WorldWideScience

Sample records for manufacturing temperature sensitive

  1. Effect of Propellant Composition to the Temperature Sensitivity of Composite Propellant

    International Nuclear Information System (INIS)

    Aziz, Amir; Mamat, Rizalman; Amin, Makeen; Wan Ali, Wan Khairuddin

    2012-01-01

    The propellant composition is one of several parameter that influencing the temperature sensitivity of composite propellant. In this paper, experimental investigation of temperature sensitivity in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of ammonium perchlorate (AP) as an oxidizer, aluminum (Al) as fuel and hydroxy-terminated polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer- fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1 atm to 31 atm. The results obtained shows that the temperature sensitivity, a, increases with increasing O/F. Propellant p80 which has O/F ratio of 80/20 gives the highest value of temperature sensitivity which is 1.687. The results shows that the propellant composition has significant effect on the temperature sensitivity of composite propellant

  2. Advances in High Temperature Materials for Additive Manufacturing

    Science.gov (United States)

    Nordin, Nurul Amira Binti; Johar, Muhammad Akmal Bin; Ibrahim, Mohd Halim Irwan Bin; Marwah, Omar Mohd Faizan bin

    2017-08-01

    In today’s technology, additive manufacturing has evolved over the year that commonly known as 3D printing. Currently, additive manufacturing have been applied for many industries such as for automotive, aerospace, medical and other commercial product. The technologies are supported by materials for the manufacturing process to produce high quality product. Plus, additive manufacturing technologies has been growth from the lowest to moderate and high technology to fulfil manufacturing industries obligation. Initially from simple 3D printing such as fused deposition modelling (FDM), poly-jet, inkjet printing, to selective laser sintering (SLS), and electron beam melting (EBM). However, the high technology of additive manufacturing nowadays really needs high investment to carry out the process for fine products. There are three foremost type of material which is polymer, metal and ceramic used for additive manufacturing application, and mostly they were in the form of wire feedstock or powder. In circumstance, it is crucial to recognize the characteristics of each type of materials used in order to understand the behaviours of the materials on high temperature application via additive manufacturing. Therefore, this review aims to provide excessive inquiry and gather the necessary information for further research on additive material materials for high temperature application. This paper also proposed a new material based on powder glass, which comes from recycled tempered glass from automotive industry, having a huge potential to be applied for high temperature application. The technique proposed for additive manufacturing will minimize some cost of modelling with same quality of products compare to the others advanced technology used for high temperature application.

  3. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    International Nuclear Information System (INIS)

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, Harry M.; Phelps, Tommy

    2015-01-01

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  4. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graham, David E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Moon, Ji-Won [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Armstrong, Beth L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Datskos, Panos G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gresback, Ryan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ivanov, Ilia N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jacobs, Christopher B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jellison, Gerald Earle [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jang, Gyoung Gug [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Joshi, Pooran C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jung, Hyunsung [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Meyer, III, Harry M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phelps, Tommy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  5. Development of High Temperature Capacitor Technology and Manufacturing Capability

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-05-15

    The goal of the Development of High Temperature Capacitor Technology and Manufacturing Capability program was to mature a production-ready supply chain for reliable 250°C FPE (fluorinated polyester) film capacitors by 2011. These high-temperature film capacitors enable both the down hole drilling and aerospace industries by enabling a variety of benefits including: - Deeper oil exploration in higher temperature and pressure environments - Enabling power electronic and control equipment to operate in higher temperature environments - Enabling reduced cooling requirements of electronics - Increasing reliability and life of capacitors operating below rated temperature - Enabling capacitors to handle higher electrical losses without overheating. The key challenges to bringing the FPE film capacitors to market have been manufacturing challenges including: - FPE Film is difficult to handle and wind, resulting in poor yields - Voltage breakdown strength decreases when the film is wound into capacitors (~70% decrease) - Encapsulation technologies must be improved to enable higher perature operation - Manufacturing and test cycle time is very long As a direct result of this program most of the manufacturing challenges have been met. The FPE film production metalization and winding yield has increased to over 82% from 70%, and the voltage breakdown strength of the wound capacitors has increased 270% to 189 V/μm. The high temperature packaging concepts are showing significant progress including promising results for lead attachments and hermetic packages at 200°C and non-hermetic packages at 250°C. Manufacturing and test cycle time will decrease as the market for FPE capacitors develops.

  6. How Nutrition Sensitive Are the Nutrition Policies of New Zealand Food Manufacturers? A Benchmarking Study.

    Science.gov (United States)

    Doonan, Rebecca; Field, Penny

    2017-12-19

    Nutrition sensitive policy addresses the underlying determinants of nutrition-related disease and is a powerful tool in reducing the incidence of non-communicable disease. Some members of the food industry have long standing commitments to health-oriented nutrition policies. The aim of this study was to develop and apply a balanced scorecard of nutrition sensitive indicators to the policies of influential New Zealand food and beverage manufacturers and explore factors affecting policy processes. The average nutrition sensitivity score of the twenty influential manufacturers policies was 42 against a benchmark of 75. Some manufacturers performed well whilst others had substantial scope for improvement, the largest variation was in policy development and implementation, whereas nutrition quality was relatively consistent. Manufacturers with written policy ( n = 11) scored on average three times higher than their counterparts with verbal policy. The value a manufacturer placed on nutrition influenced whether formal nutrition policies were developed. The reputational risk of failing to deliver on publicly declared nutrition commitments acted as an informal accountability mechanism. We conclude the balanced scorecard offers a useful tool for assessing the nutrition sensitivity of influential food and beverage manufacturers' policies. Our results provide a baseline for repeat assessments of the nutrition sensitivity of food manufacturers' policies.

  7. Low-temperature fabrication of TiO2 nanocrystalline film electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shan, G.; Lee, K.E.; Charboneau, C.; Demopoulos, G.P.; Gauvin, R. [McGill Univ., Montreal, PQ (Canada). Dept. of Materials Engineering; Savadogo, O. [Ecole Polytechnique de Montreal, PQ (Canada). Dept. de Genie Chimique

    2008-07-01

    Dye-sensitized solar cells (DSSCs) have the potential to render solar energy widely accessible. The deposition of titania nano-crystalline powders on a substrate is an important step in the manufacture of the DSSC. The deposition forms a mesoporous thin film that is followed by thermal treatment and sensitization. Usually titania films are deposited on glass by screen printing and then annealed at temperatures as high as 530 degrees C to provide a good electrical contact between the semiconductor particles and crystallization of the anatase phase. Several research and development efforts have focused on the deposition of titania film on flexible plastic substrates that will simplify the whole manufacturing process in terms of flexibility, weight, application and cost. Lower temperature processing is needed for the preparation of plastic-based titania film electrodes, but this has proven to be counterproductive when it comes to the cell's conversion efficiency. This paper presented a comprehensive evaluation of the different coating and annealing techniques at low temperature as well as important processing factors for improvement. To date, these techniques include pressing, hydrothermal process, electrodeposition, electrophoretic deposition, microwave or UV irradiation, and lift-off technique.

  8. How Nutrition Sensitive Are the Nutrition Policies of New Zealand Food Manufacturers? A Benchmarking Study

    Directory of Open Access Journals (Sweden)

    Rebecca Doonan

    2017-12-01

    Full Text Available Nutrition sensitive policy addresses the underlying determinants of nutrition-related disease and is a powerful tool in reducing the incidence of non-communicable disease. Some members of the food industry have long standing commitments to health-oriented nutrition policies. The aim of this study was to develop and apply a balanced scorecard of nutrition sensitive indicators to the policies of influential New Zealand food and beverage manufacturers and explore factors affecting policy processes. Results: The average nutrition sensitivity score of the twenty influential manufacturers policies was 42 against a benchmark of 75. Some manufacturers performed well whilst others had substantial scope for improvement, the largest variation was in policy development and implementation, whereas nutrition quality was relatively consistent. Manufacturers with written policy (n = 11 scored on average three times higher than their counterparts with verbal policy. The value a manufacturer placed on nutrition influenced whether formal nutrition policies were developed. The reputational risk of failing to deliver on publicly declared nutrition commitments acted as an informal accountability mechanism. We conclude the balanced scorecard offers a useful tool for assessing the nutrition sensitivity of influential food and beverage manufacturers’ policies. Our results provide a baseline for repeat assessments of the nutrition sensitivity of food manufacturers’ policies.

  9. How Nutrition Sensitive Are the Nutrition Policies of New Zealand Food Manufacturers? A Benchmarking Study

    Science.gov (United States)

    Doonan, Rebecca

    2017-01-01

    Nutrition sensitive policy addresses the underlying determinants of nutrition-related disease and is a powerful tool in reducing the incidence of non-communicable disease. Some members of the food industry have long standing commitments to health-oriented nutrition policies. The aim of this study was to develop and apply a balanced scorecard of nutrition sensitive indicators to the policies of influential New Zealand food and beverage manufacturers and explore factors affecting policy processes. Results: The average nutrition sensitivity score of the twenty influential manufacturers policies was 42 against a benchmark of 75. Some manufacturers performed well whilst others had substantial scope for improvement, the largest variation was in policy development and implementation, whereas nutrition quality was relatively consistent. Manufacturers with written policy (n = 11) scored on average three times higher than their counterparts with verbal policy. The value a manufacturer placed on nutrition influenced whether formal nutrition policies were developed. The reputational risk of failing to deliver on publicly declared nutrition commitments acted as an informal accountability mechanism. We conclude the balanced scorecard offers a useful tool for assessing the nutrition sensitivity of influential food and beverage manufacturers’ policies. Our results provide a baseline for repeat assessments of the nutrition sensitivity of food manufacturers’ policies. PMID:29257049

  10. Electrocutaneous sensitivity: effects of skin temperature.

    Science.gov (United States)

    Larkin, W D; Reilly, J P

    1986-01-01

    The effect of human skin temperature on electrocutaneous sensitivity was examined using brief capacitive discharges. Stimuli were designed to ensure that sensory effects would be independent of skin resistance and would reflect underlying neural excitability as closely as possible. Skin temperature was manipulated by immersing the forearm in circulating hot or cold air. Detection thresholds on the arm and fingertip were raised by cooling, but were not altered by heating. Temperature-related sensitivity shifts were described by the same multiplicative factors for both threshold and suprathreshold levels. The temperature coefficient (Q10) for cutaneous sensitivity under these conditions was approximately 1.3.

  11. The Development of High Temperature Thermoplastic Composite Materials for Additive Manufactured Autoclave Tooling

    Energy Technology Data Exchange (ETDEWEB)

    Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lindahl, John M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hassen, Ahmed A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    In this work, ORNL and Techmer investigated and screened different high temperature thermoplastic reinforced materials to fabricate composite molds for autoclave processes using Additive Manufacturing (AM) techniques. This project directly led to the development and commercial release of two printable, high temperature composite materials available through Techmer PM. These new materials are targeted for high temperature tooling made via large scale additive manufacturing.

  12. Temperature sensitive surfaces and methods of making same

    Science.gov (United States)

    Liang, Liang [Richland, WA; Rieke, Peter C [Pasco, WA; Alford, Kentin L [Pasco, WA

    2002-09-10

    Poly-n-isopropylacrylamide surface coatings demonstrate the useful property of being able to switch charateristics depending upon temperature. More specifically, these coatings switch from being hydrophilic at low temperature to hydrophobic at high temperature. Research has been conducted for many years to better characterize and control the properties of temperature sensitive coatings. The present invention provides novel temperature sensitive coatings on articles and novel methods of making temperature sensitive coatings that are disposed on the surfaces of various articles. These novel coatings contain the reaction products of n-isopropylacrylamide and are characterized by their properties such as advancing contact angles. Numerous other characteristics such as coating thickness, surface roughness, and hydrophilic-to-hydrophobic transition temperatures are also described. The present invention includes articles having temperature-sensitve coatings with improved properties as well as improved methods for forming temperature sensitive coatings.

  13. Low-Temperature Synthesis and Gas Sensitivity of Perovskite-Type LaCoO3 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lorenzo Gildo Ortiz

    2014-01-01

    Full Text Available LaCoO3 nanoparticles with perovskite-type structure were prepared by a microwave-assisted colloidal method. Lanthanum nitrate, cobalt nitrate, and ethylenediamine were used as precursors and ethyl alcohol as solvent. The thermal decomposition of the precursors leads to the formation of LaCoO3 from a temperature of 500°C. The structural, morphological, and compositional properties of LaCoO3 nanoparticles were studied in this work by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and atomic force microscopy (AFM. Pellets were manufactured in order to test the gas sensing properties of LaCoO3 powders in carbon monoxide (CO and propane (C3H8 atmospheres. Agglomerates of nanoparticles with high connectivity, forming a porous structure, were observed from SEM and TEM analysis. LaCoO3 pellets presented a high sensitivity in both CO and C3H8 at different concentrations and operating temperatures. As was expected, sensitivity increased with the gas concentration and operation temperature increase.

  14. Manufacturing a Long-Period Grating with Periodic Thermal Diffusion Technology on High-NA Fiber and Its Application as a High-Temperature Sensor.

    Science.gov (United States)

    Shen, Xiang; Dai, Bin; Xing, Yingbin; Yang, Luyun; Li, Haiqing; Li, Jinyan; Peng, Jingang

    2018-05-08

    We demonstrated a kind of long-period fiber grating (LPFG), which is manufactured with a thermal diffusion treatment. The LPFG was inscribed on an ultrahigh-numerical-aperture (UHNA) fiber, highly doped with Ge and P, which was able to easily diffuse at high temperatures within a few seconds. We analyzed how the elements diffused at a high temperature over 1300 °C in the UHNA fiber. Then we developed a periodically heated technology with a CO₂ laser, which was able to cause the diffusion of the elements to constitute the modulations of an LPFG. With this technology, there is little damage to the outer structure of the fiber, which is different from the traditional LPFG, as it is periodically tapered. Since the LPFG itself was manufactured under high temperature, it can withstand higher temperatures than traditional LPFGs. Furthermore, the LPFG presents a higher sensitivity to high temperature due to the large amount of Ge doping, which is approximately 100 pm/°C. In addition, the LPFG shows insensitivity to the changing of the environment’s refractive index and strain.

  15. Adaptive Process Controls and Ultrasonics for High Temperature PEM MEA Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Walczyk, Daniel F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2015-08-26

    The purpose of this 5-year DOE-sponsored project was to address major process bottlenecks associated with fuel cell manufacturing. New technologies were developed to significantly reduce pressing cycle time for high temperature PEM membrane electrode assembly (MEA) through the use of novel, robust ultrasonic (U/S) bonding processes along with low temperature (<100°C) PEM MEAs. In addition, greater manufacturing uniformity and performance was achieved through (a) an investigation into the causes of excessive variation in ultrasonically and thermally bonded MEAs using more diagnostics applied during the entire fabrication and cell build process, and (b) development of rapid, yet simple quality control measurement techniques for use by industry.

  16. Sensitivity to temperature of nuclear energy generation by hydrogen burning

    International Nuclear Information System (INIS)

    Mitalas, R.

    1981-01-01

    The sensitivity to temperature of nuclear energy generation by hydrogen burning is discussed. The complexity of the sensitivity is due to the different equilibration time-scales of the constituents of the p-p chain and CN cycle and the dependence of their abundances and time-scales on temperature. The time-scale of the temperature perturbation, compared to the equilibrium time-scale of a constituent, determines whether the constituent is in equilibrium and affects the sensitivity. The temperature sensitivity of the p-p chain for different values of hydrogen abundance, when different constituents come into equilibrium is presented, as well as its variation with 3 He abundance. The temperature sensitivity is drastically different from n 11 , the temperature sensitivity of the proton-proton reaction, unless the time-scale of temperature perturbation is long enough for 3 He to remain in equilibrium. Even in this case the sensitivity of the p-p chain differs significantly from n 11 , unless the temperature is so low that PP II and PP III chains can be neglected. The variation of the sensitivity of CN energy generation is small for different time-scales of temperature variation, because the temperature sensitivities of individual reactions are so similar. The combined sensitivity to temperature of energy generation by hydrogen burning is presented and shown to have a maximum of 16.4 at T 6 = 24.5. For T 6 > 25 the temperature sensitivity is given by the sensitivity of 14 N + p reaction. (author)

  17. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    Science.gov (United States)

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity.

  18. Targeted drug delivery using temperature-sensitive liposomes

    International Nuclear Information System (INIS)

    Magin, R.L.; Niesman, M.R.

    1984-01-01

    Liposomes are receiving considerable attention as vehicles for selective drug delivery. One method of targeting liposomal contents involves the combination of local hyperthermia with temperature-sensitive liposomes. Such liposomes have been used to increase the uptake of methotrexate and cis-platinum into locally heated mouse tumors. However, additional information is needed on the mechanism of liposome drug release and the physiologic deposition of liposomes in vivo before clinical trails are begun. Current research is directed at studying the encapsulation and release of water soluble drugs from temperature-sensitive liposomes. The influence of liposome size, structure, and composition on the rapid release in plasma of cytosine arabinoside, cis-platinum, and the radiation sensitizer SR-2508 are described. These results demonstrate potential applications for temperature-sensitive liposomes in selective drug delivery

  19. Effect of Temperature on the Toughness of Locally Manufactured Low Alloy Steel SUP9 Used for Manufacturing Leaf Springs

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaque Abro

    2011-10-01

    Full Text Available The effect of heat treatment on locally manufactured low alloy steel grade SUP9 most frequently used in making leaf springs for automobiles was studied. While for determination of toughness and hardness Charpy impact testing machine and Rockwell hardness tester were used. The cryogenic test temperatures were achieved by soaking the samples in liquid nitrogen and temperature was measured using digital thermometer capable of reading the temperature from -40-200oC. Hardening, tempering and austempering treatments were conducted using muffle furnace and salt bath furnace. After heat treatment samples were quenched in oil. The results of present work confirmed that toughness and hardness are inversely related with each other and are highly dependent on the type of heat treatment employed. Highest toughness was measured after austempering at 450oC. Effect of test temperature revealed that toughness of the samples increased significantly with decreasing temperature. DBTT (Ductile to Brittle Transition Temperature of the austempered samples was observed at -10oC, whereas, that of tempered samples could not be determined. Based on the test results authors wish to recommend the 600oC tempering temperature in place of 450oC where normally tempering is practiced in Alwin industry Karachi during manufacturing of leaf spring.

  20. Temperature sensitivity of respiration scales with organic matter recalcitrance

    Science.gov (United States)

    Craine, J. M.; Fierer, N.; McLauchlan, K. K.

    2010-12-01

    Microbial decomposition of soil organic matter is a key process in determining the carbon sequestration potential of ecosystems and carbon fluxes to the atmosphere. Since microbial decomposition is highly sensitive to short-term changes in temperature, predicting the temperature sensitivity of microbial decomposition is critical to predicting future atmospheric carbon dioxide concentrations and feedbacks to anthropogenic warming. Fundamental principles of enzyme kinetics, embodied in the carbon-quality temperature hypothesis, predict that the temperature sensitivity of microbial decomposition should increase with increasing biochemical recalcitrance of a substrate. To test the generality of this principle, we measured the temperature sensitivity of microbial respiration of soil organic matter with serial short-term temperature manipulations over 365 days for 28 North American soils. When joined with data from similar studies that represent a wide variety of contrasts, we show that the temperature sensitivity of organic matter decomposition scales with biochemical recalcitrance. With physico-chemical protection likely an important covariate for relating plant and soil organic matter decomposition scalars, biochemically recalcitrant organic matter is highly susceptible to short-term increases in temperature, a key link in predicting the effects of warming on carbon cycling.

  1. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    Science.gov (United States)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  2. The DARPA manufacturing initiative in high temperature superconductivity

    International Nuclear Information System (INIS)

    Adams, K.R.

    1989-01-01

    The Defense Advanced Research Projects Agency (DARPA) has a very aggressive Technology Base program in high temperature superconductivity. This program is expected to provide the basis for a specialized set of military products - passive microwave and millimeter wave devices - within the next three years. In order to get these high leverage products into military systems, a manufacturing base must be developed for HTSC components. A plan for DARPA in HTSC manufacturing is directly coupled with the ongoing DARPA materials and device oriented R and D program. In essence, this plan recommends a three phased effort: 1. Phase I (two years); Fund companies through R and D contracts for specialized HTSC components; prepare a detailed plan and develop an HTSC consortium. 2. Phase II (six years): Establish an HTSC Sematech initiative for electronic applications, including active devices. 3. Phase III (optional): Continue the HTSC Sematech with emphasis on high power applications

  3. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration

    Science.gov (United States)

    Bing Song; Shuli Niu; Ruise Luo; Yiqi Luo; Jiquan Chen; Guirui Yu; Janusz Olejnik; Georg Wohlfahrt; Gerard Kiely; Ako Noormets; Leonardo Montagnani; Alessandro Cescatti; Vincenzo Magliulo; Beverly Elizabeth Law; Magnus Lund; Andrej Varlagin; Antonio Raschi; Matthias Peichl; Mats B. Nilsson; Lutz Merbold

    2014-01-01

    Recent studies revealed convergent temperature sensitivity of ecosystem respiration (Re) within aquatic ecosystems and between terrestrial and aquatic ecosystems. We do not know yet whether various terrestrial ecosystems have consistent or divergent temperature sensitivity. Here, we synthesized 163 eddy covariance flux sites across the world and...

  4. Ultrahigh temperature-sensitive silicon MZI with titania cladding

    Directory of Open Access Journals (Sweden)

    Jong-Moo eLee

    2015-05-01

    Full Text Available We present a possibility of intensifying temperature sensitivity of a silicon Mach-Zehnder interferometer (MZI by using a highly negative thermo-optic property of titania (TiO2. Temperature sensitivity of an asymmetric silicon MZI with a titania cladding is experimentally measured from +18pm/C to -340 pm/C depending on design parameters of MZI.

  5. Two mutations which confer temperature-sensitive radiation sensitivity in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Ho, K.S.Y.; Mortimer, R.K.

    1975-01-01

    X-ray survival curves for two mutations, rad54 and rad55, in the yeast Saccharomyces cerevisiae are presented. These mutations confer temperature sensitive X-ray sensitivity; that is, rad54 and rad55 strains display a wild type X-ray survival response at permissive temperatures and a radiosensitive X-ray survival response at restrictive temperatures. The survival response of cells which were shifted from a permissive to a restrictive temperature or vice versa at various post-irradiation times indicates that repair and fixation of X-ray induced lesions is largely complete three hours after X-irradiation. Experiments to determine the utilization sequence of the rad54 and rad55 gene products in the repair of X-ray induced damage suggest that the two products are required in an interdependent manner

  6. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Taro Ueno

    Full Text Available Homeothermal animals, such as mammals, maintain their body temperature by heat generation and heat dissipation, while poikilothermal animals, such as insects, accomplish it by relocating to an environment of their favored temperature. Catecholamines are known to regulate thermogenesis and metabolic rate in mammals, but their roles in other animals are poorly understood. The fruit fly, Drosophila melanogaster, has been used as a model system for the genetic studies of temperature preference behavior. Here, we demonstrate that metabolic rate and temperature sensitivity of some temperature sensitive behaviors are regulated by dopamine in Drosophila. Temperature-sensitive molecules like dTrpA1 and shi(ts induce temperature-dependent behavioral changes, and the temperature at which the changes are induced were lowered in the dopamine transporter-defective mutant, fumin. The mutant also displays a preference for lower temperatures. This thermophobic phenotype was rescued by the genetic recovery of the dopamine transporter in dopamine neurons. Flies fed with a dopamine biosynthesis inhibitor (3-iodo-L-tyrosine, which diminishes dopamine signaling, exhibited preference for a higher temperature. Furthermore, we found that the metabolic rate is up-regulated in the fumin mutant. Taken together, dopamine has functions in the temperature sensitivity of behavioral changes and metabolic rate regulation in Drosophila, as well as its previously reported functions in arousal/sleep regulation.

  7. Implementing high-temperature short-time media treatment in commercial-scale cell culture manufacturing processes.

    Science.gov (United States)

    Pohlscheidt, Michael; Charaniya, Salim; Kulenovic, Fikret; Corrales, Mahalia; Shiratori, Masaru; Bourret, Justin; Meier, Steven; Fallon, Eric; Kiss, Robert

    2014-04-01

    The production of therapeutic proteins by mammalian cell culture is complex and sets high requirements for process, facility, and equipment design, as well as rigorous regulatory and quality standards. One particular point of concern and significant risk to supply chain is the susceptibility to contamination such as bacteria, fungi, mycoplasma, and viruses. Several technologies have been developed to create barriers for these agents to enter the process, e.g. filtration, UV inactivation, and temperature inactivation. However, if not implemented during development of the manufacturing process, these types of process changes can have significant impact on process performance if not managed appropriately. This article describes the implementation of the high-temperature short-time (HTST) treatment of cell culture media as an additional safety barrier against adventitious agents during the transfer of a large-scale commercial cell culture manufacturing process. The necessary steps and experiments, as well as subsequent results during qualification runs and routine manufacturing, are shown.

  8. Low-Cost Wireless Temperature Measurement: Design, Manufacture, and Testing of a PCB-Based Wireless Passive Temperature Sensor.

    Science.gov (United States)

    Yan, Dan; Yang, Yong; Hong, Yingping; Liang, Ting; Yao, Zong; Chen, Xiaoyong; Xiong, Jijun

    2018-02-10

    Low-cost wireless temperature measurement has significant value in the food industry, logistics, agriculture, portable medical equipment, intelligent wireless health monitoring, and many areas in everyday life. A wireless passive temperature sensor based on PCB (Printed Circuit Board) materials is reported in this paper. The advantages of the sensor include simple mechanical structure, convenient processing, low-cost, and easiness in integration. The temperature-sensitive structure of the sensor is a dielectric-loaded resonant cavity, consisting of the PCB substrate. The sensitive structure also integrates a patch antenna for the transmission of temperature signals. The temperature sensing mechanism of the sensor is the dielectric constant of the PCB substrate changes with temperature, which causes the resonant frequency variation of the resonator. Then the temperature can be measured by detecting the changes in the sensor's working frequency. The PCB-based wireless passive temperature sensor prototype is prepared through theoretical design, parameter analysis, software simulation, and experimental testing. The high- and low-temperature sensing performance of the sensor is tested, respectively. The resonant frequency decreases from 2.434 GHz to 2.379 GHz as the temperature increases from -40 °C to 125 °C. The fitting curve proves that the experimental data have good linearity. Three repetitive tests proved that the sensor possess well repeatability. The average sensitivity is 347.45 KHz / ℃ from repetitive measurements conducted three times. This study demonstrates the feasibility of the PCB-based wireless passive sensor, which provides a low-cost temperature sensing solution for everyday life, modern agriculture, thriving intelligent health devices, and so on, and also enriches PCB product lines and applications.

  9. Sensitivity of stock market indices to oil prices: Evidence from manufacturing sub-sectors in Turkey

    Directory of Open Access Journals (Sweden)

    Eksi Halil Ibrahim

    2012-01-01

    Full Text Available Crude oil price is a critical cost factor for manufacturing industries that are of vital importance for economic growth. This study examines the relationship between crude oil prices and the indices of seven Turkish manufacturing sub-sectors over the period 1997:01-2009:12. The error correction model results reveal the long term causality from crude oil prices to chemical petroleum-plastic and basic metal sub-sectors indicating that these sub-sectors are highly sensitive to crude oil prices. We find no causal relationship for other sector indices for short or long time periods.

  10. Influence of temperature on the formation and encapsulation of gold nanoparticles using a temperature-sensitive template

    Directory of Open Access Journals (Sweden)

    Noel Peter Bengzon Tan

    2015-12-01

    Full Text Available This data article describes the synthesis of temperature-sensitive and amine-rich microgel particle as a dual reductant and template to generate smart gold/polymer nanocomposite particle. TEM images illustrate the influence of reaction temperature on the formation and in-site encapsulation of gold nanoparticles using the temperature-sensitive microgel template. Thermal stability of the resultant gold/polymer composite particles was also examined.

  11. Greater temperature sensitivity of plant phenology at colder sites

    DEFF Research Database (Denmark)

    Prevey, Janet; Vellend, Mark; Ruger, Nadja

    2017-01-01

    Warmer temperatures are accelerating the phenology of organisms around the world. Temperature sensitivity of phenology might be greater in colder, higher latitude sites than in warmer regions, in part because small changes in temperature constitute greater relative changes in thermal balance...

  12. Emissions from laboratory combustor tests of manufactured wood products

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, R.; Evans, M.; Ragland, K. [Univ. of Wisconsin, Madison, WI (United States); Baker, A. [USDA Forest Products Lab., Madison, WI (United States)

    1993-12-31

    Manufactured wood products contain wood, wood fiber, and materials added during manufacture of the product. Manufacturing residues and the used products are burned in a furnace or boiler instead of landfilling. Emissions from combustion of these products contain additional compounds from the combustion of non-wood material which have not been adequately characterized to specify the best combustion conditions, emissions control equipment, and disposal procedures. Total hydrocarbons, formaldehyde, higher aldehydes and carbon monoxide emissions from aspen flakeboard and aspen cubes were measured in a 76 mm i.d. by 1.5 m long fixed bed combustor as a function of excess oxygen, and temperature. Emissions of hydrocarbons, aldehydes and CO from flakeboard and from clean aspen were very sensitive to average combustor temperature and excess oxygen. Hydrocarbon and aldehyde emissions below 10 ppM were achieved with 5% excess oxygen and 1,200{degrees}C average temperature for aspen flakeboard and 1,100{degrees}C for clean aspen at a 0.9 s residence time. When the average temperature decreased below these levels, the emissions increased rapidly. For example, at 950{degrees}C and 5% excess oxygen the formaldehyde emissions were over 1,000 ppM. These laboratory tests reinforce the need to carefully control the temperature and excess oxygen in full-scale wood combustors.

  13. SENSITIVITY TEMPERATURE DEPENDENCE RESEARCH OF TV-CAMERAS BASED ON SILICON MATRIXES

    Directory of Open Access Journals (Sweden)

    Alexey N. Starchenko

    2017-07-01

    Full Text Available Subject of Research. The research is dedicated to the analysis of sensitivity change patterns of the cameras based on silicon CMOS-matrixes in various ambient temperatures. This information is necessary for the correct camera application for photometric measurements in-situ. The paper deals with studies of sensitivity variations of two digital cameras with different silicon CMOS matrixes in visible and near IR regions of the spectrum at temperature change. Method. Due to practical restrictions the temperature changes were recorded in separate spectral intervals important for practical use of the cameras. The experiments were carried out with the use of a climatic chamber, providing change and keeping the temperature range from minus 40 to plus 50 °C at a pitch of 10 о С. Two cameras were chosen for research: VAC-135-IP with OmniVision OV9121 matrix and VAC-248-IP with OnSemiconductor VITA2000 matrix. The two tested devices were placed in a climatic chamber at the same time and illuminated by one radiation source with a color temperature about 3000 K in order to eliminate a number of methodological errors. Main Results. The temperature dependence of the signals was shown to be linear and the matrixes sensitivities were determined. The results obtained are consistent with theoretical views, in general. The coefficients of thermal sensitivity were computed by these dependencies. It is shown that the greatest affect of temperature on the sensitivity occurs in the area (0.7–1.1 mkm. Temperature coefficients of sensitivity increase with the downward radiation wavelength increase. The experiments carried out have shown that it is necessary to take into account the changes in temperature sensitivity of silicon matrixes in the red and near in IR regions of the spectrum. The effect reveals itself in a clearly negative way in cameras with an amplitude resolution of 10-12 bits used for aerospace and space spectrozonal photography. Practical Relevance

  14. A Promising IFN-Deficient System to Manufacture IFN-Sensitive Influenza Vaccine Virus.

    Science.gov (United States)

    Chen, Can; Fan, Wenhui; Li, Jing; Zheng, Weinan; Zhang, Shuang; Yang, Limin; Liu, Di; Liu, Wenjun; Sun, Lei

    2018-01-01

    Interferon (IFN)-sensitive and replication-incompetent influenza viruses are likely to be the alternatives to inactivated and attenuated virus vaccines. Some IFN-sensitive influenza vaccine candidates with modified non-structural protein 1 (NS1) are highly attenuated in IFN-competent hosts but induce robust antiviral immune responses. However, little research has been done on the manufacturability of these IFN-sensitive vaccine viruses. Here, RIG-I-knockout 293T cells were used to package the IFN-sensitive influenza A/WSN/33 (H1N1) virus expressing the mutant NS1 R38A/K41A. We found that the packaging efficiency of the NS1 R38A/K41A virus in RIG-I-knockout 293T cells was much higher than that in 293T cells. Moreover, the NS1 R38A/K41A virus almost lost its IFN antagonist activity and could no longer replicate in A549, MDCK, and Vero cells after 3-6 passages. This indicated that the replication of NS1 R38A/K41A virus is limited in conventional cells. Therefore, we further established a stable Vero cell line expressing the wild-type (WT) NS1 of the WSN virus, based on the Tet-On 3G system. The NS1 R38A/K41A virus was able to steadily propagate in this IFN-deficient cell line for at least 20 passages. In a mouse model, the NS1 R38A/K41A virus showed more than a 4-log reduction in lung virus titers compared to the WT virus at 3 and 5 days post infection. Furthermore, we observed that the NS1 R38A/K41A virus triggered high-level of IFN-α/β production in lung tissues and was eliminated from the host in a relatively short period of time. Additionally, this virus induced high-titer neutralizing antibodies against the WT WSN, A/Puerto Rico/8/1934 (PR8), or A/California/04/2009 (CA04) viruses and provided 100% protection against the WT WSN virus. Thus, we found that the replication of the NS1 R38A/K41A virus was limited in IFN-competent cells and mice. We also presented a promising IFN-deficient system, involving a RIG-I-knockout 293T cell line to package the IFN-sensitive

  15. A Novel High-Sensitivity, Low-Power, Liquid Crystal Temperature Sensor

    Directory of Open Access Journals (Sweden)

    José Francisco Algorri

    2014-04-01

    Full Text Available A novel temperature sensor based on nematic liquid crystal permittivity as a sensing magnitude, is presented. This sensor consists of a specific micrometric structure that gives considerable advantages from other previous related liquid crystal (LC sensors. The analytical study reveals that permittivity change with temperature is introduced in a hyperbolic cosine function, increasing the sensitivity term considerably. The experimental data has been obtained for ranges from −6 °C to 100 °C. Despite this, following the LC datasheet, theoretical ranges from −40 °C to 109 °C could be achieved. These results have revealed maximum sensitivities of 33 mVrms/°C for certain temperature ranges; three times more than of most silicon temperature sensors. As it was predicted by the analytical study, the micrometric size of the proposed structure produces a high output voltage. Moreover the voltage’s sensitivity to temperature response can be controlled by the applied voltage. This response allows temperature measurements to be carried out without any amplification or conditioning circuitry, with very low power consumption.

  16. Temperature sensitive riboflavin mutants of Penicillium vermiculatum Dangeard

    International Nuclear Information System (INIS)

    Mitra, J.; Chaudhari, K.L.

    1974-01-01

    Two temperature sensitive UV induced riboflavin mutants rib 1 and rib 6 have been physiologically and genetically characterized. The two mutants behave differently with regard to their temperature sensitivity. The rib 1 mutant exhibits a leaky growth in minimal medium between 15 0 C and 30 0 C but grows well when the medium is supplemented with riboflavin. At 35 0 C the growth response of the mutant is at its max. and at 40 0 C and below 15 0 C it ceases to grow. The rib 6 mutant which is red brown in colour shows wild type character at temp. below 25 0 C in minimal medium but requires riboflavin at 30 0 C and above. Heterokaryotic analysis revealed the nonallelic nature of the two temperature mutants. Genetic tests of allelic relationship between riboflavin markers by crossing were also done. (author)

  17. Temperature-sensitive elastin-mimetic dendrimers: Effect of peptide length and dendrimer generation to temperature sensitivity.

    Science.gov (United States)

    Kojima, Chie; Irie, Kotaro; Tada, Tomoko; Tanaka, Naoki

    2014-06-01

    Dendrimers are synthetic macromolecules with unique structure, which are a potential scaffold for peptides. Elastin is one of the main components of extracellular matrix and a temperature-sensitive biomacromolecule. Previously, Val-Pro-Gly-Val-Gly peptides have been conjugated to a dendrimer for designing an elastin-mimetic dendrimer. In this study, various elastin-mimetic dendrimers using different length peptides and different dendrimer generations were synthesized to control the temperature dependency. The elastin-mimetic dendrimers formed β-turn structure by heating, which was similar to the elastin-like peptides. The elastin-mimetic dendrimers exhibited an inverse phase transition, largely depending on the peptide length and slightly depending on the dendrimer generation. The elastin-mimetic dendrimers formed aggregates after the phase transition. The endothermal peak was observed in elastin-mimetic dendrimers with long peptides, but not with short ones. The peptide length and the dendrimer generation are important factors to tune the temperature dependency on the elastin-mimetic dendrimer. Copyright © 2013 Wiley Periodicals, Inc.

  18. Manufacturing error sensitivity analysis and optimal design method of cable-network antenna structures

    Science.gov (United States)

    Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye

    2016-03-01

    Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.

  19. On the sensitivity of annual streamflow to air temperature

    Science.gov (United States)

    Milly, Paul C.D.; Kam, Jonghun; Dunne, Krista A.

    2018-01-01

    Although interannual streamflow variability is primarily a result of precipitation variability, temperature also plays a role. The relative weakness of the temperature effect at the annual time scale hinders understanding, but may belie substantial importance on climatic time scales. Here we develop and evaluate a simple theory relating variations of streamflow and evapotranspiration (E) to those of precipitation (P) and temperature. The theory is based on extensions of the Budyko water‐balance hypothesis, the Priestley‐Taylor theory for potential evapotranspiration ( ), and a linear model of interannual basin storage. The theory implies that the temperature affects streamflow by modifying evapotranspiration through a Clausius‐Clapeyron‐like relation and through the sensitivity of net radiation to temperature. We apply and test (1) a previously introduced “strong” extension of the Budyko hypothesis, which requires that the function linking temporal variations of the evapotranspiration ratio (E/P) and the index of dryness ( /P) at an annual time scale is identical to that linking interbasin variations of the corresponding long‐term means, and (2) a “weak” extension, which requires only that the annual evapotranspiration ratio depends uniquely on the annual index of dryness, and that the form of that dependence need not be known a priori nor be identical across basins. In application of the weak extension, the readily observed sensitivity of streamflow to precipitation contains crucial information about the sensitivity to potential evapotranspiration and, thence, to temperature. Implementation of the strong extension is problematic, whereas the weak extension appears to capture essential controls of the temperature effect efficiently.

  20. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    International Nuclear Information System (INIS)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P.

    2003-01-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 μg m -3 in 1982 and 15.6 μg m -3 in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants

  1. Snapshot of methanogen sensitivity to temperature in Zoige wetland from Tibetan plateau

    Directory of Open Access Journals (Sweden)

    Li eFu

    2015-02-01

    Full Text Available Zoige wetland in Tibetan plateau represents a cold environment at high altitude where significant methane emission has been observed. However, it remains unknown how the production and emission of CH4 from Zoige wetland will respond to a warming climate. Here we investigated the temperature sensitivity of methanogen community in a Zoige wetland soil under the laboratory incubation conditions. One soil sample was collected and the temperature sensitivity of the methanogenic activity, the structure of methanogen community and the methanogenic pathways were determined. We found that the response of methanogenesis to temperature could be separated into two phases, a high sensitivity in the low temperature range and a modest sensitivity under mesophilic conditions, respectively. The aceticlastic methanogens Methanosarcinaceae were the main methanogens at low temperatures, while hydrogenotrophic Methanobacteriales, Methanomicrobiales and Methanocellales were more abundant at higher temperatures. The total abundance of mcrA genes increased with temperature indicating that the growth of methanogens was stimulated. The growth of hydrogenotrophic methanogens, however, was faster than aceticlastic ones resulting in the shift of methanogen community. Determination of carbon isotopic signatures indicated that methanogenic pathway was also shifted from mainly aceticlastic methanogenesis to a mixture of hydrogenotrophic and aceticlastic methanogenesis with the increase of temperature. Collectively, the shift of temperature responses of methanogenesis was in accordance with the changes in methanogen composition and methanogenic pathway in this Zoige wetland sample. It appears that the aceticlastic methanogenesis dominated at low temperatures is more sensitive than the hydrogenotrophic one at higher temperatures.

  2. Highly Sensitive Liquid Core Temperature Sensor Based on Multimode Interference Effects

    Directory of Open Access Journals (Sweden)

    Miguel A. Fuentes-Fuentes

    2015-10-01

    Full Text Available A novel fiber optic temperature sensor based on a liquid-core multimode interference device is demonstrated. The advantage of such structure is that the thermo-optic coefficient (TOC of the liquid is at least one order of magnitude larger than that of silica and this, combined with the fact that the TOC of silica and the liquid have opposite signs, provides a liquid-core multimode fiber (MMF highly sensitive to temperature. Since the refractive index of the liquid can be easily modified, this allows us to control the modal properties of the liquid-core MMF at will and the sensor sensitivity can be easily tuned by selecting the refractive index of the liquid in the core of the device. The maximum sensitivity measured in our experiments is 20 nm/°C in the low-temperature regime up to 60 °C. To the best of our knowledge, to date, this is the largest sensitivity reported for fiber-based MMI temperature sensors.

  3. The relationship between virtual body ownership and temperature sensitivity

    Science.gov (United States)

    Llobera, Joan; Sanchez-Vives, M. V.; Slater, Mel

    2013-01-01

    In the rubber hand illusion, tactile stimulation seen on a rubber hand, that is synchronous with tactile stimulation felt on the hidden real hand, can lead to an illusion of ownership over the rubber hand. This illusion has been shown to produce a temperature decrease in the hidden hand, suggesting that such illusory ownership produces disownership of the real hand. Here, we apply immersive virtual reality (VR) to experimentally investigate this with respect to sensitivity to temperature change. Forty participants experienced immersion in a VR with a virtual body (VB) seen from a first-person perspective. For half the participants, the VB was consistent in posture and movement with their own body, and in the other half, there was inconsistency. Temperature sensitivity on the palm of the hand was measured before and during the virtual experience. The results show that temperature sensitivity decreased in the consistent compared with the inconsistent condition. Moreover, the change in sensitivity was significantly correlated with the subjective illusion of virtual arm ownership but modulated by the illusion of ownership over the full VB. This suggests that a full body ownership illusion results in a unification of the virtual and real bodies into one overall entity—with proprioception and tactile sensations on the real body integrated with the visual presence of the VB. The results are interpreted in the framework of a ‘body matrix’ recently introduced into the literature. PMID:23720537

  4. Time-temperature-sensitization and time-temperature-precipitation behavior of alloy 625

    International Nuclear Information System (INIS)

    Koehler, M.; Heubner, U.

    1996-01-01

    Time-Temperature-Sensitization diagrams have been established for a low-carbon version of alloy 625 (UNS N06625). Sensitization in terms of a 50 microm (2 mils) intergranular penetration criterion starts after about 3 h aging time at 750 C (soft annealed condition) or after less than 1 h aging time at 800 C (solution annealed condition) when tested according to ASTM-G 28 method A. Grain boundary precipitation of carbides occurs during aging of both the soft annealed and the solution annealed material, but the soft annealed material exhibits a more pronounced general precipitation of Ni 3 (Nb,Mo) phase giving rise to more distinct loss of ductility. Sensitization of alloy 625 may be retarded by lowering its iron content

  5. Sensitivity calculation of the coolant temperature regarding the thermohydraulic parameters

    International Nuclear Information System (INIS)

    Andrade Lima, F.R. de; Silva, F.C. da; Thome Filho, Z.D.; Alvim, A.C.M.; Oliveira Barroso, A.C. de.

    1985-01-01

    It's studied the application of the Generalized Perturbation Theory (GPT) in the sensitivity calculation of thermalhydraulic problems, aiming at verifying the viability of the extension of the method. For this, the axial distribution, transient, of the coolant temperature in a PWR channel are considered. Perturbation expressions are developed using the GPT formalism, and a computer code (Tempera) is written, to calculate the channel temperature distribution and the associated importance function, as well as the effect of the thermalhydraulic parameters variations in the coolant temperature (sensitivity calculation). The results are compared with those from the direct calculation. (E.G.) [pt

  6. Additive Manufacturing of NiTiHf High Temperature Shape Memory Alloy

    Science.gov (United States)

    Benafan, Othmane; Bigelow, Glen S.; Elahinia, Mohammad; Moghaddam, Narges Shayesteh; Amerinatanzi, Amirhesam; Saedi, Soheil; Toker, Guher Pelin; Karaca, Haluk

    2017-01-01

    Additive manufacturing of a NiTi-20Hf high temperature shape memory alloy (HTSMA) was investigated. A selective laser melting (SLM) process by Phenix3D Systems was used to develop components from NiTiHf powder (of approximately 25-75 m particle fractions), and the thermomechanical response was compared to the conventionally vacuum induction skull melted counterpart. Transformation temperatures of the SLM material were found to be slightly lower due to the additional oxygen pick up from the gas atomization and melting process. The shape memory response in compression was measured for stresses up to 500 MPa, and transformation strains were found to be very comparable (Up to 1.26 for the as-extruded; up to 1.52 for SLM).

  7. High Temperature Thermoplastic Additive Manufacturing Using Low-Cost, Open-Source Hardware

    Science.gov (United States)

    Gardner, John M.; Stelter, Christopher J.; Yashin, Edward A.; Siochi, Emilie J.

    2016-01-01

    Additive manufacturing (or 3D printing) via Fused Filament Fabrication (FFF), also known as Fused Deposition Modeling (FDM), is a process where material is placed in specific locations layer-by-layer to create a complete part. Printers designed for FFF build parts by extruding a thermoplastic filament from a nozzle in a predetermined path. Originally developed for commercial printers, 3D printing via FFF has become accessible to a much larger community of users since the introduction of Reprap printers. These low-cost, desktop machines are typically used to print prototype parts or novelty items. As the adoption of desktop sized 3D printers broadens, there is increased demand for these machines to produce functional parts that can withstand harsher conditions such as high temperature and mechanical loads. Materials meeting these requirements tend to possess better mechanical properties and higher glass transition temperatures (Tg), thus requiring printers with high temperature printing capability. This report outlines the problems and solutions, and includes a detailed description of the machine design, printing parameters, and processes specific to high temperature thermoplastic 3D printing.

  8. Improvements in quality of as-manufactured fuels for high-temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Minato, Kazuo; Kikuchi, Hironobu; Tobita, Tsutomu; Fukuda, Kousaku; Kaneko, Mitsunobu; Suzuki, Nobuyuki; Yoshimuta, Shigeharu; Tomimoto, Hiroshi.

    1997-01-01

    The mechanisms of coating failure of the fuel particles for the high-temperature gas-cooled reactors during coating and compaction processes of the fuel fabrication were studied to determine a way to reduce the defective particle fraction of the as-manufactured fuels. Through the observation of the defective particles, it was found that the coating failure during the coating process was mainly caused by the strong mechanical shocks to the particles given by violent particle fluidization in the coater and by unloading and loading of the particles. The coating failure during the compaction process was probably related to the direct contact with neighboring particles in the fuel compacts. The coating process was improved by optimizing the mode of the particle fluidization and by developing the process without unloading and loading of the particles at intermediate coating process. The compaction process was improved by optimizing the combination of the pressing temperature and the pressing speed of the overcoated particles. Through these modifications of the fabrication process, the quality of the as-manufactured fuel compacts was improved outstandingly. (author)

  9. Validation of temperature-sensitive radio transmitters for measurement of body temperature in small animals

    NARCIS (Netherlands)

    Williams, Joseph B.; Tieleman, B. I.; Shobrak, Mohammed

    2009-01-01

    As part of a study on the core body temperature (T(b)) of desert birds, we purposed to use temperature-sensitive implantable radio transmitters. Because of the difficulty in recapturing these birds, we needed to know if these electronic devices held their calibration over the duration of normal

  10. Temperature Crosstalk Sensitivity of the Kummerow Rainfall Algorithm

    Science.gov (United States)

    Spencer, Roy W.; Petrenko, Boris

    1999-01-01

    Even though the signal source for passive microwave retrievals is thermal emission, retrievals of non-temperature geophysical parameters typically do not explicitly take into account the effects of temperature change on the retrievals. For global change research, changes in geophysical parameters (e.g. water vapor, rainfall, etc.) are referenced to the accompanying changes in temperature. If the retrieval of a certain parameter has a cross-talk response from temperature change alone, the retrievals might not be very useful for climate research. We investigated the sensitivity of the Kummerow rainfall retrieval algorithm to changes in air temperature. It was found that there was little net change in total rainfall with air temperature change. However, there were non-negligible changes within individual rain rate categories.

  11. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P

    2003-05-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 {mu}g m{sup -3} in 1982 and 15.6 {mu}g m{sup -3} in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants.

  12. Temperature sensitivity study of eddy current and digital gauge probes for nuclear fuel rod oxide measurement

    Science.gov (United States)

    Beck, Faith R.; Lind, R. Paul; Smith, James A.

    2018-04-01

    Novel fuels are part of the nationwide effort to reduce the enrichment of Uranium for energy production. Performance of such fuels is determined by irradiating their surfaces. To test irradiated samples, the instrumentation must operate remotely. The plate checker used in this experiment at Idaho National Lab (INL) performs non-destructive testing on fuel rod and plate geometries with two different types of sensors: eddy current and digital thickness gauges. The sensors measure oxide growth and total sample thickness on research fuels, respectively. Sensor measurement accuracy is crucial because even 10 microns of error is significant when determining the viability of an experimental fuel. One parameter known to affect the eddy current and thickness gauge sensors is temperature. Since both sensor accuracies depend on the ambient temperature of the system, the plate checker has been characterized for these sensitivities. The manufacturer of the digital gauge probes has noted a rather large coefficient of thermal expansion for their linear scale. It should also be noted that the accuracy of the digital gauge probes are specified at 20°C, which is approximately 7°C cooler than the average hot-cell temperature. In this work, the effect of temperature on the eddy current and digital gauge probes is studied, and thickness measurements are given as empirical functions of temperature.

  13. Investigation of technology for manufacturing the non-magnetic temperature-sensitive composite materials and their properties

    International Nuclear Information System (INIS)

    Kobelev, A.G.; Kolesnikov, F.V.; Gul'bin, V.N.; Nikitin, I.S.

    2004-01-01

    Investigation results are presented on structure and properties of nonmagnetic thermobimetals on the basis of beryllium bronze which is used both as active and passive layers. The second layer of thermosensitive element consists of stainless steel 12Kh18N10T, titanium base alloy VT1-0 and aluminum base alloy AD1. The manufacturing of the layered composite materials includes explosion welding, plastic deformation and heat treatment. It is established that strain hardening of the thermobimetals results in an increase of yield strength, microstresses, hardness and specific resistance [ru

  14. Design and Manufacture of Pin Tools for Friction Stir Welding of Temperature-Resistant Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal of this SBIR Phase I project is to advance the development of low-cost, functionally graded laser additive manufactured high temperature refractory...

  15. Modeling FBG sensors sensitivity from cryogenic temperatures to room temperature as a function of metal coating thickness

    Science.gov (United States)

    Vendittozzi, Cristian; Felli, Ferdinando; Lupi, Carla

    2018-05-01

    Fiber optics with photo-imprinted Bragg grating have been studied in order to be used as temperature sensors in cryogenic applications. The main disadvantage presented by Fiber Bragg Grating (FBG) sensors is the significant drop in sensitivity as temperature decreases, mainly due to the critical lowering of the thermo-optic coefficient of the fiber and the very low thermal expansion coefficient (CTE) of fused silica at cryogenic temperatures. Thus, especially for the latter, it is important to enhance sensitivity to temperature by depositing a metal coating presenting higher CTE. In this work the thermal sensitivity of metal-coated FBG sensors has been evaluated by considering their elongation within temperature variations in the cryogenic range, as compared to bare fiber sensors. To this purpose, a theoretical model simulating elongation of metal-coated sensors has been developed. The model has been used to evaluate the behaviour of different metals which can be used as coating (Ni, Cu, Al, Zn, Pb and In). The optimal coating thickness has been calculated at different fixed temperature (from 5 K to 100 K) for each metal. It has been found that the metal coating effectiveness depends on thickness and operating temperature in accordance to our previous experimental work and theory suggest.

  16. Resonance analysis of a high temperature piezoelectric disc for sensitivity characterization.

    Science.gov (United States)

    Bilgunde, Prathamesh N; Bond, Leonard J

    2018-07-01

    Ultrasonic transducers for high temperature (200 °C+) applications are a key enabling technology for advanced nuclear power systems and in a range of chemical and petro-chemical industries. Design, fabrication and optimization of such transducers using piezoelectric materials remains a challenge. In this work, experimental data-based analysis is performed to investigate the fundamental causal factors for the resonance characteristics of a piezoelectric disc at elevated temperatures. The effect of all ten temperature-dependent piezoelectric constants (ε 33 , ε 11 , d 33 , d 31 , d 15 , s 11 , s 12 , s 13 , s 33 , s 44 ) is studied numerically on both the radial and thickness mode resonances of a piezoelectric disc. A sensitivity index is defined to quantify the effect of each of the temperature-dependent coefficients on the resonance modes of the modified lead zirconium titanate disc. The temperature dependence of s 33 showed highest sensitivity towards the thickness resonance mode followed by ε 33 , s 11 , s 13 , s 12 , d 31 , d 33 , s 44 , ε 11 , and d 15 in the decreasing order of the sensitivity index. For radial resonance modes, the temperature dependence of ε 33 showed highest sensitivity index followed by s 11 , s 12 and d 31 coefficient. This numerical study demonstrates that the magnitude of d 33 is not the sole factor that affects the resonance characteristics of the piezoelectric disc at high temperatures. It appears that there exists a complex interplay between various temperature dependent piezoelectric coefficients that causes reduction in the thickness mode resonance frequencies which is found to be agreement in with the experimental data at an elevated temperature. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Temperature sensitivity of soil respiration is dependent on readily decomposable C substrate concentration

    Science.gov (United States)

    Larionova, A. A.; Yevdokimov, I. V.; Bykhovets, S. S.

    2007-06-01

    Temperature acclimation of soil organic matter (SOM) decomposition is one of the major uncertainties in predicting soil CO2 efflux by the increase in global mean temperature. A reasonable explanation for an apparent acclimation proposed by Davidson and colleagues (2006) based on Michaelis-Menten kinetics suggests that temperature sensitivity decreases when both maximal activity of respiratory enzymes (Vmax) and half- saturation constant (Ks) cancel each other upon temperature increase. We tested the hypothesis of the canceling effect by the mathematical simulation of the data obtained in the incubation experiments with forest and arable soils. Our data confirm the hypothesis and suggest that concentration of readily decomposable C substrate as glucose equivalent is an important factor controlling temperature sensitivity. The highest temperature sensitivity was observed when C substrate concentration was much lower than Ks. Increase of substrate content to the half-saturation constant resulted in temperature acclimation associated with the canceling effect. Addition of the substrate to the level providing respiration at a maximal rate Vmax leads to the acclimation of the whole microbial community as such. However, growing microbial biomass was more sensitive to the temperature alterations. This study improves our understanding of the instability of temperature sensitivity of soil respiration under field conditions, explaining this phenomenon by changes in concentration of readily decomposable C substrate. It is worth noting that this pattern works regardless of the origin of C substrate: production by SOM decomposition, release into the soil by rhizodeposition, litter fall or drying-rewetting events.

  18. Further studies on a temperature-sensitive mutant of Escherichia coli with defective repair capacity

    International Nuclear Information System (INIS)

    Morfiadakis, I.; Geissler, E.; Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Molekularbiologie)

    1981-01-01

    A temperature-sensitive mutant of E. coli, WG24, was studied with respect to its sensitivity to photodynamic action, its capacity to perform host controlled reactivation, and its sensitivity to transduction at elevated temperatures. Mutant cells are much more sensitive than wild type cells to photodynamic action by thiopyronine and visible light at elevated temperatures. As well defined rec mutants, WG24 cells are less able to reactivate UV irradiated lambdac phages at elevated temperatures, while their ability to repair T1 phages is less impaired. Mutant cells cannot be transduced to T6 resistance at a detectable rate at elevated temperature. It is concluded, therefore, that some rec gene carries a ts mutation in this mutant. (author)

  19. Summary of decontamination cover manufacturing experience

    International Nuclear Information System (INIS)

    Ulrich, G.B.; Berry, H.W.

