- ... genetic maps imposed their application in nearly all fields of medical genetics including ..... or genes located adjacent to, or near, them. ...... types of markers, e.g., clinical markers (eye color), genomic.

  11. Methyl-Analyzer--whole genome DNA methylation profiling.

    Science.gov (United States)

    Xin, Yurong; Ge, Yongchao; Haghighi, Fatemeh G

    2011-08-15

    Methyl-Analyzer is a python package that analyzes genome-wide DNA methylation data produced by the Methyl-MAPS (methylation mapping analysis by paired-end sequencing) method. Methyl-MAPS is an enzymatic-based method that uses both methylation-sensitive and -dependent enzymes covering >80% of CpG dinucleotides within mammalian genomes. It combines enzymatic-based approaches with high-throughput next-generation sequencing technology to provide whole genome DNA methylation profiles. Methyl-Analyzer processes and integrates sequencing reads from methylated and unmethylated compartments and estimates CpG methylation probabilities at single base resolution. Methyl-Analyzer is available at http://github.com/epigenomics/methylmaps. Sample dataset is available for download at http://epigenomicspub.columbia.edu/methylanalyzer_data.html. fgh3@columbia.edu Supplementary data are available at Bioinformatics online.

  12. Mapping replication origins in yeast chromosomes.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1991-07-01

    The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.

  13. Bodily maps of emotions.

    Science.gov (United States)

    Nummenmaa, Lauri; Glerean, Enrico; Hari, Riitta; Hietanen, Jari K

    2014-01-14

    Emotions are often felt in the body, and somatosensory feedback has been proposed to trigger conscious emotional experiences. Here we reveal maps of bodily sensations associated with different emotions using a unique topographical self-report method. In five experiments, participants (n = 701) were shown two silhouettes of bodies alongside emotional words, stories, movies, or facial expressions. They were asked to color the bodily regions whose activity they felt increasing or decreasing while viewing each stimulus. Different emotions were consistently associated with statistically separable bodily sensation maps across experiments. These maps were concordant across West European and East Asian samples. Statistical classifiers distinguished emotion-specific activation maps accurately, confirming independence of topographies across emotions. We propose that emotions are represented in the somatosensory system as culturally universal categorical somatotopic maps. Perception of these emotion-triggered bodily changes may play a key role in generating consciously felt emotions.

  14. Application of ecological mapping

    International Nuclear Information System (INIS)

    Sherk, J.A.

    1982-01-01

    The US Fish and Wildlife Service has initiated the production of a comprehensive ecological inventory map series for use as a major new planning tool. Important species data along with special land use designations are displayed on 1:250,000 scale topographic base maps. Sets of maps have been published for the Atlantic and Pacific coastal areas of the United States. Preparation of a map set for the Gulf of Mexico is underway at the present time. Potential application of ecological inventory map series information to a typical land disposal facility could occur during the narrowing of the number of possible disposal sites, the design of potential disposal site studies of ecological resources, the preparation of the environmental report, and the regulatory review of license applications. 3 figures, 3 tables

  15. The projective heat map

    CERN Document Server

    Schwartz, Richard Evan

    2017-01-01

    This book introduces a simple dynamical model for a planar heat map that is invariant under projective transformations. The map is defined by iterating a polygon map, where one starts with a finite planar N-gon and produces a new N-gon by a prescribed geometric construction. One of the appeals of the topic of this book is the simplicity of the construction that yet leads to deep and far reaching mathematics. To construct the projective heat map, the author modifies the classical affine invariant midpoint map, which takes a polygon to a new polygon whose vertices are the midpoints of the original. The author provides useful background which makes this book accessible to a beginning graduate student or advanced undergraduate as well as researchers approaching this subject from other fields of specialty. The book includes many illustrations, and there is also a companion computer program.

  16. Nanostructures via DNA scaffold metallization

    OpenAIRE

    Ning, C.; Zinchenko, A.; Baigl, D.; Pyshkina, O.; Sergeyev, V.; Endo, Kazunaka; Yoshikawa, K.

    2005-01-01

    The critical role of polymers in process of noble metals nanostructures formation is well known, however, the use of DNA chain template in this process is yet largely unknown. In this study we demonstrate different ways of silver deposition on DNA template and report the influence of silver nanostructures formation on DNA conformational state. Metallization of DNA chain proceeds by two different scenarios depending on DNA conformation. If DNA chain is unfolded (elongated) chain, silver reduct...

  17. Time of flight Laue fiber diffraction studies of perdeuterated DNA

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, V.T.; Whalley, M.A.; Mahendrasingam, A.; Fuller, W. [Keele Univ. (United Kingdom)] [and others

    1994-12-31

    The diffractometer SXD at the Rutherford Appleton Laboratory ISIS pulsed neutron source has been used to record high resolution time-of-flight Laue fiber diffraction data from DNA. These experiments, which are the first of their kind, were undertaken using fibers of DNA in the A conformation and prepared using deuterated DNA in order to minimis incoherent background scattering. These studies complement previous experiments on instrument D19 at the Institute Laue Langevin using monochromatic neutrons. Sample preparation involved drawing large numbers of these deuterated DNA fibers and mounting them in a parallel array. The strategy of data collection is discussed in terms of camera design, sample environment and data collection. The methods used to correct the recorded time-of-flight data and map it into the final reciprocal space fiber diffraction dataset are also discussed. Difference Fourier maps showing the distribution of water around A-DNA calculated on the basis of these data are compared with results obtained using data recorded from hydrogenated A-DNA on D19. Since the methods used for sample preparation, data collection and data processing are fundamentally different for the monochromatic and Laue techniques, the results of these experiments also afford a valuable opportunity to independently test the data reduction and analysis techniques used in the two methods.

  18. DNA-protein complexes induced by chromate and other carcinogens

    International Nuclear Information System (INIS)

    Costa, M.

    1991-01-01

    DNA-protein complexes induced in intact Chinese hamster ovary cells by chromate have been isolated, analyzed, and compared with those induced by cis-platinum, ultraviolet light, and formaldehyde. Actin has been identified as one of the major proteins complexed to DNA by chromate based upon its molecular weight, isoelectric point, positive reaction with an actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of similar molecular weight and isoelectric point, positive reaction with an actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of similar molecular weight and isoelectric points, and these complexes can be disrupted by chelating agents and sulfhydryl reducing agents, suggesting that the metal itself is participating in binding rather than having a catalytic or indirect role (i.e., oxygen radicals). In contrast, formaldehyde complexed histones to the DNA, and these complexes were not disrupted by chelating or reducing agents. An antiserum raised to chromate-induced DNA-protein complexes reacted primarily with 97,000 kDa protein that did not silver stain. Slot blots, as well as Western blots, were used to detect formation of p97 DNA crosslinks. This protein was complexed to the DNA by all four agents studied

  19. Cloning of the human androgen receptor cDNA

    International Nuclear Information System (INIS)

    Govindan, M.V.; Burelle, M.; Cantin, C.; Kabrie, C.; Labrie, F.; Lachance, Y.; Leblanc, G.; Lefebvre, C.; Patel, P.; Simard, J.

