Recent Advances and Perspectives on Nonadiabatic Mixed Quantum-Classical Dynamics.
Crespo-Otero, Rachel; Barbatti, Mario
2018-05-16
Nonadiabatic mixed quantum-classical (NA-MQC) dynamics methods form a class of computational theoretical approaches in quantum chemistry tailored to investigate the time evolution of nonadiabatic phenomena in molecules and supramolecular assemblies. NA-MQC is characterized by a partition of the molecular system into two subsystems: one to be treated quantum mechanically (usually but not restricted to electrons) and another to be dealt with classically (nuclei). The two subsystems are connected through nonadiabatic couplings terms to enforce self-consistency. A local approximation underlies the classical subsystem, implying that direct dynamics can be simulated, without needing precomputed potential energy surfaces. The NA-MQC split allows reducing computational costs, enabling the treatment of realistic molecular systems in diverse fields. Starting from the three most well-established methods-mean-field Ehrenfest, trajectory surface hopping, and multiple spawning-this review focuses on the NA-MQC dynamics methods and programs developed in the last 10 years. It stresses the relations between approaches and their domains of application. The electronic structure methods most commonly used together with NA-MQC dynamics are reviewed as well. The accuracy and precision of NA-MQC simulations are critically discussed, and general guidelines to choose an adequate method for each application are delivered.
Nonadiabatic semiclassical dynamics in the mixed quantum-classical initial value representation
Church, Matthew S.; Hele, Timothy J. H.; Ezra, Gregory S.; Ananth, Nandini
2018-03-01
We extend the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), a semiclassical method for computing real-time correlation functions, to electronically nonadiabatic systems using the Meyer-Miller-Stock-Thoss (MMST) Hamiltonian in order to treat electronic and nuclear degrees of freedom (dofs) within a consistent dynamic framework. We introduce an efficient symplectic integration scheme, the MInt algorithm, for numerical time evolution of the phase space variables and monodromy matrix under the non-separable MMST Hamiltonian. We then calculate the probability of transmission through a curve crossing in model two-level systems and show that MQC-IVR reproduces quantum-limit semiclassical results in good agreement with exact quantum methods in one limit, and in the other limit yields results that are in keeping with classical limit semiclassical methods like linearized IVR. Finally, exploiting the ability of the MQC-IVR to quantize different dofs to different extents, we present a detailed study of the extents to which quantizing the nuclear and electronic dofs improves numerical convergence properties without significant loss of accuracy.
Many-electron effects in photoelectron spectroscopy
Martin, R.L.
1976-06-01
The deviations from Koopmans' one-electron model of photoionization which lead to satellite structure in the photoelectron spectrum are examined within the formalism of configuration interaction (CI). The mechanisms which contribute to satellite intensity may be classified as continuum state configuration interaction, final ionic state configuration interaction, and initial state configuration interaction. The discussion centers around the last two mechanisms, these being the prime contributors to the satellite intensity well above threshold. Specific examples of theoretical ''spectra'' are presented for the F(1s) region of HF and the 1s region of neon. The agreement between theory and experiment is found to be excellent. In these two instances, initial state configuration interaction contributions increase the satellite intensity and are of nearly equal importance to the final ionic state mixing
Zhu, Chaoyuan; Lin, Sheng Hsien
2006-07-28
Unified semiclasical solution for general nonadiabatic tunneling between two adiabatic potential energy surfaces is established by employing unified semiclassical solution for pure nonadiabatic transition [C. Zhu, J. Chem. Phys. 105, 4159 (1996)] with the certain symmetry transformation. This symmetry comes from a detailed analysis of the reduced scattering matrix for Landau-Zener type of crossing as a special case of nonadiabatic transition and nonadiabatic tunneling. Traditional classification of crossing and noncrossing types of nonadiabatic transition can be quantitatively defined by the rotation angle of adiabatic-to-diabatic transformation, and this rotational angle enters the analytical solution for general nonadiabatic tunneling. The certain two-state exponential potential models are employed for numerical tests, and the calculations from the present general nonadiabatic tunneling formula are demonstrated in very good agreement with the results from exact quantum mechanical calculations. The present general nonadiabatic tunneling formula can be incorporated with various mixed quantum-classical methods for modeling electronically nonadiabatic processes in photochemistry.
Efficient and Flexible Computation of Many-Electron Wave Function Overlaps.
Plasser, Felix; Ruckenbauer, Matthias; Mai, Sebastian; Oppel, Markus; Marquetand, Philipp; González, Leticia
2016-03-08
A new algorithm for the computation of the overlap between many-electron wave functions is described. This algorithm allows for the extensive use of recurring intermediates and thus provides high computational efficiency. Because of the general formalism employed, overlaps can be computed for varying wave function types, molecular orbitals, basis sets, and molecular geometries. This paves the way for efficiently computing nonadiabatic interaction terms for dynamics simulations. In addition, other application areas can be envisaged, such as the comparison of wave functions constructed at different levels of theory. Aside from explaining the algorithm and evaluating the performance, a detailed analysis of the numerical stability of wave function overlaps is carried out, and strategies for overcoming potential severe pitfalls due to displaced atoms and truncated wave functions are presented.
Nonadiabatic Ponderomotive Potentials
Dodin IY, Fisch NJ
2005-01-01
An approximate integral of the Manley-Rowe type is found for a particle moving in a high-frequency field, which may interact resonantly with natural particle oscillations. An effective ponderomotive potential is introduced accordingly and can capture nonadiabatic particle dynamics. We show that nonadiabatic ponderomotive barriers can trap classical particles, produce cooling effect, and generate one-way walls for resonant species. Possible atomic applications are also envisioned
Modeling non-adiabatic photoexcited reaction dynamics in condensed phases
Coker, D.F.
2003-01-01
Reactions of photoexcited molecules, ions, and radicals in condensed phase environments involve non-adiabatic dynamics over coupled electronic surfaces. We focus on how local environmental symmetries can effect non-adiabatic coupling between excited electronic states and thus influence, in a possibly controllable way, the outcome of photo-excited reactions. Semi-classical and mixed quantum-classical non-adiabatic molecular dynamics methods, together with semi-empirical excited state potentials are used to probe the dynamical mixing of electronic states in different environments from molecular clusters, to simple liquids and solids, and photo-excited reactions in complex reaction environments such as zeolites
Many-electron model for multiple ionization in atomic collisions
Archubi, C D; Montanari, C C; Miraglia, J E
2007-01-01
We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data
Many-electron model for multiple ionization in atomic collisions
Archubi, C D [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Montanari, C C [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina); Miraglia, J E [Instituto de AstronomIa y Fisica del Espacio, Casilla de Correo 67, Sucursal 28 (C1428EGA) Buenos Aires (Argentina)
2007-03-14
We have developed a many-electron model for multiple ionization of heavy atoms bombarded by bare ions. It is based on the transport equation for an ion in an inhomogeneous electronic density. Ionization probabilities are obtained by employing the shell-to-shell local plasma approximation with the Levine and Louie dielectric function to take into account the binding energy of each shell. Post-collisional contributions due to Auger-like processes are taken into account by employing recent photoemission data. Results for single-to-quadruple ionization of Ne, Ar, Kr and Xe by protons are presented showing a very good agreement with experimental data.
Theory of many-electron atoms. Selected papers
Jucys, A.P.
1978-01-01
Selected papers of the founder of contemporary theoretical physics in Lithuania Adolfas Jucys on the theory of many-electron atoms and their spectra are presented, as well as a complete bibliography of his scientific works, a brief biographical essay and description of his scientific and social activities, reminiscences of other scientists about him. In these papers such questions are considered: Fock's self-consistent field in different approximations, various problems of the many-configurational approximation, incomplete separation of variables, expanded calculation method, application of nonorthogonal radial orbitals, method of irreducible tensor operators, graphical representation of the matrix elements and a number of other problems
Nonadiabatic electron wavepacket dynamics behind molecular autoionization
Matsuoka, Takahide; Takatsuka, Kazuo
2018-01-01
A theoretical method for real-time dynamics of nonadiabatic reorganization of electronic configurations in molecules is developed, with dual aim that the intramolecular electron dynamics can be probed by means of direct and/or indirect photoionizations and that the physical origins behind photoionization signals attained in the time domain can be identified in terms of the language of time-dependent quantum chemistry. In doing so, we first formulate and implement a new computational scheme for nonadiabatic electron dynamics associated with molecular ionization, which well fits in the general theory of nonadiabatic electron dynamics. In this method, the total nonadiabatic electron wavepackets are propagated in time directly with complex natural orbitals without referring to Hartree-Fock molecular orbitals, and the amount of electron flux from a molecular region leading to ionization is evaluated in terms of the relevant complex natural orbitals. In the second half of this paper, we apply the method to electron dynamics in the elementary processes consisting of the Auger decay to demonstrate the methodological significance. An illustrative example is taken from an Auger decay starting from the 2a1 orbital hole-state of H2O+. The roles of nuclear momentum (kinetic) couplings in electronic-state mixing during the decay process are analyzed in terms of complex natural orbitals, which are schematically represented in the conventional language of molecular symmetry of the Hartree-Fock orbitals.
Nonadiabatic transition path sampling
Sherman, M. C.; Corcelli, S. A.
2016-01-01
Fewest-switches surface hopping (FSSH) is combined with transition path sampling (TPS) to produce a new method called nonadiabatic path sampling (NAPS). The NAPS method is validated on a model electron transfer system coupled to a Langevin bath. Numerically exact rate constants are computed using the reactive flux (RF) method over a broad range of solvent frictions that span from the energy diffusion (low friction) regime to the spatial diffusion (high friction) regime. The NAPS method is shown to quantitatively reproduce the RF benchmark rate constants over the full range of solvent friction. Integrating FSSH within the TPS framework expands the applicability of both approaches and creates a new method that will be helpful in determining detailed mechanisms for nonadiabatic reactions in the condensed-phase.
Many-electron phenomena in the ionization of ions
Mueller, A.
2004-01-01
Full text: Single and multiple ionization in ion-atom collisions involve a multitude of complex interactions between the electrons and nuclei of projectile and target. Some of the complexity is avoided in studies of fast collisions when the impulse approximation can be applied and the electrons can be described as independent quasi-free particles with a known momentum distribution. For the detailed investigation of ionization mechanisms that can occur in fast ion-atom collisions, it is illuminating to consider collisions of ions (or atoms) and really free electrons with a narrow energy spread. High energy resolution in electron-ion collision studies provides access to individual, possibly even state-selective, reaction pathways. Even in the simple electron-ion collision system (simple compared with the initial ion-atom problem) single and multiple ionization still involve a multitude of complex mechanisms. Besides the direct removal of one or several electrons from the target by electron impact, resonant and non-resonant formation of intermediate multiply excited states which subsequently decay by electron emission is important in single and multiple ionization of ions and atoms. Direct ionization proceeds via one-step or multi-step knock-off mechanisms which can partly be disentangled by studying effects of different projectile species. The role of multiply excited states in the ionization can be experimentally studied in great detail by a further reduction of the initial ion-atom problem. Multiply excited states of atoms and ions can be selectively populated by photon-ion interactions making use of the potential for extreme energy resolution made available at modern synchrotron radiation sources. In the review talk, examples of studies on single and multiple ionization in electron-ion collisions will be discussed in some detail. Electron-ion collision experiments will also be compared with photon-ion interaction studies. Many-electron phenomena have been observed
Nonadiabatic anharmonic electron transfer
Schmidt, P. P. [Molecular Physics Research, 6547 Kristina Ursula Court, Falls Church, Virginia 22044 (United States)
2013-03-28
The effect of an inner sphere, local mode vibration on an electron transfer is modeled using the nonadiabatic transition probability (rate) expression together with both the anharmonic Morse and the harmonic oscillator potential. For an anharmonic inner sphere mode, a variational analysis uses harmonic oscillator basis functions to overcome the difficulties evaluating Morse-model Franck-Condon overlap factors. Individual matrix elements are computed with the use of new, fast, robust, and flexible recurrence relations. The analysis therefore readily addresses changes in frequency and/or displacement of oscillator minimums in the different electron transfer states. Direct summation of the individual Boltzmann weighted Franck-Condon contributions avoids the limitations inherent in the use of the familiar high-temperature, Gaussian form of the rate constant. The effect of harmonic versus anharmonic inner sphere modes on the electron transfer is readily seen, especially in the exoergic, inverted region. The behavior of the transition probability can also be displayed as a surface for all temperatures and values of the driving force/exoergicity {Delta}=-{Delta}G. The temperature insensitivity of the transfer rate is clearly seen when the exoergicity equals the collective reorganization energy ({Delta}={Lambda}{sub s}) along a maximum ln (w) vs. {Delta} ridge of the surface. The surface also reveals additional regions for {Delta} where ln (w) appears to be insensitive to temperature, or effectively activationless, for some kinds of inner sphere contributions.
Nonadiabatic transitions in electrostatically trapped ammonia molecules
Kirste, Moritz; Schnell, Melanie; Meijer, Gerard; Sartakov, Boris G.
2009-01-01
Nonadiabatic transitions are known to be major loss channels for atoms in magnetic traps but have thus far not been experimentally reported upon for trapped molecules. We have observed and quantified losses due to nonadiabatic transitions for three isotopologues of ammonia in electrostatic traps by comparing the trapping times in traps with a zero and a nonzero electric field at the center. Nonadiabatic transitions are seen to dominate the overall loss rate even for the present samples that are at relatively high temperatures of 30 mK. It is anticipated that losses due to nonadiabatic transitions in electric fields are omnipresent in ongoing experiments on cold molecules.
Non-adiabatic study of the Kepler subgiant KIC 6442183
Grosjean M.
2015-01-01
Full Text Available Thanks to the precision of Kepler observations, [3] were able to measure the linewidth and amplitude of individual modes (including mixed modes in several subgiant power spectra. We perform a forward modelling of a Kepler subgiant based on surface properties and observed frequencies. Non-adiabatic computations including a time- dependent treatment of convection give the lifetimes of radial and non-radial modes. Next, combining the lifetimes and inertias with a stochastic excitation model gives the amplitudes of the modes. We can now directly compare theoretical and observed linewidths and amplitudes of mixed-modes to obtain new constraints on our theoretical models.
Many-electron approaches in physics, chemistry and mathematics a multidisciplinary view
Site, Luigi
2014-01-01
This book provides a broad description of the development and (computational) application of many-electron approaches from a multidisciplinary perspective. In the context of studying many-electron systems Computer Science, Chemistry, Mathematics and Physics are all intimately interconnected. However, beyond a handful of communities working at the interface between these disciplines, there is still a marked separation of subjects. This book seeks to offer a common platform for possible exchanges between the various fields and to introduce the reader to perspectives for potential further developments across the disciplines. The rapid advances of modern technology will inevitably require substantial improvements in the approaches currently used, which will in turn make exchanges between disciplines indispensable. In essence this book is one of the very first attempts at an interdisciplinary approach to the many-electron problem.
Ab initio multiple cloning algorithm for quantum nonadiabatic molecular dynamics
Makhov, Dmitry V.; Shalashilin, Dmitrii V. [Department of Chemistry, University of Leeds, Leeds LS2 9JT (United Kingdom); Glover, William J.; Martinez, Todd J. [Department of Chemistry and The PULSE Institute, Stanford University, Stanford, California 94305, USA and SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)
2014-08-07
We present a new algorithm for ab initio quantum nonadiabatic molecular dynamics that combines the best features of ab initio Multiple Spawning (AIMS) and Multiconfigurational Ehrenfest (MCE) methods. In this new method, ab initio multiple cloning (AIMC), the individual trajectory basis functions (TBFs) follow Ehrenfest equations of motion (as in MCE). However, the basis set is expanded (as in AIMS) when these TBFs become sufficiently mixed, preventing prolonged evolution on an averaged potential energy surface. We refer to the expansion of the basis set as “cloning,” in analogy to the “spawning” procedure in AIMS. This synthesis of AIMS and MCE allows us to leverage the benefits of mean-field evolution during periods of strong nonadiabatic coupling while simultaneously avoiding mean-field artifacts in Ehrenfest dynamics. We explore the use of time-displaced basis sets, “trains,” as a means of expanding the basis set for little cost. We also introduce a new bra-ket averaged Taylor expansion (BAT) to approximate the necessary potential energy and nonadiabatic coupling matrix elements. The BAT approximation avoids the necessity of computing electronic structure information at intermediate points between TBFs, as is usually done in saddle-point approximations used in AIMS. The efficiency of AIMC is demonstrated on the nonradiative decay of the first excited state of ethylene. The AIMC method has been implemented within the AIMS-MOLPRO package, which was extended to include Ehrenfest basis functions.
Evidence for a new class of many-electron Auger transitions in atoms
Lee, I.; Wehlitz, R.; Becker, U.; Amusia, M.Ya.; Academy of Sciences, Saint Petersburg
1993-01-01
The possibility of the joint decay of two holes and one excited electron is discussed as one way many-electron Auger transitions can take place. It is shown that existing experimental decay spectra of resonantly excited states in krypton and xenon exhibit weak lines which may be associated with this new type of Auger process. (Author)
Communication: Unambiguous comparison of many-electron wavefunctions through their overlaps
Plasser, Felix, E-mail: felix.plasser@univie.ac.at; González, Leticia, E-mail: leticia.gonzalez@univie.ac.at [Institute for Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 17, 1090 Vienna (Austria)
2016-07-14
A simple and powerful method for comparing many-electron wavefunctions constructed at different levels of theory is presented. By using wavefunction overlaps, it is possible to analyze the effects of varying wavefunction models, molecular orbitals, and one-electron basis sets. The computation of wavefunction overlaps eliminates the inherent ambiguity connected to more rudimentary wavefunction analysis protocols, such as visualization of orbitals or comparing selected physical observables. Instead, wavefunction overlaps allow processing the many-electron wavefunctions in their full inherent complexity. The presented method is particularly effective for excited state calculations as it allows for automatic monitoring of changes in the ordering of the excited states. A numerical demonstration based on multireference computations of two test systems, the selenoacrolein molecule and an iridium complex, is presented.
Many electron variational ground state of the two dimensional Anderson lattice
Zhou, Y.; Bowen, S.P.; Mancini, J.D.
1991-02-01
A variational upper bound of the ground state energy of two dimensional finite Anderson lattices is determined as a function of lattice size (up to 16 x 16). Two different sets of many-electron basis vectors are used to determine the ground state for all values of the coulomb integral U. This variational scheme has been successfully tested for one dimensional models and should give good estimates in two dimensions
Quantum-classical correspondence in steady states of nonadiabatic systems
Fujii, Mikiya; Yamashita, Koichi
2015-01-01
We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels
Theory of many-electron atoms. Selected papers. Teoriya mnogoehlektronnykh atomov. Izbrannye trudy
Jucys, A P
1978-01-01
Selected papers of the founder of contemporary theoretical physics in Lithuania Adolfas Jucys on the theory of many-electron atoms and their spectra are presented, as well as a complete bibliography of his scientific works, a brief biographical essay and description of his scientific and social activities, reminiscences of other scientists about him. In these papers such questions are considered: Fock's self-consistent field in different approximations, various problems of the many-configurational approximation, incomplete separation of variables, expanded calculation method, application of nonorthogonal radial orbitals, method of irreducible tensor operators, graphical representation of the matrix elements and a number of other problems.
Nonadiabatic effects in electronic and nuclear dynamics
Martin P. Bircher
2017-11-01
Full Text Available Due to their very nature, ultrafast phenomena are often accompanied by the occurrence of nonadiabatic effects. From a theoretical perspective, the treatment of nonadiabatic processes makes it necessary to go beyond the (quasi static picture provided by the time-independent Schrödinger equation within the Born-Oppenheimer approximation and to find ways to tackle instead the full time-dependent electronic and nuclear quantum problem. In this review, we give an overview of different nonadiabatic processes that manifest themselves in electronic and nuclear dynamics ranging from the nonadiabatic phenomena taking place during tunnel ionization of atoms in strong laser fields to the radiationless relaxation through conical intersections and the nonadiabatic coupling of vibrational modes and discuss the computational approaches that have been developed to describe such phenomena. These methods range from the full solution of the combined nuclear-electronic quantum problem to a hierarchy of semiclassical approaches and even purely classical frameworks. The power of these simulation tools is illustrated by representative applications and the direct confrontation with experimental measurements performed in the National Centre of Competence for Molecular Ultrafast Science and Technology.
Nonadiabatic holonomic quantum computation using Rydberg blockade
Kang, Yi-Hao; Chen, Ye-Hong; Shi, Zhi-Cheng; Huang, Bi-Hua; Song, Jie; Xia, Yan
2018-04-01
In this paper, we propose a scheme for realizing nonadiabatic holonomic computation assisted by two atoms and the shortcuts to adiabaticity (STA). The blockade effect induced by strong Rydberg-mediated interaction between two Rydberg atoms provides us the possibility to simplify the dynamics of the system, and the STA helps us design pulses for implementing the holonomic computation with high fidelity. Numerical simulations show the scheme is noise immune and decoherence resistant. Therefore, the current scheme may provide some useful perspectives for realizing nonadiabatic holonomic computation.
Mueller, C.; Gruen, N.; Voitkiv, A.B.
2002-01-01
We study single- and double-electron loss from heavy heliumlike projectiles in ultrarelativistic collisions with neutral many-electron target atoms. The simultaneous interaction of the target with two projectile electrons is found to be the dominant process in the double-electron loss provided the atomic number of the projectile, Z p , that of the target, Z t , and the collision velocity, v, satisfy the condition Z p Z t /v>0.4. It is shown that for a wide range of projectile and target atomic numbers the asymptotic double-to-single loss ratio strongly depends on the target atomic number but is nearly independent of the nuclear charge of the projectile. It is also demonstrated that many-photon exchange between the target and each of the projectile electrons considerably influences the double loss in collisions with very heavy targets
Time-dependent density functional theory for many-electron systems interacting with cavity photons.
Tokatly, I V
2013-06-07
Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.
On the secondly quantized theory of the many-electron atom
Gaigalas, Gediminas; Rudzikas, Zenonas
1996-01-01
The traditional theory of many-electron atoms and ions is based on the coefficients of fractional parentage and matrix elements of tensorial operators, composed of unit tensors. The calculation of spin-angular coefficients of radial integrals appearing in the expressions of matrix elements of arbitrary physical operators of atomic quantities has two main disadvantages: (i) the numerical codes for the calculation of spin-angular coefficients are usually very time consuming; (ii) f-shells are often omitted from programs for matrix element calculations since the tables for their coefficients of fractional parentage are very extensive. The authors assume that a series of difficulties persisting in the traditional approach to the calculation of spin-angular parts of matrix elements can be avoided by using this secondly quantized methodology, based on angular momentum theory, on the concept of the irreducible tensorial sets, on a generalized graphical method, on quasispin and on the reduced coefficients of fractional parentage. (author)
Mandal, Sudhansu S.; Mukherjee, Sutirtha; Ray, Koushik
2018-03-01
A method for determining the ground state of a planar interacting many-electron system in a magnetic field perpendicular to the plane is described. The ground state wave-function is expressed as a linear combination of a set of basis functions. Given only the flux and the number of electrons describing an incompressible state, we use the combinatorics of partitioning the flux among the electrons to derive the basis wave-functions as linear combinations of Schur polynomials. The procedure ensures that the basis wave-functions form representations of the angular momentum algebra. We exemplify the method by deriving the basis functions for the 5/2 quantum Hall state with a few particles. We find that one of the basis functions is precisely the Moore-Read Pfaffian wave function.
Quantum electrodynamics and the relativistic theory of many-electron atoms
Sucher, J.
1981-01-01
The development of relativistic theories of many-electron atoms is reviewed, with emphasis on the fact that the Dirac-Coulomb Hamiltonian H/sub DC/ has no bound states. This fact implies that neither the Dirac-Hartree-Fock (DHF) equations nor the DHF wavefunction chi have a simple theoretical interpretation. A no-pair hamiltonian H/sub +/ is defined which does not have the fatal flaw of H/sub DC/ and hence can serve as a starting point for a systematic study of relativistic effects in many-electron atoms which can go beyond central-field approximations. H/sub +/ differs from H/sub DC/ by the presence of external-field positive-energy projection operators in the electron-electron interaction terms. Unlike H/sub DC/, H/sub +/ and its eigenfunctions psi have a clear-cut field-theoretic meaning, which is described. Similar remarks hold for a simpler no-pair Hamiltonian h/sub +/, which involves free positive-energy projection operators and for related Hamiltonians H/sub +/' and h/sup +/' which include the Breit operator. Relativistic Hartree-Fock equations are obtained from H/sub +/ and the relation between their solutions psi and the DHF solutions chi is discussed. The DHF equations may be reinterpreted as approximations to the new HF-type equations; this provides a rationale for their success in applications. It is argued that the Breit operator ought to be included even in the original DHF equations
Non-adiabatic perturbations in multi-component perfect fluids
Koshelev, N.A., E-mail: koshna71@inbox.ru [Ulyanovsk State University, Leo Tolstoy str 42, 432970 (Russian Federation)
2011-04-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models.
Non-adiabatic perturbations in multi-component perfect fluids
Koshelev, N.A.
2011-01-01
The evolution of non-adiabatic perturbations in models with multiple coupled perfect fluids with non-adiabatic sound speed is considered. Instead of splitting the entropy perturbation into relative and intrinsic parts, we introduce a set of symmetric quantities, which also govern the non-adiabatic pressure perturbation in models with energy transfer. We write the gauge invariant equations for the variables that determine on a large scale the non-adiabatic pressure perturbation and the rate of changes of the comoving curvature perturbation. The analysis of evolution of the non-adiabatic pressure perturbation has been made for several particular models
Nonadiabatic three-neutrino oscillations in matter
DOlivo, J.C.; Oteo, J.A.
1996-01-01
Oscillations of three neutrinos in matter are analyzed by using the Magnus expansion for the time-evolution operator. We derive a simple expression for the electron-neutrino survival probability which is applied to the examination of the effect of a third neutrino on the nonadiabatic flavor transformations. copyright 1996 The American Physical Society
Nonadiabatic particle motion in magnetic mirror traps
Irie, H.; Otsuka, S.; Varma, R.K.; Watanabe, T.; Nishikawa, Kyoji.
1982-01-01
By numerical integration of the equation of single particle motion, the basic features of the actual nonadiabatic escape of particles are studied. The results are compared with the predictions of two existing theoretical models: ''diffusion'' model derived by B. V. Chirikov and ''tunneling'' model introduced by R. K. Varma. (author)
Time dependence, complex scaling, and the calculation of resonances in many-electron systems
Nicolaides, C.A.; Beck, D.R.
1978-01-01
The theory deals with certain aspects of the formal properties of atomic and molecular highly excited nonstationary states and the problem of calculating their wave functions, energies, and widths. The conceptual framework is a decay theory based on the consistent definition and calculation of the t = 0 localized state, vertical bar psi 0 >. Given this framework, the following topics are treated: The variational calculation of psi 0 and E 0 using a previously published theory that generalized the projection operator approach to many-electron systems. The exact definition of the resonance energy. The possibility of bound states in the continuum. The relation of psi 0 to the resonance (Gamow) function psi and of the Hamiltonian to the rotated Hamiltonian H(theta) based on the notion of perturbation of boundary conditions in the asymptotic region. The variational calculation of real and complex energies employing matrix elements of H and H 2 with square-integrable and resonance functions. The mathematical structure of the time evolution of vertical bar psi 0 > and the possibility of observing nonexponential decays in certain autoionizing states that are very close to the ionization threshold. A many-body theory of atomic and molecular resonances that employs the coordinate rotation method. 107 references
Electrons, pseudoparticles, and quasiparticles in the one-dimensional many-electron problem
Carmelo, J.M.; Castro Neto, A.H.
1996-01-01
We generalize the concept of quasiparticle for one-dimensional (1D) interacting electronic systems. The ↑ and ↓ quasiparticles recombine the pseudoparticle colors c and s (charge and spin at zero-magnetic field) and are constituted by one many-pseudoparticle topological-momentum shift and one or two pseudoparticles. These excitations cannot be separated. We consider the case of the Hubbard chain. We show that the low-energy electron-quasiparticle transformation has a singular character which justifies the perturbative and nonperturbative nature of the quantum problem in the pseudoparticle and electronic basis, respectively. This follows from the absence of zero-energy electron-quasiparticle overlap in 1D. The existence of Fermi-surface quasiparticles both in 1D and three dimensional (3D) many-electron systems suggests their existence in quantum liquids in dimensions 1 1 or whether it becomes finite as soon as we leave 1D remains an unsolved question. copyright 1996 The American Physical Society
Universal scaling relations for the energies of many-electron Hooke atoms
Odriazola, A.; Solanpää, J.; Kylänpää, I.; González, A.; Räsänen, E.
2017-04-01
A three-dimensional harmonic oscillator consisting of N ≥2 Coulomb-interacting charged particles, often called a (many-electron) Hooke atom, is a popular model in computational physics for, e.g., semiconductor quantum dots and ultracold ions. Starting from Thomas-Fermi theory, we show that the ground-state energy of such a system satisfies a nontrivial relation: Eg s=ω N4 /3fg s(β N1 /2) , where ω is the oscillator strength, β is the ratio between Coulomb and oscillator characteristic energies, and fg s is a universal function. We perform extensive numerical calculations to verify the applicability of the relation. In addition, we show that the chemical potentials and addition energies also satisfy approximate scaling relations. In all cases, analytic expressions for the universal functions are provided. The results have predictive power in estimating the key ground-state properties of the system in the large-N limit, and can be used in the development of approximative methods in electronic structure theory.
Exact many-electron ground states on diamond and triangle Hubbard chains
Gulacsi, Zsolt; Kampf, Arno; Vollhardt, Dieter
2009-01-01
We construct exact ground states of interacting electrons on triangle and diamond Hubbard chains. The construction requires (1) a rewriting of the Hamiltonian into positive semidefinite form, (2) the construction of a many-electron ground state of this Hamiltonian, and (3) the proof of the uniqueness of the ground state. This approach works in any dimension, requires no integrability of the model, and only demands sufficiently many microscopic parameters in the Hamiltonian which have to fulfill certain relations. The scheme is first employed to construct exact ground state for the diamond Hubbard chain in a magnetic field. These ground states are found to exhibit a wide range of properties such as flat-band ferromagnetism and correlation induced metallic, half-metallic or insulating behavior, which can be tuned by changing the magnetic flux, local potentials, or electron density. Detailed proofs of the uniqueness of the ground states are presented. By the same technique exact ground states are constructed for triangle Hubbard chains and a one-dimensional periodic Anderson model with nearest-neighbor hybridization. They permit direct comparison with results obtained by variational techniques for f-electron ferromagnetism due to a flat band in CeRh 3 B 2 . (author)
Andriiko, Aleksandr A. [National Technical Univ. Ukraine, Kyiv (Ukraine). Kyiv Polytechnic Inst.; Andriyko, Yuriy O. [CEST Centre of Electrochemical Surface Technology, Wiener Neustadt (Austria); Nauer, Gerhard E. [Vienna Univ. (Austria). Inst. of Physical Chemistry
2013-02-01
The authors provide a unified concept for understanding multi-electron processes in electrochemical systems such as molten salts, ionic liquids, or ionic solutions. A major advantage of this concept is its independence of assumptions like one-step many-electron transfers or 'discrete' discharge of complex species. This book contains the following main topics: 1. Many-electron electrochemical systems: Concepts and definitions. 2. Many-electron systems at equilibrium. 3. Phenomenology of electrochemical kinetics. 4. Electrode film systems: experimental evidences. 5. Dynamics of a non-equilibrium electrochemical system. 6. Electrochemistry of Ti(IV) in ionic liquids.
Semiclassical quantization of nonadiabatic systems with hopping periodic orbits
Fujii, Mikiya; Yamashita, Koichi
2015-01-01
We present a semiclassical quantization condition, i.e., quantum–classical correspondence, for steady states of nonadiabatic systems consisting of fast and slow degrees of freedom (DOFs) by extending Gutzwiller’s trace formula to a nonadiabatic form. The quantum–classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow DOF, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels. In addition to the semiclassical quantization condition, we also discuss chaotic dynamics involved in the classical limit of nonadiabatic dynamics
Inelastic light scattering and the excited states of many-electron quantum dots
Delgado, Alain [Centro de Aplicaciones Tecnologicas y Desarrollo Nuclear, Calle 30 No 502, Miramar, Havana (Cuba); Gonzalez, Augusto [Instituto de Cibernetica, Matematica y Fisica, Calle E 309, Vedado, Havana (Cuba)
2003-06-25
A consistent calculation of resonant inelastic (Raman) scattering amplitudes for relatively large quantum dots, which takes account of valence band mixing, the discrete character of the spectrum in intermediate and final states, and interference effects, is presented. Raman peaks in charge and spin channels are compared with multipole strengths and with the density of energy levels in final states. A qualitative comparison with the available experimental results is given.
Inelastic light scattering and the excited states of many-electron quantum dots
Delgado, Alain; Gonzalez, Augusto
2003-01-01
A consistent calculation of resonant inelastic (Raman) scattering amplitudes for relatively large quantum dots, which takes account of valence band mixing, the discrete character of the spectrum in intermediate and final states, and interference effects, is presented. Raman peaks in charge and spin channels are compared with multipole strengths and with the density of energy levels in final states. A qualitative comparison with the available experimental results is given
Nonlinear ionization of many-electron systems over a broad photon-energy range
Karamatskou, Antonia
2015-11-01
Rapid developments in laser technology and, in particular, the advances in the realm of free-electron lasers have initiated tremendous progress in both theoretical and experimental atomic, molecular and optical physics. Owing to high intensities in combination with short pulse durations we can enter the utterly nonlinear regime of light-matter interaction and study the dynamics and features of matter under extreme conditions. The capabilities of X-ray free-electron laser sources have promoted the importance of nonlinear optics also in the X-ray regime. I show in my thesis how we can exploit the nonlinear response regime to reveal hidden information about resonance structures that are not resolved in the weak-field regime. This prospect points to many applications for future investigations of various complex systems with free-electron lasers. In the present thesis the interaction of atomic closed-shell systems with ultrashort and strong laser pulses is investigated. Over a broad photon-energy range the characteristics of the atomic shell are studied with a particular focus on the nonlinear response regime and on electron correlation effects. Several computational extensions of the XCID package for multi-electron dynamics are presented and their applications in various studies are demonstrated; a completely new capability of the numerical method is realized by implementing the calculation of photoelectron spectra and by calculating eigenstates of the many-electron Hamiltonian. The field of study within the present work encompasses (1) the strong-field regime, where the question of the adiabatic character in tunneling ionization is discussed and analyzed, especially for the case of few-cycle pulses; (2) the XUV regime, in which we show for the first time that the collectivity in resonant excitation reveals new information; and (3) the (hard) x-ray regime, which is highly relevant for x-ray free-electron laser experiments, and where we show how important two
Sarsa, A; Buendía, E; Gálvez, F J
2016-01-01
Explicitly correlated wave functions to study confined atoms under impenetrable spherical walls have been obtained. Configuration mixing and a correlation factor are included in the variational ansatz. The behaviors of the ground state and some low-lying excited states of He, Be, B and C atoms with the confinement size are analyzed. Level crossing with confinement is found for some cases. This effect is analyzed in terms of the single particle energy of the occupied orbitals. The multi-configuration parameterized optimized effective potential method is employed with a cut-off factor to account for Dirichlet boundary conditions. The variational Monte Carlo method is used to deal with explicitly correlated wave functions. (paper)
Nuclear quantum effects on the nonadiabatic decay mechanism of an excited hydrated electron
Borgis, Daniel; Rossky, Peter J.; Turi, László
2007-11-01
We present a kinetic analysis of the nonadiabatic decay mechanism of an excited state hydrated electron to the ground state. The theoretical treatment is based on a quantized, gap dependent golden rule rate constant formula which describes the nonadiabatic transition rate between two quantum states. The rate formula is expressed in terms of quantum time correlation functions of the energy gap and of the nonadiabatic coupling. These gap dependent quantities are evaluated from three different sets of mixed quantum-classical molecular dynamics simulations of a hydrated electron equilibrated (a) in its ground state, (b) in its first excited state, and (c) on a hypothetical mixed potential energy surface which is the average of the ground and the first excited electronic states. The quantized, gap dependent rate results are applied in a phenomenological kinetic equation which provides the survival probability function of the excited state electron. Although the lifetime of the equilibrated excited state electron is computed to be very short (well under 100fs), the survival probability function for the nonequilibrium process in pump-probe experiments yields an effective excited state lifetime of around 300fs, a value that is consistent with the findings of several experimental groups and previous theoretical estimates.
Turi, László
2016-04-01
We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.
Turi, László, E-mail: turi@chem.elte.hu [Department of Physical Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112 (Hungary)
2016-04-21
We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory (DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavity structure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.
The nonadiabatic deactivation paths of pyrrole
Barbatti, Mario; Vazdar, Mario; Aquino, Adelia J. A.; Eckert-Maksic, Mirjana; Lischka, Hans
2006-01-01
Multireference configuration interaction (MRCI) calculations have been performed for pyrrole with the aim of providing an explanation for the experimentally observed photochemical deactivation processes. Potential energy curves and minima on the crossing seam were determined using the analytic MRCI gradient and nonadiabatic coupling features of the COLUMBUS program system. A new deactivation mechanism based on an out-of-plane ring deformation is presented. This mechanism directly couples the charge transfer 1 ππ* and ground states. It may be responsible for more than 50% of the observed photofragments of ππ*-excited pyrrole. The ring deformation mechanism should act complementary to the previously proposed NH-stretching mechanism, thus offering a more complete interpretation of the pyrrole photodynamics
Theory of fast (nonadiabatic) nuclear rotation
Nosov, V.G.; Kamchatnov, A.M.
1977-01-01
The theory of backbending is developed taking into accout the increasing role of nonadiabatic effects, which are concerned with quantum number K violation. Above the transition point, rotation quantum number j (>=) jsub(c) (second-kind transition point), all possible values of the quantity K in the interval -J ( Jsub(c) are obtained. The radius of global nucleon mass distribution in the nucleus is defined from the analysis of the experimental moments of inertia in n-phase. It is in agreement with the radius of distribution of protons alone obtained from electron scattering on nuclei. Assuming the simplest singularity of parametric derivative of the Hamiltonian of the system the general theory of non-temperature (ground state)second-kind phase transitions is developed
Miyagi, Haruhide; Madsen, Lars Bojer
2013-01-01
We present the time-dependent restricted-active-space self-consistent-field (TD-RASSCF) theory as a framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme...... well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high...
Non-adiabatic perturbations in Ricci dark energy model
Karwan, Khamphee; Thitapura, Thiti
2012-01-01
We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included
Nonadiabatic effects in the Quantum Hall regime
Page, D.A.; Brown, E.
1993-01-01
The authors consider the effect of a finite electric field on the states of a Bloch electron in two dimensions, with a uniform magnetic field present. They make use of the concept of electric time translation symmetry and treat the electric and magnetic fields symmetrically in a time dependent formalism. In addition to a wave vector k, the states are characterized by a frequency specifying the behavior under electric time translations. An effective Hamiltonian is employed to obtain the splitting of an isolated Bloch band into open-quotes frequencyclose quotes subbands. The time-averaged velocity and energy of the states are expressed in terms of the frequency dispersion. The relationship to the Stark ladder eigenstates in a scalar potential representation of the electric field is examined. This is seen to justify the use of the averaged energy in determining occupation of the states. In the weak electric field (adiabatic) limit, an expression is recovered for the quantized Hall conductivity of a magnetic subband as a topological invariant. A numerical procedure is outlined and results obtained over a range of electric field strengths. A transition between strong and weak field regimes is seen, with level repulsions between the frequencies playing an important role. The numerical results show how the magnetic subband structure and quantized Hall conductivity emerge as the electric field becomes weaker. In this regime, the behavior can be understood by comparison to the predictions of the adiabatic approximation. The latter predicts crossings in the frequencies at certain locations in wave vector space. Nonadiabatic effects are seen to produce gaps in the frequency spectrum at these locations. 35 refs., 14 figs
A design study of non-adiabatic electron guns
Barroso, J.J.; Stellati, C.
1994-01-01
The design of a non-adiabatic gun capable of producing a 10 A, 50 KeV high-quality laminar electron beam is reported. In contrast to the magnetron injection gun with a conical cathode, where the beam is generated initially with a transverse velocity component, in the non-adiabatic gun electrons are extracted in a direction parallel to the axial guide magnetic field. The beam electrons acquire cyclotron motion as result of non-adiabatic processes in a strong non uniform electric field across the modulation anode. Such an extraction method gives rise to favourable features that are explored throughout the work. An extensive numerical simulation study has also been done to minimize velocity and energy spreads. (author). 3 refs, 5 figs, 1 tab
Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices
Akosa, Collins Ashu; Ndiaye, Papa Birame; Manchon, Aurelien
2017-01-01
We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.
Intrinsic nonadiabatic topological torque in magnetic skyrmions and vortices
Akosa, Collins Ashu
2017-03-01
We propose that topological spin currents flowing in topologically nontrivial magnetic textures, such as magnetic skyrmions and vortices, produce an intrinsic nonadiabatic torque of the form Tt∼[(∂xm×∂ym)·m]∂ym. We show that this torque, which is absent in one-dimensional domain walls and/or nontopological textures, is responsible for the enhanced nonadiabaticity parameter observed in magnetic vortices compared to one-dimensional textures. The impact of this torque on the motion of magnetic skyrmions is expected to be crucial, especially to determine their robustness against defects and pinning centers.
Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics
Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.
2018-03-01
We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.
Matsuoka, Takahide; Takatsuka, Kazuo
2017-04-07
A theory for dynamics of molecular photoionization from nonadiabatic electron wavepackets driven by intense pulse lasers is proposed. Time evolution of photoelectron distribution is evaluated in terms of out-going electron flux (current of the probability density of electrons) that has kinetic energy high enough to recede from the molecular system. The relevant electron flux is in turn evaluated with the complex-valued electronic wavefunctions that are time evolved in nonadiabatic electron wavepacket dynamics in laser fields. To uniquely rebuild such wavefunctions with its electronic population being lost by ionization, we adopt the complex-valued natural orbitals emerging from the electron density as building blocks of the total wavefunction. The method has been implemented into a quantum chemistry code, which is based on configuration state mixing for polyatomic molecules. Some of the practical aspects needed for its application will be presented. As a first illustrative example, we show the results of hydrogen molecule and its isotope substitutes (HD and DD), which are photoionized by a two-cycle pulse laser. Photon emission spectrum associated with above threshold ionization is also shown. Another example is taken from photoionization dynamics from an excited state of a water molecule. Qualitatively significant effects of nonadiabatic interaction on the photoelectron spectrum are demonstrated.
Naftchi-Ardebili, Kasra; Hau, Nathania W.; Mazziotti, David A.
2011-01-01
Variational minimization of the ground-state energy as a function of the two-electron reduced density matrix (2-RDM), constrained by necessary N-representability conditions, provides a polynomial-scaling approach to studying strongly correlated molecules without computing the many-electron wave function. Here we introduce a route to enhancing necessary conditions for N representability through rank restriction of the 2-RDM. Rather than adding computationally more expensive N-representability conditions, we directly enhance the accuracy of two-particle (2-positivity) conditions through rank restriction, which removes degrees of freedom in the 2-RDM that are not sufficiently constrained. We select the rank of the particle-hole 2-RDM by deriving the ranks associated with model wave functions, including both mean-field and antisymmetrized geminal power (AGP) wave functions. Because the 2-positivity conditions are exact for quantum systems with AGP ground states, the rank of the particle-hole 2-RDM from the AGP ansatz provides a minimum for its value in variational 2-RDM calculations of general quantum systems. To implement the rank-restricted conditions, we extend a first-order algorithm for large-scale semidefinite programming. The rank-restricted conditions significantly improve the accuracy of the energies; for example, the percentages of correlation energies recovered for HF, CO, and N 2 improve from 115.2%, 121.7%, and 121.5% without rank restriction to 97.8%, 101.1%, and 100.0% with rank restriction. Similar results are found at both equilibrium and nonequilibrium geometries. While more accurate, the rank-restricted N-representability conditions are less expensive computationally than the full-rank conditions.
Non-adiabatic rotational excitation of dipolar molecule under the ...
J. Chem. Sci. Vol. 125, No. 5, September 2013, pp. 1213–1221. c Indian Academy of Sciences. ... The rotational wave packets of LiCl molecule excited non-adiabatically by half cycle pulse. (HCP) is .... pared to the intensities required for the ionization of ..... out and with delayed ultrashort HCP at different initial pulse dura-.
Nonadiabatic corrections to a quantum dot quantum computer
Home; Journals; Pramana – Journal of Physics; Volume 83; Issue 1. Nonadiabatic corrections to a quantum dot quantum computer working in adiabatic limit. M Ávila ... The time of operation of an adiabatic quantum computer must be less than the decoherence time, otherwise the computer would be nonoperative. So far, the ...
Nonadiabatic geometrical quantum gates in semiconductor quantum dots
Solinas, Paolo; Zanghi, Nino; Zanardi, Paolo; Rossi, Fausto
2003-01-01
In this paper, we study the implementation of nonadiabatic geometrical quantum gates with in semiconductor quantum dots. Different quantum information enconding (manipulation) schemes exploiting excitonic degrees of freedom are discussed. By means of the Aharanov-Anandan geometrical phase, one can avoid the limitations of adiabatic schemes relying on adiabatic Berry phase; fast geometrical quantum gates can be, in principle, implemented
2017-01-20
AFRL-AFOSR-JP-TR-2017-0012 The Strength of Chaos : accurate simulation of resonant electron scattering by many-electron ions and atoms in the presence...of quantum chaos Igor Bray CURTIN UNIVERSITY OF TECHNOLOGY Final Report 01/20/2017 DISTRIBUTION A: Distribution approved for public release. AF...SUBTITLE The Strength of Chaos : accurate simulation of resonant electron scattering by many- electron ions and atoms in the presence of quantum chaos
Spatial non-adiabatic passage using geometric phases
Benseny, Albert; Busch, Thomas [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Kiely, Anthony; Ruschhaupt, Andreas [University College Cork, Department of Physics, Cork (Ireland); Zhang, Yongping [Okinawa Institute of Science and Technology Graduate University, Quantum Systems Unit, Okinawa (Japan); Shanghai University, Department of Physics, Shanghai (China)
2017-12-15
Quantum technologies based on adiabatic techniques can be highly effective, but often at the cost of being very slow. Here we introduce a set of experimentally realistic, non-adiabatic protocols for spatial state preparation, which yield the same fidelity as their adiabatic counterparts, but on fast timescales. In particular, we consider a charged particle in a system of three tunnel-coupled quantum wells, where the presence of a magnetic field can induce a geometric phase during the tunnelling processes. We show that this leads to the appearance of complex tunnelling amplitudes and allows for the implementation of spatial non-adiabatic passage. We demonstrate the ability of such a system to transport a particle between two different wells and to generate a delocalised superposition between the three traps with high fidelity in short times. (orig.)
Pau Baya
2011-05-01
Full Text Available Remenat (Catalan (Mixed, "revoltillo" (Scrambled in Spanish, is a dish which, in Catalunya, consists of a beaten egg cooked with vegetables or other ingredients, normally prawns or asparagus. It is delicious. Scrambled refers to the action of mixing the beaten egg with other ingredients in a pan, normally using a wooden spoon Thought is frequently an amalgam of past ideas put through a spinner and rhythmically shaken around like a cocktail until a uniform and dense paste is made. This malleable product, rather like a cake mixture can be deformed pulling it out, rolling it around, adapting its shape to the commands of one’s hands or the tool which is being used on it. In the piece Mixed, the contortion of the wood seeks to reproduce the plasticity of this slow heavy movement. Each piece lays itself on the next piece consecutively like a tongue of incandescent lava slowly advancing but with unstoppable inertia.
Vibrational nonadiabaticity and tunneling effects in transition state theory
Marcus, R.A.