    1995-02-01

    Decontamination cover forming cracks and vent cup assembly leaks through the decontamination covers were early manufacturing problems. The decontamination cover total manufacturing process yield was as low as 55%. Applicable tooling and procedures were examined. All manufacturing steps from foil fabrication to final assembly leak testing were considered as possible causes or contributing factors to these problems. The following principal changes were made to correct these problems: (1) the foil annealing temperature was reduced from 1375 degrees to 1250 degrees C, (2) the decontamination cover fabrication procedure (including visual inspection for surface imperfections and elimination of superfluous operations) was improved, (3) the postforming dye penetrant inspection procedure was revised for increased sensitivity, (4) a postforming (prewelding) 1250 degrees C/1 h vacuum stress-relief operation was added, (5) a poststress relief (prewelding) decontamination cover piece-part leak test was implemented, (6) the hold-down fixture used during the decontamination cover-to-cup weld was modified, and concomitantly, and (7) the foil fabrication process was changed from the extruding and rolling of 63-mm-diam vacuum arc-remelted ingots (extrusion process) to the rolling of 19-mm-square arc-melted drop castings (drop cast process). Since these changes were incorporated, the decontamination cover total manufacturing process yield has been 91 %. Most importantly, more than 99% of the decontamination covers welded onto vent cup assemblies were acceptable. The drastic yield improvement is attributed primarily to the change in the foil annealing temperature from 1375 degrees to 1250 degrees C and secondarily to the improvements in the decontamination cover fabrication procedure

  20. Manufacturing And High Temperature Oxidation Properties Of Electro-Sprayed Fe-24.5% Cr-5%Al Powder Porous Metal

    Directory of Open Access Journals (Sweden)

    Lee Kee-Ahn

    2015-06-01

    Full Text Available Fe-Cr-Al based Powder porous metals were manufactured using a new electro-spray process, and the microstructures and high-temperature oxidation properties were examined. The porous materials were obtained at different sintering temperatures (1350°C, 1400°C, 1450°C, and 1500°C and with different pore sizes (500 μm, 450 μm, and 200 μm. High-temperature oxidation experiments (TGA, Thermal Gravimetry Analysis were conducted for 24 hours at 1000°C in a 79% N2+ 21% O2, 100 mL/min. atmosphere. The Fe-Cr-Al powder porous metals manufactured through the electro-spray process showed more-excellent oxidation resistance as sintering temperature and pore size increased. In addition, the fact that the densities and surface areas of the abovementioned powder porous metals had the largest effects on the metal’s oxidation properties could be identified.

  1. Temperature sensitivity analysis of polarity controlled electrostatically doped tunnel field-effect transistor

    Science.gov (United States)

    Nigam, Kaushal; Pandey, Sunil; Kondekar, P. N.; Sharma, Dheeraj

    2016-09-01

    The conventional tunnel field-effect transistors (TFETs) have shown potential to scale down in sub-22 nm regime due to its lower sub-threshold slope and robustness against short-channel effects (SCEs), however, sensitivity towards temperature variation is a major concern. Therefore, for the first time, we investigate temperature sensitivity analysis of a polarity controlled electrostatically doped tunnel field-effect transistor (ED-TFET). Different performance metrics and analog/RF figure-of-merits were considered and compared for both devices, and simulations were performed using Silvaco ATLAS device tool. We found that the variation in ON-state current in ED-TFET is almost temperature independent due to electrostatically doped mechanism, while, it increases in conventional TFET at higher temperature. Above room temperature, the variation in ION, IOFF, and SS sensitivity in ED-TFET are only 0.11%/K, 2.21%/K, and 0.63%/K, while, in conventional TFET the variations are 0.43%/K, 2.99%/K, and 0.71%/K, respectively. However, below room temperature, the variation in ED-TFET ION is 0.195%/K compared to 0.27%/K of conventional TFET. Moreover, it is analysed that the incomplete ionization effect in conventional TFET severely affects the drive current and the threshold voltage, while, ED-TFET remains unaffected. Hence, the proposed ED-TFET is less sensitive towards temperature variation and can be used for cryogenics as well as for high temperature applications.

  2. The identification of a sensitizing component used in the manufacturing of an ink ribbon

    Science.gov (United States)

    Anderson, Stacey E.; Tapp, Loren; Durgam, Srinivas; Meade, B. Jean; Jackson, Laurel G.; Cohen, David E.

    2015-01-01

    Skin diseases including dermatitis constitute ≈ 30% of all occupational illnesses, with a high incidence in the printing industry. An outbreak of contact dermatitis among employees at an ink ribbon manufacturing plant was investigated by scientists from the National Institute for Occupational Safety and Health (NIOSH). Employees in the process areas of the plant were exposed to numerous chemicals and many had experienced skin rashes, especially after the introduction of a new ink ribbon product. To identify the causative agent(s) of the occupational dermatitis, the murine local lymph node assay (LLNA) was used to identify the potential of the chemicals used in the manufacture of the ink ribbon to induce allergic contact dermatitis. Follow-up patch testing with the suspected allergens was conducted on exposed employees. Polyvinyl butyral, a chemical component used in the manufacture of the ink ribbon in question and other products, tested positive in the LLNA, with an EC3 of 3.6%, which identifies it as a potential sensitizer; however, no employees tested positive to this chemical during skin patch testing. This finding has implications beyond those described in this report because of occupational exposure to polyvinyl butyral outside of the printing industry. PMID:22375946

  3. Water Recycling removal using temperature-sensitive hydronen

    Energy Technology Data Exchange (ETDEWEB)

    Rana B. Gupta

    2002-10-30

    The overall objective of this project was to study the proposed Water Recycling/Removal Using Temperature-Sensitive Hydrogels. The main element of this technology is the design of a suitable hydrogel that can perform needed water separation for pulp and paper industry. The specific topics studied are to answer following questions: (a) Can water be removed using hydrogel from large molecules such as lignin? (b) Can the rate of separation be made faster? (c) What are the molecular interactions with hydrogel surface? (d) Can a hydrogel be designed for a high ionic strength and high temperature? Summary of the specific results are given.

  4. Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction

    Directory of Open Access Journals (Sweden)

    Druzhinin A. A.

    2017-12-01

    Full Text Available Sensitive element of multifunctional sensor for measuring temperature, strain and magnetic field induction has been developed based on the studies of electrical conductivity and magnetoresistance of silicon and germanium microcrystals in the temperature range 4.2—70 K, strain ±1.5*10–3 rel.un. and magnetic fields of 0—14 T. The feature of the sensitive element is the using of the p- and n-type conductivity germanium microcrystals as mechanical and magnetic field sensors, respectively, and the p-type silicon microcrystal — as temperature sensor. That allows providing the compensation of temperature influence on piezoresistance and on sensitivity to the magnetic field.

  5. Development of an ozone high sensitive sensor working at ambient temperature

    International Nuclear Information System (INIS)

    Berger, F; Ghaddab, B; Sanchez, J B; Mavon, C

    2011-01-01

    Hybrid SnO 2 /SWNTs thin layer were deposited by using sol-gel process. Such sensitive layers showed very high performances for O 3 flow detection at ambient temperature. Limit sensitivity, lower than 21,5 ppb of O 3 in air has been reached by using these hybrid layers. Compared to usefull metal oxide sensors, the main advantage of the use of such hybrid layers, is that these devices enable the detection of O 3 traces at room temperature. The influence of sensor's working temperature is discussed and finally a reactional mechanism for the detection of O 3 is proposed.

  6. Sensitivities and uncertainties of modeled ground temperatures in mountain environments

    Directory of Open Access Journals (Sweden)

    S. Gubler

    2013-08-01

    Full Text Available Model evaluation is often performed at few locations due to the lack of spatially distributed data. Since the quantification of model sensitivities and uncertainties can be performed independently from ground truth measurements, these analyses are suitable to test the influence of environmental variability on model evaluation. In this study, the sensitivities and uncertainties of a physically based mountain permafrost model are quantified within an artificial topography. The setting consists of different elevations and exposures combined with six ground types characterized by porosity and hydraulic properties. The analyses are performed for a combination of all factors, that allows for quantification of the variability of model sensitivities and uncertainties within a whole modeling domain. We found that model sensitivities and uncertainties vary strongly depending on different input factors such as topography or different soil types. The analysis shows that model evaluation performed at single locations may not be representative for the whole modeling domain. For example, the sensitivity of modeled mean annual ground temperature to ground albedo ranges between 0.5 and 4 °C depending on elevation, aspect and the ground type. South-exposed inclined locations are more sensitive to changes in ground albedo than north-exposed slopes since they receive more solar radiation. The sensitivity to ground albedo increases with decreasing elevation due to shorter duration of the snow cover. The sensitivity in the hydraulic properties changes considerably for different ground types: rock or clay, for instance, are not sensitive to uncertainties in the hydraulic properties, while for gravel or peat, accurate estimates of the hydraulic properties significantly improve modeled ground temperatures. The discretization of ground, snow and time have an impact on modeled mean annual ground temperature (MAGT that cannot be neglected (more than 1 °C for several

  7. Chemical, sensory, and functional properties of whey-based popsicles manufactured with watermelon juice concentrated at different temperatures.

    Science.gov (United States)

    Martins, Carolina P C; Ferreira, Marcus Vinicius S; Esmerino, Erick A; Moraes, Jeremias; Pimentel, Tatiana C; Rocha, Ramon S; Freitas, Mônica Q; Santos, Jânio S; Ranadheera, C Senaka; Rosa, Lana S; Teodoro, Anderson J; Mathias, Simone P; Silva, Márcia C; Raices, Renata S L; Couto, Silvia R M; Granato, Daniel; Cruz, Adriano G

    2018-07-30

    The effects of the concentration of watermelon juice at different temperatures (45, 55, or 65 °C) on the physicochemical and sensory characteristics, antioxidant capacity, and volatile organic compounds (VOCs) of whey-based popsicles were investigated. Total phenolic content, lycopene, citrulline, VOCs, melting rate, instrumental colour, antioxidant capacity, and the sensory characteristics (hedonic test and free listing) were determined. The temperature led to a significant decrease in bioactive compounds (total phenolics, lycopene, and citrulline). The popsicle manufactured with reconstituted watermelon juice concentrated to 60 °Brix at 65 °C presented higher antioxidant capacity and was characterized by the presence of alcohols, aldehydes and ketones and presented a similar acceptance to the untreated popsicle (except for flavour). It is possible to combine whey and concentrated watermelon juice for the manufacture of bioactive-rich popsicles, using the concentration temperature of 65 °C as a suitable processing condition for potential industrial applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Boundary integral method to calculate the sensitivity temperature error of microstructured fibre plasmonic sensors

    International Nuclear Information System (INIS)

    Esmaeilzadeh, Hamid; Arzi, Ezatollah; Légaré, François; Hassani, Alireza

    2013-01-01

    In this paper, using the boundary integral method (BIM), we simulate the effect of temperature fluctuation on the sensitivity of microstructured optical fibre (MOF) surface plasmon resonance (SPR) sensors. The final results indicate that, as the temperature increases, the refractometry sensitivity of our sensor decreases from 1300 nm/RIU at 0 °C to 1200 nm/RIU at 50 °C, leading to ∼7.7% sensitivity reduction and the sensitivity temperature error of 0.15% °C −1 for this case. These results can be used for biosensing temperature-error adjustment in MOF SPR sensors, since biomaterials detection usually happens in this temperature range. Moreover, the signal-to-noise ratio (SNR) of our sensor decreases from 0.265 at 0 °C to 0.154 at 100 °C with the average reduction rate of ∼0.42% °C −1 . The results suggest that at lower temperatures the sensor has a higher SNR. (paper)

  9. Study on temperature sensitivity of topological insulators based on long-period fiber grating

    Science.gov (United States)

    Luo, Jianhua; Zhao, Chenghai; Li, Jianbo; He, Mengdong

    2017-06-01

    Based on a long-period fiber grating, we conducted experimental research on the temperature sensitivity of topological insulators. The long-period fiber grating and topological insulators solution were encapsulated in a capillary tube using UV glue, and the temperature response was measured. Within a range of 35 to 75 centigrade, one resonance dip of a long-period fiber grating exhibits a redshift of 1.536 nm. The temperature sensitivity is about 7.7 times of an ordinary long-period fiber grating's sensitivity (0.005 nm/°C). A numerical simulation is also performed on the basis of the experiments.

  10. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium, and cop......Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...

  11. Optimization of sensitometric properties of blue and green light sensitive dental radiographic films employing an automatic processor

    Directory of Open Access Journals (Sweden)

    Suchetha N Malleshi

    2011-01-01

    Full Text Available Background: Accurate film processing is of paramount importance in acquiring a good diagnostic radiograph. Radiographic films show variations in densities and contrast, with changes in processing conditions, and also film type, all of which are interdependent. Therefore, this research was conducted to recognize the effect of time and temperature variations of automatic processor on the sensitometric properties of blue and green light sensitive screen films. The study also aimed to note the effect on sensitometric properties when mismatch occurred when using between the screen and film belonging to different manufacturers. Materials and Methods: Sixty green light sensitive and 60 blue light sensitive spectrally matched screen film combinations were used in the study. However, the films and the intensifying screens employed belonged to different manufacturers. These films were exposed to five different exposure times and subsequently processed in an automatic processor, using two different protocols. Initially, at constant processing time of 2.5 min, five different processing temperatures were employed. Later, maintaining constant processing temperature of 35°C and five different processing times were engaged. Density, contrast and speed were calculated, using H and D curve. Results: Results revealed increasing density, contrast and speed values with increasing processing times and temperatures of both green and blue sensitive films. Conclusion: This investigation clearly establishes the possibility of obtaining optimal sensitometric properties, despite using intensifying screens and films of different manufacturers, if spectral match is ensured.

  12. Spectral and Concentration Sensitivity of Multijunction Solar Cells at High Temperature: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Daniel J.; Steiner, Myles A.; Perl, Emmett E.; Simon, John

    2017-06-14

    We model the performance of two-junction solar cells at very high temperatures of ~400 degrees C and beyond for applications such as hybrid PV/solar-thermal power production, and identify areas in which the design and performance characteristics behave significantly differently than at more conventional near-room-temperature operating conditions. We show that high-temperature operation reduces the sensitivity of the cell efficiency to spectral content, but increases the sensitivity to concentration, both of which have implications for energy yield in terrestrial PV applications. For other high-temperature applications such as near-sun space missions, our findings indicate that concentration may be a useful tool to enhance cell efficiency.

  13. Development and application of a species sensitivity distribution for temperature-induced mortality in the aquatic environment

    NARCIS (Netherlands)

    Vries, de P.; Tamis, J.E.; Murk, A.J.; Smit, M.G.D.

    2008-01-01

    Current European legislation has static water quality objectives for temperature effects, based on the most sensitive species. In the present study a species sensitivity distribution (SSD) for elevated temperatures is developed on the basis of temperature sensitivity data (mortality) of 50 aquatic

  14. Temperature-sensitive host range mutants of herpes simplex virus type 2

    International Nuclear Information System (INIS)

    Koment, R.W.; Rapp, F.

    1975-01-01

    Herpesviruses are capable of several types of infection of a host cell. To investigate the early events which ultimately determine the nature of the virus-host cell interaction, a system was established utilizing temperature-sensitive mutants of herpes simplex virus type 2. Four mutants have been isolated which fail to induce cytopathic effects and do not replicate at 39 C in hamster embryo fibroblast cells. At least one mutant is virus DNA negative. Since intracellular complementation is detectable between pairs of mutants, a virus function is known to be temperature sensitive. However, all four mutants induce cytopathic effects and replicate to parental virus levels in rabbit kidney cells at 39 C. This suggests that a host cell function, lacking or nonfunctional in HEF cells but present in rabbit kidney cells at 39 C, is required for the replication of these mutants in hamster embryo fibroblast cells at 39 C. Therefore, we conclude that these mutants are both temperature sensitive and exhibit host range properties

  15. Sensitivity of a soil-plant-atmosphere model to changes in air temperature, dew point temperature, and solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Luxmoore, R.J. (Oak Ridge National Lab.,TN); Stolzy, J.L.; Holdeman, J.T.

    1981-01-01

    Air temperature, dew point temperature and solar radiation were independently varied in an hourly soil-plant-atmosphere model in a sensitivity analysis of these parameters. Results suggested that evapotranspiration in eastern Tennessee is limited more by meteorological conditions that determine the vapor-pressure gradient than by the necessary energy to vaporize water within foliage. Transpiration and soil water drainage were very sensitive to changes in air and dew point temperature and to solar radiation under low atmospheric vapor-pressure deficit conditions associated with reduced air temperature. Leaf water potential and stomatal conductance were reduced under conditions having high evapotranspiration. Representative air and dew point temperature input data for a particular application are necessary for satisfactory results, whereas irradiation may be less well characterized for applications with high atmospheric vapor-pressure deficit. The effects of a general rise in atmospheric temperature on forest water budgets are discussed.

  16. Temperature sensitivity of the penicillin-induced autolysis mechanism in nongrowing cultures of Escherichia coli.

    OpenAIRE

    Kusser, W; Ishiguro, E E

    1987-01-01

    The effect of incubation temperature on the ampicillin-induced autolysis of nongrowing Escherichia coli was determined. The autolysis mechanisms in amino acid-deprived relA mutant cells treated with chloramphenicol were temperature sensitive. This temperature-sensitive autolysis was demonstrated in three independent ways: turbidimetric determinations, viable cell counts, and solubilization of radiolabeled peptidoglycan.

  17. Design and manufacture of ceramic heat pipes for high temperature applications

    International Nuclear Information System (INIS)

    Meisel, Peter; Jobst, Matthias; Lippmann, Wolfgang; Hurtado, Antonio

    2015-01-01

    Heat exchangers based on ceramic heat pipes were designed for use under highly abrasive and corrosive atmospheres at temperatures in the range of 800–1200 °C for high-temperature power-engineering applications. The presented heat pipes are gravity assisted and based on a multi-layer concept comprising a ceramic cladding and an inner metal tube that contains sodium as the working fluid. Hermetical encapsulation of the working fluid was achieved by electron-beam welding of the inner metal tube. Subsequently, closure of the surrounding ceramic tube was performed by laser brazing technology using a glass solder. Temperature resistance and functionality of the manufactured ceramic thermosyphons could be confirmed experimentally in a hot combustion gas atmosphere at temperatures up to 1100 °C. The ceramic tubes used had an outer diameter of 22 mm and a total length of 770 mm. The measured axial heat transfer of the ceramic gravity assisted heat pipes at the stationary operating point with cold/hot gas temperature of 100 °C/900 °C was 400 W. The result of the calculation using the created mathematical model amounted to 459 W. - Highlights: • Heat-pipe design consists of a ceramic shell and an inner metallic tube. • Laser brazing technology is suitable to seal ceramic heat-pipes. • Thermal characteristic of double wall thermosyphon was modelled using FEM code. • Experimental investigations demonstrated functionality of double wall thermosyphons

  18. Temperature sensitivity of soil respiration rates enhanced by microbial community response.

    Science.gov (United States)

    Karhu, Kristiina; Auffret, Marc D; Dungait, Jennifer A J; Hopkins, David W; Prosser, James I; Singh, Brajesh K; Subke, Jens-Arne; Wookey, Philip A; Agren, Göran I; Sebastià, Maria-Teresa; Gouriveau, Fabrice; Bergkvist, Göran; Meir, Patrick; Nottingham, Andrew T; Salinas, Norma; Hartley, Iain P

    2014-09-04

    Soils store about four times as much carbon as plant biomass, and soil microbial respiration releases about 60 petagrams of carbon per year to the atmosphere as carbon dioxide. Short-term experiments have shown that soil microbial respiration increases exponentially with temperature. This information has been incorporated into soil carbon and Earth-system models, which suggest that warming-induced increases in carbon dioxide release from soils represent an important positive feedback loop that could influence twenty-first-century climate change. The magnitude of this feedback remains uncertain, however, not least because the response of soil microbial communities to changing temperatures has the potential to either decrease or increase warming-induced carbon losses substantially. Here we collect soils from different ecosystems along a climate gradient from the Arctic to the Amazon and investigate how microbial community-level responses control the temperature sensitivity of soil respiration. We find that the microbial community-level response more often enhances than reduces the mid- to long-term (90 days) temperature sensitivity of respiration. Furthermore, the strongest enhancing responses were observed in soils with high carbon-to-nitrogen ratios and in soils from cold climatic regions. After 90 days, microbial community responses increased the temperature sensitivity of respiration in high-latitude soils by a factor of 1.4 compared to the instantaneous temperature response. This suggests that the substantial carbon stores in Arctic and boreal soils could be more vulnerable to climate warming than currently predicted.

  19. Influence of Temperature Variation on Optical Receiver Sensitivity and its Compensation

    Directory of Open Access Journals (Sweden)

    A. Prokes

    2007-09-01

    Full Text Available In the paper, the influence of temperature variation on the sensitivity of an avalanche-photodiode-based optical receiver applied in the free space optical communication link is discussed. Communication systems of this type are exposed to a wide range of operating temperatures, which markedly affect many photodiode and preamplifier parameters. The paper presents a receiver sensitivity calculation, taking into consideration the temperature dependence of avalanche photodiode gain, excess noise factor, dark current and thermal noise of preamplifier resistances, and describes the compensation of temperature effects on photodiode gain based on a corresponding change in the reverse voltage applied to the diode. The calculations are demonstrated on the connection of a small-area silicon APD operating in the wavelength range from 820 to 1150 nm with a transimpedance preamplifier using a bipolar junction transistor.

  20. Cold-Adapted Viral Attenuation (CAVA): Highly Temperature Sensitive Polioviruses as Novel Vaccine Strains for a Next Generation Inactivated Poliovirus Vaccine.

    Science.gov (United States)

    Sanders, Barbara P; de Los Rios Oakes, Isabel; van Hoek, Vladimir; Bockstal, Viki; Kamphuis, Tobias; Uil, Taco G; Song, Yutong; Cooper, Gillian; Crawt, Laura E; Martín, Javier; Zahn, Roland; Lewis, John; Wimmer, Eckard; Custers, Jerome H H V; Schuitemaker, Hanneke; Cello, Jeronimo; Edo-Matas, Diana

    2016-03-01

    The poliovirus vaccine field is moving towards novel vaccination strategies. Withdrawal of the Oral Poliovirus Vaccine and implementation of the conventional Inactivated Poliovirus Vaccine (cIPV) is imminent. Moreover, replacement of the virulent poliovirus strains currently used for cIPV with attenuated strains is preferred. We generated Cold-Adapted Viral Attenuation (CAVA) poliovirus strains by serial passage at low temperature and subsequent genetic engineering, which contain the capsid sequences of cIPV strains combined with a set of mutations identified during cold-adaptation. These viruses displayed a highly temperature sensitive phenotype with no signs of productive infection at 37°C as visualized by electron microscopy. Furthermore, decreases in infectious titers, viral RNA, and protein levels were measured during infection at 37°C, suggesting a block in the viral replication cycle at RNA replication, protein translation, or earlier. However, at 30°C, they could be propagated to high titers (9.4-9.9 Log10TCID50/ml) on the PER.C6 cell culture platform. We identified 14 mutations in the IRES and non-structural regions, which in combination induced the temperature sensitive phenotype, also when transferred to the genomes of other wild-type and attenuated polioviruses. The temperature sensitivity translated to complete absence of neurovirulence in CD155 transgenic mice. Attenuation was also confirmed after extended in vitro passage at small scale using conditions (MOI, cell density, temperature) anticipated for vaccine production. The inability of CAVA strains to replicate at 37°C makes reversion to a neurovirulent phenotype in vivo highly unlikely, therefore, these strains can be considered safe for the manufacture of IPV. The CAVA strains were immunogenic in the Wistar rat potency model for cIPV, inducing high neutralizing antibody titers in a dose-dependent manner in response to D-antigen doses used for cIPV. In combination with the highly productive

  1. Integrating Fiber Optic Strain Sensors into Metal Using Ultrasonic Additive Manufacturing

    Science.gov (United States)

    Hehr, Adam; Norfolk, Mark; Wenning, Justin; Sheridan, John; Leser, Paul; Leser, Patrick; Newman, John A.

    2018-03-01

    Ultrasonic additive manufacturing, a rather new three-dimensional (3D) printing technology, uses ultrasonic energy to produce metallurgical bonds between layers of metal foils near room temperature. This low temperature attribute of the process enables integration of temperature sensitive components, such as fiber optic strain sensors, directly into metal structures. This may be an enabling technology for Digital Twin applications, i.e., virtual model interaction and feedback with live load data. This study evaluates the consolidation quality, interface robustness, and load sensing limits of commercially available fiber optic strain sensors embedded into aluminum alloy 6061. Lastly, an outlook on the technology and its applications is described.

  2. Temperature Sensitivity of an Atomic Vapor Cell-Based Dispersion-Enhanced Optical Cavity

    Science.gov (United States)

    Myneni, K.; Smith, D. D.; Chang, H.; Luckay, H. A.

    2015-01-01

    Enhancement of the response of an optical cavity to a change in optical path length, through the use of an intracavity fast-light medium, has previously been demonstrated experimentally and described theoretically for an atomic vapor cell as the intracavity resonant absorber. This phenomenon may be used to enhance both the scale factor and sensitivity of an optical cavity mode to the change in path length, e.g. in gyroscopic applications. We study the temperature sensitivity of the on-resonant scale factor enhancement, S(sub o), due to the thermal sensitivity of the lower-level atom density in an atomic vapor cell, specifically for the case of the Rb-87 D(sub 2) transition. A semi-empirical model of the temperature-dependence of the absorption profile, characterized by two parameters, a(sub o)(T) and gamma(sub a)(T) allows the temperature-dependence of the cavity response, S(sub o)(T) and dS(sub o)/dT to be predicted over a range of temperature. We compare the predictions to experiment. Our model will be useful in determining the useful range for S(sub o), given the practical constraints on temperature stability for an atomic vapor cell.

  3. Low temperature sensitization of austenitic stainless steel: an ageing effect during BWR service

    International Nuclear Information System (INIS)

    Shah, B.K.; Sinha, A.K.; Rastogi, P.K.; Kulkarni, P.G.

    1994-01-01

    Sensitization in austenitic stainless steel refers to chromium carbide precipitation at the grain boundaries with concomitant depletion of chromium below 12% near grain boundaries. This makes the material susceptible to either intergranular corrosion (IGC) or intergranular stress corrosion cracking (IGSCC). This effect is predominant whenever austenitic stainless steel is subjected to thermal exposure in the temperature range 723-1073K either during welding or during heat treatment. Low temperature sensitization (LTS) refers to sensitization at temperature below the typical range of sensitization i.e. 723-1073K. A prerequisite for LTS phenomenon is reported to be the presence of chromium carbide nuclei at the grain boundaries which can grow during boiling water reactor service even at a relatively lower temperature of around 560K. LTS can lead to failure of BWR pipe due to IGSCC. The paper reviews the phenomenological and mechanistic aspects of LTS. Studies carried out regarding effect of prior cold work on LTS are reported. Summary of the studies reported in literature to examine the occurrence of LTS during BWR service has also been included. (author). 10 refs., 3 figs

  4. The source of investment cash flow sensitivity in manufacturing firms: Is it asymmetric information or agency costs?

    Directory of Open Access Journals (Sweden)

    Daniel Makina

    2016-09-01

    Full Text Available In the literature, positive investment cash flow sensitivity is attributed to either asymmetric information induced financing constraints or the agency costs of free cash flow. Using data from a sample of 68 manufacturing firms listed on the South African JSE, this paper contributes to the literature by investigating the source of investment cash flow sensitivity. We have found that asymmetric information explains the positive investment cash flow sensitivity better than agency costs. Furthermore, asymmetric information has been observed to be more pronounced in low-dividend-paying firms and small firms. Despite South Africa’s having a developed financial system by international standards, small firms are seen to be financially constrained. We attribute the absence of investment cash flow sensitivity due to agency costs to good corporate governance of South African listed firms. Thus the paper provides further evidence in support of the proposition in the literature that the source of investment cash flow sensitivity may depend on the institutional setting of a country, such as its corporate governance.

  5. Calculation of coolant temperature sensitivity related to thermohydraulic parameters

    International Nuclear Information System (INIS)

    Silva, F.C. da; Andrade Lima, F.R. de

    1985-01-01

    It is verified the viability to apply the generalized Perturbation Theory (GPT) in the calculation of sensitivity for thermal-hydraulic problems. It was developed the TEMPERA code in FORTRAN-IV to transient calculations in the axial temperature distribution in a channel of PWR reactor and the associated importance function, as well as effects of variations of thermalhydraulic parameters in the coolant temperature. The results are compared with one which were obtained by direct calculation. (M.C.K.) [pt

  6. Human body temperature and new approaches to constructing temperature-sensitive bacterial vaccines.

    Science.gov (United States)

    White, Matthew D; Bosio, Catharine M; Duplantis, Barry N; Nano, Francis E

    2011-09-01

    Many of the live human and animal vaccines that are currently in use are attenuated by virtue of their temperature-sensitive (TS) replication. These vaccines are able to function because they can take advantage of sites in mammalian bodies that are cooler than the core temperature, where TS vaccines fail to replicate. In this article, we discuss the distribution of temperature in the human body, and relate how the temperature differential can be exploited for designing and using TS vaccines. We also examine how one of the coolest organs of the body, the skin, contains antigen-processing cells that can be targeted to provoke the desired immune response from a TS vaccine. We describe traditional approaches to making TS vaccines, and highlight new information and technologies that are being used to create a new generation of engineered TS vaccines. We pay particular attention to the recently described technology of substituting essential genes from Arctic bacteria for their homologues in mammalian pathogens as a way of creating TS vaccines.

  7. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture

    Science.gov (United States)

    Cable, Jessica M.; Barron-Gafford, Greg A.; Ogle, Kiona; Pavao-Zuckerman, Mitchell; Scott, Russell L.; Williams, David G.; Huxman, Travis E.

    2012-03-01

    A greater abundance of shrubs in semiarid grasslands affects the spatial patterns of soil temperature, moisture, and litter, resulting in fertile islands with potentially enhanced soil metabolic activity. The goal of this study was to quantify the microsite specificity of soil respiration in a semiarid riparian ecosystem experiencing shrub encroachment. We quantified the response of soil respiration to different microsite conditions created by big mesquite shrubs (near the trunk and the canopy edge), medium-sized mesquite, sacaton bunchgrasses, and open spaces. We hypothesized that soil respiration would be more temperature sensitive and less moisture sensitive and have a greater magnitude in shrub microsites compared with grass and open microsites. Field and incubation soil respiration data were simultaneously analyzed in a Bayesian framework to quantify the microsite-specific temperature and moisture sensitivities and magnitude of respiration. The analysis showed that shrub expansion increases the heterogeneity of respiration. Respiration has greater temperature sensitivity near the shrub canopy edge, and respiration rates are higher overall under big mesquite compared with those of the other microsites. Respiration in the microsites beneath medium-sized mesquites does not behave like a downscaled version of big mesquite microsites. The grass microsites show more similarity to big mesquite microsites than medium-sized shrubs. This study shows there can be a great deal of fine-scale spatial heterogeneity that accompanies shifts in vegetation structure. Such complexity presents a challenge in scaling soil respiration fluxes to the landscape for systems experiencing shrub encroachment, but quantifying this complexity is significantly important in determining overall ecosystem metabolic behavior.

  8. Development of High Temperature/High Sensitivity Novel Chemical Resistive Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chunrui [Univ. of Texas, San Antonio, TX (United States); Enriquez, Erik [Univ. of Texas, San Antonio, TX (United States); Wang, Haibing [Univ. of Texas, San Antonio, TX (United States); Xu, Xing [Univ. of Texas, San Antonio, TX (United States); Bao, Shangyong [Univ. of Texas, San Antonio, TX (United States); Collins, Gregory [Univ. of Texas, San Antonio, TX (United States)

    2013-08-13

    The research has been focused to design, fabricate, and develop high temperature/high sensitivity novel multifunctional chemical sensors for the selective detection of fossil energy gases used in power and fuel systems. By systematically studying the physical properties of the LnBaCo2O5+d (LBCO) [Ln=Pr or La] thin-films, a new concept chemical sensor based high temperature chemical resistant change has been developed for the application for the next generation highly efficient and near zero emission power generation technologies. We also discovered that the superfast chemical dynamic behavior and an ultrafast surface exchange kinetics in the highly epitaxial LBCO thin films. Furthermore, our research indicates that hydrogen can superfast diffuse in the ordered oxygen vacancy structures in the highly epitaxial LBCO thin films, which suggest that the LBCO thin film not only can be an excellent candidate for the fabrication of high temperature ultra sensitive chemical sensors and control systems for power and fuel monitoring systems, but also can be an excellent candidate for the low temperature solid oxide fuel cell anode and cathode materials.

  9. Effect of the temperature in the sensitivity of CaSO4: Dy

    International Nuclear Information System (INIS)

    Gonzalez, P.R.; Alcantara, B.C.; Azorin, J.; Furetta, C.

    2003-01-01

    Sensitivity of a Tl material is one of the most important properties for dosimetry. This property is optimized by means of various processes such as the incorporation of different dopants into the matrix material, the application of certain doses of ionizing radiation and carefully controlled thermal treatments among others. Results obtained of studying the sensitivity of diverse preparations of CaSO 4 : Dy submitted different thermal treatments are presented. The material, which presented the highest sensitivity, was that one it was heated to 800 C during one hour. When the temperature was raised over this value it was observed that sensitivity drops again. In other hand, as the heating rate in lowing down, during the readout, the height of the glow curve decreases proportionally. The temperature of the maximum of the main peak also decreases. (Author)

  10. Production of porous sintered materials using wastes of manufacturing engineering in self-propagating high-temperature synthesis

    Directory of Open Access Journals (Sweden)

    Y. S. Povstyana

    2016-06-01

    Full Text Available The increasing amount of wastes produced by the manufacturing engineering, as well as their physical and mechanical properties and restorability provide a search for sphere of their application. The actual problem of modern science is the utilization of wastes and using them in further production that will minimize their harmful impact on the environment and reduce the cost of expensive raw materials. Wastes are ideally suitable for the manufacture of porous permeable materials (filters. Powder metallurgy allows obtaining products with controlled filtration, physical and mechanical properties. Such materials are good filters for regeneration of technical liquids, oils, cooling fluids, sewage etc. The article analyzes the methods and technologies for the manufacture of porous ceramic materials and a new technology for their manufacture, which is based on use of mill scale and natural mineral – saponite as the main components. Compression technology provides products at low pressures and sintering by passing high-temperature synthesis. The proposed technology is characterized by low cost and good physical and mechanical properties of the product that gives a reason to use them for filtering and regeneration of technical liquids.

  11. Temperature sensitivity of differential absorption lidar measurements of water vapor in the 720-nm region

    Science.gov (United States)

    Browell, Edward V.; Ismail, Syed; Grossmann, Benoist E.

    1991-01-01

    Recently measured properties of water vapor (H2O) absorption lines have been used in calculations to evalute the temperature sensitivity of differential absorption lidar (Dial) H2O measurements. This paper estimates the temperature sensitivity of H2O lines in the 717-733-nm region for both H2O mixing ratio and number density measurements, and discusses the influence of the H2O line ground state energies E-double-prime, the H2O absorption linewidths, the linewidth temperature dependence parameter, and the atmospheric temperature and pressure variations with altitude and location on the temperature sensitivity calculations. Line parameters and temperature sensitivity calculations for 67 H2O lines in the 720-nm band are given which can be directly used in field experiments. Water vapor lines with E-double-prime values in the 100-300/cm range were found to be optimum for Dial measurements of H2O number densities, while E-double-prime values in the 250-500/cm range were found to be optimum for H2O mixing ratio measurements.

  12. Characterization of the temperature-sensitive mutations un-7 and png-1 in Neurospora crassa.

    Science.gov (United States)

    Dieterle, Michael G; Wiest, Aric E; Plamann, Mike; McCluskey, Kevin

    2010-05-18

    The model filamentous fungus Neurospora crassa has been studied for over fifty years and many temperature-sensitive mutants have been generated. While most of these have been mapped genetically, many remain anonymous. The mutation in the N. crassa temperature-sensitive lethal mutant un-7 was identified by a complementation based approach as being in the open reading frame designated NCU00651 on linkage group I. Other mutations in this gene have been identified that lead to a temperature-sensitive morphological phenotype called png-1. The mutations underlying un-7 result in a serine to phenylalanine change at position 273 and an isoleucine to valine change at position 390, while the mutation in png-1 was found to result in a serine to leucine change at position 279 although there were other conservative changes in this allele. The overall morphology of the strain carrying the un-7 mutation is compared to strains carrying the png-1 mutation and these mutations are evaluated in the context of other temperature-sensitive mutants in Neurospora.

  13. Manufacture of pooled platelets in additive solution and storage in an ELX container after an overnight warm temperature hold of platelet-rich plasma.

    Science.gov (United States)

    Alhumaidan, Hiba; Cheves, Tracey; Holme, Stein; Sweeney, Joseph D

    2011-10-01

    The processing of whole blood-derived platelet-rich plasma (PRP) to a platelet concentrate and platelet-poor plasma is currently performed within 8 hours to comply with the requirements to manufacture fresh frozen plasma. Maintaining PRP at room temperature for a longer period can have the advantage of shifting the completion of component manufacture onto day shifts. Pairs of ABO-identical prepooled platelets were manufactured by the PRP method, using the current approach with platelet storage in a CLX HP container (Pall Medical, Covina, CA) and plasma, or a novel approach with an 18- to a 24-hour room temperature hold of the PRP and the manufacture of pooled platelets in a glucose-containing additive solution (AS) and storage in a new ELX container (Pall Medical). Standard in vitro assays were performed on days 2, 5, and 7. The results showed that the AS platelets in ELX have in vitro characteristics that are equivalent or superior to those of the standard product.

  14. Data indicating temperature response of Ti–6Al–4V thin-walled structure during its additive manufacture via Laser Engineered Net Shaping

    Directory of Open Access Journals (Sweden)

    Garrett J. Marshall

    2016-06-01

    Full Text Available An OPTOMEC Laser Engineered Net Shaping (LENS™ 750 system was retrofitted with a melt pool pyrometer and in-chamber infrared (IR camera for nondestructive thermal inspection of the blown-powder, direct laser deposition (DLD process. Data indicative of temperature and heat transfer within the melt pool and heat affected zone atop a thin-walled structure of Ti–6Al–4V during its additive manufacture are provided. Melt pool temperature data were collected via the dual-wavelength pyrometer while the dynamic, bulk part temperature distribution was collected using the IR camera. Such data are provided in Comma Separated Values (CSV file format, containing a 752×480 matrix and a 320×240 matrix of temperatures corresponding to individual pixels of the pyrometer and IR camera, respectively. The IR camera and pyrometer temperature data are provided in blackbody-calibrated, raw forms. Provided thermal data can aid in generating and refining process-property-performance relationships between laser manufacturing and its fabricated materials.

  15. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    We report on a novel design of an on-chip optical temperature sensor based on a Mach-Zehnder interferometer configuration where the two arms consist of hybrid waveguides providing opposite temperature-dependent phase changes to enhance the temperature sensitivity of the sensor. The sensitivity...... of the fabricated sensor with silicon/polymer hybrid waveguides is measured to be 172 pm/°C, which is two times larger than a conventional all-silicon optical temperature sensor (∼80 pm/°C). Moreover, a design with silicon/titanium dioxide hybrid waveguides is by calculation expected to have a sensitivity as high...

  16. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    Directory of Open Access Journals (Sweden)

    F. J. Bohn

    2018-03-01

    Full Text Available Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP. It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q and a species distribution index (ΩAWP. ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length. The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a

  17. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    Science.gov (United States)

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant

  18. Sensitivity of LUCC on the Surface Temperature of Tibetan Plateau

    Science.gov (United States)

    Qi, W.; Deng, X.; Wu, F.

    2016-12-01

    The Tibetan Plateau has an important effect on the ecological security in China, even in Asia, which makes the region become the hot spot in recently research. Under the joint influence of global change and human activities, ecosystem destabilizing and the increasing pressure on resources and environment emerge on the Tibetan Plateau, but the potential spatial sensitivity of land use and land cover changes(LUCC) on surface temperature has not been quantitatively analyzed. This study analyzed the mainly types of LUCC, urbanization, grassland degradation, deforestation on Tibetan Plateau along with Representative Concentration Pathways (RCPs) of the Intergovernmental Panel on Climate Change (IPCC). The LUCC in recent decades was first quantitatively analyzed in this study to give the basic fact with a significant increase in temperatures, reduced precipitation and increased evaporation. This study focused on the future spatio-temporal heterogeneity of the temperature and precipitation. Finally, the influencing factors with LUCC on Tibetan Plateau were simulated with the Weather Research and Forecasting (WRF) model, and the sensitivity of different land use types was spatially analyzed with Singular Value Decomposition (SVD). The results indicate that the large-area alpine grassland plays a more important role in alleviating global warming than other vegetation types do. The changes of the landscape structure resulting from the urban expansion play a significant role in intensifying regional temperature increase. In addition, the effects of LUCC on monthly average temperature change would vary from month to month with obviously spatial heterogeneity.

  19. Effect of soil moisture on the temperature sensitivity of Northern soils

    Science.gov (United States)

    Minions, C.; Natali, S.; Ludwig, S.; Risk, D.; Macintyre, C. M.

    2017-12-01

    Arctic and boreal ecosystems are vast reservoirs of carbon and are particularly sensitive to climate warming. Changes in the temperature and precipitation regimes of these regions could significantly alter soil respiration rates, impacting atmospheric concentrations and affecting climate change feedbacks. Many incubation studies have shown that both temperature and soil moisture are important environmental drivers of soil respiration; this relationship, however, has rarely been demonstrated with in situ data. Here we present the results of a study at six field sites in Alaska from 2016 to 2017. Low-power automated soil gas systems were used to measure soil surface CO2 flux from three forced diffusion chambers and soil profile concentrations from three soil depth chambers at hourly intervals at each site. HOBO Onset dataloggers were used to monitor soil moisture and temperature profiles. Temperature sensitivity (Q10) was determined at each site using inversion analysis applied over different time periods. With highly resolved data sets, we were able to observe the changes in soil respiration in response to changes in temperature and soil moisture. Through regression analysis we confirmed that temperature is the primary driver in soil respiration, but soil moisture becomes dominant beyond a certain threshold, suppressing CO2 flux in soils with high moisture content. This field study supports the conclusions made from previous soil incubation studies and provides valuable insights into the impact of both temperature and soil moisture changes on soil respiration.

  20. Isolation of temperature-sensitive mutants of 16 S rRNA in Escherichia coli

    DEFF Research Database (Denmark)

    Triman, K; Becker, E; Dammel, C

    1989-01-01

    Temperature-sensitive mutants have been isolated following hydroxylamine mutagenesis of a plasmid containing Escherichia coli rRNA genes carrying selectable markers for spectinomycin resistance (U1192 in 16 S rRNA) and erythromycin resistance (G2058 in 23 S rRNA). These antibiotic resistance....... The mutations were localized by in vitro restriction fragment replacement followed by in vivo marker rescue and were identified by DNA sequence analysis. We report here seven single-base alterations in 16 S rRNA (A146, U153, A350, A359, A538, A1292 and U1293), five of which produce temperature......-sensitive spectinomycin resistance and two that produce unconditional loss of resistance. In each case, loss of ribosomal function can be accounted for by disruption of base-pairing in the secondary structure of 16 S rRNA. For the temperature-sensitive mutants, there is a lag period of about two generations between...

  1. Passive Wireless Temperature Sensors with Enhanced Sensitivity and Range, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) temperature sensors with enhanced sensitivity and detection range for NASA application...

  2. Manufacturing and material properties of forgings for reactor pressure vessel of high temperature engineering test reactor

    International Nuclear Information System (INIS)

    Sato, I.; Suzuki, K.

    1994-01-01

    For the reactor pressure vessel (RPV) of high temperature engineering test reactor (HTTR) which has been developed by Japan Atomic Energy Research Institute (JAERI), 2 1/4Cr-1Mo steel is used first in the world. Material confirmation test has been carried out to demonstrate good applicability of forged low Si 2 1/4Cr-1Mo steel to the RPV of HTTR. Recently, JSW has succeeded in the manufacturing of large size ring forgings and large size forged cover dome integrated with nozzles for stand pipe for the RPV. This paper describes the results of the material confirmation test as well as the manufacturing and material properties of the large forged cover dome integrated with nozzles for stand pipe. (orig.)

  3. Electrochemical polarization behavior of sensitized SUS 304 stainless steel in high temperature water

    Energy Technology Data Exchange (ETDEWEB)

    Kushiya, K [Tohoku Univ., Sendai (Japan); Sugimoto, K; Ejima, T

    1978-11-01

    Anodic polarization curves for a solution-treated or sensitized SUS 304 stainless steel and solution-treated Fe-Ni-Cr ternary alloys containing 10%Ni and 6 to 14%Cr have been measured in deaerated 0.5 mol/l Na/sub 2/SO/sub 4/ solutions of pH 2.0 to 5.9 at 298, 523 and 553 K. Corrosion potentials for U-bend SCC test specimens of sensitized SUS 304 stainless steel have also been monitored for a long time in the same solutions as those used for the polarization measurements except that they were aerated. It was found that the differences in the current densities in the passive state, i sub(pass), between the solution treated steel and the sensitized one and also between the ternary alloy with higher Cr content and the one with lower Cr content become large with increasing temperature and decreasing pH. This means that the difference in the values of i sub(pass) between grain bodies and Cr-depleted zones along grain boundaries of sensitized steel becomes larger and susceptibility to intergranular corrosion of the sensitized steel in the passivation region becomes higher with increasing temperature and decreasing pH. Since corrosion potentials for the U-bend SCC test specimens in air-satulated solutions lie in the passive region of anodic polarization curves for the sensitized steel in deaerated solutions, the intergranular stress-corrosion cracking of the sensitized steel in high temperature water with dissolved oxygen is considered to be caused by the preferential corrosion in the Cr-depleted zone.

  4. A High-Sensitivity Gas Sensor Toward Methanol Using ZnO Microrods: Effect of Operating Temperature

    Science.gov (United States)

    Sinha, M.; Mahapatra, R.; Mondal, B.; Ghosh, R.

    2017-04-01

    In the present work, zinc oxide (ZnO) microrods with the average diameter of 350 nm have been synthesized on fluorine doped tin oxide (FTO) substrate using a hydrothermal reaction process at a low temperature of 90°C. The methanol gas sensing behaviour of as-synthesized ZnO microrods have been studied at different operating temperatures (100-300°C). The gas sensing results show that the ZnO microrods exhibit excellent sensitivity, selectivity, and stability toward methanol gas at 300°C. The as-grown ZnO microrods sensor also shows the good sensitivity for methanol even at a low operating temperature of 100°C. The ultra-high sensitivity of 4.41 × 104% [gas sensitivity, S g = ( I g - I a)/ I a × 100%] and 5.11 × 102% to 100 ppm methanol gas at a temperature of 300°C and 100°C, respectively, has been observed. A fast response time of 200 ms and 270 ms as well as a recovery time of 120 ms and 1330 ms to methanol gas have also been found at an operating temperature of 300°C and 100°C, respectively. The response and recovery time decreases with increasing operation temperature of the sensor.

  5. A temperature monitor circuit with small voltage sensitivity using a topology-reconfigurable ring oscillator

    Science.gov (United States)

    Kishimoto, Tadashi; Ishihara, Tohru; Onodera, Hidetoshi

    2018-04-01

    In this paper, we propose a temperature monitor circuit that exhibits a small supply voltage sensitivity adopting a circuit topology of a reconfigurable ring oscillator. The circuit topology of the monitor is crafted such that the oscillation frequency is determined by the amount of subthreshold leakage current, which has an exponential dependence on temperature. Another important characteristic of the monitor is its small supply voltage sensitivity. The measured oscillation frequency of a test chip fabricated in a 65 nm CMOS process varies only 2.6% under a wide range of supply voltages from 0.4 to 1.0 V at room temperature. The temperature estimation error ranges from -0.3 to 0.4 °C over a temperature range of 10 to 100 °C.

  6. Low temperature carving of ZnO nanorods into nanotubes for dye-sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan Nayeri, Fatemeh, E-mail: F.d.nayeri@ut.ac.ir; Kolahdouz, Mohammadreza; Asl-Soleimani, Ebrahim; Mohajerzadeh, S.

    2015-06-05

    Highlights: • Large scale arrays of highly oriented ZnO NTs have been fabricated and investigated. • The DSSCs made of these 2.5 μm NRs and NTs resulted in conversion efficiencies of 0.34% and 0.9%, respectively. • EIS measurements have demonstrated that the NTs could acquire a higher electron lifetime compared to NRs. • Twofold electron lifetime electron accompanied by half electron transport time for ZnO NTs compared to NRs. - Abstract: High aspect ratio zinc oxide (ZnO) nanotubes (NT) were synthesized based on a two-steps approach. In the first step, ZnO nanorod (NR) arrays were prepared by chemical bath deposition from an aqueous of zinc nitrate. In the second step, the cores of ZnO NRs were carved selectively in a KCl solution, resulting in the formation of a tubular structure. The influence of KCL concentration, temperature, and immersion time on the ZnO NT formation process was completely characterized and investigated. 12.5 μm NRs and NTs have been utilized to manufacture dye-sensitized solar cells (DSSCs) and as a result, conversion efficiencies of 1.06% and 2.87% were obtained, respectively. Electrochemical impedance spectroscopy measurements have demonstrated that the NTs could acquire a higher electron lifetime compared to NRs which causes a faster electron collection. The overall improvement in NT-based DSSC performance demonstrates a new approach to enhance the efficiency of dye-sensitized solar cells.

  7. Low-temperature deposition manufacturing: A novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold.

    Science.gov (United States)

    Liu, Wei; Wang, Daming; Huang, Jianghong; Wei, You; Xiong, Jianyi; Zhu, Weimin; Duan, Li; Chen, Jielin; Sun, Rong; Wang, Daping

    2017-01-01

    Developed in recent years, low-temperature deposition manufacturing (LDM) represents one of the most promising rapid prototyping technologies. It is not only based on rapid deposition manufacturing process but also combined with phase separation process. Besides the controlled macropore size, tissue-engineered scaffold fabricated by LDM has inter-connected micropores in the deposited lines. More importantly, it is a green manufacturing process that involves non-heating liquefying of materials. It has been employed to fabricate tissue-engineered scaffolds for bone, cartilage, blood vessel and nerve tissue regenerations. It is a promising technology in the fabrication of tissue-engineered scaffold similar to ideal scaffold and the design of complex organs. In the current paper, this novel LDM technology is introduced, and its control parameters, biomedical applications and challenges are included and discussed as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Sensitivity of summer stream temperatures to climate variability in the Pacific Northwest

    Science.gov (United States)

    Charles Luce; Brian Staab; Marc Kramer; Seth Wenger; Dan Isaak; Callie McConnell

    2014-01-01

    Estimating the thermal response of streams to a warming climate is important for prioritizing native fish conservation efforts. While there are plentiful estimates of air temperature responses to climate change, the sensitivity of streams, particularly small headwater streams, to warming temperatures is less well understood. A substantial body of literature correlates...

  9. Global sensitivity analysis of water age and temperature for informing salmonid disease management

    Science.gov (United States)

    Javaheri, Amir; Babbar-Sebens, Meghna; Alexander, Julie; Bartholomew, Jerri; Hallett, Sascha

    2018-06-01

    Many rivers in the Pacific Northwest region of North America are anthropogenically manipulated via dam operations, leading to system-wide impacts on hydrodynamic conditions and aquatic communities. Understanding how dam operations alter abiotic and biotic variables is important for designing management actions. For example, in the Klamath River, dam outflows could be manipulated to alter water age and temperature to reduce risk of parasite infections in salmon by diluting or altering viability of parasite spores. However, sensitivity of water age and temperature to the riverine conditions such as bathymetry can affect outcomes from dam operations. To examine this issue in detail, we conducted a global sensitivity analysis of water age and temperature to a comprehensive set of hydraulics and meteorological parameters in the Klamath River, California, where management of salmonid disease is a high priority. We applied an analysis technique, which combined Latin-hypercube and one-at-a-time sampling methods, and included simulation runs with the hydrodynamic numerical model of the Lower Klamath. We found that flow rate and bottom roughness were the two most important parameters that influence water age. Water temperature was more sensitive to inflow temperature, air temperature, solar radiation, wind speed, flow rate, and wet bulb temperature respectively. Our results are relevant for managers because they provide a framework for predicting how water within 'high infection risk' sections of the river will respond to dam water (low infection risk) input. Moreover, these data will be useful for prioritizing the use of water age (dilution) versus temperature (spore viability) under certain contexts when considering flow manipulation as a method to reduce risk of infection and disease in Klamath River salmon.

  10. Polarization-sensitive and broadband germanium sulfide photodetectors with excellent high-temperature performance.

    Science.gov (United States)

    Tan, Dezhi; Zhang, Wenjin; Wang, Xiaofan; Koirala, Sandhaya; Miyauchi, Yuhei; Matsuda, Kazunari

    2017-08-31

    Layered materials, such as graphene, transition metal dichalcogenides and black phosphorene, have been established rapidly as intriguing building blocks for optoelectronic devices. Here, we introduce highly polarization sensitive, broadband, and high-temperature-operation photodetectors based on multilayer germanium sulfide (GeS). The GeS photodetector shows a high photoresponsivity of about 6.8 × 10 3 A W -1 , an extremely high specific detectivity of 5.6 × 10 14 Jones, and broad spectral response in the wavelength range of 300-800 nm. More importantly, the GeS photodetector has high polarization sensitivity to incident linearly polarized light, which provides another degree of freedom for photodetectors. Tremendously enhanced photoresponsivity is observed with a temperature increase, and high responsivity is achievable at least up to 423 K. The establishment of larger photoinduced reduction of the Schottky barrier height will be significant for the investigation of the photoresponse mechanism of 2D layered material-based photodetectors. These attributes of high photocurrent generation in a wide temperature range, broad spectral response, and polarization sensitivity coupled with environmental stability indicate that the proposed GeS photodetector is very suitable for optoelectronic applications.

  11. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    Science.gov (United States)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  12. Phenotypic characterization of adenovirus type 12 temperature-sensitive mutants in productive infection and transformation.

    Science.gov (United States)

    Hama, S; Kimura, G

    1980-01-01

    Eleven temperature-sensitive mutants of adenovirus type 12, capable of forming plaques in human cells at 33 C but not at 39.5 C, were isolated from a stock of a wild-type strain after treatment with either nitrous acid or hydroxylamine. Complementation tests in doubly infected human cells permitted a tentative assignment of eight of these mutants to six complementation groups. Temperature-shift experiments revealed that one mutant is affected early and most of the other mutants are affected late. Only the early mutant, H12ts505, was temperature sensitive in viral DNA replication. Infectious virions of all the mutants except H12ts505 and two of the late mutants produced at 33 C, appeared to be more heat labile than those of the wild type. Only H12ts505 was temperature sensitive for the establishment of transformation of rat 3Y1 cells. One of the late mutants (H12ts504) had an increased transforming ability at the permissive temperature. Results of temperature-shift transformation experiments suggest that a viral function affected in H12ts505 is required for "initiation" of transformation. Some of the growth properties of H12ts505-transformed cells were also temperature dependent, suggesting that a functional expression of a gene mutation in H12ts505 is required to maintain at least some aspects of the transformed state.

  13. Calcitonin gene-related peptide alters the firing rates of hypothalamic temperature sensitive and insensitive neurons

    Directory of Open Access Journals (Sweden)

    Grimm Eleanor R

    2008-07-01

    Full Text Available Abstract Background Transient hyperthermic shifts in body temperature have been linked to the endogenous hormone calcitonin gene-related peptide (CGRP, which can increase sympathetic activation and metabolic heat production. Recent studies have demonstrated that these centrally mediated responses may result from CGRP dependent changes in the activity of thermoregulatory neurons in the preoptic and anterior regions of the hypothalamus (POAH. Results Using a tissue slice preparation, we recorded the single-unit activity of POAH neurons from the adult male rat, in response to temperature and CGRP (10 μM. Based on the slope of firing rate as a function of temperature, neurons were classified as either warm sensitive or temperature insensitive. All warm sensitive neurons responded to CGRP with a significant decrease in firing rate. While CGRP did not alter the firing rates of some temperature insensitive neurons, responsive neurons showed an increase in firing rate. Conclusion With respect to current models of thermoregulatory control, these CGRP dependent changes in firing rate would result in hyperthermia. This suggests that both warm sensitive and temperature insensitive neurons in the POAH may play a role in producing this hyperthermic shift in temperature.

  14. Thermal sterilization of heat-sensitive products using high-temperature short-time sterilization.

    Science.gov (United States)

    Mann, A; Kiefer, M; Leuenberger, H

    2001-03-01

    High-temperature short-time (HTST) sterilization with a continuous-flow sterilizer, developed for this study, was evaluated. The evaluation was performed with respect to (a) the chemical degradation of two heat-sensitive drugs in HTST range (140-160 degrees C) and (b) the microbiological effect of HTST sterilization. Degradation kinetics of two heat-sensitive drugs showed that a high peak temperature sterilization process resulted in less chemical degradation for the same microbiological effect than a low peak temperature process. Both drugs investigated could be sterilized with acceptable degradation at HTST conditions. For the evaluation of the microbiological effect, Bacillus stearothermophilus ATCC 7953 spores were used as indicator bacteria. Indicator spore kinetics (D(T), z value, k, and E(a)), were determined in the HTST range. A comparison between the Bigelow model (z value concept) and the Arrhenius model, used to describe the temperature coefficient of the microbial inactivation, demonstrated that the Bigelow model is more accurate in prediction of D(T) values in the HTST range. The temperature coefficient decreased with increasing temperature. The influence of Ca(2+) ions and pH value on the heat resistance of the indicator spores, which is known under typical sterilization conditions, did not change under HTST conditions.