    1988-01-01

    The authors discuss how in order to define the functional domains of the human androgen receptor, complementary DNA (cDNA) clones encoding the human androgen receptor (hAR) have been isolated from a human testis λgtll cDNA library using synthetic oligonnucleotide probes, homologous to segments of the human glucocorticoid, estradiol and progesterone receptors. The cDNA clones corresponding to the human glucocorticoid, estradiol and progesterone receptors were eliminated after cross-hybridization with their respective cDNA probes and/or after restriction mapping of the cDNA clones. The remaining cDNA clones were classified into different groups after analysis by restriction digestion and cross-hybridization. Two of the largest cDNA clones from each group were inserted into an expression vector in both orientations. The linearized plasmids were used as templates in in vitro transcription with T7 RNA polymerase. Subsequent in vitro translation of the purified transcripts in rabbit reticulocyte lysate followed by sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) permitted the characterization of the encoded polyeptides. The expressed proteins larger than 30,000 Da were analyzed for their ability to bind tritium-labelled dihydrotestosterone ([ 3 H] DHT) with high affinity and specificity

  20. Energy and Technology Review: Unlocking the mysteries of DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Quirk, W.A.

    1993-04-01

    DNA, the genetic blueprint, has the remarkable property of encoding its own repair following diverse types of structural damage induced by external agents or normal metabolism. We are studying the interplay of DNA damaging agents, repair genes, and their protein products to decipher the complex biochemical pathways that mediate such repair. Our research focuses on repair processes that correct DNA damage produced by chemical mutagens and radiation, both ionizing and ultraviolet. The most important type of DNA repair in human cells is called excision repair. This multistep process removes damaged or inappropriate pieces of DNA -- often as a string of 29 nucleotides containing the damage -- and replaces them with intact ones. We have isolated, cloned, and mapped several human repair genes associated with the nucleotide excision repair pathway and involved in the repair of DNA damage after exposure to ultraviolet light or mutagens in cooked food. We have shown that a defect in one of these repair genes, ERCC2, is responsible for the repair deficiency in one of the groups of patients with the recessive genetic disorder xeroderma pigmentosum (XP group D). We are exploring ways to purify sufficient quantities (milligrams) of the protein products of these and other repair genes so that we can understand their functions. Our long-term goals are to link defective repair proteins to human DNA repair disorders that predispose to cancer, and to produce DNA-repair-deficient mice that can serve as models for the human disorders.

  1. DNA damage and polyploidization.

    Science.gov (United States)

    Chow, Jeremy; Poon, Randy Y C

    2010-01-01

    A growing body of evidence indicates that polyploidization triggers chromosomal instability and contributes to tumorigenesis. DNA damage is increasingly being recognized for its roles in promoting polyploidization. Although elegant mechanisms known as the DNA damage checkpoints are responsible for halting the cell cycle after DNA damage, agents that uncouple the checkpoints can induce unscheduled entry into mitosis. Likewise, defects of the checkpoints in several disorders permit mitotic entry even in the presence of DNA damage. Forcing cells with damaged DNA into mitosis causes severe chromosome segregation defects, including lagging chromosomes, chromosomal fragments and chromosomal bridges. The presence of these lesions in the cleavage plane is believed to abort cytokinesis. It is postulated that if cytokinesis failure is coupled with defects of the p53-dependent postmitotic checkpoint pathway, cells can enter S phase and become polyploids. Progress in the past several years has unraveled some of the underlying principles of these pathways and underscored the important role of DNA damage in polyploidization. Furthermore, polyploidization per se may also be an important determinant of sensitivity to DNA damage, thereby may offer an opportunity for novel therapies.

  2. Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.).

    Science.gov (United States)

    Symonová, Radka; Ocalewicz, Konrad; Kirtiklis, Lech; Delmastro, Giovanni Battista; Pelikánová, Šárka; Garcia, Sonia; Kovařík, Aleš

    2017-05-18

    Pikes represent an important genus (Esox) harbouring a pre-duplication karyotype (2n = 2x = 50) of economically important salmonid pseudopolyploids. Here, we have characterized the 5S ribosomal RNA genes (rDNA) in Esox lucius and its closely related E. cisalpinus using cytogenetic, molecular and genomic approaches. Intragenomic homogeneity and copy number estimation was carried out using Illumina reads. The higher-order structure of rDNA arrays was investigated by the analysis of long PacBio reads. Position of loci on chromosomes was determined by FISH. DNA methylation was analysed by methylation-sensitive restriction enzymes. The 5S rDNA loci occupy exclusively (peri)centromeric regions on 30-38 acrocentric chromosomes in both E. lucius and E. cisalpinus. The large number of loci is accompanied by extreme amplification of genes (>20,000 copies), which is to the best of our knowledge one of the highest copy number of rRNA genes in animals ever reported. Conserved secondary structures of predicted 5S rRNAs indicate that most of the amplified genes are potentially functional. Only few SNPs were found in genic regions indicating their high homogeneity while intergenic spacers were more heterogeneous and several families were identified. Analysis of 10-30 kb-long molecules sequenced by the PacBio technology (containing about 40% of total 5S rDNA) revealed that the vast majority (96%) of genes are organised in large several kilobase-long blocks. Dispersed genes or short tandems were less common (4%). The adjacent 5S blocks were directly linked, separated by intervening DNA and even inverted. The 5S units differing in the intergenic spacers formed both homogeneous and heterogeneous (mixed) blocks indicating variable degree of homogenisation between the loci. Both E. lucius and E. cisalpinus 5S rDNA was heavily methylated at CG dinucleotides. Extreme amplification of 5S rRNA genes in the Esox genome occurred in the absence of significant pseudogenisation

  3. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    Science.gov (United States)

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  5. Immune Genetic Learning of Fuzzy Cognitive Map

    Institute of Scientific and Technical Information of China (English)

    LIN Chun-mei; HE Yue; TANG Bing-yong

    2006-01-01

    This paper presents a hybrid methodology of automatically constructing fuzzy cognitive map (FCM). The method uses immune genetic algorithm to learn the connection matrix of FCM. In the algorithm, the DNA coding method is used and an immune operator based on immune mechanism is constructed. The characteristics of the system and the experts' knowledge are abstracted as vaccine for restraining the degenerative phenomena during evolution so as to improve the algorithmic efficiency. Finally, an illustrative example is provided, and its results suggest that the method is capable of automatically generating FCM model.

  6. Mapping and polymorphism of bovine ghreline gene

    OpenAIRE

    Colinet, Frédéric; Eggen, André; Halleux, Caroline; Arnould, Valérie; Portetelle, Daniel; Renaville, Robert

    2006-01-01

    Bovine ghrelin, a 27-amino-acid peptide has been identified in bovine oxyntic glands of the abomasum. It is an endogenous growth hormone secretagogue. Total mRNA was extracted from abomasum and complete ghrelin mRNA was sequenced by rapid amplification of cDNA ends. The gene contains five exons and four introns with a short noncoding first exon of 17 bp similar to mouse and human ghrelin gene. Using a radiation hybrid panel, the gene was mapped to chromosome 22 near microsat...

  7. "Artifactual" arsenate DNA

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2012-01-01

    The recent claim by Wolfe-Simon et al. that the Halomonas bacterial strain GFAJ-1 when grown in arsenate-containing medium with limiting phosphate is able to substitute phosphate with arsenate in biomolecules including nucleic acids and in particular DNA(1) arose much skepticism, primarily due...... to the very limited chemical stability of arsenate esters (see ref. 2 and references therein). A major part of the criticisms was concerned with the insufficient (bio)chemical evidence in the Wolfe-Simon study for the actual chemical incorporation of arsenate in DNA (and/or RNA). Redfield et al. now present...... evidence that the identification of arsenate DNA was artifactual....