1979-01-01
The usual quantum mechanical derivation of transition state theory is a statistical one (a quasi-equilibrium is assumed) or dynamical. The typical dynamical one defines a set of internal states and assumes vibrational adiabaticity. Effects of nonadiabaticity before and after the transition state are included in the present derivation, assuming a classical treatment of the reaction coordinate. The relation to a dynamical derivation of classical mechanical transition state theory is described, and tunneling effects are considered
Non-adiabatic generator-coordinate calculation of H2+
Tostes, J.G.R.; Para Univ., Belem; Toledo Piza, A.F.R. de
1982-10-01
A non-adiabatic calculation of the few lowest J=O states in the H 2+ molecule done within the framework of the Generator Coordinate Method is reported. Substantial accuracy is achivied with the diagonalization of matrices of very modest dimensions. The resulting wavefunctions are strongly dominated by just a few basis states. The computational scheme is set up so as to take the best advantage of good analytical approximations to existing adiabatic molecular wavefunctions. (Author) [pt
Nonadiabatic effect on the quantum heat flux control.
Uchiyama, Chikako
2014-05-01
We provide a general formula of quantum transfer that includes the nonadiabatic effect under periodic environmental modulation by using full counting statistics in Hilbert-Schmidt space. Applying the formula to an anharmonic junction model that interacts with two bosonic environments within the Markovian approximation, we find that the quantum transfer is divided into the adiabatic (dynamical and geometrical phases) and nonadiabatic contributions. This extension shows the dependence of quantum transfer on the initial condition of the anharmonic junction just before the modulation, as well as the characteristic environmental parameters such as interaction strength and cut-off frequency of spectral density. We show that the nonadiabatic contribution represents the reminiscent effect of past modulation including the transition from the initial condition of the anharmonic junction to a steady state determined by the very beginning of the modulation. This enables us to tune the frequency range of modulation, whereby we can obtain the quantum flux corresponding to the geometrical phase by setting the initial condition of the anharmonic junction.
Non-Adiabatic Molecular Dynamics Methods for Materials Discovery
Furche, Filipp [Univ. of California, Irvine, CA (United States); Parker, Shane M. [Univ. of California, Irvine, CA (United States); Muuronen, Mikko J. [Univ. of California, Irvine, CA (United States); Roy, Saswata [Univ. of California, Irvine, CA (United States)
2017-04-04
The flow of radiative energy in light-driven materials such as photosensitizer dyes or photocatalysts is governed by non-adiabatic transitions between electronic states and cannot be described within the Born-Oppenheimer approximation commonly used in electronic structure theory. The non-adiabatic molecular dynamics (NAMD) methods based on Tully surface hopping and time-dependent density functional theory developed in this project have greatly extended the range of molecular materials that can be tackled by NAMD simulations. New algorithms to compute molecular excited state and response properties efficiently were developed. Fundamental limitations of common non-linear response methods were discovered and characterized. Methods for accurate computations of vibronic spectra of materials such as black absorbers were developed and applied. It was shown that open-shell TDDFT methods capture bond breaking in NAMD simulations, a longstanding challenge for single-reference molecular dynamics simulations. The methods developed in this project were applied to study the photodissociation of acetaldehyde and revealed that non-adiabatic effects are experimentally observable in fragment kinetic energy distributions. Finally, the project enabled the first detailed NAMD simulations of photocatalytic water oxidation by titania nanoclusters, uncovering the mechanism of this fundamentally important reaction for fuel generation and storage.
Nonadiabatic electron response in the Hasegawa-Wakatani equations
Stoltzfus-Dueck, T.; Scott, B. D.; Krommes, J. A.
2013-01-01
Tokamak edge turbulence is strongly influenced by parallel electron physics, which relaxes density and potential fluctuations towards electron adiabatic response. Beginning with the paradigmatic Hasegawa-Wakatani equations (HWEs) for resistive tokamak edge turbulence, a unique decomposition of the electric potential (φ) into adiabatic (a) and nonadiabatic (b) portions is derived, based on the requirement that a neither drive nor respond to the parallel current j ∥ . The form of the decomposition clarifies that, at perpendicular scales large relative to the sound radius, the electron adiabatic response controls the nonzonal φ, not the fluctuating density n. Simple energy balance arguments allow one to rigorously bound the ratio of rms nonzonal nonadiabatic fluctuations (b(tilde sign)) relative to adiabatic ones (ã). The role of the vorticity nonlinearity in transferring energy between adiabatic and nonadiabatic fluctuations aids intuitive understanding of self-sustained turbulence in the HWEs. When the normalized parallel resistivity is weak, b(tilde sign) becomes effectively slaved, allowing the reduction to an approximate one-field model that remains valid for strong turbulence. In addition to guiding physical intuition, the one-field reduction should greatly ease further analytical manipulations. Direct numerical simulation of the 2D HWEs confirms the convergence of the asymptotic formula for b(tilde sign)
Enhanced Nonadiabaticity in Vortex Cores due to the Emergent Hall Effect
Bisig, André
2017-01-04
We present a combined theoretical and experimental study, investigating the origin of the enhanced nonadiabaticity of magnetic vortex cores. Scanning transmission x-ray microscopy is used to image the vortex core gyration dynamically to measure the nonadiabaticity with high precision, including a high confidence upper bound. We show theoretically, that the large nonadiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture induced emergent Hall effect. This study demonstrates that the magnetic damping α and nonadiabaticity parameter β are very sensitive to the topology of the magnetic textures, resulting in an enhanced ratio (β/α>1) in magnetic vortex cores or Skyrmions.
Enhanced Nonadiabaticity in Vortex Cores due to the Emergent Hall Effect
Bisig, André
2017-01-01
We present a combined theoretical and experimental study, investigating the origin of the enhanced nonadiabaticity of magnetic vortex cores. Scanning transmission x-ray microscopy is used to image the vortex core gyration dynamically to measure the nonadiabaticity with high precision, including a high confidence upper bound. We show theoretically, that the large nonadiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture induced emergent Hall effect. This study demonstrates that the magnetic damping α and nonadiabaticity parameter β are very sensitive to the topology of the magnetic textures, resulting in an enhanced ratio (β/α>1) in magnetic vortex cores or Skyrmions.
Miyagi, Haruhide; Madsen, Lars Bojer
We have developed a new theoretical framework for time-dependent many-electron problems named time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory. The theory generalizes the multicongurational time-dependent Hartree-Fock (MCTDHF) theory by truncating the expansion...
Watanabe, Shinta, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp; Sawada, Yuki; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Onoe, Jun, E-mail: s-watanabe@nucl.nagoya-u.ac.jp, E-mail: j-onoe@nucl.nagoya-u.ac.jp [Department of Materials, Physics and Energy Engineering, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Kameyama, Tatsuya; Torimoto, Tsukasa [Department of Crystalline Materials Science, Graduated School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Inaba, Yusuke; Takahashi, Hideharu; Takeshita, Kenji [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-16 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)
2016-06-21
We have investigated the electronic structures and optical properties of Fe, Co, and Ni ferrocyanide nanoparticles using first-principles relativistic many-electron calculations. The overall features of the theoretical absorption spectra for Fe, Ni, and Co ferrocyanides calculated using a first-principles many-electron method well reproduced the experimental one. The origins of the experimental absorption spectra were clarified by performing a configuration analysis based on the many-electron wave functions. For Fe ferrocyanide, the experimental absorption peaks originated from not only the charge-transfer transitions from Fe{sup 2+} to Fe{sup 3+} but also the 3d-3d intra-transitions of Fe{sup 3+} ions. In addition, the spin crossover transition of Fe{sup 3+} predicted by the many-electron calculations was about 0.24 eV. For Co ferrocyanide, the experimental absorption peaks were mainly attributed to the 3d-3d intra-transitions of Fe{sup 2+} ions. In contrast to the Fe and Co ferrocyanides, Ni ferrocyanide showed that the absorption peaks originated from the 3d-3d intra-transitions of Ni{sup 3+} ions in a low-energy region, while from both the 3d-3d intra-transitions of Fe{sup 2+} ions and the charge-transfer transitions from Fe{sup 2+} to Ni{sup 3+} in a high-energy region. These results were quite different from those of density-functional theory (DFT) calculations. The discrepancy between the results of DFT calculations and those of many-electron calculations suggested that the intra- and inter-atomic transitions of transition metal ions are significantly affected by the many-body effects of strongly correlated 3d electrons.
Nonadiabatic quantum Vlasov equation for Schwinger pair production
Kim, Sang Pyo; Schubert, Christian
2011-01-01
Using Lewis-Riesenfeld theory, we derive an exact nonadiabatic master equation describing the time evolution of the QED Schwinger pair-production rate for a general time-varying electric field. This equation can be written equivalently as a first-order matrix equation, as a Vlasov-type integral equation, or as a third-order differential equation. In the last version it relates to the Korteweg-de Vries equation, which allows us to construct an exact solution using the well-known one-soliton solution to that equation. The case of timelike delta function pulse fields is also briefly considered.
Electron-phonon interactions and intrinsic nonadiabatic state of superconductors
Banacky, Pavol
2007-01-01
Study of band structure of YBa 2 Cu 3 O 7 has shown that electron coupling to A g , B 2g and B 3g modes results in fluctuation of saddle point of one of the CuO plane d-pσ band in Y point of 1st BZ across Fermi level. It represents breakdown of adiabatic Born-Oppenheimer approximation and transition of the system into intrinsic nonadiabatic state, ω > E F . Results show that system is stabilized in this state at distorted nuclear geometry. Stabilization effect is mainly due to strong dependence of the electronic motion on instantaneous nuclear momenta. On the lattice scale, the intrinsic nonadiabatic state is geometrically degenerate at broken translation symmetry - system has fluxional nuclear configuration of O2, O3 atoms in CuO planes. It enables formation of mobile bipolarons that can move in the lattice without dissipation. Described effects are absent in non-superconducting YBa 2 Cu 3 O 6
Electron phonon interactions and intrinsic nonadiabatic state of superconductors
Baňacký, Pavol
2007-09-01
Study of band structure of YBa 2Cu 3O 7 has shown that electron coupling to A g, B 2g and B 3g modes results in fluctuation of saddle point of one of the CuO plane d-pσ band in Y point of 1st BZ across Fermi level. It represents breakdown of adiabatic Born-Oppenheimer approximation and transition of the system into intrinsic nonadiabatic state, ω > EF. Results show that system is stabilized in this state at distorted nuclear geometry. Stabilization effect is mainly due to strong dependence of the electronic motion on instantaneous nuclear momenta. On the lattice scale, the intrinsic nonadiabatic state is geometrically degenerate at broken translation symmetry - system has fluxional nuclear configuration of O2, O3 atoms in CuO planes. It enables formation of mobile bipolarons that can move in the lattice without dissipation. Described effects are absent in non-superconducting YBa 2Cu 3O 6.
Mixing of ground-state rotational and gamma and beta vibrational bands in the region A>=228
Mittal, R; Sahota, H S [Punjabi Univ., Patiala (India). Dept. of Physics
1983-06-21
The mixing of beta, gamma and ground-state bands has been investigated through the experimental determination of mixing parameters Zsub(..gamma..) and Zsub(..beta gamma..). These Zsub(..gamma..) values have been compared with the theoretical calculations of this parameter from the solutions of time-dependent HFB equations on the adiabatic and nonadiabatic assumptions. The experimental values are in better agreement with the results obtained under the nonadiabatic assumption, valid for small deviations from the spherical symmetry.
Nonadiabatic optical transitions as a turn-on switch for pulse shaping
Hashmi, F. A.; Bouchene, M. A.
2010-01-01
A strong nonresonant, asymmetric ultrashort pulse drives an atomic transition and causes a complete population inversion because of a sudden nonadiabatic jump. This jump is probed in real time by propagating a weak ultrashort pulse in the system which is resonant on an adjacent transition. The probe at the exit of the medium presents an oscillatory structure with the nonadiabatic jump marked in time by the onset of oscillations. The nonadiabatic jump thus acts as a 'turn-on' switch for the shaping of the probe.
Memory effects in nonadiabatic molecular dynamics at metal surfaces
Olsen, Thomas; Schiøtz, Jakob
2010-01-01
We study the effect of temporal correlation in a Langevin equation describing nonadiabatic dynamics at metal surfaces. For a harmonic oscillator, the Langevin equation preserves the quantum dynamics exactly and it is demonstrated that memory effects are needed in order to conserve the ground state...... energy of the oscillator. We then compare the result of Langevin dynamics in a harmonic potential with a perturbative master equation approach and show that the Langevin equation gives a better description in the nonperturbative range of high temperatures and large friction. Unlike the master equation......, this approach is readily extended to anharmonic potentials. Using density functional theory, we calculate representative Langevin trajectories for associative desorption of N-2 from Ru(0001) and find that memory effects lower the dissipation of energy. Finally, we propose an ab initio scheme to calculate...
Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons
Khotyaintsev, Yu. V.; Cully, C. M.; Vaivads, A.; Andre, M.; Owen, C. J.
2011-01-01
We report in situ observations by the Cluster spacecraft of wave-particle interactions in a magnetic flux pileup region created by a magnetic reconnection outflow jet in Earth's magnetotail. Two distinct regions of wave activity are identified: lower-hybrid drift waves at the front edge and whistler-mode waves inside the pileup region. The whistler-mode waves are locally generated by the electron temperature anisotropy, and provide evidence for ongoing betatron energization caused by magnetic flux pileup. The whistler-mode waves cause fast pitch-angle scattering of electrons and isotropization of the electron distribution, thus making the flow braking process nonadiabatic. The waves strongly affect the electron dynamics and thus play an important role in the energy conversion chain during plasma jet braking.
Nonadiabatic quantum state control of many bosons in few wells
Tichy, Malte C.; Kock Pedersen, Mads; Mølmer, Klaus
2013-01-01
We present a fast scheme for arbitrary unitary control of interacting bosonic atoms in a double well. Assuming fixed interwell tunneling rate and intrawell interaction strength, we control the many-atom state by a discrete sequence of shifts of the single-well energies. For strong interactions......, resonant tunneling transitions implement beam-splitter U(2) rotations among atom number eigenstates, which can be combined and, thus, permit full controllability. By numerically optimizing such sequences of couplings at avoided level crossings, we extend the realm of full controllability to a wide range...... of realistic interaction parameters, while we remain in the simple control space. We demonstrate the efficiency and the high achievable fidelity of our proposal with nonadiabatic population transfer, NOON-state creation, a cnot gate, and a transistorlike, conditional evolution of several atoms....
Observational tests of non-adiabatic Chaplygin gas
Carneiro, S.; Pigozzo, C., E-mail: saulo.carneiro@pq.cnpq.br, E-mail: cpigozzo@ufba.br [Instituto de Física, Universidade Federal da Bahia, Campus de Ondina, Salvador, BA 40210-340 (Brazil)
2014-10-01
In a previous paper [1] it was shown that any dark sector model can be mapped into a non-adiabatic fluid formed by two interacting components, one with zero pressure and the other with equation-of-state parameter ω = -1. It was also shown that the latter does not cluster and, hence, the former is identified as the observed clustering matter. This guarantees that the dark matter power spectrum does not suffer from oscillations or instabilities. It applies in particular to the generalised Chaplygin gas, which was shown to be equivalent to interacting models at both background and perturbation levels. In the present paper we test the non-adiabatic Chaplygin gas against the Hubble diagram of type Ia supernovae, the position of the first acoustic peak in the anisotropy spectrum of the cosmic microwave background and the linear power spectrum of large scale structures. We consider two different compilations of SNe Ia, namely the Constitution and SDSS samples, both calibrated with the MLCS2k2 fitter, and for the power spectrum we use the 2dFGRS catalogue. The model parameters to be adjusted are the present Hubble parameter, the present matter density and the Chaplygin gas parameter α. The joint analysis best fit gives α ≈ - 0.5, which corresponds to a constant-rate energy flux from dark energy to dark matter, with the dark energy density decaying linearly with the Hubble parameter. The ΛCDM model, equivalent to α = 0, stands outside the 3σ confidence interval.
Nonequilibrium Green's function theory for nonadiabatic effects in quantum electron transport
Kershaw, Vincent F.; Kosov, Daniel S.
2017-12-01
We develop nonequilibrium Green's function-based transport theory, which includes effects of nonadiabatic nuclear motion in the calculation of the electric current in molecular junctions. Our approach is based on the separation of slow and fast time scales in the equations of motion for Green's functions by means of the Wigner representation. Time derivatives with respect to central time serve as a small parameter in the perturbative expansion enabling the computation of nonadiabatic corrections to molecular Green's functions. Consequently, we produce a series of analytic expressions for non-adiabatic electronic Green's functions (up to the second order in the central time derivatives), which depend not solely on the instantaneous molecular geometry but likewise on nuclear velocities and accelerations. An extended formula for electric current is derived which accounts for the non-adiabatic corrections. This theory is concisely illustrated by the calculations on a model molecular junction.
Nonadiabatic heating of the central plasma sheet at substorm onset
Huang, C.Y.; Frank, L.A.; Rostoker, G.; Fennell, J.; Mitchell, D.G.
1992-01-01
Heating events in the plasma sheet boundary layer and central plasma sheet are found to occur at the onset of expansive phase activity. The main effect is a dramatic increase in plasma temperature, coincident with a partial dipolarization of the magnetic field. Fluxes of energetic particles increase without dispersion during these events which occur at all radial distances up to 23 R E , the apogee of the ISEIE spacecraft. A major difference between these heating events and those observed at geosynchronous distances lies in the heating mechanism which is nonadiabatic beyond 10 R E but may be adiabatic closer to Earth. The energy required to account for the increase in plasma thermal energy is comparable with that required for Joule heating of the ionosphere. The plasma sheet must be considered as a major sink in the energy balance of substorm. The authors estimate lobe magnetic pressures during these events. Changes in lobe pressure are generally not correlated with onsets or intensifications of expansive phase activity
Nonadiabatic charged spherical evolution in the postquasistatic approximation
Rosales, L.; Barreto, W.; Peralta, C.; Rodriguez-Mueller, B.
2010-01-01
We apply the postquasistatic approximation, an iterative method for the evolution of self-gravitating spheres of matter, to study the evolution of dissipative and electrically charged distributions in general relativity. The numerical implementation of our approach leads to a solver which is globally second-order convergent. We evolve nonadiabatic distributions assuming an equation of state that accounts for the anisotropy induced by the electric charge. Dissipation is described by streaming-out or diffusion approximations. We match the interior solution, in noncomoving coordinates, with the Vaidya-Reissner-Nordstroem exterior solution. Two models are considered: (i) a Schwarzschild-like shell in the diffusion limit; and (ii) a Schwarzschild-like interior in the free-streaming limit. These toy models tell us something about the nature of the dissipative and electrically charged collapse. Diffusion stabilizes the gravitational collapse producing a spherical shell whose contraction is halted in a short characteristic hydrodynamic time. The streaming-out radiation provides a more efficient mechanism for emission of energy, redistributing the electric charge on the whole sphere, while the distribution collapses indefinitely with a longer hydrodynamic time scale.
Determination of lifetimes and nonadiabatic correlations from measured dipole polarizabilities
Curtis, Lorenzo J
2007-01-01
In atomic systems for which the total oscillator strength of excitations from the ground state is dominated by the transition to the lowest resonance level, the f-sum rule provides a bracketing inequality connecting the lifetime τ of that level to the dipole polarizability α d . This relationship has been used previously to deduce α d from τ. It is shown here that improved spectroscopic accuracies now permit this procedure to be inverted, with τ deduced from a value for α d obtained spectroscopically using the core polarization model. A similar quantitative relationship exists connecting the nonadiabatic correlation factor β to τ, and thus also to α d . The method is applied to a recent measurement of α d for Kr 6+ to obtain the values τ(4s4p 1 P 1 ) 0.096 ± 0.003 ns and β(Kr 6+ ) = 1.71 ± 0.03a 5 0 . It is shown that the use of this method to make precision lifetime determinations for a small number of ions in an isoelectronic sequence permits the exploitation of observed semiempirical regularities to specify the lifetimes of all ions in that sequence
Nonadiabatic two-electron transfer mediated by an irregular bridge
Petrov, E.G.; Shevchenko, Ye.V.; May, V.
2004-01-01
Nonadiabatic two-electron transfer (TET) mediated by a linear molecular bridge is studied theoretically. Special attention is put on the case of a irregular distribution of bridge site energies as well as on the inter-site Coulomb interaction. Based on the unified description of electron transfer reactions [J. Chem. Phys. 115 (2001) 7107] a closed set of kinetic equations describing the TET process is derived. A reduction of this set to a single exponential donor-acceptor (D-A) TET is performed together with a derivation of an overall D-A TET rate. The latter contains a contribution of the stepwise as well as of the concerted route of D-A TET. The stepwise contribution is determined by two single-electron steps each of them associated with a sequential and a superexchange pathway. A two-electron unistep superexchange transition between the D and A forms the concerted contribution to the overall rate. Both contributions are analyzed in their dependency on the bridge length. The irregular distribution of the bridge site energies as well as the influence of the Coulomb interaction facilitates the D-A TET via a modification of the stepwise and the concerted part of the overall rate. At low temperatures and for short bridges with a single or two units the concerted contribution exceeds the stepwise contribution. If the bridge contains more than two units, the stepwise contribution dominates the overall rate
Generation of helical electron beams by a nonadiabatic gun
Barroso, J.J.; Stellati, C.
1996-01-01
The design of a non-adiabatic gun to produce a 10A, 50kV hollow laminar electron beam for gyrotron applications is reported. The beam is extracted from the emitting ring in a direction parallel to the axial guide magnetic field and then propagates across the radial electric field in the anode gap. The electrons are thereby given a transverse velocity upon passing through the modulation anode region where an electrostatic pumping mechanism takes place, so that a considerable amount of the electron energy is converted to transverse kinetic energy. Such a beam extraction method gives rise to favourable features that are examined throughout the work. The dynamics of hollow electron beams with gyromotion propagating down a cylindrical drift tube are also analysed. Due to the action of the beam's self-space charge field, the transverse velocity spread has an oscillatory behaviour along the drift tube wherein the spatial automodulation period shortens with increasing current. Numerical simulation results indicate that even at a 10A beam current, the resulting transverse velocity spread is still less than the spread for a zero beam current. (UK)
Nonadiabatic dynamics of electron injection into organic molecules
Zhu Li-Ping; Qiu Yu; Tong Guo-Ping
2012-01-01
We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su—Schrieffer—Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for a small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontaneous electron transfer from electrodes to polymers. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Pederson, Mark R
2015-04-14
It is tacitly accepted that, for practical basis sets consisting of N functions, solution of the two-electron Coulomb problem in quantum mechanics requires storage of O(N(4)) integrals in the small N limit. For localized functions, in the large N limit, or for planewaves, due to closure, the storage can be reduced to O(N(2)) integrals. Here, it is shown that the storage can be further reduced to O(N(2/3)) for separable basis functions. A practical algorithm, that uses standard one-dimensional Gaussian-quadrature sums, is demonstrated. The resulting algorithm allows for the simultaneous storage, or fast reconstruction, of any two-electron Coulomb integral required for a many-electron calculation on processors with limited memory and disk space. For example, for calculations involving a basis of 9171 planewaves, the memory required to effectively store all Coulomb integrals decreases from 2.8 Gbytes to less than 2.4 Mbytes.
Classical molecular dynamics simulation of electronically non-adiabatic processes.
Miller, William H; Cotton, Stephen J
2016-12-22
Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).
The quantum dynamics of electronically nonadiabatic chemical reactions
Truhlar, Donald G.
1993-01-01
Considerable progress was achieved on the quantum mechanical treatment of electronically nonadiabatic collisions involving energy transfer and chemical reaction in the collision of an electronically excited atom with a molecule. In the first step, a new diabatic representation for the coupled potential energy surfaces was created. A two-state diabatic representation was developed which was designed to realistically reproduce the two lowest adiabatic states of the valence bond model and also to have the following three desirable features: (1) it is more economical to evaluate; (2) it is more portable; and (3) all spline fits are replaced by analytic functions. The new representation consists of a set of two coupled diabatic potential energy surfaces plus a coupling surface. It is suitable for dynamics calculations on both the electronic quenching and reaction processes in collisions of Na(3p2p) with H2. The new two-state representation was obtained by a three-step process from a modified eight-state diatomics-in-molecules (DIM) representation of Blais. The second step required the development of new dynamical methods. A formalism was developed for treating reactions with very general basis functions including electronically excited states. Our formalism is based on the generalized Newton, scattered wave, and outgoing wave variational principles that were used previously for reactive collisions on a single potential energy surface, and it incorporates three new features: (1) the basis functions include electronic degrees of freedom, as required to treat reactions involving electronic excitation and two or more coupled potential energy surfaces; (2) the primitive electronic basis is assumed to be diabatic, and it is not assumed that it diagonalizes the electronic Hamiltonian even asymptotically; and (3) contracted basis functions for vibrational-rotational-orbital degrees of freedom are included in a very general way, similar to previous prescriptions for locally
Matching-pursuit/split-operator Fourier-transform simulations of nonadiabatic quantum dynamics
Wu, Yinghua; Herman, Michael F.; Batista, Victor S.
2005-03-01
A rigorous and practical approach for simulations of nonadiabatic quantum dynamics is introduced. The algorithm involves a natural extension of the matching-pursuit/split-operator Fourier-transform (MP/SOFT) method [Y. Wu and V. S. Batista, J. Chem. Phys. 121, 1676 (2004)] recently developed for simulations of adiabatic quantum dynamics in multidimensional systems. The MP/SOFT propagation scheme, extended to nonadiabatic dynamics, recursively applies the time-evolution operator as defined by the standard perturbation expansion to first-, or second-order, accuracy. The expansion is implemented in dynamically adaptive coherent-state representations, generated by an approach that combines the matching-pursuit algorithm with a gradient-based optimization method. The accuracy and efficiency of the resulting propagation method are demonstrated as applied to the canonical model systems introduced by Tully for testing simulations of dual curve-crossing nonadiabatic dynamics.
Kondorskiy, A.; Nakamura, H.
2004-01-01
The title theory is developed by combining the Herman-Kluk semiclassical theory for adiabatic propagation on single potential-energy surface and the semiclassical Zhu-Nakamura theory for nonadiabatic transition. The formulation with use of natural mathematical principles leads to a quite simple expression for the propagator based on classical trajectories and simple formulas are derived for overall adiabatic and nonadiabatic processes. The theory is applied to electronically nonadiabatic photodissociation processes: a one-dimensional problem of H 2 + in a cw (continuous wave) laser field and a two-dimensional model problem of H 2 O in a cw laser field. The theory is found to work well for the propagation duration of several molecular vibrational periods and wide energy range. Although the formulation is made for the case of laser induced nonadiabatic processes, it is straightforwardly applicable to ordinary electronically nonadiabatic chemical dynamics
Nonadiabatic production of spinor condensates with a quadrupole-Ioffe-configuration trap
Zhang, P.; Xu, Z.; You, L.
2006-01-01
Motivated by the recent experimental observation of multicomponent spinor condensates via a time-dependent quadrupole-Ioffe-configuration trap, we provide a general framework for the investigation of nonadiabatic Landau-Zener dynamics of a hyperfine spin, e.g., from an atomic magnetic dipole moment coupled to a weak time-dependent magnetic (B-) field. The spin flipped population distribution, or the so-called Majorona formula, is expressed in terms of system parameters and experimental observables; thus, the distribution provides much needed insight into the underlying mechanism for the production of spinor condensates due to nonadiabatic level crossings
Quantum chaos induced by nonadiabatic coupling in wave-packet dynamics
Higuchi, Hisashi; Takatsuka, Kazuo
2002-01-01
The effect of nonadiabatic coupling due to breakdown of the Born-Oppenheimer approximation on chaos is investigated. A couple of measures (indicators) that detect the extent of chaos in wave-packet dynamics on coupled potential functions are devised. Using them, we show that chaos is indeed induced by a nonadiabatic coupling in individual time-dependent wave-packet dynamics. This chaos is genuinely of quantum nature, since it arises from bifurcation and merging of a wave packet at the quasicrossing region of two coupled potential functions
Non-adiabatic effect on Laughlin's argument of the quantum Hall effect
Maruyama, I; Hatsugai, Y
2009-01-01
We have numerically studied a non-adiabatic charge transport in the quantum Hall system pumped by a magnetic flux, as one of the simplest theoretical realizations of non-adiabatic Thouless pumping. In the adiabatic limit, a pumped charge is quantized, known as Laughlin's argument in a cylindrical lattice. In a uniform electric field, we obtained a formula connecting quantized pumping in the adiabatic limit and no-pumping in the sudden limit. The intermediate region between the two limits is determined by the Landau gap. A randomness or impurity effect is also discussed.
Quantum theory of nonadiabatic heavy-particle transfer processes in polar media
Kuznetsov, A.M.
1986-01-01
For the probability of nonadiabatic transfer of heavy particles, a calculating procedure is proposed which in the case of certain processes allows the interaction between motion of the particle undergoing transfer and motion along other degrees of freedom to be exactly accounted for. In the case of symmetric systems, explicit expressions are obtained for the free energy of activation of the transition and for the tunneling factor which allow for nonadiabaticity of motion of the particle undergoing transfer, both in the region beneath the barrier and in the region that is classically accessible
Dobbyn, Abigail J.; Knowles, Peter J.
A number of established techniques for obtaining diabatic electronic states in small molecules are critically compared for the example of the X and B states in the water molecule, which contribute to the two lowest-energy conical intersections. Integration of the coupling matrix elements and analysis of configuration mixing coefficients both produce reliable diabatic states globally. Methods relying on diagonalization of dipole moment and angular momentum operators are shown to fail in large regions of coordinate space. However, the use of transition angular momentum matrix elements involving the A state, which is degenerate with B at the conical intersections, is successful globally, provided that an appropriate choice of coordinates is made. Long range damping of non-adiabatic coupling to give correct asymptotic mixing angles also is investigated.
Observations of nonadiabatic acceleration of ions in Earth's magnetotail
Frank, L. A.; Paterson, W. R.; Kivelson, M. G.
1994-01-01
We present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth's magnetotail at geocentric radial distances 35 to 87 R(sub E). These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the 'lima bean' shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, 'lima bean' shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. It is suggested that the colder, lower-speed proton velocity
Franco de Carvalho, F. [Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Tavernelli, I. [IBM Research GmbH, Zurich Research Laboratory, 8803 Ruschlikon (Switzerland)
2015-12-14
In this work, we derive a method to perform trajectory-based nonadiabatic dynamics that is able to describe both nonadiabatic transitions and intersystem crossing events (transitions between states of different spin-multiplicity) at the same level of theory, namely, time-dependent density functional theory (TDDFT). To this end, we combined our previously developed TDDFT-based trajectory surface hopping scheme with an accurate and efficient algorithm for the calculation of the spin-orbit coupling (SOC) matrix elements. More specifically, we designed two algorithms for the calculation of intersystem crossing transitions, one based on an extended Tully’s surface hopping scheme including SOC and the second based on a Landau-Zener approximation applied to the spin sector of the electronic Hilbert space. This development allows for the design of an efficient on-the-fly nonadiabatic approach that can handle, on an equal footing, nonadiabatic and intersystem crossing transitions. The method is applied to the study of the photophysics of sulfur dioxide (SO{sub 2}) in gas and liquid phases.
Between ethylene and polyenes--the non-adiabatic dynamics of cis-dienes
Kuhlman, Thomas Scheby; Glover, William J; Mori, Toshifumi
2012-01-01
Using Ab Initio Multiple Spawning (AIMS) with a Multi-State Multi-Reference Perturbation theory (MS-MR-CASPT2) treatment of the electronic structure, we have simulated the non-adiabatic excited state dynamics of cyclopentadiene (CPD) and 1,2,3,4-tetramethyl-cyclopentadiene (Me4-CPD) following exc...
Ideal quantum gas in an expanding cavity: nature of nonadiabatic force.
Nakamura, K; Avazbaev, S K; Sobirov, Z A; Matrasulov, D U; Monnai, T
2011-04-01
We consider a quantum gas of noninteracting particles confined in the expanding cavity and investigate the nature of the nonadiabatic force which is generated from the gas and acts on the cavity wall. First, with use of the time-dependent canonical transformation, which transforms the expanding cavity to the nonexpanding one, we can define the force operator. Second, applying the perturbative theory, which works when the cavity wall begins to move at time origin, we find that the nonadiabatic force is quadratic in the wall velocity and thereby does not break the time-reversal symmetry, in contrast with general belief. Finally, using an assembly of the transitionless quantum states, we obtain the nonadiabatic force exactly. The exact result justifies the validity of both the definition of the force operator and the issue of the perturbative theory. The mysterious mechanism of nonadiabatic transition with the use of transitionless quantum states is also explained. The study is done for both cases of the hard- and soft-wall confinement with the time-dependent confining length. ©2011 American Physical Society
Non-adiabatic molecular dynamic simulations of opening reaction of molecular junctions
Zobač, Vladimír; Lewis, J.P.; Jelínek, Pavel
2016-01-01
Roč. 27, č. 28 (2016), 1-8, č. článku 285202. ISSN 0957-4484 R&D Projects: GA ČR(CZ) GA14-02079S Institutional support: RVO:68378271 Keywords : non-adiabatic molecular dynamics * molecular junctions * molecular switches * DFT Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2016
TREATMENT OF NONADIABATIC TRANSITIONS BY DENSITY-MATRIX EVOLUTION AND MOLECULAR-DYNAMICS SIMULATIONS
MAVRI, J; BERENDSEN, HJC
1994-01-01
A density matrix evolution (DME) method (H.J.C. Berendsen and J. Mavri, J. Phys. Chem., 97 (1993) 13469) to simulate the dynamics of quantum systems embedded in a classical environment is presented. The DME method allows treatment of nonadiabatic transitions. As numerical examples the collinear
Beyond Ehrenfest: correlated non-adiabatic molecular dynamics
Horsfield, Andrew P; Bowler, D R; Fisher, A J; Todorov, Tchavdar N; Sanchez, Cristian G
2004-01-01
A method for introducing correlations between electrons and ions that is computationally affordable is described. The central assumption is that the ionic wavefunctions are narrow, which makes possible a moment expansion for the full density matrix. To make the problem tractable we reduce the remaining many-electron problem to a single-electron problem by performing a trace over all electronic degrees of freedom except one. This introduces both one- and two-electron quantities into the equations of motion. Quantities depending on more than one electron are removed by making a Hartree-Fock approximation. Using the first-moment approximation, we perform a number of tight binding simulations of the effect of an electric current on a mobile atom. The classical contribution to the ionic kinetic energy exhibits cooling and is independent of the bias. The quantum contribution exhibits strong heating, with the heating rate proportional to the bias. However, increased scattering of electrons with increasing ionic kinetic energy is not observed. This effect requires the introduction of the second moment
Fischer, Sean A; Lingerfelt, David B; May, Joseph W; Li, Xiaosong
2014-09-07
The unique electronic structure of Mn(2+)-doped ZnO quantum dots gives rise to photoionization states that can be used to manipulate the magnetic state of the material and to generate zero-reabsorption luminescence. Fast formation and long non-radiative decay of this photoionization state is a necessary requirement for these important applications. In this work, surface hopping based non-adiabatic molecular dynamics are used to demonstrate the fast formation of a metal-to-ligand charge transfer state in a Mn(2+)-doped ZnO quantum dot. The formation occurs on an ultrafast timescale and is aided by the large density of states and significant mixing of the dopant Mn(2+) 3dt2 levels with the valence-band levels of the ZnO lattice. The non-radiative lifetime of the photoionization states is also investigated.
Non-adiabatic molecular dynamics with complex quantum trajectories. I. The diabatic representation.
Zamstein, Noa; Tannor, David J
2012-12-14
We extend a recently developed quantum trajectory method [Y. Goldfarb, I. Degani, and D. J. Tannor, J. Chem. Phys. 125, 231103 (2006)] to treat non-adiabatic transitions. Each trajectory evolves on a single surface according to Newton's laws with complex positions and momenta. The transfer of amplitude between surfaces stems naturally from the equations of motion, without the need for surface hopping. In this paper we derive the equations of motion and show results in the diabatic representation, which is rarely used in trajectory methods for calculating non-adiabatic dynamics. We apply our method to the first two benchmark models introduced by Tully [J. Chem. Phys. 93, 1061 (1990)]. Besides giving the probability branching ratios between the surfaces, the method also allows the reconstruction of the time-dependent wavepacket. Our results are in quantitative agreement with converged quantum mechanical calculations.
Development of a model for dimethyl ether non-adiabatic reactors to improve methanol conversion
Nasrollahi, Fatemeh [University of Tehran, Tehran (Iran, Islamic Republic of); Bakeri, Gholamreza; Rahimnejad, Mostafa [Babol Noshirvani University of Technology, Babol (Iran, Islamic Republic of); Ismail, Ahmad Fauzi [Universiti Teknologi Malaysia, Skudai (Malaysia); Imanian, Mahdi [Mohajer Technical University, Isfahan (Iran, Islamic Republic of)
2013-10-15
The modeling of adiabatic and non-adiabatic reactors, using three cooling mediums in the shell side of a shell and tube reactor in cocurrent and countercurrent flow regimes has been conducted. The cooling mediums used in this research are saturated water and methanol feed gas to a reactor which is preheated in the shell side and a special type of oil. The results of adiabatic reactor modeling show good compatibility with the data received from a commercial plant. The results of non-adiabatic reactor modeling showed that more methanol conversion can be achieved in a lower length of reactor, even though in some cases the maximum temperature in the tube side of the reactor is more than the deactivation temperature of the catalyst.
Warehime, Mick [Chemical Physics Program, University of Maryland, College Park, Maryland 20742-2021 (United States); Kłos, Jacek; Alexander, Millard H., E-mail: mha@umd.edu [Department of Chemistry and Biochemistry and Institute of Physical Science and Technology, University of Maryland, College Park, Maryland 20742-2021 (United States)
2015-01-21
This is the second in a series of papers detailing a MATLAB based implementation of the finite element method applied to collinear triatomic reactions. Here, we extend our previous work to reactions on coupled potential energy surfaces. The divergence of the probability current density field associated with the two electronically adiabatic states allows us to visualize in a novel way where and how nonadiabaticity occurs. A two-dimensional investigation gives additional insight into nonadiabaticity beyond standard one-dimensional models. We study the F({sup 2}P) + HCl and F({sup 2}P) + H{sub 2} reactions as model applications. Our publicly available code (http://www2.chem.umd.edu/groups/alexander/FEM) is general and easy to use.
Kanno, Manabu; Kono, Hirohiko; Fujimura, Yuichi; Lin, Sheng H.
2010-01-01
We theoretically investigated the nonadiabatic couplings between optically induced π-electron rotations and molecular vibrations in a chiral aromatic molecule irradiated by a nonhelical, linearly polarized laser pulse. The results of wave packet dynamics simulation show that the vibrational amplitudes strongly depend on the initial rotation direction, clockwise or counterclockwise, which is controlled by the polarization direction of the incident pulse. This suggests that attosecond π-electron rotations can be observed by spectroscopic detection of femtosecond molecular vibrations.
Levitation of Bose-Einstein condensates induced by macroscopic non-adiabatic quantum tunneling
Nakamura, Katsuhiro; Kohi, Akihisa; Yamasaki, Hisatsugu; Perez-Garcia, Victor M.
2006-01-01
We study the dynamics of two-component Bose-Einstein condensates trapped in different vertical positions in the presence of an oscillating magnetic field. It is shown here how tuning appropriately the oscillation frequency of the magnetic field leads to the levitation of the system against gravity. This phenomenon is a manifestation of a macroscopic non-adiabatic tunneling in a system with internal degrees of freedom.
Tiwari, Vivek; Peters, William K.; Jonas, David M.
2017-10-01
Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.
Nonadiabatic Spin Torque Investigated Using Thermally Activated Magnetic Domain Wall Dynamics
Eltschka, M.; Woetzel, Mathias; Rhensius, J.
2010-01-01
of the DW as a quasiparticle in a one-dimensional potential landscape. By injecting small currents, the potential is modified, allowing for the determination of the nonadiabatic spin torque: βt=0.010±0.004 for a transverse DW and βv=0.073±0.026 for a vortex DW. The larger value is attributed to the higher...
Coïsson, M. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Barrera, G. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); University of Torino, Chemistry Department, via P. Giuria 7, 10125 Torino (Italy); Celegato, F.; Martino, L.; Vinai, F. [INRIM, strada delle Cacce 91, 10135 Torino (Italy); Martino, P. [Politronica srl, via Livorno 60, 10144 Torino (Italy); Ferraro, G. [Center for Space Human Robotics, Istituto Italiano di Tecnologia - IIT, corso Trento 21, 10129 Torino (Italy); Tiberto, P. [INRIM, strada delle Cacce 91, 10135 Torino (Italy)
2016-10-01
An experimental setup for magnetic hyperthermia operating in non-adiabatic conditions is described. A thermodynamic model that takes into account the heat exchanged by the sample with the surrounding environment is developed. A suitable calibration procedure is proposed that allows the experimental validation of the model. Specific absorption rate can then be accurately determined just from the measurement of the sample temperature at the equilibrium steady state. The setup and the measurement procedure represent a simplification with respect to other systems requiring calorimeters or crucial corrections for heat flow. Two families of magnetic nanoparticles, one superparamagnetic and one characterised by larger sizes and static hysteresis, have been characterised as a function of field intensity, and specific absorption rate and intrinsic loss power have been obtained. - Highlights: • Development and thermodynamic modelling of a hyperthermia setup operating in non-adiabatic conditions. • Calibration of the experimental setup and validation of the model. • Accurate measurement of specific absorption rate and intrinsic loss power in non-adiabatic conditions.
Sequential nonadiabatic excitation of large molecules and ions driven by strong laser fields
Markevitch, Alexei N.; Levis, Robert J.; Romanov, Dmitri A.; Smith, Stanley M.; Schlegel, H. Bernhard; Ivanov, Misha Yu.
2004-01-01
Electronic processes leading to dissociative ionization of polyatomic molecules in strong laser fields are investigated experimentally, theoretically, and numerically. Using time-of-flight ion mass spectroscopy, we study the dependence of fragmentation on laser intensity for a series of related molecules and report regular trends in this dependence on the size, symmetry, and electronic structure of a molecule. Based on these data, we develop a model of dissociative ionization of polyatomic molecules in intense laser fields. The model is built on three elements: (i) nonadiabatic population transfer from the ground electronic state to the excited-state manifold via a doorway (charge-transfer) transition; (ii) exponential enhancement of this transition by collective dynamic polarization of all electrons, and (iii) sequential energy deposition in both neutral molecules and resulting molecular ions. The sequential nonadiabatic excitation is accelerated by a counterintuitive increase of a large molecule's polarizability following its ionization. The generic theory of sequential nonadiabatic excitation forms a basis for quantitative description of various nonlinear processes in polyatomic molecules and ions in strong laser fields
Semiclassical Monte Carlo: A first principles approach to non-adiabatic molecular dynamics
White, Alexander J.; Gorshkov, Vyacheslav N.; Wang, Ruixi; Tretiak, Sergei; Mozyrsky, Dmitry
2014-01-01
Modeling the dynamics of photophysical and (photo)chemical reactions in extended molecular systems is a new frontier for quantum chemistry. Many dynamical phenomena, such as intersystem crossing, non-radiative relaxation, and charge and energy transfer, require a non-adiabatic description which incorporate transitions between electronic states. Additionally, these dynamics are often highly sensitive to quantum coherences and interference effects. Several methods exist to simulate non-adiabatic dynamics; however, they are typically either too expensive to be applied to large molecular systems (10's-100's of atoms), or they are based on ad hoc schemes which may include severe approximations due to inconsistencies in classical and quantum mechanics. We present, in detail, an algorithm based on Monte Carlo sampling of the semiclassical time-dependent wavefunction that involves running simple surface hopping dynamics, followed by a post-processing step which adds little cost. The method requires only a few quantities from quantum chemistry calculations, can systematically be improved, and provides excellent agreement with exact quantum mechanical results. Here we show excellent agreement with exact solutions for scattering results of standard test problems. Additionally, we find that convergence of the wavefunction is controlled by complex valued phase factors, the size of the non-adiabatic coupling region, and the choice of sampling function. These results help in determining the range of applicability of the method, and provide a starting point for further improvement
Impact of Turbocharger Non-Adiabatic Operation on Engine Volumetric Efficiency and Turbo Lag
S. Shaaban
2012-01-01
Full Text Available Turbocharger performance significantly affects the thermodynamic properties of the working fluid at engine boundaries and hence engine performance. Heat transfer takes place under all circumstances during turbocharger operation. This heat transfer affects the power produced by the turbine, the power consumed by the compressor, and the engine volumetric efficiency. Therefore, non-adiabatic turbocharger performance can restrict the engine charging process and hence engine performance. The present research work investigates the effect of turbocharger non-adiabatic performance on the engine charging process and turbo lag. Two passenger car turbochargers are experimentally and theoretically investigated. The effect of turbine casing insulation is also explored. The present investigation shows that thermal energy is transferred to the compressor under all circumstances. At high rotational speeds, thermal energy is first transferred to the compressor and latter from the compressor to the ambient. Therefore, the compressor appears to be “adiabatic” at high rotational speeds despite the complex heat transfer processes inside the compressor. A tangible effect of turbocharger non-adiabatic performance on the charging process is identified at turbocharger part load operation. The turbine power is the most affected operating parameter, followed by the engine volumetric efficiency. Insulating the turbine is recommended for reducing the turbine size and the turbo lag.
Trajectory-based nonadiabatic dynamics with time-dependent density functional theory.
Curchod, Basile F E; Rothlisberger, Ursula; Tavernelli, Ivano
2013-05-10
Understanding the fate of an electronically excited molecule constitutes an important task for theoretical chemistry, and practical implications range from the interpretation of atto- and femtosecond spectroscopy to the development of light-driven molecular machines, the control of photochemical reactions, and the possibility of capturing sunlight energy. However, many challenging conceptual and technical problems are involved in the description of these phenomena such as 1) the failure of the well-known Born-Oppenheimer approximation; 2) the need for accurate electronic properties such as potential energy surfaces, excited nuclear forces, or nonadiabatic coupling terms; and 3) the necessity of describing the dynamics of the photoexcited nuclear wavepacket. This review provides an overview of the current methods to address points 1) and 3) and shows how time-dependent density functional theory (TDDFT) and its linear-response extension can be used for point 2). First, the derivation of Ehrenfest dynamics and nonadiabatic Bohmian dynamics is discussed and linked to Tully's trajectory surface hopping. Second, the coupling of these trajectory-based nonadiabatic schemes with TDDFT is described in detail with special emphasis on the derivation of the required electronic structure properties. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonadiabatic excited-state molecular dynamics: On-the-fly limiting of essential excited states
Nelson, Tammie [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Naumov, Artem [Skolkovo Institute of Science and Technology, Moscow 143026 (Russian Federation); Fernandez-Alberti, Sebastian [Universidad Nacional de Quilmes, Roque Saenz Pea 352, B1876BXD Bernal (Argentina); Tretiak, Sergei, E-mail: serg@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2016-12-20
The simulation of nonadiabatic dynamics in extended molecular systems involving hundreds of atoms and large densities of states is particularly challenging. Nonadiabatic coupling terms (NACTs) represent a significant numerical bottleneck in surface hopping approaches. Rather than using unreliable NACT cutting schemes, here we develop “on-the-fly” state limiting methods to eliminate states that are no longer essential for the non-radiative relaxation dynamics as a trajectory proceeds. We propose a state number criteria and an energy-based state limit. The latter is more physically relevant by requiring a user-imposed energy threshold. For this purpose, we introduce a local kinetic energy gauge by summing contributions from atoms within the spatial localization of the electronic wavefunction to define the energy available for upward hops. The proposed state limiting schemes are implemented within the nonadiabatic excited-state molecular dynamics framework to simulate photoinduced relaxation in poly-phenylene vinylene (PPV) and branched poly-phenylene ethynylene (PPE) oligomers for benchmark evaluation.
Nonadiabatic effects in C-Br bond scission in the photodissociation of bromoacetyl chloride
Valero, Rosendo; Truhlar, Donald G.