  15. Manufacturing and Characterization of Temperature-Stable, Novel, Viscoelastic Polyurea Based Foams for Impact Management

    Science.gov (United States)

    Ramirez, Brian Josue

    The aim of this thesis was to develop advance, high performance polyurea foams for multi-hit capability in protective equipment that respond over a range of impact energies, temperatures, and strain rates. In addition, the microstructure of these materials should be tunable such that the peak stress (or force) transmitted across the foam section can be limited to a specific value defined by an injury threshold while maximizing impact energy absorption. Novel polyurea foams were manufactured and found to exhibit a reversible viscoelastic shear deformation at the molecular level. The intrinsic shear dissipation process is synergistically coupled to controlled collapse of a novel pore structure. The microstructure compromises of stochastic polyhedral cells ranging from 200 - 500 mum with perforated membranes with small apertures ( 20 mum). This makes them strain rate sensitive as the rate at which the air escapes the cells depend upon the loading rate. These mechanisms operate simultaneously and sequentially, thereby significantly reducing the transmitted impact forces across the foam section. Thus, they behave as an elastically modulated layered composite because the cells stiffen or soften in response to the changing loading rate. Therefore, the newly developed polyurea foams are able to manage the varying material strain rate that occurs within the same loading event without the need to modulate the stiffness or density. Additionally, polyurea foams were found to retain its excellent impact properties over a range of temperatures (0°C to 40°C) by having a glass transition temperature well below 0°C. This is in contrast to commercially available high performance foams that have the glass transition temperature near 0°C and absorb energy through phase transformation at ambient conditions, but significantly stiffen at lower temperatures, and dramatically soften at higher temperatures. This expands the application domain of polyurea foam material considerably as it

  16. A new cryostat for precise temperature control

    Science.gov (United States)

    Dong, B.; Zhou, G.; Liu, L. Q.; Zhang, X.; Xiong, L. Y.; Li, Q.

    2013-09-01

    Gifford-McMahon (GM) cryocoolers are often used in cryostat as cold sources. It has advantages of simple structure and low operating cost as well as disadvantages of vibration and temperature oscillation, which are fatal for some applications that are very sensitive to temperature stability at low temperature. To solve the problem, a thermal analysis model which is used to simulate heat transfer in the cryostat is built and discussed. According to the analysis results, a cryostat that can provide variable temperature (4-20 K) for the accurate temperature control experiments is designed and manufactured. In this cryostat, a polytetrafluoroethylene (PTFE) sheet is used as a thermal damper to reduce the temperature oscillation, with which, the temperature oscillation of the sample cooling holder is less than 4 mK at the 20 K region.

  17. Low temperature sensitization behavior in the weld metal of austenitic stainless steel. Study on low temperature sensitization in weldments of austenitic stainless steels and its improvement by laser surface melting treatment. 1

    International Nuclear Information System (INIS)

    Mori, Hiroaki; Nishimoto, Kazutoshi; Nakao, Yoshikuni

    1996-01-01

    Low temperature sensitization (LTS) behavior in the weld metal of Type308 stainless steel was investigated in this study. Three kinds of Type308 stainless steels, of which carbon contents were 0.04%, 0.06% and 0.08%, were used for this study. TIG welding method was adopted to make the weld metals. Weld metals were subjected to the sensitizing heat treatment in the temperature range between 773 K and 1073 K. The degree of sensitization were examined by the EPR method and the Strauss test. Chromium carbide was absorbed to precipitate at δ/γ grain boundaries in the as-welded weld metals Corrosion test results have shown that the higher carbon content in the weld metal is, the earlier sensitization yields in it. Sensitization in weld metals is found to occur faster than in those solution heat-treated at 1273 K prior to sensitizing heat-treatment. This fact suggests that preexisted chromium carbides have an effect to accelerate sensitization. That is, it is apparent that LTS phenomenon occur even in the weld metal. Moreover, sensitization in the weld metal has occurred in much shorter time than in HAZ, which is attributed to the preferential precipitation of chromium carbide at δ/γ grain boundaries in the weld metals. (author)

  18. Surgical implantation of temperature-sensitive transmitters and data-loggers to record body temperature in koalas (Phascolarctos cinereus).

    Science.gov (United States)

    Adam, D; Johnston, S D; Beard, L; Nicholson, V; Lisle, A; Gaughan, J; Larkin, R; Theilemann, P; Mckinnon, A; Ellis, W

    2016-01-01

    Under predicted climate change scenarios, koala distribution in Australia is expected to be adversely affected. Recent studies have attempted to identify suitable habitat, based on models of bioclimatic regions, but to more accurately reflect the thermal tolerance and behavioural adaptations of the various regional populations, the koala's response to periods of heat stress will need to be investigated at the individual animal level. To explore the safety and suitability of temperature-sensitive intra-abdominal implants for monitoring core body temperature in the koala. A temperature-sensitive radio transmitter and thermal iButton data-logger, waxed together as a package, were surgically implanted into the abdominal cavity of four captive koalas. In one animal the implant was tethered and in the other three, it was left free-floating. After 3 months, the implants were removed and all four koalas recovered without complications. The tethering of the package in the one koala resulted in minor inflammation and adhesion, so this practice was subsequently abandoned. The free-floating deployments were complication-free and revealed a diurnal body temperature rhythm, with daily ranges of 0.4-2.8°C. The minimum recorded body temperature was 34.2°C and the maximum was 37.7°C. The difference in the readings obtained from the transmitters and iButtons never exceeded 0.3°C. The suitability of the surgical approach was confirmed, from both the animal welfare and data collection points of view. © 2016 Australian Veterinary Association.

  19. The dependence of thermoluminescence sensitivity upon the temperature of irradiation in meteorites and in terrestrial apatites

    International Nuclear Information System (INIS)

    Durrani, S.A.; Al-Khalifa, I.J.M.

    1990-01-01

    Measurements are reported on the TL sensitivity (i.e. TL glow output per unit γ ray test dose) of meteoritic specimens as well as terrestrial fluor- and chlor-apatites, as a function of irradiation temperature (T irr ). The irradiation temperatures ranged from liquid nitrogen to room temperature (77 - 293 K). A kilocurie 60 Co γ ray source was used to deliver test doses of 400 Gy (40 krad) and 40 (4 krad) to the various samples. A strong dependence of the TL sensitivity upon the temperature of irradiation was noted in the case of Kirin meteorite: its TL sensitivity (for the 493 K readout peak) decreased by a factor of ∼ 2 when T irr rose from liquid nitrogen (77 K) to dry ice in acetone (197 K) temperature, in the case of both 400 Gy and 40 Gy γ ray doses. In the case of the Antarctic meteorite specimen (ALHA 77182.13), there was a smaller effect, viz. a fall of ∼ 14% in the TL output corresponding to dry ice and higher irradiating temperatures as compared to the 77 K irradiation. For chlorapatite, the TL sensitivity decreased monotonically with increasing temperature for both the 563 K and the 448 K glow peaks. For the fluorapatite, the effect of reduced response was observed only between -17 0 C (256 K) and room temperature (293 K). Both the theoretical and the practical implications of these observations are discussed. (author)

  20. In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel

    Science.gov (United States)

    Chen, Haiyan; Zhang, Jian; Qian, Zhiyu; Liu, Fei; Chen, Xinyang; Hu, Yuzhu; Gu, Yueqing

    2008-05-01

    Assessment of hyperthermia in pathological tissue is a promising strategy for earlier diagnosis of malignant tumors. In this study, temperature-sensitive co-polymeric nanohydrogel poly(N-isopropylacrylamide-co-acrylic acid) (PNIPA-co-AA) was successfully synthesized by the precipitation polymerization method. The diameters of nanohydrogels were controlled to be less than 100 nm. Also the lower critical solution temperature (LCST, 40 °C) was manipulated above physiological temperature after integration of near-infrared (NIR) organic dye (heptamethine cyanine dye, HMCD) within its interior cores. NIR laser light (765 nm), together with sensitive charge coupled device (CCD) cameras, were designed to construct an NIR imaging system. The dynamic behaviors of PNIPA-co-AA-HMCD composites in denuded mice with or without local hyperthermia treatment were real-time monitored by an NIR imager. The results showed that the PNIPA-co-AA-HMCD composites accumulated in the leg treated with local heating and diffused much slower than that in the other leg without heating. The results demonstrated that the temperature-responsive PNIPA-co-AA-HMCD composites combining with an NIR imaging system could be an effective temperature mapping technique, which provides a promising prospect for earlier tumor diagnosis and thermally related therapeutic assessment.

  1. In vivo non-invasive optical imaging of temperature-sensitive co-polymeric nanohydrogel

    International Nuclear Information System (INIS)

    Chen Haiyan; Hu Yuzhu; Zhang Jian; Liu Fei; Chen Xinyang; Gu Yueqing; Qian Zhiyu

    2008-01-01

    Assessment of hyperthermia in pathological tissue is a promising strategy for earlier diagnosis of malignant tumors. In this study, temperature-sensitive co-polymeric nanohydrogel poly(N-isopropylacrylamide-co-acrylic acid) (PNIPA-co-AA) was successfully synthesized by the precipitation polymerization method. The diameters of nanohydrogels were controlled to be less than 100 nm. Also the lower critical solution temperature (LCST, 40 deg. C) was manipulated above physiological temperature after integration of near-infrared (NIR) organic dye (heptamethine cyanine dye, HMCD) within its interior cores. NIR laser light (765 nm), together with sensitive charge coupled device (CCD) cameras, were designed to construct an NIR imaging system. The dynamic behaviors of PNIPA-co-AA-HMCD composites in denuded mice with or without local hyperthermia treatment were real-time monitored by an NIR imager. The results showed that the PNIPA-co-AA-HMCD composites accumulated in the leg treated with local heating and diffused much slower than that in the other leg without heating. The results demonstrated that the temperature-responsive PNIPA-co-AA-HMCD composites combining with an NIR imaging system could be an effective temperature mapping technique, which provides a promising prospect for earlier tumor diagnosis and thermally related therapeutic assessment

  2. Influence of pre-deformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Jinlong, E-mail: ljltsinghua@126.com [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang [Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Zhongguancun Street, Haidian District, Beijing 100084 (China); State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Luo, Hongyun [Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Xueyuan Road 37, Beijing 100191 (China)

    2016-12-01

    Highlights: • The pre-strain accelerated desensitization and sensitization for austenitic stainless steels. • Low temperature sensitization (carbide precipitation) induced α′-martensite. • The sensitization level could affect directly corrosion resistance of the oxide film. - Abstract: The effects of pre-deformation on sensitization of AISI 304 stainless steel were investigated by the double loop electrochemical potentiokinetic reactivation test. The effects of pre-deformation and sensitization on high temperature oxidized film formed in high temperature water were analyzed by a XRD and SEM. The electrochemical impedance spectroscopy at room temperature was used to study corrosion resistance of oxidized film. The point defect density of oxidized film was calculated by Mott–Schottky plots. The results showed that the value of the degree of sensitization first decreased and then slight increased with the increasing of engineering strain. Moreover, low temperature promoted to form sensitization induced “secondary” α′-martensite. The sample with 20% engineering strain had higher impedance value than other samples. The result was supported by further Mott–Schottky experiments. Considering increased α′-martensite with the increasing of strain, the results of the impedance were more consistent with values of the degree of sensitization.

  3. The effect of temperature on the sensitivity of Daphnia magna to cyanobacteria is genus dependent.

    Science.gov (United States)

    Hochmuth, Jennifer D; De Schamphelaere, Karel A C

    2014-10-01

    In the present study, the authors investigated the effects of 6 different genera of cyanobacteria on multiple endpoints of Daphnia magna in a 21-d life table experiment conducted at 3 different temperatures (15 °C, 19 °C, and 23 °C). The specific aims were to test if the effect of temperature on Daphnia's sensitivity to cyanobacteria differed among different cyanobacteria and if the rank order from most to least harmful cyanobacteria to Daphnia reproduction changed or remained the same across the studied temperature range. Overall, the authors observed a decrease in harmful effects on reproduction with increasing temperature for Microcystis, Nodularia, and Aphanizomenon, and an increase in harmful effects with increasing temperature for Anabaena and Oscillatoria. No effect of temperature was observed on Daphnia sensitivity to Cylindrospermopsis. Harmful effects of Microcystis and Nodularia on reproduction appear to be mirrored by a decrease in length. On the other hand, harmful effects of Anabaena, Aphanizomenon, and Oscillatoria on reproduction were correlated with a decrease in intrinsic rate of natural increase, which was matched by a later onset of reproduction in exposures to Oscillatoria. In addition, the results suggest that the cyanobacteria rank order of harmfulness may change with temperature. Higher temperatures may increase the sensitivity of D. magna to the presence of some cyanobacteria (Anabaena and Oscillatoria) in their diet, whereas the harmful effects of others (Microcystis, Nodularia, and Aphanizomenon) may be reduced by higher temperatures. © 2014 SETAC.

  4. Continuous cooling and low temperature sensitization of AISI types 316 SS and 304 SS with different degrees of cold work

    Energy Technology Data Exchange (ETDEWEB)

    Parvathavarthini, N.; Dayal, R.K.; Gnanamoorthy, J.B. (Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Programme); Seshadri, S.K. (Indian Inst. of Tech., Madras (India). Dept. of Metallurgical Engineering)

    This paper presents the results of investigations carried out to study the sensitization behaviour of AISI Types 316 SS and 304 SS with various degrees of cold work ranging from 0 to 25%. Initially Time-Temperature-Sensitization (TTS) diagrams were established using ASTM standard A262 Practice A and E tests. From these diagrams it was found that the rate of sensitization and overall susceptibility to intergranular corrosion increases up to 15% cold work and above that starts decreasing. Desensitization was observed to be faster for higher levels of cold work, especially in the higher sensitization temperature range. From the TTS diagrams, the critical linear cooling rate below which sensitization occurs was calculated. From these data, Continuous Cooling Sensitization (CCS) diagrams were established. The results show that as the degree of cold work increases up to 15%, time needed for sensitization decreases and hence faster cooling rates must be used in order to avoid sensitization. At temperatures sufficiently below the nose temperature of the TTS diagram, log t versus 1/T plots follow a linear relationship where t is the time needed for the onset of sensitization at temperature T. From the slope, the apparent activation energy for sensitization was estimated. The validity of extrapolating these linear plots to lower temperatures (725 to 775 K) (which lie in the operating temperature regime of fast reactors) has been verified by experiment. The effect of heat treatment and microstructure on the Low Temperature Sensitization (LTS) behaviour was investigated. The results indicate that carbides of optimum size and distribution are the essential pre-requisites for LTS and cold work enhances susceptibility of stainless steels to LTS. (orig.).

  5. Sensitivity of photonic crystal fiber grating sensors: biosensing, refractive index, strain, and temperature sensing

    DEFF Research Database (Denmark)

    Rindorf, Lars Henning; Bang, Ole

    2008-01-01

    We study the sensitivity of fiber grating sensors in the applications of strain, temperature, internal label-free biosensing, and internal refractive index sensing. New analytical expressions for the sensitivities, valid for photonic crystal fibers are rigorously derived. These are generally vali...

  6. Seasonal variation in the temperature sensitivity of proteolytic enzyme activity in temperate forest soils

    Science.gov (United States)

    Brzostek, Edward R.; Finzi, Adrien C.

    2012-03-01

    Increasing soil temperature has the potential to alter the activity of the extracellular enzymes that mobilize nitrogen (N) from soil organic matter (SOM) and ultimately the availability of N for primary production. Proteolytic enzymes depolymerize N from proteinaceous components of SOM into amino acids, and their activity is a principal driver of the within-system cycle of soil N. The objectives of this study were to investigate whether the soils of temperate forest tree species differ in the temperature sensitivity of proteolytic enzyme activity over the growing season and the role of substrate limitation in regulating temperature sensitivity. Across species and sampling dates, proteolytic enzyme activity had relatively low sensitivity to temperature with a mean activation energy (Ea) of 33.5 kJ mol-1. Ea declined in white ash, American beech, and eastern hemlock soils across the growing season as soils warmed. By contrast, Eain sugar maple soil increased across the growing season. We used these data to develop a species-specific empirical model of proteolytic enzyme activity for the 2009 calendar year and studied the interactive effects of soil temperature (ambient or +5°C) and substrate limitation (ambient or elevated protein) on enzyme activity. Declines in substrate limitation had a larger single-factor effect on proteolytic enzyme activity than temperature, particularly in the spring. There was, however, a large synergistic effect of increasing temperature and substrate supply on proteolytic enzyme activity. Our results suggest limited increases in N availability with climate warming unless there is a parallel increase in the availability of protein substrates.

  7. Topology Optimization for Additive Manufacturing

    DEFF Research Database (Denmark)

    Clausen, Anders

    This PhD thesis deals with the combination of topology optimization and additive man-ufacturing (AM, also known as 3D-printing). In addition to my own works, the thesis contains a broader review and assessment of the literature within the field. The thesis first presents a classification...... of the various AM technologies, a review of relevant manufacturing materials, the properties of these materials in the additively manufactured part, as well as manufacturing constraints with a potential for design optimization. Subsequently, specific topology optimization formulations relevant for the most im...... for scalable manufacturing. In relation to interface problems it is shown how a flexible void area may be included into a standard minimum compliance problem by employing an additional design variable field and a sensitivity filter. Furthermore, it is shown how the design of coated structures may be modeled...

  8. Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels

    International Nuclear Information System (INIS)

    Guo, Wei; Zhou, Jinxiong; Li, Meie

    2013-01-01

    Combination of soft active hydrogels with hard passive polymers gives rise to all-polymer composites. The hydrogel is sensitive to external stimuli while the passive polymer is inert. Utilizing the different behaviors of two materials subject to environmental variation, for example temperature, results in self-folding soft machines. We report our efforts to model the programmable deformation of self-folding structures with temperature-sensitive hydrogels. The self-folding structures are realized either by constructing a bilayer structure or by incorporating hydrogels as hinges. The methodology and the results may aid the design, control and fabrication of 3D complex structures from 2D simple configurations through self-assembly. (paper)

  9. The observed sensitivity of the global hydrological cycle to changes in surface temperature

    International Nuclear Information System (INIS)

    Arkin, Phillip A; Janowiak, John; Smith, Thomas M; Sapiano, Mathew R P

    2010-01-01

    Climate models project large changes in global surface temperature in coming decades that are expected to be accompanied by significant changes in the global hydrological cycle. Validation of model simulations is essential to support their use in decision making, but observing the elements of the hydrological cycle is challenging, and model-independent global data sets exist only for precipitation. We compute the sensitivity of the global hydrological cycle to changes in surface temperature using available global precipitation data sets and compare the results against the sensitivities derived from model simulations of 20th century climate. The implications of the results for the global climate observing system are discussed.

  10. Temperature and hydration effects on absorbance spectra and radiation sensitivity of a radiochromic medium

    Energy Technology Data Exchange (ETDEWEB)

    Rink, Alexandra; Lewis, David F.; Varma, Sangya; Vitkin, I. Alex; Jaffray, David A. [Princess Margaret Hospital/Ontario Cancer Institute, Department of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Advanced Materials Group, International Specialty Products, Inc., Wayne, New Jersey 07470 (United States); Princess Margaret Hospital/Ontario Cancer Institute, Department of Medical Biophysics and Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

    2008-10-15

    The effects of temperature on real time changes in optical density ({Delta}OD) of GAFCHROMIC EBT film were investigated. The spectral peak of maximum change in absorbance ({lambda}{sub max}) was shown to downshift linearly when the temperature of the film was increased from 22 to 38 degree sign C. The {Delta}OD values were also shown to decrease linearly with temperature, and this decrease could not be attributed to the shift in {lambda}{sub max}. A compensation scheme using {lambda}{sub max} and a temperature-dependent correction factor was investigated, but provided limited improvement. Part of the reason may be the fluctuations in hydration of the active component, which were found to affect both position of absorbance peaks and the sensitivity of the film. To test the effect of hydration, laminated and unlaminated films were desiccated. This shifted both the major and minor absorbance peaks in the opposite direction to the change observed with temperature. The desiccated film also exhibited reduced sensitivity to ionizing radiation. Rehydration of the desiccated films did not reverse the effects, but rather gave rise to another form of the polymer with absorbance maxima upshifted further 20 nm. Hence, the spectral characteristics and sensitivity of the film can be dependent on its history, potentially complicating both real-time and conventional radiation dosimetry.

  11. Effect of cold work on low-temperature sensitization behaviour of austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Kain, V. E-mail: vivkain@apsara.barc.ernet.in; Chandra, K.; Adhe, K.N.; De, P.K

    2004-09-01

    The effects of cold work and low-temperature sensitization heat treatment of non-sensitized austenitic stainless steels have been investigated and related to the cracking in nuclear power reactors. Types 304, 304L and 304LN developed martensite after 15% cold working. Heat treatment of these cold worked steels at 500 deg. C led to sensitization of grain boundaries and the matrix and a desensitization effect was seen in 11 days due to fast diffusion rate of chromium in martensite. Types 316L and 316LN did not develop martensite upon cold rolling due to its chemical composition suppressing the martensite transformation (due to deformation) temperature, hence these were not sensitized at 500 deg. C. The sensitization of the martensite phase was always accompanied by a hump in the reactivation current peak in the double loop electrochemical potentiokinetic reactivation test, thus providing a test to detect such sensitization. It was shown that bending does not produce martensite and therefore, is a better method to simulate weld heat affected zone. Bending and heating at 500 deg. C for 11 days led to fresh precipitation due to increased retained strain and desensitization of 304LN due to faster diffusion rate of chromium along dislocations. The as received or solution annealed 304 and 304LN with 0.15% nitrogen showed increased sensitization after heat treatment at 500 deg. C, indicating the presence of carbides/nitrides.

  12. Design of cross-sensitive temperature and strain sensor based on sampled fiber grating

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohang

    2017-02-01

    Full Text Available In this paper,a cross-sensitive temperature and strain sensor based on sampled fiber grating is designed.Its temperature measurement range is -50-200℃,and the strain measurement rangeis 0-2 000 με.The characteristics of the sensor are obtained using simulation method.Utilizing SPSS software,we found the dual-parameter matrix equations of measurement of temperature and strain,and calibrated the four sensing coefficients of the matrix equations.

  13. Temperature sensitivity of extracellular enzyme kinetics in subtropical wetland soils under different nutrient and water level conditions

    Science.gov (United States)

    Goswami, S.; Inglett, K.; Inglett, P.

    2012-12-01

    Microbial extracellular enzymes play an important role in the initial steps of soil organic matter decomposition and are involved in regulating nutrient cycle processes. Moreover, with the recent concern of climate change, microbial extracellular enzymes may affect the functioning (C losses, C sequestration, greenhouse gas emissions, vegetation changes) of different ecosystems. Hence, it is imperative to understand the biogeochemical processes that may be climate change sensitive. Here, we have measured the Michaelis Menten Kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of 6 enzymes involved in soil organic matter decomposition (phosphatase, phosphodiesterase, β-D-glucosidase, cellobiohydrolase, leucine aminopeptidase, N-Acetyl-β-D glucosaminidase) in different nutrient(P) concentration both aerobically and anaerobically in Everglade water conservation area 2A (F1, F4-slough and U3-slough). Temperature sensitivity of different enzymes is assessed within soil of different P concentrations. We hypothesized that the temperature sensitivity of the enzyme changes with the biogeochemical conditions including water level and nutrient condition. Furthermore, we have tested specific hypothesis that higher P concentration will initiate more C demand for microbes leading to higher Vmax value for carbon processing enzymes in high P site. We found temperature sensitivity of all enzymes for Vmax and Km under both aerobic and anaerobic condition ranges from 0.6 to 3.2 for Vmax and 0.5 to 2.5 for Km. Q10 values of Km for glucosidase indicate more temperature sensitivity under anaerobic condition. Under aerobic condition higher temperature showed significant effect on Vmax for bisphosphatase between high P and low P site. Decreasing P concentration from F1 site to U3-S site had showed significant effect in all temperature on carbon processing enzyme. This suggests that in high P site, microbes will use more carbon-processing enzyme to get more carbon

  14. Flexible Temperature Sensors on Fibers

    Directory of Open Access Journals (Sweden)

    Marcin Sloma

    2010-08-01

    Full Text Available The aim of this paper is to present research dedicated to the elaboration of novel, miniaturized flexible temperature sensors for textronic applications. Examined sensors were manufactured on a single yarn, which ensures their high flexibility and good compatibility with textiles. Stable and linear characteristics were obtained by special technological process and applied temperature profiles. As a thermo-sensitive materials the innovative polymer compositions filled with multiwalled carbon nanotubes were used. Elaborated material was adapted to printing and dip-coating techniques to produce NTC composites. Nanotube sensors were free from tensometric effect typical for other carbon-polymer sensor, and demonstrated TCR of 0.13%/K. Obtained temperature sensors, compatible with textile structure, can be applied in rapidly developing smart textiles and be used for health and protections purposes.

  15. Evaluation of bituminous sub-ballast manufactured at low temperatures as an alternative for the construction of more sustainable railway structures

    Directory of Open Access Journals (Sweden)

    L. Pirozzolo

    2017-07-01

    Full Text Available Hot bituminous mixtures are becoming widely used in modern railway tracks in the sub-ballast layer. The reason is that these materials allow for both an increase in bearing capacity and greater protection of the substructure respect the traditional granular sub-ballast. Despite these advantages, the fact that these materials are manufactured at a temperature of 160°C means that their application can lead to an important increase in construction costs, pollution and energy consumption. This paper aims to study the possibility of using WMA manufactured at lower temperatures, as bituminous sub-ballast, in order to save energy and reduce emissions throughout the production process, as well as diminish the global costs of this layer. To this end, this study focuses on a comparison of the mechanical behaviour of warm and hot bituminous mixtures as sub-ballast under various loading conditions. The results indicate that WMA offers mechanical behaviour that is comparable to conventional HMA.

  16. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China

    Science.gov (United States)

    Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang

    2016-01-01

    Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048

  17. Arabidopsis ZED1-related kinases mediate the temperature-sensitive intersection of immune response and growth homeostasis.

    Science.gov (United States)

    Wang, Zhicai; Cui, Dayong; Liu, Jing; Zhao, Jingbo; Liu, Cheng; Xin, Wei; Li, Yuan; Liu, Na; Ren, Dongtao; Tang, Dingzhong; Hu, Yuxin

    2017-07-01

    Activation of the immune response in plants antagonizes growth and development in the absence of pathogens, and such an autoimmune phenotype is often suppressed by the elevation of ambient temperature. However, molecular regulation of the ambient temperature-sensitive intersection of immune response and growth is largely elusive. A genetic screen identified an Arabidopsis mutant, zed1-D, by its high temperature-dependent growth retardation. A combination of molecular, cytological and genetic approaches was used to investigate the molecular basis behind the temperature-sensitive growth and immune response in zed1-D. A dominant mutation in HOPZ-ETI-DEFICIENT 1 (ZED1) is responsible for a high temperature-dependent autoimmunity and growth retardation in zed1-D. The autoimmune phenotype in zed1-D is dependent on the HOPZ-ACTIVATED RESISTANCE 1 (ZAR1). ZED1 and some ZED1-related kinases (ZRKs) are induced by elevated temperature and function cooperatively to suppress the immune response by modulating the transcription of SUPPRESSOR OF NPR1-1 CONSTITUTIVE 1 (SNC1) in the absence of pathogens. Our data reveal a previously unidentified role of ZRKs in the ambient temperature-sensitive immune response in the absence of pathogens, and thus reveals a possible molecular mechanism underlying the temperature-mediated intersection of immune response and growth in plants. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  18. SU-8 negative photoresist for optical mask manufacturing

    Science.gov (United States)

    Bogdanov, Alexei L.

    2000-06-01

    The requirements for better control, linearity, and uniformity of critical dimension (CD) on photomasks in fabrication of 180 and 150 nm generation devices result in increasing demand for thinner, more etching durable, and more sensitive e-beam resists. Novolac based resists with chemical amplification have been a choice for their sensitivity and stability during etching. However, difficult CD control due to the acid catalyzer diffusion and quite narrow post exposure bake (PEB) process window are some of the major drawbacks of these resists. SU-8 is recently introduced to the market negative photoresist. High sensitivity, fairly good adhesion properties, and relatively simple processing of SU-8 make it a good substitution for novolac based chemically amplified negative e-beam resists in optical mask manufacturing. The replacement of traditional chemically amplified resists by SU- 8 can increase the process latitude and reduce resist costs. Among the obvious drawbacks of SU-8 are the use of solvent- based developer and demand of oxygen plasma for resist removal. In this paper the use of SU-8 for optical mask manufacturing is reported. All steps of resist film preparation, exposure and development are paid a share of attention. Possibilities to use reactive ion etching (RIE) with oxygen in order to increase resist mask contrast are discussed. Special exposure strategy (pattern outlining) was employed to further improve the edge definition. The resist PEB temperature and time were studied to estimate their weight in overall CD control performance. Specially designed test patterns with 0.25 micrometer design rule could be firmly transferred into a chromium layer both by wet etching and ion milling. Influence of exposure dose variation on the pattern CD change was studied.

  19. Carbon-On-Carbon Manufacturing

    Science.gov (United States)

    Mungas, Gregory S. (Inventor); Buchanan, Larry (Inventor); Banzon, Jr., Jose T. (Inventor)

    2017-01-01

    The presently disclosed technology relates to carbon-on-carbon (C/C) manufacturing techniques and the resulting C/C products. One aspect of the manufacturing techniques disclosed herein utilizes two distinct curing operations that occur at different times and/or using different temperatures. The resulting C/C products are substantially non-porous, even though the curing operation(s) substantially gasify a liquid carbon-entrained filler material that saturates a carbon fabric that makes up the C/C products.

  20. Body temperature and cold sensation during and following exercise under temperate room conditions in cold-sensitive young trained females.

    Science.gov (United States)

    Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-11-01

    We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n  = 7) and non-cold-sensitive (Control, n  = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. Highly Sensitive Reentrant Cavity-Microstrip Patch Antenna Integrated Wireless Passive Pressure Sensor for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Fei Lu

    2017-01-01

    Full Text Available A novel reentrant cavity-microstrip patch antenna integrated wireless passive pressure sensor was proposed in this paper for high temperature applications. The reentrant cavity was analyzed from aspects of distributed model and equivalent lumped circuit model, on the basis of which an optimal sensor structure integrated with a rectangular microstrip patch antenna was proposed to better transmit/receive wireless signals. In this paper, the proposed sensor was fabricated with high temperature resistant alumina ceramic and silver metalization with weld sealing, and it was measured in a hermetic metal tank with nitrogen pressure loading. It was verified that the sensor was highly sensitive, keeping stable performance up to 300 kPa with an average sensitivity of 981.8 kHz/kPa at temperature 25°C, while, for high temperature measurement, the sensor can operate properly under pressure of 60–120 kPa in the temperature range of 25–300°C with maximum pressure sensitivity of 179.2 kHz/kPa. In practical application, the proposed sensor is used in a method called table lookup with a maximum error of 5.78%.

  2. Effect of growth temperature on lipid composition and ultraviolet sensitivity of human cells

    International Nuclear Information System (INIS)

    McAleer, M.A.; Moore, S.P.; Moss, S.H.

    1987-01-01

    Human skin fibroblasts were incubated at either 25 or 37 0 C before UV irradiation. Cells incubated at 25 0 C were more resistant to near UV radiation than cells grown at 37 0 C, but cells grown at the lower temperature were more sensitive to 254 nm radiation. Fatty acid analysis of membranes of cells showed that cells incubated at the lower temperature contained significantly higher amounts of linoleic acid (18:2) and linolenic acid (18:3) than cells incubated at 37 0 C. To determine if this difference in fatty acid content of the membranes was responsible for the UV survival characteristics of cells incubated at different temperatures, cells were enriched with either linoleate or linolenate during a 37 0 C incubation period. Gas chromatography revealed that cells incorporated the supplied fatty acid. Fatty acid enriched cells were then irradiated with near UV, and survival characteristics were compared to those obtained with cells grown at the lower incubation temperature. The results suggest that the different proportion of fatty acid content of the cells is not the cause of different UV sensitivities of cells grown at 25 0 C compared to cells grown at 37 0 C. (author)

  3. High-Sensitivity Temperature-Independent Silicon Photonic Microfluidic Biosensors

    Science.gov (United States)

    Kim, Kangbaek

    Optical biosensors that can precisely quantify the presence of specific molecular species in real time without the need for labeling have seen increased use in the drug discovery industry and molecular biology in general. Of the many possible optical biosensors, the TM mode Si biosensor is shown to be very attractive in the sensing application because of large field amplitude on the surface and cost effective CMOS VLSI fabrication. Noise is the most fundamental factor that limits the performance of sensors in development of high-sensitivity biosensors, and noise reduction techniques require precise studies and analysis. One such example stems from thermal fluctuations. Generally SOI biosensors are vulnerable to ambient temperature fluctuations because of large thermo-optic coefficient of silicon (˜2x10 -4 RIU/K), typically requiring another reference ring and readout sequence to compensate temperature induced noise. To address this problem, we designed sensors with a novel TM-mode shallow-ridge waveguide that provides both large surface amplitude for bulk and surface sensing. With proper design, this also provides large optical confinement in the aqueous cladding that renders the device athermal using the negative thermo-optic coefficient of water (~ --1x10-4RIU/K), demonstrating cancellation of thermo-optic effects for aqueous solution operation near 300K. Additional limitations resulting from mechanical actuator fluctuations, stability of tunable lasers, and large 1/f noise of lasers and sensor electronics can limit biosensor performance. Here we also present a simple harmonic feedback readout technique that obviates the need for spectrometers and tunable lasers. This feedback technique reduces the impact of 1/f noise to enable high-sensitivity, and a DSP lock-in with 256 kHz sampling rate can provide down to micros time scale monitoring for fast transitions in biomolecular concentration with potential for small volume and low cost. In this dissertation, a novel

  4. [Emission spectrum temperature sensitivity of Mg4FGeO6 : mn induced by laser].

    Science.gov (United States)

    Wang, Sheng; Liu, Jing-Ru; Shao, Jun; Hu, Zhi-Yun; Tao, Bo; Huang, Mei-Sheng

    2013-08-01

    In order to develop a new sort of thermally sensitive phosphor coating, the emission spectrum thermally sensitivity of Mg4FGeO6 : Mn induced by laser was studied. The spectrum measurement system with heating function was set up, and the emission spectrum of Mg4FGeO6 : Mn at various temperatures were measured. Absorption spectrum was measured, and the mechanism of formation of the structure of double peak was analyzed with the perturbation theory of crystal lattice. The group of peaks around 630 nm is represented by the transitions 4F"2 to 4A2, whereas the group of peaks around 660 nm is due to the transitions 4F'2 to 4A2. The occupancy of both excited states 4F'2 and 4F"2 is in thermal equilibrium. Thus increasing temperature causes the intensity of the emission in the group around 630 nm to increase at the expense of the emission intensity of the group around 660 nm. The various spectral regions in emission differ with temperature, which could be used to support the intensity-ratio measurement method. The intensity-ratio change curve as a function of temperature was fitted, which shows that the range of temperature measurement is between room temperature and 800 K.

  5. Identification of ribonucleotide reductase mutation causing temperature-sensitivity of herpes simplex virus isolates from whitlow by deep sequencing.

    Science.gov (United States)

    Daikoku, Tohru; Oyama, Yukari; Yajima, Misako; Sekizuka, Tsuyoshi; Kuroda, Makoto; Shimada, Yuka; Takehara, Kazuhiko; Miwa, Naoko; Okuda, Tomoko; Sata, Tetsutaro; Shiraki, Kimiyasu

    2015-06-01

    Herpes simplex virus 2 caused a genital ulcer, and a secondary herpetic whitlow appeared during acyclovir therapy. The secondary and recurrent whitlow isolates were acyclovir-resistant and temperature-sensitive in contrast to a genital isolate. We identified the ribonucleotide reductase mutation responsible for temperature-sensitivity by deep-sequencing analysis.

  6. High-temperature sensitivity and its acclimation for photosynthetic electron reactions of desert succulents

    Energy Technology Data Exchange (ETDEWEB)

    Chetti, M.B.; Nobel, P.S. (Univ. of California, Los Angeles (USA))

    1987-08-01

    Photosynthetic electron reactions of succulent plants from hot deserts are able to tolerate extremely high temperatures and to acclimate to seasonal increase in temperature. In this study, we report the influence of relatively long, in vivo, high-temperature treatments on electron transport reactions for two desert succulents, Agave deserti and Opuntia ficus-indica, species which can tolerate 60{degree}C. Whole chain electron transport averaged 3{degree}C more sensitive to a 1-hour high-temperature treatment than did PSII (Photosystem II) which in turn averaged 3{degree}C more sensitive than did PSI. For plants maintained at day/night air temperatures of 30{degree}C/20{degree}C, treatment at 50{degree}C cause these reactions to be inhibited an average of 39% during the first hour, an additional 31% during the next 4 hours, and 100% by 12 hours. Upon shifting the plants from 30{degree}C/20{degree}C to 45{degree}C/35{degree}C, the high temperatures where activity was inhibited 50% increased 3{degree}C to 8{degree}C for the three electron transport reactions, the half-times for acclimation averaging 5 days for A. deserti and 4 days for O. ficus-indica. For the 45{degree}C/35{degree}C plants treated at 60{degree}C for 1 hour, PSI activity was reduced by 54% for A. deserti and 36% for O. ficus-indica. Acclimation leads to a toleration of very high temperatures without substantial disruption of electron transport for these desert succulents, facilitating their survival in hot deserts. Indeed, the electron transport reactions of these species tolerate longer periods at higher temperatures than any other vascular plants so far reported.

  7. In-line ATR-UV and Raman Spectroscopy for Monitoring API Dissolution Process During Liquid-Filled Soft-Gelatin Capsule Manufacturing.

    Science.gov (United States)

    Wan, Boyong; Zordan, Christopher A; Lu, Xujin; McGeorge, Gary

    2016-10-01

    Complete dissolution of the active pharmaceutical ingredient (API) is critical in the manufacturing of liquid-filled soft-gelatin capsules (SGC). Attenuated total reflectance UV spectroscopy (ATR-UV) and Raman spectroscopy have been investigated for in-line monitoring of API dissolution during manufacturing of an SGC product. Calibration models have been developed with both techniques for in-line determination of API potency. Performance of both techniques was evaluated and compared. The ATR-UV methodology was found to be able to monitor the dissolution process and determine the endpoint, but was sensitive to temperature variations. The Raman technique was also capable of effectively monitoring the process and was more robust to the temperature variation and process perturbations by using an excipient peak for internal correction. Different data preprocessing methodologies were explored in an attempt to improve method performance.

  8. Temperature dependence of heat sensitization and thermotolerance induction with ethanol

    International Nuclear Information System (INIS)

    Henle, K.J.; Nagle, W.A.; Moss, A.J.

    1987-01-01

    Cytoxicity of 1 M ethanol was strongly temperature dependent; survival curves between 34 0 and 39 0 C were similar to heat survival curves between 40 and 45 0 without ethanol. Ethanol was non-toxic at 22 0 ; at 34.5 0 and 35.5 0 ethanol survival curves were biphasic. The major effect of 1 M ethanol was an effective temperature shift of 6.4 Celsius degrees, although temperatures between 34 0 and 36 0 caused additional sensitization reminiscent of the stepdown heating phenomenon. Induction of thermotolerance with equitoxic ethanol exposures at 35.5 0 and 37 0 or with heat alone (10 min, 45 0 ) resulted in tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance development with similar kinetics; in contrast, ethanol exposures at 22 0 did not induce any tolerance to hyperthermia. These data provide a rationale for conflicting reports in the literature regarding thermotolerance induction by ethanol and suggest that ethanol causes ''heat'' stress at temperatures that are generally considered to be physiological. This interpretation predicts that the use of ethanol and other organic solvents in high concentrations will cause effects at 37 0 that normally occur only at hyperthermic temperatures, including membrane perturbations and HSP synthesis, and that ''physiological'' temperatures must be precisely controlled under those conditions

  9. [Temperature sensitivity of soil organic carbon mineralization and β-glucosidase enzymekinetics in the northern temperate forests at different altitudes, China].

    Science.gov (United States)

    Fan, Jin-juan; Li, Dan-dan; Zhang, Xin-yu; He, Nian-peng; Bu, Jin-feng; Wang, Qing; Sun, Xiao-min; Wen, Xue-fa

    2016-01-01

    Soil samples, which were collected from three typical forests, i.e., Betula ermanii forest, coniferous mixed broad-leaved forest, and Pinus koraiensis forest, at different altitudes along the southern slope of Laotuding Mountain of Changbai Mountain range in Liaoning Province of China, were incubated over a temperature gradient in laboratory. Soil organic carbon mineralization rates (Cmin), soil β-1,4-glucosidase (βG) kinetics and their temperature sensitivity (Q₁₀) were measured. The results showed that both altitude and temperature had significant effects on Cmin · Cmin increased with temperature and was highest in the B. ermanii forest. The temperature sensitivity of Cmin [Q₁₀(Cmin)] ranked in order of B. ermanii forest > P. koraiensis forest > coniferous mixed broad-leaved forest, but did not differ significantly among the three forests. Both the maximum activity (Vmax) and the Michaelis constant (Km) of the βG responded positively to temperature for all the forests. The temperature sensitivity of Vmax [Q₁₀(Vmax)] ranged from 1.78 to 1.90, and the temperature sensitivity of Km [Q₁₀(Km)] ranged from 1.79 to 2.00. The Q₁₀(Vmax)/Q10(Km) ratios were significantly greater in the B. ermanii soil than in the other two forest soils, suggesting that the βG kinetics-dependent impacts of the global warming or temperature increase on the decomposition of soil organic carbon were temperature sensitive for the forests at the higher altitudes.

  10. Shrub encroachment alters sensitivity of soil respiration to temperature and moisture 2115

    Science.gov (United States)

    Shrub encroachment into grasslands creates a mosaic of different soil microsites ranging from open spaces to well-developed shrub canopies, and it is unclear how this affects the spatial variability in soil respiration characteristics, such as the sensitivity to soil temperature and moisture. This i...

  11. Temperature dependence of energy-transducing functions and inhibitor sensitivity in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Schuurmans, J.J.; Veerman, E.C.I.; Francke, J.A.; Torres-Pereira, J.M.G.; Kraayenhof, R.

    1984-01-01

    A comparative analysis of the temperature dependence of energy-transducing reactions in spinach (Spinacia oleracea) chloroplasts and their sensitivity for uncouplers and energy-transfer inhibitors at different temperatures is presented. Arrhenius plots reveal two groups of transitions, around 19/sup 0/C and around 12/sup 0/C. Activities that show transitions around 19/sup 0/C include linear electron flow from water to ferricyanide, its coupled photophosphorylation, the dark-release of the fluorescent probe atebrin, and the slow component of the 515 nm (carotenoid) absorbance decay after a flash. The transitions around 12/sup 0/C are observed with pyocyanine-mediated cyclic photophosphorylation, light- and dithioerythritol-activated ATP hydrolysis, the dark-release of protons, and the fast 515 nm decay component. It is suggested that both groups of temperature transitions are determined by proton displacements in different domains of the exposed thylakoid membranes. The effects of various uncouplers and an energy-transfer inhibitor are temperature dependent. Some uncouplers also show a different relative inhibition of proton uptake and ATP synthesis at lower temperatures. The efficiency of energy transduction (ATP/e/sub 3/) varied with temperature and was optimal around 10/sup 0/C.

  12. Corrosion and Creep Characteristics of the HANA-4 Alloy with the various Manufacturing Processes

    International Nuclear Information System (INIS)

    Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Jeong, Yong-Hwan

    2008-01-01

    Zirconium alloys have been used as a fuel cladding material for several decades, since these alloys have revealed a good corrosion resistance and mechanical properties in reactor operating conditions. The development of an advanced Zr-based alloy with an improved corrosion and creep resistance is necessary for the high burn-up operating conditions in PWRs. The alloying element effects of the Nb, Sn, Fe, Cr, Cu etc as well as an optimization of the manufacturing processes such as the reduction ratio and annealing temperatures have been studied to improve the corrosion and creep properties. A high Nb-containing Zr-based alloy named HANA-4 was designed at KAERI and its nominal composition is Zr-1.5Nb-0.4Sn-0.2Fe-0.1Cr in wt.%. For high Nb-containing Zr alloys, their corrosion resistance is very sensitive to their microstructural characteristics which are determined by a manufacturing process. In order to obtain the best manufacturing process for the HANA-4 alloy, various evaluations such as corrosion and creep tests, a microstructural analysis, and a texture analysis were performed on the HANA-4 alloy with various manufacturing processes

  13. Temperature-Sensitive Mutants of Mouse Hepatitis Virus Strain A59: Isolation, Characterization and Neuropathogenic Properties.

    NARCIS (Netherlands)

    M.J.M. Koolen (Marck); A.D.M.E. Osterhaus (Albert); G. van Steenis (Bert); M.C. Horzinek; B.A.M. van der Zeijst (Ben)

    1983-01-01

    textabstractTwenty 5-fluorouracil-induced temperature-sensitive (ts) mutants of mouse hepatitis virus strain A59 were isolated from 1284 virus clones. Mutants were preselected on the basis of their inability to induce syncytia in infected cells at the restrictive temperature (40 degrees) vs the

  14. Temperature- and pH-sensitive wearable materials for monitoring foot ulcers

    Directory of Open Access Journals (Sweden)

    Salvo P

    2017-01-01

    Full Text Available Pietro Salvo,1,2 Nicola Calisi,1 Bernardo Melai,1 Valentina Dini,3 Clara Paoletti,1 Tommaso Lomonaco,1 Andrea Pucci,1 Fabio Di Francesco,1 Alberto Piaggesi,4 Marco Romanelli3 1Department of Chemistry and Industrial Chemistry, University of Pisa, 2Institute of Clinical Physiology, National Council of Research, 3Wound Healing Research Unit, Department of Dermatology, University of Pisa, 4Diabetic Foot Section, Department of Medicine, University of Pisa, Pisa, Italy Abstract: Foot ulcers account for 15% of comorbidities associated with diabetes. Presently, no device allows the status of foot ulcers to be continuously monitored when patients are not hospitalized. In this study, we describe a temperature and a pH sensor capable of monitoring diabetic foot and venous leg ulcers developed in the frame of the seventh framework program European Union project SWAN-iCare (smart wearable and autonomous negative pressure device for wound monitoring and therapy. Temperature is measured by exploiting the variations in the electrical resistance of a nanocomposite consisting of multiwalled carbon nanotubes and poly(styrene-b-(ethylene-co-butylene-b-styrene. The pH sensor used a graphene oxide (GO layer that changes its electrical potential when pH changes. The temperature sensor has a sensitivity of ~85 Ω/°C in the range 25°C–50°C and a high repeatability (maximum standard deviation of 0.1% over seven repeated measurements. For a GO concentration of 4 mg/mL, the pH sensor has a sensitivity of ~42 mV/pH and high linearity (R2=0.99. Keywords: diabetic foot ulcer, wearable sensors, wound temperature, wound pH

  15. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.

    Science.gov (United States)

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-05-04

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells.

  16. Method of preparing high-temperature-stable thin-film resistors

    Science.gov (United States)

    Raymond, L.S.

    1980-11-12

    A chemical vapor deposition method for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR) is disclosed. Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor.

  17. Method of preparing high-temperature-stable thin-film resistors

    International Nuclear Information System (INIS)

    Raymond, L.S.

    1983-01-01

    A chemical vapor deposition method is disclosed for manufacturing tungsten-silicide thin-film resistors of predetermined bulk resistivity and temperature coefficient of resistance (TCR). Gaseous compounds of tungsten and silicon are decomposed on a hot substrate to deposit a thin-film of tungsten-silicide. The TCR of the film is determined by the crystallinity of the grain structure, which is controlled by the temperature of deposition and the tungsten to silicon ratio. The bulk resistivity is determined by the tungsten to silicon ratio. Manipulation of the fabrication parameters allows for sensitive control of the properties of the resistor

  18. Applicability of low-melting-point microcrystalline wax to develop temperature-sensitive formulations.

    Science.gov (United States)

    Matsumoto, Kohei; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-10-30

    Low-melting-point substances are widely used to develop temperature-sensitive formulations. In this study, we focused on microcrystalline wax (MCW) as a low-melting-point substance. We evaluated the drug release behavior of wax matrix (WM) particles using various MCW under various temperature conditions. WM particles containing acetaminophen were prepared using a spray congealing technique. In the dissolution test at 37°C, WM particles containing low-melting-point MCWs whose melting was starting at approx. 40°C (Hi-Mic-1045 or 1070) released the drug initially followed by the release of only a small amount. On the other hand, in the dissolution test at 20 and 25°C for WM particles containing Hi-Mic-1045 and at 20, 25, and 30°C for that containing Hi-Mic-1070, both WM particles showed faster drug release than at 37°C. The characteristic drug release suppression of WM particles containing low-melting-point MCWs at 37°C was thought attributable to MCW melting, as evidenced by differential scanning calorimetry analysis and powder X-ray diffraction analysis. Taken together, low-melting-point MCWs may be applicable to develop implantable temperature-sensitive formulations that drug release is accelerated by cooling at administered site. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Increase of ozone concentrations, its temperature sensitivity and the precursor factor in South China

    Directory of Open Access Journals (Sweden)

    Y. C. Lee

    2014-08-01

    Full Text Available Concerns have been raised about the possible connections between the local and regional photochemical problem and global warming. The current study assesses the trend of ozone in Hong Kong and the Pearl River Delta (PRD in South China and investigates the interannual changes of sensitivity of ozone to air temperature, as well as the trends in regional precursors. Results reveal, at the three monitoring sites from the mid-1990s to 2010, an increase in the mean ozone concentrations from 1.0 to 1.6 µg m−3 per year. The increase occurred in all seasons, with the highest rate in autumn. This is consistent with trends and temperature anomalies in the region. The increase in the sensitivity of ozone to temperature is clearly evident from the correlation between ozone (OMI [Ozone Monitoring Instrument] column amount and surface air temperature (from the Atmospheric Infrared Sounder displayed in the correlation maps for the PRD during the prominently high ozone period of July–September. It is observed to have increased from 2005 to 2010, the latter being the hottest year on record globally. To verify this temporal change in sensitivity, the ground-level trends of correlation coefficients/regression slopes are analysed. As expected, results reveal a statistically significant upward trend over a 14-year period (1997–2010. While the correlation revealed in the correlation maps is in agreement with the corresponding OMI ozone maps when juxtaposed, temperature sensitivity of surface ozone also shows an association with ozone concentration, with R=0.5. These characteristics of ozone sensitivity are believed to have adverse implications for the region. As shown by ground measurements and/or satellite analyses, the decrease in nitrogen oxides (NO2 and NOx in Hong Kong is not statistically significant while NO2 of the PRD has only very slightly changed. However, carbon dioxide has remarkably declined in the whole region. While these observations concerning

  20. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    Science.gov (United States)

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018

  1. Effect of annealing temperature and dopant concentration on the thermoluminescence sensitivity in LiF:Mg,Cu,Ag material.

    Science.gov (United States)

    Yahyaabadi, Akram; Torkzadeh, Falamarz; Rezaei Ochbelagh, Dariush; Hosseini Pooya, Seyed Mahdi

    2018-04-24

    LiF:Mg,Cu,Ag is a new dosimetry material that is similar to LiF:Mg,Cu,P in terms of dosimetric properties. The effect of the annealing temperature in the range of 200 to 350°C on the thermoluminescence (TL) sensitivity and the glow curve structure of this material at different concentrations of silver (Ag) was investigated. It has been demonstrated that the optimum values of the annealing temperature and the Ag concentration are 240°C and 0.1 mol% for better sensitivity, respectively. The TL intensity decreases at annealing temperatures lower than 240°C or higher than 240°C, reaching a minimum at 300°C and then again increases for various Ag concentrations. It was observed that the glow curve structure altered and the area under the low temperature peak as well as the area under the main dosimetric peak decreased with increasing annealing temperature. The position of the main dosimetric peak moved in the direction of higher temperatures, but at 320 and 350°C annealing temperatures, it shifted to lower temperatures. It was also observed that the TL sensitivity could partially be recovered by a combined annealing procedure. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Mg/Ca- Δ CO3porewater2- -temperature calibration for Globobulimina spp.: A sensitive paleothermometer for deep-sea temperature reconstruction

    Science.gov (United States)

    Weldeab, Syee; Arce, Adam; Kasten, Sabine

    2016-03-01

    Existing benthic foraminiferal Mg/Ca-temperature calibrations are surrounded by substantial uncertainties mainly due to low temperature sensitivity of Mg/Ca in most benthic foraminifers and the effect of carbonate ion concentration on benthic foraminiferal Mg/Ca. Here we present Mg/Ca analysis of Rose Bengal stained and exceptionally well-preserved tests of the infaunal benthic foraminifer Globobulimina spp. from 39 eastern equatorial Atlantic core top samples. Mg/Ca in Globobulimina spp. varies between 2.5 mmol/mol and 9.1 mmol/mol corresponding to bottom water temperatures (BWT) between 1.8 °C and 19.1 °C and Δ CO3pore water2- between 33.7 ± 4 and - 34.3 ± 4 μmol /kg in sediment depths between 1 and 10 cm. Mg/Ca and BWT are linearly correlated with a best fit of Mg/Ca [mmol/mol] = (0.36 ± 0.02) * BWT [°C] + 2.22 ± 0.19 (r2 = 0.92, p-value: 11 *10-20, and n = 39). Using total alkalinity and pH data of pore water samples from 64 Atlantic multi-corer sites, we obtained Δ CO3pore water2- data from the depth habitat range of Globobulimina spp. (≥1 cm ≤ 10 cm below sediment surface). We show that Δ CO3pore waterSUP>2- is significantly lower than and linearly co-varies with the ΔCO2-3 of the overlying bottom water: Δ CO3pore water2- = (0.67 ± 0.05) * Δ CO3bottom water2- - (39.84 ± 1.98); r2 = 0.75, p-value: 6 *10-20, n = 64. We found a Mg/Ca sensitivity of 0.009 ± 0.0044 mmol /mol per μmol/kg Δ CO3pore water2- and Mg/Ca temperature sensitivity of 0.32 ± 0.06 mmol /mol / °C after a correction for the Δ CO3pore water2- effect. This study provides a robust Mg/Ca-temperature calibration, highlights that Δ CO3pore water2- is spatially and most likely temporally variable, and contradicts the notion that infaunal foraminiferal Mg/Ca is relatively immune from ΔCO2-3 changes in the overlying bottom water. Furthermore, comparison of down core Mg/Ca data of Cibicides pachyderma and Globobulimina spp. demonstrates that the high temperature sensitivity of

  3. Cascaded-cavity Fabry-Perot interferometer for simultaneous measurement of temperature and strain with cross-sensitivity compensation

    Science.gov (United States)

    Tian, Jiajun; Jiao, Yuzhu; Ji, Shaobo; Dong, Xiaolong; Yao, Yong

    2018-04-01

    We propose and demonstrate a fiber sensor for simultaneous temperature and strain measurements. The proposed sensor is implemented by a cascaded-cavity Fabry-Perot (FP) fiber interferometer. The two cascaded FP cavities comprise a micro-air-cavity in a hollow-core tube fiber and a micro-silica-cavity in a standard single-mode fiber. To separate the interference spectrum of each FP cavity, the total spectrum is filtered in the frequency domain through band-pass filters, whose central frequencies were predesigned based on the relationship between the spatial frequency and free spectral range of each FP cavity. The different cross-sectional areas and thermal-optic coefficients of the two FP cavities confer different sensitivities to temperature and strain. Both parameters were measured simultaneously by tracking the wavelength shifts in the filtered interference spectra of the FP cavities. Moreover, the temperature-strain cross-sensitivity was compensated by solving a sensitivity-coefficient matrix equation for the two cavities, using the calibrated temperatures and strains. Other advantages of the proposed sensor are simple fabrication and an all-fiber structure. Owing to these properties, the proposed sensor is potentially applicable to real sensing applications.