  8. Association of Tissue-Specific DNA Methylation Alterations with α-Thalassemia Southeast Asian Deletion

    Directory of Open Access Journals (Sweden)

    Tanapat Pangeson

    2017-11-01

    Full Text Available In the wild-type allele, DNA methylation levels of 10 consecutive CpG sites adjacent to the upstream 5′-breakpoint of α-thalassemia Southeast Asian (SEA deletion are not different between placenta and leukocytes. However, no previous study has reported the map of DNA methylation in the SEA allele. This report aims to show that the SEA mutation is associated with DNA methylation changes, resulting in differential methylation between placenta and leukocytes. Methylation-sensitive high-resolution analysis was used to compare DNA methylation among placenta, leukocytes, and unmethylated control DNA. The result indicates that the DNA methylation between placenta and leukocyte DNA is different and shows that the CpG status of both is not fully unmethylated. Mapping of individual CpG sites was performed by targeted bisulfite sequencing. The DNA methylation level of the 10 consecutive CpG sites was different between placenta and leukocyte DNA. When the 10th CpG of the mutation allele was considered as a hallmark for comparing DNA methylation level, it was totally different from the unmethylated 10th CpG of the wild-type allele. Finally, the distinct DNA methylation patterns between both DNA were extracted. In total, 24 patterns were found in leukocyte samples and 9 patterns were found in placenta samples. This report shows that the large deletion is associated with DNA methylation change. In further studies for clinical application, the distinct DNA methylation pattern might be a potential marker for detecting cell-free fetal DNA.

  9. USGS Topo Base Map from The National Map

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The USGS Topographic Base Map from The National Map. This tile cached web map service combines the most current data services (Boundaries, Names, Transportation,...

  10. Analyzing thematic maps and mapping for accuracy

    Science.gov (United States)

    Rosenfield, G.H.

    1982-01-01

    Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by

  11. Color on emergency mapping

    Science.gov (United States)

    Jiang, Lili; Qi, Qingwen; Zhang, An

    2007-06-01

    There are so many emergency issues in our daily life. Such as typhoons, tsunamis, earthquake, fires, floods, epidemics, etc. These emergencies made people lose their lives and their belongings. Every day, every hour, even every minute people probably face the emergency, so how to handle it and how to decrease its hurt are the matters people care most. If we can map it exactly before or after the emergencies; it will be helpful to the emergency researchers and people who live in the emergency place. So , through the emergency map, before emergency is occurring we can predict the situation, such as when and where the emergency will be happen; where people can refuge, etc. After disaster, we can also easily assess the lost, discuss the cause and make the lost less. The primary effect of mapping is offering information to the people who care about the emergency and the researcher who want to study it. Mapping allows the viewers to get a spatial sense of hazard. It can also provide the clues to study the relationship of the phenomenon in emergency. Color, as the basic element of the map, it can simplify and clarify the phenomenon. Color can also affects the general perceptibility of the map, and elicits subjective reactions to the map. It is to say, structure, readability, and the reader's psychological reactions can be affected by the use of color.

  12. Cognitive maps and attention.

    Science.gov (United States)

    Hardt, Oliver; Nadel, Lynn

    2009-01-01

    Cognitive map theory suggested that exploring an environment and attending to a stimulus should lead to its integration into an allocentric environmental representation. We here report that directed attention in the form of exploration serves to gather information needed to determine an optimal spatial strategy, given task demands and characteristics of the environment. Attended environmental features may integrate into spatial representations if they meet the requirements of the optimal spatial strategy: when learning involves a cognitive mapping strategy, cues with high codability (e.g., concrete objects) will be incorporated into a map, but cues with low codability (e.g., abstract paintings) will not. However, instructions encouraging map learning can lead to the incorporation of cues with low codability. On the other hand, if spatial learning is not map-based, abstract cues can and will be used to encode locations. Since exploration appears to determine what strategy to apply and whether or not to encode a cue, recognition memory for environmental features is independent of whether or not a cue is part of a spatial representation. In fact, when abstract cues were used in a way that was not map-based, or when they were not used for spatial navigation at all, they were nevertheless recognized as familiar. Thus, the relation between exploratory activity on the one hand and spatial strategy and memory on the other appears more complex than initially suggested by cognitive map theory.

  13. DNA from keratinous tissue

    DEFF Research Database (Denmark)

    Bengtsson, Camilla F.; Olsen, Maja E.; Brandt, Luise Ørsted

    2011-01-01

    Keratinous tissues such as nail, hair, horn, scales and feather have been used as a source of DNA for over 20 years. Particular benefits of such tissues include the ease with which they can be sampled, the relative stability of DNA in such tissues once sampled, and, in the context of ancient...... genetic analyses, the fact that sampling generally causes minimal visual damage to valuable specimens. Even when freshly sampled, however, the DNA quantity and quality in the fully keratinized parts of such tissues is extremely poor in comparison to other tissues such as blood and muscle – although little...... systematic research has been undertaken to characterize how such degradation may relate to sample source. In this review paper we present the current understanding of the quality and limitations of DNA in two key keratinous tissues, nail and hair. The findings indicate that although some fragments of nuclear...

  14. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup

    2010-01-01

    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... with viral-vectored vaccines, various synergistic components may need to be incorporated into DNA vaccines. From the perspective of the future clinical use of DNA vaccines, it has been suggested that antigen presentation should be improved and cytokine coadministration attempted. However, even...

  15. DNA Sampling Hook

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The DNA Sampling Hook is a significant improvement on a method of obtaining a tissue sample from a live fish in situ from an aquatic environment. A tissue sample...

  16. Retroviral DNA Integration

    Science.gov (United States)

    2016-01-01

    The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3′-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications. PMID:27198982

  17. DNA damage and carcinogenesis

    International Nuclear Information System (INIS)

    Stelow, R.B.

    1980-01-01

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 10 4 fold

  18. DNA-Origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Gothelf, Kurt Vesterager

    2010-01-01

    DNA-nanostrukturer giver nye muligheder for studier af individuelle molekyler. Ved at udnytte DNAs unikke selvsamlende egenskaber kan man designe systemer, hvorpå der kan studeres kemiske reaktioner, fluoroforer og biiomolekyler på enkeltmolekyle-niveau....

  19. DNA Microarray Technology

    Science.gov (United States)

    Skip to main content DNA Microarray Technology Enter Search Term(s): Español Research Funding An Overview Bioinformatics Current Grants Education and Training Funding Extramural Research News Features Funding Divisions Funding ...

  20. Close encounters with DNA

    Science.gov (United States)

    Maffeo, C.; Yoo, J.; Comer, J.; Wells, D. B.; Luan, B.; Aksimentiev, A.

    2014-01-01

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena and we review the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field. PMID:25238560

  1. Gomphid DNA sequence data

    Data.gov (United States)

    U.S. Environmental Protection Agency — DNA sequence data for several genetic loci. This dataset is not publicly accessible because: It's already publicly available on GenBank. It can be accessed through...

  2. HPV DNA test

    Science.gov (United States)

    ... test; Cancer of cervix - HPV DNA test References Hacker NF. Cervical dysplasia and cancer. In: Hacker NF, Gambone JC, Hobel CJ, eds. Hacker and Moore's Essentials of Obstetrics and Gynecology . 6th ...