2006-01-01
Bromoacetyl chloride photodissociation has been interpreted as a paradigmatic example of a process in which nonadiabatic effects play a major role. In molecular beam experiments by Butler and co-workers [J. Chem. Phys. 95, 3848 (1991); J. Chem. Phys. 97, 355 (1992)], BrCH 2 C(O)Cl was prepared in its ground electronic state (S 0 ) and excited with a laser at 248 nm to its first excited singlet state (S 1 ). The two main ensuing photoreactions are the ruptures of the C-Cl bond and of the C-Br bond. A nonadiabatic model was proposed in which the C-Br scission is strongly suppressed due to nonadiabatic recrossing at the barrier formed by the avoided crossing between the S 1 and S 2 states. Recent reduced-dimensional dynamical studies lend support to this model. However, another interpretation that has been given for the experimental results is that the reduced probability of C-Br scission is a consequence of incomplete intramolecular energy redistribution. To provide further insight into this problem, we have studied the energetically lowest six singlet electronic states of bromoacetyl chloride by using an ab initio multiconfigurational perturbative electronic structure method. Stationary points (minima and saddle points) and minimum energy paths have been characterized on the S 0 and S 1 potential energy surfaces. The fourfold way diabatization method has been applied to transform five adiabatic excited electronic states to a diabatic representation. The diabatic potential energy matrix of the first five excited singlet states has been constructed along several cuts of the potential energy hypersurfaces. The thermochemistry of the photodissociation reactions and a comparison with experimental translational energy distributions strongly suggest that nonadiabatic effects dominate the C-Br scission, but that the reaction proceeds along the energetically allowed diabatic pathway to excited-state products instead of being nonadiabatically suppressed. This conclusion is
Peters, William K.; Tiwari, Vivek; Jonas, David M.
2017-11-01
The nonadiabatic states and dynamics are investigated for a linear vibronic coupling Hamiltonian with a static electronic splitting and weak off-diagonal Jahn-Teller coupling through a single vibration with a vibrational-electronic resonance. With a transformation of the electronic basis, this Hamiltonian is also applicable to the anti-correlated vibration in a symmetric homodimer with marginally strong constant off-diagonal coupling, where the non-adiabatic states and dynamics model electronic excitation energy transfer or self-exchange electron transfer. For parameters modeling a free-base naphthalocyanine, the nonadiabatic couplings are deeply quantum mechanical and depend on wavepacket width; scalar couplings are as important as the derivative couplings that are usually interpreted to depend on vibrational velocity in semiclassical curve crossing or surface hopping theories. A colored visualization scheme that fully characterizes the non-adiabatic states using the exact factorization is developed. The nonadiabatic states in this nested funnel have nodeless vibrational factors with strongly avoided zeroes in their vibrational probability densities. Vibronic dynamics are visualized through the vibrational coordinate dependent density of the time-dependent dipole moment in free induction decay. Vibrational motion is amplified by the nonadiabatic couplings, with asymmetric and anisotropic motions that depend upon the excitation polarization in the molecular frame and can be reversed by a change in polarization. This generates a vibrational quantum beat anisotropy in excess of 2/5. The amplitude of vibrational motion can be larger than that on the uncoupled potentials, and the electronic population transfer is maximized within one vibrational period. Most of these dynamics are missed by the adiabatic approximation, and some electronic and vibrational motions are completely suppressed by the Condon approximation of a coordinate-independent transition dipole between
Many electron effects in semiconductor quantum dots
Semiconductor quantum dots (QDs) exhibit shell structures, very similar to atoms. Termed as 'artificial atoms' by some, they are much larger (1 100 nm) than real atoms. One can study a variety of manyelectron effects in them, which are otherwise difficult to observe in a real atom. We have treated these effects within the ...
Du, Likai; Lan, Zhenggang
2015-04-14
Nonadiabatic dynamics simulations have rapidly become an indispensable tool for understanding ultrafast photochemical processes in complex systems. Here, we present our recently developed on-the-fly nonadiabatic dynamics package, JADE, which allows researchers to perform nonadiabatic excited-state dynamics simulations of polyatomic systems at an all-atomic level. The nonadiabatic dynamics is based on Tully's surface-hopping approach. Currently, several electronic structure methods (CIS, TDHF, TDDFT(RPA/TDA), and ADC(2)) are supported, especially TDDFT, aiming at performing nonadiabatic dynamics on medium- to large-sized molecules. The JADE package has been interfaced with several quantum chemistry codes, including Turbomole, Gaussian, and Gamess (US). To consider environmental effects, the Langevin dynamics was introduced as an easy-to-use scheme into the standard surface-hopping dynamics. The JADE package is mainly written in Fortran for greater numerical performance and Python for flexible interface construction, with the intent of providing open-source, easy-to-use, well-modularized, and intuitive software in the field of simulations of photochemical and photophysical processes. To illustrate the possible applications of the JADE package, we present a few applications of excited-state dynamics for various polyatomic systems, such as the methaniminium cation, fullerene (C20), p-dimethylaminobenzonitrile (DMABN) and its primary amino derivative aminobenzonitrile (ABN), and 10-hydroxybenzo[h]quinoline (10-HBQ).
Zareh, Masoud; Heidari, Mohammad Ghorbani [Islamic Azad University, Tehran (Iran, Islamic Republic of)
2016-07-15
This research represents an experimental investigation of the metastable flow and re-condensation phenomenon through non-adiabatic lateral helical capillary tubes and suction tube heat exchanger. The results show that mass flux ratio has a vital role: It affects metastable flow and also reverse heat transfer phenomenon through non-adiabatic helical capillary tube. Therefore, by increasing of the mass flux ratio, the rate of heat transfer between them decreases. In contrast to the strong rate condition of heat transfer between them, reverse heat transfer or re-condensation maybe happen. Moreover, experimental results show that for R134 flow with mass flux ratio more than 57.84, metastable flow exists in non-adiabatic capillary tube with 0.9144 mm inner diameter, 30 mm coil diameter, 6.18 m length, 4 mm inner diameter of compressor suction tube.
Propagation and diffusion-limited extinction of nonadiabatic heterogeneous flame in the SHS process
Makino, Atsushi
1994-01-01
Nonadiabatic heterogeneous flame propagation and extinction in self-propagating high-temperature synthesis (SHS) are analyzed based on a premixed mode of propagation for the bulk flame supported by the nonpremixed reaction of dispersed nonmetals in the liquid metal. The formulation allows for volumetric heat loss throughout the bulk flame, finite-rate Arrhenius reaction at the particle surface, and temperature-sensitive Arrhenius mass diffusion in the liquid. Results show that, subsequent to melting of the metal, the flame structure consists of a relatively thin diffusion-consumption/convection zone followed by a relatively thick convection-loss zone, that the flame propagation rate decreases with increasing heat loss, that at a critical heat-loss rate the flame extinguishes as indicated by the characteristic turning-point behavior, that the surface reaction is diffusion limited such that the nonlinear, temperature-sensitive nature of the system is actually a consequence of the Arrhenius mass diffusion, and that extinction is sensitively affected by the mixture ratio, the degree of dilution, the initial temperature of the compact, and the size of the nonmetal particles. An explicit expression is derived for the normalized mass burning rate, which exhibits the characteristic turning point and shows that extinction occurs when this value is reduced to e -1/2 , which is the same as that for the nonadiabatic gaseous premixed flame. It is further shown that the theoretical results agree well with available experimental data, indicating that the present formulation captures the essential features of the nonadiabatic heterogeneous SHS processes and its potential for extension to describe other SHS phenomena
Multiple coupled landscapes and non-adiabatic dynamics with applications to self-activating genes.
Chen, Cong; Zhang, Kun; Feng, Haidong; Sasai, Masaki; Wang, Jin
2015-11-21
Many physical, chemical and biochemical systems (e.g. electronic dynamics and gene regulatory networks) are governed by continuous stochastic processes (e.g. electron dynamics on a particular electronic energy surface and protein (gene product) synthesis) coupled with discrete processes (e.g. hopping among different electronic energy surfaces and on and off switching of genes). One can also think of the underlying dynamics as the continuous motion on a particular landscape and discrete hoppings among different landscapes. The main difference of such systems from the intra-landscape dynamics alone is the emergence of the timescale involved in transitions among different landscapes in addition to the timescale involved in a particular landscape. The adiabatic limit when inter-landscape hoppings are fast compared to continuous intra-landscape dynamics has been studied both analytically and numerically, but the analytical treatment of the non-adiabatic regime where the inter-landscape hoppings are slow or comparable to continuous intra-landscape dynamics remains challenging. In this study, we show that there exists mathematical mapping of the dynamics on 2(N) discretely coupled N continuous dimensional landscapes onto one single landscape in 2N dimensional extended continuous space. On this 2N dimensional landscape, eddy current emerges as a sign of non-equilibrium non-adiabatic dynamics and plays an important role in system evolution. Many interesting physical effects such as the enhancement of fluctuations, irreversibility, dissipation and optimal kinetics emerge due to non-adiabaticity manifested by the eddy current illustrated for an N = 1 self-activator. We further generalize our theory to the N-gene network with multiple binding sites and multiple synthesis rates for discretely coupled non-equilibrium stochastic physical and biological systems.
Non-adiabatic description of proton emission from the odd-odd nucleus 130Eu
Patial Monika
2014-03-01
Full Text Available We discuss the non-adiabatic quasiparticle approach for calculating the rotational spectra and decay width of odd-odd proton emitters. The Coriolis effects are incorporated in both the parent and daughter wave functions. Results for the two probable ground states (1+ and 2+ of the proton emitter 130Eu are discussed. With our calculations, we confirm the proton emitting state to be the Iπ = 1+ state, irrespective of the strength of the Coriolis interaction. This study provides us with an opportunity to look into the details of wave functions of deformed odd-odd nuclei to which the proton emission halflives are quite sensitive.
Wang, Yu; Chou, Chia-Chun
2018-05-01
The coupled complex quantum Hamilton-Jacobi equations for electronic nonadiabatic transitions are approximately solved by propagating individual quantum trajectories in real space. Equations of motion are derived through use of the derivative propagation method for the complex actions and their spatial derivatives for wave packets moving on each of the coupled electronic potential surfaces. These equations for two surfaces are converted into the moving frame with the same grid point velocities. Excellent wave functions can be obtained by making use of the superposition principle even when nodes develop in wave packet scattering.
Kumar, D. Sanjeev [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Mukhopadhyay, Soma [H & S Department of Physics, CMR College of Engineering and Technology, Kandlakoya, Medchal Road, Hyderabad 501 401 (India); Chatterjee, Ashok [School of Physics, University of Hyderabad, Hyderabad 500046 (India)
2016-11-15
The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.
Kumar, D. Sanjeev; Mukhopadhyay, Soma; Chatterjee, Ashok
2016-01-01
The effect of electron–electron interaction and the Rashba and Dresselhaus spin–orbit interactions on the electronic properties of a many-electron system in a parabolically confined quantum dot placed in an external magnetic field is studied. With a simple and physically reasonable model potential for electron–electron interaction term, the problem is solved exactly to second-order in the spin–orbit coupling constants to obtain the energy spectrum, the chemical potential, addition energy and the spin-splitting energy.
Approximations to the non-adiabatic particle response in toroidal geometry
Schep, T.J.; Braams, B.J.
1981-08-01
The non-adiabatic part of the particle response to low-frequency electromagnetic modes with long parallel wavelengths is discussed. Analytic approximations to the kernels of the integrals that relate the amplitudes of the perturbed potentials to the non-adiabatic part of the perturbed density in an axisymmetric toroidal configuration are presented and the results are compared with numerical calculations. It is shown that both in the plane slab and in toroidal geometry the kernel contains a logarithmic singularity. This singularity is associated with particles with vanishing parallel velocity so that, in toroidal geometry, it is related with the behaviour of trapped particles near their turning points. In contrast to the plane slab, in toroidal geometry this logarithmic singularity is mainly real and associated with non-resonant particles. Apart from this logarithmic term, the kernel contains a complex regular part arising from resonant as well as from non-resonant particles. The analytic approximations that will be presented make the dispersion relation of drift-type modes in toroidal geometry amenable to analytic as well as to simpler numerical calculation of the growth rate and of the spatial mode structure
Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing
2016-06-22
Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.
Non-adiabatic pressure loss boundary condition for modelling turbocharger turbine pulsating flow
Chiong, M.S.; Rajoo, S.; Romagnoli, A.; Costall, A.W.; Martinez-Botas, R.F.
2015-01-01
Highlights: • Bespoke non-adiabatic pressure loss boundary for pulse flow turbine modelling. • Predictions show convincing results against experimental and literature data. • Predicted pulse pressure propagation is in good agreement with literature data. • New methodology is time efficient and requires minimal geometrical inputs. - Abstract: This paper presents a simplified methodology of pulse flow turbine modelling, as an alternative over the meanline integrated methodology outlined in previous work, in order to make its application to engine cycle simulation codes much more straight forward. This is enabled through the development of a bespoke non-adiabatic pressure loss boundary to represent the turbine rotor. In this paper, turbocharger turbine pulse flow performance predictions are presented along with a comparison of computation duration against the previously established integrated meanline method. Plots of prediction deviation indicate that the mass flow rate and actual power predictions from both methods are highly comparable and are reasonably close to experimental data. However, the new boundary condition required significantly lower computational time and rotor geometrical inputs. In addition, the pressure wave propagation in this simplified unsteady turbine model at different pulse frequencies has also been found to be in agreement with data from the literature, thereby supporting the confidence in its ability to simulate the wave action encountered in turbine pulse flow operation
Franck--Condon factors in studies of dynamics of chemical reactions. IV. Nonadiabatic collisions
Zvijac, D.J.; Ross, J.
1978-01-01
We investigate the application of the Franck--Condon approach to nonadiabatic molecular scattering processes. Computationally simple, analytic formulas are developed to describe the energy dependence of quenching of electronically excited atoms by atoms and molecules. These formulas include the dependence of the Franck--Condon factors on the translational wavefunctions as well as the wavefunctions for the internal degrees of freedom. We use these formulas to evaluate the translational energy dependence of the fine structure transition cross sections for F( 2 P/sub 3/2/)+X→F( 2 P/sub 1/2/)+X, where X= Xe, H + , and H 2 . The cross sections generally increase as the initial translational energy increases. Our results agree semiquantiatively (or better) with those obtained from other theoretical techniques. In the case of F+H + we find that the absolute cross section is sensitive to the analytic form used for the nonadiabatic coupling but our model gives the correct energy dependence. At the energies of our calculations we find only a small amount of vibrational excitation of H 2 . Finally, we use our expressions to interpret some trends of available experimental results on the quenching of Hg ( 3 P 2 → 3 P 1 ) by several molecules. We find that collisional excitation of the internal modes of the molecule becomes more important as the initial translational energy increases. However, these modes do not contribute to the quenching cross section in a statistical fashion
Coulomb Repulsion Effect in Two-electron Non-adiabatic Tunneling through a One-level redox Molecule
Medvedev, Igor M.; Kuznetsov, Alexander M.; Ulstrup, Jens
2009-01-01
We investigated Coulomb repulsion effects in nonadiabatic (diabatic) two-electron tunneling through a redox molecule with a single electronic level in a symmetric electrochemical contact under ambient conditions, i.e., room temperature and condensed matter environment. The electrochemical contact...
Ghosh, Jayanta; Bhattacharya, Atanu, E-mail: atanub@ipc.iisc.ernet.in
2016-01-13
Highlights: • Decomposition mechanisms of model energetic salt, guanidium triazolate, are explored. • Decomposition pathways are electronically nonadiabatic. • CASPT2, CASMP2 and CASSCF methodologies are employed. • N{sub 2} and NH{sub 3} are predicted to be the most possible initial decomposition products. - Abstract: Electronically nonadiabatic decomposition pathways of guanidium triazolate are explored theoretically. Nonadiabatically coupled potential energy surfaces are explored at the complete active space self-consistent field (CASSCF) level of theory. For better estimation of energies complete active space second order perturbation theories (CASPT2 and CASMP2) are also employed. Density functional theory (DFT) with B3LYP functional and MP2 level of theory are used to explore subsequent ground state decomposition pathways. In comparison with all possible stable decomposition products (such as, N{sub 2}, NH{sub 3}, HNC, HCN, NH{sub 2}CN and CH{sub 3}NC), only NH{sub 3} (with NH{sub 2}CN) and N{sub 2} are predicted to be energetically most accessible initial decomposition products. Furthermore, different conical intersections between the S{sub 1} and S{sub 0} surfaces, which are computed at the CASSCF(14,10)/6-31G(d) level of theory, are found to play an essential role in the excited state deactivation process of guanidium triazolate. This is the first report on the electronically nonadiabatic decomposition mechanisms of isolated guanidium triazolate salt.
Bochenkova, Anastasia; Andersen, Lars Henrik
2013-01-01
The anionic wild-type Green Fluorescent Protein (GFP) chromophore defines the entire class of naturally occurring chromophores, which are based on the oxydized tyrosine side chain. The GFP chromophore exhibits an enriched photoinduced non-adiabatic dynamics in the multiple excited-state decay cha...
On the Magnitude of the Nonadiabatic Error for Highly Coupled Radicals
Stanton, J. F.
2009-06-01
A review is given of recent advances in the construction of (quasi)diabatic model Hamiltonians and their application to analyzing the spectroscopy of molecules with strong vibronic coupling. A numerical application to the vibronic levels of the BNB radical below 0.6 eV is presented, together with corresponding adiabatic (quantum chemistry) calculations. The agreement with the experimental levels is nearly quantitative with the model Hamiltonian, attesting to the power of the approach. On the contrary, it is also revealed that the magnitude of the nonadiabatic contributions to the zero-point energy and the lowest fundamental frequency of the coupling mode are considerably larger than expected, at least by your narrator.
Martens, Craig C., E-mail: cmartens@uci.edu
2016-12-20
In this paper, we revisit the semiclassical Liouville approach to describing molecular dynamics with electronic transitions using classical trajectories. Key features of the formalism are highlighted. The locality in phase space and presence of nonclassical terms in the generalized Liouville equations are emphasized and discussed in light of trajectory surface hopping methodology. The representation dependence of the coupled semiclassical Liouville equations in the diabatic and adiabatic bases are discussed and new results for the transformation theory of the Wigner functions representing the corresponding density matrix elements given. We show that the diagonal energies of the state populations are not conserved during electronic transitions, as energy is stored in the electronic coherence. We discuss the implications of this observation for the validity of imposing strict energy conservation in trajectory based methods for simulating nonadiabatic processes.
Nonadiabatic calculations for tdμ relevant for muon catalyzed fusion
Szalewicz, K.; Jeziorski, B.
1991-01-01
Due to the mass effect, muonic molecular ions are about 200 times smaller than their electronic counterparts. The proximity of the nuclei in the tdμ ion results in fusion taking place within a picosecond. The properties of this ion are central to understanding the phenomenon of muon catalysis. The authors developed a computational method of solving the nonadiabatic Schroedinger equation for the bound and resonance states of tdμ and its isotopic analogues. The method takes into account both the Coulomb interactions and the strong nuclear forces responsible for the fusion reaction. The wave functions obtained from this method were used to predict very accurately branching ratios and transition rates relevant for various stages of the muon catalytic cycle. Knowledge of these quantities will guide the experiments and help to answer the question of feasibility of net energy production via muon catalysis
Particle pitch angle diffusion due to nonadiabatic effects in the plasma sheet
Gray, P.C.; Lee, L.C.
1982-01-01
In order to understand certain aspects of the plasma sheet dynamics, a numerical study of the nonadiabatic behavior of particles in a model field geometry is performed. The particle's magnetic moment as a function of time is calculated for various initial parameters, corresponding to various particle energies and degrees of field curvature. It is shown that the magnetic moment changes as the particle passes through the plasma sheet and that the magnitude of the change is related to the curvature of the field at the middle of the plasma sheet. The relation of the magnitude of the change in magnetic moment to the particle's pitch and phase angles as it passes through the sheet is numerically resolved. The nature of the change may be considered as a mechanism for pitch angle diffusion, and the diffusion coefficient is calculated. This scattering mechanism is significant for plasma sheet ions (1--10 keV) as well as energetic electrons (>100 keV)
Generalization of the geometric optical series approach for nonadiabatic scattering problems
Herman, M.F.
1982-01-01
The geometric optical series approach of Bremmer is generalized for multisurface nonadiabatic scattering problems. This method yields the formal solution of the Schroedinger equation as an infinite series of multiple integrals. The zeroth order term corresponds to WKB propagation on a single adiabatic surface, while the general Nth order term involves N reflections and/or transitions between surfaces accompanied by ''free,'' single surface semiclassical propagation between the points of reflection and transition. Each term is integrated over all possible transition and reflection points. The adiabatic and diabatic limits of this expression are discussed. Numerical results, in which all reflections are ignored, are presented for curve crossing and noncrossing problems. These results are compared to exact quantum results and are shown to be highly accurate
Nonadiabatic theory of strong-field atomic effects under elliptical polarization
Wang Xu; Eberly, J. H.
2012-01-01
Elliptically polarized laser fields provide a new channel for access to strong-field processes that are either suppressed or not present under linear polarization. Quantum theory is mostly unavailable for their analysis, and we report here results of a systematic study based on a classical ensemble theory with solution of the relevant ab inito time-dependent Newton equations for selected model atoms. The study's approach is necessarily nonadiabatic, as it follows individual electron trajectories leading to single, double, and triple ionizations. Of particular interest are new results bearing on open questions concerning experimental reports of unexplained species dependences as well as double-electron release times that are badly matched by a conventional adiabatic quantum tunneling theory. We also report the first analysis of electron trajectories for sequential and non-sequential triple ionization.
Nonadiabatic quantum dynamics and laser control of Br2 in solid argon.
Accardi, A; Borowski, A; Kühn, O
2009-07-02
A five-dimensional reaction surface-vibronic coupling model is introduced to describe the B- to C-state predissociation dynamics of Br(2) occupying a double substitutional lattice site in a face-centered cubic argon crystal at low temperatures. The quantum dynamics driven by a Franck-Condon vertical excitation is investigated, revealing the role of matrix cage compression for efficient nonadiabatic transitions. Vibrational preexcitation of the Br(2) bond in the electronic ground state can be used to access a different regime of predissociation which does not require substantial matrix compression because the Franck-Condon window shifts into the energetic range of the B-C level crossing. Using optimal control theory, it is shown how vibrational preexcitation can be achieved via a pump-dump-type mechanism involving the repulsive C state.
Nelson, Tammie Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tretiak, Sergei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-06
Understanding and controlling excited state dynamics lies at the heart of all our efforts to design photoactive materials with desired functionality. This tailor-design approach has become the standard for many technological applications (e.g., solar energy harvesting) including the design of organic conjugated electronic materials with applications in photovoltaic and light-emitting devices. Over the years, our team has developed efficient LANL-based codes to model the relevant photophysical processes following photoexcitation (spatial energy transfer, excitation localization/delocalization, and/or charge separation). The developed approach allows the non-radiative relaxation to be followed on up to ~10 ps timescales for large realistic molecules (hundreds of atoms in size) in the realistic solvent dielectric environment. The Collective Electronic Oscillator (CEO) code is used to compute electronic excited states, and the Non-adiabatic Excited State Molecular Dynamics (NA-ESMD) code is used to follow the non-adiabatic dynamics on multiple coupled Born-Oppenheimer potential energy surfaces. Our preliminary NA-ESMD simulations have revealed key photoinduced mechanisms controlling competing interactions and relaxation pathways in complex materials, including organic conjugated polymer materials, and have provided a detailed understanding of photochemical products and intermediates and the internal conversion process during the initiation of energetic materials. This project will be using LANL-based CEO and NA-ESMD codes to model nonradiative relaxation in organic and energetic materials. The NA-ESMD and CEO codes belong to a class of electronic structure/quantum chemistry codes that require large memory, “long-queue-few-core” distribution of resources in order to make useful progress. The NA-ESMD simulations are trivially parallelizable requiring ~300 processors for up to one week runtime to reach a meaningful restart point.
Humeniuk, Alexander; Mitrić, Roland
2017-12-01
A software package, called DFTBaby, is published, which provides the electronic structure needed for running non-adiabatic molecular dynamics simulations at the level of tight-binding DFT. A long-range correction is incorporated to avoid spurious charge transfer states. Excited state energies, their analytic gradients and scalar non-adiabatic couplings are computed using tight-binding TD-DFT. These quantities are fed into a molecular dynamics code, which integrates Newton's equations of motion for the nuclei together with the electronic Schrödinger equation. Non-adiabatic effects are included by surface hopping. As an example, the program is applied to the optimization of excited states and non-adiabatic dynamics of polyfluorene. The python and Fortran source code is available at http://www.dftbaby.chemie.uni-wuerzburg.de.
Li, Keqiao; Cai, Dehua; Liu, Yue; Jiang, Jingkai; Sun, Wei; He, Guogeng
2017-01-01
Graphical abstract: A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle using R290/refrigeration oil has been thermodynamically analyzed. Influences of the ejector and the non-adiabatic absorber applications on the system performance and other system operation parameters have been investigated. The simulation results will be of great help to the miniaturization and practical application of the air-cooled absorption refrigeration system. - Highlights: • A novel air-cooled non-adiabatic ejection-absorption refrigeration cycle is proposed. • Influences of the ejector and the air-cooled non-adiabatic absorber applications on the system performance are investigated. • Variations of system performance and other system operation parameters are investigated. • R290/refrigeration oil mixture used as working pairs is analyzed. - Abstract: This paper thermodynamically analyzes a novel air-cooled non-adiabatic ejection-absorption refrigeration cycle with R290/oil mixture driven by exhaust heat. An ejector located at the upstream of the non-adiabatic absorber is employed to improve the cycle performance. Variations of COP, circulation ratio and component heat load of the system as a function of generating temperature, pressure ratio, absorption temperature, condensing temperature and evaporating temperature have been investigated in this work. The simulation results show that, compared with the conventional absorption refrigeration cycle, this non-adiabatic ejection-absorption refrigeration cycle has higher absorption efficiency, better performance, wider working condition range and lower total heat load and its COP can reach as high as 0.5297. The implementation of the ejector and the non-adiabatic absorber helps to realize the miniaturization and wider application of the absorption refrigeration system. In addition, R290/oil mixture is a kind of highly potential working pairs for absorption refrigeration.
Mendieta-Moreno, Jesús I; Trabada, Daniel G; Mendieta, Jesús; Lewis, James P; Gómez-Puertas, Paulino; Ortega, José
2016-11-03
The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.
Denisov, S.; Flach, S.; Ovchinnikov, A. A.
2002-01-01
We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response is em...... is employed to explain the effect. We consider a case of a particle in a periodic potential as an example and discuss the relevant symmetry breakings and the mechanisms of rectification of the current in such a system.......We consider low-dimensional dynamical systems exposed to a heat bath and to additional ac fields. The presence of these ac fields may lead to a breaking of certain spatial or temporal symmetries, which in turn cause nonzero averages of relevant observables. Nonlinear (non)adiabatic response...
Joubert-Doriol, Loïc; Izmaylov, Artur F.
2018-03-01
A new methodology of simulating nonadiabatic dynamics using frozen-width Gaussian wavepackets within the moving crude adiabatic representation with the on-the-fly evaluation of electronic structure is presented. The main feature of the new approach is the elimination of any global or local model representation of electronic potential energy surfaces; instead, the electron-nuclear interaction is treated explicitly using the Gaussian integration. As a result, the new scheme does not introduce any uncontrolled approximations. The employed variational principle ensures the energy conservation and leaves the number of electronic and nuclear basis functions as the only parameter determining the accuracy. To assess performance of the approach, a model with two electronic and two nuclear spacial degrees of freedom containing conical intersections between potential energy surfaces has been considered. Dynamical features associated with nonadiabatic transitions and nontrivial geometric (or Berry) phases were successfully reproduced within a limited basis expansion.
Kroeger, J
2008-01-01
Three aspects of electron-phonon coupling at metal surfaces are reviewed. One aspect is the Kohn effect, which describes an anomalous dispersion relation of surface phonons due to quasi-one-dimensional nesting of Fermi surface contours. The combination of electron energy loss spectroscopy and angle-resolved photoelectron spectroscopy allows us to unambiguously characterize Kohn anomaly systems. A second aspect is the nonadiabatic damping of adsorbate vibrations. Characteristic spectroscopic line shapes of vibrational modes allow us to estimate the amount of energy transfer between the vibrational mode and electron-hole pairs. Case studies of a Kohn anomaly and nonadiabatic damping are provided by the hydrogen- and deuterium-covered Mo(110) surface. As a third aspect of interaction between electrons and phonons, local heating of a C 60 molecule adsorbed on Cu(100) and in contact with the tip of a scanning tunnelling microscope is covered
Bak, Keld L.; Jørgensen, Poul; Jensen, H.J.A.
1992-01-01
A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response of a ref......A new scheme for obtaining first-order nonadiabatic coupling matrix elements (FO-NACME) for multiconfigurational self-consistent-field (MCSCF) wave functions is presented. The FO-NACME are evaluated from residues of linear response functions. The residues involve the geometrical response...... to the full configuration interaction limit. Comparisons are made with state-averaged MCSCF results for MgH2 and finite-difference configuration interaction by perturbation with multiconfigurational zeroth-order wave function reflected by interactive process (CIPSI) results for BH....
Constructing quantum dynamics from mixed quantum-classical descriptions
Barsegov, V.; Rossky, P.J.
2004-01-01
The influence of quantum bath effects on the dynamics of a quantum two-level system linearly coupled to a harmonic bath is studied when the coupling is both diagonal and off-diagonal. It is shown that the pure dephasing kernel and the non-adiabatic quantum transition rate between Born-Oppenheimer states of the subsystem can be decomposed into a contribution from thermally excited bath modes plus a zero point energy contribution. This quantum rate can be modewise factorized exactly into a product of a mixed quantum subsystem-classical bath transition rate and a quantum correction factor. This factor determines dynamics of quantum bath correlations. Quantum bath corrections to both the transition rate and the pure dephasing kernel are shown to be readily evaluated via a mixed quantum-classical simulation. Hence, quantum dynamics can be recovered from a mixed quantum-classical counterpart by incorporating the missing quantum bath corrections. Within a mixed quantum-classical framework, a simple approach for evaluating quantum bath corrections in calculation of the non-adiabatic transition rate is presented
Classical analog for electronic degrees of freedom in nonadiabatic collision processes
Meyer, H.; Miller, W.H.
1979-01-01
It is shown how a formally exact classical analog can be defined for a finite dimensional (in Hilbert space) quantum mechanical system. This approach is then used to obtain a classical model for the electronic degrees of freedom in a molecular collision system, and the combination of this with the usual classical description of the heavy particle (i.e., nuclear) motion provides a completely classical model for the electronic and heavy particle degrees of freedom. The resulting equations of motion are shown to be equivalent to describing the electronic degrees of freedom by the time-dependent Schroedinger equation, the time dependence arising from the classical motion of the nuclei, the trajectory of which is determined by the quantum mechanical average (i.e., Ehrenfest) force on the nuclei. Quantizing the system via classical S-matrix theory is shown to provide a dynamically consistent description of nonadiabatic collision processes; i.e., different electronic transitions have different heavy particle trajectories and, for example, the total energy of the electronic and heavy particle degrees of freedom is conserved. Application of this classical model for the electronic degrees of freedom (plus classical S-matrix theory) to the two-state model problem shows that the approach provides a good description of the electronic dynamics
Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms
Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor
2017-12-01
Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.
Hatcher, Elizabeth; Soudackov, Alexander; Hammes-Schiffer, Sharon
2005-01-01
The dynamical aspects of a model proton-coupled electron transfer (PCET) reaction in solution are analyzed with molecular dynamics simulations. The rate for nonadiabatic PCET is expressed in terms of a time-dependent probability flux correlation function. The impact of the proton donor-acceptor and solvent dynamics on the probability flux is examined. The dynamical behavior of the probability flux correlation function is dominated by a solvent damping term that depends on the energy gap correlation function. The proton donor-acceptor motion does not impact the dynamical behavior of the probability flux correlation function but does influence the magnitude of the rate. The approximations previously invoked for the calculation of PCET rates are tested. The effects of solvent damping on the proton donor-acceptor vibrational motion are found to be negligible, and the short-time solvent approximation, in which only equilibrium fluctuations of the solvent are considered, is determined to be valid for these types of reactions. The analysis of PCET reactions is compared to previous analyses of single electron and proton transfer reactions. The dynamical behavior is qualitatively similar for all three types of reactions, but the time scale of the decay of the probability flux correlation function is significantly longer for single proton transfer than for PCET and single electron transfer due to a smaller solvent reorganization energy for proton transfer
Two-level system in spin baths: Non-adiabatic dynamics and heat transport
Segal, Dvira
2014-04-01
We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.
Nonadiabatic Dynamics for Electrons at Second-Order: Real-Time TDDFT and OSCF2.
Nguyen, Triet S; Parkhill, John
2015-07-14
We develop a new model to simulate nonradiative relaxation and dephasing by combining real-time Hartree-Fock and density functional theory (DFT) with our recent open-systems theory of electronic dynamics. The approach has some key advantages: it has been systematically derived and properly relaxes noninteracting electrons to a Fermi-Dirac distribution. This paper combines the new dissipation theory with an atomistic, all-electron quantum chemistry code and an atom-centered model of the thermal environment. The environment is represented nonempirically and is dependent on molecular structure in a nonlocal way. A production quality, O(N(3)) closed-shell implementation of our theory applicable to realistic molecular systems is presented, including timing information. This scaling implies that the added cost of our nonadiabatic relaxation model, time-dependent open self-consistent field at second order (OSCF2), is computationally inexpensive, relative to adiabatic propagation of real-time time-dependent Hartree-Fock (TDHF) or time-dependent density functional theory (TDDFT). Details of the implementation and numerical algorithm, including factorization and efficiency, are discussed. We demonstrate that OSCF2 approaches the stationary self-consistent field (SCF) ground state when the gap is large relative to k(b)T. The code is used to calculate linear-response spectra including the effects of bath dynamics. Finally, we show how our theory of finite-temperature relaxation can be used to correct ground-state DFT calculations.
Non-adiabatic quantum evolution: The S matrix as a geometrical phase factor
Saadi, Y., E-mail: S_yahiadz@yahoo.fr [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria); Maamache, M. [Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences, Université Ferhat Abbas de Sétif, Sétif 19000 (Algeria)
2012-03-19
We present a complete derivation of the exact evolution of quantum mechanics for the case when the underlying spectrum is continuous. We base our discussion on the use of the Weyl eigendifferentials. We show that a quantum system being in an eigenstate of an invariant will remain in the subspace generated by the eigenstates of the invariant, thereby acquiring a generalized non-adiabatic or Aharonov–Anandan geometric phase linked to the diagonal element of the S matrix. The modified Pöschl–Teller potential and the time-dependent linear potential are worked out as illustrations. -- Highlights: ► In this Letter we study the exact quantum evolution for continuous spectra problems. ► We base our discussion on the use of the Weyl eigendifferentials. ► We give a generalized Lewis and Riesenfeld phase for continuous spectra. ► This generalized phase or Aharonov–Anandan geometric phase is linked to the S matrix. ► The modified Pöschl–Teller and the linear potential are worked out as illustrations.
Two-level system in spin baths: Non-adiabatic dynamics and heat transport
Segal, Dvira [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, 80 Saint George St., Toronto, Ontario M5S 3H6 (Canada)
2014-04-28
We study the non-adiabatic dynamics of a two-state subsystem in a bath of independent spins using the non-interacting blip approximation, and derive an exact analytic expression for the relevant memory kernel. We show that in the thermodynamic limit, when the subsystem-bath coupling is diluted (uniformly) over many (infinite) degrees of freedom, our expression reduces to known results, corresponding to the harmonic bath with an effective, temperature-dependent, spectral density function. We then proceed and study the heat current characteristics in the out-of-equilibrium spin-spin-bath model, with a two-state subsystem bridging two thermal spin-baths of different temperatures. We compare the behavior of this model to the case of a spin connecting boson baths, and demonstrate pronounced qualitative differences between the two models. Specifically, we focus on the development of the thermal diode effect, and show that the spin-spin-bath model cannot support it at weak (subsystem-bath) coupling, while in the intermediate-strong coupling regime its rectifying performance outplays the spin-boson model.
Greene, Samuel M; Batista, Victor S
2017-09-12
We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.
Raymond, Neil; Iouchtchenko, Dmitri; Roy, Pierre-Nicholas; Nooijen, Marcel
2018-05-01
We introduce a new path integral Monte Carlo method for investigating nonadiabatic systems in thermal equilibrium and demonstrate an approach to reducing stochastic error. We derive a general path integral expression for the partition function in a product basis of continuous nuclear and discrete electronic degrees of freedom without the use of any mapping schemes. We separate our Hamiltonian into a harmonic portion and a coupling portion; the partition function can then be calculated as the product of a Monte Carlo estimator (of the coupling contribution to the partition function) and a normalization factor (that is evaluated analytically). A Gaussian mixture model is used to evaluate the Monte Carlo estimator in a computationally efficient manner. Using two model systems, we demonstrate our approach to reduce the stochastic error associated with the Monte Carlo estimator. We show that the selection of the harmonic oscillators comprising the sampling distribution directly affects the efficiency of the method. Our results demonstrate that our path integral Monte Carlo method's deviation from exact Trotter calculations is dominated by the choice of the sampling distribution. By improving the sampling distribution, we can drastically reduce the stochastic error leading to lower computational cost.
The effect of nonadiabaticity on the efficiency of quantum memory based on an optical cavity
Veselkova, N. G.; Sokolov, I. V.
2017-07-01
Quantum efficiency is an important characteristic of quantum memory devices that are aimed at recording the quantum state of light signals and its storing and reading. In the case of memory based on an ensemble of cold atoms placed in an optical cavity, the efficiency is restricted, in particular, by relaxation processes in the system of active atomic levels. We show how the effect of the relaxation on the quantum efficiency can be determined in a regime of the memory usage in which the evolution of signals in time is not arbitrarily slow on the scale of the field lifetime in the cavity and when the frequently used approximation of the adiabatic elimination of the quantized cavity mode field cannot be applied. Taking into account the effect of the nonadiabaticity on the memory quality is of interest in view of the fact that, in order to increase the field-medium coupling parameter, a higher cavity quality factor is required, whereas storing and processing of sequences of many signals in the memory implies that their duration is reduced. We consider the applicability of the well-known efficiency estimates via the system cooperativity parameter and estimate a more general form. In connection with the theoretical description of the memory of the given type, we also discuss qualitative differences in the behavior of a random source introduced into the Heisenberg-Langevin equations for atomic variables in the cases of a large and a small number of atoms.
The role of magnetic field fluctuations in nonadiabatic acceleration of ions during dipolarization
Ono, Y.; Nosé, M.; Christon, S. P.; Lui, A. T. Y.
2009-05-01
We statistically examine changes in the composition of two different ion species, proton and oxygen ions, in the near-Earth plasma sheet (X = -16 R E ˜ -6 R E ) during substorm-associated dipolarization. We use 10 years of energetic (9-212 keV/e) ion data obtained by the suprathermal ion composition spectrometer (STICS) sensor of the energetic particles and ion composition (EPIC) instrument on board the Geotail spacecraft. The results are as follows: (1) Although the percentage increase in the energy density of O+ ions before and after a dipolarization exceeds that of H+ ions in the low-energy range (9-36 keV/e), this property is not evident in the high-energy range (56-212 keV/e); (2) the energy spectrum of H+ and that of O+ become harder after dipolarization in almost all events; and (3) in some events the energy spectrum of O+ becomes harder than that of H+ as reported by previous studies, and, importantly, in other events, the spectrum of H+ becomes harder than that of O+. In order to investigate what mechanism causes these observational results, we focus on magnetic field fluctuations during dipolarization. It is found that the increase of the spectrum slope is positively correlated with the power of waves whose frequencies are close to the gyrofrequency of H+ or O+, respectively (the correlation coefficient is 0.48 for H+ and 0.68 for O+). In conclusion, ions are nonadiabatically accelerated by the electric field induced by the magnetic field fluctuations whose frequencies are close to their gyrofrequencies.
Mandal, Anirban; Hunt, Katharine L. C.
2018-05-01
For a perturbed quantum system initially in the ground state, the coefficient ck(t) of excited state k in the time-dependent wave function separates into adiabatic and nonadiabatic terms. The adiabatic term ak(t) accounts for the adjustment of the original ground state to form the new ground state of the instantaneous Hamiltonian H(t), by incorporating excited states of the unperturbed Hamiltonian H0 without transitions; ak(t) follows the adiabatic theorem of Born and Fock. The nonadiabatic term bk(t) describes excitation into another quantum state k; bk(t) is obtained as an integral containing the time derivative of the perturbation. The true transition probability is given by |bk(t)|2, as first stated by Landau and Lifshitz. In this work, we contrast |bk(t)|2 and |ck(t)|2. The latter is the norm-square of the entire excited-state coefficient which is used for the transition probability within Fermi's golden rule. Calculations are performed for a perturbing pulse consisting of a cosine or sine wave in a Gaussian envelope. When the transition frequency ωk0 is on resonance with the frequency ω of the cosine wave, |bk(t)|2 and |ck(t)|2 rise almost monotonically to the same final value; the two are intertwined, but they are out of phase with each other. Off resonance (when ωk0 ≠ ω), |bk(t)|2 and |ck(t)|2 differ significantly during the pulse. They oscillate out of phase and reach different maxima but then fall off to equal final values after the pulse has ended, when ak(t) ≡ 0. If ωk0 ω. While the transition probability is rising, the midpoints between successive maxima and minima fit Gaussian functions of the form a exp[-b(t - d)2]. To our knowledge, this is the first analysis of nonadiabatic transition probabilities during a perturbing pulse.
Kelly, Aaron; Brackbill, Nora; Markland, Thomas E
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Kelly, Aaron; Markland, Thomas E., E-mail: tmarkland@stanford.edu [Department of Chemistry, Stanford University, Stanford, California 94305 (United States); Brackbill, Nora [Department of Physics, Stanford University, Stanford, California 94305 (United States)
2015-03-07
In this article, we show how Ehrenfest mean field theory can be made both a more accurate and efficient method to treat nonadiabatic quantum dynamics by combining it with the generalized quantum master equation framework. The resulting mean field generalized quantum master equation (MF-GQME) approach is a non-perturbative and non-Markovian theory to treat open quantum systems without any restrictions on the form of the Hamiltonian that it can be applied to. By studying relaxation dynamics in a wide range of dynamical regimes, typical of charge and energy transfer, we show that MF-GQME provides a much higher accuracy than a direct application of mean field theory. In addition, these increases in accuracy are accompanied by computational speed-ups of between one and two orders of magnitude that become larger as the system becomes more nonadiabatic. This combination of quantum-classical theory and master equation techniques thus makes it possible to obtain the accuracy of much more computationally expensive approaches at a cost lower than even mean field dynamics, providing the ability to treat the quantum dynamics of atomistic condensed phase systems for long times.
Flow of CO2 ethanol and of CO2 methanol in a non-adiabatic microfluidic T-junction at high pressures
Blanch Ojea, R.; Tiggelaar, Roald M.; Pallares, J.; Grau, F.X.; Gardeniers, Johannes G.E.
2012-01-01
In this work, an experimental investigation of the single- and multiphase flows of two sets of fluids, CO2–ethanol and CO2–methanol, in a non-adiabatic microfluidic T-junction is presented. The operating conditions ranged from 7 to 18 MPa, and from 294 to 474 K. The feed mass fraction of CO2 in the
Castro, A., E-mail: acastro@bifi.es [Institute for Biocomputation and Physics of Complex Systems (BIFI) and Zaragoza Scientific Center for Advanced Modelling (ZCAM), University of Zaragoza, 50018 Zaragoza (Spain); Isla, M. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain); Martinez, Jose I. [Departamento de Fisica Teorica de la Materia Condensada, Universidad Autonoma de Madrid, ES-28049 Madrid (Spain); Alonso, J.A. [Departamento de Fisica Teorica, Atomica y Optica, Universidad de Valladolid, 47005 Valladolid (Spain)
2012-05-03
Graphical abstract: Two trajectories for the collision of a proton with the Lithium tetramer. On the left, the proton is scattered away, and a Li{sub 2} molecule plus two isolated Lithium atoms result. On the right, the proton is captured and a LiH molecule is created. Highlights: Black-Right-Pointing-Pointer Scattering of a proton with Lithium clusters described from first principles. Black-Right-Pointing-Pointer Description based on non-adiabatic molecular dynamics. Black-Right-Pointing-Pointer The electronic structure is described with time-dependent density-functional theory. Black-Right-Pointing-Pointer The method allows to discern reaction channels depending on initial parameters. - Abstract: We have employed non-adiabatic molecular dynamics based on time-dependent density-functional theory to characterize the scattering behavior of a proton with the Li{sub 4} cluster. This technique assumes a classical approximation for the nuclei, effectively coupled to the quantum electronic system. This time-dependent theoretical framework accounts, by construction, for possible charge transfer and ionization processes, as well as electronic excitations, which may play a role in the non-adiabatic regime. We have varied the incidence angles in order to analyze the possible reaction patterns. The initial proton kinetic energy of 10 eV is sufficiently high to induce non-adiabatic effects. For all the incidence angles considered the proton is scattered away, except in one interesting case in which one of the Lithium atoms captures it, forming a LiH molecule. This theoretical formalism proves to be a powerful, effective and predictive tool for the analysis of non-adiabatic processes at the nanoscale.
Xie, Changjian [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Zhu, Xiaolei; Yarkony, David R., E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Ma, Jianyi, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065 (China); Xie, Daiqian, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guo, Hua, E-mail: jianyi.m@gmail.com, E-mail: yarkony@jhu.edu, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2015-03-07
Non-adiabatic processes play an important role in photochemistry, but the mechanism for conversion of electronic energy to chemical energy is still poorly understood. To explore the possibility of vibrational control of non-adiabatic dynamics in a prototypical photoreaction, namely, the A-band photodissociation of NH{sub 3}(X{sup ~1}A{sub 1}), full-dimensional state-to-state quantum dynamics of symmetric or antisymmetric stretch excited NH{sub 3}(X{sup ~1}A{sub 1}) is investigated on recently developed coupled diabatic potential energy surfaces. The experimentally observed H atom kinetic energy distributions are reproduced. However, contrary to previous inferences, the NH{sub 2}(A{sup ~2}A{sub 1})/NH{sub 2}(X{sup ~2}B{sub 1}) branching ratio is found to be small regardless of the initial preparation of NH{sub 3}(X{sup ~1}A{sub 1}), while the internal state distribution of the preeminent fragment, NH{sub 2}(X{sup ~2}B{sub 1}), is found to depend strongly on the initial vibrational excitation of NH{sub 3}(X{sup ~1}A{sub 1}). The slow H atoms in photodissociation mediated by the antisymmetric stretch fundamental state are due to energy sequestered in the internally excited NH{sub 2}(X{sup ~2}B{sub 1}) fragment, rather than in NH{sub 2}(A{sup ~2}A{sub 1}) as previously proposed. The high internal excitation of the NH{sub 2}(X{sup ~2}B{sub 1}) fragment is attributed to the torques exerted on the molecule as it passes through the conical intersection seam to the ground electronic state of NH{sub 3}. Thus in this system, contrary to previous assertions, the control of electronic state branching by selective excitation of ground state vibrational modes is concluded to be ineffective. The juxtaposition of precise quantum mechanical results with complementary results based on quasi-classical surface hopping trajectories provides significant insights into the non-adiabatic process.
Xie, Changjian; Guo, Hua
2018-01-01
The choice of the active degrees of freedom (DOFs) is a pivotal issue in a reduced-dimensional model of quantum dynamics when a full-dimensional one is not feasible. Here, several five-dimensional (5D) models are used to investigate the nonadiabatic photodissociation dynamics of the hydroxymethyl (CH2OH) radical, which possesses nine internal DOFs, in its lowest absorption band. A normal-mode based scheme is used to identify the active and spectator modes, and its predictions are confirmed by 5D quantum dynamical calculations. Our results underscore the important role of the CO stretching mode in the photodissociation dynamics of CH2OH, originating from the photo-induced promotion of an electron from the half-occupied π*CO antibonding orbital to a carbon Rydberg orbital.