  4. Body temperature and cold sensation during and following exercise under temperate room conditions in cold‐sensitive young trained females

    OpenAIRE

    Fujii, Naoto; Aoki‐Murakami, Erii; Tsuji, Bun; Kenny, Glen P.; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-01-01

    Abstract We evaluated cold sensation at rest and in response to exercise‐induced changes in core and skin temperatures in cold‐sensitive exercise trained females. Fifty‐eight trained young females were screened by a questionnaire, selecting cold‐sensitive (Cold‐sensitive, n = 7) and non‐cold‐sensitive (Control, n = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then...

  5. Temperature-sensitive porous membrane production through radiation co-grafting of NIPAAm on/in PVDF porous membrane

    International Nuclear Information System (INIS)

    Liu Qi; Zhu Zhiyong; Yang Xiaomin; Chen Xiliang; Song Yufeng

    2007-01-01

    N-isopropylacrylamide (NIPAAm) monomer was grafted on and in poly(vinylidene fluoride) (PVDF) micro-pore membrane by γ-irradiation. The influence of irradiation and reaction conditions on the grafting yield was investigated in detail. The chemical structure of NIPAAm-grafted PVDF (NIPAAm-g-PVDF) membrane was characterized by Fourier transform infrared spectra and X-ray photoelectron spectra measurements. The morphology of the sample surface as well as the cross-section before and after grafting was characterized by scanning electron microscope. The temperature sensitive properties of the membrane were monitored by measuring the conductance as well as the water flux through the sample thickness. The results show that the membrane exhibits clearly temperature-sensitive permeability to water as expected, i.e. the permeability of water changes dramatically as the temperature goes over the lower critical solution temperature of NIPAAm

  6. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.

    Science.gov (United States)

    Kharouba, Heather M; Vellend, Mark

    2015-09-01

    1. Variation among species in their phenological responses to temperature change suggests that shifts in the relative timing of key life cycle events between interacting species are likely to occur under climate warming. However, it remains difficult to predict the prevalence and magnitude of these shifts given that there have been few comparisons of phenological sensitivities to temperature across interacting species. 2. Here, we used a broad-scale approach utilizing collection records to compare the temperature sensitivity of the timing of adult flight in butterflies vs. flowering of their potential nectar food plants (days per °C) across space and time in British Columbia, Canada. 3. On average, the phenology of both butterflies and plants advanced in response to warmer temperatures. However, the two taxa were differentially sensitive to temperature across space vs. across time, indicating the additional importance of nontemperature cues and/or local adaptation for many species. 4. Across butterfly-plant associations, flowering time was significantly more sensitive to temperature than the timing of butterfly flight and these sensitivities were not correlated. 5. Our results indicate that warming-driven shifts in the relative timing of life cycle events between butterflies and plants are likely to be prevalent, but that predicting the magnitude and direction of such changes in particular cases is going to require detailed, fine-scale data. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  7. Small-Angle Neutron Scattering Study of Structural Changes in Temperature-Sensitive Microgel Colloids

    NARCIS (Netherlands)

    Stieger, M.A.; Richtering, W.; Pedersen, J.S.; Lindner, P.

    2004-01-01

    The structure of temperature-sensitive poly(N-isopropylacrylamide) microgels in dilute suspension was investigated by means of small-angle neutron scattering. A direct modeling expression for the scattering intensity distribution was derived which describes very well the experimental data at all

  8. Fabrication of a microfluidic chip by UV bonding at room temperature for integration of temperature-sensitive layers

    Science.gov (United States)

    Schlautmann, S.; Besselink, G. A. J.; Radhakrishna Prabhu, G.; Schasfoort, R. B. M.

    2003-07-01

    A method for the bonding of a microfluidic device at room temperature is presented. The wafer with the fluidic structures was bonded to a sensor wafer with gold pads by means of adhesive bonding, utilizing an UV-curable glue layer. To avoid filling the fluidic channels with the glue, a stamping process was developed which allows the selective application of a thin glue layer. In this way a microfluidic glass chip was fabricated that could be used for performing surface plasmon resonance measurements without signs of leakage. The advantage of this method is the possibility of integration of organic layers as well as other temperature-sensitive layers into a microfluidic glass device.

  9. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    Science.gov (United States)

    Chen, Daquan; Sun, Kaoxiang; Mu, Hongjie; Tang, Mingtan; Liang, Rongcai; Wang, Aiping; Zhou, Shasha; Sun, Haijun; Zhao, Feng; Yao, Jianwen; Liu, Wanhui

    2012-01-01

    Background In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS) polymer was used for vaginal administration. Methods The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment. Results A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0). Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0. Conclusion This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery. PMID:22679372

  10. What is the Right Temperature Sensitivity for Foraminiferal Mg/ca Paleothermometry in Ancient Oceans?

    Science.gov (United States)

    Eggins, S.; Holland, K.; Hoenisch, B.; Spero, H. J.; Allen, K. A.

    2013-12-01

    Mg/Ca seawater thermometry has become a cornerstone of modern paleoceanography. Laboratory experiments, seafloor core-top samples, plankton trap and tow collected materials all indicate consistent temperature sensitivity (9-10% increase in Mg/Ca per °C) for a full range of modern planktic foraminifer species. While these results demonstrate the overall robustness of Mg/Ca paleothermometry for the modern ocean, it is an empirical tool for which there is limited understanding of its bio-physio-chemical basis and its applicability to ancient oceans. We have undertaken experimental cultures of Orbulina universa, Globigerinoides sacculifer and Globigerinoides ruber (pink) across a range of seawater compositions (temperature, carbonate chemistry and Mg/Casw) that encompass modern and ancient Paleogene and Cretaceous ocean compositions (Mg/Casw 0.25x to 2x modern and pCO2 = 200 to 1500 ppmv). Our results reveal that the sensitivity of the Mg/Ca-thermometer for planktic foraminifers reduces significantly with Mg/Casw, rather than remaining constant as has been widely assumed or, increasing at lower Mg/Casw as proposed recently by Evans and Müller (2012). These results indicate that the modern sensitivity of 9-10% increase in Mg/Ca per °C cannot yet be applied to obtain reliable relative temperature change estimates to ancient oceans. These results further suggest that variations in foraminiferal Mg/Ca compositions in ancient oceans with lower Mg/Casw may correspond to larger temperature variations than in the modern ocean. Evans D. and Müller W., Paleoceanography, vol. 27, PA4205, doi:10.1029/2012PA002315, 2012

  11. Sensitivity of regional climate to global temperature and forcing

    International Nuclear Information System (INIS)

    Tebaldi, Claudia; O’Neill, Brian; Lamarque, Jean-François

    2015-01-01

    The sensitivity of regional climate to global average radiative forcing and temperature change is important for setting global climate policy targets and designing scenarios. Setting effective policy targets requires an understanding of the consequences exceeding them, even by small amounts, and the effective design of sets of scenarios requires the knowledge of how different emissions, concentrations, or forcing need to be in order to produce substantial differences in climate outcomes. Using an extensive database of climate model simulations, we quantify how differences in global average quantities relate to differences in both the spatial extent and magnitude of climate outcomes at regional (250–1250 km) scales. We show that differences of about 0.3 °C in global average temperature are required to generate statistically significant changes in regional annual average temperature over more than half of the Earth’s land surface. A global difference of 0.8 °C is necessary to produce regional warming over half the land surface that is not only significant but reaches at least 1 °C. As much as 2.5 to 3 °C is required for a statistically significant change in regional annual average precipitation that is equally pervasive. Global average temperature change provides a better metric than radiative forcing for indicating differences in regional climate outcomes due to the path dependency of the effects of radiative forcing. For example, a difference in radiative forcing of 0.5 W m −2 can produce statistically significant differences in regional temperature over an area that ranges between 30% and 85% of the land surface, depending on the forcing pathway. (letter)

  12. Refractive index and temperature sensitivity characteristics of a micro-slot fiber Bragg grating.

    Science.gov (United States)

    Saffari, Pouneh; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin

    2012-07-10

    Fabrication and characterization of a UV inscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74 μm(h)×125 μm(w)×1388.72 μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off.

  13. A method for manufacturing monocrystals

    International Nuclear Information System (INIS)

    Faure, Jacqueline; Malmejac, Yves; Schaub, Bernard.

    1973-01-01

    Description is given of a method for manufacturing monocrystals, substantially free of disorder, of a metal showing an allotropic transformation at a temperature lower than its melting point. Monocrystals of the raw metal having undergone a uni-directional solidification are heated to a temperature between the allotropic transformation point and the metal melting point; the monocrystals are maintained in the vicinity of that temperature for a given period of time; they are cooled down to a temperature lower than the allotropic transformation point, then they are annealed and cooled down to room temperature. Such monocrystals are used in neutron monochromators [fr

  14. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology

    Science.gov (United States)

    Dubois, Alexis; Ricote, Sandrine; Braun, Robert J.

    2017-11-01

    Recent progress in the performance of intermediate temperature (500-600 °C) protonic ceramic fuel cells (PCFCs) has demonstrated both fuel flexibility and increasing power density that approach commercial application requirements. These developments may eventually position the technology as a viable alternative to solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs). The PCFCs investigated in this work are based on a BaZr0.8Y0.2O3-δ (BZY20) thin electrolyte supported by BZY20/Ni porous anodes, and a triple conducting cathode material comprised of BaCo0.4Fe0.4Zr0.1Y0.1O3-δ (BCFZY0.1). These cells are prepared using a low-cost solid-state reactive sintering (SSRS) process, and are capable of power densities of 0.156 W cm-2 at 500 °C operating directly from methane fuel. We develop a manufacturing cost model to estimate the Nth generation production costs of PCFC stack technology using high volume manufacturing processes and compare them to the state-of-the-art in SOFC technology. The low-cost cell manufacturing enabled by the SSRS technique compensates for the lower PCFC power density and the trade-off between operating temperature and efficiency enables the use of lower-cost stainless steel materials. PCFC stack production cost estimates are found to be as much as 27-37% lower at 550 °C than SOFCs operating at 800 °C.

  15. Temperature-sensitive leaf color mutation in rice

    International Nuclear Information System (INIS)

    Shu Qingyao; Liu Guifu; Xia Yingwu

    1996-01-01

    Studies on the leaf color appearance of 4 chlorophyll-deficient mutation lines both in field and in phytotron were carried out. The mutation lines were induced by 60 Co gamma rays, and showed that white or yellow leaves at seedling stage were quite different from their-parent 2177 S, a thermal sensitive genie male sterile line and any other rice materials. The temperature had great influence on the expression of leaf color at seedling stage in the mutation lines. the leaf color was white at 30∼35 degree C for the lines W 4 and W 11 . The chlorophyll content of 1.5-leaf-age seedlings was 0.0219 and 0.0536 mg/g FW respectively for W 4 and W 11 at 35 degree C. When the temperature dropped to 20∼25 degree C, the seedlings showed yellow or yellowish and the chlorophyll content reached to 0.2410 and 0.3431 mg/g FW at 25 degree C, respectively. However, the responses to temperature for W 17 and W 25 were just the opposite. They were white at 20∼25 degree C, but appeared greenish at 30∼35 degree C. The chlorophyll content increased from 0.0813 and 0.0172 mg/g FW at 25 degree C to 1.0570 and 1.1367 mg/g FW at 35 degree C for the lines W 1 -7 and W 25 , respectively. The parent line 2177 S showed normal green and the chlorophyll content was between 2.108 and 2.118 mg/g FW. The W 11 is exception, which showed yellow to light green in lifetime, and all the mutation lines could convert to normal green after the extension of the fourth leaf. The chlorophyll content of 3.5-leaf-age W 4 and W 17 seedlings grown under 25 degree C reached to 2.2190 and 1.993 mg/g FW, which was about 86. 6% and 81.1% of that of 2177 S at the same stage. When grown at the temperature bellow 20 degree C, W 25 maintained white and could not changed into green after the 4th leaf extension, and showed a conditional lethal status

  16. Sensitivity of Distributions of Climate System Properties to Surface Temperature Datasets

    Science.gov (United States)

    Libardoni, A. G.; Forest, C. E.

    2011-12-01

    Predictions of climate change from models depend strongly on the representation of climate system properties emerging from the processes and feedbacks in the models. The quality of any model prediction can be evaluated by determining how well its output reproduces the observed climate system. With this evaluation, the reliability of climate projections derived from the model and provided for policy makers is assessed and quantified. In this study, surface temperature, upper-air temperature, and ocean heat content data are used to constrain the distributions of the parameters that define three climate system properties in the MIT Integrated Global Systems Model: climate sensitivity, the rate of ocean heat uptake into the deep ocean, and net anthropogenic aerosol forcing. In particular, we explore the sensitivity of the distributions to the surface temperature dataset used to estimate the likelihood of model output given the observed climate records. In total, five different reconstructions of past surface temperatures are used and the resulting parameter distribution functions differ from each other. Differences in estimates of climate sensitivity mode and mean are as great as 1 K between the datasets, with an overall range of 1.2 to 5.3 K using the 5-95 confidence intervals. Ocean effective diffusivity is poorly constrained regardless of which dataset is used. All distributions show broad distributions and only three show signs of a distribution mode. When a mode is present, they tend to be for low diffusivity values. Distributions for the net aerosol forcing show similar shapes and cluster into two groups that are shifted by approximately 0.1 watts per square meter. However, the overall spread of forcing values from the 5-95 confidence interval, -0.19 to -0.83 watts per square meter, is small compared to other uncertainties in climate forcings. Transient climate response estimates derived from these distributions range between 0.87 and 2.41 K. Similar to the

  17. The clear-sky greenhouse effect sensitivity to a sea surface temperature change

    Science.gov (United States)

    Duvel, J. PH.; Breon, F. M.

    1991-01-01

    The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.

  18. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    Science.gov (United States)

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field.

  19. Post-deposition annealing temperature dependence TiO_2-based EGFET pH sensor sensitivity

    International Nuclear Information System (INIS)

    Zulkefle, M. A.; Rahman, R. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2016-01-01

    EGFET pH sensor is one type of pH sensor that is used to measure and determine pH of a solution. The sensing membrane of EGFET pH sensor plays vital role in the overall performance of the sensor. This paper studies the effects of different annealing temperature of the TiO_2 sensing membranes towards sensitivity of EGFET pH sensor. Sol-gel spin coating was chosen as TiO_2 deposition techniques since it is cost-effective and produces thin film with uniform thickness. Deposited TiO_2 thin films were then annealed at different annealing temperatures and then were connected to the gate of MOSFET as a part of the EGFET pH sensor structure. The thin films now act as sensing membranes of the EGFET pH sensor and sensitivity of each sensing membrane towards pH was measured. From the results it was determined that sensing membrane annealed at 300 °C gave the highest sensitivity followed by sample annealed at 400 °C and 500 °C.

  20. Effects of electrostatic discharge on three cryogenic temperature sensor models

    Energy Technology Data Exchange (ETDEWEB)

    Courts, S. Scott; Mott, Thomas B. [Lake Shore Cryotronics, 575 McCorkle Blvd., Westerville, OH 43082 (United States)

    2014-01-29

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure.

  1. Effects of electrostatic discharge on three cryogenic temperature sensor models

    International Nuclear Information System (INIS)

    Courts, S. Scott; Mott, Thomas B.

    2014-01-01

    Cryogenic temperature sensors are not usually thought of as electrostatic discharge (ESD) sensitive devices. However, the most common cryogenic thermometers in use today are thermally sensitive diodes or resistors - both electronic devices in their base form. As such, they are sensitive to ESD at some level above which either catastrophic or latent damage can occur. Instituting an ESD program for safe handling and installation of the sensor is costly and it is desirable to balance the risk of ESD damage against this cost. However, this risk cannot be evaluated without specific knowledge of the ESD vulnerability of the devices in question. This work examines three types of cryogenic temperature sensors for ESD sensitivity - silicon diodes, Cernox(trade mark, serif) resistors, and wire wound platinum resistors, all manufactured by Lake Shore Cryotronics, Inc. Testing was performed per TIA/EIA FOTP129 (Human Body Model). Damage was found to occur in the silicon diode sensors at discharge levels of 1,500 V. For Cernox(trade mark, serif) temperature sensors, damage was observed at 3,500 V. The platinum temperature sensors were not damaged by ESD exposure levels of 9,900 V. At the lower damage limit, both the silicon diode and the Cernox(trade mark, serif) temperature sensors showed relatively small calibration shifts of 1 to 3 K at room temperature. The diode sensors were stable with time and thermal cycling, but the long term stability of the Cernox(trade mark, serif) sensors was degraded. Catastrophic failure occurred at higher levels of ESD exposure

  2. Composite materials pipings: selection of basic materials and manufacturing process, quality control during manufacture

    International Nuclear Information System (INIS)

    Pays, M.F.

    1997-01-01

    The purpose of the paper is to present a summary of the knowledge acquired at the R and D on resins used as composite matrix, the resistance to hydrolysis and mechanical strength of pipings made from these materials, and on quality control during manufacture. The initial targets concerning the material selection, industrial manufacturing and quality control procedures are presented. The paper describes the results obtained concerning the investigation of the damage produced by hydrolysis in polyesters, vinyl esters and epoxides, the influence of temperature, reinforcement and the mechanical characterization of the tubing manufacturing. The performances of the nondestructive testings (radiography, ultrasonic controls, differential interferometry and infrared thermography) used are also reported. The paper ends with a further research and testings programme. (author)

  3. Highly Sensitive Temperature Sensors Based on Fiber-Optic PWM and Capacitance Variation Using Thermochromic Sensing Membrane

    Directory of Open Access Journals (Sweden)

    Md. Rajibur Rahaman Khan

    2016-07-01

    Full Text Available In this paper, we propose a temperature/thermal sensor that contains a Rhodamine-B sensing membrane. We applied two different sensing methods, namely, fiber-optic pulse width modulation (PWM and an interdigitated capacitor (IDC-based temperature sensor to measure the temperature from 5 °C to 100 °C. To the best of our knowledge, the fiber-optic PWM-based temperature sensor is reported for the first time in this study. The proposed fiber-optic PWM temperature sensor has good sensing ability; its sensitivity is ~3.733 mV/°C. The designed temperature-sensing system offers stable sensing responses over a wide dynamic range, good reproducibility properties with a relative standard deviation (RSD of ~0.021, and the capacity for a linear sensing response with a correlation coefficient of R2 ≈ 0.992 over a wide sensing range. In our study, we also developed an IDC temperature sensor that is based on the capacitance variation principle as the IDC sensing element is heated. We compared the performance of the proposed temperature-sensing systems with different fiber-optic temperature sensors (which are based on the fiber-optic wavelength shift method, the long grating fiber-optic Sagnac loop, and probe type fiber-optics in terms of sensitivity, dynamic range, and linearity. We observed that the proposed sensing systems have better sensing performance than the above-mentioned sensing system.

  4. The state of the art report on the development of manufacturing technology of fusion reactor FW blanket and mock-up in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. Y.; Jeong, Y. H.; Baek, J. H.; Kim, J. H.; Kim, H. G

    2004-08-15

    The joining technology of first wall blanket has been developed by JAERI in collaboration with Kawasaki Heavy Industry, Isuau Motors and University of Tsukuba in Japan. A variety of joining technologies including HIP, brazing, casing and friction welding was applied to the manufacturing of SS/SS and Cu/SS joint. In Be/Cu joining, it was emphasized to find the optimal HIP temperature lower than 650 .deg. C in order to avoid excessive SS sensitization because the joining of Be tile to Cu heat sink is a final processing step in the manufacturing of FW blanket. The selected HIP condition were 620 .deg. C, 150MPa and 2hr with Cu interlayer. Sample tests for joints was completed by 1995. The small scale mockup was manufactured and its performance was qualified by end of 2000. From 2001, the manufacturing and the characterization has been carried out for the larger scale mockup.

  5. The state of the art report on the development of manufacturing technology of fusion reactor FW blanket and mock-up in Japan

    International Nuclear Information System (INIS)

    Park, J. Y.; Jeong, Y. H.; Baek, J. H.; Kim, J. H.; Kim, H. G.

    2004-08-01

    The joining technology of first wall blanket has been developed by JAERI in collaboration with Kawasaki Heavy Industry, Isuau Motors and University of Tsukuba in Japan. A variety of joining technologies including HIP, brazing, casing and friction welding was applied to the manufacturing of SS/SS and Cu/SS joint. In Be/Cu joining, it was emphasized to find the optimal HIP temperature lower than 650 .deg. C in order to avoid excessive SS sensitization because the joining of Be tile to Cu heat sink is a final processing step in the manufacturing of FW blanket. The selected HIP condition were 620 .deg. C, 150MPa and 2hr with Cu interlayer. Sample tests for joints was completed by 1995. The small scale mockup was manufactured and its performance was qualified by end of 2000. From 2001, the manufacturing and the characterization has been carried out for the larger scale mockup

  6. Sensitivity of glaciation in the arid subtropical Andes to changes in temperature, precipitation, and solar radiation

    Science.gov (United States)

    Vargo, L. J.; Galewsky, J.; Rupper, S.; Ward, D. J.

    2018-04-01

    The subtropical Andes (18.5-27 °S) have been glaciated in the past, but are presently glacier-free. We use idealized model experiments to quantify glacier sensitivity to changes in climate in order to investigate the climatic drivers of past glaciations. We quantify the equilibrium line altitude (ELA) sensitivity (the change in ELA per change in climate) to temperature, precipitation, and shortwave radiation for three distinct climatic regions in the subtropical Andes. We find that in the western cordillera, where conditions are hyper-arid with the highest solar radiation on Earth, ELA sensitivity is as high as 34 m per % increase in precipitation, and 70 m per % decrease in shortwave radiation. This is compared with the eastern cordillera, where precipitation is the highest of the three regions, and ELA sensitivity is only 10 m per % increase in precipitation, and 25 m per % decrease in shortwave radiation. The high ELA sensitivity to shortwave radiation highlights the influence of radiation on mass balance of high elevation and low-latitude glaciers. We also consider these quantified ELA sensitivities in context of previously dated glacial deposits from the regions. Our results suggest that glaciation of the humid eastern cordillera was driven primarily by lower temperatures, while glaciations of the arid Altiplano and western cordillera were also influenced by increases in precipitation and decreases in shortwave radiation. Using paleoclimate records from the timing of glaciation, we find that glaciation of the hyper-arid western cordillera can be explained by precipitation increases of 90-160% (1.9-2.6× higher than modern), in conjunction with associated decreases in shortwave radiation of 7-12% and in temperature of 3.5 °C.

  7. Oil prices, SUVs, and Iraq. An investigation of automobile manufacturer oil price sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Ken [United States Navy (United States); Schnusenberg, Oliver [Department of Accounting and Finance, Coggin College of Business, The University of North Florida, 1 UNF Drive, Jacksonville, FL 32224 (United States)

    2009-05-15

    There has been much speculation about the recent upsurge in crude oil prices and the effect it will have on the economy and business. The objective of this paper is to investigate the relationship between oil prices and stock prices of automobile manufacturers. We add an oil price factor, measured alternatively by the excess change in WTI crude oil prices or the excess return on an energy ETF, to the Fama-French three-factor model over the period March 20, 2001 to September 30, 2008. Our dependent variable is the excess return on a price-weighted index of automobile manufacturers. Results indicate that oil prices add value to the pricing model, particularly for manufacturers specializing in SUVs and for a subperiod following the Iraq invasion on March 19, 2003. (author)

  8. An investigation of process sensitivity for electron beam evaporation of beryllium

    International Nuclear Information System (INIS)

    Egert, C.M.; Schmoyer, D.D.; Nordin, C.W.; Berry, A.

    1991-01-01

    This paper reports on the process sensitivity of a beryllium coating process investigated using a statistical design of experiments approach. Process sensitivity is a measure of the variation in a given quality characteristic of the coating as a function of the evaporation process parameters. Manufacturing processes which maximize quality while simultaneously minimizing variability are most desirable. Three evaporation process parameters were included in this study: deposition rate, substrate temperature, and run time. A central composite experimental design employing a total of 18 coating runs was used to produce beryllium coatings on aluminum, silicon, fused silica, and beryllium substrates. The quality of the resulting coatings was characterized by scanning electron microscopy, IR spectrophotometry, stylus profilometry, and weight gain (thickness). Analysis of these results allowed the development of functional relationship between the quality characteristics (thickness, reflectance, etc.) and the evaporation process parameters. Process sensitivity for each response was then determined by calculating the gradient of each quality characteristic with respect to all three process parameters. Three dimensional plots were developed of the quality characteristic and its process sensitivity as a function of process parameters. Both quality characteristic and process sensitivity plots will be presented and discussed. For many of the quality characteristics, temperature during deposition was found to be the most sensitive process parameter for the beryllium c-beam evaporation process

  9. Low-Temperature Crystalline Titanium Dioxide by Atomic Layer Deposition for Dye-Sensitized Solar Cells

    KAUST Repository

    Chandiran, Aravind Kumar

    2013-04-24

    Low-temperature processing of dye-sensitized solar cells (DSCs) is crucial to enable commercialization with low-cost, plastic substrates. Prior studies have focused on mechanical compression of premade particles on plastic or glass substrates; however, this did not yield sufficient interconnections for good carrier transport. Furthermore, such compression can lead to more heterogeneous porosity. To circumvent these problems, we have developed a low-temperature processing route for photoanodes where crystalline TiO2 is deposited onto well-defined, mesoporous templates. The TiO2 is grown by atomic layer deposition (ALD), and the crystalline films are achieved at a growth temperature of 200 C. The ALD TiO2 thickness was systematically studied in terms of charge transport and performance to lead to optimized photovoltaic performance. We found that a 15 nm TiO2 overlayer on an 8 μm thick SiO2 film leads to a high power conversion efficiency of 7.1% with the state-of-the-art zinc porphyrin sensitizer and cobalt bipyridine redox mediator. © 2013 American Chemical Society.

  10. Data on the experiments of temperature-sensitive hydrogels for pH-sensitive drug release and the characterizations of materials

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-04-01

    Full Text Available This article contains experimental data on the strain sweep, the calibration curve of drug (doxorubicin, DOX and the characterizations of materials. Data included are related to the research article “Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release” (Zhang et al., 2017 [1]. The strain sweep experiments were performed on a rotational rheometer. The calibration curves were obtained by analyzing the absorbance of DOX solutions on a UV–vis-NIR spectrometer. Molecular weight (Mw of the hyaluronic acid (HA and chitosan (CS were determined by gel permeation chromatography (GPC. The deacetylation degree of CS was measured by acid base titration.

  11. Sea-ice cover in the Nordic Seas and the sensitivity to Atlantic water temperatures

    Science.gov (United States)

    Jensen, Mari F.; Nisancioglu, Kerim H.; Spall, Michael A.

    2017-04-01

    Changes in the sea-ice cover of the Nordic Seas have been proposed to play a key role for the dramatic temperature excursions associated with the Dansgaard-Oeschger events during the last glacial. However, with its proximity to the warm Atlantic water, how a sea-ice cover can persist in the Nordic Seas is not well understood. In this study, we apply an eddy-resolving configuration of the Massachusetts Institute of Technology general circulation model with an idealized topography to study the presence of sea ice in a Nordic Seas-like domain. We assume an infinite amount of warm Atlantic water present in the south by restoring the southern area to constant temperatures. The sea-surface temperatures are restored toward cold, atmospheric temperatures, and as a result, sea ice is present in the interior of the domain. However, the sea-ice cover in the margins of the Nordic Seas, an area with a warm, cyclonic boundary current, is sensitive to the amount of heat entering the domain, i.e., the restoring temperature in the south. When the temperature of the warm, cyclonic boundary current is high, the margins are free of sea ice and heat is released to the atmosphere. We show that with a small reduction in the temperature of the incoming Atlantic water, the Nordic Seas-like domain is fully covered in sea ice. Warm water is still entering the Nordic Seas, however, this happens at depths below a cold, fresh surface layer produced by melted sea ice. Consequently, the heat release to the atmosphere is reduced along with the eddy heat fluxes. Results suggest a threshold value in the amount of heat entering the Nordic Seas before the sea-ice cover disappears in the margins. We study the sensitivity of this threshold to changes in atmospheric temperatures and vertical diffusivity.

  12. A low temperature co-fired ceramic power inductor manufactured using a glass-free ternary composite material system

    Science.gov (United States)

    Li, Yuanxun; Xie, Yunsong; Xie, Ru; Chen, Daming; Han, Likun; Su, Hua

    2018-03-01

    A glass-free ternary composite material system (CMS) manufactured employing the low temperature ( 890 ° C ) co-fired ceramic (LTCC) technique is reported. This ternary CMS consists of silver, NiCuZn ferrite, and Zn2SiO4 ceramic. The reported device fabricated from this ternary CMS is a power inductor with a nominal inductance of 1.0 μH. Three major highlights were achieved from the device and the material study. First, unlike most other LTCC methods, no glass is required to be added in either of the dielectric materials in order to co-fire the NiCuZn ferrite, Zn2SiO4 ceramic, and silver. Second, a successfully co-fired silver, NiCuZn, and Zn2SiO4 device can be achieved by optimizing the thermal shrinkage properties of both NiCuZn and Zn2SiO4, so that they have a very similar temperature shrinkage profile. We have also found that strong non-magnetic elemental diffusion occurs during the densification process, which further enhances the success rate of manufacturing co-fired devices. Last but not least, elemental mapping suggests that strong magnetic elemental diffusion between NiCuZn and Zn2SiO4 has been suppressed during the co-firing process. The investigation of electrical performance illustrates that while the ordinary binary CMS based power inductor can deal with 400 mA DC, the ternary CMS based power inductor is able to handle higher DC currents, 700 mA and 620 mA DC, according to both simulation and experiment demonstrations, respectively.

  13. Manufacturing method for intragranular stress corrosion cracking-induced test specimen for stainless steel pipeline

    International Nuclear Information System (INIS)

    Futagawa, Kiyoshi.

    1994-01-01

    In a manufacturing step for intragranular stress corrosion cracking-induced for stainless steel pipelines, pipe are abutted against with each other and welded, and a heat affected portion is applied with a sensitizing heat treatment. Further, a crevice jig is attached near the heat affected portion at the inner surface of the pipe and kept in a chlorine ion added water under high temperature and high pressure at a predetermined period of time. If tap water is used instead of purified water for C.P.T. test in a step of forming sample of IGSCC (intergranular stress corrosion cracking), since the chlorine ion concentration in the tap water is relatively high, TGSCC (intragranular stress corrosion crackings caused in all of the samples. A heat input and an interlayer temperature are determined for the material of stainless pipe having a carbon content of more than 0.05% so that the welding residual stress on the inner surface is applied as tension. The condition for the heat treatment is determined as, for example, 500degC x 24hr, and the samples are kept under water at high temperature and high pressure applied with chlorine ions for 500 to 200hours. As a result, since samples of TGSCC can be formed by utilizing the manufacturing step for IGSCC, there is no requirement for providing devices for applying environmental factors separately. (N.H.)

  14. Micro-structured optical fiber sensor for simultaneous measurement of temperature and refractive index

    Science.gov (United States)

    Liu, Ying-gang; Liu, Xin; Ma, Cheng-ju; Zhou, Yu-min

    2018-03-01

    Through using micro-machining method for optical fiber sensor, a kind of miniature, compact and composite structural all-fiber sensor is presented. Based on manufacturing two micro-holes with certain distance in ordinary single-mode fiber Bragg grating (FBG) by excimer laser processing technique, we fabricate a dual Fabry-Perot-FBG (FP-FBG) composite fiber interferometric sensor, which can be used in simultaneous measurement for liquid's refractive index (RI) and temperature change. Due to every micro-hole and the dual micro-holes in fiber acting as different Fabry-Perot (FP) cavities, this kind of sensor has not only different RI sensitivities but also different temperature sensitivities, which are corresponding to the wavelength shifts of the fine interference fringes and spectral envelope, respectively. The experimental results show that the spectral wavelength shift keep better linear response for temperature and RI change, so that we can select the higher temperature and RI sensitivities as well as the analyzed sensitivities of FBG to utilize them for constituting a sensitivity coefficients matrix. Finally, the variations of liquid's temperature and RI are detected effectively, and the resolutions can reach to 0.1 °C and 1.0 ×10-5 RIU. These characteristics are what other single-type sensors don't have, so that this kind of all-fiber dual FP-FBG composite fiber interferometric sensor can be used in extremely tiny liquid environment for measuring different physical quantities simultaneously.

  15. Evaluation of stress-corrosion cracking of sensitized 304SS in low-temperature borated water

    International Nuclear Information System (INIS)

    Jones, R.H.; Johnson, A.B. Jr.; Bruemmer, S.M.

    1981-05-01

    Intergranular stress corrosion cracking has been observed in constant extension rate tests, CERT and constant load tests of 304SS tested at 32 0 C in borated water plus 15 ppM C1 - . Evidence of IGSCC was obtained in CERT tests of welded pipe samples only when the original inner diameter surface was intact and with 15 ppM C1 - added to the borated water while IGSCC occurred in a furnace sensitized pipe sample after 500 h at a constant stress of 340 MPa in borated water containing 15 ppM C1 - . These results indicate that surface features associated with weld preparation grinding contributed to the susceptibility of sensitized 304SS to IGSCC in low temperature borated water; however, the constant load test indicates that such surface defects are not necessary for IGSCC in low temperature borated water

  16. A quasi-distributed temperature sensor interrogated by a wavelength-sensitive optical time-domain reflectometer

    International Nuclear Information System (INIS)

    Crunelle, C; Wuilpart, M; Caucheteur, C; Mégret, P

    2009-01-01

    In this note, we present a quasi-distributed temperature monitoring system based on the concatenation of identical low-reflective fiber Bragg gratings (FBGs) and interrogated by means of an optical time-domain reflectometer (OTDR). An original wavelength-sensitive system placed before the OTDR detector is used to analyze the reflected signal. This system allows the height of the FBG reflection peaks in the OTDR trace to depend on their resonance wavelength, and therefore to the local temperature. In addition, a simple but original reference method is proposed. The configuration of the whole interrogating device is kept very basic, as a standard OTDR and some passive components are used. The cost of the overall system is therefore very limited. In this note, the wavelength-sensitive system is studied in details, as well as the reference method. Experimental results are reported. (technical design note)

  17. Sensitivity Analysis of RCW Temperature on the Moderator Subcooling Margin for the LBLOCA of Wolsong NPP Unit 1

    International Nuclear Information System (INIS)

    Seo, Si Won; Kim, Jong Hyun; Choi, Sung Soo; Kim, Sung Min

    2016-01-01

    Moderator subcooling margin has been analyzed using the MODTURC_CLAS code in the Large LOCA FSAR PARTs C and F. Performance of moderator heat exchangers depends on RCW (Raw reCirculated Water) temperature. And also the temperature is affected by sea water temperature. Unfortunately, sea water temperature is gradually increasing by global warming. So it will cause increase of RCW temperature inevitably. There is no assessment result of moderator subcooling with increasing RCW temperature even if it is important problem. Therefore, sensitivity analysis is performed to give information about the relation between RCW temperature and moderator subcooling in the present study. The moderator subcooling margin has to be ensured to establish the moderator heat removal when Large LOCA with LOECI and Loss of Class IV Power occurs. However, sea water temperature is increasing gradually due to global warming. So it is necessary that sensitivity analysis of RCW temperature on the moderator subcooling margin to estimate the availability of the moderator heat removal. In the present paper, the moderator subcooling analysis is performed using the same methodology and assumptions except for RCW temperature used in FSAR Large LOCA PART F.

  18. Sensitivity Analysis of RCW Temperature on the Moderator Subcooling Margin for the LBLOCA of Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si Won; Kim, Jong Hyun; Choi, Sung Soo [Atomic Creative Technology Co., Daejeon (Korea, Republic of); Kim, Sung Min [Central Research Institute, Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    Moderator subcooling margin has been analyzed using the MODTURC{sub C}LAS code in the Large LOCA FSAR PARTs C and F. Performance of moderator heat exchangers depends on RCW (Raw reCirculated Water) temperature. And also the temperature is affected by sea water temperature. Unfortunately, sea water temperature is gradually increasing by global warming. So it will cause increase of RCW temperature inevitably. There is no assessment result of moderator subcooling with increasing RCW temperature even if it is important problem. Therefore, sensitivity analysis is performed to give information about the relation between RCW temperature and moderator subcooling in the present study. The moderator subcooling margin has to be ensured to establish the moderator heat removal when Large LOCA with LOECI and Loss of Class IV Power occurs. However, sea water temperature is increasing gradually due to global warming. So it is necessary that sensitivity analysis of RCW temperature on the moderator subcooling margin to estimate the availability of the moderator heat removal. In the present paper, the moderator subcooling analysis is performed using the same methodology and assumptions except for RCW temperature used in FSAR Large LOCA PART F.

  19. Krokot (Portulaca oleracea L As a Natural Sensitizer for TiO2 Dye-sensitized Solar Cells: The Effect of Temperature Extract

    Directory of Open Access Journals (Sweden)

    Reyza Anni Mufidah

    2015-10-01

    Full Text Available The solar cell is formed by a sandwich structure, in which two electrodes flank the primary electrolyte that is containing redox I-/based on PEG (Polyethylene Glycol. The working-electrode which is TiO2 layer on an ITO glass substrate is sensitized with krokot dye as the electron donor. The counter electrode is a layer of carbon. The fabrication cell is immersed with the krokot dye with 40°C, 50°C, 60°C extract temperature. The result of the UV-Vis shows that the absorption of wave-length from dye extract of krokot is located in the visible region with the absorbance peak in 420,5 nm and 665,5 nm which are the peak of chlorophyll. For the UV-Vis solid system, there are the highest band gap  in  50°C extract temperature that make the capability of absorption toward UV spectrum is large. Furthermore, in the functional group analysed by FT-IR, there are shiften-carbonil and hydroxyl group after they are sensitized. From the current and voltage test with I-V meter keithley 2400 is resulted that on the 50°C extract temperature produces the highest efficiency of reaches which is 2.63 x 10-3 %.

  20. Process Modeling and Validation for Metal Big Area Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Simunovic, Srdjan [ORNL; Nycz, Andrzej [ORNL; Noakes, Mark W. [ORNL; Chin, Charlie [Dassault Systemes; Oancea, Victor [Dassault Systemes

    2017-05-01

    Metal Big Area Additive Manufacturing (mBAAM) is a new additive manufacturing (AM) technology based on the metal arc welding. A continuously fed metal wire is melted by an electric arc that forms between the wire and the substrate, and deposited in the form of a bead of molten metal along the predetermined path. Objects are manufactured one layer at a time starting from the base plate. The final properties of the manufactured object are dependent on its geometry and the metal deposition path, in addition to depending on the basic welding process parameters. Computational modeling can be used to accelerate the development of the mBAAM technology as well as a design and optimization tool for the actual manufacturing process. We have developed a finite element method simulation framework for mBAAM using the new features of software ABAQUS. The computational simulation of material deposition with heat transfer is performed first, followed by the structural analysis based on the temperature history for predicting the final deformation and stress state. In this formulation, we assume that two physics phenomena are coupled in only one direction, i.e. the temperatures are driving the deformation and internal stresses, but their feedback on the temperatures is negligible. The experiment instrumentation (measurement types, sensor types, sensor locations, sensor placements, measurement intervals) and the measurements are presented. The temperatures and distortions from the simulations show good correlation with experimental measurements. Ongoing modeling work is also briefly discussed.

  1. Identification of a novel temperature sensitive promoter in cho cells

    Directory of Open Access Journals (Sweden)

    Hesse Friedemann

    2011-05-01

    Full Text Available Abstract Background The Chinese hamster ovary (CHO expression system is the leading production platform for manufacturing biopharmaceuticals for the treatment of numerous human diseases. Efforts to optimize the production process also include the genetic construct encoding the therapeutic gene. Here we report about the successful identification of an endogenous highly active gene promoter obtained from CHO cells which shows conditionally inducible gene expression at reduced temperature. Results Based on CHO microarray expression data abundantly transcribed genes were selected as potential promoter candidates. The S100a6 (calcyclin and its flanking regions were identified from a genomic CHO-K1 lambda-phage library. Computational analyses showed a predicted TSS, a TATA-box and several TFBSs within the 1.5 kb region upstream the ATG start signal. Various constructs were investigated for promoter activity at 37°C and 33°C in transient luciferase reporter gene assays. Most constructs showed expression levels even higher than the SV40 control and on average a more than two-fold increase at lower temperature. We identified the core promoter sequence (222 bp comprising two SP1 sites and could show a further increase in activity by duplication of this minimal sequence. Conclusions This novel CHO promoter permits conditionally high-level gene expression. Upon a shift to 33°C, a two to three-fold increase of basal productivity (already higher than SV40 promoter is achieved. This property is of particular advantage for a process with reduced expression during initial cell growth followed by the production phase at low temperature with a boost in expression. Additionally, production of toxic proteins becomes feasible, since cell metabolism and gene expression do not directly interfere. The CHO S100a6 promoter can be characterized as cold-shock responsive with the potential for improving process performance of mammalian expression systems.

  2. Pattern centric design based sensitive patterns and process monitor in manufacturing

    Science.gov (United States)

    Hsiang, Chingyun; Cheng, Guojie; Wu, Kechih

    2017-03-01

    When design rule is mitigating to smaller dimension, process variation requirement is tighter than ever and challenges the limits of device yield. Masks, lithography, etching and other processes have to meet very tight specifications in order to keep defect and CD within the margins of the process window. Conventionally, Inspection and metrology equipments are utilized to monitor and control wafer quality in-line. In high throughput optical inspection, nuisance and review-classification become a tedious labor intensive job in manufacturing. Certain high-resolution SEM images are taken to validate defects after optical inspection. These high resolution SEM images catch not only optical inspection highlighted point, also its surrounding patterns. However, this pattern information is not well utilized in conventional quality control method. Using this complementary design based pattern monitor not only monitors and analyzes the variation of patterns sensitivity but also reduce nuisance and highlight defective patterns or killer defects. After grouping in either single or multiple layers, systematic defects can be identified quickly in this flow. In this paper, we applied design based pattern monitor in different layers to monitor process variation impacts on all kinds of patterns. First, the contour of high resolutions SEM image is extracted and aligned to design with offset adjustment and fine alignment [1]. Second, specified pattern rules can be applied on design clip area, the same size as SEM image, and form POI (pattern of interest) areas. Third, the discrepancy of contour and design measurement at different pattern types in measurement blocks. Fourth, defective patterns are reported by discrepancy detection criteria and pattern grouping [4]. Meanwhile, reported pattern defects are ranked by number and severity by discrepancy. In this step, process sensitive high repeatable systematic defects can be identified quickly Through this design based process pattern

  3. pH and temperature dual-sensitive liposome gel based on novel cleavable mPEG-Hz-CHEMS polymeric vaginal delivery system

    Directory of Open Access Journals (Sweden)

    Chen D

    2012-05-01

    Full Text Available Daquan Chen,1,2 Kaoxiang Sun,1,2 Hongjie Mu,1 Mingtan Tang,3 Rongcai Liang,1,2 Aiping Wang,1,2 Shasha Zhou,1 Haijun Sun,1 Feng Zhao,1 Jianwen Yao,1 Wanhui Liu1,21School of Pharmacy, Yantai University, 2State Key Laboratory of Longacting and Targeting Drug Delivery Systems, Yantai, 3School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of ChinaBackground: In this study, a pH and temperature dual-sensitive liposome gel based on a novel cleavable hydrazone-based pH-sensitive methoxy polyethylene glycol 2000-hydrazone-cholesteryl hemisuccinate (mPEG-Hz-CHEMS polymer was used for vaginal administration.Methods: The pH-sensitive, cleavable mPEG-Hz-CHEMS was designed as a modified pH-sensitive liposome that would selectively degrade under locally acidic vaginal conditions. The novel pH-sensitive liposome was engineered to form a thermogel at body temperature and to degrade in an acidic environment.Results: A dual-sensitive liposome gel with a high encapsulation efficiency of arctigenin was formed and improved the solubility of arctigenin characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The dual-sensitive liposome gel with a sol-gel transition at body temperature was degraded in a pH-dependent manner, and was stable for a long period of time at neutral and basic pH, but cleavable under acidic conditions (pH 5.0. Arctigenin encapsulated in a dual-sensitive liposome gel was more stable and less toxic than arctigenin loaded into pH-sensitive liposomes. In vitro drug release results indicated that dual-sensitive liposome gels showed constant release of arctigenin over 3 days, but showed sustained release of arctigenin in buffers at pH 7.4 and pH 9.0.Conclusion: This research has shed some light on a pH and temperature dual-sensitive liposome gel using a cleavable mPEG-Hz-CHEMS polymer for vaginal delivery.Keywords: mPEG-Hz-CHEMS polymer, pH-sensitive liposomes, thermosensitive

  4. Manufacture of Damascus steel: Metallographic study

    International Nuclear Information System (INIS)

    Criado, A.J.; Martinez, J.A.; Calabres, R.; Arias, D.

    1997-01-01

    Damascus Steel is the denomination that the Europeans gave to the material with which the musulman swords were manufactured during the Era of the Crusades. This hypereutectoid steel presents a high content in carbon more than 0.8%, and in some cases up to 2% in weight. The secret of its good mechanical characteristics is based in the hot forging process in the temperatures interval between 650 and 850 degree centigree. The final quenching in water brine or other aqueous solutions, confers to the swords manufactured with this steel a good resistance to its cutting edge and a high toughness. In the present investigation, the manufacture processes of this type of steel are studied. Electronic scanning microscopy has been applied to the study of materials manufactured by the authors following the ancient craftsmen methods of forging and quenching. (Author) 16 refs

  5. Study on the Melting Point Depression of Tin Nanoparticles Manufactured by Modified Evaporation Method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Jin; Beak, Il Kwon; Kim, Kyu Han; Jang, Seok Pil [Korea Aerospace University, Goyang (Korea, Republic of)

    2014-08-15

    In the present study, the melting temperature depression of Sn nanoparticles manufactured using the modified evaporation method was investigated. For this purpose, a modified evaporation method with mass productivity was developed. Using the manufacturing process, Sn nanoparticles of 10 nm size was manufactured in benzyl alcohol solution to prevent oxidation. To examine the morphology and size distribution of the nanonoparticles, a transmission electron microscope was used. The melting temperature of the Sn nanoparticles was measured using a Differential scanning calorimetry (DSC) which can calculate the endothermic energy during the phase changing process and an X-ray photoelectron spectroscopy (XPS) used for observing the manufactured Sn nanoparticle compound. The melting temperature of the Sn nanoparticles was observed to be 129 ℃, which is 44 ℃ lower than that of the bulk material. Finally, the melting temperature was compared with the Gibbs Thomson and Lai's equations, which can predict the melting temperature according to the particle size. Based on the experimental results, the melting temperature of the Sn nanoparticles was found to match well with those recommended by the Lai's equation.

  6. Cohort Removal Induces Changes in Body Temperature, Pain Sensitivity, and Anxiety-Like Behavior

    Science.gov (United States)

    Takao, Keizo; Shoji, Hirotaka; Hattori, Satoko; Miyakawa, Tsuyoshi

    2016-01-01

    Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal). Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests. PMID:27375443

  7. Cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior

    Directory of Open Access Journals (Sweden)

    Keizo eTakao

    2016-06-01

    Full Text Available Mouse behavior is analyzed to elucidate the effects of various experimental manipulations, including gene mutation and drug administration. When the effect of a factor of interest is assessed, other factors, such as age, sex, temperature, apparatus, and housing, are controlled in experiments by matching, counterbalancing, and/or randomizing. One such factor that has not attracted much attention is the effect of sequential removal of animals from a common cage (cohort removal. Here we evaluated the effects of cohort removal on rectal temperature, pain sensitivity, and anxiety-like behavior by analyzing the combined data of a large number of C57BL/6J mice that we collected using a comprehensive behavioral test battery. Rectal temperature increased in a stepwise manner according to the position of sequential removal from the cage, consistent with previous reports. In the hot plate test, the mice that were removed first from the cage had a significantly longer latency to show the first paw response than the mice removed later. In the elevated plus maze, the mice removed first spent significantly less time on the open arms compared to the mice removed later. The results of the present study demonstrated that cohort removal induces changes in body temperature, pain sensitivity, and anxiety-like behavior in mice. Cohort removal also increased the plasma corticosterone concentration in mice. Thus, the ordinal position in the sequence of removal from the cage should be carefully counterbalanced between groups when the effect of experimental manipulations, including gene manipulation and drug administration, are examined using behavioral tests.

  8. Post-deposition annealing temperature dependence TiO{sub 2}-based EGFET pH sensor sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Zulkefle, M. A., E-mail: alhadizulkefle@gmail.com; Rahman, R. A., E-mail: rohanieza.abdrahman@gmail.com; Yusoff, K. A., E-mail: khairul.aimi.yusof@gmail.com [NANO-ElecTronic Centre (NET), Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Abdullah, W. F. H., E-mail: wanfaz@salam.uitm.edu.my [Faculty of Electrical Engineering, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia); Rusop, M., E-mail: rusop@salam.uitm.edu.my [NANO-Science Technology (NST), Institute of Science (IOS), Faculty of Applied Sciences, Universiti Teknologi MARA - UiTM, 40450 Shah Alam, Selangor (Malaysia); Herman, S. H., E-mail: hana1617@salam.uitm.edu.my [Core of Frontier Materials & Industry Applications, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Selangor (Malaysia)

    2016-07-06

    EGFET pH sensor is one type of pH sensor that is used to measure and determine pH of a solution. The sensing membrane of EGFET pH sensor plays vital role in the overall performance of the sensor. This paper studies the effects of different annealing temperature of the TiO{sub 2} sensing membranes towards sensitivity of EGFET pH sensor. Sol-gel spin coating was chosen as TiO{sub 2} deposition techniques since it is cost-effective and produces thin film with uniform thickness. Deposited TiO{sub 2} thin films were then annealed at different annealing temperatures and then were connected to the gate of MOSFET as a part of the EGFET pH sensor structure. The thin films now act as sensing membranes of the EGFET pH sensor and sensitivity of each sensing membrane towards pH was measured. From the results it was determined that sensing membrane annealed at 300 °C gave the highest sensitivity followed by sample annealed at 400 °C and 500 °C.

  9. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture

    Science.gov (United States)

    Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.

    2015-03-01

    The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.

  10. Neighborhood properties are important determinants of temperature sensitive mutations.

    Directory of Open Access Journals (Sweden)

    Svetlana Lockwood

    Full Text Available Temperature-sensitive (TS mutants are powerful tools to study gene function in vivo. These mutants exhibit wild-type activity at permissive temperatures and reduced activity at restrictive temperatures. Although random mutagenesis can be used to generate TS mutants, the procedure is laborious and unfeasible in multicellular organisms. Further, the underlying molecular mechanisms of the TS phenotype are poorly understood. To elucidate TS mechanisms, we used a machine learning method-logistic regression-to investigate a large number of sequence and structure features. We developed and tested 133 features, describing properties of either the mutation site or the mutation site neighborhood. We defined three types of neighborhood using sequence distance, Euclidean distance, and topological distance. We discovered that neighborhood features outperformed mutation site features in predicting TS mutations. The most predictive features suggest that TS mutations tend to occur at buried and rigid residues, and are located at conserved protein domains. The environment of a buried residue often determines the overall structural stability of a protein, thus may lead to reversible activity change upon temperature switch. We developed TS prediction models based on logistic regression and the Lasso regularized procedure. Through a ten-fold cross-validation, we obtained the area under the curve of 0.91 for the model using both sequence and structure features. Testing on independent datasets suggested that the model predicted TS mutations with a 50% precision. In summary, our study elucidated the molecular basis of TS mutants and suggested the importance of neighborhood properties in determining TS mutations. We further developed models to predict TS mutations derived from single amino acid substitutions. In this way, TS mutants can be efficiently obtained through experimentally introducing the predicted mutations.

  11. Western Arctic Temperature Sensitivity Varies under Different Mean States

    Science.gov (United States)

    Daniels, W.; Russell, J. M.; Morrill, C.; Longo, W. M.; Giblin, A. E.; Holland-Stergar, P.; Hu, A.; Huang, Y.

    2017-12-01

    The Arctic is warming faster than anywhere on earth. Predictions of future change, however, are hindered by uncertainty in the mechanisms that underpin Arctic amplification. Data from Beringia (Alaska and Eastern Siberia) are particularly inconclusive with regards to both glacial-interglacial climate change as well as the presence or absence of abrupt climate change events such as the Younger Dryas. Here we investigate temperature change in Beringia from the last glacial maximum (LGM) to present using a unique 30 kyr lacustrine record of leaf wax hydrogen isotope ratios (δDwax) from Northern Alaska. We evaluate our results in the context of PMIP3 climate simulations as well as sensitivity tests of the effects of sea level and Bering Strait closure on Arctic Alaskan climate. The amplitude of LGM cooling in Alaska (-3.2 °C relative to pre-industrial) is smaller than other parts of North America and areas proximal to LGM ice sheets, but similar to Arctic Asia and Europe. This suggests that the local feedbacks (vegetation, etc.) had limited impacts on regional temperatures during the last ice-age, and suggests most of the Arctic exhibited similar responses to global climate boundary conditions. Deglacial warming was superimposed by a series of rapid warming events that encompass most of the temperature increase. These events are largely synchronous with abrupt events in the North Atlantic, but are amplified, muted, or even reversed in comparison depending on the mean climate state. For example, we observe warming during Heinrich 1 and during the submergence of the Bering Land Bridge, which are associated with cooling in the North Atlantic. Climate modeling suggests that opening of the Bering Strait controlled the amplitude and sign of millennial-scale temperature changes across the glacial termination.

  12. TRPA1 channels in Drosophila and honey bee ectoparasitic mites share heat sensitivity and temperature-related physiological functions

    Directory of Open Access Journals (Sweden)

    Guangda Peng

    2016-10-01

    Full Text Available The transient receptor potential cation channel, subfamily A, member 1 (TRPA1 is conserved between many arthropods, and in some has been shown to function as a chemosensor for noxious compounds. Activation of arthropod TRPA1 channels by temperature fluctuations has been tested in only a few insect species, and all of them were shown to be activated by heat. The recent identification of chemosensitive TRPA1 channels from two honey bee ectoparasitic mite species (VdTRPA1 and TmTRPA1 have provided an opportunity to study the temperature-dependent activation and the temperature-associated physiological functions of TRPA1 channels in non-insect arthropods. We found that both mite TRPA1 channels are heat sensitive and capable of rescuing the temperature-related behavioral defects of a Drosophila melanogaster trpA1 mutant. These results suggest that heat-sensitivity of TRPA1 could be conserved between many arthropods despite its amino acid sequence diversity. Nevertheless, the ankyrin repeats (ARs 6 and 7 are well-conserved between six heat-sensitive arthropod TRPA1 channels and have critical roles for the heat activation of VdTRPA1.

  13. Sensitivity Modeling of On-chip Capacitances : Parasitics Extraction for Manufacturing Variability

    NARCIS (Netherlands)

    Bi, Y.

    2012-01-01

    With each new generation of IC process technologies, the impact of manufacturing variability is increasing. As such, design optimality is harder and harder to achieve and effective modeling tools and methods are needed to capture the effects of variability in such a way that it is understandable and

  14. Recent advance in high manufacturing readiness level and high temperature CMOS mixed-signal integrated circuits on silicon carbide

    Science.gov (United States)

    Weng, M. H.; Clark, D. T.; Wright, S. N.; Gordon, D. L.; Duncan, M. A.; Kirkham, S. J.; Idris, M. I.; Chan, H. K.; Young, R. A. R.; Ramsay, E. P.; Wright, N. G.; Horsfall, A. B.

    2017-05-01

    A high manufacturing readiness level silicon carbide (SiC) CMOS technology is presented. The unique process flow enables the monolithic integration of pMOS and nMOS transistors with passive circuit elements capable of operation at temperatures of 300 °C and beyond. Critical to this functionality is the behaviour of the gate dielectric and data for high temperature capacitance-voltage measurements are reported for SiO2/4H-SiC (n and p type) MOS structures. In addition, a summary of the long term reliability for a range of structures including contact chains to both n-type and p-type SiC, as well as simple logic circuits is presented, showing function after 2000 h at 300 °C. Circuit data is also presented for the performance of digital logic devices, a 4 to 1 analogue multiplexer and a configurable timer operating over a wide temperature range. A high temperature micro-oven system has been utilised to enable the high temperature testing and stressing of units assembled in ceramic dual in line packages, including a high temperature small form-factor SiC based bridge leg power module prototype, operated for over 1000 h at 300 °C. The data presented show that SiC CMOS is a key enabling technology in high temperature integrated circuit design. In particular it provides the ability to realise sensor interface circuits capable of operating above 300 °C, accommodate shifts in key parameters enabling deployment in applications including automotive, aerospace and deep well drilling.

  15. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin

    NARCIS (Netherlands)

    Rico, Andreu; Zhao, Wenkai; Gillissen, Frits; Lürling, Miquel; Brink, van den Paul J.