  3. Close encounters with DNA.

    Science.gov (United States)

    Maffeo, C; Yoo, J; Comer, J; Wells, D B; Luan, B; Aksimentiev, A

    2014-10-15

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena. We also discuss the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field.

  4. FBI's DNA analysis program

    Science.gov (United States)

    Brown, John R.

    1994-03-01

    Forensic DNA profiling technology is a significant law enforcement tool due to its superior discriminating power. Applying the principles of population genetics to the DNA profile obtained in violent crime investigations results in low frequency of occurrence estimates for the DNA profile. These estimates often range from a frequency of occurrence of 1 in 50 unrelated individuals to 1 in a million unrelated individuals or even smaller. It is this power to discriminate among individuals in the population that has propelled forensic DNA technology to the forefront of forensic testing in violent crime cases. Not only is the technology extremely powerful in including or excluding a criminal suspect as the perpetrator, but it also gives rise to the potential of identifying criminal suspects in cases where the investigators of unknown suspect cases have exhausted all other available leads.

  5. Making DNA Fingerprints.

    Science.gov (United States)

    Nunley, Kathie F.

    1996-01-01

    Presents an activity to simulate electrophoresis using everyday items. Uses adding machine paper to construct a set of DNA fingerprints that can be used to solve crime cases designed by students in any biology class. (JRH)

  6. Radiation damage in DNA

    International Nuclear Information System (INIS)

    Lafleur, V.

    1978-01-01

    A number of experiments are described with the purpose to obtain a better insight in the chemical nature and the biological significance of radiation-induced damage in DNA, with some emphasis on the significance of alkali-labile sites. It is shown that not only reactions of OH radicals but also of H radicals introduce breaks and other inactivating damage in single-standed phiX174 DNA. It is found that phosphate buffer is very suitable for the study of the reactions of H radicals with DNA, as the H 2 PO 4 - ions convert the hydrated electrons into H radicals. The hydrated electron, which does react with DNA, does not cause a detectable inactivation. (Auth.)

  7. DNA to DNA transcription might exist in eukaryotic cells

    OpenAIRE

    Li, Gao-De

    2016-01-01

    Till now, in biological sciences, the term, transcription, mainly refers to DNA to RNA transcription. But our recently published experimental findings obtained from Plasmodium falciparum strongly suggest the existence of DNA to DNA transcription in the genome of eukaryotic cells, which could shed some light on the functions of certain noncoding DNA in the human and other eukaryotic genomes.

  8. DNA nanomapping using CRISPR-Cas9 as a programmable nanoparticle.

    Science.gov (United States)

    Mikheikin, Andrey; Olsen, Anita; Leslie, Kevin; Russell-Pavier, Freddie; Yacoot, Andrew; Picco, Loren; Payton, Oliver; Toor, Amir; Chesney, Alden; Gimzewski, James K; Mishra, Bud; Reed, Jason

    2017-11-21

    Progress in whole-genome sequencing using short-read (e.g., <150 bp), next-generation sequencing technologies has reinvigorated interest in high-resolution physical mapping to fill technical gaps that are not well addressed by sequencing. Here, we report two technical advances in DNA nanotechnology and single-molecule genomics: (1) we describe a labeling technique (CRISPR-Cas9 nanoparticles) for high-speed AFM-based physical mapping of DNA and (2) the first successful demonstration of using DVD optics to image DNA molecules with high-speed AFM. As a proof of principle, we used this new "nanomapping" method to detect and map precisely BCL2-IGH translocations present in lymph node biopsies of follicular lymphoma patents. This HS-AFM "nanomapping" technique can be complementary to both sequencing and other physical mapping approaches.

  9. Patterning nanocrystals using DNA

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Shara Carol [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices

  10. Crowdsourcing The National Map

    Science.gov (United States)

    McCartney, Elizabeth; Craun, Kari J.; Korris, Erin M.; Brostuen, David A.; Moore, Laurence R.

    2015-01-01

    Using crowdsourcing techniques, the US Geological Survey’s (USGS) Volunteered Geographic Information (VGI) project known as “The National Map Corps (TNMCorps)” encourages citizen scientists to collect and edit data about man-made structures in an effort to provide accurate and authoritative map data for the USGS National Geospatial Program’s web-based The National Map. VGI is not new to the USGS, but past efforts have been hampered by available technologies. Building on lessons learned, TNMCorps volunteers are successfully editing 10 different structure types in all 50 states as well as Puerto Rico and the US Virgin Islands.

  11. Region & Gateway Mapping

    OpenAIRE

    Schröter, Derik

    2007-01-01

    State-of-the-art robot mapping approaches are capable of acquiring impressively accurate 2D and 3D models of their environments. To the best of our knowledge, few of them represent structure or acquire models of task-relevant objects. In this work, a new approach to mapping of indoor environments is presented, in which the environment structure in terms of regions and gateways is automatically extracted, while the robot explores. Objects, both in 2D and 3D, are modeled explicitly in those map...

  12. MUTYH Associated Polyposis (MAP)

    DEFF Research Database (Denmark)

    Poulsen, Marie Louise Mølgaard; Bisgaard, M L

    2008-01-01

    Adenomatous Polyposis (FAP) and to a lesser extend Lynch Syndrome, which are caused by germline mutations in the APC and Mismatch Repair (MMR) genes, respectively.Here we review research findings regarding MUTYH interactions, genotypic and phenotypic characteristics of MAP, as well as surveillance......MUTYH Associated Polyposis (MAP), a Polyposis predisposition caused by biallelic mutations in the Base Excision Repair (BER) gene MUTYH, confers a marked risk of colorectal cancer (CRC). The MAP phenotype is difficult to distinguish from other hereditary CRC syndromes. Especially from Familial...

  13. Das DNA-Puzzle

    Science.gov (United States)

    Kirchner, Stefan

    Im Jahre 1953 wurde von James Watson und Francis Crick erstmalig der strukturelle Aufbau der sogenannten DNA (Desoxyribonukleinsäure) beschrieben, welche das Erbgut jedes Lebewesens enthält. Der wesentliche Teil des Erbguts wird dabei durch eine sehr lange Folge der vier Basen Adenin (A), Cytosin (C), Guanin (G) und Thymin (T) codiert. Seit einigen Jahren ist es möglich, die Folge der vier Basen zu einer gegebenen DNA zu bestimmen. Biologen bezeichnen diesen Vorgang als Sequenzierung.

  14. Racemic DNA Crystallography

    OpenAIRE

    Mandal , Pradeep K.; Collie , Gavin W.; Kauffmann , Brice; Huc , Ivan

    2014-01-01

    International audience; Racemates increase the chances of crystallization by allowing molecular contacts to be formed in a greater number of ways. With the advent of protein synthesis, the production of protein racemates and racemic-protein crystallography are now possible. Curiously, racemic DNA crystallography had not been investigated despite the commercial availability of Land D-deoxyribo-oligonucleotides. Here, we report a study into racemic DNA crystallography showing the strong propens...

  15. Celebrating DNA's Repair Crew.

    Science.gov (United States)

    Kunkel, Thomas A

    2015-12-03

    This year, the Nobel Prize in Chemistry has been awarded to Tomas Lindahl, Aziz Sancar, and Paul Modrich for their seminal studies of the mechanisms by which cells from bacteria to man repair DNA damage that is generated by normal cellular metabolism and stress from the environment. These studies beautifully illustrate the remarkable power of DNA repair to influence life from evolution through disease susceptibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Elevation data for floodplain mapping

    National Research Council Canada - National Science Library

    Committee on Floodplain Mapping Technologies; National Research Council; Division on Earth and Life Studies; National Research Council

    2007-01-01

    .... Elevation Data for Floodplain Mapping shows that there is sufficient two-dimensional base map imagery to meet FEMA's flood map modernization goals, but that the three-dimensional base elevation data...