Taioli, Simone [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Chemistry, University of Bologna, Bologna (Italy); Garberoglio, Giovanni [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Simonucci, Stefano [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Perugia (Italy); Department of Physics, University of Camerino, Camerino (Italy); Beccara, Silvio a [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Physics, University of Trento, Trento (Italy); Aversa, Lucrezia [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Nardi, Marco [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Trento (Italy); Institut fuer Physik, Humboldt-Universitaet zu Berlin, Berlin (Germany); Verucchi, Roberto [Institute of Materials for Electronics and Magnetism, FBK-CNR, Trento (Italy); Iannotta, Salvatore [Institute of Materials for Electronics and Magnetism, IMEM-CNR, Parma (Italy); Dapor, Maurizio [Interdisciplinary Laboratory for Computational Science, FBK-Center for Materials and Microsystems and University of Trento, Trento (Italy); Department of Materials Engineering and Industrial Technologies, University of Trento, Trento (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova (Italy); and others
2013-01-28
In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C{sub 60} collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C{sub 60} impact on the Si surface is in good agreement with our experimental findings.
Grossman, Y.
1997-10-01
In supersymmetric models with nonvanishing Majorana neutrino masses, the sneutrino and antisneutrino mix. The conditions under which this mixing is experimentally observable are studied, and mass-splitting of the sneutrino mass eigenstates and sneutrino oscillation phenomena are analyzed
Calculation of decay widths of pp{mu}{sub {nu}}{sub ,J}{sup *} ion in non-adiabatic approach
Gheisari, R. [Persian Gulf Univ., Physics Dept., Bushehr (Iran, Islamic Republic of)
2009-06-15
We calculate decay widths of the metastable pp{mu}{sub {nu}}{sub ,J}{sup *} molecular ion in non-adiabatic approach. The muonic molecular ion can be formed in collision of the excited p{mu}(2s) atoms with H{sub 2}. Then, the decay of the pp{mu}{sub {nu}}{sub ,J}{sup *} system opens a path for the muon from p{mu}(2s) to p{mu}(1s). We employ trial wave function which includes non-adiabatic terms to calculate some radiationless decay widths. The present results of the widths do not agree well with those given in our previous work, however they are more close to recent data of other researchers. (author)
DFT reactivity indices in confined many-electron atoms + ∫
Unknown
Functional Theory (DFT) based global descriptors of chemical reactivity for atoms .... interesting due to its utility as a model in the wide variety of applications ... hydrogen atom at Rc = 2⋅0 au is expected to correspond to the energy value of ...
Ohta, Ayumi; Kobayashi, Osamu; Danielache, Sebastian O.; Nanbu, Shinkoh
2015-01-01
Highlights: • The photoisomerization between cyclohexadiene and hexatriene was simulated. • Nonadiabatic ab initio MD simulations were employed to elucidate the mechanism. • Each excitations to S_1 and S_2 were simulated using full-dimensional model. • Specific molecular motions at CoIns and molecular vibrations on S_1 PES were found. • The one-sided product branching ratio was obtained at the photoexcitation to S_2. - Abstract: The photoisomerization process between 1,3-cyclohexadiene (CHD) and 1,3,5-cis-hexatriene (HT) has been studied by nonadiabatic ab initio molecular dynamics based on trajectory surface-hopping approach with a full-dimensional reaction model. The quantum chemical calculations were treated at MS-MR-CASPT2 level for 8 electrons in 8 orbitals with the cc-pVDZ basis set. The Zhu–Nakamura formula was employed to evaluate nonadiabatic transition probabilities. S_1 and S_2 states were included in the photoisomerization dynamics. Lifetimes and CHD:HT branching ratios were computationally estimated on the basis of statistical analysis of multiple executed trajectories. The analysis of trajectories suggested that the nonadiabatic transitions at the S_0/S_1 and S_1/S_2 conical intersections (CoIn) are correlated to the Kekulé-type vibration and the C3–C4–C5 bending motion, respectively. The one-sided branching ratio was obtained by excitations to the S_2 state; 70:30. The critical branching process was found to be dominated by the location of CoIn in potential energy hypersurface of the excited state.
Mizuno, Yuta; Arasaki, Yasuki; Takatsuka, Kazuo
2016-11-14
We propose a theoretical principle to directly monitor the bifurcation of quantum wavepackets passing through nonadiabatic regions of a molecule that is placed in intense continuous wave (CW) laser fields. This idea makes use of the phenomenon of laser-driven photon emission from molecules that can undergo nonadiabatic transitions between ionic and covalent potential energy surfaces like Li + F - and LiF. The resultant photon emission spectra are of anomalous yet characteristic frequency and intensity, if pumped to an energy level in which the nonadiabatic region is accessible and placed in a CW laser field. The proposed method is designed to take the time-frequency spectrogram with an appropriate time-window from this photon emission to detect the time evolution of the frequency and intensity, which depends on the dynamics and location of the relevant nuclear wavepackets. This method is specifically designed for the study of dynamics in intense CW laser fields and is rather limited in scope than other techniques for femtosecond chemical dynamics in vacuum. The following characteristic features of dynamics can be mapped onto the spectrogram: (1) the period of driven vibrational motion (temporally confined vibrational states in otherwise dissociative channels, the period and other states of which dramatically vary depending on the CW driving lasers applied), (2) the existence of multiple nuclear wavepackets running individually on the field-dressed potential energy surfaces, (3) the time scale of coherent interaction between the nuclear wavepackets running on ionic and covalent electronic states after their branching (the so-called coherence time in the terminology of the theory of nonadiabatic interaction), and so on.
Martínez-Mesa, Aliezer [Departmento de Física Teórica, Universidad de la Habana, San Lázaro y L, La Habana 10400 (Cuba); Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm (Germany); Saalfrank, Peter [Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm (Germany)
2015-05-21
Femtosecond-laser pulse driven non-adiabatic spectroscopy and dynamics in molecular and condensed phase systems continue to be a challenge for theoretical modelling. One of the main obstacles is the “curse of dimensionality” encountered in non-adiabatic, exact wavepacket propagation. A possible route towards treating complex molecular systems is via semiclassical surface-hopping schemes, in particular if they account not only for non-adiabatic post-excitation dynamics but also for the initial optical excitation. One such approach, based on initial condition filtering, will be put forward in what follows. As a simple test case which can be compared with exact wavepacket dynamics, we investigate the influence of the different parameters determining the shape of a laser pulse (e.g., its finite width and a possible chirp) on the predissociation dynamics of a NaI molecule, upon photoexcitation of the A(0{sup +}) state. The finite-pulse effects are mapped into the initial conditions for semiclassical surface-hopping simulations. The simulated surface-hopping diabatic populations are in qualitative agreement with the quantum mechanical results, especially concerning the subpicosend photoinduced dynamics, the main deviations being the relative delay of the non-adiabatic transitions in the semiclassical picture. Likewise, these differences in the time-dependent electronic populations calculated via the semiclassical and the quantum methods are found to have a mild influence on the overall probability density distribution. As a result, the branching ratios between the bound and the dissociative reaction channels and the time-evolution of the molecular wavepacket predicted by the semiclassical method agree with those computed using quantum wavepacket propagation. Implications for more challenging molecular systems are given.
Bera, Anupam; Ghosh, Jayanta; Bhattacharya, Atanu
2017-07-28
Conical intersections are now firmly established to be the key features in the excited electronic state processes of polyatomic energetic molecules. In the present work, we have explored conical intersection-mediated nonadiabatic chemical dynamics of a simple analogue nitramine molecule, dimethylnitramine (DMNA, containing one N-NO 2 energetic group), and its complex with an iron atom (DMNA-Fe). For this task, we have used the ab initio multiple spawning (AIMS) dynamics simulation at the state averaged-complete active space self-consistent field(8,5)/6-31G(d) level of theory. We have found that DMNA relaxes back to the ground (S 0 ) state following electronic excitation to the S 1 excited state [which is an (n,π*) excited state] with a time constant of approximately 40 fs. This AIMS result is in very good agreement with the previous surface hopping-result and femtosecond laser spectroscopy result. DMNA does not dissociate during this fast internal conversion from the S 1 to the S 0 state. DMNA-Fe also undergoes extremely fast relaxation from the upper S 1 state to the S 0 state; however, this relaxation pathway is dissociative in nature. DMNA-Fe undergoes initial Fe-O, N-O, and N-N bond dissociations during relaxation from the upper S 1 state to the ground S 0 state through the respective conical intersection. The AIMS simulation reveals the branching ratio of these three channels as N-N:Fe-O:N-O = 6:3:1 (based on 100 independent simulations). Furthermore, the AIMS simulation reveals that the Fe-O bond dissociation channel exhibits the fastest (time constant 24 fs) relaxation, while the N-N bond dissociation pathway features the slowest (time constant 128 fs) relaxation. An intermediate time constant (30 fs) is found for the N-O bond dissociation channel. This is the first nonadiabatic chemical dynamics study of metal-contained energetic molecules through conical intersections.
Lahiri, B. B.; Ranoo, Surojit; Philip, John
2017-11-01
Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ~25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and the
Bera, Anupam; Ghosh, Jayanta; Bhattacharya, Atanu
2017-07-01
Conical intersections are now firmly established to be the key features in the excited electronic state processes of polyatomic energetic molecules. In the present work, we have explored conical intersection-mediated nonadiabatic chemical dynamics of a simple analogue nitramine molecule, dimethylnitramine (DMNA, containing one N-NO2 energetic group), and its complex with an iron atom (DMNA-Fe). For this task, we have used the ab initio multiple spawning (AIMS) dynamics simulation at the state averaged-complete active space self-consistent field(8,5)/6-31G(d) level of theory. We have found that DMNA relaxes back to the ground (S0) state following electronic excitation to the S1 excited state [which is an (n,π*) excited state] with a time constant of approximately 40 fs. This AIMS result is in very good agreement with the previous surface hopping-result and femtosecond laser spectroscopy result. DMNA does not dissociate during this fast internal conversion from the S1 to the S0 state. DMNA-Fe also undergoes extremely fast relaxation from the upper S1 state to the S0 state; however, this relaxation pathway is dissociative in nature. DMNA-Fe undergoes initial Fe-O, N-O, and N-N bond dissociations during relaxation from the upper S1 state to the ground S0 state through the respective conical intersection. The AIMS simulation reveals the branching ratio of these three channels as N-N:Fe-O:N-O = 6:3:1 (based on 100 independent simulations). Furthermore, the AIMS simulation reveals that the Fe-O bond dissociation channel exhibits the fastest (time constant 24 fs) relaxation, while the N-N bond dissociation pathway features the slowest (time constant 128 fs) relaxation. An intermediate time constant (30 fs) is found for the N-O bond dissociation channel. This is the first nonadiabatic chemical dynamics study of metal-contained energetic molecules through conical intersections.
Lahiri, B B; Ranoo, Surojit; Philip, John
2017-01-01
Magnetic fluid hyperthermia (MFH) is becoming a viable cancer treatment methodology where the alternating magnetic field induced heating of magnetic fluid is utilized for ablating the cancerous cells or making them more susceptible to the conventional treatments. The heating efficiency in MFH is quantified in terms of specific absorption rate (SAR), which is defined as the heating power generated per unit mass. In majority of the experimental studies, SAR is evaluated from the temperature rise curves, obtained under non-adiabatic experimental conditions, which is prone to various thermodynamic uncertainties. A proper understanding of the experimental uncertainties and its remedies is a prerequisite for obtaining accurate and reproducible SAR. Here, we study the thermodynamic uncertainties associated with peripheral heating, delayed heating, heat loss from the sample and spatial variation in the temperature profile within the sample. Using first order approximations, an adiabatic reconstruction protocol for the measured temperature rise curves is developed for SAR estimation, which is found to be in good agreement with those obtained from the computationally intense slope corrected method. Our experimental findings clearly show that the peripheral and delayed heating are due to radiation heat transfer from the heating coils and slower response time of the sensor, respectively. Our results suggest that the peripheral heating is linearly proportional to the sample area to volume ratio and coil temperature. It is also observed that peripheral heating decreases in presence of a non-magnetic insulating shielding. The delayed heating is found to contribute up to ∼25% uncertainties in SAR values. As the SAR values are very sensitive to the initial slope determination method, explicit mention of the range of linear regression analysis is appropriate to reproduce the results. The effect of sample volume to area ratio on linear heat loss rate is systematically studied and
Panholzer, Martin; Gatti, Matteo; Reining, Lucia
2018-04-01
The charge-density response of extended materials is usually dominated by the collective oscillation of electrons, the plasmons. Beyond this feature, however, intriguing many-body effects are observed. They cannot be described by one of the most widely used approaches for the calculation of dielectric functions, which is time-dependent density functional theory (TDDFT) in the adiabatic local density approximation (ALDA). Here, we propose an approximation to the TDDFT exchange-correlation kernel which is nonadiabatic and nonlocal. It is extracted from correlated calculations in the homogeneous electron gas, where we have tabulated it for a wide range of wave vectors and frequencies. A simple mean density approximation allows one to use it in inhomogeneous materials where the density varies on a scale of 1.6 rs or faster. This kernel contains effects that are completely absent in the ALDA; in particular, it correctly describes the double plasmon in the dynamic structure factor of sodium, and it shows the characteristic low-energy peak that appears in systems with low electronic density. It also leads to an overall quantitative improvement of spectra.
Shit, Anindita [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Chattopadhyay, Sudip, E-mail: sudip_chattopadhyay@rediffmail.com [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Ray Chaudhuri, Jyotipratim, E-mail: jprc_8@yahoo.com [Department of Physics, Katwa College, Katwa, Burdwan 713130 (India)
2014-03-18
Highlights: • Nonadiabatic dynamics of quantum particle under the impact of high-frequency force. • Formulation of time-independent dynamics via Floquet and Kapitza schemes. • Manipulation of external force parameters allows us to control the escape rate. • Increase of (amplitudes/frequency) causes the system to decay faster, in general. • Crossover temperature increases in the presence of the field. - Abstract: Escape under the action of the external modulation constitutes a nontrivial generalization of an conventional Kramers rate because the system is away from thermal equilibrium. A derivation of this result from the point of view of Langevin dynamics in the frame of Floquet theorem in conjunction with the Kapitza–Landau time window (that leads to an attractive description of the time-dependent quantum dynamics in terms of time-independent one) has been provided. The quantum escape rate in the intermediate-to-high and very-high damping regime so obtained analytically using the phase space formalism associated with the Wigner distribution and path-integral formalism bears a quantum correction that depends strongly on the barrier height. It is shown that an increase of (amplitude/frequency) ratio causes the system to decay faster, in general. The crossover temperature between tunneling and thermal activation increases in the presence of field so that quantum effects in the escape are relevant at higher temperatures.
Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor
In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...
Photodissociation dynamics of CH3C(O)SH in argon matrix: A QM/MM nonadiabatic dynamics simulation
Xia, Shu-Hua; Liu, Xiang-Yang; Fang, Qiu; Cui, Ganglong
2015-11-01
In this work, we have first employed the combined quantum mechanics/molecular mechanics (QM/MM) method to study the photodissociation mechanism of thioacetic acid CH3C(O)SH in the S1, T1, and S0 states in argon matrix. CH3C(O)SH is treated quantum mechanically using the complete active space self-consistent field and complete active space second-order perturbation theory methods; argon matrix is described classically using Lennard-Jones potentials. We find that the C-S bond fission is predominant due to its small barriers of ca. 3.0 and 1.0 kcal/mol in the S1 and T1 states. It completely suppresses the nearby C—C bond fission. After the bond fission, the S1 radical pair of CH3CO and SH can decay to the S0 and T1 states via internal conversion and intersystem crossing, respectively. In the S0 state, the radical pair can either recombine to form CH3C(O)SH or proceed to form molecular products of CH2CO and H2S. We have further employed our recently developed QM/MM generalized trajectory-based surface-hopping method to simulate the photodissociation dynamics of CH3C(O)SH. In 1 ps dynamics simulation, 56% trajectories stay at the Franck-Condon region; the S1 C—S bond fission takes place in the remaining 44% trajectories. Among all nonadiabatic transitions, the S1 → S0 internal conversion is major (55%) but the S1 → T1 intersystem crossing is still comparable and cannot be ignored, which accounts for 28%. Finally, we have found a radical channel generating the molecular products of CH2CO and H2S, which is complementary to the concerted molecular channel. The present work sets the stage for simulating photodissociation dynamics of similar thio-carbonyl systems in matrix.
Schwerdtfeger, Christine A.; Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2014-01-01
The development of efficient theoretical methods for describing electron transfer (ET) reactions in condensed phases is important for a variety of chemical and biological applications. Previously, dynamical dielectric continuum theory was used to derive Langevin equations for a single collective solvent coordinate describing ET in a polar solvent. In this theory, the parameters are directly related to the physical properties of the system and can be determined from experimental data or explicit molecular dynamics simulations. Herein, we combine these Langevin equations with surface hopping nonadiabatic dynamics methods to calculate the rate constants for thermal ET reactions in polar solvents for a wide range of electronic couplings and reaction free energies. Comparison of explicit and implicit solvent calculations illustrates that the mapping from explicit to implicit solvent models is valid even for solvents exhibiting complex relaxation behavior with multiple relaxation time scales and a short-time inertial response. The rate constants calculated for implicit solvent models with a single solvent relaxation time scale corresponding to water, acetonitrile, and methanol agree well with analytical theories in the Golden rule and solvent-controlled regimes, as well as in the intermediate regime. The implicit solvent models with two relaxation time scales are in qualitative agreement with the analytical theories but quantitatively overestimate the rate constants compared to these theories. Analysis of these simulations elucidates the importance of multiple relaxation time scales and the inertial component of the solvent response, as well as potential shortcomings of the analytical theories based on single time scale solvent relaxation models. This implicit solvent approach will enable the simulation of a wide range of ET reactions via the stochastic dynamics of a single collective solvent coordinate with parameters that are relevant to experimentally accessible
Glover, William J; Mori, Toshifumi; Schuurman, Michael S; Boguslavskiy, Andrey E; Schalk, Oliver; Stolow, Albert; Martínez, Todd J
2018-04-28
The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 1 1 B u (ππ*) state and non-adiabatically coupled dark 2 1 A g state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 1 1 B u state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1 B u or the dark 2 1 A g state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.
Golibrzuch, Kai; Shirhatti, Pranav R; Altschäffel, Jan; Rahinov, Igor; Auerbach, Daniel J; Wodtke, Alec M; Bartels, Christof
2013-09-12
Translational motion is believed to be a spectator degree of freedom in electronically nonadiabatic vibrational energy transfer between molecules and metal surfaces, but the experimental evidence available to support this view is limited. In this work, we have experimentally determined the translational inelasticity in collisions of NO molecules with a single-crystal Au(111) surface-a system with strong electronic nonadiabaticity. State-to-state molecular beam surface scattering was combined with an IR-UV double resonance scheme to obtain high-resolution time-of-flight data. The measurements include vibrationally elastic collisions (v = 3→3, 2→2) as well as collisions where one or two quanta of molecular vibration are excited (2→3, 2→4) or de-excited (2→1, 3→2, 3→1). In addition, we have carried out comprehensive measurements of the effects of rotational excitation on the translational energy of the scattered molecules. We find that under all conditions of this work, the NO molecules lose a large fraction (∼0.45) of their incidence translational energy to the surface. Those molecules that undergo vibrational excitation (relaxation) during the collision recoil slightly slower (faster) than vibrationally elastically scattered molecules. The amount of translational energy change depends on the surface temperature. The translation-to-rotation coupling, which is well-known for v = 0→0 collisions, is found to be significantly weaker for vibrationally inelastic than elastic channels. Our results clearly show that the spectator view of the translational motion in electronically nonadiabatic vibrational energy transfer between NO and Au(111) is only approximately correct.
Glover, William J.; Mori, Toshifumi; Schuurman, Michael S.; Boguslavskiy, Andrey E.; Schalk, Oliver; Stolow, Albert; Martínez, Todd J.
2018-04-01
The excited state non-adiabatic dynamics of the smallest polyene, trans 1,3-butadiene (BD), has long been the subject of controversy due to its strong coupling, ultrafast time scales and the difficulties that theory faces in describing the relevant electronic states in a balanced fashion. Here we apply Ab Initio Multiple Spawning (AIMS) using state-averaged complete active space multistate second order perturbation theory [SA-3-CAS(4/4)-MSPT2] which describes both static and dynamic electron correlation effects, providing a balanced description of both the initially prepared bright 11Bu (ππ*) state and non-adiabatically coupled dark 21Ag state of BD. Importantly, AIMS allows for on-the-fly calculations of experimental observables. We validate our approach by directly simulating the time resolved photoelectron-photoion coincidence spectroscopy results presented in Paper I [A. E. Boguslavskiy et al., J. Chem. Phys. 148, 164302 (2018)], demonstrating excellent agreement with experiment. Our simulations reveal that the initial excitation to the 11Bu state rapidly evolves via wavepacket dynamics that follow both bright- and dark-state pathways as well as mixtures of these. In order to test the sensitivity of the AIMS results to the relative ordering of states, we considered two hypothetical scenarios biased toward either the bright 1Bu or the dark 21Ag state. In contrast with AIMS/SA-3-CAS(4/4)-MSPT2 simulations, neither of these scenarios yields favorable agreement with experiment. Thus, we conclude that the excited state non-adiabatic dynamics in BD involves both of these ultrafast pathways.
Bang Appel, Helene; Singla, Rashmi
2016-01-01
Despite an increase in cross border intimate relationships and children of mixed parentage, there is little mention or scholarship about them in the area of childhood and migrancy in the Nordic countries. The international literature implies historical pathologisation, contestation and current...... of identity formation in the . They position themselves as having an “in-between” identity or “ just Danes” in their every day lives among friends, family, and during leisure activities. Thus a new paradigm is evolving away- from the pathologisation of mixed children, simplified one-sided categories...
Brabrand, Helle
2010-01-01
levels than those related to building, and this exploration is a special challenge and competence implicit artistic development work. The project Mixed Movements generates drawing-material, not primary as representation, but as a performance-based media, making the body being-in-the-media felt and appear...... as possible operational moves....
2014-09-30
negative (right panel c) and the kinetic energy dissipation is larger than that expected from meterological forcing alone (right panel a). This is...10.1002/grl.50919. Shcherbina, A. et al., 2014, The LatMix Summer Campaign: Submesoscale Stirring in the Upper Ocean., Bull. American Meterological
Wang, Jun; Huang, Jing; Du, Likai; Lan, Zhenggang
2015-07-09
The photoinduced intramolecular excited-state energy-transfer (EET) process in conjugated polymers has received a great deal of research interest because of its important role in the light harvesting and energy transport of organic photovoltaic materials in photoelectric devices. In this work, the silylene-bridged biphenyl and stilbene (SBS) system was chosen as a simplified model system to obtain physical insight into the photoinduced intramolecular energy transfer between the different building units of the SBS copolymer. In the SBS system, the vinylbiphenyl and vinylstilbene moieties serve as the donor (D) unit and the acceptor (A) unit, respectively. The ultrafast excited-state dynamics of the SBS system was investigated from the point of view of nonadiabatic dynamics with the surface-hopping method at the TDDFT level. The first two excited states (S1 and S2) are characterized by local excitations at the acceptor (vinylstilbene) and donor (vinylbiphenyl) units, respectively. Ultrafast S2-S1 decay is responsible for the intramolecular D-A excitonic energy transfer. The geometric distortion of the D moiety play an essential role in this EET process, whereas the A moiety remains unchanged during the nonadiabatic dynamics simulation. The present work provides a direct dynamical approach to understand the ultrafast intramolecular energy-transfer dynamics in SBS copolymers and other similar organic photovoltaic copolymers.
Faraji, Shirin; Matsika, Spiridoula; Krylov, Anna I.
2018-01-01
We report an implementation of non-adiabatic coupling (NAC) forces within the equation-of-motion coupled-cluster with single and double excitations (EOM-CCSD) framework via the summed-state approach. Using illustrative examples, we compare NAC forces computed with EOM-CCSD and multi-reference (MR) wave functions (for selected cases, we also consider configuration interaction singles). In addition to the magnitude of the NAC vectors, we analyze their direction, which is important for the calculations of the rate of non-adiabatic transitions. Our benchmark set comprises three doublet radical-cations (hexatriene, cyclohexadiene, and uracil), neutral uracil, and sodium-doped ammonia clusters. When the characters of the states agree among different methods, we observe good agreement between the respective NAC vectors, both in the Franck-Condon region and away. In the cases of large discrepancies between the methods, the disagreement can be attributed to the difference in the states' character, which, in some cases, is very sensitive to electron correlation, both within single-reference and multi-reference frameworks. The numeric results confirm that the accuracy of NAC vectors depends critically on the quality of the underlying wave functions. Within their domain of applicability, EOM-CC methods provide a viable alternative to MR approaches.
Henriet, Loïc; Sclocchi, Antonio; Orth, Peter P.; Le Hur, Karyn
2017-02-01
We analyze the topological deformations of the ground state manifold of a quantum spin-1/2 in a magnetic field H =H (sinθ cosϕ ,sinθ sinϕ ,cosθ ) induced by a coupling to an ohmic quantum dissipative environment at zero temperature. From Bethe ansatz results and a variational approach, we confirm that the Chern number associated with the geometry of the reduced spin ground state manifold is preserved in the delocalized phase for α <1 . We report a divergence of the Berry curvature at αc=1 for magnetic fields aligned along the equator θ =π /2 . This divergence is caused by the complete quenching of the transverse magnetic field by the bath associated with a gap closing that occurs at the localization Kosterlitz-Thouless quantum phase transition in this model. Recent experiments in quantum circuits have engineered nonequilibrium protocols to access topological properties from a measurement of a dynamical Chern number defined via the out-of-equilibrium spin expectation values. Applying a numerically exact stochastic Schrödinger approach we find that, for a fixed field sweep velocity θ (t )=v t , the bath induces a crossover from (quasi)adiabatic to nonadiabatic dynamical behavior when the spin bath coupling α increases. We also investigate the particular regime H /ωc≪v /H ≪1 with large bath cutoff frequency ωc, where the dynamical Chern number vanishes already at α =1 /2 . In this regime, the mapping to an interacting resonance level model enables us to analytically describe the behavior of the dynamical Chern number in the vicinity of α =1 /2 . We further provide an intuitive physical explanation of the bath-induced breakdown of adiabaticity in analogy to the Faraday effect in electromagnetism. We demonstrate that the driving of the spin leads to the production of a large number of bosonic excitations in the bath, which strongly affect the spin dynamics. Finally, we quantify the spin-bath entanglement and formulate an analogy with an effective
Adelberger, E.G.
1975-01-01
The field of parity mixing in light nuclei bears upon one of the exciting and active problems of physics--the nature of the fundamental weak interaction. It is also a subject where polarization techniques play a very important role. Weak interaction theory is first reviewed to motivate the parity mixing experiments. Two very attractive systems are discussed where the nuclear physics is so beautifully simple that the experimental observation of tiny effects directly measures parity violating (PV) nuclear matrix elements which are quite sensitive to the form of the basic weak interaction. Since the measurement of very small analyzing powers and polarizations may be of general interest to this conference, some discussion is devoted to experimental techniques
Benabbas, Abdelkrim; Salna, Bridget; Sage, J. Timothy; Champion, Paul M., E-mail: champ@neu.edu [Department of Physics and Center for Interdisciplinary Research on Complex Systems,Northeastern University, Boston, Massachusetts 02115 (United States)
2015-03-21
Analytical models describing the temperature dependence of the deep tunneling rate, useful for proton, hydrogen, or hydride transfer in proteins, are developed and compared. Electronically adiabatic and non-adiabatic expressions are presented where the donor-acceptor (D-A) motion is treated either as a quantized vibration or as a classical “gating” distribution. We stress the importance of fitting experimental data on an absolute scale in the electronically adiabatic limit, which normally applies to these reactions, and find that vibrationally enhanced deep tunneling takes place on sub-ns timescales at room temperature for typical H-bonding distances. As noted previously, a small room temperature kinetic isotope effect (KIE) does not eliminate deep tunneling as a major transport channel. The quantum approach focuses on the vibrational sub-space composed of the D-A and hydrogen atom motions, where hydrogen bonding and protein restoring forces quantize the D-A vibration. A Duschinsky rotation is mandated between the normal modes of the reactant and product states and the rotation angle depends on the tunneling particle mass. This tunnel-mass dependent rotation contributes substantially to the KIE and its temperature dependence. The effect of the Duschinsky rotation is solved exactly to find the rate in the electronically non-adiabatic limit and compared to the Born-Oppenheimer (B-O) approximation approach. The B-O approximation is employed to find the rate in the electronically adiabatic limit, where we explore both harmonic and quartic double-well potentials for the hydrogen atom bound states. Both the electronically adiabatic and non-adiabatic rates are found to diverge at high temperature unless the proton coupling includes the often neglected quadratic term in the D-A displacement from equilibrium. A new expression is presented for the electronically adiabatic tunnel rate in the classical limit for D-A motion that should be useful to experimentalists working
Diniz, Leonardo G.; Kirnosov, Nikita; Alijah, Alexander; Mohallem, José R.; Adamowicz, Ludwik
2016-04-01
A very accurate dipole moment curve (DMC) for the ground X1Σ+ electronic state of the 7LiH molecule is reported. It is calculated with the use of all-particle explicitly correlated Gaussian functions with shifted centers. The DMC - the most accurate to our knowledge - and the corresponding highly accurate potential energy curve are used to calculate the transition energies, the transition dipole moments, and the Einstein coefficients for the rovibrational transitions with ΔJ = - 1 and Δv ⩽ 5 . The importance of the non-adiabatic effects in determining these properties is evaluated using the model of a vibrational R-dependent effective reduced mass in the rovibrational calculations introduced earlier (Diniz et al., 2015). The results of the present calculations are used to assess the quality of the two complete linelists of 7LiH available in the literature.
Du Luchun; Mei Dongcheng
2011-01-01
The non-adiabatic regime of stochastic resonance (SR) in a bistable system with time delay, an additive white noise and a periodic signal was investigated. The signal power amplification η was employed to characterize the SR of the system. The simulation results indicate that (i) in the case of intermediate frequency Ω of the periodic signal, the typical behavior of SR is lowered monotonically by increasing the delay time τ; in the case of large Ω, τ weakens the SR behavior and then enhances it, with a non-monotonic behavior as a function of time delay; (ii) time delay induces SR when A is above the threshold, whereas no such resonance exists in the absence of time delay; (iii) time delay induces a transition from bimodal to unimodal configuration of η; (iv) varying the particular form of time delay results in different phenomena.
Janke, Svenja M; Auerbach, Daniel J; Wodtke, Alec M; Kandratsenka, Alexander
2015-09-28
We have constructed a potential energy surface (PES) for H-atoms interacting with fcc Au(111) based on fitting the analytic form of the energy from Effective Medium Theory (EMT) to ab initio energy values calculated with density functional theory. The fit used input from configurations of the H-Au system with Au atoms at their lattice positions as well as configurations with the Au atoms displaced from their lattice positions. It reproduces the energy, in full dimension, not only for the configurations used as input but also for a large number of additional configurations derived from ab initio molecular dynamics (AIMD) trajectories at finite temperature. Adiabatic molecular dynamics simulations on this PES reproduce the energy loss behavior of AIMD. EMT also provides expressions for the embedding electron density, which enabled us to develop a self-consistent approach to simulate nonadiabatic electron-hole pair excitation and their effect on the motion of the incident H-atoms. For H atoms with an energy of 2.7 eV colliding with Au, electron-hole pair excitation is by far the most important energy loss pathway, giving an average energy loss ≈3 times that of the adiabatic case. This increased energy loss enhances the probability of the H-atom remaining on or in the Au slab by a factor of 2. The most likely outcome for H-atoms that are not scattered also depends prodigiously on the energy transfer mechanism; for the nonadiabatic case, more than 50% of the H-atoms which do not scatter are adsorbed on the surface, while for the adiabatic case more than 50% pass entirely through the 4 layer simulation slab.
Kittell, Aaron W.; Hyde, James S.
2015-01-01
Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132
Soudackov, Alexander V; Hammes-Schiffer, Sharon
2015-11-21
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton
Boguslavskiy, Andrey E.; Schalk, Oliver; Gador, Niklas; Glover, William J.; Mori, Toshifumi; Schultz, Thomas; Schuurman, Michael S.; Martínez, Todd J.; Stolow, Albert
2018-04-01
The ultrafast excited state dynamics of the smallest polyene, trans-1,3-butadiene, were studied by femtosecond time-resolved photoelectron-photoion coincidence (TRPEPICO) spectroscopy. The evolution of the excited state wavepacket, created by pumping the bright 1Bu (ππ*) electronic state at its origin of 216 nm, is projected via one- and two-photon ionization at 267 nm onto several ionization continua. The results are interpreted in terms of Koopmans' correlations and Franck-Condon factors for the excited and cationic states involved. The known predissociative character of the cation excited states is utilized to assign photoelectron bands to specific continua using TRPEPICO spectroscopy. This permits us to report the direct observation of the famously elusive S1(21Ag) dark electronic state during the internal conversion of trans 1,3-butadiene. Our phenomenological analysis permits the spectroscopic determination of several important time constants. We report the overall decay lifetimes of the 11Bu and 21Ag states and observe the re-appearance of the hot ground state molecule. We argue that the apparent dephasing time of the S2(11Bu) state, which leads to the extreme breadth of the absorption spectrum, is principally due to large amplitude torsional motion on the 1Bu surface in conjunction with strong non-adiabatic couplings via conical intersections, whereupon nuclear wavepacket revivals to the initial Franck-Condon region become effectively impossible. In Paper II [W. J. Glover et al., J. Chem. Phys. 148, 164303 (2018)], ab initio multiple spawning is used for on-the-fly computations of the excited state non-adiabatic wavepacket dynamics and their associated TRPEPICO observables, allowing for direct comparisons of experiment with theory.
Soudackov, Alexander V.; Hammes-Schiffer, Sharon
2015-01-01
Rate constant expressions for vibronically nonadiabatic proton transfer and proton-coupled electron transfer reactions are presented and analyzed. The regimes covered include electronically adiabatic and nonadiabatic reactions, as well as high-frequency and low-frequency proton donor-acceptor vibrational modes. These rate constants differ from previous rate constants derived with the cumulant expansion approach in that the logarithmic expansion of the vibronic coupling in terms of the proton donor-acceptor distance includes a quadratic as well as a linear term. The analysis illustrates that inclusion of this quadratic term in the framework of the cumulant expansion framework may significantly impact the rate constants at high temperatures for proton transfer interfaces with soft proton donor-acceptor modes that are associated with small force constants and weak hydrogen bonds. The effects of the quadratic term may also become significant in these regimes when using the vibronic coupling expansion in conjunction with a thermal averaging procedure for calculating the rate constant. In this case, however, the expansion of the coupling can be avoided entirely by calculating the couplings explicitly for the range of proton donor-acceptor distances sampled. The effects of the quadratic term for weak hydrogen-bonding systems are less significant for more physically realistic models that prevent the sampling of unphysical short proton donor-acceptor distances. Additionally, the rigorous relation between the cumulant expansion and thermal averaging approaches is clarified. In particular, the cumulant expansion rate constant includes effects from dynamical interference between the proton donor-acceptor and solvent motions and becomes equivalent to the thermally averaged rate constant when these dynamical effects are neglected. This analysis identifies the regimes in which each rate constant expression is valid and thus will be important for future applications to proton
Søndergaard, Anders Aspegren; Shepperson, Benjamin; Stapelfeldt, Henrik
2017-07-07
We present an efficient, noise-robust method based on Fourier analysis for reconstructing the three-dimensional measure of the alignment degree, ⟨cos 2 θ⟩, directly from its two-dimensional counterpart, ⟨cos 2 θ 2D ⟩. The method applies to nonadiabatic alignment of linear molecules induced by a linearly polarized, nonresonant laser pulse. Our theoretical analysis shows that the Fourier transform of the time-dependent ⟨cos 2 θ 2D ⟩ trace over one molecular rotational period contains additional frequency components compared to the Fourier transform of ⟨cos 2 θ⟩. These additional frequency components can be identified and removed from the Fourier spectrum of ⟨cos 2 θ 2D ⟩. By rescaling of the remaining frequency components, the Fourier spectrum of ⟨cos 2 θ⟩ is obtained and, finally, ⟨cos 2 θ⟩ is reconstructed through inverse Fourier transformation. The method allows the reconstruction of the ⟨cos 2 θ⟩ trace from a measured ⟨cos 2 θ 2D ⟩ trace, which is the typical observable of many experiments, and thereby provides direct comparison to calculated ⟨cos 2 θ⟩ traces, which is the commonly used alignment metric in theoretical descriptions. We illustrate our method by applying it to the measurement of nonadiabatic alignment of I 2 molecules. In addition, we present an efficient algorithm for calculating the matrix elements of cos 2 θ 2D and any other observable in the symmetric top basis. These matrix elements are required in the rescaling step, and they allow for highly efficient numerical calculation of ⟨cos 2 θ 2D ⟩ and ⟨cos 2 θ⟩ in general.
Schubert, Alexander, E-mail: schubert@irsamc.ups-tlse.fr; Meier, Christoph [Laboratoire Collisions Agrégats et Réactivité, IRSAMC, UMR CNRS 5589, Université Paul Sabatier, 31062 Toulouse (France); Falvo, Cyril [Institut des Sciences Moléculaires d’Orsay (ISMO), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay (France)
2016-08-07
We present mixed quantum-classical simulations on relaxation and dephasing of vibrationally excited carbon monoxide within a protein environment. The methodology is based on a vibrational surface hopping approach treating the vibrational states of CO quantum mechanically, while all remaining degrees of freedom are described by means of classical molecular dynamics. The CO vibrational states form the “surfaces” for the classical trajectories of protein and solvent atoms. In return, environmentally induced non-adiabatic couplings between these states cause transitions describing the vibrational relaxation from first principles. The molecular dynamics simulation yields a detailed atomistic picture of the energy relaxation pathways, taking the molecular structure and dynamics of the protein and its solvent fully into account. Using the ultrafast photolysis of CO in the hemoprotein FixL as an example, we study the relaxation of vibrationally excited CO and evaluate the role of each of the FixL residues forming the heme pocket.
Non-Born-Oppenheimer trajectories with self-consistent decay of mixing
Zhu Chaoyuan; Jasper, Ahren W.; Truhlar, Donald G.
2004-01-01
A semiclassical trajectory method, called the self-consistent decay of mixing (SCDM) method, is presented for the treatment of electronically nonadiabatic dynamics. The SCDM method is a modification of the semiclassical Ehrenfest (SE) method (also called the semiclassical time-dependent self-consistent-field method) that solves the problem of unphysical mixed final states by including decay-of-mixing terms in the equations for the evolution of the electronic state populations. These terms generate a force, called the decoherent force (or dephasing force), that drives the electronic component of each trajectory toward a pure state. Results for several mixed quantum-classical methods, in particular the SCDM, SE, and natural-decay-of-mixing methods and several trajectory surface hopping methods, are compared to the results of accurate quantum mechanical calculations for 12 cases involving five different fully dimensional triatomic model systems. The SCDM method is found to be the most accurate of the methods tested. The method should be useful for the simulation of photochemical reactions
Glowacki, David
Recently, we outlined an efficient multi-tiered parallel excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground/excited state energies and gradients of large supramolecular complexes in atomistic detail. In this paper, we apply our ab initioexciton framework to the 27 coupled bacteriocholorophyll-a chromophores which make up the LH2 complex, using it to compute linear absorption spectra and short-time, on-the-fly nonadiabatic surface-hopping (SH) dynamics of electronically excited LH2. Our ab initio exciton model includes two key parameters whose values are determined by fitting to experiment: d, which is added to the diagonal elements, corrects for the error in TDDFT vertical excitation energies on a single chromophore; and e, which occurs on the off-diagonal matrix elements, describes the average dielectric screening of the inter-chromophore transition-dipole coupling. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, best-fit values of both d and e were obtained by fitting to the thermally broadened experimental absorption spectrum within the Frank-Condon approximation, providing a linear absorption spectrum that agrees reasonably well with the experimental observations. We follow the nonadiabatic dynamics using surface hopping to construct time-resolved visualizations of the EET dynamics in the sub-picosecond regime following photoexcitation. This provides some qualitative insight into the excitonic energy transfer (EET) that results from atomically resolved vibrational fluctuations of the chromophores. The dynamical picture that emerges is one of rapidly fluctuating eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the underlying chromophore vibrational dynamics. The eigenstate fluctuations arise from disorder in both the diagonal chromophore site energies and the off-diagonal inter
Yamamoto, Kentaro, E-mail: kyamamoto@fukui.kyoto-u.ac.jp; Takatsuka, Kazuo, E-mail: kaztak@fukui.kyoto-u.ac.jp
2016-08-22
Graphical abstract: Asymptotic biradical state produced by the excited-state coupled proton–electron transfer (CPET), resulting in charge separation (proton–electron pair creation) on a proton–electron acceptor A, in a series of photochemical systems generally denoted as X–Mn–OH{sub 2}⋯A, where X = (OH, Ca(OH){sub 3}) and A = (N-methylformamidine, guanidine, imidazole, or ammonia clusters). - Abstract: In this perspective article, we review, along with presenting new results, a series of our theoretical analyses on the excited-state mechanism of charge separation (proton–electron pair creation) relevant to the photoinduced water-splitting reaction (2H{sub 2}O → 4H{sup +} + 4e{sup −} + O{sub 2}) in organic and biological systems, which quite often includes Mn clusters in various molecular configurations. The present mechanism is conceived to be universal in the triggering process of the photoexcited water splitting dynamics. In other words, any Mn-based catalytic charge separation is quite likely to be initiated according to this mechanism. As computationally tractable yet realistic models, we examine a series of systems generally expressed as X–Mn–OH{sub 2}⋯A, where X = (OH, Ca(OH){sub 3}) and A = (N-methylformamidine, guanidine, imidazole or ammonia cluster) in terms of the theory of nonadiabatic electron wavepacket dynamics. We first find both an electron and a proton are simultaneously transferred to the acceptors through conical intersections upon photoexcitation. In this mechanism, the electron takes different pathways from that of the proton and reaches the densely lying Rydberg-like states of the acceptors in the end, thereby inducing charge separation. Therefore the presence of the Rydberg-like diffused unoccupied states as an electron acceptor is critical for this reaction to proceed. We also have found another crucial nonadiabatic process that deteriorates the efficiency of charge separation by rendering the created pair of proton
Fechner, Peer Cornelis
2015-01-01
The central topic of this thesis is the experimental observation and the theoretical modeling of non-adiabatic three-body dissociation of H_3 and D_3 neutral triatomic hydrogen molecules. Our goal is to lend a meaning to the observed momentum vector correlation (MVC) of the three emerging ground state hydrogen atoms, for example H_3→H(1s)+H(1s)+H(1s), in terms of symmetries of the nuclear molecular wave function and of the non-adiabatic coupling which initiates this decay. In many experiments carried out over the years, a wealth of state specific MVCs was collected by different research groups. The MVCs are imaged in form of so-called Dalitz plots which show a rich structure of maxima and nodal lines, depending on the initial state of the triatomic hydrogen neutral. Theory was slow to catch up with experiment and only by this year, 2015, a general agreement was accomplished. Nevertheless, these models lack of an easy understanding of the underlying physics as many numerical calculations are involved. The theoretical model presented in this thesis follows a different approach which is more guided by the imaging character of our experiments. We concentrate on a rather qualitative treatment by limiting ourselves to the essential ingredients only. This proceeding contributes to giving a physical interpretation of the structures in the Dalitz plots in the following form: Three-particle coincident imaging offers a direct view of the emerging spatial continuum wave function of a predissociating triatomic molecule as it evolves from molecular spatial dimensions into the realm of independent free particles. This latter result is discussed in the context of the so-called Imaging Theorem, the second main part of this work. A third major part of this thesis pertains to obtaining molecular momentum wave functions in separated degrees-of-freedom via Fourier transformation. Even for triatomic hydrogen - the most simple polyatomic molecule - this is a challenging task. The
Mixed Connective Tissue Disease
Mixed connective tissue disease Overview Mixed connective tissue disease has signs and symptoms of a combination of disorders — primarily lupus, scleroderma and polymyositis. For this reason, mixed connective tissue disease ...
Harnby, N.
1988-01-01
Covering all aspects of mixing, this work presents research and developments in industrial applications, flow patterns and mixture analysis, mixing of solids into liquids, and mixing of gases into liquids
Mixed plastics recycling technology
Hegberg, Bruce
1995-01-01
Presents an overview of mixed plastics recycling technology. In addition, it characterizes mixed plastics wastes and describes collection methods, costs, and markets for reprocessed plastics products.
Habershon, Scott
2013-01-01
We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency
Kittell, Aaron W.; Camenisch, Theodore G.; Ratke, Joseph J.; Sidabras, Jason W.; Hyde, James S.
2011-01-01
A continuous wave (CW) electron paramagnetic resonance (EPR) spectrum is typically displayed as the first harmonic response to the application of 100 kHz magnetic field modulation, which is used to enhance sensitivity by reducing the level of 1/f noise. However, magnetic field modulation of any amplitude causes spectral broadening and sacrifices EPR spectral intensity by at least a factor of two. In the work presented here, a CW rapid-scan spectroscopic technique that avoids these compromises and also provides a means of avoiding 1/f noise is developed. This technique, termed non-adiabatic rapid sweep (NARS) EPR, consists of repetitively sweeping the polarizing magnetic field in a linear manner over a spectral fragment with a small coil at a repetition rate that is sufficiently high that receiver noise, microwave phase noise, and environmental microphonics, each of which has 1/f characteristics, are overcome. Nevertheless, the rate of sweep is sufficiently slow that adiabatic responses are avoided and the spin system is always close to thermal equilibrium. The repetitively acquired spectra from the spectral fragment are averaged. Under these conditions, undistorted pure absorption spectra are obtained without broadening or loss of signal intensity. A digital filter such as a moving average is applied to remove high frequency noise, which is approximately equivalent in bandwidth to use of an integrating time constant in conventional field modulation with lock-in detection. Nitroxide spectra at L- and X-band are presented. PMID:21741868
Habershon, Scott
2013-09-14
We introduce a new approach for calculating quantum time-correlation functions and time-dependent expectation values in many-body thermal systems; both electronically adiabatic and non-adiabatic cases can be treated. Our approach uses a path integral simulation to sample an initial thermal density matrix; subsequent evolution of this density matrix is equivalent to solution of the time-dependent Schrödinger equation, which we perform using a linear expansion of Gaussian wavepacket basis functions which evolve according to simple classical-like trajectories. Overall, this methodology represents a formally exact approach for calculating time-dependent quantum properties; by introducing approximations into both the imaginary-time and real-time propagations, this approach can be adapted for complex many-particle systems interacting through arbitrary potentials. We demonstrate this method for the spin Boson model, where we find good agreement with numerically exact calculations. We also discuss future directions of improvement for our approach with a view to improving accuracy and efficiency.
Mixing ratio sensor of alcohol mixed fuel
Miyata, Shigeru; Matsubara, Yoshihiro
1987-08-07
In order to improve combustion efficiency of an internal combustion engine using gasoline-alcohol mixed fuel and to reduce harmful substance in its exhaust gas, it is necessary to control strictly the air-fuel ratio to be supplied and the ignition timing and change the condition of control depending upon the mixing ratio of the mixed fuel. In order to detect the mixing ratio of the mixed fuel, the above mixing ratio has so far been detected by casting a ray of light to the mixed fuel and utilizing a change of critical angle associated with the change of the composition of the fluid of the mixed fuel. However, in case when a light emitting diode is used for the light source above, two kinds of sensors are further needed. Concerning the two kinds of sensors above, this invention offers a mixing ratio sensor for the alcohol mixed fuel which can abolish a temperature sensor to detect the environmental temperature by making a single compensatory light receiving element deal with the compensation of the amount of light emission of the light emitting element due to the temperature change and the compensation of the critical angle caused by the temperature change. (6 figs)
Raouf, M.S.