    2018-01-01

    Primary producers are amongst the most sensitive organisms to antibiotic pollution in aquatic ecosystems. To date, there is little information on how different environmental conditions may affect their sensitivity to antibiotics. In this study we assessed how temperature, genetic variation and

  16. Sensitivity Studies of Advanced Reactors Coupled to High Temperature Electrolysis (HTE) Hydrogen Production Processes

    International Nuclear Information System (INIS)

    Edwin A. Harvego; Michael G. McKellar; James E. O'Brien; J. Stephen Herring

    2007-01-01

    High Temperature Electrolysis (HTE), when coupled to an advanced nuclear reactor capable of operating at reactor outlet temperatures of 800 C to 950 C, has the potential to efficiently produce the large quantities of hydrogen needed to meet future energy and transportation needs. To evaluate the potential benefits of nuclear-driven hydrogen production, the UniSim process analysis software was used to evaluate different reactor concepts coupled to a reference HTE process design concept. The reference HTE concept included an Intermediate Heat Exchanger and intermediate helium loop to separate the reactor primary system from the HTE process loops and additional heat exchangers to transfer reactor heat from the intermediate loop to the HTE process loops. The two process loops consisted of the water/steam loop feeding the cathode side of a HTE electrolysis stack, and the steam or air sweep loop used to remove oxygen from the anode side. The UniSim model of the process loops included pumps to circulate the working fluids and heat exchangers to recover heat from the oxygen and hydrogen product streams to improve the overall hydrogen production efficiencies. The reference HTE process loop model was coupled to separate UniSim models developed for three different advanced reactor concepts (a high-temperature helium cooled reactor concept and two different supercritical CO2 reactor concepts). Sensitivity studies were then performed to evaluate the affect of reactor outlet temperature on the power cycle efficiency and overall hydrogen production efficiency for each of the reactor power cycles. The results of these sensitivity studies showed that overall power cycle and hydrogen production efficiencies increased with reactor outlet temperature, but the power cycle producing the highest efficiencies varied depending on the temperature range considered

  17. Sensitivity of Support Vector Machine Predictions of Passive Microwave Brightness Temperature Over Snow-covered Terrain in High Mountain Asia

    Science.gov (United States)

    Ahmad, J. A.; Forman, B. A.

    2017-12-01

    High Mountain Asia (HMA) serves as a water supply source for over 1.3 billion people, primarily in south-east Asia. Most of this water originates as snow (or ice) that melts during the summer months and contributes to the run-off downstream. In spite of its critical role, there is still considerable uncertainty regarding the total amount of snow in HMA and its spatial and temporal variation. In this study, the NASA Land Information Systems (LIS) is used to model the hydrologic cycle over the Indus basin. In addition, the ability of support vector machines (SVM), a machine learning technique, to predict passive microwave brightness temperatures at a specific frequency and polarization as a function of LIS-derived land surface model output is explored in a sensitivity analysis. Multi-frequency, multi-polarization passive microwave brightness temperatures as measured by the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) over the Indus basin are used as training targets during the SVM training process. Normalized sensitivity coefficients (NSC) are then computed to assess the sensitivity of a well-trained SVM to each LIS-derived state variable. Preliminary results conform with the known first-order physics. For example, input states directly linked to physical temperature like snow temperature, air temperature, and vegetation temperature have positive NSC's whereas input states that increase volume scattering such as snow water equivalent or snow density yield negative NSC's. Air temperature exhibits the largest sensitivity coefficients due to its inherent, high-frequency variability. Adherence of this machine learning algorithm to the first-order physics bodes well for its potential use in LIS as the observation operator within a radiance data assimilation system aimed at improving regional- and continental-scale snow estimates.

  18. Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish ( Cheilodipterus quinquelineatus)

    Science.gov (United States)

    Nay, Tiffany J.; Johansen, Jacob L.; Habary, Adam; Steffensen, John F.; Rummer, Jodie L.

    2015-12-01

    As global temperatures increase, fish populations at low latitudes are thought to be at risk as they are adapted to narrow temperature ranges and live at temperatures close to their thermal tolerance limits. Behavioural movements, based on a preference for a specific temperature ( T pref), may provide a strategy to cope with changing conditions. A temperature-sensitive coral reef cardinalfish ( Cheilodipterus quinquelineatus) was exposed to 28 °C (average at collection site) or 32 °C (predicted end-of-century) for 6 weeks. T pref was determined using a shuttlebox system, which allowed fish to behaviourally manipulate their thermal environment. Regardless of treatment temperature, fish preferred 29.5 ± 0.25 °C, approximating summer average temperatures in the wild. However, 32 °C fish moved more frequently to correct their thermal environment than 28 °C fish, and daytime movements were more frequent than night-time movements. Understanding temperature-mediated movements is imperative for predicting how ocean warming will influence coral reef species and distribution patterns.

  19. Electrostatic Levitation for Studies of Additive Manufactured Materials

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri

    2014-01-01

    The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL

  20. Influence of annealing temperature and organic dyes as sensitizers on sol–gel derived TiO{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Mamta; Abbas, Saeed J.; Tripathi, S.K., E-mail: surya@pu.ac.in

    2014-09-15

    Highlights: • Preparation of rice shaped TiO{sub 2} nanorods with anatase structure by sol–gel method. • Effect of post deposition annealing on structural properties of TiO{sub 2} is studied. • Unlike individual dye, absorption of Cocktail dye with TiO{sub 2} nanorods is broader. • Cocktail dye sensitized TiO{sub 2} film has more photosensitivity than EY, RB, AO. • Increase in photosensitivity up to optimum temperature is due to hole passivation. - Abstract: Five different organic dyes and reported cocktail dye composed of these dyes are used as sensitizer for titanium dioxide (TiO{sub 2}). Rice shaped (TiO{sub 2}) nanorods are prepared by using sol–gel method. The films annealed at 673 K and above are crystalline with anatase structure. The effect of post annealing temperature is studied on various structural parameters. Cocktail dye shows broader absorption with TiO{sub 2} nanorods in visible region compared with five dyes. Maximum photosensitivity is obtained with RhB dye, followed by FGF and cocktail dye sensitized TiO{sub 2} films. Increase in photosensitivity is due to passivating some hole traps on the surface up to some optimum temperature, above which photosensitivity decreases due to a higher photo activation energy compared to dark conductivity in low temperature region and also may be due to damage of the dye molecule. This work may prove its worth for understanding the electron transport in dye sensitized nanodevices.

  1. Behavioural thermoregulation in a temperature-sensitive coral reef fish, the five-lined cardinalfish (Cheilodipterus quinquelineatus)

    DEFF Research Database (Denmark)

    Nay, Tiffany J.; Johansen, Jacob L.; Habary, Adam

    2015-01-01

    provide a strategy to cope with changing conditions. A temperature-sensitive coral reef cardinalfish (Cheilodipterusquinquelineatus) was exposed to 28 °C (average at collection site) or 32 °C (predicted end-of-century) for 6 weeks. Tpref was determined using a shuttlebox system, which allowed fish...... than night-time movements. Understanding temperature-mediated movements is imperative for predicting how ocean warming will influence coral reef species and distribution patterns....

  2. Sensitivity study and functionalization of cross section to fuel and moderator temperature

    International Nuclear Information System (INIS)

    Zee, Sung Quun; Song, Jae Seung; Cho, Young Chul

    1995-11-01

    A reactor core neutronics code MASTER is under development as a part of Korean Core Design System ADONIS. MASTER solves two-group three-dimensional; neutron diffusion equation which requires fuel assembly-wise group constants, to calculate the neutron flux distribution in the core. The group constants are obtained from the fuel assembly multi-group neutron transport calculation, and inputted as functions of the core operating condition. The functionalization of the group constant requires sensitivity analysis to various core operating conditions. In this report, the sensitivity of group constant to fuel and moderator temperature were analyzed. Lumped higher order macroscopic cross section derivative method was developed to reduce the computer memory and the number of floating point operations to treat group constants in MASTER. 1 fig., 6 tabs., 2 refs. (Author) .new

  3. Microstructure and corrosion characteristics of HANA 6 alloy with various manufacturing processes

    International Nuclear Information System (INIS)

    Kim, Hyun Gil; Choi, Byung Kwan; Jeong, Yong Hwan

    2008-01-01

    In order to obtain the best manufacturing process for the HANA 6 alloy, the various evaluations such as a corrosion test at 400 .deg. C steam condition, a microstructural analysis by using TEM, and texture analysis by using XRD were performed for the HANA 6 alloy with various manufacturing processes. This alloy was manufactured as sheets by applying 4 types of manufacturing processes which were controlled by a combination of the intermediate annealing temperature and reduction ratio, as well as two types of final annealing conditions which were applied to the HANA 6 alloy from TREX samples. The corrosion resistance of the HANA 6 alloy with various manufacturing processes was increased with a decreasing intermediate annealing temperature and the corrosion resistance of that alloy was decreased by increasing the final annealing temperature after a corrosion test up to 240 days. The precipitate of the HANA 6 alloy mainly consisted of Nb-containing precipitates in all the samples, but the size, distribution and Nb concentration of the precipitates was affected by the applied manufacturing processes. The Nb concentration in the precipitates was increased when the samples were annealed at 570.deg.C during the intermediate annealing processes. So, the corrosion rate of the HANA 6 alloy is affected considerably by a control of the intermediate and final annealing conditions which affect the precipitate characteristics in the matrix. The crystallographic texture of the HANA 6 alloy with various manufacturing processes is similar since the total reduction ratio was the same in all the manufactured sheet samples

  4. Trends and Variability in Temperature Sensitivity of Lilac Flowering Phenology

    Science.gov (United States)

    Wang, Huanjiong; Dai, Junhu; Rutishauser, This; Gonsamo, Alemu; Wu, Chaoyang; Ge, Quansheng

    2018-03-01

    The responses of plant phenology to temperature variability have many consequences for ecological processes, agriculture, forestry, and human health. Temperature sensitivity (ST) of phenology could measure how and to what degree plant could phenologically track climate change. The long-term trends and spatial patterns in ST have been well studied for vegetative phenology such as leaf unfolding, but trends to be expected for reproductive phenology in the future remain unknown. Here we investigate trends and factors driving the temporal variation of ST of first bloom date (FBD). Using the long-term FBD records during 1963-2013 for common lilac (Syringa vulgaris) from 613 stations in Europe, we compared changes in ST from the beginning to the end of the study period. The Spearman partial correlations were used to assess the importance of four influencing factors. The results showed that the temporal changes in ST of FBD varied considerably among time scales. Mean ST decreased significantly by 0.92 days °C-1 from 1963-1972 to 2004-2013 (P plant species in other climates and environments using similar methods to our study.

  5. Temperature sensitivity of gaseous elemental mercury in the active layer of the Qinghai-Tibet Plateau permafrost.

    Science.gov (United States)

    Ci, Zhijia; Peng, Fei; Xue, Xian; Zhang, Xiaoshan

    2018-07-01

    Soils represent the single largest mercury (Hg) reservoir in the global environment, indicating that a tiny change of Hg behavior in soil ecosystem could greatly affect the global Hg cycle. Climate warming is strongly altering the structure and functions of permafrost and then would influence the Hg cycle in permafrost soils. However, Hg biogeochemistry in climate-sensitive permafrost is poorly investigated. Here we report a data set of soil Hg (0) concentrations in four different depths of the active layer in the Qinghai-Tibet Plateau permafrost. We find that soil Hg (0) concentrations exhibited a strongly positive and exponential relationship with temperature and showed different temperature sensitivity under the frozen and unfrozen condition. We conservatively estimate that temperature increases following latest temperature scenarios of the IPCC could result in up to a 54.9% increase in Hg (0) concentrations in surface permafrost soils by 2100. Combining the simultaneous measurement of air-soil Hg (0) exchange, we find that enhanced Hg (0) concentrations in upper soils could favor Hg (0) emissions from surface soil. Our findings indicate that Hg (0) emission could be stimulated by permafrost thawing in a warmer world. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Regional Variation in the Temperature Sensitivity of Soil Organic Matter Decomposition in China's Forests and Grasslands

    Science.gov (United States)

    Liu, Y.; He, N.; Zhu, J.; Yu, G.; Xu, L.; Niu, S.; Sun, X.; Wen, X.

    2017-12-01

    How to assess the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition and its regional variation with high accuracy is one of the largest uncertainties in determining the intensity and direction of the global carbon (C) cycle in response to climate change. In this study, we collected a series of soils from 22 forest sites and 30 grassland sites across China to explore regional variation in Q10 and its underlying mechanisms. We conducted a novel incubation experiment with periodically changing temperature (5-30 °C), while continuously measuring soil microbial respiration rates. The results showed that Q10 varied significantly across different ecosystems, ranging from 1.16 to 3.19 (mean 1.63). Q10 was ordered as follows: alpine grasslands (2.01) > temperate grasslands (1.81) > tropical forests (1.59) > temperate forests (1.55) > subtropical forests (1.52). The Q10 of grasslands (1.90) was significantly higher than that of forests (1.54). Furthermore, Q10 significantly increased with increasing altitude and decreased with increasing longitude. Environmental variables and substrate properties together explained 52% of total variation in Q10 across all sites. Overall, pH and soil electrical conductivity primarily explained spatial variation in Q10. The general negative relationships between Q10 and substrate quality among all ecosystem types supported the C quality temperature (CQT) hypothesis at a large scale, which indicated that soils with low quality should have higher temperature sensitivity. Furthermore, alpine grasslands, which had the highest Q10, were predicted to be more sensitive to climate change under the scenario of global warming.

  7. Temperature sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal gradient on Mount Kilimanjaro

    Science.gov (United States)

    Blagodatskaya, Еvgenia; Blagodatsky, Sergey; Khomyakov, Nikita; Myachina, Olga; Kuzyakov, Yakov

    2016-02-01

    Short-term acceleration of soil organic matter decomposition by increasing temperature conflicts with the thermal adaptation observed in long-term studies. Here we used the altitudinal gradient on Mt. Kilimanjaro to demonstrate the mechanisms of thermal adaptation of extra- and intracellular enzymes that hydrolyze cellulose, chitin and phytate and oxidize monomers (14C-glucose) in warm- and cold-climate soils. We revealed that no response of decomposition rate to temperature occurs because of a cancelling effect consisting in an increase in half-saturation constants (Km), which counteracts the increase in maximal reaction rates (Vmax with temperature). We used the parameters of enzyme kinetics to predict thresholds of substrate concentration (Scrit) below which decomposition rates will be insensitive to global warming. Increasing values of Scrit, and hence stronger canceling effects with increasing altitude on Mt. Kilimanjaro, explained the thermal adaptation of polymer decomposition. The reduction of the temperature sensitivity of Vmax along the altitudinal gradient contributed to thermal adaptation of both polymer and monomer degradation. Extrapolating the altitudinal gradient to the large-scale latitudinal gradient, these results show that the soils of cold climates with stronger and more frequent temperature variation are less sensitive to global warming than soils adapted to high temperatures.

  8. Sensitivity of Sump Water Temperature to Containment Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Misuk; Kim, Seoung Rae [Nuclear Engineering Service and Solution, Daejeon (Korea, Republic of)

    2014-05-15

    This paper is focused on the containment behavior analysis in the above described cases using GOTHIC-IST (generation of thermal-hydraulic information for containments, industry standard toolset). GOTHIC-IST version 7.2a is an integrated, general purpose thermal-hydraulics software package for design, licensing, safety and operating analysis of nuclear power plant containments and other confinement buildings. In this study, we perform the sensitivity the sump water temperature to containment integrity. For 35% RIH break accident with the malfunction of spray system, local air coolers, ECC(emergency core cooling) pump and heat exchanger, the peak pressure at boiler room do not exceed the design pressure 124kPa(g) of the containment and containment integrity is secured. If accompanied the malfunction of heat exchanger or pump in the time of low pressure safety injection, of ECCS, it will be one of the aggravating factors to the integrity of core and containment.

  9. Metrological assurance and traceability for Industry 4.0 and additive manufacturing in Ukraine

    Science.gov (United States)

    Skliarov, Volodymyr; Neyezhmakov, Pavel; Prokopov, Alexander

    2018-03-01

    The national measurement standards from the point of view of traceability of the results of measurement in additive manufacturing in Ukraine are considered in the paper. The metrological characteristics of the national primary measurement standards in the field of geometric, temperature, optical-physical and time-frequency measurements, which took part in international comparisons within COOMET projects, are presented. The accurate geometric, temperature, optical-physical and time-frequency measurements are the key ones in controlling the quality of additive manufacturing. The use of advanced CAD/CAE/CAM systems allows to simulate the process of additive manufacturing at each stage. In accordance with the areas of the technology of additive manufacturing, the ways of improving the national measurement standards of Ukraine for the growing needs of metrology of additive manufacturing are considered.

  10. Unified Controller Design for Intelligent Manufacturing Automation

    National Research Council Canada - National Science Library

    Kosut, Robert

    1997-01-01

    .... The demonstration system selected was rapid thermal processing (RTP) of semiconductor wafers. This novel approach in integrated circuit manufacturing demands fast tracking control laws that achieve near uniform spatial temperature distributions...

  11. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Science.gov (United States)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  12. Estimation of Peaking Factor Uncertainty due to Manufacturing Tolerance using Statistical Sampling Method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Hoon; Park, Ho Jin; Lee, Chung Chan; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The purpose of this paper is to study the effect on output parameters in the lattice physics calculation due to the last input uncertainty such as manufacturing deviations from nominal value for material composition and geometric dimensions. In a nuclear design and analysis, the lattice physics calculations are usually employed to generate lattice parameters for the nodal core simulation and pin power reconstruction. These lattice parameters which consist of homogenized few-group cross-sections, assembly discontinuity factors, and form-functions can be affected by input uncertainties which arise from three different sources: 1) multi-group cross-section uncertainties, 2) the uncertainties associated with methods and modeling approximations utilized in lattice physics codes, and 3) fuel/assembly manufacturing uncertainties. In this paper, data provided by the light water reactor (LWR) uncertainty analysis in modeling (UAM) benchmark has been used as the manufacturing uncertainties. First, the effect of each input parameter has been investigated through sensitivity calculations at the fuel assembly level. Then, uncertainty in prediction of peaking factor due to the most sensitive input parameter has been estimated using the statistical sampling method, often called the brute force method. For our analysis, the two-dimensional transport lattice code DeCART2D and its ENDF/B-VII.1 based 47-group library were used to perform the lattice physics calculation. Sensitivity calculations have been performed in order to study the influence of manufacturing tolerances on the lattice parameters. The manufacturing tolerance that has the largest influence on the k-inf is the fuel density. The second most sensitive parameter is the outer clad diameter.

  13. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought

    Science.gov (United States)

    Adams, Henry D.; Guardiola-Claramonte, Maite; Barron-Gafford, Greg A.; Villegas, Juan Camilo; Breshears, David D.; Zou, Chris B.; Troch, Peter A.; Huxman, Travis E.

    2009-01-01

    Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of particular concern is the potential for warmer temperatures to compound the effects of increasingly severe droughts by triggering widespread vegetation shifts via woody plant mortality. The sensitivity of tree mortality to temperature is dependent on which of 2 non-mutually-exclusive mechanisms predominates—temperature-sensitive carbon starvation in response to a period of protracted water stress or temperature-insensitive sudden hydraulic failure under extreme water stress (cavitation). Here we show that experimentally induced warmer temperatures (≈4 °C) shortened the time to drought-induced mortality in Pinus edulis (piñon shortened pine) trees by nearly a third, with temperature-dependent differences in cumulative respiration costs implicating carbon starvation as the primary mechanism of mortality. Extrapolating this temperature effect to the historic frequency of water deficit in the southwestern United States predicts a 5-fold increase in the frequency of regional-scale tree die-off events for this species due to temperature alone. Projected increases in drought frequency due to changes in precipitation and increases in stress from biotic agents (e.g., bark beetles) would further exacerbate mortality. Our results demonstrate the mechanism by which warmer temperatures have exacerbated recent regional die-off events and background mortality rates. Because of pervasive projected increases in temperature, our results portend widespread increases in the extent and frequency of vegetation die-off. PMID:19365070

  14. The microbial temperature sensitivity to warming is controlled by thermal adaptation and is independent of C-quality across a pan-continental survey

    Science.gov (United States)

    Berglund, Eva; Rousk, Johannes

    2017-04-01

    Climate models predict that warming will result in an increased loss of soil organic matter (SOM). However, field experiments suggest that although warming results in an immediate increase in SOM turnover, the effect diminishes over time. Although the use and subsequent turnover of SOM is dominated by the soil microbial community, the underlying physiology underpinning warming responses are not considered in current climate models. It has been suggested that a reduction in the perceived quality of SOM to the microbial community, and changes in the microbial thermal adaptation, could be important feed-backs to soil warming. Thus, studies distinguishing between temperature relationships and how substrate quality influences microbial decomposition are a priority. We examined microbial communities and temperature sensitivities along a natural climate gradient including 56 independent samples from across Europe. The gradient included mean annual temperatures (MAT) from ca -4 to 18 ˚ C, along with wide spans of environmental factors known to influence microbial communities, such as pH (4.0 to 8.8), nutrients (C/N from 7 to 50), SOM (from 4 to 94%), and plant communities, etc. The extensive ranges of environmental conditions resulted in wide ranges of substrate quality, indexed as microbial respiration per unit SOM, from 5-150 μg CO2g-1 SOM g-1 h-1. We hypothesised microbial communities to (1) be adapted to the temperature of their climate, leading to warm adapted bacterial communities that were more temperature sensitive (higher Q10s) at higher MAT; (2) have temperature sensitivities affected by the quality of SOM, with higher Q10s for lower quality SOM. To determine the microbial use of SOM and its dependence on temperature, we characterized microbial temperature dependences of bacterial growth (leu inc), fungal growth (ac-in-erg) and soil respiration in all 56 sites. Temperature dependences were determined using brief (ca. 1-2 h at 25˚ C) laboratory incubation

  15. [Development of a simultaneous strain and temperature sensor with small-diameter FBG].

    Science.gov (United States)

    Liu, Rong-mei; Liang, Da-kai

    2011-03-01

    Manufacture of the small diameter FBG was designed. Cross sensitivity of temperature and strain at sensing point was solved. Based on coupled-mode theory, optical properties of the designed FBG were studied. The reflection and transmission spectra of the designed FBG in small diameter were studied A single mode optical fiber, whose cladding diameter is 80 microm, was manufactured to a fiber Bragg grating (phi80FBG). According to spectrum simulation, the grating length and period were chosen as the wavelength was 1528 nm. The connector of the small diameter FBG with demodulation was designed too. In applications, the FBG measures the total deformation including strain due to forces applied to the structures as well as thermal expansion. In order to overcome this inconvenience and to measure both parameters at the same time and location, a novel scheme for simultaneous strain and temperature sensor was presented. Since the uniform strength beam has same deformation at all points, a pair of phi80 FBG was attached on a uniform strength cantilever. One of the FBG was on the upper surface, with the other one on the below. Therefore, the strains at the monitoring points were equal in magnitude but of opposite sign. The strain and temperature in sensing point could be discriminated by matrix equation. The determination of the K is not null and thus matrix inversion is well conditioned, even the values for the K elements are close. Consequently, the cross sensitivity of the FBG with temperature and strain can be experimentally solved. Experiments were carried out to study the strain discriminability of small-diameter FBG sensors. The temperature and strain were calculated and the errors were, respectively, 5% and 6%.

  16. Differences in SOM decomposition and temperature sensitivity among soil aggregate size classes in a temperate grasslands.

    Science.gov (United States)

    Wang, Qing; Wang, Dan; Wen, Xuefa; Yu, Guirui; He, Nianpeng; Wang, Rongfu

    2015-01-01

    The principle of enzyme kinetics suggests that the temperature sensitivity (Q10) of soil organic matter (SOM) decomposition is inversely related to organic carbon (C) quality, i.e., the C quality-temperature (CQT) hypothesis. We tested this hypothesis by performing laboratory incubation experiments with bulk soil, macroaggregates (MA, 250-2000 μm), microaggregates (MI, 53-250 μm), and mineral fractions (MF, temperature and aggregate size significantly affected on SOM decomposition, with notable interactive effects (Ptemperature in the following order: MA>MF>bulk soil >MI(P classes (P temperature is closely associated withsoil aggregation and highlights the complex responses of ecosystem C budgets to future warming scenarios.

  17. Interlot variations of transition temperature range and force delivery in copper-nickel-titanium orthodontic wires.

    Science.gov (United States)

    Pompei-Reynolds, Renée C; Kanavakis, Georgios

    2014-08-01

    The manufacturing process for copper-nickel-titanium archwires is technique sensitive. The primary aim of this investigation was to examine the interlot consistency of the mechanical properties of copper-nickel-titanium wires from 2 manufacturers. Wires of 2 sizes (0.016 and 0.016 × 0.022 in) and 3 advertised austenite finish temperatures (27°C, 35°C, and 40°C) from 2 manufacturers were tested for transition temperature ranges and force delivery using differential scanning calorimetry and the 3-point bend test, respectively. Variations of these properties were analyzed for statistical significance by calculating the F statistic for equality of variances for transition temperature and force delivery in each group of wires. All statistical analyses were performed at the 0.05 level of significance. Statistically significant interlot variations in austenite finish were found for the 0.016 in/27°C (P = 0.041) and 0.016 × 0.022 in/35°C (P = 0.048) wire categories, and in austenite start for the 0.016 × 0.022 in/35°C wire category (P = 0.01). In addition, significant variations in force delivery were found between the 2 manufacturers for the 0.016 in/27°C (P = 0.002), 0.016 in/35.0°C (P = 0.049), and 0.016 × 0.022 in/35°C (P = 0.031) wires. Orthodontic wires of the same material, dimension, and manufacturer but from different production lots do not always have similar mechanical properties. Clinicians should be aware that copper-nickel-titanium wires might not always deliver the expected force, even when they come from the same manufacturer, because of interlot variations in the performance of the material. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  18. Manufacturing Demonstration Facility: Roll-to-Roll Processing

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Joshi, Pooran C [ORNL; List III, Frederick Alyious [ORNL; Duty, Chad E [ORNL; Armstrong, Beth L [ORNL; Ivanov, Ilia N [ORNL; Jacobs, Christopher B [ORNL; Graham, David E [ORNL; Moon, Ji Won [ORNL

    2015-08-01

    This Manufacturing Demonstration Facility (MDF)e roll-to-roll processing effort described in this report provided an excellent opportunity to investigate a number of advanced manufacturing approaches to achieve a path for low cost devices and sensors. Critical to this effort is the ability to deposit thin films at low temperatures using nanomaterials derived from nanofermentation. The overarching goal of this project was to develop roll-to-roll manufacturing processes of thin film deposition on low-cost flexible substrates for electronics and sensor applications. This project utilized ORNL s unique Pulse Thermal Processing (PTP) technologies coupled with non-vacuum low temperature deposition techniques, ORNL s clean room facility, slot dye coating, drop casting, spin coating, screen printing and several other equipment including a Dimatix ink jet printer and a large-scale Kyocera ink jet printer. The roll-to-roll processing project had three main tasks: 1) develop and demonstrate zinc-Zn based opto-electronic sensors using low cost nanoparticulate structures manufactured in a related MDF Project using nanofermentation techniques, 2) evaluate the use of silver based conductive inks developed by project partner NovaCentrix for electronic device fabrication, and 3) demonstrate a suite of low cost printed sensors developed using non-vacuum deposition techniques which involved the integration of metal and semiconductor layers to establish a diverse sensor platform technology.

  19. 78 FR 15710 - Strong Sensitizer Guidance

    Science.gov (United States)

    2013-03-12

    ... the supplemental definition of ``strong sensitizer'' found at 16 CFR 1500.3(c)(5). The Commission is proposing to revise the supplemental definition of ``strong sensitizer'' due to advancements in the science...'' definition, assist manufacturers in understanding how CPSC staff would assess whether a substance and/or...

  20. Self propagating high temperature synthesis of mixed carbide and boride powder systems for cutting tools manufacturing

    International Nuclear Information System (INIS)

    Vallauri, D.; Cola, P.L. de; Piscone, F.; Amato, I.

    2001-01-01

    TiC-TiB 2 composites have been produced via SHS technique starting from low cost raw materials like TiO 2 , B 4 C, Mg. The influence of the diluent phase (Mg, TiC) content on combustion temperature has been investigated. The use of magnesium as the reductant phase allowed acid leaching of the undesired oxide product (MgO), leaving pure hard materials with fine particle size suitable to be employed in cutting tools manufacturing through cold pressing and sintering route. The densification has shown to be strongly dependent on the wetting additions. The influence of the metal binder and wetting additions on the sintering process has been investigated. A characterization of the obtained materials was performed by the point of view of cutting tools life (hardness, toughness, strength). (author)

  1. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  2. Temperature sheets and aspect sensitive radar echoes

    Directory of Open Access Journals (Sweden)

    H. Luce

    2001-08-01

    Full Text Available here have been years of discussion and controversy about the existence of very thin and stable temperature sheets and their relationship to the VHF radar aspect sensitivity. It is only recently that very high-resolution in situ temperature observations have brought credence to the reality and ubiquity of these structures in the free atmosphere and to their contribution to radar echo enhancements along the vertical. Indeed, measurements with very high-resolution sensors are still extremely rare and rather difficult to obtain outside of the planetary boundary layer. They have only been carried out up to the lower stratosphere by Service d’A´ eronomie (CNRS, France for about 10 years. The controversy also persisted due to the volume resolution of the (Mesosphere-Stratosphere-Troposphere VHF radars which is coarse with respect to sheet thickness, although widely sufficient for meteorological or mesoscale investigations. The contribution within the range gate of many of these structures, which are advected by the wind, and decay and grow at different instants and could be distorted either by internal gravity waves or turbulence fields, could lead to radar echoes with statistical properties similar to those produced by anisotropic turbulence. Some questions thus remain regarding the manner in which temperature sheets contribute to VHF radar echoes. In particular, the zenithal and azimuthal angular dependence of the echo power may not only be produced by diffuse reflection on stable distorted or corrugated sheets, but also by extra contributions from anisotropic turbulence occurring in the stratified atmosphere. Thus, for several years, efforts have been put forth to improve the radar height resolution in order to better describe thin structures. Frequency interferometric techniques are widely used and have been recently further developed with the implementation of high-resolution data processings. We begin by reviewing briefly some characteristics

  3. Fabrication of ultra-high sensitive and selective CH4 room temperature gas sensing of TiO2nanorods: Detailed study on the annealing temperature

    CSIR Research Space (South Africa)

    Tshabalala, Zamaswazi P

    2016-07-01

    Full Text Available Applications of ultra-highly sensitive and selective methane (CH(sub4)) room temperature gas sensors are important for various operations especially in underground mining environment. Therefore, this study is set out to investigate the effect...

  4. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: A multi-model comparison

    Science.gov (United States)

    Tucker, Colin; Reed, Sasha C.

    2016-01-01

    Arid and semiarid ecosystems (drylands) may dominate the trajectory of biosphere-to-atmosphere carbon (C) flux over the coming century. Accordingly, understanding dryland CO2 efflux controls is important for understanding C cycling at the global-scale: key unknowns regarding how temperature and moisture interact to regulate dryland C cycling remain. Further, the patchiness of dryland vegetation can create ‘islands of fertility’, with spatially heterogeneous rates of soil respiration (Rs). At our study site in southeastern Utah, USA we added or removed litter (0 to 650% of control) in paired plots that were either associated with a shrub or with interspaces between vascular plants. We measured Rs, soil temperature, and water content (θ) on eight sampling dates between October 2013 and November 2014. Rs was highest following monsoon rains in late summer when soil temperature was ~30°C. During mid-summer, Rs was low, associated with high soil temperatures (>40°C), resulting in an apparent negative temperature sensitivity of Rs at high temperatures, and positive temperature sensitivity at low-moderate temperatures. We used Bayesian statistical methods to compare multiple competing models capturing a wide range of hypothesized relationships between temperature, moisture, and Rs. The best fit model indicates apparent negative temperature sensitivity of soil respiration at high temperatures reflects the control of soil moisture – not high temperatures – in limiting Rs. The modeled Q10 ranged from 2.7 at 5°C to 1.4 at 45°C. Litter addition had no effect on temperature sensitivity or reference respiration (Rref = Rs at 20°C and optimum moisture) beneath shrubs, and little effect on Rref in interspaces, yet Rref was 1.5 times higher beneath shrubs than in interspaces. Together, these results suggest reduced Rs often observed at high temperatures in drylands is dominated by the control of moisture, and that variable litter inputs – at least over the short

  5. Transposition of Tn5096 from a temperature-sensitive transducible plasmid in Streptomyces spp.

    OpenAIRE

    McHenney, M A; Baltz, R H

    1991-01-01

    Transposon Tn5096 was inserted into a derivative of the temperature-sensitive plasmid pMT660 containing the bacteriophage FP43 pac site. The resulting plasmid, pRHB126, was transduced by FP43 into several Streptomyces species. Tn5096 transposed from pRHB126 into different sites in the genomes of Streptomyces ambofaciens, Streptomyces cinnamonensis, Streptomyces coelicolor A3(2), Streptomyces fradiae, Streptomyces griseofuscus, and Streptomyces thermotolerans.

  6. Problems in use and security of measurement of high temperature strain gages at various temperature limits up to 10000C

    International Nuclear Information System (INIS)

    Ziegler, K.

    1982-01-01

    The examples given show the quality and use of manufacturers' data for a series of behaviour criteria for strain gages in the high temperature region. These results should not only be regarded critically. The manufacturer must appreciate that the very costly programme of investigations on the users' side represents a product development for large parts for the manufacturer of the strain gauges. It would therefore be desirable if these considerations were to initiate investigations on the manufacturer's part, in order to clear up the problematic are of the use of strain gages in the high temperature field, in order to provide the customer with more reliable and better strain gage characteristics for very expensive high temperature strain measurements. (orig.) [de

  7. Martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel during isothermal holding at low temperature

    International Nuclear Information System (INIS)

    Lee, Jae-hwa; Fukuda, Takashi; Kakeshita, Tomoyuki

    2009-01-01

    We investigated martensitic transformation behaviour in sensitized SUS304 austenitic stainless steel to determine the stability of the austenitic phase at low temperatures. We found that a specimen that was sensitized at 973 K for 100 h exhibits an isothermal martensitic transformation when the specimen is held in the temperature range between 60 and 260 K. We constructed a time-temperature-transformation (TTT) diagram corresponding to the formation of 0.5 vol. % α'-martensite. A magnetization measurement was used to evaluate the volume fraction of a'-martensite. The TTT diagram shows a double-C curve with two noses located at about 100 and 200 K. In-situ optical microscope observations reveal that the double C-curve is due to two different transformation sequences. That is, the upper part of the C-curve is due to a direct γ → α' martensitic transformation and the lower part of the C-curve is due to a successive γ → ψ → α' martensitic transformation. The direct γ → α' transformation occurs in the vicinity of grain boundaries while the successive γ → ψ' → α' transformation occurs near the centre of grains. A scanning electron microscope observation reveals that carbide particles of M 23 C 6 are formed in the grain boundaries. The concentration difference between the centre of the grains and regions near grain boundaries is the reason for the difference in the isothermal transformation sequence for the sensitized SUS304 stainless steel.

  8. On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads

    International Nuclear Information System (INIS)

    Berger, S.; Richard, S.; Duchaine, F.; Staffelbach, G.; Gicquel, L.Y.M.

    2016-01-01

    Highlights: • Coupling of LES, DOM and conduction is applied to an industrial combustor. • Thermal sensitivity of the combustor to convection and radiation is investigated. • CHT based on LES is feasible in an industrial context with acceptable CPU costs. • Radiation heat fluxes are of the same order of magnitude that the convective ones. • CHT with radiation are globally in good agreement with thermocolor test. - Abstract: The design of aeronautical engines is subject to many constraints that cover performance gain as well as increasingly sensitive environmental issues. These often contradicting objectives are currently being answered through an increase in the local and global temperature in the hot stages of the engine. As a result, hot spots could appear causing a premature aging of the combustion chamber. Today, the characterization of wall temperatures is performed experimentally by complex thermocolor tests in advanced phases of the design process. To limit such expensive experiments and integrate the knowledge of the thermal environment earlier in the design process, efforts are currently performed to provide high fidelity numerical tools able to predict the combustion chamber wall temperature including the main physical phenomena: combustion, convection and mixing of hot products and cold flows, radiative transfers as well as conduction in the solid parts. In this paper, partitioned coupling approaches based on a Large Eddy Simulation (LES) solver, a Discrete Ordinate Method radiation solver and an unsteady conduction code are used to investigate the sensitivity of an industrial combustor thermal environment to convection and radiation. Four computations including a reference adiabatic fluid only simulation, Conjugate Heat Transfer, Radiation-Fluid Thermal Interaction and fully coupled simulations are performed and compared with thermocolor experimental data. From the authors knowledge, such comparative study with LES has never been published. It

  9. Manufacturing and joining technologies for helium cooled divertors

    International Nuclear Information System (INIS)

    Aktaa, J.; Basuki, W.W.; Weber, T.; Norajitra, P.; Krauss, W.; Konys, J.

    2014-01-01

    Highlights: • The manufacturing and joining technologies developed at KIT for helium cooled divertors are reviewed and critically discussed. • Various technologies have been pursued and further developed aiming divertor components with very high quality and sufficient reliability. • Very promising routes have been found for which however still R and D works are necessary. • Technologies developed are also useful for other divertor and even blanket concepts, particularly those with tungsten armor. - Abstract: In the helium cooled (HC) divertor, developed at KIT for a fusion power plant, tungsten has been selected as armor as well as structural material due to its crucial properties: high melting point, very low sputtering yield, good thermal conductivity, high temperature strength, low thermal expansion and low activation. Thereby the armor tungsten is attached to the structural tungsten by thermally conductive joint. Due to the brittleness of tungsten at low temperatures its use as structural material is limited to the high temperature part of the component and a structural joint to the reduced activation ferritic martensitic steel EUROFER97 is foreseen. Hence, to realize the selected hybrid material concept reliable tungsten–steel and tungsten–tungsten joints have been developed and will be reported in this paper. In addition, the modular design of the HC divertor requires tungsten armor tiles and tungsten structural thimbles to be manufactured in high numbers with very high quality. Due to the high strength and low temperature brittleness of tungsten special manufacturing techniques need to be developed for the production of parts with no cavities inside and/or surface flaws. The main achievement in developing the respective manufacturing technologies will be presented and discussed. To achieve the objectives mentioned above various manufacturing and joining technologies are pursued. Their later applicability depends on the level of development

  10. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering

    International Nuclear Information System (INIS)

    Xu Mingen; Li Yanlei; Suo Hairui; Wang Qiujun; Ge Yakun; Xu Ying; Yan Yongnian; Liu Li

    2010-01-01

    Here we developed a composite scaffold of pearl/poly(lactic-co-glycolic acid) (pearl/PLGA) utilizing the low-temperature deposition manufacturing (LDM). LDM makes it possible to fabricate scaffolds with designed microstructure and macrostructure, while keeping the bioactivity of biomaterials by working at a low temperature. Process optimization was carried out to fabricate a mixture of pearl powder, PLGA and 1,4-dioxane with the designed hierarchical structures, and freeze-dried at a temperature of -40 deg. C. Scaffolds with square and designated bone shape were fabricated by following the 3D model. Marrow stem cells (MSCs) were seeded on the pearl/PLGA scaffold and then cultured in a rotating cell culture system. The adhesion, proliferation and differentiation of MSCs into osteoblasts were determined using scanning electronic microscopy, WST-1 assay, alkaline phosphatase activity assay, immunofluorescence staining and real-time reverse transcription polymerase chain reaction. The results showed that the composite scaffold had high porosity (81.98 ± 3.75%), proper pore size (micropores: <10 μm; macropore: 495 ± 54 μm) and mechanical property (compressive strength: 0.81 ± 0.04 MPa; elastic modulus: 23.14 ± 0.75 MPa). The pearl/PLGA scaffolds exhibited better biocompatibility and osteoconductivity compared with the tricalcium phosphate/PLGA scaffold. All these results indicate that the pearl/PLGA scaffolds fulfill the basic requirements of bone tissue engineering scaffold.

  11. Empirically Derived and Simulated Sensitivity of Vegetation to Climate Across Global Gradients of Temperature and Precipitation

    Science.gov (United States)

    Quetin, G. R.; Swann, A. L. S.

    2017-12-01

    Successfully predicting the state of vegetation in a novel environment is dependent on our process level understanding of the ecosystem and its interactions with the environment. We derive a global empirical map of the sensitivity of vegetation to climate using the response of satellite-observed greenness and leaf area to interannual variations in temperature and precipitation. Our analysis provides observations of ecosystem functioning; the vegetation interactions with the physical environment, across a wide range of climates and provide a functional constraint for hypotheses engendered in process-based models. We infer mechanisms constraining ecosystem functioning by contrasting how the observed and simulated sensitivity of vegetation to climate varies across climate space. Our analysis yields empirical evidence for multiple physical and biological mediators of the sensitivity of vegetation to climate as a systematic change across climate space. Our comparison of remote sensing-based vegetation sensitivity with modeled estimates provides evidence for which physiological mechanisms - photosynthetic efficiency, respiration, water supply, atmospheric water demand, and sunlight availability - dominate the ecosystem functioning in places with different climates. Earth system models are generally successful in reproducing the broad sign and shape of ecosystem functioning across climate space. However, this general agreement breaks down in hot wet climates where models simulate less leaf area during a warmer year, while observations show a mixed response but overall more leaf area during warmer years. In addition, simulated ecosystem interaction with temperature is generally larger and changes more rapidly across a gradient of temperature than is observed. We hypothesize that the amplified interaction and change are both due to a lack of adaptation and acclimation in simulations. This discrepancy with observations suggests that simulated responses of vegetation to

  12. Radiation synthesis of a water-soluble temperature sensitive polymer, activated copolymer and applications in immobilization of proteins

    International Nuclear Information System (INIS)

    Zhai Maolin; Ha Hongfei; Wu Jilan

    1993-01-01

    In this work the radiation polymerization of N-isopropylacrylamide (NIPAAM) in aqueous solutions has been carried out and a water-soluble, temperature sensitive polymer and copolymer were obtained by using γ-rays from Co-60 source at room temperature. We have gained the optimum dose and dose-rate of radiation synthesis of linear polyNIPAAM through determining conversion yield and viscosity. In order to immobilize protein (BSA) and enzyme (HRP) into this water-soluble polymer, we prepared an activated copolymer, poly(N-isopropylacrylamide-co-N-acryloxysuccinimide). The BSA and HRP has been immobilized onto the activated copolymer. The BSA (HRP)/copolymer conjugates still kept the original thermally sensitive properties of the linear polyNIPAAM. The conjugation yield of BSA to the activated copolymer decreased with increasing dose. Immobilized HRP was stable at 0 o C for a long time and has, at least, 4 days stability at room temperature. Immobilized HRP activity was lowered when the temperature was raised. This phenomenon was reversible and the immobilized HRP regained activity. The optimum pH of the immobilized HRP shifted from ca.5 upward to ca. 7. (author)

  13. Elimination of bus voltage impact on temperature sensitive electrical parameter during turn-on transition for junction temperature estimation of high-power IGBT modules

    DEFF Research Database (Denmark)

    Luo, Haoze; Iannuzzo, Francesco; Blaabjerg, Frede

    2017-01-01

    Junction temperature is of great importance to safe operating area of IGBT modules. Various information of the IGBT operating state is reflected on electrical characteristics during turn-on transient. A unified extraction method for internal junction temperature via dynamic thermo......-sensitive electrical parameters (DTSEP) during turn-on transient is proposed. Two DTSEP, turn-on delay time (tdon) and the maximum increasing rate of collector current dic/dt(max), are combined to eliminate the bus voltage impact. Using the inherent emitter-auxiliary inductor LeE in high-power modules, the temperature......-dependent DTSEPs can be converted into a low-voltage and measurable signal. Finally, experiment results are exhibited to verify the effectiveness of proposed method....

  14. Differential chromosomal and mitochondrial DNA synthesis in temperature-sensitive mutants of Ustilago maydis

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P.

    1977-01-01

    The amount and type of residual DNA synthesis was determined in eight temperature-sensitive mutants of the smut fungus Ustilago maydis after incubation at the restrictive temperature (32/sup 0/C) for eight hours. Mutants ts-220, ts-207, ts-432 and ts-346 were found to have an overall reduction in the synthesis of both nuclear and mitochondrial DNA in comparison to the wild-type. In mutants ts-20, tsd 1-1, ts-84 and pol 1-1 nuclear DNA synthesis was depressed relative to mitochondrial synthesis. The DNA-polymerase mutant pol 1-1 had persistent nuclear synthesis at about 50% of the rate of synthesis of mitochondrial DNA and similar behavior was observed in a diploid homozygous strain. Mutant ts-84 had an initial burst of DNA synthesis which was reduced for nuclear but not mitochondrial synthesis after three hours preincubation at 32/sup 0/C. tsd 1-1 and ts-20 had nuclear residual synthesis amounting to about 25% of the relative rate of mitochondrial synthesis which correlates to increasing UV sensitivity of these strains on incubation at 32/sup 0/C. A pol 1-1 ts-84 double mutant had an additive loss of nuclear DNA synthesis which indicates that the steps of replication involved may be sequential.

  15. Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery

    International Nuclear Information System (INIS)

    Feng, Yongqiang; Zhang, Yaning; Li, Bingxi; Yang, Jinfu; Shi, Yang

    2015-01-01

    The sensitivity analysis for low temperature ORCs (organic Rankine cycles), as well as the thermoeconomic comparison between the basic ORC and regenerative ORC using Non-dominated sorting genetic algorithm-II (NSGA-II), are conducted in this paper. The derivatives of five system parameters on system performance are used to evaluate the parametric sensitiveness. The exergy efficiency and the APR (heat exchanger area per unit net power output) are selected as the objective functions for multi-objective optimization using R123 under the low temperature heat source of 423 K. The Pareto frontier solution with bi-objective for maximizing exergy efficiency and minimizing APR is obtained and compared with the corresponding single-objective solutions. The results indicate that the prior consideration of improving thermal efficiency and exergy efficiency is to increase the evaporator outlet temperature. A fitting curve can be yielded from the Pareto frontier between the thermodynamic performance and economic factor. The optimum exergy efficiency and APR of the regenerative ORC obtained from the Pareto-optimal solution are 59.93% and 3.07 m 2 /kW, which are 8.10% higher and 15.89% lower than that of the basic ORC, respectively. The Pareto optimization compromises the thermodynamic performance and economic factor, therefore being more suitable for decision making. - Highlights: • The sensitivity analysis of the basic ORC is conducted. • The Pareto-optimal solution is compared with the single-objective solutions. • Evaporator outlet temperature should be preferentially considered. • 8.10% higher exergy efficiency and 15.89% lower APR for the regenerative ORC

  16. OPTIMIZATION OF THE TEMPERATURE CONTROL SCHEME FOR ROLLER COMPACTED CONCRETE DAMS BASED ON FINITE ELEMENT AND SENSITIVITY ANALYSIS METHODS

    Directory of Open Access Journals (Sweden)

    Huawei Zhou

    2016-10-01

    Full Text Available Achieving an effective combination of various temperature control measures is critical for temperature control and crack prevention of concrete dams. This paper presents a procedure for optimizing the temperature control scheme of roller compacted concrete (RCC dams that couples the finite element method (FEM with a sensitivity analysis method. In this study, seven temperature control schemes are defined according to variations in three temperature control measures: concrete placement temperature, water-pipe cooling time, and thermal insulation layer thickness. FEM is employed to simulate the equivalent temperature field and temperature stress field obtained under each of the seven designed temperature control schemes for a typical overflow dam monolith based on the actual characteristics of a RCC dam located in southwestern China. A sensitivity analysis is subsequently conducted to investigate the degree of influence each of the three temperature control measures has on the temperature field and temperature tensile stress field of the dam. Results show that the placement temperature has a substantial influence on the maximum temperature and tensile stress of the dam, and that the placement temperature cannot exceed 15 °C. The water-pipe cooling time and thermal insulation layer thickness have little influence on the maximum temperature, but both demonstrate a substantial influence on the maximum tensile stress of the dam. The thermal insulation thickness is significant for reducing the probability of cracking as a result of high thermal stress, and the maximum tensile stress can be controlled under the specification limit with a thermal insulation layer thickness of 10 cm. Finally, an optimized temperature control scheme for crack prevention is obtained based on the analysis results.

  17. Additive Manufacturing of Composites and Complex Materials

    Science.gov (United States)

    Spowart, Jonathan E.; Gupta, Nikhil; Lehmhus, Dirk

    2018-03-01

    Advanced composite materials form an important class of high-performance industrial materials used in weight-sensitive applications such as aerospace structures, automotive structures and sports equipment. In many of these applications, parts are made in small production runs, are highly customized and involve long process development times. Developments in additive manufacturing (AM) methods have helped in overcoming many of these limitations. The special topic of Additive Manufacturing of Composites and Complex Materials captures the state of the art in this area by collecting nine papers that present much novel advancement in this field. The studies under this topic show advancement in the area of AM of carbon fiber and graphene-reinforced composites with high thermal and electrical conductivities, development of new hollow glass particle-filled syntactic foam filaments for printing lightweight structures and integration of sensors or actuators during AM of metallic parts. Some of the studies are focused on process optimization or modification to increase the manufacturing speed or tuning manufacturing techniques to enable AM of new materials.

  18. Structural properties and in vitro digestibility of edible and pH-sensitive films made from guinea arrowroot starch and wastes from wine manufacture.

    Science.gov (United States)

    Gutiérrez, Tomy J; Herniou-Julien, Clémence; Álvarez, Kelvia; Alvarez, Vera A

    2018-03-15

    A non-conventional starch obtained from guinea arrowroot tubers (Calathea allouia) grown in the Amazon was used as a polymeric matrix for the development of edible films. The films were manufactured by blending/thermo molding and plasticized with glycerol. Agro-industrial wastes from wine manufacture (grape waste flour and grape waste extract) were used as natural fillers of the thermoplastic starch (TPS) matrices. The results showed that the natural fillers caused cross-linking in the TPS matrix. This led to the production of films with higher resistant starch (RS) content, especially RS type 4 (RS4), although the DSC results showed that the films developed also contained RS type 3 (RS3). As expected, the presence of RS reduced the in vitro digestibility rate. Films made with the natural fillers were also less hydrophilic, had a greater thermal resistance, and tended towards ductile mechanical behavior. Finally, the edible film containing grape waste flour as a natural filler proved to be pH-sensitive, although this material disintegrated under alkaline conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Skin Sensitive Difference of Human Body Sections under Clothing-Smirnov Test of Skin Surface Temperatures' Dynamic Changing

    Institute of Scientific and Technical Information of China (English)

    LI Jun; WU Hai-yan; WANG Yun-yi

    2004-01-01

    Skin sensitive difference of human body sections under clothing is the theoretic foundation of thermal insulation clothing design.By a new method of researching on clothing comfort perception,the skin temperature live changing procedure of human body sections affected by the same cold stimulation is inspected.Furthermore with the Smirnov test the skin temperatures dynamic changing patterns of main human body sections are obtained.

  20. The defective phosphoribosyl diphosphate synthase in a temperature-sensitive prs-2 mutant of Escherichia coli is compensated by increased enzyme synthesis

    DEFF Research Database (Denmark)

    Post, David A.; Switzer, Robert L.; Hove-Jensen, Bjarne

    1996-01-01

    An Escherichia coli strain which is temperature-sensitive for growth due to a mutation (prs-2) causing a defective phosphoribosyl diphosphate (PRPP) synthase has been characterized. The temperature-sensitive mutation was mapped to a 276 bp HindIII-BssHII DNA fragment located within the open reading...... temperature shift to 42 degrees C. The other mutation was a C -> T transition located 39 bp upstream of the G -> A mutation, i.e. outside the coding sequence and close to the Shine-Dalgarno sequence. Cells harbouring only the C -> T mutation in a plasmid contained approximately three times as much PRPP...

  1. Research for improved flexible tactile sensor sensitivity

    International Nuclear Information System (INIS)

    Yun, Hae Yong; Kim, Ho Chan; Lee, In Hwan

    2015-01-01

    With the development of robotic technologies, in recent years these technologies have been applied to multidisciplinary fields of study. To operate similarly to a human being, many robot technologies require devices that can receive exterior stimulus, temperature, visual data, and the sense of smell, etc. The robot's hand needs sensor devices that can receive exterior stimuli in order to operate similarly to human skin. The flexible tactile sensor for the robot has to be manufactured to have a shape similar to the shape of human skin. The research studied the development of a system and materials that will enable exterior stimuli to be received effectively. This research used carbon nano tube as a material. Carbon nano tube is used because it has a high electrical conductivity and outstanding mechanical characteristics. In addition, the two composite Materials are used to improve the stimulation sensitivity at different rates, the flexible tactile sensor to measure the sensitivity. Using 3D printing technology, the fabrication of a flexible tactile sensor system is introduced.

  2. Research for improved flexible tactile sensor sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Hae Yong; Kim, Ho Chan [Andong National University, Andong (Korea, Republic of); Lee, In Hwan [Chungbuk National University, Chungju (Korea, Republic of)

    2015-11-15

    With the development of robotic technologies, in recent years these technologies have been applied to multidisciplinary fields of study. To operate similarly to a human being, many robot technologies require devices that can receive exterior stimulus, temperature, visual data, and the sense of smell, etc. The robot's hand needs sensor devices that can receive exterior stimuli in order to operate similarly to human skin. The flexible tactile sensor for the robot has to be manufactured to have a shape similar to the shape of human skin. The research studied the development of a system and materials that will enable exterior stimuli to be received effectively. This research used carbon nano tube as a material. Carbon nano tube is used because it has a high electrical conductivity and outstanding mechanical characteristics. In addition, the two composite Materials are used to improve the stimulation sensitivity at different rates, the flexible tactile sensor to measure the sensitivity. Using 3D printing technology, the fabrication of a flexible tactile sensor system is introduced.

  3. 2000 survey of window manufacturers on the subject of switchable glass

    Science.gov (United States)

    LaPointe, Michael R.; Sottile, Gregory M.

    2001-11-01

    The results of a 2000 survey of United States window manufacturers on the subject of switchable glass are discussed. The areas covered in this paper include awareness of the overall product category of switchable glass and various types of switchable glass, attitudes toward specific features of switchable glass, expectations for manufacturer production of such products, expectations for market penetration rates among end-product consumers, levels of price sensitivity among window manufacturers regarding switchable glass, and expectations for the pace of new product development within the window industry over the next five years.

  4. Evolution of vertebrate transient receptor potential vanilloid 3 channels: opposite temperature sensitivity between mammals and western clawed frogs.

    Directory of Open Access Journals (Sweden)

    Shigeru Saito

    2011-04-01

    Full Text Available Transient Receptor Potential (TRP channels serve as temperature receptors in a wide variety of animals and must have played crucial roles in thermal adaptation. The TRP vanilloid (TRPV subfamily contains several temperature receptors with different temperature sensitivities. The TRPV3 channel is known to be highly expressed in skin, where it is activated by warm temperatures and serves as a sensor to detect ambient temperatures near the body temperature of homeothermic animals such as mammals. Here we performed comprehensive comparative analyses of the TRPV subfamily in order to understand the evolutionary process; we identified novel TRPV genes and also characterized the evolutionary flexibility of TRPV3 during vertebrate evolution. We cloned the TRPV3 channel from the western clawed frog Xenopus tropicalis to understand the functional evolution of the TRPV3 channel. The amino acid sequences of the N- and C-terminal regions of the TRPV3 channel were highly diversified from those of other terrestrial vertebrate TRPV3 channels, although central portions were well conserved. In a heterologous expression system, several mammalian TRPV3 agonists did not activate the TRPV3 channel of the western clawed frog. Moreover, the frog TRPV3 channel did not respond to heat stimuli, instead it was activated by cold temperatures. Temperature thresholds for activation were about 16 °C, slightly below the lower temperature limit for the western clawed frog. Given that the TRPV3 channel is expressed in skin, its likely role is to detect noxious cold temperatures. Thus, the western clawed frog and mammals acquired opposite temperature sensitivity of the TRPV3 channel in order to detect environmental temperatures suitable for their respective species, indicating that temperature receptors can dynamically change properties to adapt to different thermal environments during evolution.

  5. Effects of Temperature on Sensitivity of Bacilus licheniformis RI 75-1 Vegetative Cells at Gamma Quantum

    International Nuclear Information System (INIS)

    Fernandez-Larrea Vega, O.; Rios Brito, F.; Marquez Alvarez, M.; Padron Soler, E.

    1986-01-01

    It is known that strains of E. Coli with wild genotype for reparation, when are irradiated at temperature between 42 0 C and 45 0 C, shown an increase of radioresistance. At the given temperature the number of double strands breaks of DNA decrease. Some authors report that the radioresistance increased is due to the elevation of the irradiation temperature is related to the cell membrane status. The paper includes reports on the effects of increased temperature on the sensitivity - at gamma quantum - of Bacillus licheniformis RI 75-1 vegetative cells. Temperatures of 42 0 C and 60 0 C during irradiation were employed. An increase in radioresistance was found when the temperature of irradiation was increased to 42 0 C. However, a decrease in viability was observed. Heat treatment prior to irradiation showed an increase in the number of radioresistance colonies when compared. (author)

  6. A novel and fully scalable Agrobacterium spray-based process for manufacturing cellulases and other cost-sensitive proteins in plants.