  17. Northern Hemisphere Synoptic Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Daily Series of Synoptic Weather Maps. Part I consists of plotted and analyzed daily maps of sea-level and 500-mb maps for 0300, 0400, 1200, 1230, 1300, and 1500...

  18. DOT Official County Highway Map

    Data.gov (United States)

    Minnesota Department of Natural Resources — The County Highway Map theme is a scanned and rectified version of the original MnDOT County Highway Map Series. The cultural features on some of these maps may be...

  19. Tools for mapping ecosystem services

    Science.gov (United States)

    Palomo, Ignacio; Adamescu, Mihai; Bagstad, Kenneth J.; Cazacu, Constantin; Klug, Hermann; Nedkov, Stoyan; Burkhard, Benjamin; Maes, Joachim

    2017-01-01

    Mapping tools have evolved impressively in recent decades. From early computerised mapping techniques to current cloud-based mapping approaches, we have witnessed a technological evolution that has facilitated the democratisation of Geographic Information

  20. Single-tube library preparation for degraded DNA

    DEFF Research Database (Denmark)

    Carøe, Christian; Gopalakrishnan, Shyam; Vinner, Lasse

    2018-01-01

    these obstacles and enable higher throughput are therefore of interest to researchers working with degraded DNA. 2.In this study, we compare four Illumina library preparation protocols, including two “single-tube” methods developed for this study with the explicit aim of improving data quality and reducing...... of chemically damaged and highly fragmented DNA molecules. In particular, the enzymatic reactions and DNA purification steps during library preparation can result in DNA template loss and sequencing biases, affecting downstream analyses. The development of library preparation methods that circumvent...... preparation time and expenses. The methods are tested on grey wolf (Canis lupus) museum specimens. 3.We found single-tube protocols increase library complexity, yield more reads that map uniquely to the reference genome, reduce processing time, and may decrease laboratory costs by 90%. 4.Given the advantages...

  1. DNA confinement in nanochannels: physics and biological applications

    DEFF Research Database (Denmark)

    Reisner, Walter; Pedersen, Jonas Nyvold; Austin, Robert H

    2012-01-01

    in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement—including the effect of varying ionic strength—and then discuss recent applications of these systems to genomic mapping. Apart from the intense...... direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined...... biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100μm range. (Some...

  2. Knot soliton in DNA and geometric structure of its free-energy density.

    Science.gov (United States)

    Wang, Ying; Shi, Xuguang

    2018-03-01

    In general, the geometric structure of DNA is characterized using an elastic rod model. The Landau model provides us a new theory to study the geometric structure of DNA. By using the decomposition of the arc unit in the helical axis of DNA, we find that the free-energy density of DNA is similar to the free-energy density of a two-condensate superconductor. By using the φ-mapping topological current theory, the torus knot soliton hidden in DNA is demonstrated. We show the relation between the geometric structure and free-energy density of DNA and the Frenet equations in differential geometry theory are considered. Therefore, the free-energy density of DNA can be expressed by the curvature and torsion of the helical axis.

  3. BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.

    Science.gov (United States)

    Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana

    2016-07-01

    The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Introduction to DNA methods

    International Nuclear Information System (INIS)

    Delincee, H.

    1991-01-01

    The purpose of this session is to discuss the various possibilities for detecting modifications in DNA after irradiation and whether these changes can be utilized as an indicator for the irradiation treatment of foods. The requirement to be fulfilled is that the method be able to distinguish irradiated food without the presence of a control sample, thus the measured response after irradiation must be large enough to supersede background levels from other treatments. Much work has been performed on the effects of radiation on DNA, particularly due to its importance in radiation biology. The main lesions of DNA as a result of irradiation are base damage, damage of the sugar moiety, single strand and double strand breaks. Crosslinking between bases also occurs, e.g. production of thymine dimers, or between DNA and protein. A valuable review on how to utilize these DNA changes for detection purposes has already appeared. Tables 1, 2 and 3 list the proposed methods of detecting changes in irradiated DNA, some identified products as examples for a possible irradiation indicator, in the case of immunoassay the substance used as antigen, and some selected literature references. In this short review, it is not intended to provide a complete literature survey

  5. Variations in brain DNA

    Directory of Open Access Journals (Sweden)

    Jesus eAvila

    2014-11-01

    Full Text Available It is assumed that DNA sequences are conserved in the diverse cell types present in a multicellular organism like the human being. Thus, in order to compare the sequences in the genome of DNA from different individuals, nucleic acid is commonly isolated from a single tissue. In this regard, blood cells are widely used for this purpose because of their availability. Thus blood DNA has been used to study genetic familiar diseases that affect other tissues and organs, such as the liver, heart, and brain. While this approach is valid for the identification of familial diseases in which mutations are present in parental germinal cells and, therefore, in all the cells of a given organism, it is not suitable to identify sporadic diseases in which mutations might occur in specific somatic cells. This review addresses somatic DNA variations in different tissues or cells (mainly in the brain of single individuals and discusses whether the dogma of DNA invariance between cell types is indeed correct. We will also discuss how single nucleotide somatic variations arise, focusing on the presence of specific DNA mutations in the brain.

  6. Programming with Hierarchical Maps

    DEFF Research Database (Denmark)

    Ørbæk, Peter

    This report desribes the hierarchical maps used as a central data structure in the Corundum framework. We describe its most prominent features, ague for its usefulness and briefly describe some of the software prototypes implemented using the technology....

  7. Haz-Map

    Data.gov (United States)

    U.S. Department of Health & Human Services — Haz-Map is an occupational health database designed for health and safety professionals and for consumers seeking information about the adverse effects of workplace...

  8. TOXMAP®: Environmental Health Maps

    Data.gov (United States)

    U.S. Department of Health & Human Services — TOXMAP® is a Geographic Information System (GIS) that uses maps of the United States and Canada to help users visually explore data primarily from the EPA's Toxics...

  9. The CPD Maps System

    Data.gov (United States)

    Department of Housing and Urban Development — CPD Maps includes data on the locations of existing CDBG, HOME, public housing and other HUD-funded community assets, so that users can view past investments...

  10. MetaMap

    Data.gov (United States)

    U.S. Department of Health & Human Services — MetaMap is a highly configurable application developed by the Lister Hill National Center for Biomedical Communications at the National Library of Medicine (NLM) to...

  11. FLOODPLAIN MAPPING, Bandera, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  12. FLOODPLAIN MAPPING, Atascosa, TEXAS

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — The Floodplain Mapping/Redelineation study deliverables depict and quantify the flood risks for the study area. The primary risk classifications used are the...

  13. Public Waters Inventory Maps

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme is a scanned and rectified version of the Minnesota DNR - Division of Waters "Public Waters Inventory" (PWI) maps. DNR Waters utilizes a small scale...

  14. Daily Weather Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Several different government offices have published the Daily weather maps over its history. The publication has also gone by different names over time. The U.S....