1963-01-01
The most important literature on theoretical aspects of mixing solids was reviewed.
Only when the mixed materials showed no segregation it was possible to analyse the mixing process quantitatively. In this case the mixture could be described by the 'χ' Square test. Longitudinal mixing could be
Bravo-Oviedo, Andres; Pretzsch, Hans; Ammer, Christian
2014-01-01
Aim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii) review the research perspectives in mixed forests. Area of study: The definition is developed in Europe but can be tested worldwide. Material...... and Methods: Review of existent definitions of mixed forests based and literature review encompassing dynamics, management and economic valuation of mixed forests. Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any...... density in mixed forests, (iii) conversion of monocultures to mixed-species forest and (iv) economic valuation of ecosystem services provided by mixed forests. Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields...
Mixing ratio sensor for alcohol mixed fuel
Miyata, Shigeru; Matsubara, Yoshihiro
1987-08-24
In order to improve the combustion efficiency of an internal combustion engine using gasoline-alcohol mixed fuel and to reduce harmful substance in its exhaust gas, it is necessary to control strictly the air-fuel ratio to be supplied and the ignition timing. In order to detect the mixing ratio of the mixed fuel, a mixing ratio sensor has so far been proposed to detect the above mixing ratio by casting a ray of light to the mixed fuel and utilizing a change of critical angle associated with the change of the composition of the fluid of the mixed fuel. However, because of the arrangement of its transparent substance in the fuel passage with the sealing material in between, this sensor invited the leakage of the fluid due to deterioration of the sealing material, etc. and its cost became high because of too many parts to be assembled. In view of the above, in order to reduce the number of parts, to lower the cost of parts and the assembling cost and to secure no fluid leakage from the fuel passage, this invention formed the above fuel passage and the above transparent substance both concerning the above mixing ratio sensor in an integrated manner using light transmitting resin. (3 figs)
Kittell, Aaron W.; Hustedt, Eric J.; Hyde, James S.
2014-01-01
Site-directed spin-labeling electron paramagnetic resonance (SDSL EPR) provides insight into the local structure and motion of a spin probe strategically attached to a molecule. When a second spin is introduced to the system, macromolecular information can be obtained through measurement of inter-spin distances either by continuous wave (CW) or pulsed electron double resonance (ELDOR) techniques. If both methodologies are considered, inter-spin distances of 8 to 80 Å can be experimentally determined. However, there exists a region at the upper limit of the conventional X-band (9.5 GHz) CW technique and the lower limit of the four-pulse double electron-electron resonance (DEER) experiment where neither method is particularly reliable. The work presented here utilizes L-band (1.9 GHz) in combination with non-adiabatic rapid sweep (NARS) EPR to address this opportunity by increasing the upper limit of the CW technique. Because L-band linewidths are three to seven times narrower than those at X-band, dipolar broadenings that are small relative to the X-band inhomogeneous linewidth become observable, but the signal loss due to the frequency dependence of the Boltzmann factor, has made L-band especially challenging. NARS has been shown to increase sensitivity by a factor of five, and overcomes much of this loss, making L-band distance determination more feasible [1]. Two different systems are presented and distances of 18–30 Å have been experimentally determined at physiologically relevant temperatures. Measurements are in excellent agreement with a helical model and values determined by DEER. PMID:22750251
Gan, Yanzhen; Yue, Ling; Guo, Xugeng; Zhu, Chaoyuan; Cao, Zexing
2017-05-17
An on-the-fly trajectory surface hopping dynamic simulation has been performed for revealing the multi-state nonadiabatic deactivation mechanism of coumarin. The mechanism involves three adiabatic excited states, S 3 (ππ*L b ), S 2 (nπ*, ππ*L a ) and S 1 (ππ*L a , nπ*), and the ground state S 0 at the four state-averaged complete active space self-consistent field, SA4-CASSCF(12,10)/6-31G* level of theory. Upon photoexcitation to the third excited state S 3 (ππ*L b ) in the Franck-Condon region, 80% sampling trajectories decay to the dark S 2 (nπ*) state within an average of 5 fs via the conical intersection S 3 (ππ*L b )/S 2 (nπ*), while 20% decay to the S 2 (ππ*L a ) state within an average of 11 fs via the conical intersection S 3 (ππ*L b )/S 2 (ππ*L a ). Then, sampling trajectories via S 2 (nπ*)/S 1 (ππ*L a ) continue with ultrafast decay processes to give a final distribution of quantum yields as follows: 42% stay on the dark S 1 (nπ*) state, 43.3% go back to the ground S 0 state, 12% undergo a ring-opening reaction to the Z-form S 0 (Z) state, and 2.7% go to the E-form S 0 (E) state. The lifetimes of the excited states are estimated as follows: the S 3 state is about 12 fs on average, the S 2 state is about 80 fs, and the S 1 state has a fast component of about 160 fs and a slow component of 15 ps. The simulated ultrafast radiationless deactivation pathways of photoexcited coumarin immediately interpret the experimentally observed weak fluorescence emission.
Morison, James
2003-01-01
.... Over the years we have sought to understand the heat and mass balance of the mixed layer, marginal ice zone processes, the Arctic internal wave and mixing environment, summer and winter leads, and convection...
SPORT MARKETING MIX STRATEGIES
Alexandru Lucian MIHAI
2013-01-01
This paper presents a brief overview of a significant element of the sport marketing management model called the marketing mix. The marketing mix is crucial because it defines the sport business, and much of the sport marketer’s time is spent on various functions within the marketing mix. The marketing mix is the strategic combination of the product, price, place and promotion elements. These elements are typically called the four Ps of marketing. Decisions and strategies for each are importa...
THE MARKETING MIX OPTIMIZATION
SABOU FELICIA
2014-01-01
The paper presents the marketing mix and the necessity of the marketing mix optimization. In the marketing mix a particularly important issue is to choose the best combination of its variables, this lead to the achievement objectives, in time. Choosing the right marketing mix is possible only by reporting information to some clear benchmarks, these criteria a related to the objective of the company at the time of analyze. The study shows that the companies must give a great importance to opti...
Halcomb, Elizabeth; Hickman, Louise
2015-04-08
Mixed methods research involves the use of qualitative and quantitative data in a single research project. It represents an alternative methodological approach, combining qualitative and quantitative research approaches, which enables nurse researchers to explore complex phenomena in detail. This article provides a practical overview of mixed methods research and its application in nursing, to guide the novice researcher considering a mixed methods research project.
Patterson, J.F.; Galbraith, K.P.
1978-01-01
An improved mixing vane grid spacer having enhanced flow mixing capability by virtue of mixing vanes being positioned at welded intersecting joints of the spacer wherein each mixing vane has an opening or window formed therein substantially directly over the welded joint to provide improved flow mixing capability is described. Some of the vanes are slotted, depending on their particular location in the spacers. The intersecting joints are welded by initially providing consumable tabs at and within each window, which are consumed during the welding of the spacer joints
Zhou, Linsen [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Xie, Daiqian, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guo, Hua, E-mail: dqxie@nju.edu.cn, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)
2015-03-28
A detailed quantum mechanical characterization of the photodissociation dynamics of H{sub 2}O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH(X{sup ~}/A{sup ~}) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH(X{sup ~}, v = 0) exhibit very different characteristics. The A′ states, produced mostly via the B{sup ~}→X{sup ~} conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B{sup ~}→A{sup ~} Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH(X{sup ~}) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B{sup ~}→X{sup ~} non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH(A{sup ~}) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.
Zhou, Linsen; Xie, Daiqian; Guo, Hua
2015-01-01
A detailed quantum mechanical characterization of the photodissociation dynamics of H 2 O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH(X ~ /A ~ ) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH(X ~ , v = 0) exhibit very different characteristics. The A′ states, produced mostly via the B ~ →X ~ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B ~ →A ~ Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH(X ~ ) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B ~ →X ~ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH(A ~ ) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces
Zhou, Linsen; Xie, Daiqian; Guo, Hua
2015-03-01
A detailed quantum mechanical characterization of the photodissociation dynamics of H2O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH( X ˜ / A ˜ ) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH( X ˜ , v = 0) exhibit very different characteristics. The A' states, produced mostly via the B ˜ → X ˜ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B ˜ → A ˜ Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH( X ˜ ) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B ˜ → X ˜ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH( A ˜ ) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.
Zhou, Linsen; Xie, Daiqian; Guo, Hua
2015-03-28
A detailed quantum mechanical characterization of the photodissociation dynamics of H2O at 121.6 nm is presented. The calculations were performed using a full-dimensional wave packet method on coupled potential energy surfaces of all relevant electronic states. Our state-to-state model permits a detailed analysis of the OH(X̃/Ã) product fine-structure populations as a probe of the non-adiabatic dissociation dynamics. The calculated rotational state distributions of the two Λ-doublet levels of OH(X̃, v = 0) exhibit very different characteristics. The A' states, produced mostly via the B̃→X̃ conical intersection pathway, have significantly higher populations than the A″ counterparts, which are primarily from the B̃→Ã Renner-Teller pathway. The former features a highly inverted and oscillatory rotational state distribution, while the latter has a smooth distribution with much less rotational excitation. In good agreement with experiment, the calculated total OH(X̃) rotational state distribution and anisotropy parameters show clear even-odd oscillations, which can be attributed to a quantum mechanical interference between waves emanating from the HOH and HHO conical intersections in the B̃→X̃ non-adiabatic pathway. On the other hand, the experiment-theory agreement for the OH(Ã) fragment is also satisfactory, although some small quantitative differences suggest remaining imperfections of the ab initio based potential energy surfaces.
Balucani, Nadia; Leonori, Francesca; Casavecchia, Piergiorgio; Fu, Bina; Bowman, Joel M
2015-12-17
The combustion relevant O((3)P) + C2H4 reaction stands out as a prototypical multichannel nonadiabatic reaction involving both triplet and singlet potential energy surfaces (PESs), which are strongly coupled. Crossed molecular beam (CMB) scattering experiments with universal soft electron ionization mass spectrometric detection have been used to characterize the dynamics of this reaction at the relatively high collision energy Ec of 13.7 kcal/mol, attained by crossing the reactant beams at an angle of 135°. This work is a full report of the data at the highest Ec investigated for this reaction. From laboratory product angular and velocity distribution measurements, angular and translational energy distributions in the center-of-mass system have been obtained for the five observed exothermic competing reaction channels leading to H + CH2CHO, H + CH3CO, CH3 + HCO, CH2 + H2CO, and H2 + CH2CO. The product branching ratios (BRs) have been derived. The elucidation of the reaction dynamics is assisted by synergic full-dimensional quasiclassical trajectory surface-hopping calculations of the reactive differential cross sections on coupled ab initio triplet/singlet PESs. This joint experimental/theoretical study extends and complements our previous combined CMB and theoretical work at the lower collision energy of 8.4 kcal/mol. The theoretically derived BRs and extent of intersystem crossing (ISC) are compared with experimental results. In particular, the predictions of the QCT results for the three main channels (those leading to vinoxy + H, methyl + HCO and methylene + H2CO formation) are compared directly with the experimental data in the laboratory frame. Good overall agreement is noted between theory and experiment, although some small, yet significant shortcomings of the theoretical differential cross section are noted. Both experiment and theory find almost an equal contribution from the triplet and singlet surfaces to the reaction, with a clear tendency of the
Xia, Shu-Hua; Liu, Xiang-Yang; Fang, Qiu; Cui, Ganglong, E-mail: ganglong.cui@bnu.edu.cn [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China)
2015-11-21
In this work, we have first employed the combined quantum mechanics/molecular mechanics (QM/MM) method to study the photodissociation mechanism of thioacetic acid CH{sub 3}C(O)SH in the S{sub 1}, T{sub 1}, and S{sub 0} states in argon matrix. CH{sub 3}C(O)SH is treated quantum mechanically using the complete active space self-consistent field and complete active space second-order perturbation theory methods; argon matrix is described classically using Lennard-Jones potentials. We find that the C-S bond fission is predominant due to its small barriers of ca. 3.0 and 1.0 kcal/mol in the S{sub 1} and T{sub 1} states. It completely suppresses the nearby C—C bond fission. After the bond fission, the S{sub 1} radical pair of CH{sub 3}CO and SH can decay to the S{sub 0} and T{sub 1} states via internal conversion and intersystem crossing, respectively. In the S{sub 0} state, the radical pair can either recombine to form CH{sub 3}C(O)SH or proceed to form molecular products of CH{sub 2}CO and H{sub 2}S. We have further employed our recently developed QM/MM generalized trajectory-based surface-hopping method to simulate the photodissociation dynamics of CH{sub 3}C(O)SH. In 1 ps dynamics simulation, 56% trajectories stay at the Franck-Condon region; the S{sub 1} C—S bond fission takes place in the remaining 44% trajectories. Among all nonadiabatic transitions, the S{sub 1} → S{sub 0} internal conversion is major (55%) but the S{sub 1} → T{sub 1} intersystem crossing is still comparable and cannot be ignored, which accounts for 28%. Finally, we have found a radical channel generating the molecular products of CH{sub 2}CO and H{sub 2}S, which is complementary to the concerted molecular channel. The present work sets the stage for simulating photodissociation dynamics of similar thio-carbonyl systems in matrix.
MIXED AND MIXING SYSTEMS WORLDWIDE: A PREFACE
Seán Patrick Donlan
2012-09-01
Full Text Available This issue of the Potchefstroom Electronic Law Journal (South Africa sees thepublication of a selection of articles derived from the Third International Congress ofthe World Society of Mixed Jurisdiction Jurists (WSMJJ. That Congress was held atthe Hebrew University of Jerusalem, Israel in the summer of 2011. It reflected athriving Society consolidating its core scholarship on classical mixed jurisdictions(Israel, Louisiana, the Philippines, Puerto Rico, Quebec, Scotland, and South Africawhile reaching to new horizons (including Cyprus, Hong Kong and Macau, Malta,Nepal, etc. This publication reflects in microcosm the complexity of contemporaryscholarship on mixed and plural legal systems. This complexity is, of course, wellunderstoodby South African jurists whose system is derived both from the dominantEuropean traditions as well as from African customary systems, including both thosethat make up part of the official law of the state as well as those non-state norms thatcontinue to be important in the daily lives of many South Africans.
MARKETING MIX THEORETICAL ASPECTS
Margarita Išoraitė
2016-01-01
Aim of article is to analyze marketing mix theoretical aspects. The article discusses that marketing mix is one of the main objectives of the marketing mix elements for setting objectives and marketing budget measures. The importance of each element depends not only on the company and its activities, but also on the competition and time. All marketing elements are interrelated and should be seen in the whole of their actions. Some items may have greater importance than others; it depends main...
2002-07-01
The protocol in this document describes a method for an Electricity Distribution Company (EDC) to account for the fuel mix of electricity that it delivers to its customers, based on the best available information. Own production, purchase and sale of electricity, and certificates trading are taken into account. In chapter 2 the actual protocol is outlined. In the appendixes additional (supporting) information is given: (A) Dutch Standard Fuel Mix, 2000; (B) Calculation of the Dutch Standard fuel mix; (C) Procedures to estimate and benchmark the fuel mix; (D) Quality management; (E) External verification; (F) Recommendation for further development of the protocol; (G) Reporting examples
Mixed waste management options
Owens, C.B.; Kirner, N.P.
1992-01-01
Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)
Mixed Waste Management Facility
Brummond, W.; Celeste, J.; Steenhoven, J.
1993-08-01
The DOE has developed a National Mixed Waste Strategic Plan which calls for the construction of 2 to 9 mixed waste treatment centers in the Complex in the near future. LLNL is working to establish an integrated mixed waste technology development and demonstration system facility, the Mixed Waste Management Facility (MWMF), to support the DOE National Mixed Waste Strategic Plan. The MWMF will develop, demonstrate, test, and evaluate incinerator-alternatives which will comply with regulations governing the treatment and disposal of organic mixed wastes. LLNL will provide the DOE with engineering data for design and operation of new technologies which can be implemented in their mixed waste treatment centers. MWMF will operate under real production plant conditions and process samples of real LLNL mixed waste. In addition to the destruction of organic mixed wastes, the development and demonstration will include waste feed preparation, material transport systems, aqueous treatment, off-gas treatment, and final forms, thus making it an integrated ''cradle to grave'' demonstration. Technologies from offsite as well as LLNL's will be tested and evaluated when they are ready for a pilot scale demonstration, according to the needs of the DOE
Mixing of solids in different mixing devices
INGRID BAUMAN, DUŠKA ´CURI ´C and MATIJA BOBAN ... whose main cause is the difference in particle size, density shape and resilience. ..... Gyebis J, Katai F 1990 Determination and randomness in mixing of particulate solids, Chem.
Gelineck, Steven; Büchert, Morten; Andersen, Jesper
2013-01-01
This paper presents a multi-touch based interface for mixing music. The goal of the interface is to provide users with a more intuitive control of the music mix by implementing the so-called stage metaphor control scheme, which is especially suitable for multi-touch surfaces. Specifically, we...
2009-04-17
State of Alaska State of Alaska - Warm Mix Project Warm Mix Project: Location - Petersburg, Alaska which is Petersburg, Alaska which is located in the heart of Southeast Alaska located in the heart of Southeast Alaska's Inside Passage at the tip of M...
A range of views on mixed languages and their connections to phenomena such as secret languages, massive borrowing, codeswitching and codemixing, and thier origin.......A range of views on mixed languages and their connections to phenomena such as secret languages, massive borrowing, codeswitching and codemixing, and thier origin....
Passive Mixing inside Microdroplets
Chengmin Chen
2018-04-01
Full Text Available Droplet-based micromixers are essential units in many microfluidic devices for widespread applications, such as diagnostics and synthesis. The mixers can be either passive or active. When compared to active methods, the passive mixer is widely used because it does not require extra energy input apart from the pump drive. In recent years, several passive droplet-based mixers were developed, where mixing was characterized by both experiments and simulation. A unified physical understanding of both experimental processes and simulation models is beneficial for effectively developing new and efficient mixing techniques. This review covers the state-of-the-art passive droplet-based micromixers in microfluidics, which mainly focuses on three aspects: (1 Mixing parameters and analysis method; (2 Typical mixing element designs and the mixing characters in experiments; and, (3 Comprehensive introduction of numerical models used in microfluidic flow and diffusion.
Lee, S; Richard Dimenna, R; David Tamburello, D
2008-01-01
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and
Lee, S; Richard Dimenna, R; David Tamburello, D
2008-11-13
The process of recovering the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four dual-nozzle jet mixers located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The work described in this report establishes the basis for further development of the theory leading to the identified mixing indicators, the benchmark analyses demonstrating their consistency with widely accepted correlations, and the application of those indicators to SRS waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in height from zero to 10 ft. The sludge has been characterized and modeled as micron-sized solids, typically 1 to 5 microns, at weight fractions as high as 20 to 30 wt%, specific gravities to 1.4, and viscosities up to 64 cp during motion. The sludge is suspended and mixed through the use of submersible slurry jet pumps. To suspend settled sludge, water is added to the tank as a slurry medium and stirred with the jet pump. Although there is considerable technical literature on mixing and solid suspension in agitated tanks, very little literature has been published on jet mixing in a large-scale tank. If shorter mixing times can be shown to support Defense Waste Processing Facility (DWPF) or other feed requirements, longer pump lifetimes can be achieved with associated operational cost and
Incomplete basis-set problem. V. Application of CIBS to many-electron systems
McDowell, K.; Lewis, L.
1982-01-01
Five versions of CIBS (corrections to an incomplete basis set) theory are used to compute first and second corrections to Roothaan--Hartree--Fock energies via expansion of a given basis set. Version one is an order by order perturbation approximation which neglects virtual orbitals; version two is a full CIBS expansion which neglects virtual orbitals; version three is an order by order perturbation approximation which includes virtual orbitals; version four is a full CIBS expansion which includes orthogonalization to virtual orbitals but neglects virtual orbital coupling terms; and version five is a full CIBS expansion with inclusion of coupling to virtual orbitals. Results are presented for the atomic and molecular systems He, Be, H 2 , LiH, Li 2 , and H 2 O. Version five is shown to produce a corrected Hartree--Fock energy which is essentially in agreement with a comparable SCF result using the same expanded basis set. Versions one through four yield varying degrees of agreement; however, it is evident that the effect of the virtual orbitals must be included. From the results, CIBS version five is shown to be a viable quantitative procedure which can be used to expand or to study the use of basis sets in quantum chemistry
Study of confined many electron atoms by means of the POEP method
Sarsa, A; Buendía, E; Gálvez, F J
2014-01-01
The electronic structure of confined atoms under impenetrable spherical walls is studied by means of the parameterized optimized effective potential method. A cut-off factor is employed to account for Dirichlet boundary conditions. Two atomic basis sets commonly used for describing free atoms have been analyzed within this scheme. The accuracy of the method is similar to that achieved for the free atoms. The ground state electrostatic multiplet of the carbon atom as well as the ground state and both the [Ar]4s3d 7 5 F and [Ar]3d 8 3 F excited states of the iron atom are studied. The behaviour of the energy levels with the confinement has been analyzed in terms of the different contributions to the total energy of the atom. For the iron atom, the effect of confinement on the outermost orbitals is studied. (paper)
Farzanehpour, Mehdi; Tokatly, Ilya; Nano-Bio Spectroscopy Group; ETSF Scientific Development Centre Team
2015-03-01
We present a rigorous formulation of the time-dependent density functional theory for interacting lattice electrons strongly coupled to cavity photons. We start with an example of one particle on a Hubbard dimer coupled to a single photonic mode, which is equivalent to the single mode spin-boson model or the quantum Rabi model. For this system we prove that the electron-photon wave function is a unique functional of the electronic density and the expectation value of the photonic coordinate, provided the initial state and the density satisfy a set of well defined conditions. Then we generalize the formalism to many interacting electrons on a lattice coupled to multiple photonic modes and prove the general mapping theorem. We also show that for a system evolving from the ground state of a lattice Hamiltonian any density with a continuous second time derivative is locally v-representable. Spanish Ministry of Economy and Competitiveness (Grant No. FIS2013-46159-C3-1-P), Grupos Consolidados UPV/EHU del Gobierno Vasco (Grant No. IT578-13), COST Actions CM1204 (XLIC) and MP1306 (EUSpec).
Redfors, A.
1991-01-01
Magnesiumlike and aluminumlike spectra of the elements calcium - germanium have been obtained through the use of laser-produced plasmas (LPP) and a 3 m normal incidence vacuum spectrograph. The spectral analyses were mainly based on isoelectronic regularities. Intermediate ionization stages of cerium (Ce V) and silicon (SI VI) have also been studied. The light sources in these cases were a sliding spark and a modified version of the LPP. The Eagle spectrograph at the National Institute of Standards and Technology, Gaitherburg, Maryland was used to record the cerium spectrum. Ab initio calculations and least-squares fits of the Slater energy parameters to the experimental energy levels are reported for all investigated spectra. Theoretical predictions of oscillator strengths for Y III and Zr III in the region 1150-3200 AA are presented. The oscillator strengths are needed for abundance determinations of Y 2+ and Zr 2+ in chemically peculiar stars, Cp stars. (65 refs.)
Coulomb correlations in many-electron systems on the level of self-consistent fields
Warken, M.
1991-06-01
It was the aim of this thesis to show means and ways, in order to regard Coulomb correlation already on the SCF level. As mean to facilitate this general averaged fields should serve. For this first in chapter I was shown, how by means of suitable gauge fixings terms into effective potentials of the Hartree-Fock or g-Hartree type are introduced, which permit an interpretation as correlation density or as effective coupling constant. The following considerations were exemplarily performed on the cases g-Hartree (in Coulomb gauge) and on f-Hartree-Fock. (orig./HSI) [de
Time-dependent quantum chemistry of laser driven many-electron molecules
Nguyen-Dang, Thanh-Tung; Couture-Bienvenue, Étienne; Viau-Trudel, Jérémy; Sainjon, Amaury
2014-01-01
A Time-Dependent Configuration Interaction approach using multiple Feshbach partitionings, corresponding to multiple ionization stages of a laser-driven molecule, has recently been proposed [T.-T. Nguyen-Dang and J. Viau-Trudel, J. Chem. Phys. 139, 244102 (2013)]. To complete this development toward a fully ab-initio method for the calculation of time-dependent electronic wavefunctions of an N-electron molecule, we describe how tools of multiconfiguration quantum chemistry such as the management of the configuration expansion space using Graphical Unitary Group Approach concepts can be profitably adapted to the new context, that of time-resolved electronic dynamics, as opposed to stationary electronic structure. The method is applied to calculate the detailed, sub-cycle electronic dynamics of BeH 2 , treated in a 3–21G bound-orbital basis augmented by a set of orthogonalized plane-waves representing continuum-type orbitals, including its ionization under an intense λ = 800 nm or λ = 80 nm continuous-wave laser field. The dynamics is strongly non-linear at the field-intensity considered (I ≃ 10 15 W/cm 2 ), featuring important ionization of an inner-shell electron and strong post-ionization bound-electron dynamics
Many-electron effect in the resonant Auger electron spectroscopy spectra of adsorbates
Ohno, Masahide
2007-01-01
It is shown by a many-body theory that a resonantly excited core hole state in a chemisorbed molecule such as CO/Ni, CO/Pd, and CO/Pt relaxes to a fully relaxed one, i.e., the ionized core hole state of the smallest binding energy observed by photoelectron spectroscopy, before the core hole decays so that the resonant Auger electron spectroscopy (RAES) spectrum shows the normal Auger decay spectrum. It is shown by a many-body theory that the Auger peaks on the higher kinetic energy (K.E.) side in the RAES or AES spectrum, i.e., so called back-bonding peaks, are the two-hole states consisting of a valence hole and a hole in the adsorbate-substrate hybrid states below the substrate Fermi level. The latter hole is the change in the density of the hybrid states occupied by the screening electron from the core hole state to the valence-hole state. The difference between the back-bonding peak energy and the single valence-hole energy provides an important information about the change in the density of the hybrid states occupied by the screening electron from the core hole state to the valence-hole state. The difference between the RAES spectrum measured at the resonance energy and the AES spectrum measured at far above the ionization limit shows the competition between relaxation and decay of shakeup satellites such as the charge transfer (CT) shakeup. The relaxation rate of the CT shakeup state can be determined by Auger-photoelectron coincidence spectroscopy (APECS)
Liu, Fang, E-mail: fliu@lsec.cc.ac.cn [School of Statistics and Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Lin, Lin, E-mail: linlin@math.berkeley.edu [Department of Mathematics, University of California, Berkeley, CA 94720 (United States); Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Vigil-Fowler, Derek, E-mail: vigil@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Lischner, Johannes, E-mail: jlischner597@gmail.com [Department of Physics, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kemper, Alexander F., E-mail: afkemper@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sharifzadeh, Sahar, E-mail: ssharifz@bu.edu [Department of Electrical and Computer Engineering and Division of Materials Science and Engineering, Boston University, Boston, MA 02215 (United States); Jornada, Felipe H. da, E-mail: jornada@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Deslippe, Jack, E-mail: jdeslippe@lbl.gov [NERSC, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Yang, Chao, E-mail: cyang@lbl.gov [Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); and others
2015-04-01
We present a numerical integration scheme for evaluating the convolution of a Green's function with a screened Coulomb potential on the real axis in the GW approximation of the self energy. Our scheme takes the zero broadening limit in Green's function first, replaces the numerator of the integrand with a piecewise polynomial approximation, and performs principal value integration on subintervals analytically. We give the error bound of our numerical integration scheme and show by numerical examples that it is more reliable and accurate than the standard quadrature rules such as the composite trapezoidal rule. We also discuss the benefit of using different self energy expressions to perform the numerical convolution at different frequencies.
''Atomic'' Bremsstrahlung or polarizational radiation in collision of many-electron ions
Amusia, M.Ya.; Solov'yov, A.V.
1991-01-01
In this work the so-called ''Atomic'' bremsstrahlung (AB) or polarizational radiation, created in collisions of atoms or ions, is discussed. This kind of radiation arises due to the polarization of the electron shell of colliding particles. It is created by the structured projectiles and targets if the constituents are electrically charged. 6 refs, 2 figs
Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms
Thierfelder, C.; Schwerdtfeger, P.
2010-01-01
We present quantum electrodynamic (QED) calculations within the picture of bound-state QED for the frequency-dependent Breit interaction between electrons, the vacuum polarization, and the electron self-energy correction starting from the Dirac-Coulomb Hamiltonian for the ionization potentials of the group 1, 2, 11, 12, 13, and 18 elements of the periodic table, and down to the superheavy elements up to nuclear charge Z=120. The results for the s-block elements are in very good agreement with earlier studies by Labzowsky et al. [Phys. Rev. A 59, 2707 (1999)]. We discuss the influence of the variational versus perturbative treatment of the Breit interaction for valence-space ionization potentials. We argue that the lowest-order QED contributions become as important as the Breit interaction for ionization potentials out of the valence s shell.
Lee, S; Dimenna, R; Tamburello, D
2011-02-14
The process of recovering and processing High Level Waste (HLW) the waste in storage tanks at the Savannah River Site (SRS) typically requires mixing the contents of the tank with one to four mixers (pumps) located within the tank. The typical criteria to establish a mixed condition in a tank are based on the number of pumps in operation and the time duration of operation. To ensure that a mixed condition is achieved, operating times are typically set conservatively long. This approach results in high operational costs because of the long mixing times and high maintenance and repair costs for the same reason. A significant reduction in both of these costs might be realized by reducing the required mixing time based on calculating a reliable indicator of mixing with a suitably validated computer code. The focus of the present work is to establish mixing criteria applicable to miscible fluids, with an ultimate goal of addressing waste processing in HLW tanks at SRS and quantifying the mixing time required to suspend sludge particles with the submersible jet pump. A single-phase computational fluid dynamics (CFD) approach was taken for the analysis of jet flow patterns with an emphasis on the velocity decay and the turbulent flow evolution for the farfield region from the pump. Literature results for a turbulent jet flow are reviewed, since the decay of the axial jet velocity and the evolution of the jet flow patterns are important phenomena affecting sludge suspension and mixing operations. The work described in this report suggests a basis for further development of the theory leading to the identified mixing indicators, with benchmark analyses demonstrating their consistency with widely accepted correlations. Although the indicators are somewhat generic in nature, they are applied to Savannah River Site (SRS) waste tanks to provide a better, physically based estimate of the required mixing time. Waste storage tanks at SRS contain settled sludge which varies in
THE MARKETING MIX OPTIMIZATION
SABOU FELICIA
2014-02-01
Full Text Available ing mix a particularly important issue is to choose the best combination of its variables, this lead to the achievement objectives, in time. Choosing the right marketing mix is possible only by reporting information to some clear benchmarks, these criteria a related to the objective of the company at the time of analyze. The study shows that the companies must give a great importance to optimize the marketing mix, because of how its combines and integrates company policies relating to the product, price, distribution and promotion, depends the success or the failure on its market. The practice has shown that if an element of the marketing mix is wrong implemented, marketing strategies and programs do not achieve their objectives, and the company can not generate the expected profit. To optimize the marketing mix, companies should consider the following issues: the resources (materials, financial and human, which will be properly allocated to all the elements of the marketing mix, the specific marketing tools and the relationship of interdependence of all the methods and tools used to optimize the marketing mix.
Ottino, J.M.
1989-01-01
What do the eruption of Krakatau, the manufacture of puff pastry and the brightness of stars have in common? Each involves some aspect of mixing. Mixing also plays a critical role in modern technology. Chemical engineers rely on mixing to ensure that substances react properly, to produce polymer blends that exhibit unique properties and to disperse drag-reducing agents in pipelines. Yet in spite of its of its ubiquity in nature and industry, mixing is only imperfectly under-stood. Indeed, investigators cannot even settle on a common terminology: mixing is often referred to as stirring by oceanographers and geophysicists, as blending by polymer engineers and as agitation by process engineers. Regardless of what the process is called, there is little doubt that it is exceedingly complex and is found in a great variety of systems. In constructing a theory of fluid mixing, for example, one has to take into account fluids that can be miscible or partially miscible and reactive or inert, and flows that are slow and orderly or very fast and turbulent. It is therefore not surprising that no single theory can explain all aspect of mixing in fluids and that straightforward computations usually fail to capture all the important details. Still, both physical experiments and computer simulations can provide insight into the mixing process. Over the past several years the authors and his colleague have taken both approaches in an effort to increase understanding of various aspect of the process-particularly of mixing involving slow flows and viscous fluids such as oils
Guidelines for mixed waste minimization
Owens, C.
1992-02-01
Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization
Golibrzuch, Kai; Shirhatti, Pranav R.; Kandratsenka, Alexander; Wodtke, Alec M.; Bartels, Christof [Institute for Physical Chemistry, Georg August University of Göttingen, Göttingen 37077 (Germany); Max Planck Institute for Biophysical Chemistry, Göttingen 37077 (Germany); Rahinov, Igor [Department of Natural Sciences, The Open University of Israel, Ra' anana 4353701 (Israel); Auerbach, Daniel J. [Institute for Physical Chemistry, Georg August University of Göttingen, Göttingen 37077 (Germany); Max Planck Institute for Biophysical Chemistry, Göttingen 37077 (Germany); Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106 (United States)
2014-01-28
We present a combined experimental and theoretical study of NO(v = 3 → 3, 2, 1) scattering from a Au(111) surface at incidence translational energies ranging from 0.1 to 1.2 eV. Experimentally, molecular beam–surface scattering is combined with vibrational overtone pumping and quantum-state selective detection of the recoiling molecules. Theoretically, we employ a recently developed first-principles approach, which employs an Independent Electron Surface Hopping (IESH) algorithm to model the nonadiabatic dynamics on a Newns-Anderson Hamiltonian derived from density functional theory. This approach has been successful when compared to previously reported NO/Au scattering data. The experiments presented here show that vibrational relaxation probabilities increase with incidence energy of translation. The theoretical simulations incorrectly predict high relaxation probabilities at low incidence translational energy. We show that this behavior originates from trajectories exhibiting multiple bounces at the surface, associated with deeper penetration and favored (N-down) molecular orientation, resulting in a higher average number of electronic hops and thus stronger vibrational relaxation. The experimentally observed narrow angular distributions suggest that mainly single-bounce collisions are important. Restricting the simulations by selecting only single-bounce trajectories improves agreement with experiment. The multiple bounce artifacts discovered in this work are also present in simulations employing electronic friction and even for electronically adiabatic simulations, meaning they are not a direct result of the IESH algorithm. This work demonstrates how even subtle errors in the adiabatic interaction potential, especially those that influence the interaction time of the molecule with the surface, can lead to an incorrect description of electronically nonadiabatic vibrational energy transfer in molecule-surface collisions.
Peterson, R.A.
1999-01-01
The dispersion of tetraphenylborate in continuous stirred tank reactors plays a significant role in the utility achieved from the tetraphenylborate. Investigating idealized mixing of the materials can illuminate how this dispersion occurs
SPORT MARKETING MIX STRATEGIES
Alexandru Lucian MIHAI
2013-06-01
Full Text Available This paper presents a brief overview of a significant element of the sport marketing management model called the marketing mix. The marketing mix is crucial because it defines the sport business, and much of the sport marketer’s time is spent on various functions within the marketing mix. The marketing mix is the strategic combination of the product, price, place and promotion elements. These elements are typically called the four Ps of marketing. Decisions and strategies for each are important for the marketer. Information for making educated decisions involving the four Ps comes from the marketing research involving primarily the four Cs - consumer, competitor, company and climate. A critical decision and one of the greatest challenges for the sport business is how to strategically combine the four Ps to best satisfy the consumer, meet company objectives, enhance market position, and enhance competitive advantages.
Srećko Novaković; Slobodan Živkucin
2011-01-01
Marketing mix'' along the term of life cycle has robbed the trademark for the conception of marketing and the market direction of company, corporations and institutions. Essence marketing-mixa is in the simultaneous determining of the target market group of consumer (the buyer) or stays the public and specially prepared and the coordinated impact of elements mixa, and this is the product, price, distributions and graduation ceremonies. Given that is mix combinations of verified variables, com...
Dieter Müller
2009-01-01
Currently one of the most challenging aspects of human computer interaction design is the integration of physical and digital worlds in a single environment. This fusion involves the development of "Mixed Reality Systems”, including various technologies from the domains of augmented and virtual reality. In this paper I will present related concepts and discuss lessons learned from our own research and prototype development. Our recent work involves the use of mixed reality (as opposed to ‘pur...
Chiu, S. H.; Kuo, T. K.
2018-03-01
The elements (squared) of the neutrino mixing matrix are found to satisfy, as functions of the induced mass, a set of differential equations. They show clearly the dominance of pole terms when the neutrino masses "cross." Using the known vacuum mixing parameters as initial conditions, it is found that these equations have very good approximate solutions, for all values of the induced mass. The results are applicable to long baseline experiments.
Pittner, Jiri; Lischka, Hans; Barbatti, Mario
2009-01-01
The usage of time-derivative non-adiabatic coupling terms and partially coupled time-dependent equations are investigated to accelerate non-adiabatic dynamics simulations at multireference configuration interaction (MRCI) level. The quality of the results and computational costs are compared against non-adiabatic benchmark dynamics calculations using non-adiabatic coupling vectors. In the comparison between the time-derivative couplings and coupling vectors, deviations in the adiabatic population of individual trajectories were observed in regions of rapid variation of the coupling terms. They, however, affected the average adiabatic population to only about 5%. For small multiconfiguration spaces, dynamics with time-derivative couplings are significantly faster than those with coupling vectors. This relation inverts for larger configuration spaces. The use of the partially coupled equations approach speeds up the simulations significantly while keeping the deviations in the population below few percent. Imidazole and the methaniminium cation are used as test examples
"Diffusion" region of magnetic reconnection: electron orbits and the phase space mixing
Kropotkin, Alexey P.
2018-05-01
The nonlinear dynamics of electrons in the vicinity of magnetic field neutral lines during magnetic reconnection, deep inside the diffusion region where the electron motion is nonadiabatic, has been numerically analyzed. Test particle orbits are examined in that vicinity, for a prescribed planar two-dimensional magnetic field configuration and with a prescribed uniform electric field in the neutral line direction. On electron orbits, a strong particle acceleration occurs due to the reconnection electric field. Local instability of orbits in the neighborhood of the neutral line is pointed out. It combines with finiteness of orbits due to particle trapping by the magnetic field, and this should lead to the effect of mixing in the phase space, and the appearance of dynamical chaos. The latter may presumably be viewed as a mechanism producing finite conductivity in collisionless plasma near the neutral line. That conductivity is necessary to provide violation of the magnetic field frozen-in condition, i.e., for magnetic reconnection to occur in that region.
Ackerman, J.R.
1989-01-01
Efficient mixing of reactants into a waste stream has always been a problem in that there has been no mixer capable of combining all the elements of enhanced mixing into a single piece of equipment. Through the development of a mixing system for the mining industry to treat acid mine water containing heavy metals, a versatile new hydraulic jetting static mixer has been developed that has no moving parts and a clean bore with no internal components. This paper reports that the main goal of the development of the hydraulic jett mixer was to reduce the size of the tankage required for an acid mine drainage (AMD) treatment plant through development of a static mixing device that could coincidentally aerate the treatment flow. This process equipment being developed would simultaneously adjust the pH and oxidize the metals allowing formation of the hydroxide sludges required for sedimentation and removal of the metals from the treatment stream. In effect, the device eliminates two reaction tanks, the neutralization/mixing tank and the aeration tank
Di Canto, Angelo
2013-01-01
We report a measurement of the time-dependent ratio of $D^0\\to K^+\\pi^-$ to $D^0\\to K^-\\pi^+$ decay rates in $D^{*+}$-tagged events using 1.0\\,fb$^{-1}$ of integrated luminosity recorded by the LHCb experiment. We measure the mixing parameters $x'^2=(-0.9\\pm1.3)\\times10^{-4}$, $y'=(7.2\\pm2.4)\\times10^{-3}$ and the ratio of doubly-Cabibbo-suppressed to Cabibbo-favored decay rates $R_D=(3.52\\pm0.15)\\times10^{-3}$. The result excludes the no-mixing hypothesis with a probability corresponding to 9.1 standard deviations and represents the first observation of charm mixing from a single measurement
Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E.
1993-01-01
This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base
Moghissi, A.A.; Blauvelt, R.K.; Benda, G.A.; Rothermich, N.E. [eds.] [Temple Univ., Philadelphia, PA (United States). Dept. of Environmental Safety and Health
1993-12-31
This volume contains the peer-reviewed and edited versions of papers submitted for presentation a the Second International Mixed Waste Symposium. Following the tradition of the First International Mixed Waste Symposium, these proceedings were prepared in advance of the meeting for distribution to participants. The symposium was organized by the Mixed Waste Committee of the American Society of Mechanical Engineers. The topics discussed at the symposium include: stabilization technologies, alternative treatment technologies, regulatory issues, vitrification technologies, characterization of wastes, thermal technologies, laboratory and analytical issues, waste storage and disposal, organic treatment technologies, waste minimization, packaging and transportation, treatment of mercury contaminated wastes and bioprocessing, and environmental restoration. Individual abstracts are catalogued separately for the data base.
Bimaximal fermion mixing from the quark and leptonic mixing matrices
Ohlsson, Tommy
2005-01-01
In this Letter, we show how the mixing angles of the standard parameterization add when multiplying the quark and leptonic mixing matrices, i.e., we derive explicit sum rules for the quark and leptonic mixing angles. In this connection, we also discuss other recently proposed sum rules for the mixing angles assuming bimaximal fermion mixing. In addition, we find that the present experimental and phenomenological data of the mixing angles naturally fulfill our sum rules, and thus, give rise to bilarge or bimaximal fermion mixing
Burow, Burkhard D.
1996-01-01
Computing in the next millennium will be using software from this millennium. Programming languages evolve and new ones continue to be created. The use of legacy code demonstrates why some present and future applications may span programming languages. Even a completely new application may mix programming languages, if it allows its components to be more conveniently expressed. Given the need, mixed language programming should be easy and robust. By resolving a variety of difficulties, the well established cfortran.h package provides, the desired convenient interface across the C and Fortran programming languages, as demonstrated using CERN's Book. (author)
Turbulence and Interfacial Mixing
Glimm, James; Li, Xiaolin
2005-03-15
The authors study mix from analytical and numerical points of view. These investigations are linked. The analytical studies (in addition to laboratory experiments) provide bench marks for the direct simulation of mix. However, direct simulation is too detailed to be useful and to expensive to be practical. They also consider averaged equations. Here the major issue is the validation of the closure assumptions. They appeal to the direct simulation methods for this step. They have collaborated with several NNSA teams; moreover, Stony Brook alumni (former students, faculty and research collaborators) presently hold staff positions in NNSA laboratories.
Dieter Müller
2009-11-01
Full Text Available Currently one of the most challenging aspects of human computer interaction design is the integration of physical and digital worlds in a single environment. This fusion involves the development of "Mixed Reality Systems”, including various technologies from the domains of augmented and virtual reality. In this paper I will present related concepts and discuss lessons learned from our own research and prototype development. Our recent work involves the use of mixed reality (as opposed to ‘pure’ virtual reality techniques to support seamless collaborative work between remote and hands-on laboratories.
Optimizing the strategic patient mix
Vanberkel, P.T.; Boucherie, Richardus J.; Hans, Elias W.; Hurink, Johann L.
In this paper we address the decision of choosing a patient mix for a hospital that leads to the most beneficial treatment case mix. We illustrate how capacity, case mix and patient mix decisions are interrelated and how understanding this complex relationship is crucial for achieving the maximum
Bello, Mollie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Welch, Cynthia F. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodwin, Lynne Alese [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Keller, Jennie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2014-08-22
Sylgard® 184 and Sylgard® 186 silicone elastomers form Dow Corning® are used as potting agents across the Nuclear Weapons Complex. A standardized mixing procedure is required for filled versions of these products. The present study is a follow-up to a mixing study performed by MST-7 which established the best mixing procedure to use when adding filler to either 184 or 186 base resins. The most effective and consistent method of mixing resin and curing agent for three modified silicone elastomer recipes is outlined in this report. For each recipe, sample size, mixing type, and mixing time was varied over 10 separate runs. The results show that the THINKY™ Mixer gives reliable mixing over varying batch sizes and mixing times. Hand Mixing can give improved mixing, as indicated by reduced initial viscosity; however, this method is not consistent.
Vento, Vicente [Consejo Superior de Investigaciones Cientificas, Departamento de Fisica Teorica y Instituto de Fisica Corpuscular, Universidad de Valencia, Burjassot (Spain)
2016-01-15
Calculations in unquenched QCD for the scalar glueball spectrum have confirmed previous results of Gluodynamics finding a glueball at ∝1750 MeV. I analyze the implications of this discovery from the point of view of glueball-meson mixing in light of the experimental scalar spectrum. (orig.)
Huang, Yifen
2010-01-01
Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…
2017-10-25
www.apl.washington.edu/ people /profile.php?last_name=Gregg&first_name=Mike LONG-TERM GOALS To understand quantify diapycnal mixing in the ocean...ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Office of Naval Research ONR 875 North Randolph Street Arlington, VA 22203-1995 11
Mixed Lubricated Line Contacts
Faraon, I.C.
2005-01-01
The present work deals with friction in mixed lubricated line contacts. Components in systems are becoming smaller and due to, for instance power transmitted, partial contact may occur. In industrial applications, friction between the moving contacting surfaces cannot be avoided, therefore it is
Joe Milburn
2015-05-01
Full Text Available http://dx.doi.org/10.5007/1808-1711.2015v19n2p183 We can call any reductive account of knowledge that appeals to both safety and ability conditions a mixed account of knowledge. Examples of mixed accounts of knowledge include Pritchard’s (2012 Anti-Luck Virtue Epistemology, Kelp’s (2013 Safe-Apt account of knowledge, and Turri’s (2011 Ample belief account of knowledge. Mixed accounts of knowledge are motivated by well-known counterexamples to pure safety and pure ability accounts of knowledge. It is thought that by combining both safety and ability conditions we can give an extensionally adequate reductive account of knowledge. In this paper I argue that the putative counterexamples to pure safety and pure ability accounts of knowledge fail to motivate mixed accounts of knowledge. In particular, I argue that if the putative counterexamples are problematic for safety accounts they are problematic for ability accounts and vice-versa. The reason for this, I argue, is that the safety condition and ability condition should be understood as alternative expressions of the same intuition — that knowledge must come from a reliable source.
Unitarity constraints on trimaximal mixing
Kumar, Sanjeev
2010-01-01
When the neutrino mass eigenstate ν 2 is trimaximally mixed, the mixing matrix is called trimaximal. The middle column of the trimaximal mixing matrix is identical to tribimaximal mixing and the other two columns are subject to unitarity constraints. This corresponds to a mixing matrix with four independent parameters in the most general case. Apart from the two Majorana phases, the mixing matrix has only one free parameter in the CP conserving limit. Trimaximality results in interesting interplay between mixing angles and CP violation. A notion of maximal CP violation naturally emerges here: CP violation is maximal for maximal 2-3 mixing. Similarly, there is a natural constraint on the deviation from maximal 2-3 mixing which takes its maximal value in the CP conserving limit.
Renormalization of fermion mixing
Schiopu, R.
2007-01-01
Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by
Renormalization of fermion mixing
Schiopu, R.