    Science.gov (United States)

    Hahn, Simone; Giritch, Anatoli; Bartels, Doreen; Bortesi, Luisa; Gleba, Yuri

    2015-06-01

    Transient transfection of plants by vacuum infiltration of Agrobacterium vectors represents the state of the art in plant-based protein manufacturing; however, the complexity and cost of this approach restrict it to pharmaceutical proteins. We demonstrated that simple spraying of Nicotiana plants with Agrobacterium vectors in the presence of a surfactant can substitute for vacuum inoculation. When the T-DNA of Agrobacterium encodes viral replicons capable of cell-to-cell movement, up to 90% of the leaf cells can be transfected and express a recombinant protein at levels up to 50% of total soluble protein. This simple, fast and indefinitely scalable process was successfully applied to produce cellulases, one of the most volume- and cost-sensitive biotechnology products. We demonstrate here for the first time that representatives of all hydrolase classes necessary for cellulosic biomass decomposition can be expressed at high levels, stored as silage without significant loss of activity and then used directly as enzyme additives. This process enables production of cellulases, and other potential high-volume products such as noncaloric sweetener thaumatin and antiviral protein griffithsin, at commodity agricultural prices and could find broad applicability in the large-scale production of many other cost-sensitive proteins. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  7. Assessing the influence of manufacturing sectors on electricity demand. A cross-country input-output approach

    International Nuclear Information System (INIS)

    Tarancon, Miguel Angel; Callejas Albinana, Fernando; Del Rio, Pablo

    2010-01-01

    The production and consumption of electricity is a major source of CO 2 emissions in Europe and elsewhere. In turn, the manufacturing sectors are significant end-users of electricity. In contrast to most papers in the literature, which focus on the supply-side, this study tackles the demand-side of electricity. An input-output approach combined with a sensitivity analysis has been developed to analyse the direct and indirect consumptions of electricity by eighteen manufacturing sectors in fifteen European countries, with indirect electricity demand related to the purchase of industrial products from other sectors which, in turn, require the consumption of electricity in their manufacturing processes. We identify the industrial transactions and sectors, which account for a greater share of electricity demand. In addition, the impact of an electricity price increase on the costs and prices of manufacturing products is simulated through a price model, allowing us to identify those sectors whose manufacturing costs are most sensitive to an increase in the electricity price. (author)

  8. Assessing the influence of manufacturing sectors on electricity demand. A cross-country input-output approach

    Energy Technology Data Exchange (ETDEWEB)

    Tarancon, Miguel Angel; Callejas Albinana, Fernando [Faculty of Law and Social Sciences, Universidad de Castilla - La Mancha, Ronda de Toledo s/n, 13071 Ciudad Real (Spain); Del Rio, Pablo [Institute for Public Policies and Goods (IPP), Centro de Ciencias Humanas y Sociales, CSIC, C/Albasanz 26-28, 28037 Madrid (Spain)

    2010-04-15

    The production and consumption of electricity is a major source of CO{sub 2} emissions in Europe and elsewhere. In turn, the manufacturing sectors are significant end-users of electricity. In contrast to most papers in the literature, which focus on the supply-side, this study tackles the demand-side of electricity. An input-output approach combined with a sensitivity analysis has been developed to analyse the direct and indirect consumptions of electricity by eighteen manufacturing sectors in fifteen European countries, with indirect electricity demand related to the purchase of industrial products from other sectors which, in turn, require the consumption of electricity in their manufacturing processes. We identify the industrial transactions and sectors, which account for a greater share of electricity demand. In addition, the impact of an electricity price increase on the costs and prices of manufacturing products is simulated through a price model, allowing us to identify those sectors whose manufacturing costs are most sensitive to an increase in the electricity price. (author)

  9. Photo-sensitive Ge nanocrystal based films controlled by substrate deposition temperature

    KAUST Repository

    Stavarache, Ionel

    2017-07-21

    Lowering the temperature of crystallization by deposition of thin films on a heated substrate represents the easiest way to find new means to develop and improve new working devices based on nanocrystals embedded in thin films. The improvements are strongly related with the increasing of operation speed, substantially decreasing the energy consumption and reducing unit fabrication costs of the respective semiconductor devices. This approach avoids major problems, such as those related to diffusion or difficulties in controlling of nanocrystallites size, which appear during thermal treatments at high temperatures after deposition. It is reported here the significant progress introduced by synthesis procedure to the in-situ structuring of Ge nanocrystallites in SiO2 thin films by heating the substrate at low temperature, 400 °C during co-deposition of Ge and SiO2 by magnetron sputtering. As a proof-of-concept, a Si/Ge-NCs:SiO2 photo-sensitive structure was fabricated thereof and characterized. The structure shows superior performance on broad operation bandwidth from visible to near-infrared, as strong rectification properties in dark, significant current rise in the inversion mode when illuminated, high responsivity, high photo-detectivity of 1014 Jones, quick response and significant conversion efficiency of 850 %. This simple preparation approach brings an important contribution to the efort of structuring Ge nanocrystallites in SiO2 thin films at a lower temperature for the purpose of using these materials for devices in optoelectronics, solar cells and electronics on flexible substrates.

  10. Evaluation of cost reduction method for manufacturing ODS ferritic claddings

    International Nuclear Information System (INIS)

    Fujiwara, Masayuki; Mizuta, Shunji; Ukai, Shigeharu

    2000-04-01

    For evaluating the fast reactor system technology, it is important to evaluate the practical feasibility of ODS ferritic claddings, which is the most promising materials to attain the goal of high coolant temperature and more than 150 GWd/t. Based on the results of their technology development, mass production process with highly economically benefit as well as manufacturing cost estimation of ODS ferritic claddings were preliminarily conducted. From the view point of future utility scale, the cost for manufacturing mother tubes has a dominant factor in the total manufacturing cost. The method to reduce the cost of mother tube manufacturing was also preliminarily investigated. (author)

  11. Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification.

    Science.gov (United States)

    Salazar-Serrano, L J; Barrera, D; Amaya, W; Sales, S; Pruneri, V; Capmany, J; Torres, J P

    2015-09-01

    We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035  nm/°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods.

  12. Manufacture of titanium and zirconium hydrides

    International Nuclear Information System (INIS)

    Mares, F.; Hanslik, T.

    1973-01-01

    A method is described of manufacturing titanium and zirconium hydrides by hydrogenation of said metals characterized by the reaction temperature ranging between 250 to 500 degC, hydrogen pressure of 20 to 300 atm and possibly by the presence of a hydride of the respective metal. (V.V.)

  13. Isolation of temperature-sensitive mutations in murC of Staphylococcus aureus.

    Science.gov (United States)

    Ishibashi, Mihoko; Kurokawa, Kenji; Nishida, Satoshi; Ueno, Kohji; Matsuo, Miki; Sekimizu, Kazuhisa

    2007-09-01

    Enzymes in the bacterial peptidoglycan biosynthesis pathway are important targets for novel antibiotics. Of 750 temperature-sensitive (TS) mutants of Gram-positive Staphylococcus aureus, six were complemented by the murC gene, which encodes the UDP-N-acetylmuramic acid:l-alanine ligase. Each mutation resulted in a single amino acid substitution and, in all cases, the TS phenotype was suppressed by high osmotic stress. In mutant strains with the G222E substitution, a decrease in the viable cell number immediately after shift to the restrictive temperature was observed. These results suggest that S. aureus MurC protein is essential for cell growth. The MurC H343Y mutation is located in the putative alanine recognition pocket. Consistent with this, allele-specific suppression was observed of the H343Y mutation by multiple copies of the aapA gene, which encodes an alanine transporter. The results suggest an in vivo role for the H343 residue of S. aureus MurC protein in high-affinity binding to L-alanine.

  14. Dye-sensitized solar cells with ZnO nanoparticles fabricated at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungjae; Moon, Byungjoon; Son, Dongick [Korea Institute of Science and Technology, Wanju (Korea, Republic of); Kwon, Byoungwook; Choi, Wonkook [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-11-15

    The authors investigated the microstructural and the electrical properties of ZnO based dyesensitized solar cells (DSSCs) fabricated using a low-temperature-processed(200 .deg. C) dye-sensitized ZnO-nanoparticle thin film and a Pt catalyst deposited on ITO/glass by using RF magnetron sputtering. A hydropolymer containing PEG (poly(ethylene glycol)) and PEO (poly ethylene oxide) was used to make uniformly-distributed ZnO nanoparticle layer that form a nano-porous ZnO network after heat treatment and was then dye sensitized and sandwiched between two electrodes in an electrolyte to make a DSSC device. The highest measured parameters, the short circuit current density (J{sub sc}), the open circuit potential(V{sub oc}), the fill factor(FF), and the power conversion efficiency (η), of the DSSC fabricated under optimized conditions were observed to be 4.93 mA/cm{sup 2}, 0.56 V, 0.40, and 1.12%, respectively.

  15. Chalon/Saint-Marcel manufacturing plant

    International Nuclear Information System (INIS)

    2008-01-01

    AREVA is the world leader in the design and construction of nuclear power plants, the manufacture of heavy components, and the supply of nuclear fuel and nuclear services such as maintenance and inspection. The Equipment Division provides the widest range of nuclear components and equipment, manufactured at its two facilities in Jeumont, northern France, and St. Marcel, in Burgundy. The St. Marcel plant, set on 35 ha (87.5 acres) near Chalon-sur-Saone, was established in 1973 in a region with a long history of specialized metalworking and mechanical activities to meet the demand for non-military nuclear requirements in France. The site offers two advantages: - excellent facilities for loading and transporting heavy components on the Saone river, - it's proximity to other group sites. Since its completion in 1975, the Chalon/St. Marcel facility has manufactured all the heavy components for French pressurized water reactors (PWRs) ranging from 900 MW to 1500 MW. It has also completed a significant number of export contracts that have made AREVA world leader. Nearly 600 heavy components (reactor vessels, steam generators, pressurizers and closure heads) have been manufactured or are currently being manufactured since the plant opened in 1975. The plant is at the heart of the manufacturing chain for nuclear steam supply systems (NSSS) supplied by AREVA. On the basis of engineering data, the plant manufactures reactor vessels, reactor vessel internals, steam generators, pressurizers and related components such as accumulators, auxiliary heat exchangers and supporting elements. Vessel upper internals Other similar components such as reactor vessels for boiling water reactors (BWR) or high temperature reactors (HTR) and other types of steam generators can also be manufactured in the plant (for example Once Through Steam Generators - OTSG). The basic activities performed at Chalon/St. Marcel are metalworking and heavy machining. These activities are carried out in strict

  16. Application of TAM III to study sensitivity of soil organic matter degradation to temperature

    Science.gov (United States)

    Vikegard, Peter; Barros, Nieves; Piñeiro, Verónica

    2014-05-01

    Traditionally, studies of soil biodegradation are based on CO2 dissipation rates. CO2 is a product of aerobic degradation of labile organic substrates like carbohydrates. That limits the biodegradation concept to just one of the soil organic matter fractions. This feature is responsible for some problems to settle the concept of soil organic matter (SOM) recalcitrance and for controversial results defining sensitivity of SOM to temperature. SOM consists of highly complex macromolecules constituted by fractions with different chemical nature and redox state affecting the chemical nature of biodegradation processes. Biodegradation of fractions more reduced than carbohydrates take place through metabolic pathways that dissipate less CO2 than carbohydrate respiration, that may not dissipate CO2, or that even may uptake CO2. These compounds can be considered more recalcitrant and with lower turnover times than labile SOM just because they are degraded at lower CO2 rates that may be just a consequence of the metabolic path. Nevertheless, decomposition of every kind of organic substrate always releases heat. For this reason, the measurement of the heat rate by calorimetry yields a more realistic measurement of the biodegradation of the SOM continuum. TAM III is one of the most recent calorimeters designed for directly measuring in real time the heat rate associated with any degradation process. It is designed as a multichannel system allowing the concomitant measurement of to up 24 samples at isothermal conditions or through a temperature scanning mode from 18 to 100ºC, allowing the continous measure of any sample at controlled non-isothermal conditions. The temperature scanning mode was tested in several soil samples collected at different depths to study their sensitivity to temperature changes from 18 to 35 ºC calculating the Q10 and the activation energy (EA) by the Arrhenius equation. It was attempted to associate the obtained EA values with the soil thermal

  17. The impact of fit manufacturing on green manufacturing: A review

    Science.gov (United States)

    Qi, Ang Nian; Sin, Tan Chan; Fathullah, M.; Lee, C. C.

    2017-09-01

    Fit manufacturing and Green manufacturing are a new trend principle and concept. They are getting popular in industrial. This paper is identifying the impact between Fit manufacturing and Green manufacturing. Besides Fit manufacturing, Lean manufacturing, Agile manufacturing and Sustainable manufacturing gives big impacts to Green Manufacturing. On top of that, this paper also discuss the benefits of applying Fit manufacturing and Green manufacturing in industrial as well as environment. Hence, applications of Fit manufacturing and Green Manufacturing are increasing year by year.

  18. Change in the sensitivity of CR-39 for alpha-tracks after the storage at different temperatures

    International Nuclear Information System (INIS)

    Enomoto, Hiroko; Ishigure, Nobuhito

    2000-01-01

    The effect of storage on track registration property of CR-39 has been investigated. Pieces of CR-39 plate were irradiated with normally incident α-particles and fission fragments using a 252 Cf source prior and posterior to the storage of them in air for one year at different temperatures of -80degC, -23degC, 4degC, 23degC and 35degC. Periodical etching was performed for the pieces stored at different temperatures using the solution of NaOH with 7 mol+l -1 at 70degC for 4 hours. Bulk etch rate (V b ) was obtained from the etch pit diameter (D f ) of fission tracks using the equation: V b =D f /(2t), where t is etching time (h). The sensitivity for α-tracks (S) was obtained from the ratio of the etch pit diameters between α-tracks (D a ) and fission-tracks using the equation: S={1+(D a /D f ) 2 }/{1-(D a /D f ) 2 }-1. The present results show that both the bulk etch rate and α-track sensitivity are not constant, which tend to decrease with storage times and storage temperatures. At -80degC, -23degC and 4degC the change in the sensitivity was negligible. On the other hand, the storage at 23degC for 1 year decreased the sensitivity down to 74%. The most significant effect was observed on the α-track sensitivity at 35degC, which was reduced to 80% for one month, 61% for three months, 42% for six months and 32% for one year. By the comparison of experiments between fading and ageing it is shown that such storage effect is attributed not to fading of latent tracks but mainly to some changes in the detector itself. When CR-39 is used of radon monitoring or neutron monitoring, the following points should be paid attention to: (1) the detector should be stored in a refrigerator before exposure and until etching after the exposure, (2) the change in the sensitivity between the time of calibration and the time of use should be evaluated and the counting efficiency at the measurement should be corrected and (3) for comparison or for interpretation of experimental results

  19. Additive Manufacturing of Fuel Injectors

    Energy Technology Data Exchange (ETDEWEB)

    Sadek Tadros, Dr. Alber Alphonse [Edison Welding Institute, Inc., Columbus, OH (United States); Ritter, Dr. George W. [Edison Welding Institute, Inc., Columbus, OH (United States); Drews, Charles Donald [Edison Welding Institute, Inc., Columbus, OH (United States); Ryan, Daniel [Solar Turbines Inc., San Diego, CA (United States)

    2017-10-24

    Additive manufacturing (AM), also known as 3D-printing, has been shifting from a novelty prototyping paradigm to a legitimate manufacturing tool capable of creating components for highly complex engineered products. An emerging AM technology for producing metal parts is the laser powder bed fusion (L-PBF) process; however, industry manufacturing specifications and component design practices for L-PBF have not yet been established. Solar Turbines Incorporated (Solar), an industrial gas turbine manufacturer, has been evaluating AM technology for development and production applications with the desire to enable accelerated product development cycle times, overall turbine efficiency improvements, and supply chain flexibility relative to conventional manufacturing processes (casting, brazing, welding). Accordingly, Solar teamed with EWI on a joint two-and-a-half-year project with the goal of developing a production L-PBF AM process capable of consistently producing high-nickel alloy material suitable for high temperature gas turbine engine fuel injector components. The project plan tasks were designed to understand the interaction of the process variables and their combined impact on the resultant AM material quality. The composition of the high-nickel alloy powders selected for this program met the conventional cast Hastelloy X compositional limits and were commercially available in different particle size distributions (PSD) from two suppliers. Solar produced all the test articles and both EWI and Solar shared responsibility for analyzing them. The effects of powder metal input stock, laser parameters, heat treatments, and post-finishing methods were evaluated. This process knowledge was then used to generate tensile, fatigue, and creep material properties data curves suitable for component design activities. The key process controls for ensuring consistent material properties were documented in AM powder and process specifications. The basic components of the project

  20. Effects of copper supplement on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture.

    Science.gov (United States)

    Rodríguez, L Mato; Alatossava, T

    2008-10-01

    To determine the effects of supplemented copper (Cu2+) on growth and viability of strains used as starters and adjunct cultures for Emmental cheese manufacture. Thirteen strains belonging to Lactobacillus delbrueckii, Lactobacillus helveticus, Lactobacillus rhamnosus, Streptococcus thermophilus or Propionibacterium freudenreichii species were exposed to various copper concentrations in the proper growth medium at relevant growth temperatures, and the effects of supplemented copper on bacterial growth and cell viability were determined by optical density and pH measurements, also by platings. Among the species considered, L. delbrueckii was the most copper resistant and S. thermophilus the most sensitive to copper. Anaerobic conditions increased this sensitivity significantly. There was also a considerable amount of variation in copper resistance at strain level. Copper resistance is both a species- and strain-dependent property and may reflect variability in copper-binding capacities by cell wall components among species and strains. In addition, the chemical state of copper may be involved. This study revealed that copper resistance is a highly variable property among starter and adjunct strains, and this variability should be considered when strains are selected for Emmental cheese manufacture.

  1. Alginate microgels loaded with temperature sensitive liposomes for magnetic resonance imageable drug release and microgel visualization

    NARCIS (Netherlands)

    Van Elk, Merel; Lorenzato, Cyril; Ozbakir, Burcin; Oerlemans, Chris; Storm, Gert; Nijsen, Frank; Deckers, Roel; Vermonden, Tina; Hennink, Wim E.

    2015-01-01

    The objective of this study was to prepare and characterize alginate microgels loaded with temperature sensitive liposomes, which release their payload after mild hyperthermia. It is further aimed that by using these microgels both the drug release and the microgel deposition can be visualized by

  2. Insights on the High-Temperature Operational Limits of ZrO2-Y2O3 TBCs Manufactured via Air Plasma Spray

    Science.gov (United States)

    Lima, Rogerio S.; Marple, Basil R.

    2017-03-01

    The effective high-temperature operation limit of a ZrO2-7-8 wt.%Y2O3 (YSZ) thermal barrier coating (TBC) manufactured via air plasma spray (APS) is considered to be 1300 °C. This is related to the metastable tetragonal t'-phase formed during the rapid quenching of the YSZ particles during spraying. The t'-phase transforms into the equilibrium tetragonal and cubic phases at temperatures ≥ 1300 °C, which can lead to the formation of the monoclinic phase of YSZ upon cooling to room temperature. This formation of the monoclinic phase is accompanied by a volume expansion that leads to TBC failure due to extensive micro-cracking. To further investigate this limitation, an APS YSZ TBC was sprayed on a CMSX-4 substrate. By using a thermal (laser) gradient cyclic testing, a temperature gradient was generated across the TBC/substrate system. The YSZ T- front and substrate backside T- back temperature levels were 1500 and 1000 °C, respectively. In cycle conditions (5-min or 1-h hot and 2-min cool), no TBC failure has been observed. This behavior was partially attributed to the unexpected absence of the monoclinic phase of the YSZ in the cycled coatings. Although preliminary, these results are promising regarding increasing the effective high-temperature operational limits of APS YSZ TBCs.

  3. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  4. Impact of environmental factors on PADC radon detector sensitivity during long term storage

    Science.gov (United States)

    Wasikiewicz, J. M.

    2018-01-01

    A broad set of data on poly-allyl diglycol carbonate (PADC) exposure to various environmental conditions has been collected for a period of 1 year in order to study the aging effect on the sensitivity to radon detection. Aging is a phenomenon that occurs during long PADC storage resulting in a loss of sensitivity and/or creation of false tracks. Conditions under investigation were storages under pure nitrogen or air atmospheres, in water solutions of different pHs, in a range of temperatures, humidity and exposure to UV, gamma and neutron radiations. It was found that PADC strongly responds to some external conditions through physical changes in the polymer material; for example, etching of UV exposed detectors led to 10% loss of their thickness and the removal of the tracks layer. Performance of detectors was compared with a control that was the sensitivity of detectors from the same sheet at the time of primary calibration - within 1 month of each sheet being manufactured. Substantial difference in performance was found between storage under pure, dry nitrogen and in the presence of water. The former preserves PADC radon detection properties for the period of one year without noticeable change. The latter, on the other hand significantly reduces its performance even after 3 months' storage. It was also established that storage under low temperature is not a suitable means to preserve PADC sensitivity to radon detection due to significant loss in the detector sensitivity.

  5. Temperature-sensitive microemulsion gel: an effective topical delivery system for simultaneous delivery of vitamins C and E.

    Science.gov (United States)

    Rozman, Branka; Zvonar, Alenka; Falson, Francoise; Gasperlin, Mirjana

    2009-01-01

    Microemulsions (ME)--nanostructured systems composed of water, oil, and surfactants--have frequently been used in attempts to increase cutaneous drug delivery. The primary objective addressed in this work has been the development of temperature-sensitive microemulsion gel (called gel-like ME), as an effective and safe delivery system suitable for simultaneous topical application of a hydrophilic vitamin C and a lipophilic vitamin E. By changing water content of liquid o/w ME (o/w ME), a gel-like ME with temperature-sensitive rheological properties was formed. The temperature-driven changes in its microstructure were confirmed by rotational rheometry, viscosity measurements, and droplet size determination. The release studies have shown that the vitamins' release at skin temperature from gel-like ME were comparable to those from o/w ME and were much faster and more complete than from o/w ME conventionally thickened with polymer (o/w ME carbomer). According to effectiveness in skin delivery of both vitamins, o/w ME was found the most appropriate, followed by gel-like ME and by o/w ME carbomer, indicating that no simple correlation between vitamins release and skin absorption could be found. The cytotoxicity studies revealed good cell viability after exposure to ME and confirmed all tested microemulsions as nonirritant.

  6. Effects of Temperature on Auditory Sensitivity in Eurythermal Fishes: Common Carp Cyprinus carpio (Family Cyprinidae) versus Wels Catfish Silurus glanis (Family Siluridae)

    Science.gov (United States)

    Maiditsch, Isabelle Pia; Ladich, Friedrich

    2014-01-01

    Background In ectothermal animals such as fish, -temperature affects physiological and metabolic processes. This includes sensory organs such as the auditory system. The reported effects of temperature on hearing in eurythermal otophysines are contradictory. We therefore investigated the effect on the auditory system in species representing two different orders. Methodology/Principal Findings Hearing sensitivity was determined using the auditory evoked potentials (AEP) recording technique. Auditory sensitivity and latency in response to clicks were measured in the common carp Cyprinus carpio (order Cypriniformes) and the Wels catfish Silurus glanis (order Siluriformes) after acclimating fish for at least three weeks to two different water temperatures (15°C, 25°C and again 15°C). Hearing sensitivity increased with temperature in both species. Best hearing was detected between 0.3 and 1 kHz at both temperatures. The maximum increase occurred at 0.8 kHz (7.8 dB) in C. carpio and at 0.5 kHz (10.3 dB) in S. glanis. The improvement differed between species and was in particular more pronounced in the catfish at 4 kHz. The latency in response to single clicks was measured from the onset of the sound stimulus to the most constant positive peak of the AEP. The latency decreased at the higher temperature in both species by 0.37 ms on average. Conclusions/Significance The current study shows that higher temperature improves hearing (lower thresholds, shorter latencies) in eurythermal species from different orders of otophysines. Differences in threshold shifts between eurythermal species seem to reflect differences in absolute sensitivity at higher frequencies and they furthermore indicate differences to stenothermal (tropical) species. PMID:25255456

  7. Enhancement of NH3 gas sensitivity at room temperature by carbon nanotube-based sensor coated with Co nanoparticles.

    Science.gov (United States)

    Nguyen, Lich Quang; Phan, Pho Quoc; Duong, Huyen Ngoc; Nguyen, Chien Duc; Nguyen, Lam Huu

    2013-01-30

    Multi-walled carbon nanotube (MWCNT) film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH(3) gas sensing applications. The MWCNT-based sensor is sensitive to NH(3) gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH(3), compared with alcohol and LPG.

  8. Electroacoustics modeling of piezoelectric welders for ultrasonic additive manufacturing processes

    Science.gov (United States)

    Hehr, Adam; Dapino, Marcelo J.

    2016-04-01

    Ultrasonic additive manufacturing (UAM) is a recent 3D metal printing technology which utilizes ultrasonic vibrations from high power piezoelectric transducers to additively weld similar and dissimilar metal foils. CNC machining is used intermittent of welding to create internal channels, embed temperature sensitive components, sensors, and materials, and for net shaping parts. Structural dynamics of the welder and work piece influence the performance of the welder and part quality. To understand the impact of structural dynamics on UAM, a linear time-invariant model is used to relate system shear force and electric current inputs to the system outputs of welder velocity and voltage. Frequency response measurements are combined with in-situ operating measurements of the welder to identify model parameters and to verify model assumptions. The proposed LTI model can enhance process consistency, performance, and guide the development of improved quality monitoring and control strategies.

  9. Microarray study of temperature-dependent sensitivity and selectivity of metal/oxide sensing interfaces

    Science.gov (United States)

    Tiffany, Jason; Cavicchi, Richard E.; Semancik, Stephen

    2001-02-01

    Conductometric gas microsensors offer the benefits of ppm-level sensitivity, real-time data, simple interfacing to electronics hardware, and low power consumption. The type of device we have been exploring consists of a sensor film deposited on a "microhotplate"- a 100 micron platform with built-in heating (to activate reactions on the sensing surface) and thermometry. We have been using combinatorial studies of 36-element arrays to characterize the relationship between sensor film composition, operating temperature, and response, as measured by the device's sensitivity and selectivity. Gases that have been tested on these arrays include methanol, ethanol, dichloromethane, propane, methane, acetone, benzene, hydrogen, and carbon monoxide, and are of interest in the management of environmental waste sites. These experiments compare tin oxide films modified by catalyst overlayers, and ultrathin metal seed layers. The seed layers are used as part of a chemical vapor deposition process that uses each array element's microheater to activate the deposition of SnO2, and control its microstructure. Low coverage (20 Ê) catalytic metals (Pd, Cu, Cr, In, Au) are deposited on the oxides by masked evaporation or sputtering. This presentation demonstrates the value of an array-based approach for developing film processing methods, measuring performance characteristics, and establishing reproducibility. It also illustrates how temperature-dependent response data for varied metal/oxide compositions can be used to tailor a microsensor array for a given application.

  10. Assessing location attractiveness for manufacturing automobiles

    Energy Technology Data Exchange (ETDEWEB)

    Hanawalt, Edward; Rouse, William

    2017-07-01

    Evaluating country manufacturing location attractiveness on various performance measures deepens the analysis and provides a more informed basis for manufacturing site selection versus reliance on labor rates alone. A short list of countries can be used to drive regional considerations for site-specific selection within a country. Design/methodology/approach: The two-step multi attribute decision model contains an initial filter layer to require minimum values for low weighted attributes and provides a rank order utility score for twenty three countries studied. The model contains 11 key explanatory variables with Labor Rate, Material Cost, and Logistics making up the top 3 attributes and representing 54% percent of the model weights. Findings: We propose a multi attribute decision framework for strategically assessing the attractiveness of a country as a location for manufacturing automobiles. Research limitations/implications: Consideration of country level wage variation, specific tariffs, and other economic incentives provides a secondary analysis after the initial list of candidate countries is defined. Practical implications: The results of our modeling shows China, India, and Mexico are currently the top ranked countries for manufacturing attractiveness. These three markets hold the highest utility scores throughout sensitivity analysis on the labor rate attribute weight rating, highlighting the strength and potential of manufacturing in China, India, and Mexico. Originality/value: Combining MAUT with regression analysis to simplify model to core factors then using a “must have” layer to handle extreme impacts of low weight factors and allowing for ease of repeatability.

  11. Assessing location attractiveness for manufacturing automobiles

    International Nuclear Information System (INIS)

    Hanawalt, Edward; Rouse, William

    2017-01-01

    Evaluating country manufacturing location attractiveness on various performance measures deepens the analysis and provides a more informed basis for manufacturing site selection versus reliance on labor rates alone. A short list of countries can be used to drive regional considerations for site-specific selection within a country. Design/methodology/approach: The two-step multi attribute decision model contains an initial filter layer to require minimum values for low weighted attributes and provides a rank order utility score for twenty three countries studied. The model contains 11 key explanatory variables with Labor Rate, Material Cost, and Logistics making up the top 3 attributes and representing 54% percent of the model weights. Findings: We propose a multi attribute decision framework for strategically assessing the attractiveness of a country as a location for manufacturing automobiles. Research limitations/implications: Consideration of country level wage variation, specific tariffs, and other economic incentives provides a secondary analysis after the initial list of candidate countries is defined. Practical implications: The results of our modeling shows China, India, and Mexico are currently the top ranked countries for manufacturing attractiveness. These three markets hold the highest utility scores throughout sensitivity analysis on the labor rate attribute weight rating, highlighting the strength and potential of manufacturing in China, India, and Mexico. Originality/value: Combining MAUT with regression analysis to simplify model to core factors then using a “must have” layer to handle extreme impacts of low weight factors and allowing for ease of repeatability.

  12. Effects of temperature, genetic variation and species competition on the sensitivity of algae populations to the antibiotic enrofloxacin.

    Science.gov (United States)

    Rico, Andreu; Zhao, Wenkai; Gillissen, Frits; Lürling, Miquel; Van den Brink, Paul J

    2018-02-01

    Primary producers are amongst the most sensitive organisms to antibiotic pollution in aquatic ecosystems. To date, there is little information on how different environmental conditions may affect their sensitivity to antibiotics. In this study we assessed how temperature, genetic variation and species competition may affect the sensitivity of the cyanobacterium Microcystis aeruginosa and the green-algae Scenedesmus obliquus to the antibiotic enrofloxacin. First, we performed single-species tests to assess the toxicity of enrofloxacin under different temperature conditions (20°C and 30°C) and to assess the sensitivity of different species strains using a standard temperature (20°C). Next, we investigated how enrofloxacin contamination may affect the competition between M. aeruginosa and S. obliquus. A competition experiment was performed following a full factorial design with different competition treatments, defined as density ratios (i.e. initial bio-volume of 25/75%, 10/90% and 1/99% of S. obliquus/M. aeruginosa, respectively), one 100% S. obliquus treatment and one 100% M. aeruginosa treatment, and four different enrofloxacin concentrations (i.e. control, 0.01, 0.05 and 0.10mg/L). Growth inhibition based on cell number, bio-volume, chlorophyll-a concentration as well as photosynthetic activity were used as evaluation endpoints in the single-species tests, while growth inhibition based on measured chlorophyll-a was primarily used in the competition experiment. M. aeruginosa photosynthetic activity was found to be the most sensitive endpoint to enrofloxacin (EC50-72h =0.02mg/L), followed by growth inhibition based on cell number. S. obliquus was found to be slightly more sensitive at 20°C than at 30°C (EC50-72h cell number growth inhibition of 38 and 41mg/L, respectively), whereas an opposite trend was observed for M. aeruginosa (0.047 and 0.037mg/L, respectively). Differences in EC50-72h values between algal strains of the same species were within a factor

  13. Temperature sensitive self-actuated scram mechanism

    International Nuclear Information System (INIS)

    1980-01-01

    The apparatus, described in detail, accurately infers the average coolant temperature exiting from the reactor core in a liquid metal cooled reactor and rapidly and reliably actuates a safety rod release mechanism on the occurrence of a critical temperature. The output temperature is inferred from the cooperative effect of the flow rate through a coolant flow path within the safety assembly and the heat generated by sensor fuel pins. The inferred temperature is sensed by a confined fluid having a high expansion coefficient; the expansion is transferred to a linear force used to actuate the release mechanism. The system may be contained within the safety assembly and does not interfere with the operation of the plant protection system scram mode. It is resetable after a scram. The time interval between the overtemperature and the insertion of the safety rods is short enough to preclude fuel damage. (U.K.)

  14. Sensitivity of Mesoporous CoSb2O6 Nanoparticles to Gaseous CO and C3H8 at Low Temperatures

    Directory of Open Access Journals (Sweden)

    Héctor Guillén-Bonilla

    2015-01-01

    Full Text Available Mesoporous CoSb2O6 nanoparticles, synthesized through a nonaqueous method (using cobalt nitrate, antimony trichloride, ethylenediamine, and ethanol as a solvent, were tested to establish their sensitivity to CO and C3H8 atmospheres at relatively low temperatures. The precursor material was dried at 200°C and calcined at 600°C. X-ray diffraction and scanning electron microscopy were employed to verify the existence of crystal phases (P42/mnm and the morphology of this trirutile-type CoSb2O6 oxide. Pyramidal and cubic shaped crystals (average size: 41.1 nm, embedded in the material’s surface, were identified. Mesopores (average size: 6.5 nm on the nanoparticles’ surface were observed by means of transmission electron microscopy. The best sensitivity of the CoSb2O6 in a CO atmosphere was at the relatively low temperatures of 250 and 350°C, whereas, in a C3H8 atmosphere, the sensitivity increased uniformly with temperature. These results encourage using the CoSb2O6 nanoparticles as gas sensors.

  15. Effect of nitrogen concentration and temperature on the critical resolved shear stress and strain rate sensitivity of vanadium

    International Nuclear Information System (INIS)

    Rehbein, D.K.

    1980-08-01

    The critical resolved shear stress and strain rate sensitivity were measured over the temperature range from 77 to 400 0 K for vanadium-nitrogen alloys containing from 0.0004 to 0.184 atom percent nitrogen. These properties were found to be strongly dependent on both the nitrogen concentration and temperature. The following observations were seen in this investigation: the overall behavior of the alloys for the temperature and concentration range studied follows a form similar to that predicted; the concentration dependence of the critical resolved shear stress after subtracting the hardening due to the pure vanadium lattice obeys Labusch's c/sup 2/3/ relationship above 200 0 K and Fleischer's c/sup 1/2/ relationship below 200 0 K; the theoretical predictions of Fleischer's model for the temperature dependence of the critical resolved shear stress are in marked disagreement with the behavior found; and the strain rate sensitivity, par. delta tau/par. deltaln γ, exhibits a peak at approximately 100 0 K that decreases in height as the nitrogen concentration increases. A similar peak has been observed in niobium by other investigators but the effect of concentration on the peak height is quite different

  16. A survey of new temperature-sensitive, embryonic-lethal mutations in C. elegans: 24 alleles of thirteen genes.

    Directory of Open Access Journals (Sweden)

    Sean M O'Rourke

    2011-03-01

    Full Text Available To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci.

  17. Process for manufacture of Te microwire in glass insulation

    International Nuclear Information System (INIS)

    Bodiul, Pavel; Nicolaeva, Alibina; Konopko, Leonid; Bondarciuc, Nicolae

    2010-01-01

    The invention relates to the manufacturing of microwires in glass insulation and can be used in electronics and in the manufacturing of thermoelectrodes for thermoelectric sensors. The process for manufacture of Te microwire in glass insulation consists in softening the Te sample and its pulling in glass insulation. Near the microwire pulling zone through the furnace is maintained a temperature of 430-440 degrees Celsius, which causes the solidification firstly of Te microwire, and then of glass insulation. The result of the invention is to obtain Te microwires in glass insulation of high quality with a diameter of 50-100 μm and a length of 3-15 cm.

  18. Performance Maintenance of Dye-Sensitized Solar Cells Using a Latent Heat Storage Material

    Science.gov (United States)

    Haruki, Naoto; Horibe, Akihiko

    2017-07-01

    Recently, there has been considerable interest in various renewable energies. Among them, solar cell production has increased markedly because the photovoltaic is a clean and safe power generation method. The dye-sensitized solar cell (DSSC) has attracted much attention as an alternative to silicon solar cells due to lower manufacturing costs and plentiful resources for DSSC production. However, the performance of DSSCs has been limited by their durability and low photoelectric conversion efficiency. Temperature control of DSSCs via phase-change materials (PCMs) is expected to improve performance. In this study, DSSCs were heated or cooled with a heat exchanger copper block that was in contact with a PCM (heptadecane), while being irradiated by a solar simulator light source. The durability and photoelectric conversion efficiency of the DSSC improved under PCM temperature control.

  19. Additive Manufacturing of Wind Turbine Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Richardson, Bradley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lloyd, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nolet, Stephen [TPI Composites, Scottsdale, AZ (United States); Hannan, James [TPI Composites, Scottsdale, AZ (United States)

    2017-07-01

    The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings and material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).

  20. Elevated Temperature, Residual Compressive Strength of Impact-Damaged Sandwich Structure Manufactured Out-of-Autoclave

    Science.gov (United States)

    Grimsley, Brian W.; Sutter, James K.; Burke, Eric R.; Dixon, Genevieve D.; Gyekenyesi, Thomas G.; Smeltzer, Stanley S.

    2012-01-01

    Several 1/16th-scale curved sandwich composite panel sections of a 10 m diameter barrel were fabricated to demonstrate the manufacturability of large-scale curved sections using minimum gauge, [+60/-60/0]s, toughened epoxy composite facesheets co-cured with low density (50 kilograms per cubic meters) aluminum honeycomb core. One of these panels was fabricated out of autoclave (OoA) by the vacuum bag oven (VBO) process using Cycom(Registered Trademark) T40-800b/5320-1 prepreg system while another panel with the same lay-up and dimensions was fabricated using the autoclave-cure, toughened epoxy prepreg system Cycom(Registered Trademark) IM7/977-3. The resulting 2.44 m x 2 m curved panels were investigated by non-destructive evaluation (NDE) at NASA Langley Research Center (NASA LaRC) to determine initial fabrication quality and then cut into smaller coupons for elevated temperature wet (ETW) mechanical property characterization. Mechanical property characterization of the sandwich coupons was conducted including edge-wise compression (EWC), and compression-after-impact (CAI) at conditions ranging from 25 C/dry to 150 C/wet. The details and results of this characterization effort are presented in this paper.

  1. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snowberg, David R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Derek S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beach, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rooney, Samantha A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Swan, Dana [Arkema Inc.

    2017-12-06

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-life blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.

  2. Sensitivity analysis of the Expansion Process for Alloy UNS N08028

    Directory of Open Access Journals (Sweden)

    Navarro Aitor

    2016-01-01

    Full Text Available Due to the good mechanical properties of forged parts, the forging process plays a decisive role in the manufacturing of seamless stainless steel pipes for oil country tubular goods (OCTG lines. Tough competition between manufacturers gives them plenty of incentive to make their processes in raw material and energy usage more and more efficient. In this context the expansion process is one of the critical production steps in the manufacturing of seamless stainless steel pipes. This work presents a sensitivity analysis of a finite element method (FEM for the simulation of the expansion of the alloy UNS N08028. The input parameters ram speed, tool angle, initial ID and final ID of the billet as well as temperature were used to describe responses like tool wear and material loss. With the aim to minimize the tool wear and to reduce the material waste, a study of influence of the input parameters on the mentioned responses were performed. This development is supported by experimental work in order to validate the simulation model. The sector demand for new materials with specific properties and the cost-intensive experimental trials justifies the use of such simulation tools and opens great opportunities for the industry.

  3. Interspecific Differences in Metabolic Rate and Metabolic Temperature Sensitivity Create Distinct Thermal Ecological Niches in Lizards (Plestiodon).

    Science.gov (United States)

    Watson, Charles M; Burggren, Warren W

    2016-01-01

    Three congeneric lizards from the southeastern United States (Plestiodon fasciatus, P. inexpectatus, and P. laticeps) exhibit a unique nested distribution. All three skink species inhabit the US Southeast, but two extend northward to central Ohio (P. fasciatus and P. laticeps) and P. fasciatus extends well into Canada. Distinct interspecific differences in microhabitat selection and behavior are associated with the cooler temperatures of the more Northern ranges. We hypothesized that interspecific differences in metabolic temperature sensitivity locally segregates them across their total range. Resting oxygen consumption was measured at 20°, 25° and 30°C. Plestiodon fasciatus, from the coolest habitats, exhibited greatly elevated oxygen consumption compared to the other species at high ecologically-relevant temperatures (0.10, 0.17 and 0.83 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Yet, P. inexpectatus, from the warmest habitats, exhibited sharply decreased oxygen consumption compared to the other species at lower ecologically-relevant temperatures (0.09, 0.27 and 0.42 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Plestiodon laticeps, from both open and closed microhabitats and intermediate latitudinal range, exhibited oxygen consumptions significantly lower than the other two species (0.057, 0.104 and 0.172 ml O2. g-1. h-1 at 20°, 25° and 30°C, respectively). Overall, Plestiodon showed metabolic temperature sensitivities (Q10s) in the range of 2-3 over the middle of each species' normal temperature range. However, especially P. fasciatus and P. inexpectatus showed highly elevated Q10s (9 to 25) at the extreme ends of their temperature range. While morphologically similar, these skinks are metabolically distinct across the genus' habitat, likely having contributed to their current distribution.

  4. Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax.

    Directory of Open Access Journals (Sweden)

    Claire Y-H Huang

    Full Text Available We have developed a manufacturing strategy that can improve the safety and genetic stability of recombinant live-attenuated chimeric dengue vaccine (DENVax viruses. These viruses, containing the pre-membrane (prM and envelope (E genes of dengue serotypes 1-4 in the replicative background of the attenuated dengue-2 PDK-53 vaccine virus candidate, were manufactured under cGMP.After deriving vaccine viruses from RNA-transfected Vero cells, six plaque-purified viruses for each serotype were produced. The plaque-purified strains were then analyzed to select one stock for generation of the master seed. Full genetic and phenotypic characterizations of the master virus seeds were conducted to ensure these viruses retained the previously identified attenuating determinants and phenotypes of the vaccine viruses. We also assessed vector competence of the vaccine viruses in sympatric (Thai Aedes aegypti mosquito vectors.All four serotypes of master vaccine seeds retained the previously defined safety features, including all three major genetic loci of attenuation, small plaques, temperature sensitivity in mammalian cells, reduced replication in mosquito cell cultures, and reduced neurovirulence in new-born mice. In addition, the candidate vaccine viruses demonstrated greatly reduced infection and dissemination in Aedes aegypti mosquitoes, and are not likely to be transmissible by these mosquitoes. This manufacturing strategy has successfully been used to produce the candidate tetravalent vaccine, which is currently being tested in human clinical trials in the United States, Central and South America, and Asia.

  5. Allergic contact dermatitis from resin hardeners during the manufacture of thermosetting coating paints.

    Science.gov (United States)

    Foulds, I S; Koh, D

    1992-02-01

    5 production operators from 2 factories manufacturing thermosetting coating paint developed work-related skin disorders within 12 months of the introduction of a new powdered paint product. All 5 workers were found to have allergic contact dermatitis from 2 epoxy resin hardeners, both of which were commercial preparations of triglycidyl isocyanurate (TGIC). 2 of the workers had concomitant sensitization to epoxy resin in the standard series and several of the epoxy resin preparations at the workplace. TGIC has been reported as a contact sensitizer both in persons producing the chemical and among end-users of TGIC-containing products. These 5 reported cases document allergic contact dermatitis from commercial TGIC among exposed workers during an intermediate process of powdered paint manufacture. The possibility of substituting this epoxy resin hardener with less sensitizing alternatives should be explored.

  6. Numerical simulation of temperature's sensitivity of chamfer hole's resistance on hydraulic step cylinder

    International Nuclear Information System (INIS)

    Jinhua, Wang; Hanliang, Bo; Wenxiang, Zheng; Jinnong, Yang

    2003-01-01

    The control rod drive is a very important device for controlling nuclear reactor startup, operation, shut down, and power change. The ability of the control rod drive to move safely and reliably directly relates to reactor safety. The Hydraulic Control Rod Drive System (HCRDS) is a new type of control rod drive system developed by the Institute of Nuclear Energy Technology (INET) of Tsinghua University for Nuclear Heating Reactors. The HCRDS, designed using the hydrodynamic principle, has many advantages, including having the structure complete in the vessel, no possible ejection accident, short drive line, simple movable parts structure and safe shutdown during accidents. The hydraulic step cylinder is the key part for the HCRDS. In the process of reactor startup, the variation of temperature could make the water's density and viscosity change, and the force from the water flow would change accordingly. These factors could influence the performance of the hydraulic step cylinder. In this paper, the temperature sensitivity of the chamfer hole's resistance in the hydraulic step cylinder was studied with the Computational Fluid Dynamics (CFD) program CFX5.5. The results were satisfactory: the discipline of variation of the chamfer hole's resistance with the outer tube's position was the same at different temperatures, the discrepancy of the chamfer hole's resistance was small for the same position at different temperatures, the chamfer hole's resistance decreased gradually with the increase of temperature, and the decrease extent was relatively small

  7. Enhancement of NH3 Gas Sensitivity at Room Temperature by Carbon Nanotube-Based Sensor Coated with Co Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lich Quang Nguyen

    2013-01-01

    Full Text Available Multi-walled carbon nanotube (MWCNT film has been fabricated onto Pt-patterned alumina substrates using the chemical vapor deposition method for NH3 gas sensing applications. The MWCNT-based sensor is sensitive to NH3 gas at room temperature. Nanoclusters of Co catalysts have been sputtered on the surface of the MWCNT film to enhance gas sensitivity with respect to unfunctionalized CNT films. The gas sensitivity of Co-functionalized MWCNT-based gas sensors is thus significantly improved. The sensor exhibits good repeatability and high selectivity towards NH3, compared with alcohol and LPG.

  8. Small sensitivity to temperature variations of Si-photonic Mach-Zehnder interferometer using Si and SiN waveguides

    Science.gov (United States)

    Hiraki, Tatsurou; Fukuda, Hiroshi; Yamada, Koji; Yamamoto, Tsuyoshi

    2015-03-01

    We demonstrated a small sensitivity to temperature variations of delay-line Mach-Zehnder interferometer (DL MZI) on a Si photonics platform. The key technique is to balance a thermo-optic effect in the two arms by using waveguide made of different materials. With silicon and silicon nitride waveguides, the fabricated DL MZI with a free-spectrum range of ~40 GHz showed a wavelength shift of -2.8 pm/K with temperature variations, which is 24 times smaller than that of the conventional Si-waveguide DL MZI. We also demonstrated the decoding of the 40-Gbit/s differential phase-shift keying signals to on-off keying signals with various temperatures. The tolerable temperature variation for the acceptable power penalty was significantly improved due to the small wavelength shifts.

  9. Evaluation of the sensitivity of the mineralizable pool of soil organic matter to changes in temperature and moisture

    Science.gov (United States)

    Tulina, A. S.; Semenov, V. M.

    2015-08-01

    The sensitivity of the potentially mineralizable pool of soil organic matter (Cpm) to changes in temperature and moisture has been assessed from the temperature coefficient ( Q10) and the moisture coefficient ( W 10), which indicate how much the Cpm size changes, when the temperature changes by 10°C and the soil water content changes by 10 wt %, respectively. Samples of gray forest soil, podzolized chernozem, and dark chestnut soil taken from arable plots have been incubated at 8, 18, and 28°C and humidity of 10, 25, and 40 wt %. From the data on the production of C-CO2 by soil samples during incubation for 150 days, the content of Cpm has been calculated. It has been shown that, on average for the three soils, an increase in temperature accounts for 63% of the rise in the pool of potentially mineralizable organic matter, whereas an increase in moisture accounts for 8% of that rise. The temperature coefficients of the potentially mineralizable pool are 2.71 ± 0.64, 1.27 ± 0.20, and 1.85 ± 0.30 in ranges of 8-18, 18-28, and 8-28°C, respectively; the moisture coefficients are 1.19 ± 0.11, 1.09 ± 0.05, and 1.14 ± 0.06 in ranges of 10-25, 25-40, and 10-40 wt %, respectively. The easily mineralizable fraction (C1, k 1 > 0.1 days-1) of the active pool of soil organic matter is less sensitive to temperature than the hardly mineralizable fraction (C3, 0.01 > k 3 > 0.001 days-1); their Q 10 values are 0.91 ± 0.15 and 2.40 ± 0.31, respectively. On the contrary, the easily mineralizable fraction is more sensitive to moistening than the hardly mineralizable fraction: their W 10 values are 1.22 ± 0.06 and 1.03 ± 0.08, respectively. The intensification of mineralization with rising temperature and water content during a long-term incubation results in the exhausting of the active pool, which reduces the production of CO2 by the soils during the repeated incubation under similar conditions nonlimiting mineralization.

  10. Practical high temperature (80 °C) storage study of industrially manufactured Li-ion batteries with varying electrolytes

    Science.gov (United States)

    Genieser, R.; Loveridge, M.; Bhagat, R.

    2018-05-01

    A previous study is focused on high temperature cycling of industrially manufactured Li-ion pouch cells (NMC-111/Graphite) with different electrolytes at 80 °C [JPS 373 (2018) 172-183]. Within this article the same test set-up is used, with cells stored for 30 days at different open circuit potentials and various electrolytes instead of electrochemical cycling. The most pronounced cell degradation (capacity fade and resistance increase) happens at high potentials. However appropriate electrolyte formulations are able to suppress ageing conditions by forming passivating surface films on both electrodes. Compared with electrochemical cycling at 80 °C, cells with enhanced electrolytes only show a slight resistance increase during storage and the capacity fade is much lower. Additionally it is shown for the first time, that the resistance is decreasing and capacity is regained once these cells are cycled again at room temperature. This is not the case for electrolytes without additives or just vinylene carbonate (VC) as an additive. It is further shown that the resistance increase of cells with the other electrolytes is accompanied by a reduction of the cell volume during further cycling. This behaviour is likely related to the reduction of CO2 at the anode to form additional SEI layer components.

  11. Temperature dependence of critical current and transport current losses of 4 mm YBCO coated conductors manufactured using nonmagnetic substrate

    Science.gov (United States)

    Kvitkovic, J.; Hatwar, R.; Pamidi, S. V.; Fleshler, S.; Thieme, C.

    2015-12-01

    The temperature dependence of the critical current and AC losses were measured on American Superconductor Corporation's (AMSC) second generation high temperature superconducting (2G HTS) wire produced by Rolling Assisted Biaxially Textured Substrate (RABiTS) and Metal Organic Deposition (MOD) process. Wires manufactured with two types of substrates were characterized. The magnetic substrate with composition Ni5a%W exhibits a magnetic signature and has non-negligible AC losses in AC power applications. A new nonmagnetic substrate with an alloy composition Ni9a%W has been developed by AMSC to address the AC losses in 2G HTS. The data presented show that the performance of the new conductor is identical to the conductor with magnetic substrate in terms of critical current density. The data on AC losses demonstrate the absence of ferromagnetic loss component in the new conductor and significantly reduced AC losses at low to moderate values of I/Ic. The reduced losses will translate into reduced capital costs and lower operating costs of superconducting electrical devices for AC applications.

  12. Sensitivity analysis of power depression and axial power factor effect on fuel pin to temperature and related properties distribution

    International Nuclear Information System (INIS)

    Suwardi, S.

    2001-01-01

    The presented paper is a preliminary step to evaluate the effect of radial and axial distribution of power generation on thermal analysis of whole fuel pin model with large L/D ratio. The model takes into account both radial and axial distribution of power generation due to power depression and core geometry, temperature and microstructure dependent on thermal conductivity. The microstructure distribution and the gap conductance for typical steady-state situation are given for the sensitivity analysis. The temperature and thermal conductivity distribution along the radial and axial directions obtained by different power distribution is used to indicate the sensitivity of power depression and power factor on thermal aspect. The evaluation is made for one step of incremental time and steady state approach is used. The analysis has been performed using a finite element-finite difference model. The result for typical reactor fuel shows that the sensitivity is too important to be omitted in thermal model

  13. Temperature modulates coccolithophorid sensitivity of growth, photosynthesis and calcification to increasing seawater pCO₂.

    Directory of Open Access Journals (Sweden)

    Scarlett Sett

    Full Text Available Increasing atmospheric CO₂ concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO₂ gradient ranging from ∼0.5-250 µmol kg⁻¹ (i.e. ∼20-6000 µatm pCO₂ at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica. Both species showed CO₂-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO₂. CO₂ optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO₂ concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO₂ concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.

  14. Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing

    International Nuclear Information System (INIS)

    Van Delft, J A; Garcia-Alonso, D; Kessels, W M M

    2012-01-01

    Atomic layer deposition (ALD) is a vapour-phase deposition technique capable of depositing high quality, uniform and conformal thin films at relatively low temperatures. These outstanding properties can be employed to face processing challenges for various types of next-generation solar cells; hence, ALD for photovoltaics (PV) has attracted great interest in academic and industrial research in recent years. In this review, the recent progress of ALD layers applied to various solar cell concepts and their future prospects are discussed. Crystalline silicon (c-Si), copper indium gallium selenide (CIGS) and dye-sensitized solar cells (DSSCs) benefit from the application of ALD surface passivation layers, buffer layers and barrier layers, respectively. ALD films are also excellent moisture permeation barriers that have been successfully used to encapsulate flexible CIGS and organic photovoltaic (OPV) cells. Furthermore, some emerging applications of the ALD method in solar cell research are reviewed. The potential of ALD for solar cells manufacturing is discussed, and the current status of high-throughput ALD equipment development is presented. ALD is on the verge of being introduced in the PV industry and it is expected that it will be part of the standard solar cell manufacturing equipment in the near future. (paper)

  15. Temperature-sensitive mutants of fowl plague virus: isolation and genetic characterization

    International Nuclear Information System (INIS)

    Almond, J.W.; McGeoch, D.; Barry, R.D.

    1979-01-01

    Forty-nine temperature-sensitive mutants of fowl plague virus (FPV) strain Rostock and four ts mutants of FPV-strain Dobson were isolated by utilizing two methods of plaque screening, after either spontaneous or chemically induced mutagenesis. Twenty-nine of the FPV-Rostock mutants were further characterized by genetic recombination studies and were found to fall into six high frequency recombination groups. The genome segment carrying the ts mutation in each group was identified by analyzing the gene composition of ts + recombinants generated from crosses between representatives of each group and ts mutants of FPV-Dobson. It was concluded that the six groups correspond to mutations in six different genome segments, namely, those coding for the P 1 , P 2 , P 3 , HA, NP, and NS proteins

  16. Uncertainty of Wheat Water Use: Simulated Patterns and Sensitivity to Temperature and CO2

    Science.gov (United States)

    Cammarano, Davide; Roetter, Reimund P.; Asseng, Senthold; Ewert, Frank; Wallach, Daniel; Martre, Pierre; Hatfield, Jerry L.; Jones, James W.; Rosenzweig, Cynthia E.; Ruane, Alex C.; hide

    2016-01-01

    Projected global warming and population growth will reduce future water availability for agriculture. Thus, it is essential to increase the efficiency in using water to ensure crop productivity. Quantifying crop water use (WU; i.e. actual evapotranspiration) is a critical step towards this goal. Here, sixteen wheat simulation models were used to quantify sources of model uncertainty and to estimate the relative changes and variability between models for simulated WU, water use efficiency (WUE, WU per unit of grain dry mass produced), transpiration efficiency (Teff, transpiration per kg of unit of grain yield dry mass produced), grain yield, crop transpiration and soil evaporation at increased temperatures and elevated atmospheric carbon dioxide concentrations ([CO2]). The greatest uncertainty in simulating water use, potential evapotranspiration, crop transpiration and soil evaporation was due to differences in how crop transpiration was modelled and accounted for 50 of the total variability among models. The simulation results for the sensitivity to temperature indicated that crop WU will decline with increasing temperature due to reduced growing seasons. The uncertainties in simulated crop WU, and in particularly due to uncertainties in simulating crop transpiration, were greater under conditions of increased temperatures and with high temperatures in combination with elevated atmospheric [CO2] concentrations. Hence the simulation of crop WU, and in particularly crop transpiration under higher temperature, needs to be improved and evaluated with field measurements before models can be used to simulate climate change impacts on future crop water demand.