  15. Mapping Intermediality in Performance

    NARCIS (Netherlands)

    2010-01-01

    Mapping Intermediality in Performance benadert het vraagstuk van intermedialiteit met betrekking tot performance (vooral theater) vanuit vijf verschillende invalshoeken: performativiteit en lichaam; tijd en ruimte; digitale cultuur en posthumanisme; netwerken; pedagogiek en praxis. In deze boeiende

  16. Mapping the HISS Dipole

    International Nuclear Information System (INIS)

    McParland, C.; Bieser, F.

    1984-01-01

    The principal component of the Bevalac HISS facility is a large super-conducting 3 Tesla dipole. The facility's need for a large magnetic volume spectrometer resulted in a large gap geometry - a 2 meter pole tip diameter and a 1 meter pole gap. Obviously, the field required detailed mapping for effective use as a spectrometer. The mapping device was designed with several major features in mind. The device would measure field values on a grid which described a closed rectangular solid. The grid would be a regular with the exact measurement intervals adjustable by software. The device would function unattended over the long period of time required to complete a field map. During this time, the progress of the map could be monitored by anyone with access to the HISS VAX computer. Details of the mechanical, electrical, and control design follow

  17. NOS Bathymetric Maps

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This collection of bathymetric contour maps which represent the seafloor topography includes over 400 individual titles and covers US offshore areas including Hawaii...

  18. Survey on Ontology Mapping

    Science.gov (United States)

    Zhu, Junwu

    To create a sharable semantic space in which the terms from different domain ontology or knowledge system, Ontology mapping become a hot research point in Semantic Web Community. In this paper, motivated factors of ontology mapping research are given firstly, and then 5 dominating theories and methods, such as information accessing technology, machine learning, linguistics, structure graph and similarity, are illustrated according their technology class. Before we analyses the new requirements and takes a long view, the contributions of these theories and methods are summarized in details. At last, this paper suggest to design a group of semantic connector with the ability of migration learning for OWL-2 extended with constrains and the ontology mapping theory of axiom, so as to provide a new methodology for ontology mapping.

  19. Interest rates mapping

    Science.gov (United States)

    Kanevski, M.; Maignan, M.; Pozdnoukhov, A.; Timonin, V.

    2008-06-01

    The present study deals with the analysis and mapping of Swiss franc interest rates. Interest rates depend on time and maturity, defining term structure of the interest rate curves (IRC). In the present study IRC are considered in a two-dimensional feature space-time and maturity. Exploratory data analysis includes a variety of tools widely used in econophysics and geostatistics. Geostatistical models and machine learning algorithms (multilayer perceptron and Support Vector Machines) were applied to produce interest rate maps. IR maps can be used for the visualisation and pattern perception purposes, to develop and to explore economical hypotheses, to produce dynamic asset-liability simulations and for financial risk assessments. The feasibility of an application of interest rates mapping approach for the IRC forecasting is considered as well.

  20. National Coastal Mapping Program

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — The U. S. Army Corps of Engineers (USACE) National Coastal Mapping Program (NCMP) is designed to provide high-resolution elevation and imagery data along U.S....

  1. BaseMap

    Data.gov (United States)

    California Natural Resource Agency — The goal of this project is to provide a convenient base map that can be used as a starting point for CA projects. It's simple, but designed to work at a number of...

  2. Vertically integrated analysis of human DNA. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Olson, M.

    1997-10-01

    This project has been oriented toward improving the vertical integration of the sequential steps associated with the large-scale analysis of human DNA. The central focus has been on an approach to the preparation of {open_quotes}sequence-ready{close_quotes} maps, which is referred to as multiple-complete-digest (MCD) mapping, primarily directed at cosmid clones. MCD mapping relies on simple experimental steps, supported by advanced image-analysis and map-assembly software, to produce extremely accurate restriction-site and clone-overlap maps. We believe that MCD mapping is one of the few high-resolution mapping systems that has the potential for high-level automation. Successful automation of this process would be a landmark event in genome analysis. Once other higher organisms, paving the way for cost-effective sequencing of these genomes. Critically, MCD mapping has the potential to provide built-in quality control for sequencing accuracy and to make possible a highly integrated end product even if there are large numbers of discontinuities in the actual sequence.

  3. Stochasticity in the Josephson map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Filippov, A.T.

    1996-04-01

    The Josephson map describes nonlinear dynamics of systems characterized by standard map with the uniform external bias superposed. The intricate structures of the phase space portrait of the Josephson map are examined on the basis of the tangent map associated with the Josephson map. Numerical observation of the stochastic diffusion in the Josephson map is examined in comparison with the renormalized diffusion coefficient calculated by the method of characteristic function. The global stochasticity of the Josephson map occurs at the values of far smaller stochastic parameter than the case of the standard map. (author)

  4. Ogallala Aquifer Mapping Program

    International Nuclear Information System (INIS)

    1984-10-01

    A computerized data file has been established which can be used efficiently by the contour-plotting program SURFACE II to produce maps of the Ogallala aquifer in 17 counties of the Texas Panhandle. The data collected have been evaluated and compiled into three sets, from which SURFACE II can generate maps of well control, aquifer thickness, saturated thickness, water level, and the difference between virgin (pre-1942) and recent (1979 to 1981) water levels. 29 figures, 1 table

  5. Maps for the future.

    Directory of Open Access Journals (Sweden)

    Cristina D’Alessandro-Scarpari

    2005-05-01

    Full Text Available Geographers’ relations with maps have a long story of attraction and repulsion. The map has always fascinated Geographers (even before the institutionalization of the discipline as a powerful tool, able to demarcate territories, to produce different visions of them and to transform them by the actions they may cause or influence. Sometimes for strategic reasons Geographers have also denigrated cartography as a secondary and technical form of knowledge, a tool merely for understanding and ...

  6. Dynamics of exponential maps

    OpenAIRE

    Rempe, Lasse

    2003-01-01

    This thesis contains several new results about the dynamics of exponential maps $z\\mapsto \\exp(z)+\\kappa$. In particular, we prove that periodic external rays of exponential maps with nonescaping singular value always land. This is an analog of a theorem of Douady and Hubbard for polynomials. We also answer a question of Herman, Baker and Rippon by showing that the boundary of an unbounded exponential Siegel disk always contains the singular value. In addition to the presentation of new resul...

  7. Construction of the High-Density Genetic Linkage Map and Chromosome Map of Large Yellow Croaker (Larimichthys crocea

    Directory of Open Access Journals (Sweden)

    Jingqun Ao

    2015-11-01

    Full Text Available High-density genetic maps are essential for genome assembly, comparative genomic analysis and fine mapping of complex traits. In this study, 31,191 single nucleotide polymorphisms (SNPs evenly distributed across the large yellow croaker (Larimichthys crocea genome were identified using restriction-site associated DNA sequencing (RAD-seq. Among them, 10,150 high-confidence SNPs were assigned to 24 consensus linkage groups (LGs. The total length of the genetic linkage map was 5451.3 cM with an average distance of 0.54 cM between loci. This represents the densest genetic map currently reported for large yellow croaker. Using 2889 SNPs to target specific scaffolds, we assigned 533 scaffolds, comprising 421.44 Mb (62.04% of the large yellow croaker assembled sequence, to the 24 linkage groups. The mapped assembly scaffolds in large yellow croaker were used for genome synteny analyses against the stickleback (Gasterosteus aculeatus and medaka (Oryzias latipes. Greater synteny was observed between large yellow croaker and stickleback. This supports the hypothesis that large yellow croaker is more closely related to stickleback than to medaka. Moreover, 1274 immunity-related genes and 195 hypoxia-related genes were mapped to the 24 chromosomes of large yellow croaker. The integration of the high-resolution genetic map and the assembled sequence provides a valuable resource for fine mapping and positional cloning of quantitative trait loci associated with economically important traits in large yellow croaker.