2007-05-11
Precision measurements of phenomena related to fermion mixing require the inclusion of higher order corrections in the calculation of corresponding theoretical predictions. For this, a complete renormalization scheme for models that allow for fermion mixing is highly required. The correct treatment of unstable particles makes this task difficult and yet, no satisfactory and general solution can be found in the literature. In the present work, we study the renormalization of the fermion Lagrange density with Dirac and Majorana particles in models that involve mixing. The first part of the thesis provides a general renormalization prescription for the Lagrangian, while the second one is an application to specific models. In a general framework, using the on-shell renormalization scheme, we identify the physical mass and the decay width of a fermion from its full propagator. The so-called wave function renormalization constants are determined such that the subtracted propagator is diagonal on-shell. As a consequence of absorptive parts in the self-energy, the constants that are supposed to renormalize the incoming fermion and the outgoing antifermion are different from the ones that should renormalize the outgoing fermion and the incoming antifermion and not related by hermiticity, as desired. Instead of defining field renormalization constants identical to the wave function renormalization ones, we differentiate the two by a set of finite constants. Using the additional freedom offered by this finite difference, we investigate the possibility of defining field renormalization constants related by hermiticity. We show that for Dirac fermions, unless the model has very special features, the hermiticity condition leads to ill-defined matrix elements due to self-energy corrections of external legs. In the case of Majorana fermions, the constraints for the model are less restrictive. Here one might have a better chance to define field renormalization constants related by
Krum, David M.; Sadek, Ramy; Kohli, Luv; Olson, Logan; Bolas, Mark
2010-01-01
As part of the Institute for Creative Technologies and the School of Cinematic Arts at the University of Southern California, the Mixed Reality lab develops technologies and techniques for presenting realistic immersive training experiences. Such experiences typically place users within a complex ecology of social actors, physical objects, and collections of intents, motivations, relationships, and other psychological constructs. Currently, it remains infeasible to completely synthesize the interactivity and sensory signatures of such ecologies. For this reason, the lab advocates mixed reality methods for training and conducts experiments exploring such methods. Currently, the lab focuses on understanding and exploiting the elasticity of human perception with respect to representational differences between real and virtual environments. This paper presents an overview of three projects: techniques for redirected walking, displays for the representation of virtual humans, and audio processing to increase stress.
Huppertz, Matthias; Schneider, Andreas Dirk
2006-01-01
Der Marketing-Mix mit seinen 4Ps zur operativen Marketingplanung ist innerhalb des Marketing-Managements die nächste Stufe nach der Marktanalyse in dem die strategische Marketingplanung erarbeitet wurde. Die strategische Marketingplanung befasst sich mit der Analyse des Zielmarktes und der grundsätzlichen Zielrichtung des Unternehmens. Auf Basis der gewonnenen Erkenntnisse wird in der Phase der operativen Marketingplanung versucht, die Unternehmensaktivitäten am Zielmarkt des Unternehmens aus...
Sackmann, I.
1980-01-01
It was found that even for stars evolved away from the red giant branch, a new mixing of nucleo-synthesis products from the hydrogen-burning shells into surface layers was possible, from the penetration of the contaminated intershell region with the H- and He-ionization convection zones. This is due to the helium shell flash driving an immense expansion of an inner carbon pocket, namely, by a factor of 12,000 in radius, a drop in density of about 10 12 , and a cooling of inner pockets normally near 10 8 K to 23,000 K. The surface would be enriched in carbon ( 12 C), helium ( 4 He), and s-process elements, but not significantly in nitrogen ( 14 N), oxygen ( 16 O), or the isotope 13 C. This new type of mixing might provide the missing clue for FG Sagittae. Such a mixing had been suggested by the observations of FG Sagittae, but had been unexplainable by theory up to now
Tam, Christopher; Krothapalli, A
1993-01-01
The research program for the first year of this project (see the original research proposal) consists of developing an explicit marching scheme for solving the parabolized stability equations (PSE). Performing mathematical analysis of the computational algorithm including numerical stability analysis and the determination of the proper boundary conditions needed at the boundary of the computation domain are implicit in the task. Before one can solve the parabolized stability equations for high-speed mixing layers, the mean flow must first be found. In the past, instability analysis of high-speed mixing layer has mostly been performed on mean flow profiles calculated by the boundary layer equations. In carrying out this project, it is believed that the boundary layer equations might not give an accurate enough nonparallel, nonlinear mean flow needed for parabolized stability analysis. A more accurate mean flow can, however, be found by solving the parabolized Navier-Stokes equations. The advantage of the parabolized Navier-Stokes equations is that its accuracy is consistent with the PSE method. Furthermore, the method of solution is similar. Hence, the major part of the effort of the work of this year has been devoted to the development of an explicit numerical marching scheme for the solution of the Parabolized Navier-Stokes equation as applied to the high-seed mixing layer problem.
Srećko Novaković
2011-03-01
Full Text Available Marketing mix'' along the term of life cycle has robbed the trademark for the conception of marketing and the market direction of company, corporations and institutions. Essence marketing-mixa is in the simultaneous determining of the target market group of consumer (the buyer or stays the public and specially prepared and the coordinated impact of elements mixa, and this is the product, price, distributions and graduation ceremonies. Given that is mix combinations of verified variables, companies he use in order to would achieve are wished the scope sales on the target market. In the wider context significant influence of environment on the chosen structure marketing-mixa have not only technological, economic and competitive services already and socially-owned, legislative, legal and political services. From those reasons chant the marketing -mixa occasionally replaces expression are coordinated term acts on the market. Elements marketing-mix-and at sport marketings same are as well as at marketings every other activity. They contain the sportively product and the service, appreciate the sport product and services, distribution of sport product and services and the promotion of sport product and services.
Weinekötter, Ralf
2000-01-01
This book is a welcome edition to the Particle Technology Series, formerly Powder Technology Series. It is the second book in the series which describes powder mixing and we make no excuses for that. The topic of powder mixing is fundamental to powder technology and is one which always aroses interest. That will not change. As powder products become more complex they will pose new mixing problems. The solutions lie in the intelligent use of equipment, an understanding of powder properties and a good knowledge of basic statistics. The authors of this book have presented those three ingredients with great clarity. The book is based on long experience and deep thought, I have enjoyed reading it and am pleased to recommend it. Delft University of Technology, NL-Delft, July 1999 Brian Scarlett, Series Editor IX VII Foreword to the English Edition In response to many enquiries from industrial organisations and institutes involved with the technology of processing bulk materials, we are pleased to present the Englis...
Mixing, entropy and competition
Klimenko, A Y
2012-01-01
Non-traditional thermodynamics, applied to random behaviour associated with turbulence, mixing and competition, is reviewed and analysed. Competitive mixing represents a general framework for the study of generic properties of competitive systems and can be used to model a wide class of non-equilibrium phenomena ranging from turbulent premixed flames and invasion waves to complex competitive systems. We demonstrate consistency of the general principles of competition with thermodynamic description, review and analyse the related entropy concepts and introduce the corresponding competitive H-theorem. A competitive system can be characterized by a thermodynamic quantity—competitive potential—which determines the likely direction of evolution of the system. Contested resources tend to move between systems from lower to higher values of the competitive potential. There is, however, an important difference between conventional thermodynamics and competitive thermodynamics. While conventional thermodynamics is constrained by its zeroth law and is fundamentally transitive, the transitivity of competitive thermodynamics depends on the transitivity of the competition rules. Intransitivities are common in the real world and are responsible for complex behaviour in competitive systems. This work follows ideas and methods that have originated from the analysis of turbulent combustion, but reviews a much broader scope of issues linked to mixing and competition, including thermodynamic characterization of complex competitive systems with self-organization. The approach presented here is interdisciplinary and is addressed to the general educated readers, whereas the mathematical details can be found in the appendices. (comment)
Vyroubalová, Klára
2015-01-01
Tématem této bakalářské práce je ,,Marketingový mix společnosti SKITECH, s. r. o.“ Práce se zabývá vypracováním marketingového mixu a navrţením lyţařských produktů skiareálu. Předpokladem pro vytvoření marketingového mixu je provedení SWOT analýzy a analýzy konkurence. Na základě těchto výsledků budou stanoveny vize a cíle skiareálu a návrhy jednotlivých produktů. V závěrečné části je aplikován marketingový mix na konkrétní produkt. This thesis deals with the marketing mix of the SKITECH c...
The Value of Mixed Methods Research: A Mixed Methods Study
McKim, Courtney A.
2017-01-01
The purpose of this explanatory mixed methods study was to examine the perceived value of mixed methods research for graduate students. The quantitative phase was an experiment examining the effect of a passage's methodology on students' perceived value. Results indicated students scored the mixed methods passage as more valuable than those who…
Cornell Mixing Zone Expert System
This page provides an overview Cornell Mixing Zone Expert System water quality modeling and decision support system designed for environmental impact assessment of mixing zones resulting from wastewater discharge from point sources
Warm mix asphalt : final report.
2014-11-01
The performance of pavements constructed using warm mix asphalt (WMA) technology were : compared to the performance of conventional hot mix asphalt (HMA) pavements placed on the : same project. Measurements of friction resistance, rutting/wear, ride ...
Thomas, Aaron M; Dangi, Beni B; Yang, Tao; Kaiser, Ralf I; Lin, Lin; Chou, Tzu-Jung; Chang, Agnes H H
2018-06-06
The bimolecular gas phase reaction of ground-state silicon (Si; 3 P) with dimethylacetylene (C 4 H 6 ; X 1 A 1g ) was investigated under single collision conditions in a crossed molecular beams machine. Merged with electronic structure calculations, the data propose nonadiabatic reaction dynamics leading to the formation of singlet SiC 4 H 4 isomer(s) and molecular hydrogen (H 2 ) via indirect scattering dynamics along with intersystem crossing (ISC) from the triplet to the singlet surface. The reaction may lead to distinct energetically accessible singlet SiC 4 H 4 isomers ( 1 p8- 1 p24) in overall exoergic reaction(s) (-107 -20 +12 kJ mol -1 ). All feasible reaction products are either cyclic, carry carbene analogous silylene moieties, or carry C-Si-H or C-Si-C bonds that would require extensive isomerization from the initial collision complex(es) to the fragmenting singlet intermediate(s). The present study demonstrates the first successful crossed beams study of an exoergic reaction channel arising from bimolecular collisions of silicon, Si( 3 P), with a hydrocarbon molecule.
Lagrangian Studies of Lateral Mixing
2017-09-19
Final Technical 3. DATES COVERED (From - To) 01/01/2009 – 12/31/2015 4. TITLE AND SUBTITLE Lagrangian Studies of Lateral Mixing 5a. CONTRACT NUMBER...public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Lateral Mixing Experiment (LATMIX) focused on mixing and...anomalies. LATMIX2 targeted the wintertime Gulf Stream, where deep mixed layers, strong lateral density gradients (Gulf Stream north wall) and the
The resilience of paradigm mixes
Daugbjerg, Carsten; Farsund, Arild Aurvåg; Langhelle, Oluf
2017-01-01
This paper argues that a policy regime based on a paradigm mix may be resilient when challenged by changing power balances and new agendas. Controversies between the actors can be contained within the paradigm mix as it enables them to legitimize different ideational positions. Rather than engaging...... context changed. The paradigm mix proved sufficiently flexible to accommodate food security concerns and at the same time continue to take steps toward further liberalization. Indeed, the main players have not challenged the paradigm mix....
Mixing properties of quantum systems
Narnhofer, H.; Thirring, W.
1988-01-01
We generalize the classical notion of topological mixing for automorphisms of C * -algebras in two ways. We show that for Galilean invariant Fermi systems the weaker form of mixing is satisfied. With some additional requirement on the range of the interaction we can also demonstrate the stronger mixing property. (Author)
Evans, Harold G.
2009-01-01
The Tevatron experiments, CDF and D0, have produced a wealth of new B-physics results since the start of Run II in 2001. We've observed new B-hadrons, seen new effects, and increased many-fold the precision with which we know the properties of b-quark systems. In these proceedings, we will discuss two of the most fruitful areas in the Tevatron B-physics program: lifetimes and mixing. We'll examine the experimental issues driving these analyses, present a summary of the latest results, and discuss prospects for the future.
Transition mixing among baryons
Faiman, D.
1976-01-01
A degenerate perturbation theory model for mass splitting within the 70,1 - baryon multiplet is proposed. It is found that dominance of the lowest-lying two-body 56x35 intermediate states produces mixing angles in fair approximation to those previously deduced from SU(6)sub(W) analysis of decay data. The prediction of the couplings of all hitherto undetected members of the multiplet and of mass were made. The results call into question the nature of Λ (1405). (author)
Deursen, A.P.J. van; Reuss, J.
1976-01-01
An attempt has been made to detect mixed dimers in nozzle beams of mixtures; NeAr and HeNe dimers were observed with sufficient intensity to determine the total collision cross section. A similar attempt for H 2 Ar was partially hampered by the circumstance that the corresponding HAr + ion must be detected on the wing of the thousand times larger Ar + peak. The search for H 2 He, H 2 Ne and HeAr dimers was not successful, due to masking ion peaks, H 5 + for HHe + , 21 Ne + for H 20 Ne + , and CO 2 + for HeAr + . (Auth.)
Lykke-Olesen, Andreas; Eriksson, E.; Hansen, T.R.
In this paper, we describe a new interaction technique for mobile devices named Mixed Interaction Space that uses the camera of the mobile device to track the position, size and rotation of a fixed-point. In this demonstration we will present a system that uses a hand-drawn circle, colored object...... or a person’s face as a fixed-point to determine the location of the device. We use these features as a 4 dimensional input vector to a set of different applications....
Jokela, Tero; Lucero, Andrés
2014-01-01
Affinity Diagramming is a technique to organize and make sense of qualitative data. It is commonly used in Contextual Design and HCI research. However, preparing notes for and building an Affinity Diagram remains a laborious process, with a wide variety of different approaches and practices....... In this paper, we present MixedNotes, a novel technique to prepare physical paper notes for Affinity Diagramming, and a software tool to support this technique. The technique has been tested with large real-life Affinity Diagrams with overall positive results....
Voloshin, Vitaly I
2002-01-01
The theory of graph coloring has existed for more than 150 years. Historically, graph coloring involved finding the minimum number of colors to be assigned to the vertices so that adjacent vertices would have different colors. From this modest beginning, the theory has become central in discrete mathematics with many contemporary generalizations and applications. Generalization of graph coloring-type problems to mixed hypergraphs brings many new dimensions to the theory of colorings. A main feature of this book is that in the case of hypergraphs, there exist problems on both the minimum and th
System equivalent model mixing
Klaassen, Steven W. B.; van der Seijs, Maarten V.; de Klerk, Dennis
2018-05-01
This paper introduces SEMM: a method based on Frequency Based Substructuring (FBS) techniques that enables the construction of hybrid dynamic models. With System Equivalent Model Mixing (SEMM) frequency based models, either of numerical or experimental nature, can be mixed to form a hybrid model. This model follows the dynamic behaviour of a predefined weighted master model. A large variety of applications can be thought of, such as the DoF-space expansion of relatively small experimental models using numerical models, or the blending of different models in the frequency spectrum. SEMM is outlined, both mathematically and conceptually, based on a notation commonly used in FBS. A critical physical interpretation of the theory is provided next, along with a comparison to similar techniques; namely DoF expansion techniques. SEMM's concept is further illustrated by means of a numerical example. It will become apparent that the basic method of SEMM has some shortcomings which warrant a few extensions to the method. One of the main applications is tested in a practical case, performed on a validated benchmark structure; it will emphasize the practicality of the method.
Smith, R.W.
1980-08-01
Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr +3 :LaF 3 verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the 3 H 4 , 3 H 6 , and 3 P 0 levels of the praseodymium ions
Talan, P.; Mucha, J.; Krizan, J.
1986-01-01
For the radioimmunoassay of digoxin, 3,5,3'-triiodothyronine, 17β-estradiol, progesterone, testosterone and α 1 -fetoprotein a mixed standard was prepared of these substances in a gamma globulin solution at a concentration of 0.8 to 1.4 wt.% in an aqueous buffer at pH within the range of 6 - 9. The standard contains digoxin at a concentration of 10 -4 to 10 nmol/l, 17β-estradiol at 10 -4 to 2 nmol/l, progesteron at 10 -4 to 100 nmol/l, testosterone at 1o -4 to 21 nmol/l, and α 1 -fetoprotein at 10 -4 to 10 nmol/l with at least two of these substances having concentrations higher than 10 -3 nmol/l. Examples are given of the preparation of the mixed standard with different concentrations of the components. The use of the standard has the following advantages: it is labor saving, reduces the risk of failure in the manufacture of RIA kits, eliminates mistakes in the selection of kits for the determination of different substances and allows a more economical use of material. (E.S.)
Isospin mixing in light nuclei
Ludwig, E.J.; Clegg, T.B.; Fauber, R.E.; Karwowski, H.J.; Mooney, T.M.; Thompson, W.J.
1985-01-01
This program has provided accurate measurements of isospin mixing (ΔT = 1,2) in proton elastic scattering on even-even target nuclei up to A = 40. In order to improve experimental results and to test the hypothesis that isospin mixing is dominated by mixing in the target ground state (as opposed to mixing in the compound system) the authors have undertaken to (1) extend the proton scattering results to additional T = 3/2 states in certain compound systems and (2) examine processes which can proceed by only isotensor mixing (ΔT = 2) in order to isolate the effects of that contribution
Frontogenesis and turbulent mixing
Zhang, S.; Chen, F.; Shang, Q.
2017-12-01
A hydrological investigation was conducted in the shelf of eastern Hainan island during July 2012. With the in-situ measurements from four cross-shelf sections and satellite data, the submesoscale process of the fronts are discussed in this paper, the seasonal variation characteristics of thermal front, the three-dimensional structure, dynamic characteristics of frontal and mixed characteristics in the shelf sea of eastern Hainan island. It's obviously that the thermal front has a seasonal variation: the front is strongest in winter, and decreased gradually in spring and summer. However, it fade and disappear in fall. The core region of the front also changes with the seasons, it moved southward gradually from mainly distributed in the upwelling zone and the front center is not obvious in summer. it is a typical upwelling front in summer, the near shore is compensated with the underlying low-temperature and high-sale water , while the offshore is the high-temperature and low-salinity shelf water. The thermal front distribution is located in the 100m isobaths. The frontal intensity is reduced with increasing depth, and position goes to offshore. Subsurface temperature front is significantly higher in the surface of the sea, which may cause by the heating of nearshore sea surface water and lead to the weakening horizontal temperature gradient. Dynamic characteristics of the front has a great difference in both sides. The O(1) Rossby number is positive on the dense side and negative on the light side. The maximum of along-frontal velocity is 0.45m/s and the stretching is strengthened by strong horizontal shear, also is the potential vorticity, which can trace the cross front Ekman transport. We obtained the vertical velocity with by quasi-geostrophic omega equation and grasped the ageostrophic secondary circulation. The magnitude of frontal vertical velocity is O(10-5) and causes downwelling on the dense side and upwelling on the light side, which constitute the
Mixed Partnering and Parenting
Singla, Rashmi
relationship is formed across two socially significant groups: ethnic, religious, region/caste, thus the present study has broad relevance. This proposal delineates the demographic details, intervention process of two ethnically mixed- marriage cases. Cases’ analyses are combined with relevant results from...... an empirical study (Singla, 2015) about intermarried couples to present lessons for counselling and psychotherapy good practices. The couples in the two cases and ten in-depth interviews based empirical study are formed across ethnic/religious borders - one partner is native Danish and the other originates...... from South Asia (India, Pakistan). Cultural historical psychology forms the background of the theoretical framework of the study, while a combination of intersectionality (Moodley, 2011), everyday life perspective and transnationalism forms the foreground. The lessons learnt for counselling...
Radioactive mixed waste disposal
Jasen, W.G.; Erpenbeck, E.G.
1993-02-01
Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste
Marketing mix and competitiveness
Anđelković Slobodan
2007-01-01
Full Text Available Competitiveness cannot simply be viewed as a country's ability to export or generate trade surpluses, since these can be brought about at least temporarily by means of artificially lowering the exchange rate and/or compressing domestic expenditures, as has been done in recent years by many DC that have tried to adjust to diminished resource availability. Authors standpoint is that international competitiveness requires creating comparative advantage where it does not exist, and requires action on several levels including an emerging consensus on the importance of macroeconomic policy, role and accountability of the government as well as the imperative of developing and internalizing technology body of knowledge for achieving competitiveness. Particular attention is given to the role and impact of marketing instruments marketing mix.
Fogli, G.
1998-01-01
The paper presents an analysis of the solar neutrino problem in terms of both Mikheyev-Smirnov-Wolfenstein (MSW) and vacuum neutrino oscillations, with the inclusion of the data collected by the SuperKamiokande experiment during 306.3 days of operation. In particular, the observed energy spectrum of the recoil electrons from 8 B neutrino scattering is discussed in detail and used to constrain the mass-mixing parameter space. Going to the atmospheric neutrino anomaly, the paper performs both a two- and three-flavor analysis of the most recent SuperKamiokande atmospheric neutrino data. The variations of the zenith distributions of ν events in the presence of flavor oscillations are investigated. It is seen that fits to the SK data, with and without the addition of the CHOOZ constrains, strongly limit the parameter space. Detailed bounds in triangle graphs are reported
Maarten Löffler
2016-12-01
Full Text Available Point feature map labeling is a geometric visualization problem, in which a set of input points must be labeled with a set of disjoint rectangles (the bounding boxes of the label texts. It is predominantly motivated by label placement in maps but it also has other visualization applications. Typically, labeling models either use internal labels, which must touch their feature point, or external (boundary labels, which are placed outside the input image and which are connected to their feature points by crossing-free leader lines. In this paper we study polynomial-time algorithms for maximizing the number of internal labels in a mixed labeling model that combines internal and external labels. The model requires that all leaders are parallel to a given orientation θ ∈ [0, 2π, the value of which influences the geometric properties and hence the running times of our algorithms.
Haller, Toomas; Leitsalu, Liis; Fischer, Krista
2017-01-01
Ancestry information at the individual level can be a valuable resource for personalized medicine, medical, demographical and history research, as well as for tracing back personal history. We report a new method for quantitatively determining personal genetic ancestry based on genome-wide data....... Numerical ancestry component scores are assigned to individuals based on comparisons with reference populations. These comparisons are conducted with an existing analytical pipeline making use of genotype phasing, similarity matrix computation and our addition-multidimensional best fitting by Mix......Fit. The method is demonstrated by studying Estonian and Finnish populations in geographical context. We show the main differences in the genetic composition of these otherwise close European populations and how they have influenced each other. The components of our analytical pipeline are freely available...
Mochizuki, Takuro
2015-01-01
We introduce mixed twistor D-modules and establish their fundamental functorial properties. We also prove that they can be described as the gluing of admissible variations of mixed twistor structures. In a sense, mixed twistor D-modules can be regarded as a twistor version of M. Saito's mixed Hodge modules. Alternatively, they can be viewed as a mixed version of the pure twistor D-modules studied by C. Sabbah and the author. The theory of mixed twistor D-modules is one of the ultimate goals in the study suggested by Simpson's Meta Theorem, and it would form a foundation for the Hodge theory of holonomic D-modules which are not necessarily regular singular. .
Authoring Immersive Mixed Reality Experiences
Misker, Jan M. V.; van der Ster, Jelle
Creating a mixed reality experience is a complicated endeavour. From our practice as a media lab in the artistic domain we found that engineering is “only” a first step in creating a mixed reality experience. Designing the appearance and directing the user experience are equally important for creating an engaging, immersive experience. We found that mixed reality artworks provide a very good test bed for studying these topics. This chapter details three steps required for authoring mixed reality experiences: engineering, designing and directing. We will describe a platform (VGE) for creating mixed reality environments that incorporates these steps. A case study (EI4) is presented in which this platform was used to not only engineer the system, but in which an artist was given the freedom to explore the artistic merits of mixed reality as an artistic medium, which involved areas such as the look and feel, multimodal experience and interaction, immersion as a subjective emotion and game play scenarios.
Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, School of Chemistry and Physics
2014-12-15
SU2 isospin breaking effects in baryon octet (and decuplet) masses are due to a combination of up and down quark mass differences and electromagnetic effects. These mass differences are small. Between the Sigma and Lambda the mass splitting is much larger, but this is mostly due to their different wavefunctions. However there is now also mixing between these states. We determine the QCD mixing matrix and hence find the mixing angle and mass splitting.
Mixed methods for telehealth research.
Caffery, Liam J; Martin-Khan, Melinda; Wade, Victoria
2017-10-01
Mixed methods research is important to health services research because the integrated qualitative and quantitative investigation can give a more comprehensive understanding of complex interventions such as telehealth than can a single-method study. Further, mixed methods research is applicable to translational research and program evaluation. Study designs relevant to telehealth research are described and supported by examples. Quality assessment tools, frameworks to assist in the reporting and review of mixed methods research, and related methodologies are also discussed.
Mixing ventilation guide on mixing air distribution design
Kandzia, Claudia; Kosonen, Risto; Krikor Melikov, Arsen; Nielsen, Peter Vilhelm
2013-01-01
In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection of air diffusers and exhaust openings.
Mixing Ventilation. Guide on mixing air distribution design
Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor
In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...
Švecová, Michaela
2015-01-01
Predmetom bakalárskej práce “Komunikačný mix podniku” je analýza súčasného stavu komunikačného mixu vybraného podniku a návrh nového. Práca je rozdelená na teoretickú a praktickú časť. Teoretická časť pojednáva o význame marketingovej komunikácie, popisuje a porovnáva jednotlivé nástroje komunikačného mixu. Úvod praktickej časti popisuje vybranú spoločnosť. Hlavná časť analyzuje a hodnotí súčasné nástroje propagácie. Následuje realizovaný výskum zameraný na spokojnosť zákazníkov. Záverečná ča...
Milton, K.; Hama, S.; Nandi, S.; Tanaka, K.
1980-01-01
Neutrino mixing angles were computed in terms of upquark mass ratios in a grand unified field theory based on the gauge group SO(10) supplemented by a discrete symmetry. Only large ν/sub μ/ - ν/sub tau/ mixing were found
Bosch, H.G.P.
1999-01-01
This thesis addresses the problem of implementing mixed-media storage systems. In this work a mixed-media file system is defined to be a system that stores both conventional (best-effort) file data and real-time continuous-media data. Continuous-media data is usually bulky, and servers storing and
Mixed Waste Working Group report
1993-01-01
The treatment of mixed waste remains one of this country's most vexing environmental problems. Mixed waste is the combination of radioactive waste and hazardous waste, as defined by the Resource Conservation and Recovery Act (RCRA). The Department of Energy (DOE), as the country's largest mixed waste generator, responsible for 95 percent of the Nation's mixed waste volume, is now required to address a strict set of milestones under the Federal Facility Compliance Act of 1992. DOE's earlier failure to adequately address the storage and treatment issues associated with mixed waste has led to a significant backlog of temporarily stored waste, significant quantities of buried waste, limited permanent disposal options, and inadequate treatment solutions. Between May and November of 1993, the Mixed Waste Working Group brought together stakeholders from around the Nation. Scientists, citizens, entrepreneurs, and bureaucrats convened in a series of forums to chart a course for accelerated testing of innovative mixed waste technologies. For the first time, a wide range of stakeholders were asked to examine new technologies that, if given the chance to be tested and evaluated, offer the prospect for better, safer, cheaper, and faster solutions to the mixed waste problem. In a matter of months, the Working Group has managed to bridge a gap between science and perception, engineer and citizen, and has developed a shared program for testing new technologies
Hjorth, Poul G.; Deryabin, Mikhail
Mixing of fluids in microchannels cannot rely on turbulence since the flow takes place at extremly low Reynolds numbers. Various active and passive devices have been developed to induce mixing in microfluid flow devices. We describe here a model of an active mixer where a transverse periodic flow...
Mixed-Methods Research Methodologies
Terrell, Steven R.
2012-01-01
Mixed-Method studies have emerged from the paradigm wars between qualitative and quantitative research approaches to become a widely used mode of inquiry. Depending on choices made across four dimensions, mixed-methods can provide an investigator with many design choices which involve a range of sequential and concurrent strategies. Defining…
Thermochemistry of mixed explosives
Janney, J.L.; Rogers, R.N.
1982-01-01
In order to predict thermal hazards of high-energy materials, accurate kinetics constants must be determined. Predictions of thermal hazards for mixtures of high-energy materials require measurements on the mixtures, because interactions among components are common. A differential-scanning calorimeter (DSC) can be used to observe rate processes directly, and isothermal methods enable detection of mechanism changes. Rate-controlling processes will change as components of a mixture are depleted, and the correct depletion function must be identified for each specific stage of a complex process. A method for kinetics measurements on mixed explosives can be demonstrated with Composition B is an approximately 60/40 mixture of RDX and TNT, and is an important military explosive. Kinetics results indicate that the mator process is the decomposition of RDX in solution in TNT with a perturbation caused by interaction between the two components. It is concluded that a combination of chemical kinetics and experimental self-heating procedures provides a good approach to the production of predictive models for thermal hazards of high-energy materials. Systems involving more than one energy-contributing component can be studied. Invalid and dangerous predictive models can be detected by a failure of agreement between prediction and experiment at a specific size, shape, and density. Rates of thermal decomposition for Composition B appear to be modeled adequately for critical-temperature predictions with the following kinetics constants: E = 180.2 kJ mole -1 and Z = 4.62 X 10 16 s -1
Mixed alcohols production from syngas
Stevens, R.R.; Conway, M.M.
1988-01-01
A process is described for selectively producing mixed alcohols from synthesis gas comprising contacting a mixture of hydrogen and carbon monoxide with a catalytic amount of a catalyst containing components of (1) a catalytically active metal of molybdenum or tungsten, in free or combined form; (2) a cocatalytic metal or cobalt or nickel in free or combined form; and (3) a Fischer-Tropsch promoter of an alkali or alkaline earth series metal, in free or combined form; the components combined by dry mixing, mixing as a wet paste, wet impregnation, and then sulfided, the catalyst excluding rhodium, ruthenium and copper, at a pressure of at least about 500 psig and under conditions sufficient to form the mixed alcohols in at least 20 percent CO/sub 2/ free carbon selectivity, the mixed alcohols containing a C/sub 1/ to C/sub 2-5/ alcohol weight ratio of less than about 1:1
Probabilistic broadcasting of mixed states
Li Lvjun; Li Lvzhou; Wu Lihua; Zou Xiangfu; Qiu Daowen
2009-01-01
It is well known that the non-broadcasting theorem proved by Barnum et al is a fundamental principle of quantum communication. As we are aware, optimal broadcasting (OB) is the only method to broadcast noncommuting mixed states approximately. In this paper, motivated by the probabilistic cloning of quantum states proposed by Duan and Guo, we propose a new way for broadcasting noncommuting mixed states-probabilistic broadcasting (PB), and we present a sufficient condition for PB of mixed states. To a certain extent, we generalize the probabilistic cloning theorem from pure states to mixed states, and in particular, we generalize the non-broadcasting theorem, since the case that commuting mixed states can be exactly broadcast can be thought of as a special instance of PB where the success ratio is 1. Moreover, we discuss probabilistic local broadcasting (PLB) of separable bipartite states
Zhang, Yanpeng
2009-01-01
"Multi-Wave Mixing Processes - From Ultrafast Polarization Beats to Electromagnetically Induced Transparency" discusses the interactions of efficient multi-wave mixing (MWM) processes enhanced by atomic coherence in multilevel atomic systems. It covers topics in five major areas: attosecond and femtosecond polarization beats of four-wave mixing (FWM) processes; heterodyne detection of FWM, six-wave mixing (SWM) and eight-wave mixing (EWM) processes; Raman and Rayleigh enhanced polarization beats; coexistence and interactions of MWM processes via electromagnetically induced transparency(EIT); multi-dressing MWM processes. The book is intended for researchers, advanced undergraduate and graduate students in Nonlinear Optics. Dr. Yanpeng Zhang is a professor at the Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University. Dr. Min Xiao is a professor of Physics at University of Arkansas, Fayetteville, U.S.A.
Bonhommeau, David; Truhlar, Donald G.
2008-01-01
The photodissociation dynamics of ammonia upon excitation of the out-of-plane bending mode (mode ν 2 with n 2 =0,...,6 quanta of vibration) in the A-tilde electronic state is investigated by means of several mixed quantum/classical methods, and the calculated final-state properties are compared to experiments. Five mixed quantum/classical methods are tested: one mean-field approach (the coherent switching with decay of mixing method), two surface-hopping methods [the fewest switches with time uncertainty (FSTU) and FSTU with stochastic decay (FSTU/SD) methods], and two surface-hopping methods with zero-point energy (ZPE) maintenance [the FSTU/SD+trajectory projection onto ZPE orbit (TRAPZ) and FSTU/SD+minimal TRAPZ (mTRAPZ) methods]. We found a qualitative difference between final NH 2 internal energy distributions obtained for n 2 =0 and n 2 >1, as observed in experiments. Distributions obtained for n 2 =1 present an intermediate behavior between distributions obtained for smaller and larger n 2 values. The dynamics is found to be highly electronically nonadiabatic with all these methods. NH 2 internal energy distributions may have a negative energy tail when the ZPE is not maintained throughout the dynamics. The original TRAPZ method was designed to maintain ZPE in classical trajectories, but we find that it leads to unphysically high internal vibrational energies. The mTRAPZ method, which is new in this work and provides a general method for maintaining ZPE in either single-surface or multisurface trajectories, does not lead to unphysical results and is much less time consuming. The effect of maintaining ZPE in mixed quantum/classical dynamics is discussed in terms of agreement with experimental findings. The dynamics for n 2 =0 and n 2 =6 are also analyzed to reveal details not available from experiment, in particular, the time required for quenching of electronic excitation and the adiabatic energy gap and geometry at the time of quenching
Hernandez, David; Sanchez, Miguel Angel; Medina, Pablo
2010-05-01
coastal diffusion using image analysis. Applied Scientific Research 59,.191-204. 1998. [5] J.M. Redondo. Turbulent mixing in the Atmosphere and Ocean. Fluid Physics. 584-597. World Scientific. New York. 1994
Compressibility effects on turbulent mixing
Panickacheril John, John; Donzis, Diego
2016-11-01
We investigate the effect of compressibility on passive scalar mixing in isotropic turbulence with a focus on the fundamental mechanisms that are responsible for such effects using a large Direct Numerical Simulation (DNS) database. The database includes simulations with Taylor Reynolds number (Rλ) up to 100, turbulent Mach number (Mt) between 0.1 and 0.6 and Schmidt number (Sc) from 0.5 to 1.0. We present several measures of mixing efficiency on different canonical flows to robustly identify compressibility effects. We found that, like shear layers, mixing is reduced as Mach number increases. However, data also reveal a non-monotonic trend with Mt. To assess directly the effect of dilatational motions we also present results with both dilatational and soleniodal forcing. Analysis suggests that a small fraction of dilatational forcing decreases mixing time at higher Mt. Scalar spectra collapse when normalized by Batchelor variables which suggests that a compressive mechanism similar to Batchelor mixing in incompressible flows might be responsible for better mixing at high Mt and with dilatational forcing compared to pure solenoidal mixing. We also present results on scalar budgets, in particular on production and dissipation. Support from NSF is gratefully acknowledged.
Chlorophyll modulation of mixed layer thermodynamics in a mixed ...
M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22
in a mixed-layer isopycnal General Circulation Model – An ... three dimensional ocean circulation theory combined with solar radiation transfer process. 1. .... temperature decrease compared with simulation without chlorophyll (bottom panel).
[Marketing mix in health service].
Ameri, Cinzia; Fiorini, Fulvio
2015-01-01
The marketing mix is the combination of the marketing variables that a firm employs with the purpose to achieve the expected volume of business within its market. In the sale of goods, four variables compose the marketing mix (4 Ps): Product, Price, Point of sale and Promotion. In the case of providing services, three further elements play a role: Personnel, Physical Evidence and Processes (7 Ps). The marketing mix must be addressed to the consumers as well as to the employees of the providing firm. Furthermore, it must be interpreted as employees ability to satisfy customers (interactive marketing).
Generalized, Linear, and Mixed Models
McCulloch, Charles E; Neuhaus, John M
2011-01-01
An accessible and self-contained introduction to statistical models-now in a modernized new editionGeneralized, Linear, and Mixed Models, Second Edition provides an up-to-date treatment of the essential techniques for developing and applying a wide variety of statistical models. The book presents thorough and unified coverage of the theory behind generalized, linear, and mixed models and highlights their similarities and differences in various construction, application, and computational aspects.A clear introduction to the basic ideas of fixed effects models, random effects models, and mixed m
Minimal modification to tribimaximal mixing
He Xiaogang; Zee, A.
2011-01-01
We explore some ways of minimally modifying the neutrino mixing matrix from tribimaximal, characterized by introducing at most one mixing angle and a CP violating phase thus extending our earlier work. One minimal modification, motivated to some extent by group theoretic considerations, is a simple case with the elements V α2 of the second column in the mixing matrix equal to 1/√(3). Modifications by keeping one of the columns or one of the rows unchanged from tribimaximal mixing all belong to the class of minimal modification. Some of the cases have interesting experimentally testable consequences. In particular, the T2K and MINOS collaborations have recently reported indications of a nonzero θ 13 . For the cases we consider, the new data sharply constrain the CP violating phase angle δ, with δ close to 0 (in some cases) and π disfavored.
Mixed Fluid Conditions: Capillary Phenomena
Santamarina, Carlos; Sun, Zhonghao
2017-01-01
Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration
Mixed methods research for TESOL
Brown, James; Farr, Fiona
2014-01-01
Defining and discussing the relevance of theoretical and practical issues involved in mixed methods research. Covering the basics of research methodology, this textbook shows you how to choose and combine quantitative and qualitative research methods to b
Is the tribimaximal mixing accidental?
Abbas, Mohammed; Smirnov, A. Yu.
2010-01-01
The tribimaximal (TBM) mixing is not accidental if structures of the corresponding leptonic mass matrices follow immediately from certain (residual or broken) flavor symmetry. We develop a simple formalism which allows one to analyze effects of deviations of the lepton mixing from TBM on the structure of the neutrino mass matrix and on the underlying flavor symmetry. We show that possible deviations from the TBM mixing can lead to strong modifications of the mass matrix and strong violation of the TBM-mass relations. As a result, the mass matrix may have an 'anarchical' structure with random values of elements or it may have some symmetry that differs from the TBM symmetry. Interesting examples include matrices with texture zeros, matrices with certain 'flavor alignment' as well as hierarchical matrices with a two-component structure, where the dominant and subdominant contributions have different symmetries. This opens up new approaches to understanding the lepton mixing.
Can small zooplankton mix lakes?
Simoncelli, S.; Thackeray, S.J.; Wain, D.J.
2017-01-01
The idea that living organisms may contribute to turbulence and mixing in lakes and oceans (biomixing) dates to the 1960s, but has attracted increasing attention in recent years. Recent modeling and experimental studies suggest that marine organisms can enhance turbulence as much as winds and tides in oceans, with an impact on mixing. However, other studies show opposite and contradictory results, precluding definitive conclusions regarding the potential importance of biomixing. For lakes, on...
Peng, Yifan; Dun, Xiong; Sun, Qilin; Heidrich, Wolfgang
2017-01-01
target images into pairs of front and rear phase-distorting surfaces. Different target holograms can be decoded by mixing and matching different front and rear surfaces under specific geometric alignments. Our approach, which we call mixWe derive a detailed image formation model for the setting of holographic projection displays, as well as a multiplexing method based on a combination of phase retrieval methods and complex matrix factorization. We demonstrate several application scenarios in both simulation and physical prototypes.
Cyrson, Edward F.
1994-01-01
Many companies have often forgotten that promotion is an element of marketing-mix. Therelore their promotional campain has not always been as effective as it could be. In designing and developing marketing communication one should consider all elements of marketing-mix as well as all promotional tools. They together create a promotional system in which all the elements are Mutually reinforcing and give the system the most efficient and effective power. The major thrust of promo...
AECL's mixed waste management program
Peori, R.; Hulley, V.
2006-01-01
Every nuclear facility has it, they wish that they didn't but they have generated and do possess m ixed waste , and until now there has been no permanent disposition option; it has been for the most been simply maintained in interim storage. The nuclear industry has been responsibly developing permanent solutions for solid radioactive waste for over fifty years and for non-radioactive, chemically hazardous waste, for the last twenty years. Mixed waste (radioactive and chemically hazardous waste) however, because of its special, duo-hazard nature, has been a continuing challenge. The Hazardous Waste and Segregation Program (HW and SP) at AECL's CRL has, over the past ten years, been developing solutions to deal with their own in-house mixed waste and, as a result, have developed solutions that they would like to share with other generators within the nuclear industry. The main aim of this paper is to document and describe the early development of the solutions for both aqueous and organic liquid wastes and to advertise to other generators of this waste type how these solutions can be implemented to solve their mixed waste problems. Atomic Energy of Canada Limited (AECL) and in particular, CRL has been satisfactorily disposing of mixed waste for the last seven years. CRL has developed a program that not only disposes of mixed waste, but offers a full service mixed waste management program to customers within Canada (that could eventually include U.S. sites as well) that has developed the experience and expertise to evaluate and optimize current practices, dispose of legacy inventories, and set up an efficient segregation system to reduce and effectively manage, both the volumes and expense of, the ongoing generation of mixed waste for all generators of mixed waste. (author)
Overview of mixed waste issues
Piciulo, P.L.; Bowerman, B.S.; Kempf, C.R.; MacKenzie, D.R.; Siskind, B.
1986-01-01
Based on BNL's study it was concluded that there are LLWs which contain chemically hazardous components. Scintillation liquids may be considered an EPA listed hazardous waste and are, therefore, potential mixed wastes. Since November, 1985 no operating LLW disposal site will accept these wastes for disposal. Unless such wastes contain de minimis quantities of radionuclides, they cannot be disposed of at an EPA an EPA permitted site. Currently generators of LSC wastes can ship de minimis wastes to be burned at commercial facilities. Oil wastes will also eventually be an EPA listed waste and thus will have to be considered a potential radioactive mixed wasted unless NRC establishes de minimis levels of radionuclides below which oils can be managed as hazardous wastes. Regarding wastes containing lead metal there is some question as to the extent of the hazard posed by lead disposed in a LLW burial trench. Chromium-containing wastes would have to be tested to determine whether they are potential mixed wastes. There may be other wastes that are mixed wastes; the responsibility for determining this rests with the waste generator. It is believed that there are management options for handling potential mixed wastes but there is no regulatory guidance. BNL has identified and evaluated a variety of treatment options for the management of potential radioactive mixed wastes. The findings of that study showed that application of a management option with the purpose of addressing EPA concern can, at the same time, address stabilization and volume reduction concerns of NRC
New Hampshire binder and mix review.
2012-08-01
This review was initiated to compare relative rut testing and simple performance tests (now known as Asphalt Mix : Performance Tests) for the New Hampshire inch mix with 15% Recycled Asphalt Pavement (RAP). The tested mixes were : made from ...
Performance life of HMA mixes : final report.
2016-01-01
A number of hot mix asphalt (HMA) types, such as permeable friction course (PFC), stone mastic asphalts : (SMA), performance design mixes and conventional dense graded mixes are currently used to construct or overlay : roads. One of the important inp...
Mixed-mode modelling mixing methodologies for organisational intervention
Clarke, Steve; Lehaney, Brian
2001-01-01
The 1980s and 1990s have seen a growing interest in research and practice in the use of methodologies within problem contexts characterised by a primary focus on technology, human issues, or power. During the last five to ten years, this has given rise to challenges regarding the ability of a single methodology to address all such contexts, and the consequent development of approaches which aim to mix methodologies within a single problem situation. This has been particularly so where the situation has called for a mix of technological (the so-called 'hard') and human centred (so-called 'soft') methods. The approach developed has been termed mixed-mode modelling. The area of mixed-mode modelling is relatively new, with the phrase being coined approximately four years ago by Brian Lehaney in a keynote paper published at the 1996 Annual Conference of the UK Operational Research Society. Mixed-mode modelling, as suggested above, is a new way of considering problem situations faced by organisations. Traditional...
Álvarez-Collado, José R; Cantarero, Andrés
2014-01-01
We have calculated the optical and magnetic properties of the four lowest many-body states for cyclic zigzag graphene nano-ribbons (GNRs). The results have been obtained within the semi-empirical restricted frozen Hartree–Fock approximation. Firstly, we obtained one-determinant numerical and analytical coincident results. We detected the existence of two degenerate open-shell molecular orbitals (MOs) o, o’. Due to this degeneracy, some of the mentioned results do depend on any (arbitrary) orthogonal transformation between these two MOs. We have improved these preliminary results by using linear combinations of two determinants, which are eigenfunctions of the operators, which commute with the electronic Hamiltonian. These eigenfunctions represent properly the wave functions of these four electronic states. These calculations show that there are two degenerate ground states. One of them is ferromagnetic and the other state is non magnetic. Finally, we have calculated these four states to full configuration interaction level studying the dependence of their properties on the size of the GNRs. (paper)
Álvarez-Collado, José R.; Cantarero, Andrés
2014-09-01
We have calculated the optical and magnetic properties of the four lowest many-body states for cyclic zigzag graphene nano-ribbons (GNRs). The results have been obtained within the semi-empirical restricted frozen Hartree-Fock approximation. Firstly, we obtained one-determinant numerical and analytical coincident results. We detected the existence of two degenerate open-shell molecular orbitals (MOs) o, o’. Due to this degeneracy, some of the mentioned results do depend on any (arbitrary) orthogonal transformation between these two MOs. We have improved these preliminary results by using linear combinations of two determinants, which are eigenfunctions of the operators, which commute with the electronic Hamiltonian. These eigenfunctions represent properly the wave functions of these four electronic states. These calculations show that there are two degenerate ground states. One of them is ferromagnetic and the other state is non magnetic. Finally, we have calculated these four states to full configuration interaction level studying the dependence of their properties on the size of the GNRs.
Many-electron effect in the resonant L23-M23V Auger-electron spectrum of Ti metal
Ohno, Masahide
2006-01-01
Above the L23 absorption edge the L 23 -M 23 V resonant Auger-electron spectroscopy (RAES) spectrum of Ti metal shows a normal L 23 -M 23 V Auger decay spectrum at a constant kinetic energy (K.E.). Here LX and MY are the atomic shells Lx and My, respectively. Apart from a weak spectral feature of the L2-M23V Auger transition appearing around the L2 edge, the RAES spectra of Ti meal show a very little difference between the L2 and L3 regions [P. Le Fevre, J. Danger, H. Magnan, D. Chandesris, J. Jupille, S. Bourgeois, M.-A. Arrio, R. Gotter, A. Verdini, A. Morgante, Phys. Rev. B69 (2004) 155421]. It is shown that the time scale of relaxation of the resonantly excited L23-hole state to the L23-electron ionized state is much shorter than that of the L23-hole decay so that the L 23 -M 23 V RAES spectrum of Ti metal resembles much the normal L 23 -M 23 V Auger decay spectrum. The relaxation of the resonantly excited L23-hole state to the fully relaxed L23-hole state before the L23-hole decays, explains the extra width which is the primary cause of the discrepancy between the experimental high resolution near edge X-ray absorption spectroscopy (XAS) spectrum of Ti metal and the one calculated by the particle-hole Green's function including the Coulomb exchange interaction between the 2p hole and the 3d electron. The time scale of relaxation of the L3V two-hole state created by the L2-L3V Coster-Kronig (CK) decay to the single L3-hole state is much shorter than that of the L3-hole decay so that the L2-L3V-L3-M23V CK preceded Auger decay spectrum resembles much the L3-M23V Auger decay one
Managing a mixed waste program
Koch, J.D.
1994-01-01
IT Corporation operates an analytical laboratory in St. Louis capable of analyzing environmental samples that are contaminated with both chemical and radioactive materials. Wastes generated during these analyses are hazardous in nature; some are listed wastes others exhibit characteristic hazards. When the original samples contain significant quantities of radioactive material, the waste must be treated as a mixed waste. A plan was written to document the waste management program describing the management of hazardous, radioactive and mixed wastes. This presentation summarizes the methods employed by the St. Louis facility to reduce personnel exposures to the hazardous materials, minimize the volume of mixed waste and treat the materials prior to disposal. The procedures that are used and the effectiveness of each procedure will also be discussed. Some of the lessons that have been learned while dealing with mixed wastes will be presented as well as the solutions that were applied. This program has been effective in reducing the volume of mixed waste that is generated. The management program also serves as a method to manage the costs of the waste disposal program by effectively segregating the different wastes that are generated
Mixed waste, preparing for 1996
Duke, D.L.