  17. SU-F-T-474: Evaluation of Dose Perturbation, Temperature and Sensitivity Variation With Accumulated Dose of MOSFET Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, B; Prakasarao, A; Singaravelu, G [Anna University, Chennai, TamilNadu (India); Palraj, T; Rai, R [Dr. Rai Memorial Cancer Institute, Chennai, TamilNadu (India)

    2016-06-15

    Purpose: The use of mega voltage gamma and x-ray sources with their skin sparring qualities in radiation therapy has been a boon in relieving patient discomfort and allowing high tumor doses to be given with fewer restrictions due to radiation effects in the skin. However, high doses given to deep tumors may require careful consideration of dose distribution in the buildup region in order to avoid irreparable damage to the skin. Methods: To measure the perturbation of MOSFET detector in Co60,6MV and 15MV the detector was placed on the surface of the phantom covered with the brass build up cap. To measure the effect of temperature the MOSFET detector was kept on the surface of hot water polythene container and the radiation was delivere. In order to measure the sensitivity variation with accumulated dose Measurements were taken by delivering the dose of 200 cGy to MOSFET until the MOSFET absorbed dose comes to 20,000 cGy Results: the Measurement was performed by positioning the bare MOSFET and MOSFET with brass build up cap on the top surface of the solid water phantom for various field sizes in order to find whether there is any attenuation caused in the dose distribution. The response of MOSFET was monitored for temperature ranging from 42 degree C to 22 degree C. The integrated dose dependence of MOSFET dosimeter sensitivity over different energy is not well characterized. This work investigates the dual-bias MOSFET dosimeter sensitivity response to 6 MV and 15 MV beams. Conclusion: From this study it is observed that unlike diode, bare MOSFET does not perturb the radiation field.. It is observed that the build-up influences the temperature dependency of MOSFET and causes some uncertainty in the readings. In the case of sensitivity variation with accumulated dose MOSFET showed higher sensitivity with dose accumulation for both the energies.

  18. SU-F-T-474: Evaluation of Dose Perturbation, Temperature and Sensitivity Variation With Accumulated Dose of MOSFET Detector

    International Nuclear Information System (INIS)

    Ganesan, B; Prakasarao, A; Singaravelu, G; Palraj, T; Rai, R

    2016-01-01

    Purpose: The use of mega voltage gamma and x-ray sources with their skin sparring qualities in radiation therapy has been a boon in relieving patient discomfort and allowing high tumor doses to be given with fewer restrictions due to radiation effects in the skin. However, high doses given to deep tumors may require careful consideration of dose distribution in the buildup region in order to avoid irreparable damage to the skin. Methods: To measure the perturbation of MOSFET detector in Co60,6MV and 15MV the detector was placed on the surface of the phantom covered with the brass build up cap. To measure the effect of temperature the MOSFET detector was kept on the surface of hot water polythene container and the radiation was delivere. In order to measure the sensitivity variation with accumulated dose Measurements were taken by delivering the dose of 200 cGy to MOSFET until the MOSFET absorbed dose comes to 20,000 cGy Results: the Measurement was performed by positioning the bare MOSFET and MOSFET with brass build up cap on the top surface of the solid water phantom for various field sizes in order to find whether there is any attenuation caused in the dose distribution. The response of MOSFET was monitored for temperature ranging from 42 degree C to 22 degree C. The integrated dose dependence of MOSFET dosimeter sensitivity over different energy is not well characterized. This work investigates the dual-bias MOSFET dosimeter sensitivity response to 6 MV and 15 MV beams. Conclusion: From this study it is observed that unlike diode, bare MOSFET does not perturb the radiation field.. It is observed that the build-up influences the temperature dependency of MOSFET and causes some uncertainty in the readings. In the case of sensitivity variation with accumulated dose MOSFET showed higher sensitivity with dose accumulation for both the energies.

  19. Low-cost Electromagnetic Heating Technology for Polymer Extrusion-based Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Carter, William G. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rios, Orlando [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Akers, Ronald R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morrison, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-07

    To improve the flow of materials used in in polymer additive manufacturing, ORNL and Ajax Tocco created an induction system for heating fused deposition modeling (FDM) nozzles used in polymer additive manufacturing. The system is capable of reaching a temperature of 230 C, a typical nozzle temperature for extruding ABS polymers, in 17 seconds. A prototype system was built at ORNL and sent to Ajax Tocco who analyzed the system and created a finalized power supply. The induction system was mounted to a PrintSpace Altair desktop printer and used to create several test parts similar in quality to those created using a resistive heated nozzle.

  20. A broadening temperature sensitivity range with a core-shell YbEr@YbNd double ratiometric optical nanothermometer

    Science.gov (United States)

    Marciniak, L.; Prorok, K.; Francés-Soriano, L.; Pérez-Prieto, J.; Bednarkiewicz, A.

    2016-02-01

    The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle based optical nano-thermometer under single ~808 nm wavelength photo-excitation from around ΔT = 150 K to over ΔT = 300 K (150-450 K). Such engineered nanocrystals are suitable for remote optical temperature measurements in technology and biotechnology at the sub-micron scale.The chemical architecture of lanthanide doped core-shell up-converting nanoparticles can be engineered to purposely design the properties of luminescent nanomaterials, which are typically inaccessible to their homogeneous counterparts. Such an approach allowed to shift the up-conversion excitation wavelength from ~980 to the more relevant ~808 nm or enable Tb or Eu up-conversion emission, which was previously impossible to obtain or inefficient. Here, we address the issue of limited temperature sensitivity range of optical lanthanide based nano-thermometers. By covering Yb-Er co-doped core nanoparticles with the Yb-Nd co-doped shell, we have intentionally combined temperature dependent Er up-conversion together with temperature dependent Nd --> Yb energy transfer, and thus have expanded the temperature response range ΔT of a single nanoparticle

  1. Social manufacturing

    OpenAIRE

    Hamalainen, Markko; Karjalainen, Jesse

    2017-01-01

    New business models harnessing the power of individuals have already revolutionized service industries and digital content production. In this study, we investigate whether a similar phenomenon is taking place in manufacturing industries. We start by conceptually defining two distinct forms of firm-individual collaboration in manufacturing industries: (1) social cloud manufacturing, in which firms outsource manufacturing to individuals, and (2) social platform manufacturing, in which firms pr...

  2. Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO 2

    KAUST Repository

    Nedelcu, Mihaela; Guldin, Stefan; Orilall, M. Christopher; Lee, Jinwoo; Hü ttner, Sven; Crossland, Edward J. W.; Warren, Scott C.; Ducati, Caterina; Laity, Pete R.; Eder, Dominik; Wiesner, Ulrich; Steiner, Ullrich; Snaith, Henry J.

    2010-01-01

    We present a material and device based study on the fabrication of mesoporous TiO2 and its integration into dye-sensitized solar cells. Poly(isoprene-block-ethyleneoxide) (PI-b-PEO) copolymers were used as structure directing agents for the sol-gel based synthesis of nanoporous monolithic TiO2 which was subsequently ground down to small particles and processed into a paste. The TiO2 synthesis and the formation of tens of micrometre thick films from the paste is a scalable approach for the manufacture of dye sensitised solar cells (DSCs). In this study, we followed the self-assembly of the material through the various processing stages of DSC manufacture. Since this approach enables high annealing temperatures while maintaining porosity, excellent crystallinity was achieved. Internal TiO 2 structures ranging from the nanometre to micrometre scale combine a high internal surface area with the strong scattering of light, which results in high light absorption and an excellent full-sun power conversion efficiency of up to 6.4% in a robust, 3 μm thick dye-sensitized solar cell. © 2010 The Royal Society of Chemistry.

  3. Sensitivities of dry season runoff to precipitation and temperature in southern Sierra Nevada streams

    Science.gov (United States)

    Safeeq, M.; Hunsaker, C. T.; Bales, R. C.

    2016-12-01

    In a mediterranean climate, dry season runoff sustains water supply and supports aquatic habitat and other ecosystems. Precipitation and temperature directly, by regulating recharge and evapotranspiration (ET), and indirectly, by regulating amount and timing of snowmelt, control the dry season runoff in the Sierra Nevada. Here, we explored relative impacts of precipitation and temperature variability on dry season runoff using path analysis. Specific objectives include: (i) to quantify the direct and indirect impacts of precipitation and temperature on 7-day average minimum flow (Qmin) and (ii) to explore the role of preceding year Qmin on fall season runoff (QF). We used daily runoff, air temperature, precipitation, and snow water equivalent (SWE) over 2004-2015 for the ten catchments in the Kings River Experimental Watersheds. For path analysis model of Qmin, we defined annual precipitation and temperature as exogenous variables and peak SWE, day of snow disappearance, and Qmin as endogenous variables. For QF, we defined current year fall precipitation and preceding year Qmin as exogenous variables and current year QF as an endogenous variable. Path analysis results for Qmin show precipitation as a dominant driver when compared to temperature, peak SWE, and day of snow disappearance. However, in half of the catchments that are mostly located at higher elevations the impact of temperature on Qmin was either comparable or exceeded that of precipitation. This relatively high sensitivity of Qmin to air temperature in high elevation catchments is consistent with the earlier findings of increased ET in proportion to warming. The direct effects of peak SWE and day of snow disappearance on Qmin were limited, and indirect effects of temperature and precipitation via peak SWE and day of snow disappearance were not significant. The preceding year Qmin and fall precipitation showed comparable impacts on QF, indicating that the storage in the preceding year modulates current

  4. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    International Nuclear Information System (INIS)

    Kwon, Yong Chul; Kang, Jong Hun; Kim, Sang Sik

    2016-01-01

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts

  5. Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Chul [Gyeongnam Technopark, Changwon (Korea, Republic of); Kang, Jong Hun [Jungwon Univ., Goisan (Korea, Republic of); Kim, Sang Sik [Gyeongsang Natiional Univ., Jinju (Korea, Republic of)

    2016-02-15

    The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.

  6. Photo-sensitive Ge nanocrystal based films controlled by substrate deposition temperature

    Science.gov (United States)

    Stavarache, Ionel; Maraloiu, Valentin Adrian; Negrila, Catalin; Prepelita, Petronela; Gruia, Ion; Iordache, Gheorghe

    2017-10-01

    Lowering the temperature of crystallization by deposition of thin films on a heated substrate represents the easiest way to find new means to develop and improve new working devices based on nanocrystals embedded in thin films. The improvements are strongly related with the increasing of operation speed, substantially decreasing the energy consumption and reducing unit fabrication costs of the respective semiconductor devices. This approach avoids major problems, such as those related to diffusion or difficulties in controlling nanocrystallites size, which appear during thermal treatments at high temperatures after deposition. This article reports on a significant progress given by structuring Ge nanocrystals (Ge-NCs) embedded in silicon dioxide (SiO2) thin films by heating the substrate at 400 °C during co-deposition of Ge and SiO2 by magnetron sputtering. As a proof-of-concept, a Si/Ge-NCs:SiO2 photo-sensitive structure was fabricated thereof and characterized. The structure shows superior performance on broad operation bandwidth from visible to near-infrared, as strong rectification properties in dark, significant current rise in the inversion mode when illuminated, high responsivity, high photo-detectivity of 1014 Jones, quick response and significant conversion efficiency with peak value reaching 850% at -1 V and about 1000 nm. This simple preparation approach brings an important contribution to the effort of structuring Ge nanocrystallites in SiO2 thin films at a lower temperature for the purpose of using these materials for devices in optoelectronics, solar cells and electronics on flexible substrates.

  7. Low-Cost Nanocellulose-Reinforced High-Temperature Polymer Composites for Additive Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Ozcan, Soydan [ORNL; Tekinalp, Halil L [ORNL; Love, Lonnie J [ORNL; Kunc, Vlastimil [ORNL; Nelson, Kim [American Process Inc.

    2016-07-13

    ORNL worked with American Process Inc. to demonstrate the potential use of bio-based BioPlus® lignin-coated cellulose nanofibrils (L-CNF) as a reinforcing agent in the development of polymer feedstock suitable for additive manufacturing. L-CNF-reinforced polylactic acid (PLA) testing coupons were prepared and up to 69% increase in tensile strength and 133% increase in elastic modulus were demonstrated.

  8. Can climate sensitivity be estimated from short-term relationships of top-of-atmosphere net radiation and surface temperature?

    International Nuclear Information System (INIS)

    Lin Bing; Min Qilong; Sun Wenbo; Hu Yongxiang; Fan, Tai-Fang

    2011-01-01

    Increasing the knowledge in climate radiative feedbacks is critical for current climate studies. This work focuses on short-term relationships between global mean surface temperature and top-of-atmosphere (TOA) net radiation. The relationships may be used to characterize the climate feedback as suggested by some recent studies. As those recent studies, an energy balance model with ocean mixed layer and both radiative and non-radiative heat sources is used here. The significant improvement of current model is that climate system memories are considered. Based on model simulations, short-term relationship between global mean surface temperature and TOA net radiation (or the linear striation feature as suggested by previous studies) might represent climate feedbacks when the system had no memories. However, climate systems with the same short-term feedbacks but different memories would have a similar linear striation feature. This linear striation feature reflects only fast components of climate feedbacks and may not represent the total climate feedback even when the memory length of climate systems is minimal. The potential errors in the use of short-term relationships in estimations of climate sensitivity could be big. In short time scales, fast climate processes may overwhelm long-term climate feedbacks. Thus, the climate radiative feedback parameter obtained from short-term data may not provide a reliable estimate of climate sensitivity. This result also suggests that long-term observations of global surface temperature and TOA radiation are critical in the understanding of climate feedbacks and sensitivities.

  9. Development of a novel cold forging process to manufacture eccentric shafts

    Science.gov (United States)

    Pasler, Lukas; Liewald, Mathias

    2018-05-01

    Since the commercial usage of compact combustion engines, eccentric shafts have been used to transform translational into rotational motion. Over the years, several processes to manufacture these eccentric shafts or crankshafts have been developed. Especially for single-cylinder engines manufactured in small quantities, built crankshafts disclose advantages regarding tooling costs and performance. Those manufacturing processes do have one thing in common: They are all executed at elevated temperatures to enable the material to be formed to high forming degree. In this paper, a newly developed cold forging process is presented, which combines lateral extrusion and shifting for manufacturing a crank in one forming operation at room temperature. In comparison to the established upsetting and shifting methods to manufacture such components, the tool cavity or crank web thickness remains constant. Therefore, the developed new process presented in this paper consists of a combination of shifting and extrusion of the billet, which allows pushing material into the forming zone during shifting. In order to reduce the tensile stresses induced by the shifting process, compressive stresses are superimposed. It is expected that the process limits will be expanded regarding the horizontal displacement and form filling. In the following report, the simulation and design of the tooling concept are presented. Experiments were conducted and compared with corresponding simulation results afterwards.

  10. Temperature sensitive self-actuated scram mechanism

    International Nuclear Information System (INIS)

    Giuggio, N.; Noyes, R.C.; Zaman, S.U.

    1982-01-01

    This invention provides a mechanism for rapidly dropping a neutron absorbing poison material into the core of an LMFBR type reactor, and in particular a mechanism that is self-actuated when the reactor coolant temperature reaches a critical value. A safety duct located in the reactor core and extending above the core contains an inner column that provides a vertical coolant flow path through the duct. One or more fuel pins are located in the duct, with a temperature-responsive actuator near their upper ends. A poison bundle surrounds the inner column within the duct, held in position by a release mechanism connected to the actuator. The inferred core temperature is sensed by a fluid confined within the actuator, and the expansion of the fluid is translated into a linear force used to activate the release mechanism

  11. Multiple temperature effects on up-conversion fluorescences of Er3+-Y b3+-Mo6+ codoped TiO2 and high thermal sensitivity

    Directory of Open Access Journals (Sweden)

    B. S. Cao

    2015-08-01

    Full Text Available We report multiple temperature effects on green and red up-conversion emissions in Er3+-Y b3+-Mo6+ codoped TiO2 phosphors. With increasing temperature, the decrease of the red emission from 4F9/2→4I15/2, the increase of green emission from 2H11/2→4I15/2 and another unchanged green emission from 4S3/2→4I15/2 were simultaneously observed, which are explained by steady-state rate equations analysis. Due to different evolution with temperature of the two green emissions, higher thermal sensitivity of optical thermal sensor was obtained based on the transitions with the largest fluorescence intensity ratio. Two parameters, maximum theoretical sensitivity (Smax and optimum operating temperature (Tmax are given to describe thermal sensing properties of the produced sensors. The intensity ratio and energy difference ΔE of a pair of energy levels are two main factors for the sensitivity and accuracy of sensors, which should be referred to design sensors with optimized sensing properties.

  12. Method for manufacture of neutron absorbing articles

    International Nuclear Information System (INIS)

    Owens, D.

    1980-01-01

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form

  13. Highly sensitive and selective room-temperature NO_2 gas sensor based on bilayer transferred chemical vapor deposited graphene

    International Nuclear Information System (INIS)

    Seekaew, Yotsarayuth; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Wongchoosuk, Chatchawal

    2017-01-01

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO_2 gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO_2 sensitivity of 1.409 ppm"−"1. • The NO_2-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO_2 detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO_2 than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm"−"1 towards NO_2 over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO_2-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO_2 molecules.

  14. Investigation, sensitivity analysis, and multi-objective optimization of effective parameters on temperature and force in robotic drilling cortical bone.

    Science.gov (United States)

    Tahmasbi, Vahid; Ghoreishi, Majid; Zolfaghari, Mojtaba

    2017-11-01

    The bone drilling process is very prominent in orthopedic surgeries and in the repair of bone fractures. It is also very common in dentistry and bone sampling operations. Due to the complexity of bone and the sensitivity of the process, bone drilling is one of the most important and sensitive processes in biomedical engineering. Orthopedic surgeries can be improved using robotic systems and mechatronic tools. The most crucial problem during drilling is an unwanted increase in process temperature (higher than 47 °C), which causes thermal osteonecrosis or cell death and local burning of the bone tissue. Moreover, imposing higher forces to the bone may lead to breaking or cracking and consequently cause serious damage. In this study, a mathematical second-order linear regression model as a function of tool drilling speed, feed rate, tool diameter, and their effective interactions is introduced to predict temperature and force during the bone drilling process. This model can determine the maximum speed of surgery that remains within an acceptable temperature range. Moreover, for the first time, using designed experiments, the bone drilling process was modeled, and the drilling speed, feed rate, and tool diameter were optimized. Then, using response surface methodology and applying a multi-objective optimization, drilling force was minimized to sustain an acceptable temperature range without damaging the bone or the surrounding tissue. In addition, for the first time, Sobol statistical sensitivity analysis is used to ascertain the effect of process input parameters on process temperature and force. The results show that among all effective input parameters, tool rotational speed, feed rate, and tool diameter have the highest influence on process temperature and force, respectively. The behavior of each output parameters with variation in each input parameter is further investigated. Finally, a multi-objective optimization has been performed considering all the

  15. Junction temperature measurements via thermo-sensitive electrical parameters and their application to condition monitoring and active thermal control of power converters

    DEFF Research Database (Denmark)

    Baker, Nick; Liserre, Marco; Dupont, L.

    2013-01-01

    implementation of active thermal control to reduce losses and increase lifetime can be performed given an accurate knowledge of temperature. Temperature measurements via thermo-sensitive electrical parameters (TSEP) are one way to carry out immediate temperature readings on fully packaged devices. However...... scale implementation of these methods are discussed. Their potential use in the aforementioned goals in condition monitoring and active thermal control is also described....

  16. Micromachined piezoresistive inclinometer with oscillator-based integrated interface circuit and temperature readout

    International Nuclear Information System (INIS)

    Dalola, Simone; Ferrari, Vittorio; Marioli, Daniele

    2012-01-01

    In this paper a dual-chip system for inclination measurement is presented. It consists of a MEMS (microelectromechanical system) piezoresistive accelerometer manufactured in silicon bulk micromachining and a CMOS (complementary metal oxide semiconductor) ASIC (application specific integrated circuit) interface designed for resistive-bridge sensors. The sensor is composed of a seismic mass symmetrically suspended by means of four flexure beams that integrate two piezoresistors each to detect the applied static acceleration, which is related to inclination with respect to the gravity vector. The ASIC interface is based on a relaxation oscillator where the frequency and the duty cycle of a rectangular-wave output signal are related to the fractional bridge imbalance and the overall bridge resistance of the sensor, respectively. The latter is a function of temperature; therefore the sensing element itself can be advantageously used to derive information for its own thermal compensation. DC current excitation of the sensor makes the configuration unaffected by wire resistances and parasitic capacitances. Therefore, a modular system results where the sensor can be placed remotely from the electronics without suffering accuracy degradation. The inclination measurement system has been characterized as a function of the applied inclination angle at different temperatures. At room temperature, the experimental sensitivity of the system results in about 148 Hz/g, which corresponds to an angular sensitivity around zero inclination angle of about 2.58 Hz deg −1 . This is in agreement with finite element method simulations. The measured output fluctuations at constant temperature determine an equivalent resolution of about 0.1° at midrange. In the temperature range of 25–65 °C the system sensitivity decreases by about 10%, which is less than the variation due to the microsensor alone thanks to thermal compensation provided by the current excitation of the bridge and the

  17. Effects of Heat Treatment on the Microstructures and High Temperature Mechanical Properties of Hypereutectic Al-14Si-Cu-Mg Alloy Manufactured by Liquid Phase Sintering Process

    Science.gov (United States)

    Heo, Joon-Young; Gwon, Jin-Han; Park, Jong-Kwan; Lee, Kee-Ahn

    2018-05-01

    Hypereutectic Al-Si alloy is an aluminum alloy containing at least 12.6 wt.% Si. It is necessary to evenly control the primary Si particle size and distribution in hypereutectic Al-Si alloy. In order to achieve this, there have been attempts to manufacture hypereutectic Al-Si alloy through a liquid phase sintering. This study investigated the microstructures and high temperature mechanical properties of hypereutectic Al-14Si-Cu-Mg alloy manufactured by liquid phase sintering process and changes in them after T6 heat treatment. Microstructural observation identified large amounts of small primary Si particles evenly distributed in the matrix, and small amounts of various precipitation phases were found in grain interiors and grain boundaries. After T6 heat treatment, the primary Si particle size and shape did not change significantly, but the size and distribution of CuAl2 ( θ) and AlCuMgSi ( Q) changed. Hardness tests measured 97.36 HV after sintering and 142.5 HV after heat treatment. Compression tests were performed from room temperature to 300 °C. The results represented that yield strength was greater after heat treatment (RT 300 °C: 351 93 MPa) than after sintering (RT 300 °C: 210 89 MPa). Fracture surface analysis identified cracks developing mostly along the interface between the primary Si particles and the matrix with some differences among temperature conditions. In addition, brittle fracture mode was found after T6 heat treatment.

  18. Immunolocalization and distribution of functional temperature-sensitive TRP channels in salivary glands.

    Science.gov (United States)

    Sobhan, Ubaidus; Sato, Masaki; Shinomiya, Takashi; Okubo, Migiwa; Tsumura, Maki; Muramatsu, Takashi; Kawaguchi, Mitsuru; Tazaki, Masakazu; Shibukawa, Yoshiyuki

    2013-11-01

    Transient receptor potential (TRP) cation channels are unique cellular sensors involved in multiple cellular functions. Their role in salivary secretion remains to be elucidated. The expression and localization of temperature-sensitive TRP channels in salivary (submandibular, sublingual and parotid) glands were analyzed by immunohistochemistry and quantitative real-time reverse transcription plus the polymerase chain reaction (RT-PCR). The effects of various TRP channel agonists on carbachol (CCh)-induced salivary secretion in the submandibular gland and on the intracellular Ca(2+) concentration ([Ca(2+)]i) in a submandibular epithelial cell line were also investigated. Immunohistochemistry revealed the expression of TRP-melastatin subfamily member 8 (TRPM8) and TRP-ankyrin subfamily member 1 (TRPA1) in myoepithelial, acinar and ductal cells in the sublingual, submandibular and parotid glands. In addition, TRP-vanilloid subfamily member 1 (TRPV1), TRPV3 and TRPV4 were also expressed in myoepithelial, acinar and ductal cells in all three types of gland. Quantitative real-time RT-PCR results demonstrated the mRNA expression of TRPV1, TRPV3, TRPV4, TRPM8 and TRPA1 in acinar and ductal cells in these salivary glands. Perfusion of the entire submandibular gland with the TRPV1 agonist capsaicin (1 μM) via the submandibular artery significantly increased CCh-induced salivation, whereas perfusion with TRPM8 and TRPA1 agonists (0.5 μM WS12 and 100 μM allyl isothiocyanate) decreased it. Application of agonists for each of the thermosensitive TRP channels increased [Ca(2+)]i in a submandibular epithelial cell line. These results indicate that temperature-sensitive TRP channels are localized and distributed in acinar, ductal and myoepithelial cells in salivary glands and that they play a functional role in the regulation and/or modulation of salivary secretion.

  19. Highly Sensitive Bulk Silicon Chemical Sensors with Sub-5 nm Thin Charge Inversion Layers.

    Science.gov (United States)

    Fahad, Hossain M; Gupta, Niharika; Han, Rui; Desai, Sujay B; Javey, Ali

    2018-03-27

    There is an increasing demand for mass-producible, low-power gas sensors in a wide variety of industrial and consumer applications. Here, we report chemical-sensitive field-effect-transistors (CS-FETs) based on bulk silicon wafers, wherein an electrostatically confined sub-5 nm thin charge inversion layer is modulated by chemical exposure to achieve a high-sensitivity gas-sensing platform. Using hydrogen sensing as a "litmus" test, we demonstrate large sensor responses (>1000%) to 0.5% H 2 gas, with fast response (<60 s) and recovery times (<120 s) at room temperature and low power (<50 μW). On the basis of these performance metrics as well as standardized benchmarking, we show that bulk silicon CS-FETs offer similar or better sensing performance compared to emerging nanostructures semiconductors while providing a highly scalable and manufacturable platform.

  20. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  1. 3D metal droplet printing development and advanced materials additive manufacturing

    Directory of Open Access Journals (Sweden)

    Lawrence E. Murr

    2017-01-01

    Full Text Available While commercial additive manufacturing processes involving direct metal wire or powder deposition along with powder bed fusion technologies using laser and electron beam melting have proliferated over the past decade, inkjet printing using molten metal droplets for direct, 3D printing has been elusive. In this paper we review the more than three decades of development of metal droplet generation for precision additive manufacturing applications utilizing advanced, high-temperature metals and alloys. Issues concerning process optimization, including product structure and properties affected by oxidation are discussed and some comparisons of related additive manufactured microstructures are presented.

  2. High Temperature and High Sensitive NOx Gas Sensor with Hetero-Junction Structure using Laser Ablation Method

    Science.gov (United States)

    Gao, Wei; Shi, Liqin; Hasegawa, Yuki; Katsube, Teruaki

    In order to develop a high temperature (200°C˜400°C) and high sensitive NOx gas sensor, we developed a new structure of SiC-based hetero-junction device Pt/SnO2/SiC/Ni, Pt/In2O3/SiC/Ni and Pt/WO3/SiC/Ni using a laser ablation method for the preparation of both metal (Pt) electrode and metal-oxide film. It was found that Pt/In2O3/SiC/Ni sensor shows higher sensitivity to NO2 gas compared with the Pt/SnO2/SiC/Ni and Pt/WO3/SiC/Ni sensor, whereas the Pt/WO3/SiC/Ni sensor had better sensitivity to NO gas. These results suggest that selective detection of NO and NO2 gases may be obtained by choosing different metal oxide films.

  3. Structure and dye-sensitized solar cell application of TiO2 nanotube arrays fabricated by the anodic oxidation method

    Science.gov (United States)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won; Ryu, Kwang-Sun

    2010-05-01

    Well-ordered TiO2 nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH4F and H2O. The influence of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays was examined. The TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO2 nanotube arrays in the manufacturing process of a photoelectrode.

  4. Manufacturing considerations for AMLCD cockpit displays

    Science.gov (United States)

    Luo, Fang-Chen

    1995-06-01

    AMLCD cockpit displays need to meet more stringent requirements compared with AMLCD commercial displays in areas such as environmental conditions, optical performance and device reliability. Special considerations are required for the manufacturing of AMLCD cockpit displays in each process step to address these issues. Some examples are: UV stable polarizers, wide-temperature LC material, strong LC glue seal, ESS test system, gray scale voltage EEPROM, etc.

  5. Ultrasonic assessment of additive manufactured Ti-6Al-4V

    Science.gov (United States)

    Schehl, Norman; Kramb, Vicki; Dierken, Josiah; Aldrin, John; Schwalbach, Edwin; John, Reji

    2018-04-01

    Additive Manufacturing (AM) processes offer the potential for manufacturing cost savings and rapid insertion into service through production of near net shape components for complicated structures. Use of these parts in high reliability applications such as those in the aerospace industry will require nondestructive characterization methods to ensure post-process material quality in as-built condition. Ultrasonic methods can be used for this quality verification. Depending on the application, the service life of AM components can be sensitive to the part surface condition. The surface roughness and layered structure inherent to the electron-beam powder-bed fusion process necessitates new approaches to evaluate subsurface material integrity in its presence. Experimental methods and data analytics may improve the evaluation of as-built additively manufactured materials. This paper discusses the assessment of additively manufactured EBM Ti-6Al-4V panels using ultrasonic methods and the data analytics applied to evaluate material integrity. The assessment was done as an exploratory study as the discontinuities of interest in these test samples were not known when the measurements were performed. Water immersion ultrasonic techniques, including pulse-echo and through transmission with 10 MHz focused transducers, were used to explore the material integrity of as-built plates. Subsequent destructive mechanical tests of specimens extracted from the plates provided fracture locations indicating critical flaws. To further understand the effect of surface-roughness, an evaluation of ultrasonic response in the presence of as-built surfaces and with the surface removed was performed. The assessment of additive manufactured EBM Ti-6Al-4V panels with ultrasonic techniques indicated that ultrasonic energy was attenuated by the as-built surface roughness. In addition, feature detection was shown to be sensitive to experimental ultrasonic parameters and flaw morphology.

  6. Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method

    Science.gov (United States)

    Gümrük, Recep; Mines, R. A. W.; Karadeniz, Sami

    2018-03-01

    Micro-lattice structures manufactured using the selective laser melting (SLM) process provides the opportunity to realize optimal cellular materials for impact energy absorption. In this paper, strain rate-dependent material properties are measured for stainless steel 316L SLM micro-lattice struts in the strain rate range of 10-3 to 6000 s-1. At high strain rates, a novel version of the split Hopkinson Bar has been developed. Strain rate-dependent materials data have been used in Cowper-Symonds material model, and the scope and limit of this model in the context of SLM struts have been discussed. Strain rate material data and the Cowper-Symonds model have been applied to the finite element analysis of a micro-lattice block subjected to drop weight impact loading. The model output has been compared to experimental results, and it has been shown that the increase in crush stress due to impact loading is mainly the result of strain rate material behavior. Hence, a systematic methodology has been developed to investigate the impact energy absorption of a micro-lattice structure manufactured using additive layer manufacture (SLM). This methodology can be extended to other micro-lattice materials and configurations, and to other impact conditions.

  7. Horizontally Differentiated Store Brands: Production Outsourcing to National Brand Manufacturers

    Directory of Open Access Journals (Sweden)

    Shun Shindo

    2014-01-01

    Full Text Available We study a retailer's strategic decision with regard to outsourcing the production of such types of store brands (SBs to national brand (NB manufacturers. The wholesale price of NB is assumed to be set by the manufacturer, while that of the SB is assumed to be set by the retailer. When a retailer outsources SB production to an NB manufacturer, the NB manufacturer might suffer from cannibalization due to offering both the SB and the NB, implying that a strategic interaction between the retailer and manufacturer is an important issue. Based on this motivation, we mainly focus on the strategy of a dominant retailer in such a situation and investigate it with a game-theoretic approach. We show that the optimal strategy for the SB retailer sensitively depends on the degree of differentiation between the SB and the NB. In particular, if both products are less differentiated, the retailer benefits from offering only the SB, and, in this case, the retailer should offer its wholesale price, after the manufacturer sets the NB wholesale price. Furthermore, it is shown that the optimal strategies of the retailer are socially efficient, if and only if the SB and the NB are sufficiently differentiated.

  8. Energy storage via high temperature superconductivity (SMES)

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [Tampere Univ. of Technology (Finland)

    1998-10-01

    The technology concerning high temperature superconductors (HTS) is matured to enabling different kind of prototype applications including SMES. Nowadays when speaking about HTS systems, attention is focused on the operating temperature of 20-30 K, where the critical current and flux density are fairly close to 4.2 K values. In addition by defining the ratio of the energy content of a novel HTS magnetic system and the required power to keep the system at the desired temperature, the optimum settles to the above mentioned temperature range. In the frame of these viewpoints a 5 kJ HTS SMES system has been designed and tested at Tampere University of Technology with a coil manufactured by American Superconductor (AMSC). The HTS magnet has inside and outside diameters of 252 mm and 317 mm, respectively and axial length of 66 mm. It operates at 160 A and carries a total of 160 kA-turns to store the required amount of energy. The effective magnetic inductance is 0.4 H and the peak axial field is 1.7 T. The magnet is cooled to the operating temperature of 20 K with a two stage Gifford-McMahon type cryocooler with a cooling power of 60 W at 77 K and 8 W at 20 K. The magnetic system has been demonstrated to compensate a short term loss of power of a sensitive consumer

  9. Ultrasensitive string-based temperature sensors

    DEFF Research Database (Denmark)

    Larsen, Tom; Schmid, Silvan; Gronberg, L.

    2011-01-01

    Resonant strings are a promising concept for ultra sensitive temperature detection. We present an analytical model for the sensitivity with which we optimize the temperature response of resonant strings by varying geometry and material. The temperature sensitivity of silicon nitride and aluminum ...

  10. Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition.

    Directory of Open Access Journals (Sweden)

    Wenfu Xiao

    Full Text Available Thermotolerance is important particularly for poikilotherms such as insects. Understanding the mechanisms by which insects respond to high temperatures can provide insights into their adaptation to the environment. Therefore, in this study, we performed a transcriptome analysis of two silkworm strains with significantly different resistance to heat as well as humidity; the thermo-resistant strain 7532 and the thermos-sensitive strain Knobbed. We identified in total 4,944 differentially expressed genes (DEGs using RNA-Seq. Among these, 4,390 were annotated and 554 were novel. Gene Ontology (GO analysis of 747 DEGs identified between RT_48h (Resistant strain with high-temperature Treatment for 48 hours and ST_48h (Sensitive strain with high-temperature Treatment for 48 hours showed significant enrichment of 12 GO terms including metabolic process, extracellular region and serine-type peptidase activity. Moreover, we discovered 12 DEGs that may contribute to the heat-humidity stress response in the silkworm. Our data clearly showed that 48h post-exposure may be a critical time point for silkworm to respond to high temperature and humidity. These results provide insights into the genes and biological processes involved in high temperature and humidity tolerance in the silkworm, and advance our understanding of thermal tolerance in insects.

  11. Manufacturing network evolution

    DEFF Research Database (Denmark)

    Yang, Cheng; Farooq, Sami; Johansen, John

    2011-01-01

    Purpose – This paper examines the effect of changes at the manufacturing plant level on other plants in the manufacturing network and also investigates the role of manufacturing plants on the evolution of a manufacturing network. Design/methodology/approach –The research questions are developed...... different manufacturing plants in the network and their impact on network transformation. Findings – The paper highlights the dominant role of manufacturing plants in the continuously changing shape of a manufacturing network. The paper demonstrates that a product or process change at one manufacturing...... by identifying the gaps in the reviewed literature. The paper is based on three case studies undertaken in Danish manufacturing companies to explore in detail their manufacturing plants and networks. The cases provide a sound basis for developing the research questions and explaining the interaction between...

  12. Temperature sensitive self-actuated scram mechanism

    International Nuclear Information System (INIS)

    Giuggio, N.; Noyes, R.C.; Zaman, S.U.

    1980-01-01

    A self-actuated mechanism within a safety assembly in a liquid metal nuclear reactor comprising sensor fuel pins located in a reactor coolant flow path, a sensor bulb containing NaK located near the upper end of the sensor fuel pins and in the reactor coolant flow path, and a sensor tube connecting the sensor bulb to a metal bellows and push rod. The motion of the push rod resulting from the temperature dependent change in the NaK volume actuates a safety rod release mechanism when a predetermined coolant temperature is reached

  13. High temperature structural ceramic materials manufactured by the CNTD process

    International Nuclear Information System (INIS)

    Stiglich, J.J. Jr.; Bhat, D.G.; Holzl, R.A.

    1980-01-01

    Controlled Nucleation Thermochemical Deposition (CNTD) has emerged from classical chemical deposition (CVD) technology. This paper describes the techniques of thermochemical grain refinement. The effects of such refinement on mechanical properties of materials at room temperature and at elevated temperatures are outlined. Emphasis is given to high temperature structural ceramic materials such as SiC, Si 3 N 4 , AlN, and TiB 2 and ZrB 2 . An example of grain refinement accompanied by improvements in mechanical properties is SiC. Grain sizes of 500 to 1000 A have been observed in CNTD SiC with room temperature MOR of 1380 to 2070 MPa (4 pt bending) and MOR of 3450 to 4140 MPa (4 pt bending) at 1350 0 C. Various applications of these materials to the solution of high temperature structural problems are described. (author)

  14. Design of a high power TM01 mode launcher optimized for manufacturing by milling

    Energy Technology Data Exchange (ETDEWEB)

    Dal Forno, Massimo [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-12-15

    Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, at the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.

  15. Calorimetric sensitivity and thermal resolution of a novel miniaturized ceramic DSC chip in LTCC technology

    Energy Technology Data Exchange (ETDEWEB)

    Missal, Wjatscheslaw, E-mail: wmissal@gmx.net [Department of Functional Materials, University of Bayreuth, 95440 Bayreuth (Germany); Kita, Jaroslaw [Department of Functional Materials, University of Bayreuth, 95440 Bayreuth (Germany); Wappler, Eberhard [wsk Mess- und Datentechnik GmbH, Gueterbahnhofstr. 1, 63450 Hanau (Germany); Bechtold, Franz [VIA electronic GmbH, Robert-Friese-Str. 3, 07629 Hermsdorf (Germany); Moos, Ralf [Department of Functional Materials, University of Bayreuth, 95440 Bayreuth (Germany)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer Unique vertical design of a DSC device manufactured in the low-cost LTCC technology and therefore capable of one-way use. Black-Right-Pointing-Pointer Fully functional DSC device with a size of only 1.5 mm Multiplication-Sign 11 mm Multiplication-Sign 39 mm enabling very low power consumption. Black-Right-Pointing-Pointer Comparable measurement performance as conventional DSC whilst also suitable for mobile thermal analysis. Black-Right-Pointing-Pointer Thermal resolution is 0.12 (TAWN test). Repeatability of the peak area is within 0.3% for indium samples. Black-Right-Pointing-Pointer Calorimetric sensitivity: linear with regard to temperature and independent from sample mass and heating rate in wide ranges. - Abstract: The calorimetric properties of a novel miniaturized ceramic differential scanning calorimeter device (MC-DSC) with integrated heater and crucible are presented. All features of a conventional DSC apparatus (including oven) are integrated into this DSC device of the size 11 mm Multiplication-Sign 39 mm Multiplication-Sign 1.5 mm. The MC-DSC device is suitable for one-way use, since it is fully manufactured in the low-cost planar low temperature co-fired ceramics technology. First characterization of this device is performed using indium, tin and zinc samples. The calorimetric sensitivity at 156.6 Degree-Sign C is 0.24 J/ Degree-Sign C s. It depends linearly on temperature in the range of at least 150 Degree-Sign C and 420 Degree-Sign C. The calorimetric sensitivity is constant up to an enthalpy of fusion of at least {Delta}H = 750 mJ (at 156.6 Degree-Sign C). The thermal analysis of indium in direct contact to the crucible of the chip even reveals a constant calorimetric sensitivity up to an enthalpy of fusion of at least {Delta}H = 1000 mJ. The repeatability of the peak area is within {+-}0.3% (11 mg indium, 10 measurements). The thermal resolution determined using 4,4 Prime -azoxyanisole under TAWN test

  16. Method for thermoelectric cooler utilization using manufacturer's technical information

    Science.gov (United States)

    Ajiwiguna, Tri Ayodha; Nugroho, Rio; Ismardi, Abrar

    2018-03-01

    Thermoelectric cooler (TEC) module has been widely used for many applications. In this study, a procedure to use TEC module for specific requirement is developed based on manufacturer's technical data. For study case, the cooling system using TEC module is designed and tested to maintain 6.6 liter of water at 24 °C while surrounding temperature is 26 °C. First, cooling load estimation is performed empirically by observing the temperature change when cold water is inside the container. Second, the working temperature on hot side and cold side of TEC are determined. Third, the parameters of Seebeck coefficient, thermal resistance and electrical resistance are predicted by using information from the manufacturer. Fourth, the operating current is determined by the assumption the voltage across the TEC is 12V. Fifth, cooling capacity of TEC module is calculated by using energy balance equation of TEC. Sixth, the cooling load and cooling capacity are compared to determine the number of TEC module needed. The result of these calculations showed that one TEC module is enough for cooling system since the cooling load is 17.5 W while the cooling capacity is 18.87 W. From the experimental result, the set point temperature was achieved using one TEC module as predicted in calculations steps.

  17. Computational design and characterization of a temperature-sensitive plasmid replicon for gram positive thermophiles

    Directory of Open Access Journals (Sweden)

    Olson Daniel G

    2012-05-01

    Full Text Available Abstract Background Temperature-sensitive (Ts plasmids are useful tools for genetic engineering, but there are currently none compatible with the gram positive, thermophilic, obligate anaerobe, Clostridium thermocellum. Traditional mutagenesis techniques yield Ts mutants at a low frequency, and therefore requires the development of high-throughput screening protocols, which are also not available for this organism. Recently there has been progress in the development of computer algorithms which can predict Ts mutations. Most plasmids currently used for genetic modification of C. thermocellum are based on the replicon of plasmid pNW33N, which replicates using the RepB replication protein. To address this problem, we set out to create a Ts plasmid by mutating the gene coding for the RepB replication protein using an algorithm designed by Varadarajan et al. (1996 for predicting Ts mutants based on the amino-acid sequence of the protein. Results A library of 34 mutant plasmids was designed, synthesized and screened, resulting in 6 mutants which exhibited a Ts phenotype. Of these 6, the one with the most temperature-sensitive phenotype (M166A was compared with the original plasmid. It exhibited lower stability at 48°C and was completely unable to replicate at 55°C. Conclusions The plasmid described in this work could be useful in future efforts to genetically engineer C. thermocellum, and the method used to generate this plasmid may be useful for others trying to make Ts plasmids.

  18. Method of manufacturing gadolinium oxide-incorporated nuclear fuel sintering products

    International Nuclear Information System (INIS)

    Komono, Akira; Seki, Makoto; Omori, Sadayuki.

    1987-01-01

    Purpose: To manufacture nuclear fuel sintering products excellent in burning property and mechanical property. Constitution: In the manufacturing step for nuclear fuel sintering products, specific metal oxides are added for promoting the growth of crystal grains in the sintering. Those metal oxides melted at a temperature lower than the sintering temperature of a mixture of nuclear fuel oxide powder and oxide power, or those metal oxides causing eutectic reaction are used as the metal oxide. Particularly, those compounds having oxygen atom - metal atom ratio (O/M) of not less than 2 are preferably used. As such metal oxides usable herein transition metal oxides, e.g., Nb 2 O 5 , TiO 2 , MoO 3 and WO 3 are preferred, with Nb 2 O 3 and TiO 2 being preferred particularly. (Seki, T.)

  19. ENZYMATIC HYDROLYSIS LIGNIN DERIVED FROM CORN STOVER AS AN INTRINSTIC BINDER FOR BIO-COMPOSITES MANUFACTURE: EFFECT OF FIBER MOISTURE CONTENT AND PRESSING TEMPERATURE ON BOARDS’ PROPERTIES

    Directory of Open Access Journals (Sweden)

    Guanben Du

    2011-02-01

    Full Text Available Binderless fiberboards from enzymatic hydrolysis lignin (EHL and cotton stalk fibers were prepared under various manufacturing conditions, and their physico-mechanical properties were evaluated. Full factorial experimental design was used to assess the effect of fiber moisture content and pressing temperature on boards’ properties. In addition, differential scanning calorimetry (DSC was used to obtain the glass transition temperature (Tg of EHL. We found that both fiber moisture content and pressing temperature had significant effects on binderless fiberboards’ properties. High fiber moisture content and pressing temperature are suggested to contribute to the self-bonding improvement among fibers with lignin-rich surface mainly by thermal softening enzymatic hydrolysis lignin. In this experiment, the optimized pressing temperature applied in binderless fiberboard production should be as high as 190°C in accordance with the EHL Tg value of 189.4°C, and the fiber moisture content should be limited to less than 20% with a higher board density of 950 kg/m3 to avoid the delamination of boards during hot pressing.

  20. A new sensor for ammonia based on cyanidin-sensitized titanium dioxide film operating at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-wei, Huang [School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu (China); Xiao-bo, Zou, E-mail: zou_xiaobo@ujs.edu.cn [School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu (China); Key Laboratory of Modern Agricultural Equipment and Technology, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu (China); Ji-yong, Shi; Jie-wen, Zhao; Yanxiao, Li [School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, 212013 Zhenjiang, Jiangsu (China); Limin, Hao; Jianchun, Zhang [The Research Center of China Hemp Materials, Beijing (China)

    2013-07-17

    Graphical abstract: -- Highlights: •TiO{sub 2} was prepared by sol–gel method film and then functionalized with the cyanidin dye. •The morphology and the absorption spectra of films were examined. •The hybrid organic–inorganic formed film here can detect ammonia reversibly at room temperature. •The low humidity could promote the sensitivity of the sensors. -- Abstract: Design and fabrication of an ammonia sensor operating at room temperature based on pigment-sensitized TiO{sub 2} films was described. TiO{sub 2} was prepared by sol–gel method and deposited on glass slides containing gold electrodes. Then, the film immersed in a 2.5 × 10{sup −4} M ethanol solution of cyanidin to absorb the pigment. The hybrid organic–inorganic formed film here can detect ammonia reversibly at room temperature. The relative change resistance of the films at a potential difference of 1.5 V is determined when the films are exposed to atmospheres containing ammonia vapors with concentrations over the range 10–50 ppm. The relative change resistance, S, of the films increased almost linearly with increasing concentrations of ammonia (r = 0.92). The response time to increasing concentrations of the ammonia is about 180–220 s, and the corresponding values for decreasing concentrations 240–270 s. At low humidity, ammonia could be ionized by the cyanidin on the TiO{sub 2} film and thereby decrease in the proton concentration at the surface. Consequently, more positively charged holes at the surface of the TiO{sub 2} have to be extracted to neutralize the adsorbed cyanidin and water film. The resistance response to ammonia of the sensors was nearly independent on temperature from 10 to 50 °C. These results are not actually as good as those reported in the literature, but this preliminary work proposes simpler and cheaper processes to realize NH{sub 3} sensor for room temperature applications.

  1. Implementation of hierarchical design for manufacture rules in manufacturing processes

    OpenAIRE

    Parvez, Masud

    2008-01-01

    In order to shorten the product development cycle time, minimise overall cost and smooth transition into production, early consideration of manufacturing processes is important. Design for Manufacture (DFM) is the practice of designing products with manufacturing issues using an intelligent system, which translates 3D solid models into manufacturable features. Many existing and potential applications, particularly in the field of manufacturing, require various aspects of features technology. ...

  2. Design and high-volume manufacture of low-cost molded IR aspheres for personal thermal imaging devices

    Science.gov (United States)

    Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.

    2015-05-01

    The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.

  3. Method of manufacturing a layer thermoelectric battery. Herstellungsverfahren fuer Schichtthermobatterien

    Energy Technology Data Exchange (ETDEWEB)

    Lidorenko, N.S.; Kolomoets, N.V.; Daschevsky, Z.M.; Granovsky, V.I.; Schemtschuschina, E.A.; Chernousov, L.N.; Schmidt, I.A.; Nikolaschina, L.A.; Gelfgat, D.M.; Sgibnev, I.V.

    1980-08-21

    A method of manufacturing a layer thermoelectric battery is described, whereby a film of a thermoelectric semiconductor material which is an n-type stoichiometric solid solution containing Bi2Te3 and Sb2Te3 is deposited on a substrate. Then heating is effected so that adjacent arms of the film are at different temperatures, some at a temperature of not above 300/sup 0/C, and others at a temperature of not less than 350/sup 0/C.

  4. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  5. Highly sensitive and selective room-temperature NO{sub 2} gas sensor based on bilayer transferred chemical vapor deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Seekaew, Yotsarayuth [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand); Phokharatkul, Ditsayut; Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Wongchoosuk, Chatchawal, E-mail: chatchawal.w@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand)

    2017-05-15

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO{sub 2} gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO{sub 2} sensitivity of 1.409 ppm{sup −1}. • The NO{sub 2}-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO{sub 2} detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO{sub 2} than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm{sup −1} towards NO{sub 2} over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO{sub 2}-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO{sub 2} molecules.

  6. A fiber optic temperature sensor based on multi-core microstructured fiber with coupled cores for a high temperature environment

    Science.gov (United States)

    Makowska, A.; Markiewicz, K.; Szostkiewicz, L.; Kolakowska, A.; Fidelus, J.; Stanczyk, T.; Wysokinski, K.; Budnicki, D.; Ostrowski, L.; Szymanski, M.; Makara, M.; Poturaj, K.; Tenderenda, T.; Mergo, P.; Nasilowski, T.

    2018-02-01

    Sensors based on fiber optics are irreplaceable wherever immunity to strong electro-magnetic fields or safe operation in explosive atmospheres is needed. Furthermore, it is often essential to be able to monitor high temperatures of over 500°C in such environments (e.g. in cooling systems or equipment monitoring in power plants). In order to meet this demand, we have designed and manufactured a fiber optic sensor with which temperatures up to 900°C can be measured. The sensor utilizes multi-core fibers which are recognized as the dedicated medium for telecommunication or shape sensing, but as we show may be also deployed advantageously in new types of fiber optic temperature sensors. The sensor presented in this paper is based on a dual-core microstructured fiber Michelson interferometer. The fiber is characterized by strongly coupled cores, hence it acts as an all-fiber coupler, but with an outer diameter significantly wider than a standard fused biconical taper coupler, which significantly increases the coupling region's mechanical reliability. Owing to the proposed interferometer imbalance, effective operation and high-sensitivity can be achieved. The presented sensor is designed to be used at high temperatures as a result of the developed low temperature chemical process of metal (copper or gold) coating. The hermetic metal coating can be applied directly to the silica cladding of the fiber or the fiber component. This operation significantly reduces the degradation of sensors due to hydrolysis in uncontrolled atmospheres and high temperatures.

  7. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  8. Temperature-sensitive gating of hCx26: high-resolution Raman spectroscopy sheds light on conformational changes.

    Science.gov (United States)

    Kniggendorf, Ann-Kathrin; Meinhardt-Wollweber, Merve; Yuan, Xiaogang; Roth, Bernhard; Seifert, Astrid; Fertig, Niels; Zeilinger, Carsten

    2014-07-01

    The temperature-sensitive gating of human Connexin 26 (hCx26) was analyzed with confocal Raman microscopy. High-resolution Raman spectra covering the spectral range between 400 and 1500 rel. cm(-1) with a spectral resolution of 1 cm(-1) were fully annotated, revealing notable differences between the spectrum recorded from solubilized hCx26 in Ca(2+)-buffered POPC at 10°C and any other set of protein conditions (temperature, Ca(2+) presence, POPC presence). Spectral components originating from specific amino acids show that the TM1/EL1 parahelix and probably the TM4 trans-membrane helix and the plug domain are involved in the gating process responsible for fully closing the hemichannel.

  9. Method of manufacturing semiconductor devices

    International Nuclear Information System (INIS)

    Sun, Y.S.E.

    1980-01-01

    A method of improving the electrical characteristics of semiconductor devices such as SCR's, rectifiers and triacs during their manufacture is described. The system consists of electron irradiation at an energy in excess of 250 KeV and most preferably between 1.5 and 12 MeV, producing an irradiation dose of between 5.10 12 and 5.10 15 electrons per sq. cm., and at a temperature in excess of 100 0 C preferably between 150 and 375 0 C. (U.K.)

  10. Improved Thermal-Insulation Systems for Low Temperatures

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  11. Manufacturing strategy issues in selected Indian manufacturing industry

    Directory of Open Access Journals (Sweden)

    Mahender Singh

    2013-03-01

    Full Text Available This paper presents some findings of Indian manufacturing sectors viz. automobile (especially two-wheeler, tractor and general manufacturing industry. Various manufacturing strategy issues such as competitive priorities, improvement activities, and performance measures, have been identified and assessed in Indian context. Sector wise comparison of competitive priorities, improvement activities i.e. advanced manufacturing technology (AMT, integrated information systems (IIS, and advanced management systems (AMS, and performance measure, is provided. Our results showed that most of the Indian companies are still emphasizing on quality. However, automobile sector has set to compete globally with high innovation rate, faster new product development, and continuous improvement. It is also observed that Indian companies are investing more in AMS as compared to IIS and AMT. Manufacturing competence index is also computed for each sector.

  12. Virtual Manufacturing Techniques Designed and Applied to Manufacturing Activities in the Manufacturing Integration and Technology Branch

    Science.gov (United States)

    Shearrow, Charles A.

    1999-01-01

    One of the identified goals of EM3 is to implement virtual manufacturing by the time the year 2000 has ended. To realize this goal of a true virtual manufacturing enterprise the initial development of a machinability database and the infrastructure must be completed. This will consist of the containment of the existing EM-NET problems and developing machine, tooling, and common materials databases. To integrate the virtual manufacturing enterprise with normal day to day operations the development of a parallel virtual manufacturing machinability database, virtual manufacturing database, virtual manufacturing paradigm, implementation/integration procedure, and testable verification models must be constructed. Common and virtual machinability databases will include the four distinct areas of machine tools, available tooling, common machine tool loads, and a materials database. The machine tools database will include the machine envelope, special machine attachments, tooling capacity, location within NASA-JSC or with a contractor, and availability/scheduling. The tooling database will include available standard tooling, custom in-house tooling, tool properties, and availability. The common materials database will include materials thickness ranges, strengths, types, and their availability. The virtual manufacturing databases will consist of virtual machines and virtual tooling directly related to the common and machinability databases. The items to be completed are the design and construction of the machinability databases, virtual manufacturing paradigm for NASA-JSC, implementation timeline, VNC model of one bridge mill and troubleshoot existing software and hardware problems with EN4NET. The final step of this virtual manufacturing project will be to integrate other production sites into the databases bringing JSC's EM3 into a position of becoming a clearing house for NASA's digital manufacturing needs creating a true virtual manufacturing enterprise.

  13. Histamine development and bacterial diversity in microbially-challenged tonggol (Thunnus tonggol) under temperature abuse during canning manufacture.

    Science.gov (United States)

    Hongpattarakere, Tipparat; Buntin, Nirunya; Nuylert, Aem

    2016-01-01

    Histamine formation and bacteriological changes caused by temperature abuse commonly occurring in the manufacturing process of standard canned tuna was assessed in microbiologically challenged tonggol (Thunnus tonggol). The in situ challenge was performed by water-soaking at 26-28 °C for 7 h to ensure the multiplication and active phase of fish microflora. Right after pre-cooking to back-bone temperature (BBT) of 50-52 °C, histamine dropped to 5.17 ± 2.71 ppm, and slowly reached 6.84 ± 1.69 ppm at 16 h abuse. On the contrary, histamine was reduced to 2.87 ± 1.23 ppm and eventually reached 5.01 ± 1.32 ppm at 24 h abuse in the pre-cooked fish previously frozen. The numbers of total aerobic bacteria, Enterobactericeae, psychrotroph, histamine forming bacteria (HFB) and diversity of fish microflora were revealed by cultural and nested PCR-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) techniques. Interestingly, frozen storage effectively halted histamine formation in raw fish throughout 16 h abuse despite the presence of HFB. These included the prolific strains of Morganella morganii, Proteus penneri, Proteus mirabilin, Citrobacter spp. The nested PCR-DGGE profile confirmed the presence of M. morganii and Citrobacter spp. in raw fish. These prolific strains were hardly observed in the precooked fish previously frozen. Frozen storage did not only promote even histamine distribution throughout fish muscle but also enhanced histamine loss during thawing and pre-cooking. Therefore, pre-cooking and frozen storage were proven to be the effective combined hurdles not only to reduce but also prolong histamine formation of the challenged toggol throughout 24 h of temperature abuse during canning process.

  14. Semiconductor Manufacturing equipment introduction

    International Nuclear Information System (INIS)

    Im, Jong Sun

    2001-02-01

    This book deals with semiconductor manufacturing equipment. It is comprised of nine chapters, which are manufacturing process of semiconductor device, history of semiconductor manufacturing equipment, kinds and role of semiconductor manufacturing equipment, construction and method of semiconductor manufacturing equipment, introduction of various semiconductor manufacturing equipment, spots of semiconductor manufacturing, technical elements of semiconductor manufacturing equipment, road map of technology of semiconductor manufacturing equipment and semiconductor manufacturing equipment in the 21st century.