  8. The National Map - Orthoimagery

    Science.gov (United States)

    Mauck, James; Brown, Kim; Carswell, William J.

    2009-01-01

    Orthorectified digital aerial photographs and satellite images of 1-meter (m) pixel resolution or finer make up the orthoimagery component of The National Map. The process of orthorectification removes feature displacements and scale variations caused by terrain relief and sensor geometry. The result is a combination of the image characteristics of an aerial photograph or satellite image and the geometric qualities of a map. These attributes allow users to: *Measure distance *Calculate areas *Determine shapes of features *Calculate directions *Determine accurate coordinates *Determine land cover and use *Perform change detection *Update maps The standard digital orthoimage is a 1-m or finer resolution, natural color or color infra-red product. Most are now produced as GeoTIFFs and accompanied by a Federal Geographic Data Committee (FGDC)-compliant metadata file. The primary source for 1-m data is the National Agriculture Imagery Program (NAIP) leaf-on imagery. The U.S. Geological Survey (USGS) utilizes NAIP imagery as the image layer on its 'Digital- Map' - a new generation of USGS topographic maps (http://nationalmap.gov/digital_map). However, many Federal, State, and local governments and organizations require finer resolutions to meet a myriad of needs. Most of these images are leaf-off, natural-color products at resolutions of 1-foot (ft) or finer.

  9. Blood extracellular DNA after irradiation

    International Nuclear Information System (INIS)

    Vladimirov, V.G.; Tishchenko, L.I.; Surkova, E.A.; Vasil'eva, I.N.

    1993-01-01

    It has been shown that blood extracellular DNA of irradiated rats largely consists of the low-molecular DNA and its oligomers. Molecular masses of oligomers are multiple to molecular mass of monomer fragment with nucleosome size. The low-molecular DNA has linear form. The average content of GC-pairs in low-molecular DNA is higher than in total rat's DNA (48.5% against 41.5%). The low-molecular DNA is a part of complex containing RNA, acidic proteins and lipids. It is assumed that the formation of low-molecular DNA is a result of Ca/Mg - dependent nuclear endonuclease action

  10. DNA Knots: Theory and Experiments

    Science.gov (United States)

    Sumners, D. W.

    Cellular DNA is a long, thread-like molecule with remarkably complex topology. Enzymes that manipulate the geometry and topology of cellular DNA perform many vital cellular processes (including segregation of daughter chromosomes, gene regulation, DNA repair, and generation of antibody diversity). Some enzymes pass DNA through itself via enzyme-bridged transient breaks in the DNA; other enzymes break the DNA apart and reconnect it to different ends. In the topological approach to enzymology, circular DNA is incubated with an enzyme, producing an enzyme signature in the form of DNA knots and links. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking) due to enzyme action, the enzyme binding and mechanism can often be characterized. This paper will discuss some personal research history, and the tangle model for the analysis of site-specific recombination experiments on circular DNA.

  11. Development of eSSR-Markers in Setaria italica and Their Applicability in Studying Genetic Diversity, Cross-Transferability and Comparative Mapping in Millet and Non-Millet Species.

    Directory of Open Access Journals (Sweden)

    Kajal Kumari

    Full Text Available Foxtail millet (Setariaitalica L. is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2% eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02-0.65 obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%, maize (~61% and rice (~42% chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.

  12. Development of eSSR-Markers in Setaria italica and Their Applicability in Studying Genetic Diversity, Cross-Transferability and Comparative Mapping in Millet and Non-Millet Species.

    Science.gov (United States)

    Kumari, Kajal; Muthamilarasan, Mehanathan; Misra, Gopal; Gupta, Sarika; Subramanian, Alagesan; Parida, Swarup Kumar; Chattopadhyay, Debasis; Prasad, Manoj

    2013-01-01

    Foxtail millet (Setariaitalica L.) is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR) markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2%) eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02-0.65) obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%), maize (~61%) and rice (~42%) chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.

  13. MAPS of Cancer

    Science.gov (United States)

    Gray, Lincoln

    1998-01-01

    Our goal was to produce an interactive visualization from a mathematical model that successfully predicts metastases from head and neck cancer. We met this goal early in the project. The visualization is available for the public to view. Our work appears to fill a need for more information about this deadly disease. The idea of this project was to make an easily interpretable visualization based on what we call "functional maps" of disease. A functional map is a graphic summary of medical data, where distances between parts of the body are determined by the probability of disease, not by anatomical distances. Functional maps often beat little resemblance to anatomical maps, but they can be used to predict the spread of disease. The idea of modeling the spread of disease in an abstract multidimensional space is difficult for many people. Our goal was to make the important predictions easy to see. NASA must face this problem frequently: how to help laypersons and professionals see important trends in abstract, complex data. We took advantage of concepts perfected in NASA's graphics libraries. As an analogy, consider a functional map of early America. Suppose we choose travel times, rather than miles, as our measures of inter-city distances. For Abraham Lincoln, travel times would have been the more meaningful measure of separation between cities. In such a map New Orleans would be close to Memphis because of the Mississippi River. St. Louis would be close to Portland because of the Oregon Trail. Oklahoma City would be far from Little Rock because of the Cheyenne. Such a map would look puzzling to those of us who have always seen physical maps, but the functional map would be more useful in predicting the probabilities of inter-site transit. Continuing the analogy, we could predict the spread of social diseases such as gambling along the rivers and cattle rustling along the trails. We could simply print the functional map of America, but it would be more interesting

  14. Characterization of Structural and Configurational Properties of DNA by Atomic Force Microscopy.

    Science.gov (United States)

    Meroni, Alice; Lazzaro, Federico; Muzi-Falconi, Marco; Podestà, Alessandro

    2018-01-01

    We describe a method to extract quantitative information on DNA structural and configurational properties from high-resolution topographic maps recorded by atomic force microscopy (AFM). DNA molecules are deposited on mica surfaces from an aqueous solution, carefully dehydrated, and imaged in air in Tapping Mode. Upon extraction of the spatial coordinates of the DNA backbones from AFM images, several parameters characterizing DNA structure and configuration can be calculated. Here, we explain how to obtain the distribution of contour lengths, end-to-end distances, and gyration radii. This modular protocol can be also used to characterize other statistical parameters from AFM topographies.

  15. Ionic effects on the temperature-force phase diagram of DNA.

    Science.gov (United States)

    Amnuanpol, Sitichoke

    2017-12-01

    Double-stranded DNA (dsDNA) undergoes a structural transition to single-stranded DNA (ssDNA) in many biologically important processes such as replication and transcription. This strand separation arises in response either to thermal fluctuations or to external forces. The roles of ions are twofold, shortening the range of the interstrand potential and renormalizing the DNA elastic modulus. The dsDNA-to-ssDNA transition is studied on the basis that dsDNA is regarded as a bound state while ssDNA is regarded as an unbound state. The ground state energy of DNA is obtained by mapping the statistical mechanics problem to the imaginary time quantum mechanics problem. In the temperature-force phase diagram the critical force F c (T) increases logarithmically with the Na + concentration in the range from 32 to 110 mM. Discussing this logarithmic dependence of F c (T) within the framework of polyelectrolyte theory, it inevitably suggests a constraint on the difference between the interstrand separation and the length per unit charge during the dsDNA-to-ssDNA transition.