1995-01-01
The Environmental Protection Agency has recently approved an extension to the enforcement policy for the storage of restricted mixed waste. Under this policy, EPA assigns a reduced enforcement priority to violations of the 40CFR268.50 prohibition on storage of restricted waste. Eligibility for the lower enforcement priority afforded by the policy is subject to specified conditions. The recent extension is for a two year period, and agency personnel have advised that it may be difficult to extend the enforcement policy again. This paper reviews anticipated changes in mixed waste treatment and disposal capabilities. Types of mixed waste that may be generated, or in storage, at commercial nuclear power plants are identified. This information is evaluated to determine if the two year extension in the storage enforcement policy will be adequate for the nuclear power industry to treat or dispose of the mixed waste inventories that are identified, and if not, where potential problem areas may reside. Recommendations are then made on mixed waste management strategies
Nuclear level mixing resonance spectroscopy
Coussement, R.; Put, P.; Scheveneels, G.; Hardeman, F.
1985-01-01
The existent methods for measuring quadrupole interactions are not suited to nuclei with lifetimes in the micro-seconds to minutes region. AD/NQR, a possible candidate in this lifetime gap, has not yet succeeded in overcoming its predicted difficulties. A new resonant method, recently developed and based on the principles of level mixing (cfr atomic spectroscopy) covers this less accessible lifetime range. Many other kinds of resonances can be described according to the level mixing formalism. The particular example of NMR as a level mixing resonance (LMR) is discussed. The underlying theory of LMR and its important consequences, leading to some interesting features of the method, is briefly formulated. Two successfully performed measurements demonstrate the feasibility and the predicted characteristics of this new promising method. (orig.)
Colour mixing based on daylight
Meyn, Jan-Peter
2008-01-01
Colour science is based on the sensation of monochromatic light. In contrast to that, surface colours are caused by reflection of wide sections of the daylight spectrum. Non-spectral colours like magenta and purple appear homologous to colours with spectral hue, if the approach of mixing monochromatic light is abandoned. It is shown that a large region of the colour space can be covered by mixing three primary colours derived from lossless spectral decomposition of daylight. These primaries are specified by hue, saturation and luminosity. Duality of additive and subtractive mixing is formulated quantitatively. Experimental demonstrations of calculated results are suggested. This paper is intended for undergraduate optics courses, and advanced interdisciplinary seminars on arts and physics
Regulatory aspects of mixed waste
Boyle, R.R.; Orlando, D.A.
1990-01-01
Mixed waste is waste that satisfies the definition of low-level radioactive waste in the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) and contains hazardous waste that is either: (1) listed as a hazardous waste in 40 CFR 261, Subpart D; or (2) causes the waste to exhibit any of the characteristics identified in 40 CFR 261, Subpart C. Low-level radioactive waste is defined in the LLRWPAA as radioactive material that is not high level waste, spent nuclear fuel, or byproduct material, as defined in Section 11e(2) of the Atomic Energy Act of 1954, and is classified as low-level waste by the U.S. Nuclear Regulatory Commission (NRC). This paper discusses dual regulatory (NRC and Environmental Protection Agency) responsibility, overview of joint NRC/EPA guidance, workshops, national mixed waste survey, and principal mixed waste uncertainties
Mixed and mixed-hybrid elements for the diffusion equation
Coulomb, F.; Fedon-Magnaud, C.
1987-04-01
To solve the diffusion equation, one often uses a Lagrangian finite element method. We want to introduce the mixed elements which allow a simultaneous approximation of the same order for the flux and its gradient. Though the linear systems are not positive definite, it is possible to make them so by eliminating some of the unknowns
Analysis of stratified flow mixing
Soo, S.L.; Lyczkowski, R.W.
1985-01-01
The Creare 1/5-scale Phase II experiments which model fluid and thermal mixing of relatively cold high pressure injection (HPI) water into a cold leg of a full-scale pressurized water reactor (PWR) having loop flow are analyzed and found that they cannot achieve complete similarity with respect to characteristic Reynolds and Froude numbers and developing hydrodynamic entry length. Several analyses show that these experiments fall into two distinct regimes of mixing: momentum controlled and gravity controlled (stratification). 18 refs., 9 figs
Peng, Yifan
2017-11-22
Computational caustics and light steering displays offer a wide range of interesting applications, ranging from art works and architectural installations to energy efficient HDR projection. In this work we expand on this concept by encoding several target images into pairs of front and rear phase-distorting surfaces. Different target holograms can be decoded by mixing and matching different front and rear surfaces under specific geometric alignments. Our approach, which we call mix-and-match holography, is made possible by moving from a refractive caustic image formation process to a diffractive, holographic one. This provides the extra bandwidth that is required to multiplex several images into pairing surfaces.
Photodynamics of oxybenzone sunscreen: Nonadiabatic dynamics simulations
Li, Chun-Xiang; Guo, Wei-Wei; Xie, Bin-Bin; Cui, Ganglong, E-mail: ganglong.cui@bnu.edu.cn [Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875 (China)
2016-08-21
Herein we have used combined static electronic structure calculations and “on-the-fly” global-switching trajectory surface-hopping dynamics simulations to explore the photochemical mechanism of oxybenzone sunscreen. We have first employed the multi-configurational CASSCF method to optimize minima, conical intersections, and minimum-energy reaction paths related to excited-state intramolecular proton transfer (ESIPT) and excited-state decays in the {sup 1}ππ{sup ∗}, {sup 1}nπ{sup ∗}, and S{sub 0} states (energies are refined at the higher MS-CASPT2 level). According to the mapped potential energy profiles, we have identified two ultrafast excited-state deactivation pathways for the initially populated {sup 1}ππ{sup ∗} system. The first is the diabatic ESIPT process along the {sup 1}ππ{sup ∗} potential energy profile. The generated {sup 1}ππ{sup ∗} keto species then decays to the S{sub 0} state via the keto {sup 1}ππ{sup ∗}/gs conical intersection. The second is internal conversion to the dark {sup 1}nπ{sup ∗} state near the {sup 1}ππ{sup ∗} /{sup 1}nπ{sup ∗} crossing point in the course of the diabatic {sup 1}ππ{sup ∗} ESIPT process. Our following dynamics simulations have shown that the ESIPT and {sup 1}ππ{sup ∗} → S{sub 0} internal conversion times are 104 and 286 fs, respectively. Finally, our present work demonstrates that in addition to the ESIPT process and the {sup 1}ππ{sup ∗} → S{sub 0} internal conversion in the keto region, the {sup 1}ππ{sup ∗} → {sup 1}nπ{sup ∗} internal conversion in the enol region plays as well an important role for the excited-state relaxation dynamics of oxybenzone.
Nonadiabatic effects in inelastic collisional processes
Belyaev, Andrey K
2009-01-01
The standard adiabatic Born-Oppenheimer approach to inelastic collisional processes is revised. It is shown that the widely used standard interpretation of this approach has fundamental limitations leading to physical artefacts or to uncertainties in numerical calculations due to neglecting the electron translation problem. It is demonstrated that the Born-Oppenheimer approach itself does not have such limitations. The particular full quantum solution of the electron translation problem within the Born-Oppenheimer approach by means of the reprojection procedure is discussed in the paper together with the practical applications.
Nonadiabatic exchange dynamics during adiabatic frequency sweeps.
Barbara, Thomas M
2016-04-01
A Bloch equation analysis that includes relaxation and exchange effects during an adiabatic frequency swept pulse is presented. For a large class of sweeps, relaxation can be incorporated using simple first order perturbation theory. For anisochronous exchange, new expressions are derived for exchange augmented rotating frame relaxation. For isochronous exchange between sites with distinct relaxation rate constants outside the extreme narrowing limit, simple criteria for adiabatic exchange are derived and demonstrate that frequency sweeps commonly in use may not be adiabatic with regard to exchange unless the exchange rates are much larger than the relaxation rates. Otherwise, accurate assessment of the sensitivity to exchange dynamics will require numerical integration of the rate equations. Examples of this situation are given for experimentally relevant parameters believed to hold for in-vivo tissue. These results are of significance in the study of exchange induced contrast in magnetic resonance imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
Nonadiabatic Berry phase in nanocrystalline magnets
R. Skomski
2017-05-01
Full Text Available It is investigated how a Berry phase is created in polycrystalline nanomagnets and how the phase translates into an emergent magnetic field and into a topological Hall-effect contribution. The analysis starts directly from the spin of the conduction electrons and does not involve any adiabatic Hamiltonian. Completely random spin alignment in the nanocrystallites does not lead to a nonzero emergent field, but a modulation of the local magnetization does. As an explicit example, we consider a wire with a modulated cone angle.
Mixed wasted integrated program: Logic diagram
Mayberry, J.; Stelle, S.; O'Brien, M.; Rudin, M.; Ferguson, J.; McFee, J.
1994-01-01
The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development's Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR)
Configuration mixing for spin-isospin modes
Ichimura, Munetake
2005-01-01
Development of theories of configuration mixing is reviewed, concentrating on their application to spin-isospin modes, especially to the Gamow-Teller transitions. This talk is divided into three historical stages, the first order configuration mixing as the first stage, the second order configuration mixing as the second stage, and the delta-isobar-hole mixing as the third stage
Colour Mixing Based on Daylight
Meyn, Jan-Peter
2008-01-01
Colour science is based on the sensation of monochromatic light. In contrast to that, surface colours are caused by reflection of wide sections of the daylight spectrum. Non-spectral colours like magenta and purple appear homologous to colours with spectral hue, if the approach of mixing monochromatic light is abandoned. It is shown that a large…
Crasmareanu Mircea
2017-12-01
Full Text Available We consider the paracomplex version of the notion of mixed linear spaces introduced by M. Jurchescu in [4] by replacing the complex unit i with the paracomplex unit j, j2 = 1. The linear algebra of these spaces is studied with a special view towards their morphisms.
Mixed Waste Landfill Integrated Demonstration
1994-02-01
The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID's success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories' Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque's and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ''dry'' soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater
Advances in compressible turbulent mixing
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately
Kriging with mixed effects models
Alessio Pollice
2007-10-01
Full Text Available In this paper the effectiveness of the use of mixed effects models for estimation and prediction purposes in spatial statistics for continuous data is reviewed in the classical and Bayesian frameworks. A case study on agricultural data is also provided.
Ethanol from mixed waste paper
Kerstetter, J.D.; Lyons, J.K.
1991-01-01
The technology, markets, and economics for converting mixed waste paper to ethanol in Washington were assessed. The status of enzymatic and acid hydrolysis projects were reviewed. The market for ethanol blended fuels in Washington shows room for expansion. The economics for a hypothetical plant using enzymatic hydrolysis were shown to be profitable
Mixed normal inference on multicointegration
Boswijk, H.P.
2009-01-01
Asymptotic likelihood analysis of cointegration in I(2) models, see Johansen (1997, 2006), Boswijk (2000) and Paruolo (2000), has shown that inference on most parameters is mixed normal, implying hypothesis test statistics with an asymptotic 2 null distribution. The asymptotic distribution of the
Energy mix and employment effects
Wodopia, F.J.
2005-01-01
''Energy Mix and Employment Effects'' is a subject not to be reduced to the so-called ''job argument''. It also involves the question whether it will be possible to achieve consensus again about the composition of a balanced sustainable energy mix. This term must not be interpreted in a static sense; after all, the framework conditions of energy policy are changing. However, this must not render energy policy unsteady. This requirement should be imposed on economic policy in general, i.e. political interventions, it they are really unavoidable, must be predictable on a long term. This contribution also examines the meaning of the term ''energy mix.'' Aspects of the debate about the climate, especially potential factors influencing the climate, are discussed against the backdrop of scientific validity. Other key points covered are the description and analysis of the energy policy framework. One major aspect under study are all kinds of ''subsidies'' of energy resources and the consequences to the whole economy arising from these financial support mechanisms. The findings are projected onto the employment effects. Finally, the question is raised how to design an energy mix sustainable for the future, and how to achieve it politically and in society. (orig.)
Kok, Jacobus B.W.; van der Wal, S.
1996-01-01
The transport processes that are involved in the mixing of two gases in a T-junction mixer are investigated. The turbulent flow field is calculated for the T-junction with the k- turbulence model by FLOW3D. In the mathematical model the transport of species is described with a mixture fraction
Mixing Tamiflu with Sweet Liquids
If your doctor prescribes TamifluÂ® capsules for your child and your child cannot swallow them, this podcast describes how to mix the contents of the capsules with a sweet thick liquid so they can be given that way.
Abbring, J.H.
2009-01-01
We study mixed hitting-time models, which specify durations as the first time a Levy process (a continuous-time process with stationary and independent increments) crosses a heterogeneous threshold. Such models of substantial interest because they can be reduced from optimal-stopping models with
Advances in compressible turbulent mixing
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
Pressure supression pool thermal mixing
Cook, D.H.
1984-10-01
A model is developed and verified to describe the thermal mixing that occurs in the pressure suppression pool (PSP) of a commercial BWR. The model is designed specifically for a Mark-I containment and is intended for use in severe accident sequence analyses. The model developed in this work produces space and time dependent temperature results throughout the PSP and is useful for evaluating the bulk PSP thermal mixing, the condensation effectiveness of the PSP, and the long-term containment integrity. The model is designed to accommodate single or multiple discharging T-quenchers, a PSP circumferential circulation induced by the residual heat removal system discharge, and the thermal stratification of the pool that occurs immediately after the relief valves close. The PSP thermal mixing is verified by comparing the model-predicted temperatures to experimental temperatures that were measured in an operating BWR suppression pool. The model is then used to investigate several PSP thermal mixing problems that include the time to saturate at full relief valve flow, the temperature response to a typical stuck open relief valve scenario, and the effect of operator rotation of the relief valve discharge point
Pressure suppression pool thermal mixing
Cook, D.H.
1984-01-01
A model is developed and verified to describe the thermal mixing that occurs in the pressure suppression pool (PSP) of a commercial BWR. The model is designed specifically for a Mark-I containment and is intended for use in severe accident sequence analyses. The model produces space and time dependent temperature results throughout the PSP and is useful for evaluating the bulk PSP thermal mixing, the condensation effectiveness of the PSP, and the long-term containment integrity. The model is designed to accommodate single or multiple discharging T-quenchers, a PSP circumferential circulation induced by the residual heat removal system discharge, and the thermal stratification of the pool that occurs immediately after the relief valves close. The PSP thermal mixing model is verified by comparing the model predicted temperatures to experimental temperatures that were measured in an operating BWR suppression pool. The model is then used to investigate several PSP thermal mixing problems that include the time to saturate at full relief valve flow, the temperature response to a typical stuck open relief valve scenario, and the effect of operator rotation of the relief valve discharge point
Geoelectrical signatures of reactive mixing
Ghosh, U.; Bandopadhyay, A.; Jougnot, D.; Le Borgne, T.; Meheust, Y.
2017-12-01
Characterizing the effects of fluid mixing on geochemical reactions in the subsurface is of paramount importance owing to their pivotal role in processes such as contaminant migration or aquifer remediation, to name a few [1]. Large velocity gradients in the porous media are expected to lead to enhanced diffusive mixing accompanied by augmented reaction rates [2]. Despite its importance, accurate monitoring of such processes still remains an open challenge, mainly due to the opacity of the medium and to the lack of access to it. However, in recent years, geophysical methods based on electrical conductivity and polarization have come up as a promising tool for mapping and monitoring such reactions in the subsurface. In this regard, one of the main challenges is to properly characterize the multiple sources of electrical signals and in particular isolate the influence of reactive mixing on the electrical conductivity from those of other sources [3]. In this work, we explore the coupling between fluid mixing, reaction and charge migration in porous media to evaluate the potential of obtaining a spatially-resolved measurement of local reaction rates in the subsurface from electrical measurements. To this end, we employ a lamellar description of the mixing interface [4] with novel semi-analytical upscaling techniques to quantify changes in electrical conductivity induced by chemical reactions across mixing fronts. The changes in electrical conductivity are strongly dependent on the concentration of ionic species as well as on the polarization of the pore (water) solution around the grains, which in turn are controlled by local reaction rates and, consequently, by the local velocity gradients. Hence, our results essentially suggest that local variations in the electrical conductivity may be quantitatively related to the mixing and reaction dynamics, and thus be used as a measurement tool to characterize these dynamics. References 1. M. Dentz, T. Le Borgne, A. Englert
effects of mixed of mixed of mixed alkaline earth oxides in potash
eobe
Si, P) are network formers, and that materials whose. Nigerian ... made by mixing sand (SiO2), potassium carbonates. (K2Co3) .... The edges of the glass were grounded using ..... surface energies of minerals; theoritical estimate for oxides ...
Mixed methods research in mental health nursing.
Kettles, A M; Creswell, J W; Zhang, W
2011-08-01
Mixed methods research is becoming more widely used in order to answer research questions and to investigate research problems in mental health and psychiatric nursing. However, two separate literature searches, one in Scotland and one in the USA, revealed that few mental health nursing studies identified mixed methods research in their titles. Many studies used the term 'embedded' but few studies identified in the literature were mixed methods embedded studies. The history, philosophical underpinnings, definition, types of mixed methods research and associated pragmatism are discussed, as well as the need for mixed methods research. Examples of mental health nursing mixed methods research are used to illustrate the different types of mixed methods: convergent parallel, embedded, explanatory and exploratory in their sequential and concurrent combinations. Implementing mixed methods research is also discussed briefly and the problem of identifying mixed methods research in mental and psychiatric nursing are discussed with some possible solutions to the problem proposed. © 2011 Blackwell Publishing.
Fluid mixing in reactor containment
Deoras M Prabhudharwadkar; Kannan N Iyer
2005-01-01
Full text of publication follows: Hydrogen release and distribution in nuclear power plant containment is an important safety issue. Selection of a proper turbulence model is important for accurate estimation of the mixing process. The selection of turbulence model is dictated by the best compromise between accuracy and computational efforts. For this, three different turbulence models, viz. Standard k-ε, RNG k-ε and Reynolds Stress Model, based on Reynolds averaged Navier Stokes equations (RANS) approach, were used. The computations were done using the CFD code FLUENT, which is based on the control volume methodology. The computational results were compared with the experimental results of HYMIS test facility, where helium was used to simulate hydrogen. The processes of helium plume rise, multiple plume merging, distribution and mixing were studied. Based on these computations, a simple analytical/empirical zone based model was formulated for the same problem, which predicted the helium concentration reasonably accurately and quickly. (authors)
Mixed Capillary Venous Retroperitoneal Hemangioma
Mohit Godar
2013-01-01
Full Text Available We report a case of mixed capillary venous hemangioma of the retroperitoneum in a 61-year-old man. Abdominal ultrasonography showed a mass to be hypoechoic with increased flow in color Doppler imaging. Dynamic contrast-enhanced computed tomography revealed a centripetal filling-in of the mass, located anterior to the left psoas muscle at the level of sacroiliac joint. On the basis of imaging features, preoperative diagnosis of hemangioma was considered and the mass was excised by laparoscopic method. Immunohistochemical studies were strongly positive for CD31 and CD34, and negative for calretinin, EMA, WT1, HMB45, Ki67, synaptophysin, and lymphatic endothelial cell marker D2–40. Histologically, the neoplasm was diagnosed as mixed capillary venous hemangioma.
Mixing processes in galaxy mergers
White, S.D.M.
1980-01-01
Previously published simulations of mergers between galaxies are used to examine the degree to which population gradients are weakened during the coalescence of two or more stellar systems. Although substantial mixing occurs during a merger, its effect on such gradients is quite moderate and can be overwhelmed by the effect of changes in structure. Experiment suggests that the centre-to-edge population difference in a merger remnant will be 20 per cent smaller than that in its progenitor galaxies if these are identical centrally concentrated systems. A sequence of three binary mergers is thus required to reduce such differences by a factor of 2. Because of changes in radial structure, population gradients are, in general, reduced more rapidly than is suggested by these numbers. Mixing is more efficient in mergers between less concentrated systems. In real merger remnants any weakening of gradients may often be masked by star-formation in residual interstellar gas. (author)
HETEROGENEOUS REBURNING BY MIXED FUELS
Wei-Yin Chen; Benson B. Gathitu
2005-01-14
Recent studies of heterogeneous reburning, i.e., reburning involving a coal-derived char, have elucidated its variables, kinetics and mechanisms that are valuable to the development of a highly efficient reburning process. Young lignite chars contain catalysts that not only reduce NO, but they also reduce HCN that is an important intermediate that recycles to NO in the burnout zone. Gaseous CO scavenges the surface oxides that are formed during NO reduction, regenerating the active sites on the char surface. Based on this mechanistic information, cost-effective mixed fuels containing these multiple features has been designed and tested in a simulated reburning apparatus. Remarkably high reduction of NO and HCN has been observed and it is anticipated that mixed fuel will remove 85% of NO in a three-stage reburning process.
Reconfigurable Mixed Mode Universal Filter
Neelofer Afzal
2014-01-01
Full Text Available This paper presents a novel mixed mode universal filter configuration capable of working in voltage and transimpedance mode. The proposed single filter configuration can be reconfigured digitally to realize all the five second order filter functions (types at single output port. Other salient features of proposed configuration include independently programmable filter parameters, full cascadability, and low sensitivity figure. However, all these features are provided at the cost of quite large number of active elements. It needs three digitally programmable current feedback amplifiers and three digitally programmable current conveyors. Use of six active elements is justified by introducing three additional reduced hardware mixed mode universal filter configurations and its comparison with reported filters.
Nanoscale Mixing of Soft Solids
Choi, Soo-Hyung; Lee, Sangwoo; Soto, Haidy E.; Lodge, Timothy P.; Bates, Frank S.
2011-01-01
Assessing the state of mixing on the molecular scale in soft solids is challenging. Concentrated solutions of micelles formed by self-assembly of polystyrene-block-poly(ethylene-alt-propylene) (PS-PEP) diblock copolymers in squalane (C 30 H 62 ) adopt a body-centered cubic (bcc) lattice, with glassy PS cores. Utilizing small-angle neutron scattering (SANS) and isotopic labeling ( 1 H and 2 H (D) polystyrene blocks) in a contrast-matching solvent (a mixture of squalane and perdeuterated squalane), we demonstrate quantitatively the remarkable fact that a commercial mixer can create completely random mixtures of micelles with either normal, PS(H), or deuterium-labeled, PS(D), cores on a well-defined bcc lattice. The resulting SANS intensity is quantitatively modeled by the form factor of a single spherical core. These results demonstrate both the possibility of achieving complete nanoscale mixing in a soft solid and the use of SANS to quantify the randomness.
Markov chains and mixing times
Levin, David A
2017-01-01
Markov Chains and Mixing Times is a magical book, managing to be both friendly and deep. It gently introduces probabilistic techniques so that an outsider can follow. At the same time, it is the first book covering the geometric theory of Markov chains and has much that will be new to experts. It is certainly THE book that I will use to teach from. I recommend it to all comers, an amazing achievement. -Persi Diaconis, Mary V. Sunseri Professor of Statistics and Mathematics, Stanford University Mixing times are an active research topic within many fields from statistical physics to the theory of algorithms, as well as having intrinsic interest within mathematical probability and exploiting discrete analogs of important geometry concepts. The first edition became an instant classic, being accessible to advanced undergraduates and yet bringing readers close to current research frontiers. This second edition adds chapters on monotone chains, the exclusion process and hitting time parameters. Having both exercises...
Mixing Tamiflu with Sweet Liquids
2009-11-16
If your doctor prescribes TamifluÂ® capsules for your child and your child cannot swallow them, this podcast describes how to mix the contents of the capsules with a sweet thick liquid so they can be given that way. Created: 11/16/2009 by National Center for Immunization and Respiratory Diseases (NCIRD). Date Released: 11/16/2009.
Consumer Behavior dan Marketing Mix
Pura A, Agus Hasan
2005-01-01
Marketing concept emerged since business philosophy shifted to a customer-centered, the job is to find the right products for your choosen target markets. The reason for customer orientation in which all functions work together to respond to, Serve, and satisfy customer. To satisfy consumer (end user) the marketing concept use integrated marketing, that is segmenting, Targeting, positioning, and marketing mix (4p/7p). And to.be success, marketer have to understand the behavior of consumers of...
Fast mixed spectrum reactor concept
Kouts, H.J.C.; Fischer, G.J.; Cerbone, R.J.
1979-04-01
The Fast Mixed Spectrum Reactor is a highly promising concept for a fast reactor with improved features of proliferation resistance, and excellent utilization of uranium resources. In technology, it can be considered to be a branch of fast breeder development, though its operation and implications are different from those of FBR'S in important respects. Successful development programs are required in several areas to bring FMSR to reality, but the payoff from a successful program can be high
Material Barriers to Diffusive Mixing
Haller, George; Karrasch, Daniel
2017-11-01
Transport barriers, as zero-flux surfaces, are ill-defined in purely advective mixing in which the flux of any passive scalar is zero through all material surfaces. For this reason, Lagrangian Coherent Structures (LCSs) have been argued to play the role of mixing barriers as most repelling, attracting or shearing material lines. These three kinematic concepts, however, can also be defined in different ways, both within rigorous mathematical treatments and within the realm of heuristic diagnostics. This has lead to a an ever-growing number of different LCS methods, each generally identifying different objects as transport barriers. In this talk, we examine which of these methods have actual relevance for diffusive transport barriers. The latter barriers are arguably the practically relevant inhibitors in the mixing of physically relevant tracers, such as temperature, salinity, vorticity or potential vorticity. We demonstrate the role of the most effective diffusion barriers in analytical examples and observational data. Supported in part by the DFG Priority Program on Turbulent Superstructures.
Konečná, Eva
2012-01-01
Tato diplomová práce se zabývá zlepšením komunikačního mixu společnosti Nitara s.r.o. Teoretická část je zaměřena na vysvětlení základních pojmů, popsán marketing, analýza konkurence, marketingový mix a nástroje komunikačního mixu. V analytické části práce se seznamujeme se společností Nitara s.r.o. a její činností. Tato část práce obsahuje analýzu marketingového prostředí společnosti a marketingový mix společnosti. V poslední části se pokusím navrhnout pro společnost nový komunikační mix, kt...
Cluster Correlation in Mixed Models
Gardini, A.; Bonometto, S. A.; Murante, G.; Yepes, G.
2000-10-01
We evaluate the dependence of the cluster correlation length, rc, on the mean intercluster separation, Dc, for three models with critical matter density, vanishing vacuum energy (Λ=0), and COBE normalization: a tilted cold dark matter (tCDM) model (n=0.8) and two blue mixed models with two light massive neutrinos, yielding Ωh=0.26 and 0.14 (MDM1 and MDM2, respectively). All models approach the observational value of σ8 (and hence the observed cluster abundance) and are consistent with the observed abundance of damped Lyα systems. Mixed models have a motivation in recent results of neutrino physics; they also agree with the observed value of the ratio σ8/σ25, yielding the spectral slope parameter Γ, and nicely fit Las Campanas Redshift Survey (LCRS) reconstructed spectra. We use parallel AP3M simulations, performed in a wide box (of side 360 h-1 Mpc) and with high mass and distance resolution, enabling us to build artificial samples of clusters, whose total number and mass range allow us to cover the same Dc interval inspected through Automatic Plate Measuring Facility (APM) and Abell cluster clustering data. We find that the tCDM model performs substantially better than n=1 critical density CDM models. Our main finding, however, is that mixed models provide a surprisingly good fit to cluster clustering data.
Lepton charges and lepton mixing
Pontecorvo, B.
1978-01-01
A review is given of theoretical and experimental investigations of lepton charges and lepton mixing known to the author at the time of the Budapest Conference, July 1970. The review is more biased towards experiment than theory. The recent and relevant expermental limits on possible lepton charge non-conservation are summarized, which were obtained by measuring probabilities of various processes. The status of the lepton mixing theory in the case when the only neutral leptons are neutrinos is reviewed, the main points being the μ→eγ decay and neutrino oscillations. The ''solar neutrino puzzle'' is discussed. A model of the μ→eγ and μ→3e decays is given as an example of drastic effects of heavy lepton mixing, and the relation between processes like μ→eγ, etc., and neutrino oscillations is considered. Recent papers on lepton nonconservation effects are then classified in groups, the related literature being presented extensively, if not fully
Fujii, Yasumasa
2011-01-01
After the Fukushima accident occurred in March 2011, reform of Japan's basic energy plan and energy supply system was reported to be under discussion such as to reduce dependence on nuclear power. Planning of energy policy should be considered based on four evaluation indexes of 'economics'. 'environmental effects', 'stable supply of energy' and 'sustainability'. 'Stable supply of energy' should include stability of domestic energy supply infrastructure against natural disasters in addition to stable supply of overseas resources. 'Sustainability' meant long-term availability of resources. Since there did not exist an almighty energy source and energy supply system superior in terms of every above-mentioned evaluation index, it would be wise to use combining various energy sources and supply system in rational way. This combination lead to optimum energy mix, so-called 'Energy Best Mix'. The author evaluated characteristics of energy sources and energy supply system in terms of four indexes and showed best energy mix from short-, medium- and long-term perspectives. Since fossil fuel resources would deplete anyhow, it would be inevitable for human being to be dependent on non-fossil energy resources regardless of greenhouse effects. At present it would be difficult and no guarantee to establish society fully dependent on renewable energy, then it would be probable to need utilization of nuclear energy in the long term. (T. Tanaka)
Assessing mixed waste treatment technologies
Berry, J.B.; Bloom, G.A.; Hart, P.W.
1994-01-01
The US Department of Energy (DOE) is responsible for the management and treatment of its mixed low-level wastes (MLLW). As discussed earlier in this conference MLLW are regulated under both the Resource Conservation and Recovery Act and various DOE orders. During the next 5 years, DOE will manage over 1,200,000 m 3 of MLLW and mixed transuranic (MTRU) waste at 50 sites in 22 states (see Table 1). The difference between MLLW and MTRU waste is in the concentration of elements that have a higher atomic weight than uranium. Nearly all of this waste will be located at 13 sites. More than 1400 individual mixed waste streams exist with different chemical and physical matrices containing a wide range of both hazardous and radioactive contaminants. Their containment and packaging vary widely (e.g., drums, bins, boxes, and buried waste). This heterogeneity in both packaging and waste stream constituents makes characterization difficult, which results in costly sampling and analytical procedures and increased risk to workers
Effect of Mixing Process on Polypropylene Modified Bituminous Concrete Mix Properties
Noor Zainab Habib; Ibrahim Kamaruddin; Madzalan Napiah; Isa Mohd Tan
2011-01-01
This paper presents a research conducted to investigate the effect of mixing process on polypropylene (PP) modified bitumen mixed with well graded aggregate to form modified bituminous concrete mix. Two mode of mixing, namely dry and wet with different concentration of polymer polypropylene was used with 80/100 pen bitumen, to evaluate the bituminous concrete mix properties. Three percentages of polymer varying from 1-3% by the weight of bitumen was used in this study. Three mixes namely cont...
Neutrino mixing, flavor states and dark energy
Blasone, M.; Capolupo, A.; Capozziello, S.; Vitiello, G.
2008-01-01
We shortly summarize the quantum field theory formalism for the neutrino mixing and report on recent results showing that the vacuum condensate induced by neutrino mixing can be interpreted as a dark energy component of the Universe
2008-12-01
Warm Mix Asphalt (WMA) technology, recently developed in Europe, is gaining strong interest in the US. By : lowering the viscosity of asphalt binder and/or increasing the workability of mixture using minimal heat, WMA : technology allows the mixing, ...
Understanding Mixed Emotions: Paradigms and Measures
Kreibig, Sylvia D.; Gross, James J.
2017-01-01
In this review, we examine the paradigms and measures available for experimentally studying mixed emotions in the laboratory. For eliciting mixed emotions, we describe a mixed emotions film library that allows for the repeated elicitation of a specific homogeneous mixed emotional state and appropriately matched pure positive, pure negative, and neutral emotional states. For assessing mixed emotions, we consider subjective and objective measures that fall into univariate, bivariate, and multivariate measurement categories. As paradigms and measures for objectively studying mixed emotions are still in their early stages, we conclude by outlining future directions that focus on the reliability, temporal dynamics, and response coherence of mixed emotions paradigms and measures. This research will build a strong foundation for future studies and significantly advance our understanding of mixed emotions. PMID:28804752
Qualitative and mixed methods in public health
Padgett, Deborah
2012-01-01
"This text has a large emphasis on mixed methods, examples relating to health research, new exercises pertaining to health research, and an introduction on qualitative and mixed methods in public health...
Panel-basierte Mixed-Methods-Studien
Legewie, Nicolas; Tucci, Ingrid
2016-01-01
Mixed-Methods-Studien erfreuen sich wachsender Beliebtheit. Immer mehr Studien nutzen dabei auch Panel-basierte Mixed-Methods-Designs, in denen bestehende Längsschnittstudien durch qualitative Befragungsformen ergänzt werden. Innerhalb der reichhaltigen Veröffentlichungen zum Thema Mixed-Methods-Forschung finden sich bisher aber kaum Diskussionen solcher Mixed-Methods-Designs. Im vorliegenden Artikel diskutieren wir Design, Durchführung, sowie Potenzialeund Herausforderungen von Panel-basiert...
Mixed wasted integrated program: Logic diagram
Mayberry, J.; Stelle, S. [Science Applications International Corp., Idaho Falls, ID (United States); O`Brien, M. [Univ. of Arizona, Tucson, AZ (United States); Rudin, M. [Univ. of Nevada, Las Vegas, NV (United States); Ferguson, J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); McFee, J. [I.T. Corp., Albuquerque, NM (United States)
1994-11-30
The Mixed Waste Integrated Program Logic Diagram was developed to provide technical alternative for mixed wastes projects for the Office of Technology Development`s Mixed Waste Integrated Program (MWIP). Technical solutions in the areas of characterization, treatment, and disposal were matched to a select number of US Department of Energy (DOE) treatability groups represented by waste streams found in the Mixed Waste Inventory Report (MWIR).
Bounding CKM mixing with a fourth family
Chanowitz, Michael S.
2009-01-01
CKM mixing between third-family quarks and a possible fourth family is constrained by global fits to the precision electroweak data. The dominant constraint is from nondecoupling oblique corrections rather than the vertex correction to Z→bb used in previous analyses. The possibility of large mixing suggested by some recent analyses of flavor-changing neutral-current processes is excluded, but 3-4 mixing of the same order as the Cabbibo mixing of the first two families is allowed.
Marketing Mix sebagai Alat Pembeda dalam Persaingan
Pura A, Agus Hasan
2012-01-01
Marketers must not only formulate the broad strategies to achieve its marketing objectives but also plan marketing mix programs. Many good strategies fail when it comes to development of specific marketing - mix tactics. Decision must be made to transform marketing strategy to marketing mix and to provide competitive advantageous in the competitive market place and in the same time to provide what market needs. Key words : Integrated Marketing, Marketing Mix, Differentiation, Customer Valu...
Marketingový mix Fitbox Kladno
Šíma, Jiří
2016-01-01
Title: MARKETING MIX OF FIT BOX KLADNO Aims: The aim of this thesis is to collect information on the operation of the marketing mix from the customers and managers point of view. Based on these findings new proposal and recommendations were suggested in order to improve existing marketing mix. Methods: The analysis of marketing mix was performed by marketing research through questionnaire, interview and observation. Results: According to the results customers are least satisfied with changing...
Moments, Mixed Methods, and Paradigm Dialogs
Denzin, Norman K.
2010-01-01
I reread the 50-year-old history of the qualitative inquiry that calls for triangulation and mixed methods. I briefly visit the disputes within the mixed methods community asking how did we get to where we are today, the period of mixed-multiple-methods advocacy, and Teddlie and Tashakkori's third methodological moment. (Contains 10 notes.)
Qualitative Approaches to Mixed Methods Practice
Hesse-Biber, Sharlene
2010-01-01
This article discusses how methodological practices can shape and limit how mixed methods is practiced and makes visible the current methodological assumptions embedded in mixed methods practice that can shut down a range of social inquiry. The article argues that there is a "methodological orthodoxy" in how mixed methods is practiced…
Pragmatism, Evidence, and Mixed Methods Evaluation
Hall, Jori N.
2013-01-01
Mixed methods evaluation has a long-standing history of enhancing the credibility of evaluation findings. However, using mixed methods in a utilitarian way implicitly emphasizes convenience over engaging with its philosophical underpinnings (Denscombe, 2008). Because of this, some mixed methods evaluators and social science researchers have been…
The crack growth mechanism in asphaltic mixes
Jacobs, M.M.J.; Hopman, P.C.; Molenaar, A.A.A.
1995-01-01
The crack growth mechanism in asphalt concrete (Ac) mixes is studied. In cyclic tests on several asphaltic mixes crack growth is measured, both with crack foils and with cOD-gauges. It is found that crack growth in asphaltic mixes is described by three processes which are parallel in time: cohesive
MARKETING MIX: AN ATTEMPT AT CRITICAL ANALYSIS
Kotliarov I.D.
2012-01-01
The present paper contains an analysis of main directions of evolution of marketing mix concept. Typical problems of each approach are demonstrated. Classical form of marketing mix (4Ps) is recommended as the basic form of marketing mix, which, however, may be adapted to specific characteristics of the firm and its industry
Entropy of Mixing of Distinguishable Particles
Kozliak, Evguenii I.
2014-01-01
The molar entropy of mixing yields values that depend only on the number of mixing components rather than on their chemical nature. To explain this phenomenon using the logic of chemistry, this article considers mixing of distinguishable particles, thus complementing the well-known approach developed for nondistinguishable particles, for example,…
7 CFR 51.2112 - Mixed varieties.
2010-01-01
... 7 Agriculture 2 2010-01-01 2010-01-01 false Mixed varieties. 51.2112 Section 51.2112 Agriculture... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Shelled Almonds Mixed Varieties § 51.2112 Mixed varieties. Any lot of shelled...
1.5. The concrete mix properties
Saidov, D.Kh.
2011-01-01
Different properties of concrete mix, including connectivity, mobility and water demand were considered in this work. The steps of water demand of concrete mix obtained from Portland cement, sand and gravel are presented in this work. The classification of concrete mixes is presented as well.
Patch testing with constituents of Compositae mixes
Paulsen, Evy; Andersen, Klaus Ejner
2012-01-01
Background. The development of mixes containing Compositae plant extracts has improved the diagnosis of Compositae contact allergy, but none of them has fulfilled the criteria for an ideal European plant mix. Objective. To evaluate which constituents of two commercial Compositae mixes were most u...
Unambiguous discrimination of mixed quantum states
Zhang Chi; Feng Yuan; Ying Mingsheng
2006-01-01
The problem of unambiguous discrimination between mixed quantum states is addressed by isolating the part of each mixed state which has no contribution to discrimination and by employing the strategy of set discrimination of pure states. A necessary and sufficient condition of unambiguous mixed state discrimination is presented. An upper bound of the efficiency is also derived
ERIC/EECE Report. Mixed Age Grouping.
Cesarone, Bernard
1995-01-01
Summarizes eight recent ERIC documents and seven journal articles on mixed-age grouping. Includes discussions of teaching in the multiage classroom, Kentucky's Primary Program, developmentally appropriate practices in the primary grades, thematic instruction, attitudes toward mixed-age grouping, and questions and answers about mixed-age grouping.…
Patch testing with the "sesquiterpene lactone mix"
Ducombs, G; Benezra, C; Talaga, P
1990-01-01
6278 patients were patch tested with a sesquiterpene lactone mix (SL-mix) in 10 European clinics. 4011 patients were tested only with 0.1% SL-mix, 63 (approximately 1.5%) of whom were positive, with 26 (41%) of these cases being considered clinically relevant. There were no cases of active...
The fragrance mix and its constituents
Johansen, J D; Menné, T
1995-01-01
Results from 14 years of patch testing with the fragrance mix and its constituents are reviewed. From 1979-1992, 8215 consecutive patients were patch tested with the fragrance mix and 449 (5.5%) had a positive reaction. An increase in the frequency of reactions to fragrance mix was seen from the ...
Benign mixed tumor of the lacrimal sac
Jong-Suk Lee
2015-01-01
Full Text Available Neoplasms of the lacrimal drainage system are uncommon, but potentially life-threatening and are often difficult to diagnose. Among primary lacrimal sac tumors, benign mixed tumors are extremely rare. Histologically, benign mixed tumors have been classified as a type of benign epithelial tumor. Here we report a case of benign mixed tumor of the lacrimal sac.
Mixed labelling in multitarget particle filtering
Boers, Y.; Sviestins, Egils; Driessen, Hans
2010-01-01
The so-called mixed labelling problem inherent to a joint state multitarget particle filter implementation is treated. The mixed labelling problem would be prohibitive for track extraction from a joint state multitarget particle filter. It is shown, using the theory of Markov chains, that the mixed
Takatsuka, Tatsuyuki
2004-01-01
Hyperon mixing in neutron star matter is investigated by the G-matrix-based effective interaction approach under the attention to use the YN and the YY potentials compatible with hypernuclear data and is shown to occur at densities relevant to neutron star cores, together with discussions to clarify the mechanism of hyperon contamination. It is remarked that developed Y-mixed phase causes a dramatic softening of the neutron star equation of state and leads to the serious problem that the resulting maximum mass M max for neutron star model contradicts the observed neutron star mass (M max obs = 1.44 M Θ ), suggesting the necessity of some extra repulsion'' in hypernuclear system. It is shown that the introduction of three-body repulsion similar to that in nuclear system can resolve the serious situation and under the consistency with observation (M max > M obs ) the threshold densities for Λ and Σ - are pushed to higher density side, from 2ρ 0 to ∼ 4ρ 0 (ρ 0 being the nuclear density). On the basis of a realistic Y-mixed neutron star model, occurrence of Y-superfluidity essential for ''hyperon cooling'' scenario is studied and both of Λ- and Σ - -superfluids are shown to be realized with their critical temperatures 10 8-9 K, meaning that the hyperon cooling'' is a promising candidate for a fast non-standard cooling demanded for some neutron stars with low surface temperature. A comment is given as to the consequence of less attractive ΛΛ interaction suggested by the ''NAGARA event'' ΛΛ 6 He. (author)
Mixed embeddedness and rural entrepreneurship
Ferguson, Richard; Gaddefors, Johan; Korsgaard, Steffen
Entrepreneurship is a key driver of development in rural areas. Some studies have shown that in-migrants and returnees are overrepresented among rural entrepreneurs, and that their entrepreneurship might be more important for local development than the efforts of local entrepreneurs, at least...... in terms of economic value creation. Other studies have shown that local embeddedness is a significant source of opportunities for rural entrepreneurs, yet at the same time, over-embeddedness can inhibit entrepreneurial activities. These contrasting studies suggest that some form of mixed embeddedness...
Stochastic mechanics of mixed states
Jaekel, M.T.; Pignon, D.
1984-01-01
Nelson's stochastic interpretation of quantum mechanics is extended from the case of pure states to that of mixed states. It is shown that a pure probabilistic formalism, which applies the Newton-Nelson Law to the initial position and velocity distributions, does not reproduce the time evolution predicted by quantum mechanics. In order to recover the latter, a new notion must be introduced, that of pure quantum states, over which the mixture has to be decomposed, and which then satisfy the Newton-Nelson Law independently. (author)
Mathematical study of mixing models
Lagoutiere, F.; Despres, B.
1999-01-01
This report presents the construction and the study of a class of models that describe the behavior of compressible and non-reactive Eulerian fluid mixtures. Mixture models can have two different applications. Either they are used to describe physical mixtures, in the case of a true zone of extensive mixing (but then this modelization is incomplete and must be considered only as a point of departure for the elaboration of models of mixtures actually relevant). Either they are used to solve the problem of the numerical mixture. This problem appears during the discretization of an interface which separates fluids having laws of different state: the zone of numerical mixing is the set of meshes which cover the interface. The attention is focused on numerical mixtures, for which the hypothesis of non-miscibility (physics) will bring two equations (the sixth and the eighth of the system). It is important to emphasize that even in the case of the only numerical mixture, the presence in one and same place (same mesh) of several fluids have to be taken into account. This will be formalized by the possibility for mass fractions to take all values between 0 and 1. This is not at odds with the equations that derive from the hypothesis of non-miscibility. One way of looking at things is to consider that there are two scales of observation: the physical scale at which one observes the separation of fluids, and the numerical scale, given by the fineness of the mesh, to which a mixture appears. In this work, mixtures are considered from the mathematical angle (both in the elaboration phase and during their study). In particular, Chapter 5 shows a result of model degeneration for a non-extended mixing zone (case of an interface): this justifies the use of models in the case of numerical mixing. All these models are based on the classical model of non-viscous compressible fluids recalled in Chapter 2. In Chapter 3, the central point of the elaboration of the class of models is
Chau Wang, L.C.
1980-01-01
The results of mixing matrix determination and their implications on heavy quark decays are given. The decays of charm mesons D 0 , D + , F + into two pseudoscalar mesons are discussed in the framework of SU(3) symmetry. The charm decays are also discussed in terms of quark diagrams. It is demonstrated that the differences observed in the lifetimes of D 0 and D + , and in the branching ratios B(D 0 → K - K + ) and B(D 0 → π - π + ) can be easily incorporated. 3 figures
Paschos, E.A.
1992-01-01
These lectures present a pedagogical introduction to the topics quark mixing and CP violation. They explain how the mixing matrix comes about and reviews the values of constraints for its elements. The second chapter reviews the CP transformation properties of amplitudes and defines the quantities which are measured in the experiments. Then it reviews the theory of CP violation in the standard model. In addition to the phase and the angles introduced through the flavor matrix, numerical predictions also depend (a) on hadronic matrix elements of weak current operators and (b) the short distance expansion of effective Hamiltonians computed by methods of Quantum Chromodynamics (QCD). I also review these topics and present predictions for (ε'/ε) which are shown to be consistent with the experiments. Last but not least, the article is divided into sections which are as self-contained as possible. The article assumes a general knowledge of the electroweak theory. For guidance, the interested reader will find a table of contents at the end of the text. (author). 29 refs, 5 figs, 1 tab
[Mixed states: evolution of classifications].
Pringuey, D; Cherikh, F; Giordana, B; Fakra, E; Dassa, D; Cermolacce, M; Belzeaux, R; Maurel, M; Azorin, J-M
2013-12-01
The nosological position of mixed states has followed the course of classifying methods in psychiatry, the steps of the invention of the clinic, progress in the organization of care, including the discoveries of psychopharmacology. The clinical observation of a mixture of symptoms emerging from usually opposite clinical conditions is classical. In the 70s, a syndromic specification fixed the main symptom combinations but that incongruous assortment failed to stabilize the nosological concept. Then stricter criteriology was proposed. To be too restrictive, a consensus operates a dimensional opening that attempts to meet the pragmatic requirements of nosology validating the usefulness of the class system. This alternation between rigor of categorization and return to a more flexible criteriological option reflects the search for the right balance between nosology and diagnosis. The definition of mixed states is best determined by their clinical and prognostic severity, related to the risk of suicide, their lower therapeutic response, the importance of their psychiatric comorbidities, anxiety, emotional lability, alcohol abuse. Trying to compensate for the lack of categorical definitions and better reflecting the clinical field problems, new definitions complement criteriology with dimensional aspects, particularly taking into account temperaments. Copyright © 2013 L’Encéphale. Published by Elsevier Masson SAS.. All rights reserved.
Mixing in straight shear layers
Karasso, P. S.; Mungal, M. G.
1992-01-01
Planar laser-induced fluorescence measurements were performed in a liquid plane mixing layer to extract the probability density function (pdf) of the mixture fraction of a passive scalar across the layer. Three Reynolds number (Re) cases were studied, 10,000, 33,000 and 90,000, with Re based on velocity difference and visual thickness. The results show that a non-marching pdf (central hump invariant from edge to edge of the layer) exists for Re = 10,000 but that a marching type pdf characterizes the Re = 33,000 and Re = 90,000 cases. For all cases, a broad range of mixture fraction values is found at each location across the layer. Streamwise and spanwise ramps across the layer, and structure-to-structure variation were observed and are believed to be responsible for the above behavior of the composition field. Tripping the boundary layer on the high-speed side of the splitter plate for each of the above three cases resulted in increased three-dimensionality and a change in the composition field. Average and average mixed fluid compositions are reported for all cases.
Radioactivity reveals how crisps mix
Parker, David [School of Physics and Astronomy, University of Birmingham, Birmingham (United Kingdom)
2000-01-01
Many of the ''fluids'' processed in the food industry have strange flow properties that cannot easily be predicted. This is an important question in industry, since engineers need to know how such systems flow through pipes in production plants or how different components mix together. To counter this lack of knowledge, the fluids are generally processed for longer than necessary, which often proves expensive and may affect the quality of the final product. The University of Birmingham Positron Imaging Centre has developed a powerful technique to study the behaviour of crisps, yoghurt and ice cream - together with many other granular materials and viscous fluids - in a variety of industrial processes. In one case, the group labelled a single crisp using a positron-emitting radioisotope and added it to a rotating drum full of crisps. By tracking the movement of the labelled crisp, they could determine how uniformly the crisps were exposed to the flavouring that was added in the mixing process. In this article the author describes the research at the university's Positron Imaging Centre. (UK)
Radioactivity reveals how crisps mix
Parker, David
2000-01-01
Many of the ''fluids'' processed in the food industry have strange flow properties that cannot easily be predicted. This is an important question in industry, since engineers need to know how such systems flow through pipes in production plants or how different components mix together. To counter this lack of knowledge, the fluids are generally processed for longer than necessary, which often proves expensive and may affect the quality of the final product. The University of Birmingham Positron Imaging Centre has developed a powerful technique to study the behaviour of crisps, yoghurt and ice cream - together with many other granular materials and viscous fluids - in a variety of industrial processes. In one case, the group labelled a single crisp using a positron-emitting radioisotope and added it to a rotating drum full of crisps. By tracking the movement of the labelled crisp, they could determine how uniformly the crisps were exposed to the flavouring that was added in the mixing process. In this article the author describes the research at the university's Positron Imaging Centre. (UK)
Mixed waste characterization reference document
1997-09-01
Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization
Mixed Fluid Conditions: Capillary Phenomena
Santamarina, Carlos
2017-07-06
Mixed fluid phenomena in porous media have profound implications on soil-atmosphere interaction, energy geotechnology, environmental engineering and infrastructure design. Surface tension varies with pressure, temperature, solute concentration, and surfactant concentration; on the other hand, the contact angle responds to interfacial tensions, surface topography, invasion velocity, and chemical interactions. Interfaces are not isolated but interact through the fluid pressure and respond to external fields. Jumps, snap-offs and percolating wetting liquids along edges and crevices are ubiquitous in real, non-cylindrical porous networks. Pore- and macroscale instabilities together with pore structure variability-and-correlation favor fluid trapping and hinder recovery efficiency. The saturation-pressure characteristic curve is affected by the saturation-history, flow-rate, the mechanical response of the porous medium, and time-dependent reactive and diffusive processes; in addition, there are salient differences between unsaturation by internal gas nucleation and gas invasion. Capillary forces add to other skeletal forces in the porous medium and can generate open-mode discontinuities when the capillary entry pressure is high relative to the effective stress. Time emerges as an important variable in mixed-fluid conditions and common quasi-static analyses may fail to capture the system response.
Vertical mixing by Langmuir circulations
McWilliams, James C.; Sullivan, Peter P.
2001-01-01
Wind and surface wave frequently induce Langmuir circulations (LC) in the upper ocean, and the LC contribute to mixing materials down from the surface. In this paper we analyze large-eddy simulation (LES) cases based on surface-wave-averaged, dynamical equations and show that the effect of the LC is a great increase in the vertical mixing efficiency for both material properties and momentum. We provide new confirmation that the previously proposed K-profile parameterization (KPP) model accurately characterizes the turbulent transport in a weakly convective, wind-driven boundary layer with stable interior stratification. We also propose a modest generalization of KPP for the regime of weakly convective Langmuir turbulence. This makes the KPP turbulent flux profiles match those in the LES case with LC present fairly well, especially so for material properties being transported downwards from the ocean surface. However, some open issues remain about how well the present LES and KPP formulations represent Langmuir turbulence, in part because wave-breaking effects are not yet included. (Author)
Mixing audio concepts, practices and tools
Izhaki, Roey
2013-01-01
Your mix can make or break a record, and mixing is an essential catalyst for a record deal. Professional engineers with exceptional mixing skills can earn vast amounts of money and find that they are in demand by the biggest acts. To develop such skills, you need to master both the art and science of mixing. The new edition of this bestselling book offers all you need to know and put into practice in order to improve your mixes. Covering the entire process --from fundamental concepts to advanced techniques -- and offering a multitude of audio samples, tips and tricks, this boo
Theoretical Models of Neutrino Mixing Recent Developments
Altarelli, Guido
2009-01-01
The data on neutrino mixing are at present compatible with Tri-Bimaximal (TB) mixing. If one takes this indication seriously then the models that lead to TB mixing in first approximation are particularly interesting and A4 models are prominent in this list. However, the agreement of TB mixing with the data could still be an accident. We discuss a recent model based on S4 where Bimaximal mixing is instead valid at leading order and the large corrections needed to reproduce the data arise from the diagonalization of charged leptons. The value of $\\theta_{13}$ could distinguish between the two alternatives.
Jordan, John; Wachsmann, Melanie; Hoisington, Susan; Gonzalez, Vanessa; Valle, Rachel; Lambert, Jarod; Aleisa, Majed; Wilcox, Rachael; Benge, Cindy L.; Onwuegbuzie, Anthony J.
2017-01-01
Surprisingly, scant information exists regarding the collaboration patterns of mixed methods researchers. Thus, the purpose of this mixed methods bibliometric study was to examine (a) the distribution of the number of co-authors in articles published in the flagship mixed methods research journal (i.e., "Journal of Mixed Methods…
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
The goals of the International Conference `Turbulent Mixing and Beyond' are to expose the generic problem of Turbulence and Turbulent Mixing in Unsteady Flows to a wide scientific community, to promote the development of new ideas in tackling the fundamental aspects of the problem, to assist in the application of novel approaches in a broad range of phenomena, where the non-canonical turbulent processes occur, and to have a potential impact on technology. The Conference provides the opportunity to bring together scientists from the areas which include, but are not limited to, high energy density physics, plasmas, fluid dynamics, turbulence, combustion, material science, geophysics, astrophysics, optics and telecommunications, applied mathematics, probability and statistics, and to have their attention focused on the long-standing formidable task. The Turbulent Mixing and Turbulence in Unsteady Flows, including multiphase flows, plays a key role in a wide variety of phenomena, ranging from astrophysical to nano-scales, under either high or low energy density conditions. Inertial confinement and magnetic fusion, light-matter interaction and non-equilibrium heat transfer, properties of materials under high strain rates, strong shocks, explosions, blast waves, supernovae and accretion disks, stellar non-Boussinesq and magneto-convection, planetary interiors and mantle-lithosphere tectonics, premixed and non-premixed combustion, oceanography, atmospheric flows, unsteady boundary layers, hypersonic and supersonic flows, are a few examples to list. A grip on unsteady turbulent processes is crucial for cutting-edge technology such as laser-micromachining and free-space optical telecommunications, and for industrial applications in aeronautics. Unsteady Turbulent Processes are anisotropic, non-local and multi-scale, and their fundamental scaling, spectral and invariant properties depart from the classical Kolmogorov scenario. The singular aspects and similarity of the
Corradini, M.L.; Moses, G.A.
1985-01-01
The vapor explosion process involves the mixing of fuel with coolant prior to the explosion. A number of analysts have identified limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a sim plified approach is suggested to estimate the upper limit on the amount of fuel/coolant mixing pos sible. The approach uses concepts first advanced by Fauske in a different way. The results indicat that water depth is an important parameter as well as the mixing length scale D /SUB mix/ , and for large values of D /SUB mix/ the fuel mass mixed is limited to <7% of the core mass
Generic evolution of mixing in heterogeneous media
De Dreuzy, J.; Carrera, J.; Dentz, M.; Le Borgne, T.
2011-12-01
Mixing in heterogeneous media results from the competition bewteen flow fluctuations and local scale diffusion. Flow fluctuations quickly create concentration contrasts and thus heterogeneity of the concentration field, which is slowly homogenized by local scale diffusion. Mixing first deviates from Gaussian mixing, which represents the potential mixing induced by spreading before approaching it. This deviation fundamentally expresses the evolution of the interaction between spreading and local scale diffusion. We characterize it by the ratio γ of the non-Gaussian to the Gaussian mixing states. We define the Gaussian mixing state as the integrated squared concentration of the Gaussian plume that has the same longitudinal dispersion as the real plume. The non-Gaussian mixing state is the difference between the overall mixing state defined as the integrated squared concentration and the Gaussian mixing state. The main advantage of this definition is to use the full knowledge previously acquired on dispersion for characterizing mixing even when the solute concentration field is highly non Gaussian. Using high precision numerical simulations, we show that γ quickly increases, peaks and slowly decreases. γ can be derived from two scales characterizing spreading and local mixing, at least for large flux-weighted solute injection conditions into classically log-normal Gaussian correlated permeability fields. The spreading scale is directly related to the longitudinal dispersion. The local mixing scale is the largest scale over which solute concentrations can be considered locally uniform. More generally, beyond the characteristics of its maximum, γ turns out to have a highly generic scaling form. Its fast increase and slow decrease depend neither on the heterogeneity level, nor on the ratio of diffusion to advection, nor on the injection conditions. They might even not depend on the particularities of the flow fields as the same generic features also prevail for
Bonhommeau, David; Truhlar, Donald G
2008-07-07
The photodissociation dynamics of ammonia upon excitation of the out-of-plane bending mode (mode nu(2) with n(2)=0,[ellipsis (horizontal)],6 quanta of vibration) in the A electronic state is investigated by means of several mixed quantum/classical methods, and the calculated final-state properties are compared to experiments. Five mixed quantum/classical methods are tested: one mean-field approach (the coherent switching with decay of mixing method), two surface-hopping methods [the fewest switches with time uncertainty (FSTU) and FSTU with stochastic decay (FSTU/SD) methods], and two surface-hopping methods with zero-point energy (ZPE) maintenance [the FSTUSD+trajectory projection onto ZPE orbit (TRAPZ) and FSTUSD+minimal TRAPZ (mTRAPZ) methods]. We found a qualitative difference between final NH(2) internal energy distributions obtained for n(2)=0 and n(2)>1, as observed in experiments. Distributions obtained for n(2)=1 present an intermediate behavior between distributions obtained for smaller and larger n(2) values. The dynamics is found to be highly electronically nonadiabatic with all these methods. NH(2) internal energy distributions may have a negative energy tail when the ZPE is not maintained throughout the dynamics. The original TRAPZ method was designed to maintain ZPE in classical trajectories, but we find that it leads to unphysically high internal vibrational energies. The mTRAPZ method, which is new in this work and provides a general method for maintaining ZPE in either single-surface or multisurface trajectories, does not lead to unphysical results and is much less time consuming. The effect of maintaining ZPE in mixed quantum/classical dynamics is discussed in terms of agreement with experimental findings. The dynamics for n(2)=0 and n(2)=6 are also analyzed to reveal details not available from experiment, in particular, the time required for quenching of electronic excitation and the adiabatic energy gap and geometry at the time of quenching.
Bonhommeau, David; Truhlar, Donald G.
2008-07-01
The photodissociation dynamics of ammonia upon excitation of the out-of-plane bending mode (mode ν2 with n2=0,…,6 quanta of vibration) in the Ã electronic state is investigated by means of several mixed quantum/classical methods, and the calculated final-state properties are compared to experiments. Five mixed quantum/classical methods are tested: one mean-field approach (the coherent switching with decay of mixing method), two surface-hopping methods [the fewest switches with time uncertainty (FSTU) and FSTU with stochastic decay (FSTU/SD) methods], and two surface-hopping methods with zero-point energy (ZPE) maintenance [the FSTU /SD+trajectory projection onto ZPE orbit (TRAPZ) and FSTU /SD+minimal TRAPZ (mTRAPZ) methods]. We found a qualitative difference between final NH2 internal energy distributions obtained for n2=0 and n2>1, as observed in experiments. Distributions obtained for n2=1 present an intermediate behavior between distributions obtained for smaller and larger n2 values. The dynamics is found to be highly electronically nonadiabatic with all these methods. NH2 internal energy distributions may have a negative energy tail when the ZPE is not maintained throughout the dynamics. The original TRAPZ method was designed to maintain ZPE in classical trajectories, but we find that it leads to unphysically high internal vibrational energies. The mTRAPZ method, which is new in this work and provides a general method for maintaining ZPE in either single-surface or multisurface trajectories, does not lead to unphysical results and is much less time consuming. The effect of maintaining ZPE in mixed quantum/classical dynamics is discussed in terms of agreement with experimental findings. The dynamics for n2=0 and n2=6 are also analyzed to reveal details not available from experiment, in particular, the time required for quenching of electronic excitation and the adiabatic energy gap and geometry at the time of quenching.
Linear mixed models in sensometrics
Kuznetsova, Alexandra
quality of decision making in Danish as well as international food companies and other companies using the same methods. The two open-source R packages lmerTest and SensMixed implement and support the methodological developments in the research papers as well as the ANOVA modelling part of the Consumer...... an open-source software tool ConsumerCheck was developed in this project and now is available for everyone. will represent a major step forward when concerns this important problem in modern consumer driven product development. Standard statistical software packages can be used for some of the purposes......Today’s companies and researchers gather large amounts of data of different kind. In consumer studies the objective is the collection of the data to better understand consumer acceptance of products. In such studies a number of persons (generally not trained) are selected in order to score products...
Flavour mixings in flux compactifications
Buchmuller, Wilfried; Schweizer, Julian
2017-01-01
A multiplicity of quark-lepton families can naturally arise as zero-modes in flux compactifications. The flavour structure of quark and lepton mass matrices is then determined by the wave function profiles of the zero-modes. We consider a supersymmetric SO(10) x U(1) model in six dimensions compactified on the orbifold T 2 =Z 2 with Abelian magnetic flux. A bulk 16-plet charged under the U(1) provides the quark-lepton generations whereas two uncharged 10-plets yield two Higgs doublets. Bulk anomaly cancellation requires the presence of additional 16- and 10-plets. The corresponding zero-modes form vectorlike split multiplets that are needed to obtain a successful flavour phenomenology. We analyze the pattern of flavour mixings for the two heaviest families of the Standard Model and discuss possible generalizations to three and more generations.
Managing mixed wastes: technical issues
Lytle, J.E.; Eyman, L.D.; Burton, D.W.; McBrayer, J.F.
1986-01-01
The US Department of Energy manages wastes that are both chemically hazardous and radioactive. These mixed wastes are often unique and many have national security implications. Management practices have evolved over the more than forty years that the Department and its predecessor agencies have been managing these wastes, both in response to better understanding of the hazards involved and in response to external, regulatory influences. The Department has recently standarized its waste management practices and has initited an R and D program to address priority issues identified by its operating contractor organizations. The R and D program is guided by waste management strategy that emphasizes reduction of human exposure to hazardous wastes in the environment, reduction of the amount and toxicity of wastes generated, treatment of wastes that are generated to reduce volumes and toxicities, and identification of alternatives to land disposal of wastes that remain hazardous following maximum practicable treatment
Vitrification development for mixed wastes
Merrill, R.; Whittington, K.; Peters, R.
1995-02-01
Vitrification is a promising approach to waste-form immobilization. It destroys hazardous organic compounds and produces a durable and highly stable glass. Vitrification tests were performed on three surrogate wastes during fiscal year 1994; 183-H Solar Evaporation Basin waste from Hanford, bottom ash from the Oak Ridge TSCA incinerator, and saltcrete from Rocky Flats. Preliminary glass development involved melting trials followed by visual homogeneity examination, short-duration leach tests on glass specimens, and long-term leach tests on selected glasses. Viscosity and electrical conductivity measurements were taken for the most durable glass formulations. Results for the saltcrete are presented in this paper and demonstrate the applicability of vitrification technology to this mixed waste
Multifractal Modeling of Turbulent Mixing
Samiee, Mehdi; Zayernouri, Mohsen; Meerschaert, Mark M.
2017-11-01
Stochastic processes in random media are emerging as interesting tools for modeling anomalous transport phenomena. Applications include intermittent passive scalar transport with background noise in turbulent flows, which are observed in atmospheric boundary layers, turbulent mixing in reactive flows, and long-range dependent flow fields in disordered/fractal environments. In this work, we propose a nonlocal scalar transport equation involving the fractional Laplacian, where the corresponding fractional index is linked to the multifractal structure of the nonlinear passive scalar power spectrum. This work was supported by the AFOSR Young Investigator Program (YIP) award (FA9550-17-1-0150) and partially by MURI/ARO (W911NF-15-1-0562).
Use of emulsion for warm mix asphalt
Mahabir Panda
2017-06-01
Full Text Available Due to increase in energy costs and emission problems in hot mix asphalt usually used, it brought a great interest to the researchers to develop the warm mix technology for pavement constructions. Commonly known as warm mix asphalt (WMA, it is a typical method in the bituminous paving technology, which allows production and placement of bituminous mixes at lower temperatures than that used for hot mix asphalt (HMA. The WMA involves an environmental friendly production process that utilises organic additives, chemical additives and water based technologies. The organic and chemical additives are normally very costly and still involve certain amount of environmental issues. These factors motivated the authors to take up this technology using simple, environment friendly and somewhat cost effective procedure. In this study, an attempt has been made to prepare warm mixes by first pre-coating the aggregates with medium setting bitumen emulsion (MS and then mixing the semi-coated aggregates with VG 30 bitumen at a lower temperature than normally required. After a number of trials it was observed that mostly three mixing temperatures, namely temperatures 110 °C, 120 °C and 130 °C were appropriate to form the bituminous mixes with satisfactory homogeneity and consistency and as such were maintained throughout this study. Marshall samples for paving mixes were prepared using this procedure for dense bituminous macadam (DBM gradings as per the specifications of Ministry of Road Transport and Highways (MORTH and subsequently Marshall properties of the resultant mixes were studied with the main objective of deciding the different parameters that were considered for development of appropriate warm mix asphalt. In this study it has been observed that out of three mixing temperatures tried, the mixes prepared at 120 °C with bitumen-emulsion composition of 80B:20E for DBM warm mix, offer highest Marshall stability and highest indirect tensile strength
Nonlinear ion-mixing-mode particle transport in the dissipative trapped electron regime
Ware, A.S.; Terry, P.W.
1993-09-01
The nonlinear particle transport arising from the convection of nonadiabatic electron density by ion temperature gradient driven turbulence is examined for trapped electron collisionality regimes. The renormalized dissipative nonadiabatic trapped electron phase space density response is derived and used to calculate the nonlinear particle flux along with an ansatz for the turbulently broadened frequency spectrum. In the lower temperature end of this regime, trapped electrons are collisional and all components of the quasilinear particle flux are outward (i.e., in the direction of the gradients). Nonlinear effects can alter the phase between the nonadiabatic trapped electron phase space density and the electrostatic potential, producing inward components in the particle flux. Specifically, both turbulent shifting of the peak of the frequency spectrum and nonlinear source terms in the trapped electron response can give rise to inward components. However, in the dissipative regime these terms are small and the trapped electron response remains dominantly laminar. When the trapped electrons are collisionless, there is a temperature threshold above which the electron temperature gradient driven component of the quasilinear particle flux changes sign and becomes inward. For finite amplitude turbulence, however, turbulent broadening of both the electron collisional resonance and the frequency spectrum removes tills threshold., and the temperature gradient driven component remains outward
Mixed quantum-classical equilibrium in global flux surface hopping
Sifain, Andrew E.; Wang, Linjun; Prezhdo, Oleg V.
2015-01-01
Global flux surface hopping (GFSH) generalizes fewest switches surface hopping (FSSH)—one of the most popular approaches to nonadiabatic molecular dynamics—for processes exhibiting superexchange. We show that GFSH satisfies detailed balance and leads to thermodynamic equilibrium with accuracy similar to FSSH. This feature is particularly important when studying electron-vibrational relaxation and phonon-assisted transport. By studying the dynamics in a three-level quantum system coupled to a classical atom in contact with a classical bath, we demonstrate that both FSSH and GFSH achieve the Boltzmann state populations. Thermal equilibrium is attained significantly faster with GFSH, since it accurately represents the superexchange process. GFSH converges closer to the Boltzmann averages than FSSH and exhibits significantly smaller statistical errors
Extrusion-mixing compared with hand-mixing of polyether impression materials?
McMahon, Caroline; Kinsella, Daniel; Fleming, Garry J P
2010-12-01
The hypotheses tested were two-fold (a) whether altering the base:catalyst ratio influences working time, elastic recovery and strain in compression properties of a hand-mixed polyether impression material and (b) whether an extrusion-mixed polyether impression material would have a significant advantage over a hand-mixed polyether impression material mixed to the optimum base:catalyst ratio. The polyether was hand-mixed at the optimum (manufacturers recommended) base:catalyst ratios (7:1) and further groups were made by increasing or decreasing the catalyst length by 25%. Additionally specimens were also made from an extrusion-mixed polyether impression material and compared with the optimum hand-mixed base:catalyst ratio. A penetrometer assembly was used to measure the working time (n=5). Five cylindrical specimens for each hand-mixed and extrusion mixed group investigated were employed for elastic recovery and strain in compression testing. Hand-mixing polyether impression materials with 25% more catalyst than that recommended significantly decreased the working time while hand-mixing with 25% less catalyst than that recommended significantly increased the strain in compression. The extrusion-mixed polyether impression material provided similar working time, elastic recovery and strain in compression to the hand-mixed polyether mixed at the optimum base:catalyst ratio.
Optimizing MFT dewatering by controlling polymer mixing
Demoz, A.; Munoz, V.; Mikula, R. [Natural Resources Canada, Devon, AB (Canada). CANMET Western Research Centre
2010-07-01
A method of controlling polymer mixing for the dewatering of mature fine tailings (MFT) was presented. The method was developed to accelerate water release from MFT and to recover more water for re-use. Dewatering rates are dependent upon hydrodynamic conditions as well as various physical mixing variables. The effect of mixing energy on the rate and amount of released water flocculated MFT was investigated using different impellers in order to determine the release water amount and capillary suction time. The mixing energy effect on the structure of the flocculated MFT was analyzed using rheology and stereo microscopy techniques. Batch mixing tests were conducted to determine dewatering characteristics. Flow was described using the Herschel-Bulkley model. Results of the study demonstrated a clear peak in the amount of water released with the mixing time. The effect was applicable to rim-ditch thin-lift, and dewatering by centrifugation. tabs., figs.
Mercury removal from solid mixed waste
Gates, D.D.; Morrissey, M.; Chava, K.K.; Chao, K.
1994-01-01
The removal of mercury from mixed wastes is an essential step in eliminating the temporary storage of large inventories of mixed waste throughout the Department of Energy (DOE) complex. Currently thermal treatment has been identified as a baseline technology and is being developed as part of the DOE Mixed Waste Integrated Program (MWIP). Since thermal treatment will not be applicable to all mercury containing mixed waste and the removal of mercury prior to thermal treatment may be desirable, laboratory studies have been initiated at Oak Ridge National Laboratory (ORNL) to develop alternative remediation technologies capable of removing mercury from certain mixed waste. This paper describes laboratory investigations of the KI/I 2 leaching processes to determine the applicability of this process to mercury containing solid mixed waste
Large neutrino mixing from renormalization group evolution
Balaji, K.R.S.; Mohapatra, R.N.; Parida, M.K.; Paschos, E.A.
2000-10-01
The renormalization group evolution equation for two neutrino mixing is known to exhibit nontrivial fixed point structure corresponding to maximal mixing at the weak scale. The presence of the fixed point provides a natural explanation of the observed maximal mixing of ν μ - ν τ , if the ν μ and ν τ are assumed to be quasi-degenerate at the seesaw scale without constraining the mixing angles at that scale. In particular, it allows them to be similar to the quark mixings as in generic grand unified theories. We discuss implementation of this program in the case of MSSM and find that the predicted mixing remains stable and close to its maximal value, for all energies below the O(TeV) SUSY scale. We also discuss how a particular realization of this idea can be tested in neutrinoless double beta decay experiments. (author)
Axial vector mass spectrum and mixing angles
Caffarelli, R.V.; Kang, K.
1976-01-01
Spectral sum rules of the axial-vector current and axial-vector current-pseudoscalar field are used to study the axial-vector mass spectrum and mixing angles, as well as the decay constants and mixing angles of the pseudoscalar mesons. In general, the result is quite persuasive for the existence of the Jsup(PC) = 1 ++ multiplet in which one has a canonical D-E mixing. (Auth.)
Optimal Control of Evolution Mixed Variational Inclusions
Alduncin, Gonzalo, E-mail: alduncin@geofisica.unam.mx [Universidad Nacional Autónoma de México, Departamento de Recursos Naturales, Instituto de Geofísica (Mexico)
2013-12-15
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory.
Challenges in Using Mix Methods in Evaluation
Stefan COJOCARU
2010-01-01
This article explores the debates between quantitative and qualitative methods in the evaluation process, analyzes the challenges about methodological mix in terms of credibility and validity of data and tools, and the evaluation findings. Beyond the epistemological contradictions, it seems that, in terms of usefulness, the mixing of methods is a practical solution, along with hybrids theories, able to provide information to improve the sufficiency of the program. Mixing methods is also a wa...
Wang, Weidong; Leng, Gangsong
2007-11-01
According to the three notions of mixed affine surface area, Lp-affine surface area and Lp-mixed affine surface area proposed by Lutwak, in this article, we give the concept of ith Lp-mixed affine surface area such that the first and second notions of Lutwak are its special cases. Further, some Lutwak's results are extended associated with this concept. Besides, applying this concept, we establish an inequality for the volumes and dual quermassintegrals of a class of star bodies.
Addressing mixed waste in plutonium processing
Christensen, D.C.; Sohn, C.L.; Reid, R.A.
1991-01-01
The overall goal is the minimization of all waste generated in actinide processing facilities. Current emphasis is directed toward reducing and managing mixed waste in plutonium processing facilities. More specifically, the focus is on prioritizing plutonium processing technologies for development that will address major problems in mixed waste management. A five step methodological approach to identify, analyze, solve, and initiate corrective action for mixed waste problems in plutonium processing facilities has been developed
Optimal Control of Evolution Mixed Variational Inclusions
Alduncin, Gonzalo
2013-01-01
Optimal control problems of primal and dual evolution mixed variational inclusions, in reflexive Banach spaces, are studied. The solvability analysis of the mixed state systems is established via duality principles. The optimality analysis is performed in terms of perturbation conjugate duality methods, and proximation penalty-duality algorithms to mixed optimality conditions are further presented. Applications to nonlinear diffusion constrained problems as well as quasistatic elastoviscoplastic bilateral contact problems exemplify the theory
Neutrino mixing and big bang nucleosynthesis
Bell, Nicole
2003-04-01
We analyse active-active neutrino mixing in the early universe and show that transformation of neutrino-antineutrino asymmetries between flavours is unavoidable when neutrino mixing angles are large. This process is a standard Mikheyev-Smirnov-Wolfenstein flavour transformation, modified by the synchronisation of momentum states which results from neutrino-neutrino forward scattering. The new constraints placed on neutrino asymmetries eliminate the possibility of degenerate big bang nucleosynthesis.Implications of active-sterile neutrino mixing will also be reviewed.
Neutrino mixing in a grand unified theory
Milton, K.; Tanaka, K.
1980-01-01
Neutrino mixing in a grand unified theory in which the neutrino mass matrix is determined by the Gell-Mann-Ramond-Slansky mechanism was investigated. With an arbitrary real right-handed Majorana mass matrix which incorporates three neutrino mass scales, the effects of the up-quark mass matrix are found to be dominant and as a result no significant mixing of ν/sub e/ occurs, while ν/sub μ/ - ν/sub γ/ mixing can be substantial
Using mixed methods in health research.
Tariq, S.; Woodman, J.
2013-01-01
Mixed methods research is the use of quantitative and qualitative methods in a single study or series of studies. It is an emergent methodology which is increasingly used by health researchers, especially within health services research. There is a growing literature on the theory, design and critical appraisal of mixed methods research. However, there are few papers that summarize this methodological approach for health practitioners who wish to conduct or critically engage with mixed method...
Theory of soil decontamination in mixing liquid
Polyakov, A.S.; Emets, E.P.; Poluehktov, P.P.; Rybakov, K.A.
1997-01-01
The theory of soil decontamination from radioactive pollution in mixing liquid flow is described. It is shown that there exists the threshold intensity of liquid mixing up to which there is no decontamination. Beyond the threshold and by increasing the mixing intensity the decontamination of large soil fractions is allowable whereby the higher is the mixing intensity and lower is the soil contamination, the laser is the characteristic decontamination time. The above theory is related to cases of uniform pollution of the particles surface
Flapping model of scalar mixing in turbulence
Kerstein, A.R.
1991-01-01
Motivated by the fluctuating plume model of turbulent mixing downstream of a point source, a flapping model is formulated for application to other configurations. For the scalar mixing layer, simple expressions for single-point scalar fluctuation statistics are obtained that agree with measurements. For a spatially homogeneous scalar mixing field, the family of probability density functions previously derived using mapping closure is reproduced. It is inferred that single-point scalar statistics may depend primarily on large-scale flapping motions in many cases of interest, and thus that multipoint statistics may be the principal indicators of finer-scale mixing effects
Liquid metal degassing in electromagnetic mixing
Pakhomov, A I; EHL' -FAVAKHRI, KAMAL' -ABD-RABU MOKHAMED [LENINGRADSKIJ POLITEKHNICHESKIJ INST. (USSR)
1977-01-01
Experimental results for laboratory and industrial conditions are presented showing the favourable effect of electromagnetic mixing on hot metal degassing process. It has been found that the intensity and duration of the mixing process increase with the degree of iron and steel degassing. Initiation of cavitation phenomena during hot metal electromagnetic mixing is intensified because of the presence of alien inclusions in the metal reducing the tensile strength of the liquid metal. This is the most substantial factor contributing to the gas content in the process of electromagnetic mixing.
An Introduction to LANL Mixed Potential Sensors
Mukundan, Rangachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brosha, Eric Lanich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kreller, Cortney [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-01-26
These are slides for a webinar given on the topics of an introduction to LANL mixed potential sensors. Topics include the history of LANL electrochemical sensor work, an introduction to mixed potential sensors, LANL uniqueness, and an application of LANL mixed potential sensors. The summary is as follows: Improved understanding of the mixed-potential sensor mechanism (factors controlling the sensor response identified), sensor design optimized to maximize sensor sensitivity and durability (porous electrolyte/dense electrodes), electrodes selected for various specific applications (CO, HC, H_{2}), sensor operating parameters optimized for improved gas selectivity (NO_{x}, NH_{3}).
Bagchi, B.; Lahiri, A.; Niyogi, S.
1990-01-01
We have examined the saturation of anomalous Ward identities by the low-lying pseudoscalars π 0 , η, and η' to determine the sizes of η'-η, π 0 -η, and π 0 -η' mixing angles. The η'-η mixing angle turns out to be about -20 degree which is consistent with the recent findings. Our estimate for the π 0 -η mixing angle shows that it could be bigger than the older value obtained from the ρ-ω mixing, baryon mass splittings, and kaon mass difference
Maudsley, Gillian
2011-01-01
Some important research questions in medical education and health services research need 'mixed methods research' (particularly synthesizing quantitative and qualitative findings). The approach is not new, but should be more explicitly reported. The broad search question here, of a disjointed literature, was thus: What is mixed methods research - how should it relate to medical education research?, focused on explicit acknowledgement of 'mixing'. Literature searching focused on Web of Knowledge supplemented by other databases across disciplines. Five main messages emerged: - Thinking quantitative and qualitative, not quantitative versus qualitative - Appreciating that mixed methods research blends different knowledge claims, enquiry strategies, and methods - Using a 'horses for courses' [whatever works] approach to the question, and clarifying the mix - Appreciating how medical education research competes with the 'evidence-based' movement, health services research, and the 'RCT' - Being more explicit about the role of mixed methods in medical education research, and the required expertise Mixed methods research is valuable, yet the literature relevant to medical education is fragmented and poorly indexed. The required time, effort, expertise, and techniques deserve better recognition. More write-ups should explicitly discuss the 'mixing' (particularly of findings), rather than report separate components.
Asymmetries in mixed beauty decays
AUTHOR|(INSPIRE)INSPIRE-00400290; Van Tilburg, Jeroen
The understanding of fundamental processes in nature has greatly improved over the last century. This has lead to the ambition to explain large-scale cosmological observations starting from the very small scale of particle interactions. In doing so, the Standard Model (SM) of particle physics is unable to explain the large matter-over-antimatter dominance that we observe in our universe. Physics beyond the SM, in the form of additional particles and forces, may help to explain this difference. In this thesis, the search for new physics is done by precisely measuring processes that are sensitive to the contribution of unknown particles through quantum loops. If a deviation from the SM prediction is observed, new physics can explain the difference. In this thesis, the sensitive process that is measured is $C\\!P$ violation in the mixing of $B_d$ and $B_s$ mesons, called $a_{\\text{sl}}^{d}$ and $a_{\\text{sl}}^{s}$ Recent measurements by the D0 collaboration have hinted that these rates might be different at three...
Mixed Reality Meets Pharmaceutical Development.
Forrest, William P; Mackey, Megan A; Shah, Vivek M; Hassell, Kerry M; Shah, Prashant; Wylie, Jennifer L; Gopinath, Janakiraman; Balderhaar, Henning; Li, Li; Wuelfing, W Peter; Helmy, Roy
2017-12-01
As science evolves, the need for more efficient and innovative knowledge transfer capabilities becomes evident. Advances in drug discovery and delivery sciences have directly impacted the pharmaceutical industry, though the added complexities have not shortened the development process. These added complexities also make it difficult for scientists to rapidly and effectively transfer knowledge to offset the lengthened drug development timelines. While webcams, camera phones, and iPads have been explored as potential new methods of real-time information sharing, the non-"hands-free" nature and lack of viewer and observer point-of-view render them unsuitable for the R&D laboratory or manufacturing setting. As an alternative solution, the Microsoft HoloLens mixed-reality headset was evaluated as a more efficient, hands-free method of knowledge transfer and information sharing. After completing a traditional method transfer between 3 R&D sites (Rahway, NJ; West Point, PA and Schnachen, Switzerland), a retrospective analysis of efficiency gain was performed through the comparison of a mock method transfer between NJ and PA sites using the HoloLens. The results demonstrated a minimum 10-fold gain in efficiency, weighing in from a savings in time, cost, and the ability to have real-time data analysis and discussion. In addition, other use cases were evaluated involving vendor and contract research/manufacturing organizations. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Particle–Mixing Simulations Using DEM and Comparison of the Performance of Mixing Indices
Cho, Migyung
2017-01-01
Mixing of molecular grains having different characteristics is very important in many industries such as the food and pharmaceutical industries. With the development of computer simulations, it is common practice to find the optimal mixing conditions through a simulation before the actual mixing task to estimate the proper level of mixing. Accordingly, there has been an increasing need for a mixing index to measure the mix of particles in the simulation process. Mixing indices, which have been widely used so far, can largely be classified into two types: first is the statistical-based mixing index, which is prepared using the sampling method, and the second is the mixing index that is prepared using all the particles. In this paper, we calculated mixing indices in different ways for the data in the course of mixing the particles using the DEM simulation. Additionally, we compared the performance, advantages, and disadvantages of each mixing index. Therefore, I propose a standard that can be used to select an appropriate mixing index.
Particle–Mixing Simulations Using DEM and Comparison of the Performance of Mixing Indices
Cho, Migyung [Tongmyong Univ., Busan (Korea, Republic of)
2017-02-15
Mixing of molecular grains having different characteristics is very important in many industries such as the food and pharmaceutical industries. With the development of computer simulations, it is common practice to find the optimal mixing conditions through a simulation before the actual mixing task to estimate the proper level of mixing. Accordingly, there has been an increasing need for a mixing index to measure the mix of particles in the simulation process. Mixing indices, which have been widely used so far, can largely be classified into two types: first is the statistical-based mixing index, which is prepared using the sampling method, and the second is the mixing index that is prepared using all the particles. In this paper, we calculated mixing indices in different ways for the data in the course of mixing the particles using the DEM simulation. Additionally, we compared the performance, advantages, and disadvantages of each mixing index. Therefore, I propose a standard that can be used to select an appropriate mixing index.
European Mixed Forests: definition and research perspectives
Andres Bravo-Oviedo
2014-12-01
Full Text Available Aim of study: We aim at (i developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii review the research perspectives in mixed forests.Area of study: The definition is developed in Europe but can be tested worldwide.Material and Methods: Review of existent definitions of mixed forests based and literature review encompassing dynamics, management and economic valuation of mixed forests.Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any developmental stage, sharing common resources (light, water, and/or soil nutrients. The presence of each of the component species is normally quantified as a proportion of the number of stems or of basal area, although volume, biomass or canopy cover as well as proportions by occupied stand area may be used for specific objectives. A variety of structures and patterns of mixtures can occur, and the interactions between the component species and their relative proportions may change over time.The research perspectives identified are (i species interactions and responses to hazards, (ii the concept of maximum density in mixed forests, (iii conversion of monocultures to mixed-species forest and (iv economic valuation of ecosystem services provided by mixed forests.Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields of research indicate that gradient studies, experimental design approaches, and model simulations are key topics providing new research opportunities.Keywords: COST Action; EuMIXFOR; mixed-species forests; admixtures of species.
Inference of ICF Implosion Core Mix using Experimental Data and Theoretical Mix Modeling
Welser-Sherrill, L.; Haynes, D.A.; Mancini, R.C.; Cooley, J.H.; Tommasini, R.; Golovkin, I.E.; Sherrill, M.E.; Haan, S.W.
2009-01-01
The mixing between fuel and shell materials in Inertial Confinement Fusion (ICF) implosion cores is a current topic of interest. The goal of this work was to design direct-drive ICF experiments which have varying levels of mix, and subsequently to extract information on mixing directly from the experimental data using spectroscopic techniques. The experimental design was accomplished using hydrodynamic simulations in conjunction with Haan's saturation model, which was used to predict the mix levels of candidate experimental configurations. These theoretical predictions were then compared to the mixing information which was extracted from the experimental data, and it was found that Haan's mix model performed well in predicting trends in the width of the mix layer. With these results, we have contributed to an assessment of the range of validity and predictive capability of the Haan saturation model, as well as increased our confidence in the methods used to extract mixing information from experimental data.
[Cytomorphology of acute mixed leukemia].
Sucić, Mirna; Batinić, Drago; Zadro, Renata; Mrsić, Sanja; Labar, Boris
2008-10-01
Biphenotypic acute leukemias (AL) with blasts expressing both myeloid and lymphoid antigens are grouped with undifferentiated AL and bilineal AL in the group of AL of ambiguous lineage. Not all AL with myeloid and lymphoid antigens (ALMy+Ly) are true biphenotypic AL. According to EGIL scoring system, true biphenotypic ALMy+Ly are those with a sum of antigens 2 or more points for both myeloid and lymphoid lineage or for B and T lineage. The aim of this study was to compare cytomorphology and immunophenotype of AL to better understand the relation of certain AL morphology, immunophenotype, cytogenetics and molecular biology of biphenotypic AL. The study included a group of 169 AL patients treated from 1985 till 1991, and a group of 102 AL patients treated from 1993 till 1996 at Zagreb University Hospital Center. Bone marrow and peripheral blood of the two groups of AL patients were analyzed according to Pappenheim (May-Grunwald-Giemsa), cytochemical and alkaline phosphatase-anti-alkaline phosphatase (APAAP) immunocytochemical staining. Flow cytometry immunophenotyping of bone marrow was also done in both patient groups. In the group of 169 adult AL patients, 116 were cytomorphologically classified as acute myeloblastic leukemias (AML), 35 as acute lymphoblastic leukemias (ALL) and 18 as acute undifferentiated leukemias (ANLM). In 6 (3.4%) of 169 AL patients, blasts expressed both myeloid and lymphoid antigens. In the group of 102 AL patients there were 19 (18.6%) ALMy+Ly. In 64 patients cytomorphologically classified into AML subgroup out of 102 AL patients, there were 15 (14.7%/102; 23.4%/64) AML with lymphoid antigens (AMLLy+). In 35 patients cytomorphologically diagnosed as ALL and 3 as ANLM out of 102 AL, there were 4 (3.9%/102; 10.5%/38) ALL with myeloid antigens (ALLMy+). The incidence of mixed AL in 102 AL was more consistent with other studies, pointing to the necessity of myeloperoxidase (MPO), CD7 and TdT determination as part of standard immunophenotyping
J. Lu; F. M. Bowman
2010-01-01
A new method for describing externally mixed particles, the Detailed Aerosol Mixing State (DAMS) representation, is presented in this study. This novel method classifies aerosols by both composition and size, using a user-specified mixing criterion to define boundaries between compositional populations. Interactions between aerosol mixing state, semivolatile partitioning, and coagulation are investigated with a Lagrangian box model that incorporates the DAMS approach. Model results predict th...
Mixed Methods, Triangulation, and Causal Explanation
Howe, Kenneth R.
2012-01-01
This article distinguishes a disjunctive conception of mixed methods/triangulation, which brings different methods to bear on different questions, from a conjunctive conception, which brings different methods to bear on the same question. It then examines a more inclusive, holistic conception of mixed methods/triangulation that accommodates…
Critical Appraisal of Mixed Methods Studies
Heyvaert, Mieke; Hannes, Karin; Maes, Bea; Onghena, Patrick
2013-01-01
In several subdomains of the social, behavioral, health, and human sciences, research questions are increasingly answered through mixed methods studies, combining qualitative and quantitative evidence and research elements. Accordingly, the importance of including those primary mixed methods research articles in systematic reviews grows. It is…
An Integrating Framework for Mixed Systems
Coutrix, Céline; Nigay, Laurence
Technological advances in hardware manufacturing led to an extended range of possibilities for designing physical-digital objects involved in a mixed system. Mixed systems can take various forms and include augmented reality, augmented virtuality, and tangible systems. In this very dynamic context, it is difficult to compare existing mixed systems and to systematically explore the design space. Addressing this design problem, this chapter presents a unified point of view on mixed systems by focusing on mixed objects involved in interaction, i.e., hybrid physical-digital objects straddling physical and digital worlds. Our integrating framework is made of two complementary facets of a mixed object: we define intrinsic as well as extrinsic characteristics of an object by considering its role in the interaction. Such characteristics of an object are useful for comparing existing mixed systems at a fine-grain level. The taxonomic power of these characteristics is discussed in the context of existing mixed systems from the literature. Their generative power is illustrated by considering a system, Roam, which we designed and developed.
Effect of mixing on properties of SCC
Geiker, Mette Rica; Ekstrand, John Peter; Hansen, Rune
2007-01-01
agglomerates will remain. The paper focuses on the effect of mixing schedule on self-compacting concrete properties. Workability and micro structure of a typical Danish self-compacting concrete mixed at varying intensity and with addition of superplasticizer in either one or two batches are described....... The observations indicate that the most homogeneous concrete does not necessarily exhibit the lowest rheological properties....
On entanglement in neutrino mixing and oscillations
Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio
2010-01-01
We report on recent results about entanglement in the context of particle mixing and oscillations. We study in detail single-particle entanglement arising in two-flavor neutrino mixing. The analysis is performed first in the context of Quantum Mechanics, and then for the case of Quantum Field Theory.
On entanglement in neutrino mixing and oscillations
Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)
2010-06-01
We report on recent results about entanglement in the context of particle mixing and oscillations. We study in detail single-particle entanglement arising in two-flavor neutrino mixing. The analysis is performed first in the context of Quantum Mechanics, and then for the case of Quantum Field Theory.
A Martingale Characterization of Mixed Poisson Processes.
1985-10-01
03LA A 11. TITLE (Inciuae Security Clanafication, ",A martingale characterization of mixed Poisson processes " ________________ 12. PERSONAL AUTHOR... POISSON PROCESSES Jostification .......... . ... . . Di.;t ib,,jtion by Availability Codes Dietmar Pfeifer* Technical University Aachen Dist Special and...Mixed Poisson processes play an important role in many branches of applied probability, for instance in insurance mathematics and physics (see Albrecht
Synthesis, characterization and antimicrobial activity of mixed ...
Synthesis, characterization and antimicrobial activity of mixed ascorbic acid - nicotinamide metal complexes. ... The result of the antimicrobial studies showed that the mixed complexes have higher inhibitory activity than the original ligands against the tested bacteria and fungi species. KEY WORDS: Ascorbic acid, ...
Structure of binary mixed polymer Langmuir layers
Bernardini, C.
2012-01-01
The possibility of preparing 2D stable emulsions through mixing of homopolymers in a Langmuir monolayer is the core topic of this thesis. While colloid science has achieved well established results in the study of bulk dispersed systems, accounts on properties of mixed monomolecular films are
Mixing Methods in Assessing Coaches' Decision Making
Vergeer, Ineke; Lyle, John
2007-01-01
Mixing methods has recently achieved respectability as an appropriate approach to research design, offering a variety of advantages (Tashakkori & Teddlie, 2003). The purpose of this paper is to outline and evaluate a mixed methods approach within the domain of coaches' decision making. Illustrated with data from a policy-capturing study on…
Achieving maximum sustainable yield in mixed fisheries
Ulrich, Clara; Vermard, Youen; Dolder, Paul J.; Brunel, Thomas; Jardim, Ernesto; Holmes, Steven J.; Kempf, Alexander; Mortensen, Lars O.; Poos, Jan Jaap; Rindorf, Anna
2017-01-01
Achieving single species maximum sustainable yield (MSY) in complex and dynamic fisheries targeting multiple species (mixed fisheries) is challenging because achieving the objective for one species may mean missing the objective for another. The North Sea mixed fisheries are a representative example
Laboratory evaluation of warm mix asphalt.
2011-09-14
"Hot Mix Asphalt (HMA) has been traditionally produced at a discharge temperature of between : 280F (138C) and 320 F (160C), resulting in high energy (fuel) costs and generation of greenhouse : gases. The goal for Warm Mix Asphalt (WMA) is to...
Using game engines in mixed reality installations
Nakevska, M.; Vos, E.C.; Juarez, Alex; Hu, J.; Langereis, G.R.; Rauterberg, G.W.M.; Anacleto, J.; Fels, S.; Graham, N.; et al., xx
2011-01-01
In a mixed reality installation, a variety of technologies is integrated such as virtual reality, augmented reality, and animated virtual agents and robotic agents. One of the main challenges is how to design and implement a mixed reality installation that integrates a heterogeneous array of sensors
Mixed biexcitons in single quantum wells
Wagner, Hans Peter; Langbein, Wolfgang Werner; Hvam, Jørn Märcher
1999-01-01
Biexcitonic complexes in a ZnSe single quantum well are investigated by spectrally resolved four-wave mixing (FWM). The formation of heavy-heavy-hole XXh and of mixed heavy-light-hole XXm biexcitons showing binding energies of Delta(h) = 4.8 meV and Delta(m)= 2.8 meV is identified by polarization...
Mixed Methods Research Designs in Counseling Psychology
Hanson, William E.; Creswell, John W.; Clark, Vicki L. Plano; Petska, Kelly S.; Creswell, David J.
2005-01-01
With the increased popularity of qualitative research, researchers in counseling psychology are expanding their methodologies to include mixed methods designs. These designs involve the collection, analysis, and integration of quantitative and qualitative data in a single or multiphase study. This article presents an overview of mixed methods…
Mix Proportion Design of Asphalt Concrete
Wu, Xianhu; Gao, Lingling; Du, Shoujun
2017-12-01
Based on the gradation of AC and SMA, this paper designs a new type of anti slide mixture with two types of advantages. Chapter introduces the material selection, ratio of ore mixture ratio design calculation, and determine the optimal asphalt content test and proportioning design of asphalt concrete mix. This paper introduces the new technology of mix proportion.