  16. Force-Induced Unravelling of DNA Origami.

    Science.gov (United States)

    Engel, Megan C; Smith, David M; Jobst, Markus A; Sajfutdinow, Martin; Liedl, Tim; Romano, Flavio; Rovigatti, Lorenzo; Louis, Ard A; Doye, Jonathan P K

    2018-05-31

    The mechanical properties of DNA nanostructures are of widespread interest as applications that exploit their stability under constant or intermittent external forces become increasingly common. We explore the force response of DNA origami in comprehensive detail by combining AFM single molecule force spectroscopy experiments with simulations using oxDNA, a coarse-grained model of DNA at the nucleotide level, to study the unravelling of an iconic origami system: the Rothemund tile. We contrast the force-induced melting of the tile with simulations of an origami 10-helix bundle. Finally, we simulate a recently-proposed origami biosensor, whose function takes advantage of origami behaviour under tension. We observe characteristic stick-slip unfolding dynamics in our force-extension curves for both the Rothemund tile and the helix bundle and reasonable agreement with experimentally observed rupture forces for these systems. Our results highlight the effect of design on force response: we observe regular, modular unfolding for the Rothemund tile that contrasts with strain-softening of the 10-helix bundle which leads to catastropic failure under monotonically increasing force. Further, unravelling occurs straightforwardly from the scaffold ends inwards for the Rothemund tile, while the helix bundle unfolds more nonlinearly. The detailed visualization of the yielding events provided by simulation allows preferred pathways through the complex unfolding free-energy landscape to be mapped, as a key factor in determining relative barrier heights is the extensional release per base pair broken. We shed light on two important questions: how stable DNA nanostructures are under external forces; and what design principles can be applied to enhance stability.

  17. 32P-labeling test for DNA damage

    International Nuclear Information System (INIS)

    Randerath, K.; Reddy, M.V.; Gupta, R.C.

    1981-01-01

    Covalent adducts formed by the reaction of DNA with chemical carcinogens and mutagens may be detected by a 32 P-labeling test. DNA preparations exposed to chemicals known to bind covalently to DNA [N-methyl-N-nitrosourea, dimethyl sulfate, formaldehyde, β-propiolactone, propylene oxide, streptozotocin, nitrogen mustard, and 1,3-bis(2-chloroethyl)-1-nitrosourea] were digested to a mixture of deoxynucleoside 3'-monophosphates by incubation with micrococcal endonuclease (EC 3.1.31.1) and spleen exonuclease (EC 3.1.16.1). The digests were treated with [γ- 32 P]ATP and T4 polynucleotide kinase (ATP:5'-dephosphopolynucleotide 5'-phosphotransferase, EC 2.7.1.78) to convert the monophosphates to 5'- 32 P-labeled deoxynucleoside 3',5'-bis-phosphates. These compounds were then separated on polyethyl-eneimine-cellulose thin layers in ammonium formate and ammonium sulfate solutions. Autoradiograms of the chromatograms obtained by this high-resolution procedure showed the presence of nucleotides derived from chemically altered, as well as normal, DNA constituents. Maps from DNA exposed to any of the chemicals used exhibited a spot pattern typical for the particular chemical. This method detected a single adduct in 10 5 DNA nucleotides without requiring that the compound under investigation be radioactive and thus provides a useful test to screen chemicals for their capacity to damage DNA by covalent binding

  18. High-Throughput DNA sequencing of ancient wood.

    Science.gov (United States)

    Wagner, Stefanie; Lagane, Frédéric; Seguin-Orlando, Andaine; Schubert, Mikkel; Leroy, Thibault; Guichoux, Erwan; Chancerel, Emilie; Bech-Hebelstrup, Inger; Bernard, Vincent; Billard, Cyrille; Billaud, Yves; Bolliger, Matthias; Croutsch, Christophe; Čufar, Katarina; Eynaud, Frédérique; Heussner, Karl Uwe; Köninger, Joachim; Langenegger, Fabien; Leroy, Frédéric; Lima, Christine; Martinelli, Nicoletta; Momber, Garry; Billamboz, André; Nelle, Oliver; Palomo, Antoni; Piqué, Raquel; Ramstein, Marianne; Schweichel, Roswitha; Stäuble, Harald; Tegel, Willy; Terradas, Xavier; Verdin, Florence; Plomion, Christophe; Kremer, Antoine; Orlando, Ludovic

    2018-03-01

    Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long-term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human-induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro-evolutionary response of trees to climate change and human forest management. © 2018 John Wiley & Sons Ltd.

  19. Transcription-induced DNA supercoiling: New roles of intranucleosomal DNA loops in DNA repair and transcription.

    Science.gov (United States)

    Gerasimova, N S; Pestov, N A; Kulaeva, O I; Clark, D J; Studitsky, V M

    2016-05-26

    RNA polymerase II (Pol II) transcription through chromatin is accompanied by formation of small intranucleosomal DNA loops. Pol II captured within a small loop drives accumulation of DNA supercoiling, facilitating further transcription. DNA breaks relieve supercoiling and induce Pol II arrest, allowing detection of DNA damage hidden in chromatin structure.

  20. Paenibacillus larvae 16S-23S rDNA intergenic transcribed spacer (ITS) regions: DNA fingerprinting and characterization.

    Science.gov (United States)

    Dingman, Douglas W

    2012-07-01

    Paenibacillus larvae is the causative agent of American foulbrood in honey bee (Apis mellifera) larvae. PCR amplification of the 16S-23S ribosomal DNA (rDNA) intergenic transcribed spacer (ITS) regions, and agarose gel electrophoresis of the amplified DNA, was performed using genomic DNA collected from 134 P. larvae strains isolated in Connecticut, six Northern Regional Research Laboratory stock strains, four strains isolated in Argentina, and one strain isolated in Chile. Following electrophoresis of amplified DNA, all isolates exhibited a common migratory profile (i.e., ITS-PCR fingerprint pattern) of six DNA bands. This profile represented a unique ITS-PCR DNA fingerprint that was useful as a fast, simple, and accurate procedure for identification of P. larvae. Digestion of ITS-PCR amplified DNA, using mung bean nuclease prior to electrophoresis, characterized only three of the six electrophoresis bands as homoduplex DNA and indicating three true ITS regions. These three ITS regions, DNA migratory band sizes of 915, 1010, and 1474 bp, signify a minimum of three types of rrn operons within P. larvae. DNA sequence analysis of ITS region DNA, using P. larvae NRRL B-3553, identified the 3' terminal nucleotides of the 16S rRNA gene, 5' terminal nucleotides of the 23S rRNA gene, and the complete DNA sequences of the 5S rRNA, tRNA(ala), and tRNA(ile) genes. Gene organization within the three rrn operon types was 16S-23S, 16S-tRNA(ala)-23S, and l6S-5S-tRNA(ile)-tRNA(ala)-23S and these operons were named rrnA, rrnF, and rrnG, respectively. The 23S rRNA gene was shown by I-CeuI digestion and pulsed-field gel electrophoresis of genomic DNA to be present as seven copies. This was suggestive of seven rrn operon copies within the P. larvae genome. Investigation of the 16S-23S rDNA regions of this bacterium has aided the development of a diagnostic procedure and has helped genomic mapping investigations via characterization of the ITS regions. Copyright © 2012 Elsevier Inc