  15. Innovative Processing Methods for the Affordable Manufacture of Multifunctional High Temperature Coatings, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Research is proposed to investigate the feasibility of using advanced manufacturing techniques to enable the affordable application of multi-functional high...

  16. Temperature uniformity mapping in a high pressure high temperature reactor using a temperature sensitive indicator

    NARCIS (Netherlands)

    Grauwet, T.; Plancken, van der I.; Vervoort, L.; Matser, A.M.; Hendrickx, M.; Loey, van A.

    2011-01-01

    Recently, the first prototype ovomucoid-based pressure–temperature–time indicator (pTTI) for high pressure high temperature (HPHT) processing was described. However, for temperature uniformity mapping of high pressure (HP) vessels under HPHT sterilization conditions, this prototype needs to be

  17. Rheology of high melt strength polypropylene for additive manufacturing

    DEFF Research Database (Denmark)

    Jagenteufel, Ralf; Hofstätter, Thomas; Kamleitner, Florian

    2017-01-01

    stability, whereas HMS-PP showed a more stable behavior at the investigated temperatures. Hereafter, the material was used in a fused deposition modeling additive manufacturing process, focusing on the investigation of possible improvements of HMS-PP over ABS. Based on the extrusion parameters for ABS...

  18. Low temperature fabrication of ZnO compact layer for high performance plastic dye-sensitized ZnO solar cells

    International Nuclear Information System (INIS)

    Hu Fangyi; Xia Yujing; Guan Zisheng; Yin Xiong; He Tao

    2012-01-01

    Highlights: ► ZnO compact layer is prepared via simple electrochemical method at low temperature. ► Compact layer can effectively block electron transfer from TCO to electrolyte. ► DSC PCE is improved by 17% when ZnO compact layer is introduced. ► Plastic DSCs with ZnO compact layer show a PCE of 3.29% under AM1.5 100 mW cm −2 . ► The above efficiency is comparable to that with high temperature sintering step. - Abstract: ZnO compact layer has been fabricated on transparent conducting oxide glass and plastic polymer substrates at low temperature via electrodeposition. The results of dark current and cyclic voltammetric measurements demonstrate that the compact layer can effectively reduce the short circuit from transparent conducting oxide to electrolyte in dye-sensitized ZnO solar cells, leading to an increase of open-circuit photovoltage and fill factor of the devices and, thereby, the power conversion efficiency. The resultant plastic dye-sensitized ZnO solar cell presents an efficiency of 3.29% under illumination of 100 mW cm −2 , AM 1.5G. This indicates that electrodeposition is a viable method to fabricate ZnO compact layer for high performance flexible devices.

  19. NICE3 SO3 Cleaning Process in Semiconductor Manufacturing

    International Nuclear Information System (INIS)

    Blazek, Steve

    1999-01-01

    This fact sheet explains how Anon, Inc., has developed a novel method of removing photoresist--a light-sensitive material used to produce semiconductor wafers for computers--from the computer manufacturing process at reduced cost and greater efficiency. The new technology is technically superior to existing semiconductor cleaning methods and results in reduced use of hazardous chemicals

  20. Corrosion behaviour of sensitized and unsensitized Alloy 900 (UNS 1.4462) in concentrated aqueous lithium bromide solutions at different temperatures

    International Nuclear Information System (INIS)

    Leiva-Garcia, R.; Munoz-Portero, M.J.; Garcia-Anton, J.

    2010-01-01

    Duplex stainless steels can undergo microstructural changes if they are heated improperly. When that happens, duplex stainless steels are sensitized and intermetallic phases appear. The high Chromium and Molybdenum content promotes the formation of secondary phases as a consequence of the heat treatment. These secondary phases, which are rich in alloying elements, such as Cr and Mo, deplete these elements from the neighbouring phases, leading to a reduction in corrosion resistance. In order to study the influence of the secondary phases on the corrosion parameters, samples of duplex stainless steel, Alloy 900 (UNS 1.4462), have been heated in argon atmosphere at 825 deg. C for 1 h. The corrosion behaviour of sensitized and unsensitized Alloy 900 has been analyzed in a concentrated aqueous lithium bromide (LiBr) solution of 992 g/L by means of cyclic potentiodynamic curves. Secondary phase presence reduces the pitting potential value of Alloy 900. Besides, the pitting potential decreases with temperature. On the other hand, the corrosion potential and open circuit potential values increase with temperature and sensitization.

  1. Design and manufacturing of the MRI cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jeon Wook; Lee, Eon Yong; Kil, Kwon Young; Ryu, Kang Sik [Korea Electrotechnology Research Institute (Korea, Republic of); Ryu, Choong Sik; Kwon, Oh Bum [Shin Sung World Co. (Korea, Republic of); Lee, Hong Ju; Lee, Hai Sung [Dyung Sung Chemical Co. (Korea, Republic of); Fukui, K; Komosita, K [CryoVac Co. (Korea, Republic of)

    1995-07-01

    A superconducting 2 tesla MRI magnet for the animal magnetic resonance imaging has been developed as a basic model for the application of the precise superconducting magnet technology. MRI cryostat with 210 mm room temperature bore was designed and manufactured for this magnet. The cryostat was designed basically not only to extract the principal design parameters at the performance test but also for the convenience of the manufacturing. The most extinct fracture of the cryostat is that it does not have LN{sub 2} tank and the 77 K thermal shield is cooled by circling LN{sub 2} through copper pipe which is welded around the shield plate. It results in reduction of the total cryostat size(about 30%). (author). 3 figs., 1 tab.

  2. Temperature-sensitive defects of the GSP1gene, yeast Ran homologue, activate the Tel1-dependent pathway

    International Nuclear Information System (INIS)

    Hayashi, Naoyuki; Murakami, Seishi; Tsurusaki, Susumu; Nagaura, Zen-ichiro; Oki, Masaya; Nishitani, Hideo; Kobayashi, Masahiko; Shimizu, Hiroko; Yamamoto, Ken-ichi; Nishimoto, Takeharu

    2007-01-01

    RanGTPase is involved in many cellular processes. It functions in nuclear-cytosolic transport and centrosome formation. Ran also localizes to chromatin as RCC1 does, its guanine nucleotide exchange factor, but Ran's function on chromatin is not known. We found that gsp1, a temperature-sensitive mutant of GSP1, a Saccharomyces cerevisiae Ran homologue, suppressed the hydroxyurea (HU) and ultra violet (UV) sensitivities of the mec1 mutant. In UV-irradiated mec1 gsp1 cells, Rad53 was phosphorylated despite the lack of Mec1. This suppression depended on the TEL1 gene, given that the triple mutant, mec1 gsp1 tel1, was unable to grow. The gsp1 mutations also suppressed the HU sensitivity of the rad9 mutant in a Tel1-dependent manner, but not the HU sensitivity of the rad53 mutant. These results indicated that Rad53 was activated by the Tel1 pathway in mec1 gsp1 cells, suggesting that Gsp1 helps regulate the role switching the ATM family kinases Mec1 and Tel1

  3. Manufacturing Data Uncertainties Propagation Method in Burn-Up Problems

    Directory of Open Access Journals (Sweden)

    Thomas Frosio

    2017-01-01

    Full Text Available A nuclear data-based uncertainty propagation methodology is extended to enable propagation of manufacturing/technological data (TD uncertainties in a burn-up calculation problem, taking into account correlation terms between Boltzmann and Bateman terms. The methodology is applied to reactivity and power distributions in a Material Testing Reactor benchmark. Due to the inherent statistical behavior of manufacturing tolerances, Monte Carlo sampling method is used for determining output perturbations on integral quantities. A global sensitivity analysis (GSA is performed for each manufacturing parameter and allows identifying and ranking the influential parameters whose tolerances need to be better controlled. We show that the overall impact of some TD uncertainties, such as uranium enrichment, or fuel plate thickness, on the reactivity is negligible because the different core areas induce compensating effects on the global quantity. However, local quantities, such as power distributions, are strongly impacted by TD uncertainty propagations. For isotopic concentrations, no clear trends appear on the results.

  4. CFD code verification and the method of manufactured solutions

    International Nuclear Information System (INIS)

    Pelletier, D.; Roache, P.J.

    2002-01-01

    This paper presents the Method of Manufactured Solutions (MMS) for CFD code verification. The MMS provides benchmark solutions for direct evaluation of the solution error. The best benchmarks are exact analytical solutions with sufficiently complex solution structure to ensure that all terms of the differential equations are exercised in the simulation. The MMS provides a straight forward and general procedure for generating such solutions. When used with systematic grid refinement studies, which are remarkably sensitive, the MMS provides strong code verification with a theorem-like quality. The MMS is first presented on simple 1-D examples. Manufactured solutions for more complex problems are then presented with sample results from grid convergence studies. (author)

  5. Advanced Manufacturing Technologies

    Science.gov (United States)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  6. Ultra-sensitive quasi-distributed temperature sensor based on an apodized fiber Bragg grating.

    Science.gov (United States)

    Mohammed, Nazmi A; El Serafy, Hatem O

    2018-01-10

    This work targets a remarkable quasi-distributed temperature sensor based on an apodized fiber Bragg grating. To achieve this, the mathematical formula for a proposed apodization function is carried out and tested. Then, an optimization parametric process required to achieve the remarkable accuracy that is based on coupled mode theory (CMT) is done. A detailed investigation for the side lobe analysis, which is a primary judgment factor, especially in quasi-distributed configuration, is investigated. A comparison between elite selection of apodization profiles (extracted from related literatures) and the proposed modified-Nuttal profile is carried out covering reflectivity peak, full width half maximum (FWHM), and side lobe analysis. The optimization process concludes that the proposed modified-Nuttal profile with a length (L) of 15 mm and refractive index modulation amplitude (Δn) of 1.4×10 -4 is the optimum choice for single-stage and quasi-distributed temperature sensor networks. At previous values, the proposed profile achieves an acceptable reflectivity peak of 10 -0.426   dB, acceptable FWHM of 0.0808 nm, lowest side lobe maximum (SL max) of 7.037×10 -12   dB, lowest side lobe average (SL avg) of 3.883×10 -12   dB, and lowest side lobe suppression ratio (SLSR) of 1.875×10 -11   dB. These optimized characteristics lead to an accurate single-stage sensor with a temperature sensitivity of 0.0136 nm/°C. For the quasi-distributed scenario, a noteworthy total isolation of 91 dB is achieved without temperature, and an isolation of 4.83 dB is achieved while applying temperature of 110°C for a five-stage temperature-sensing network. Further investigation is made proving that consistency in choosing the apodization profile in the quasi-distributed network is mandatory. If the consistency condition is violated, the proposed profile still survives with a casualty of side lobe level rise of -73.2070  dB when adding uniform apodization and

  7. Relationship between RDX properties and sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, Ruth M. [Research, Development, Test and Evaluation Directorate, Naval Surface Warfare Center Indian Head Division, Indian Head, MD 20640-5102 (United States); Watt, Duncan S. [Novare, Level 6 80 Petrie Terrace, Brisbane 4000 (Australia)

    2008-02-15

    An interlaboratory comparison of seven lots of commercially available RDX was conducted to determine what properties of the nitramine particles can be used to assess whether the RDX has relatively high or relatively low sensitivity. The materials chosen for the study were selected to give a range of HMX content, manufacturing process and reported shock sensitivity. The results of two different shock sensitivity tests conducted on a PBX made with the RDX lots in the study showed that there are measurable differences in the shock sensitivity of the PBXs, but the impact sensitivity for all of the lots is essentially the same. Impact sensitivity is not a good predictor of shock sensitivity for these types of RDX. Although most RDX that exhibits RS has low HMX content, that characteristic alone is not sufficient to guarantee low sensitivity. A range of additional analytical chemistry tests were conducted on the material; two of these (HPLC and DSC) are discussed within. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  8. Perovskite Nanoparticle-Sensitized Ga2O3 Nanorod Arrays for CO Detection at High Temperature.

    Science.gov (United States)

    Lin, Hui-Jan; Baltrus, John P; Gao, Haiyong; Ding, Yong; Nam, Chang-Yong; Ohodnicki, Paul; Gao, Pu-Xian

    2016-04-13

    Noble metal nanoparticles are extensively used for sensitizing metal oxide chemical sensors through the catalytic spillover mechanism. However, due to earth-scarcity and high cost of noble metals, finding replacements presents a great economic benefit. Besides, high temperature and harsh environment sensor applications demand material stability under conditions approaching thermal and chemical stability limits of noble metals. In this study, we employed thermally stable perovskite-type La(0.8)Sr(0.2)FeO3 (LSFO) nanoparticle surface decoration on Ga2O3 nanorod array gas sensors and discovered an order of magnitude enhanced sensitivity to carbon monoxide at 500 °C. The LSFO nanoparticle catalysts was of comparable performance to that achieved by Pt nanoparticles, with a much lower weight loading than Pt. Detailed electron microscopy and X-ray photoelectron spectroscopy studies suggested the LSFO nanoparticle sensitization effect is attributed to a spillover-like effect associated with the gas-LSFO-Ga2O3 triple-interfaces that spread the negatively charged surface oxygen ions from LSFO nanoparticles surfaces over to β-Ga2O3 nanorod surfaces with faster surface CO oxidation reactions.

  9. Manufacturing method for parts opposed to plasmas and manufacturing device therefor

    International Nuclear Information System (INIS)

    Fuse, Toshiaki; Tachikawa, Nobuo.

    1995-01-01

    The present invention provides a method of and a device for manufacturing heat insulation parts which are opposed to plasmas, such as parts in the inside of a thermonuclear reactor, which less suffer from defects such as crackings and peelings in the vicinity of the joining portion of the parts. Namely, when an armour and a heat sink are cooled to a room temperature after joining them, the upper surface of the armour and the bottom of the heat sink are pressurized. Then after restricting the convex deformation at the upper surface of the armour and the concave deformation at the bottom of the heat sink, the heat sink bottom are extended at from 600degC to a room temperature or at a room temperature. When a heat resistant material with a small heat expansion coefficient is joined with a cooling material with a large heat expansion coefficient and then cooled, deformation and residual stresses are generated by the difference of the shrinking amount. But deformation and the residual stresses can be reduced by gradually cooling them while restricting them by using a joining device compared with a case of not restricting them. As a result, occurrence of crackings and peelings in the vicinity of the joining portion can be prevented. (I.S.)

  10. Feasibility and Testing of Additive Manufactured Components

    Energy Technology Data Exchange (ETDEWEB)

    Dehoff, Ryan R [ORNL; Hummelt, Ed [Eaton Corporation; Solovyeva, Lyudmila [Eaton Corporation

    2016-09-01

    This project focused on demonstrating the ability to fabricate two parts with different geometry: an arc flash interrupter and a hydraulic manifold. Eaton Corporation provided ORNL solid models, information related to tolerances and sensitive parameters of the parts and provided testing and evaluation. ORNL successfully manufactured both components, provided cost models of the manufacturing (materials, labor, time and post processing) and delivered test components for Eaton evaluation. The arc flash suppressor was fabricated using the Renishaw laser powder bed technology in CoCrMo while the manifold was produced from Ti-6Al-4V using the Arcam electron beam melting technology. These manufacturing techniques were selected based on the design and geometrical tolerances required. A full-scale manifold was produced on the Arcam A2 system (nearly 12 inches tall). A portion of the manifold was also produced in the Arcam Q10 system. Although a full scale manifold could not be produced in the system, a full scale manifold is expected to have similar material properties, geometric accuracy, and surface finish as could be fabricated on an Arcam Q20 system that is capable of producing four full scale manifolds in a production environment. In addition to the manifold, mechanical test specimens, geometric tolerance artifacts, and microstructure samples were produced alongside the manifold. The development and demonstration of these two key components helped Eaton understand the impact additive manufacturing can have on many of their existing products. By working within the MDF and leveraging ORNL’s manufacturing and characterization capabilities, the work will ensure the rapid insertion and commercialization of this technology.

  11. The effect of nodalization and temperature of reactor upper region: Sensitivity analysis for APR-1400 LBLOCA

    International Nuclear Information System (INIS)

    Kang, Dong Gu

    2017-01-01

    Highlights: • The nodalization of APR-1400 was modified to reflect the characteristic of upper region temperature. • The effect of nodalization and temperature of reactor upper region on LBLOCA consequence was evaluated. • The modification of nodalization is an essential prerequisite in APR-1400 LBLOCA analysis. - Abstract: In best estimate (BE) calculation, the definition of system nodalization is important step influencing the prediction accuracy for specific thermal-hydraulic phenomena. The upper region of reactor is defined as the region of the upper guide structure (UGS) and upper dome. It has been assumed that the temperature of upper region is close to average temperature in most large break loss of coolant accident (LBLOCA) analysis cases. However, it was recently found that the temperature of upper region of APR-1400 reactor might be little lower than or similar to hot leg temperature through the review of detailed design data. In this study, the nodalization of APR-1400 was modified to reflect the characteristic of upper region temperature, and the effect of nodalization and temperature of reactor upper region on LBLOCA consequence was evaluated by sensitivity analysis including best estimate plus uncertainty (BEPU) calculation. In basecase calculation, in case of modified version, the peak cladding temperature (PCT) in blowdown phase became higher and the blowdown quenching (or cooling) was significantly deteriorated as compared to original case, and as a result, the cladding temperature in reflood phase became higher and the final quenching was also delayed. In addition, thermal-hydraulic parameters were compared and analyzed to investigate the effect of change of upper region on cladding temperature. In BEPU analysis, the 95 percentile PCT used in current regulatory practice was increased due to the modification of upper region nodalization, and it occurred in the reflood phase unlike original case.

  12. Improved Sterilization of Sensitive Biomaterials with Supercritical Carbon Dioxide at Low Temperature.

    Directory of Open Access Journals (Sweden)

    Anne Bernhardt

    Full Text Available The development of bio-resorbable implant materials is rapidly going on. Sterilization of those materials is inevitable to assure the hygienic requirements for critical medical devices according to the medical device directive (MDD, 93/42/EG. Biopolymer-containing biomaterials are often highly sensitive towards classical sterilization procedures like steam, ethylene oxide treatment or gamma irradiation. Supercritical CO₂ (scCO₂ treatment is a promising strategy for the terminal sterilization of sensitive biomaterials at low temperature. In combination with low amounts of additives scCO₂ treatment effectively inactivates microorganisms including bacterial spores. We established a scCO₂ sterilization procedure under addition of 0.25% water, 0.15% hydrogen peroxide and 0.5% acetic anhydride. The procedure was successfully tested for the inactivation of a wide panel of microorganisms including endospores of different bacterial species, vegetative cells of gram positive and negative bacteria including mycobacteria, fungi including yeast, and bacteriophages. For robust testing of the sterilization effect with regard to later application of implant materials sterilization all microorganisms were embedded in alginate/agarose cylinders that were used as Process Challenge Devices (PCD. These PCD served as surrogate models for bioresorbable 3D scaffolds. Furthermore, the impact of scCO₂ sterilization on mechanical properties of polysaccharide-based hydrogels and collagen-based scaffolds was analyzed. The procedure was shown to be less compromising on mechanical and rheological properties compared to established low-temperature sterilization methods like gamma irradiation and ethylene oxide exposure as well as conventional steam sterilization. Cytocompatibility of alginate gels and scaffolds from mineralized collagen was compared after sterilization with ethylene oxide, gamma irradiation, steam sterilization and scCO₂ treatment. Human

  13. Flat plate vs. concentrator solar photovoltaic cells - A manufacturing cost analysis

    Science.gov (United States)

    Granon, L. A.; Coleman, M. G.

    1980-01-01

    The choice of which photovoltaic system (flat plate or concentrator) to use for utilizing solar cells to generate electricity depends mainly on the cost. A detailed, comparative manufacturing cost analysis of the two types of systems is presented. Several common assumptions, i.e., cell thickness, interest rate, power rate, factory production life, polysilicon cost, and direct labor rate are utilized in this analysis. Process sequences, cost variables, and sensitivity analyses have been studied, and results of the latter show that the most important parameters which determine manufacturing costs are concentration ratio, manufacturing volume, and cell efficiency. The total cost per watt of the flat plate solar cell is $1.45, and that of the concentrator solar cell is $1.85, the higher cost being due to the increased process complexity and material costs.

  14. The feasibility of retrieving vertical temperature profiles from satellite nadir UV observations: A sensitivity analysis and an inversion experiment with neural network algorithms

    International Nuclear Information System (INIS)

    Sellitto, P.; Del Frate, F.

    2014-01-01

    Atmospheric temperature profiles are inferred from passive satellite instruments, using thermal infrared or microwave observations. Here we investigate on the feasibility of the retrieval of height resolved temperature information in the ultraviolet spectral region. The temperature dependence of the absorption cross sections of ozone in the Huggins band, in particular in the interval 320–325 nm, is exploited. We carried out a sensitivity analysis and demonstrated that a non-negligible information on the temperature profile can be extracted from this small band. Starting from these results, we developed a neural network inversion algorithm, trained and tested with simulated nadir EnviSat-SCIAMACHY ultraviolet observations. The algorithm is able to retrieve the temperature profile with root mean square errors and biases comparable to existing retrieval schemes that use thermal infrared or microwave observations. This demonstrates, for the first time, the feasibility of temperature profiles retrieval from space-borne instruments operating in the ultraviolet. - Highlights: • A sensitivity analysis and an inversion scheme to retrieve temperature profiles from satellite UV observations (320–325 nm). • The exploitation of the temperature dependence of the absorption cross section of ozone in the Huggins band is proposed. • First demonstration of the feasibility of temperature profiles retrieval from satellite UV observations. • RMSEs and biases comparable with more established techniques involving TIR and MW observations

  15. Grain Structure Control of Additively Manufactured Metallic Materials

    Directory of Open Access Journals (Sweden)

    Fuyao Yan

    2017-11-01

    Full Text Available Grain structure control is challenging for metal additive manufacturing (AM. Grain structure optimization requires the control of grain morphology with grain size refinement, which can improve the mechanical properties of additive manufactured components. This work summarizes methods to promote fine equiaxed grains in both the additive manufacturing process and subsequent heat treatment. Influences of temperature gradient, solidification velocity and alloy composition on grain morphology are discussed. Equiaxed solidification is greatly promoted by introducing a high density of heterogeneous nucleation sites via powder rate control in the direct energy deposition (DED technique or powder surface treatment for powder-bed techniques. Grain growth/coarsening during post-processing heat treatment can be restricted by presence of nano-scale oxide particles formed in-situ during AM. Grain refinement of martensitic steels can also be achieved by cyclic austenitizing in post-processing heat treatment. Evidently, new alloy powder design is another sustainable method enhancing the capability of AM for high-performance components with desirable microstructures.

  16. Weak Hydrological Sensitivity to Temperature Change over Land, Independent of Climate Forcing

    Science.gov (United States)

    Samset, B. H.; Myhre, G.; Forster, P. M.; Hodnebrog, O.; Andrews, T.; Boucher, O.; Faluvegi, G.; Flaeschner, D.; Kasoar, M.; Kharin, V.; hide

    2018-01-01

    We present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from ten climate models, we show how modeled global mean precipitation increases by 2-3% per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature-driven (slow) ocean HS of 3-5%/K, while the slow land HS is only 0-2%/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. We identify a particular need for model investigations and observational constraints on convective precipitation in the Arctic, and large-scale precipitation around the Equator.

  17. Manufacture of thin-walled clad tubes by pressure welding of roll bonded sheets

    Science.gov (United States)

    Schmidt, Hans Christian; Grydin, Olexandr; Stolbchenko, Mykhailo; Homberg, Werner; Schaper, Mirko

    2017-10-01

    Clad tubes are commonly manufactured by fusion welding of roll bonded metal sheets or, mechanically, by hydroforming. In this work, a new approach towards the manufacture of thin-walled tubes with an outer diameter to wall thickness ratio of about 12 is investigated, involving the pressure welding of hot roll bonded aluminium-steel strips. By preparing non-welded edges during the roll bonding process, the strips can be zip-folded and (cold) pressure welded together. This process routine could be used to manufacture clad tubes in a continuous process. In order to investigate the process, sample tube sections with a wall thickness of 2.1 mm were manufactured by U-and O-bending from hot roll bonded aluminium-stainless steel strips. The forming and welding were carried out in a temperature range between RT and 400°C. It was found that, with the given geometry, a pressure weld is established at temperatures starting above 100°C. The tensile tests yield a maximum bond strength at 340°C. Micrograph images show a consistent weld of the aluminium layer over the whole tube section.

  18. A Low Temperature Co-fired Ceramics Manufactured Power Inductor Based on A Ternary Hybrid Material System

    Science.gov (United States)

    Xie, Yunsong; Chen, Ru

    Low temperature co-fired ceramics (LTCC) is one of the most important techniques to produce circuits with high working frequency, multi-functionality and high integration. We have developed a methodology to enable a ternary hybrid material system being implemented into the LTCC manufacturing process. The co-firing sintering process can be divided into a densification and cooling process. In this method, a successful ternary hybrid material densification process is achieved by tuning the sintering profile of each material to match each other. The system integrity is maintained in the cooling process is obtained by develop a strong bonding at the interfaces of each materials. As a demonstration, we have construct a power inductor device made of the ternary material system including Ag, NiCuZn ferrite and non-magnetic ceramic. The power inductors well maintains its physical integrity after sintering. The microscopic images show no obvious sign of cracks or structural deformation. More importantly, despite the bonding between the ferrite and ceramic is enhanced by non-magnetic element diffusion, the undesired magnetic elements diffusion is effectively suppressed. The electric performance shows that the power handling capability is comparable to the current state of art device.

  19. Quantitative risk assessment of listeriosis-associated deaths due to Listeria monocytogenes contamination of deli meats originating from manufacture and retail.

    Science.gov (United States)

    Pradhan, Abani K; Ivanek, Renata; Gröhn, Yrjö T; Bukowski, Robert; Geornaras, Ifigenia; Sofos, John N; Wiedmann, Martin

    2010-04-01

    The objective of this study was to estimate the relative risk of listeriosis-associated deaths attributable to Listeria monocytogenes contamination in ham and turkey formulated without and with growth inhibitors (GIs). Two contamination scenarios were investigated: (i) prepackaged deli meats with contamination originating solely from manufacture at a frequency of 0.4% (based on reported data) and (ii) retail-sliced deli meats with contamination originating solely from retail at a frequency of 2.3% (based on reported data). Using a manufacture-to-consumption risk assessment with product-specific growth kinetic parameters (i.e., lag phase and exponential growth rate), reformulation with GIs was estimated to reduce human listeriosis deaths linked to ham and turkey by 2.8- and 9-fold, respectively, when contamination originated at manufacture and by 1.9- and 2.8-fold, respectively, for products contaminated at retail. Contamination originating at retail was estimated to account for 76 and 63% of listeriosis deaths caused by ham and turkey, respectively, when all products were formulated without GIs and for 83 and 84% of listeriosis deaths caused by ham and turkey, respectively, when all products were formulated with GIs. Sensitivity analyses indicated that storage temperature was the most important factor affecting the estimation of per annum relative risk. Scenario analyses suggested that reducing storage temperature in home refrigerators to consistently below 7 degrees C would greatly reduce the risk of human listeriosis deaths, whereas reducing storage time appeared to be less effective. Overall, our data indicate a critical need for further development and implementation of effective control strategies to reduce L. monocytogenes contamination at the retail level.

  20. A Lower Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate Release Tablets.

    Science.gov (United States)

    Okwuosa, Tochukwu C; Stefaniak, Dominika; Arafat, Basel; Isreb, Abdullah; Wan, Ka-Wai; Alhnan, Mohamed A

    2016-11-01

    The fabrication of ready-to-use immediate release tablets via 3D printing provides a powerful tool to on-demand individualization of dosage form. This work aims to adapt a widely used pharmaceutical grade polymer, polyvinylpyrrolidone (PVP), for instant on-demand production of immediate release tablets via FDM 3D printing. Dipyridamole or theophylline loaded filaments were produced via processing a physical mixture of API (10%) and PVP in the presence of plasticizer through hot-melt extrusion (HME). Computer software was utilized to design a caplet-shaped tablet. The surface morphology of the printed tablet was assessed using scanning electron microscopy (SEM). The physical form of the drugs and its integrity following an FDM 3D printing were assessed using x-ray powder diffractometry (XRPD), thermal analysis and HPLC. In vitro drug release studies for all 3D printed tablets were conducted in a USP II dissolution apparatus. Bridging 3D printing process with HME in the presence of a thermostable filler, talc, enabled the fabrication of immediate release tablets at temperatures as low as 110°C. The integrity of two model drugs was maintained following HME and FDM 3D printing. XRPD indicated that a portion of the loaded theophylline remained crystalline in the tablet. The fabricated tablets demonstrated excellent mechanical properties, acceptable in-batch variability and an immediate in vitro release pattern. Combining the advantages of PVP as an impeding polymer with FDM 3D printing at low temperatures, this approach holds a potential in expanding the spectrum of drugs that could be used in FDM 3D printing for on demand manufacturing of individualised dosage forms.

  1. Low temperature annealed amorphous indium gallium zinc oxide (a-IGZO as a pH sensitive layer for applications in field effect based sensors

    Directory of Open Access Journals (Sweden)

    Narendra Kumar

    2015-06-01

    Full Text Available The use of a-IGZO instead of the conventional high-k dielectrics as a pH sensitive layer could lead to the simplification of fabrication steps of field effect based devices. In this work, the pH sensitivities of a-IGZO films directly deposited over a SiO2/Si surface were studied utilizing electrolyte-insulator-semiconductor (EIS structures. Annealing of the films was found to affect the sensitivity of the devices and the device with the film annealed at 400 oC in N2 ambience showed the better sensitivity, which reduced with further increase in the annealing temperature to 500 oC. The increased pH sensitivity with the film annealed at 400 oC in N2 gas was attributed to the enhanced lattice oxygen ions (based on the XPS data and improved C-V characteristics, while the decrease in sensitivity at an increased annealing temperature of 500 oC was attributed to defects in the films as well as the induced traps at the IGZO/SiO2 interface based on the stretched accumulation and the peak in the inversion region of C-V curves. This study could help to develop a sensor where the material (a-IGZO here used as the active layer in a thin film transistors (TFTs possibly could also be used as the pH sensitive layer without affecting the TFT characteristics, and thus obviating the need of high-K dielectrics for sensitivity enhancement.

  2. Micro-manufacturing: design and manufacturing of micro-products

    National Research Council Canada - National Science Library

    Koç, Muammer; Özel, Tuğrul

    2011-01-01

    .... After addressing the fundamentals and non-metallic-based micro-manufacturing processes in the semiconductor industry, it goes on to address specific metallic-based micro-manufacturing processes...

  3. Design and application of reconfigurable manufacturing systems in agile mass customization manufacturing environment.

    CSIR Research Space (South Africa)

    Xing, B

    2007-05-01

    Full Text Available processes. Many manufacturing techniques are based on the principles of Flexible Manufacturing and Dedicated Manufacturing for mass production. Reconfigurable Manufacturing System, (RMS), is a manufacturing system that can provide for Agile Manufacturing...

  4. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  5. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. Development of thin film solar cell manufacturing technologies (Development of low-cost large-area module manufacturing technologies, next generation thin film solar cell module manufacturing technologies, development of CIS solar cell module manufacturing technologies); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu (tei cost daimenseki module seizo gijutsu kaihatsu (jisedai usumaku taiyo denchi no seizo gijutsu kaihtsu (CIS taiyo denchi module no seizo gijutsu kaihatsu))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Research and development has been performed on a technology to manufacture CIS-based thin film solar cells. This paper summarizes the achievements in fiscal 1999. In the research of a large-area light absorbing layer manufacturing technology, investigation was made on light absorbing layers in manufacturing sub-modules with a size of 30 cm times 30 cm. With regard to the temperature condition in the light absorbing layer forming process, it was found that the cooling rate affects particularly the adhesion in the connecting interface of the light absorbing layer and the Mo rear electrode layer. In addition, it was revealed that the sulfur take-in amount can be increases by extending the retention time at the sulfurizing temperature and by decreasing the temperature to turn the gas phase into selenium. In the research of elementary technologies to establish the mass production process, developments were performed on the high-resistance buffer layer manufacturing technology, the high-quality window layer film manufacturing technology, and the technology to manufacture rear electrode layer made of high-quality metals. In developing the patterning technology, two kinds of the existing patterning devices were modified and adjusted for patterning the substrates with a size of 30 cm times 30 cm. In addition, a processing device was installed in the conventional manually operated process for module finishing. (NEDO)

  6. Additive Manufacturing of Low Cost Upper Stage Propulsion Components

    Science.gov (United States)

    Protz, Christopher; Bowman, Randy; Cooper, Ken; Fikes, John; Taminger, Karen; Wright, Belinda

    2014-01-01

    NASA is currently developing Additive Manufacturing (AM) technologies and design tools aimed at reducing the costs and manufacturing time of regeneratively cooled rocket engine components. These Low Cost Upper Stage Propulsion (LCUSP) tasks are funded through NASA's Game Changing Development Program in the Space Technology Mission Directorate. The LCUSP project will develop a copper alloy additive manufacturing design process and develop and optimize the Electron Beam Freeform Fabrication (EBF3) manufacturing process to direct deposit a nickel alloy structural jacket and manifolds onto an SLM manufactured GRCop chamber and Ni-alloy nozzle. In order to develop these processes, the project will characterize both the microstructural and mechanical properties of the SLMproduced GRCop-84, and will explore and document novel design techniques specific to AM combustion devices components. These manufacturing technologies will be used to build a 25K-class regenerative chamber and nozzle (to be used with tested DMLS injectors) that will be tested individually and as a system in hot fire tests to demonstrate the applicability of the technologies. These tasks are expected to bring costs and manufacturing time down as spacecraft propulsion systems typically comprise more than 70% of the total vehicle cost and account for a significant portion of the development schedule. Additionally, high pressure/high temperature combustion chambers and nozzles must be regeneratively cooled to survive their operating environment, causing their design to be time consuming and costly to build. LCUSP presents an opportunity to develop and demonstrate a process that can infuse these technologies into industry, build competition, and drive down costs of future engines.

  7. Temperature sensitivity of void nucleation and growth parameters for single crystal copper: a molecular dynamics study

    International Nuclear Information System (INIS)

    Rawat, S; Chavan, V M; Warrier, M; Chaturvedi, S

    2011-01-01

    The effect of temperature on the void nucleation and growth is studied using the molecular dynamics (MD) code LAMMPS (Large-Scale Atomic/Molecular Massively Parallel Simulator). Single crystal copper is triaxially expanded at 5 × 10 9  s −1 strain rate keeping the temperature constant. It is shown that the nucleation and growth of voids at these atomistic scales follows a macroscopic nucleation and growth (NAG) model. As the temperature increases there is a steady decrease in the nucleation and growth thresholds. As the melting point of copper is approached, a double-dip in the pressure–time profile is observed. Analysis of this double-dip shows that the first minimum corresponds to the disappearance of the long-range order due to the creation of stacking faults and the system no longer has a FCC structure. There is no nucleation of voids at this juncture. The second minimum corresponds to the nucleation and incipient growth of voids. We present the sensitivity of NAG parameters to temperature and the analysis of double-dip in the pressure–time profile for single crystal copper at 1250 K

  8. Structure and dye-sensitized solar cell application of TiO{sub 2} nanotube arrays fabricated by the anodic oxidation method

    Energy Technology Data Exchange (ETDEWEB)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won [School of Material Science and Engineering, ERI and i-cube center, Gyeongsang National University, 900 Gazwadong, Jinju, Gyeongnam 660-701 (Korea, Republic of); Ryu, Kwang-Sun, E-mail: kkcho66@gnu.ac.k [Department of Chemistry, University of Ulsan, Ulsan, 680-749 (Korea, Republic of)

    2010-05-01

    Well-ordered TiO{sub 2} nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH{sub 4}F and H{sub 2}O. The influence of anodization temperature and time on the morphology and formation of TiO{sub 2} nanotube arrays was examined. The TiO{sub 2} nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO{sub 2} nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO{sub 2} nanotube arrays in the manufacturing process of a photoelectrode.

  9. Thermo-sensitive intelligent track membrane

    International Nuclear Information System (INIS)

    Pang Deling; Ren Lihua; Qian Zhilin; Huang Gang; Zhang Jinhua

    1999-01-01

    Using N-isopropylacryl-amide (NIP AAm) thermo-sensitive function material as monomer and nuclear track microporous membrane (NTMM) as baseline material, a thermo-sensitive intelligent track membrane (TsITM) has been prepared by the over-oxidization and pre-irradiation grafting techniques. The TsITM can be used to make a micro-switch controlled by temperature and to adjust particle screening and osmosis. To obtain sub-micron responsive grafted track pores only a very thin thermo-sensitive layer is needed. The TsITM pores are capable of swelling and shrinking rapidly and respond more sensitively to temperature

  10. Cloud Manufacturing Service Paradigm for Group Manufacturing Companies

    Directory of Open Access Journals (Sweden)

    Jingtao Zhou

    2014-07-01

    Full Text Available The continuous refinement of specialization requires that the group manufacturing company must be constantly focused on how to concentrate its core resources in special sphere to form its core competitive advantage. However, the resources in enterprise group are usually distributed in different subsidiary companies, which means they cannot be fully used, constraining the competition and development of the enterprise. Conducted as a response to a need for cloud manufacturing studies, systematic and detailed studies on cloud manufacturing schema for group companies are carried out in this paper. A new hybrid private clouds paradigm is proposed to meet the requirements of aggregation and centralized use of heterogeneous resources and business units distributed in different subsidiary companies. After the introduction of the cloud manufacturing paradigm for enterprise group and its architecture, this paper presents a derivation from the abstraction of paradigm and framework to the application of a practical evaluative working mechanism. In short, the paradigm establishes an effective working mechanism to translate collaborative business process composed by the activities into cloud manufacturing process composed by services so as to create a foundation resulting in mature traditional project monitoring and scheduling technologies being able to be used in cloud manufacturing project management.

  11. Characterization of Metal Powders Used for Additive Manufacturing.

    Science.gov (United States)

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  12. Characterization of Metal Powders Used for Additive Manufacturing

    Science.gov (United States)

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  13. Characterizations of additive manufactured porous titanium implants.

    Science.gov (United States)

    Basalah, Ahmad; Shanjani, Yaser; Esmaeili, Shahrzad; Toyserkani, Ehsan

    2012-10-01

    This article describes physical, chemical, and mechanical characterizations of porous titanium implants made by an additive manufacturing method to gain insight into the correlation of process parameters and final physical properties of implants used in orthopedics. For the manufacturing chain, the powder metallurgy technology was combined with the additive manufacturing to fabricate the porous structure from the pure tanium powder. A 3D printing machine was employed in this study to produce porous bar samples. A number of physical parameters such as titanium powder size, polyvinyl alcohol (PVA) amount, sintering temperature and time were investigated to control the mechanical properties and porosity of the structures. The produced samples were characterized through porosity and shrinkage measurements, mechanical compression test and scanning electron microscopy (SEM). The results showed a level of porosity in the samples in the range of 31-43%, which is within the range of the porosity of the cancelluous bone and approaches the range of the porosity of the cortical bone. The results of the mechanical test showed that the compressive strength is in the wide range of 56-509 MPa implying the effect of the process parameters on the mechanical strengths. This technique of manufacturing of Ti porous structures demonstrated a low level of shrinkage with the shrinkage percentage ranging from 1.5 to 5%. Copyright © 2012 Wiley Periodicals, Inc.

  14. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer

    Directory of Open Access Journals (Sweden)

    Kyle Z. Goodman

    2016-12-01

    Full Text Available Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.

  15. Boundary-Layer Detection at Cryogenic Conditions Using Temperature Sensitive Paint Coupled with a Carbon Nanotube Heating Layer

    Science.gov (United States)

    Goodman, Kyle Z.; Lipford, William E.; Watkins, Anthony Neal

    2016-01-01

    Detection of flow transition on aircraft surfaces and models can be vital to the development of future vehicles and computational methods for evaluating vehicle concepts. In testing at ambient conditions, IR thermography is ideal for this measurement. However, for higher Reynolds number testing, cryogenic facilities are often used, in which IR thermography is difficult to employ. In these facilities, temperature sensitive paint is an alternative with a temperature step introduced to enhance the natural temperature change from transition. Traditional methods for inducing the temperature step by changing the liquid nitrogen injection rate often change the tunnel conditions. Recent work has shown that adding a layer consisting of carbon nanotubes to the surface can be used to impart a temperature step on the model surface with little change in the operating conditions. Unfortunately, this system physically degraded at 130 K and lost heating capability. This paper describes a modification of this technique enabling operation down to at least 77 K, well below the temperature reached in cryogenic facilities. This is possible because the CNT layer is in a polyurethane binder. This was tested on a Natural Laminar Flow model in a cryogenic facility and transition detection was successfully visualized at conditions from 200 K to 110 K. Results were also compared with the traditional temperature step method.

  16. Borated aluminum alloy manufacturing technology

    International Nuclear Information System (INIS)

    Shimojo, Jun; Taniuchi, Hiroaki; Kajihara, Katsura; Aruga, Yasuhiro

    2003-01-01

    Borated aluminum alloy is used as the basket material of cask because of its light weight, thermal conductivity and superior neutron absorbing abilities. Kobe Steel has developed a unique manufacturing process for borated aluminum alloy using a vacuum induction melting method. In this process, aluminum alloy is melted and agitated at higher temperatures than common aluminum alloy fabrication methods. It is then cast into a mold in a vacuum atmosphere. The result is a high quality aluminum alloy which has a uniform boron distribution and no impurities. (author)

  17. MANUFACTURE OF UF$sub 4$

    Science.gov (United States)

    Calcott, W.S.

    1959-10-13

    The manufacture of uranium tetrafluoride from urarium dioxide is described. Uranium dioxide is heated to about 500 deg C in a reactor. Anhydrous hydrogen fluoride is passed through the reactor in contact with uranium dioxide for several hours, the flow of hydrogen fluoride is discontinued, and hydrogen passed through the reactor for less than an hour. The flow of hydrogen fluoride is resumed for several hours, and then nitrogen is passed for a few minutes to expel unreacted hydrogen fluoride as water vapor. The reactor is cooled to room temperature and the uranium tetrafluoride removed.

  18. Floor Response Spectra of a Base Isolated Auxiliary Building in Different Temperature Environments

    International Nuclear Information System (INIS)

    Park, Junhee; Choun, Youngsun; Choi, Inkil

    2013-01-01

    It is necessary to investigate the aging effect of degradation factors and to evaluate the seismic response of base isolated NPPs with age-related degradation. In this study, the seismic responses for NPPs using high damping rubber bearing with age-related degradation in different temperature were investigated by performing a nonlinear time history analysis. The floor response spectrums (FRS) were presented with time in different temperature environments. The degradation of HRB is found to be particularly sensitive to the ambient temperature. The increase of HRB stiffness leads to the increase of FRS it was observed that the seismic demand for equipment located in the AUX was changed. Therefore it is required that the seismic evaluation for the isolation system (e. g. isolators, equipment located in isolated structure) is performed considering the temperature environments. From the seismic fragility analysis, the seismic capacity of cabinet was affected by the degradation of HRB. Therefore the isolators in the isolated buildings should be carefully designed and manufactured considering the degradation during the life time

  19. Real time PV manufacturing diagnostic system

    Energy Technology Data Exchange (ETDEWEB)

    Kochergin, Vladimir [MicroXact Inc., Blacksburg, VA (United States); Crawford, Michael A. [MicroXact Inc., Blacksburg, VA (United States)

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  20. The change of CO2 emission on manufacturing sectors in Indonesia: An input-output analysis

    Science.gov (United States)

    Putranti, Titi Muswati; Imansyah, Muhammad Handry

    2017-12-01

    The objective of this paper is to evaluate the change of CO2 emission on manufacturing sectors in Indonesia using input-output analysis. The method used supply perspective can measure the impact of an increase in the value added of different productive on manufacturing sectors on total CO2 emission and can identify the productive sectors responsible for the increase in CO2 emission when there is an increase in the value added of the economy. The data used are based on Input-Output Energy Table 1990, 1995 and 2010. The method applied the elasticity of CO2 emission to value added. Using the elasticity approach, one can identify the highest elasticity on manufacturing sector as the change of value added provides high response to CO2 emission. Therefore, policy maker can concentrate on manufacturing sectors with the high response of CO2 emission due to the increase of value added. The approach shows the contribution of the various sectors that deserve more consideration for mitigation policy. Five of highest elasticity of manufacturing sectors of CO2 emission are Spinning & Weaving, Other foods, Tobacco, Wearing apparel, and other fabricated textiles products in 1990. Meanwhile, the most sensitive sectors Petroleum refinery products, Other chemical products, Timber & Wooden Products, Iron & Steel Products and Other non-metallic mineral products in 1995. Two sectors of the 1990 were still in the big ten, i.e. Spinning & weaving and Other foods in 1995 for the most sensitive sectors. The six sectors of 1995 in the ten highest elasticity of CO2 emission on manufacturing which were Plastic products, Other chemical products,Other fabricated metal products, Cement, Iron & steel products, Iron & steel, still existed in 2010 condition. The result of this research shows that there is a change in the most elastic CO2 emission of manufacturing sectors which tends from simple and light manufacturing to be a more complex and heavier manufacturing. Consequently, CO2 emission jumped

  1. Sensitivity analysis of recovery efficiency in high-temperature aquifer thermal energy storage with single well

    International Nuclear Information System (INIS)

    Jeon, Jun-Seo; Lee, Seung-Rae; Pasquinelli, Lisa; Fabricius, Ida Lykke

    2015-01-01

    High-temperature aquifer thermal energy storage system usually shows higher performance than other borehole thermal energy storage systems. Although there is a limitation in the widespread use of the HT-ATES system because of several technical problems such as clogging, corrosion, etc., it is getting more attention as these issues are gradually alleviated. In this study, a sensitivity analysis of recovery efficiency in two cases of HT-ATES system with a single well is conducted to select key parameters. For a fractional factorial design used to choose input parameters with uniformity, the optimal Latin hypercube sampling with an enhanced stochastic evolutionary algorithm is considered. Then, the recovery efficiency is obtained using a computer model developed by COMSOL Multiphysics. With input and output variables, the surrogate modeling technique, namely the Gaussian-Kriging method with Smoothly Clopped Absolute Deviation Penalty, is utilized. Finally, the sensitivity analysis is performed based on the variation decomposition. According to the result of sensitivity analysis, the most important input variables are selected and confirmed to consider the interaction effects for each case and it is confirmed that key parameters vary with the experiment domain of hydraulic and thermal properties as well as the number of input variables. - Highlights: • Main and interaction effects on recovery efficiency in HT-ATES was investigated. • Reliability depended on fractional factorial design and interaction effects. • Hydraulic permeability of aquifer had an important impact on recovery efficiency. • Site-specific sensitivity analysis of HT-ATES was recommended.

  2. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    NARCIS (Netherlands)

    Tonneijck, A.E.G.; Berge, ten W.F.; Jansen, B.P.

    2003-01-01

    Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation

  3. Temperature sensitive molecularly imprinted microspheres for solid-phase dispersion extraction of malachite green, crystal violet and their leuko metabolites

    International Nuclear Information System (INIS)

    Tan, Lei; Chen, Kuncai; He, Rong; Peng, Rongfei; Huang, Cong

    2016-01-01

    This article demonstrates the feasibility of an alternative strategy for producing temperature sensitive molecularly imprinted microspheres (MIMs) for solid-phase dispersion extraction of malachite green, crystal violet and their leuko metabolites. Thermo-sensitive MIMs can change their structure following temperature stimulation. This allows capture and release of target molecules to be controlled by temperature. The fabrication technique provides surface molecular imprinting in acetonitrile using vinyl modified silica microspheres as solid supports, methacrylic acid and N-isopropyl acrylamide as the functional monomers, ethyleneglycol dimethacrylate as the cross-linker, and malachite green as the template. After elution of the template, the MIMs can be used for fairly group-selective solid phase dispersion extraction of malachite green, crystal violet, leucomalachite green, and leucocrystal violet from homogenized fish samples at a certain temperature. Following centrifugal separation of the microspheres, the analytes were eluted with a 95:5 mixture of acetonitrile and formic acid, and then quantified by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with isotope internal calibration. The detection limits for malachite green, crystal violet and their metabolites typically are 30 ng·kg −1 . Positive samples were identified by UHPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. The method was applied to the determination of the dyes and the respective leuko dyes in fish samples, and accuracy and precision were validated by comparative analysis of the samples by using aluminum neutral columns. (author)

  4. Manufacturing Renaissance : Return of manufacturing to western countries

    OpenAIRE

    Kianian, Babak; Larsson, Tobias; Tavassoli, Mohammad

    2013-01-01

    This chapter argues that the location of manufacturing is gradually shifting to the west again, exemplifying the ‘manufacturing renaissance’. Such a claim is based on the recent observed trend and the discussion is contextualized within the established theory that has been able to explain the location of manufacturing, that is, the product life cycle (PLC) model. Then the chapter identifies and discusses the four main drivers of this new phenomenon: (i) rising wage levels in emerging economie...

  5. Measuring Manufacturing Innovativeness

    DEFF Research Database (Denmark)

    Blichfeldt, Henrik; Knudsen, Mette Præst

    2017-01-01

    Globalization and customization increases the pressure on manufacturing companies, and the ability to provide innovativeness is a potential source of competitive advantage. This paper positions the manufacturing entity in the innovation process, and investigates the relation between innovation vers...... technology and organizational concepts. Based on Danish survey data from the European Manufacturing Survey (EMS-2015) this paper finds that there is a relation between innovative companies, and their level of technology and use of organizational concepts. Technology and organizational concepts act...... as manufacturing levers to support the manufacturing and production system to provide innovativeness. The managerial implication lies in building manufacturing capabilities to support the innovative process, by standardization, optimization and creating stability in combination with automation and advanced...

  6. Control of microstructure in soldered, brazed, welded, plated, cast or vapor deposited manufactured components

    Science.gov (United States)

    Ripley, Edward B.; Hallman, Russell L.

    2015-11-10

    Disclosed are methods and systems for controlling of the microstructures of a soldered, brazed, welded, plated, cast, or vapor deposited manufactured component. The systems typically use relatively weak magnetic fields of either constant or varying flux to affect material properties within a manufactured component, typically without modifying the alloy, or changing the chemical composition of materials or altering the time, temperature, or transformation parameters of a manufacturing process. Such systems and processes may be used with components consisting of only materials that are conventionally characterized as be uninfluenced by magnetic forces.

  7. Advances in second generation high temperature superconducting wire manufacturing and R and D at American Superconductor Corporation

    Energy Technology Data Exchange (ETDEWEB)

    Rupich, Martin W; Li Xiaoping; Thieme, Cees; Sathyamurthy, Srivatsan; Fleshler, Steven; Tucker, David; Thompson, Elliot; Schreiber, Jeff; Lynch, Joseph; Buczek, David; DeMoranville, Ken; Inch, James; Cedrone, Paul; Slack, James, E-mail: mrupich@amsc.co [American Superconductor Corporation, 64 Jackson Road, Devens, MA 01434-4020 (United States)

    2010-01-15

    The RABiTS(TM)/MOD-YBCO (rolling assisted biaxially textured substrate/metal-organic deposition of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}) route has been established as a low-cost manufacturing process for producing high performance second generation (2G) wire. American Superconductor Corporation (AMSC) has used this approach to establish a production scale manufacturing line based on a wide-web manufacturing process. This initial production line is currently capable of producing 2G wire in lengths to 500 m with critical currents exceeding 250 A cm{sub width}{sup -1} at 77 K, in the self-field. The wide-web process, combined with slitting and lamination processes, allows customization of the 2G wire width and stabilizer composition to meet application specific wire requirements. The production line is currently supplying 2G wire for multiple cable, fault current limiter and coil applications. Ongoing R and D is focused on the development of thicker YBCO layers and improved flux pinning centers. This paper reviews the history of 2G wire development at AMSC, summarizes the current capability of the 2G wire manufacturing at AMSC, and describes future R and D improvements.

  8. Thermometry using 1/8 W carbon resistors in a temperature region around 10 mK

    International Nuclear Information System (INIS)

    Kobayasi, S.; Shinohara, M.; Ono, K.

    1976-01-01

    The resistance-temperature characteristics of 1/8 W carbon resistors of grade ERC-18SG, manufactured by Matsushita, with the nominal values of 48, 82, 100, 220 and 330 Ω have been measured in the region 4.2 K to 25 mK and their application as thermometers in this region is confirmed. For the 82 Ω resistor, measurements were taken at temperatures below 10mK. The temperature dependence of the resistance was found to be linear on the log-log plot over a wide range below 50 mK. The sensitivity remains finite even at 6 mK, but below 10 mK rapid measurements were prevented by a considerable increase in the thermal relaxation time. Measurement of the characteristics of several 100 Ω resistors from two different sets showed that resistors from the same set separate into two groups with different characteristics. This become appreciable at temperatures below 4.2 K, so it is difficult to predict the behaviour of Matsushite resistors below 4.2 K from the characteristics at higher temperatures. (author)

  9. Emergent constraint on equilibrium climate sensitivity from global temperature variability

    Science.gov (United States)

    Cox, Peter M.; Huntingford, Chris; Williamson, Mark S.

    2018-01-01

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO2) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO2. Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the ‘likely’ range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC ‘likely’ range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  10. Emergent constraint on equilibrium climate sensitivity from global temperature variability.

    Science.gov (United States)

    Cox, Peter M; Huntingford, Chris; Williamson, Mark S

    2018-01-17

    Equilibrium climate sensitivity (ECS) remains one of the most important unknowns in climate change science. ECS is defined as the global mean warming that would occur if the atmospheric carbon dioxide (CO 2 ) concentration were instantly doubled and the climate were then brought to equilibrium with that new level of CO 2 . Despite its rather idealized definition, ECS has continuing relevance for international climate change agreements, which are often framed in terms of stabilization of global warming relative to the pre-industrial climate. However, the 'likely' range of ECS as stated by the Intergovernmental Panel on Climate Change (IPCC) has remained at 1.5-4.5 degrees Celsius for more than 25 years. The possibility of a value of ECS towards the upper end of this range reduces the feasibility of avoiding 2 degrees Celsius of global warming, as required by the Paris Agreement. Here we present a new emergent constraint on ECS that yields a central estimate of 2.8 degrees Celsius with 66 per cent confidence limits (equivalent to the IPCC 'likely' range) of 2.2-3.4 degrees Celsius. Our approach is to focus on the variability of temperature about long-term historical warming, rather than on the warming trend itself. We use an ensemble of climate models to define an emergent relationship between ECS and a theoretically informed metric of global temperature variability. This metric of variability can also be calculated from observational records of global warming, which enables tighter constraints to be placed on ECS, reducing the probability of ECS being less than 1.5 degrees Celsius to less than 3 per cent, and the probability of ECS exceeding 4.5 degrees Celsius to less than 1 per cent.

  11. Cloud manufacturing distributed computing technologies for global and sustainable manufacturing

    CERN Document Server

    Mehnen, Jörn

    2013-01-01

    Global networks, which are the primary pillars of the modern manufacturing industry and supply chains, can only cope with the new challenges, requirements and demands when supported by new computing and Internet-based technologies. Cloud Manufacturing: Distributed Computing Technologies for Global and Sustainable Manufacturing introduces a new paradigm for scalable service-oriented sustainable and globally distributed manufacturing systems.   The eleven chapters in this book provide an updated overview of the latest technological development and applications in relevant research areas.  Following an introduction to the essential features of Cloud Computing, chapters cover a range of methods and applications such as the factors that actually affect adoption of the Cloud Computing technology in manufacturing companies and new geometrical simplification method to stream 3-Dimensional design and manufacturing data via the Internet. This is further supported case studies and real life data for Waste Electrical ...

  12. The effects of fabrication temperature on current-voltage characteristics and energy efficiencies of quantum dot sensitized ZnOH-GO hybrid solar cells

    International Nuclear Information System (INIS)

    Islam, S. M. Z.; Gayen, Taposh; Tint, Naing; Alfano, Robert; Shi, Lingyan; Seredych, Mykola; Bandosz, Teresa J.

    2014-01-01

    The effects of fabrication temperature are investigated on the performance of CdSe quantum dot (QD)-sensitized hybrid solar cells of the composite material of zinc (hydr)oxide (ZnOH-GO)with 2 wt. % graphite oxide. The current-voltage (I-V) and photo-current measurements show that higher fabrication temperatures yield greater photovoltaic power conversion efficiencies that essentially indicate more efficient solar cells. Two Photon Fluorescence images show the effects of temperature on the internal morphologies of the solar devices based on such materials. The CdSe-QD sensitized ZnOH-GO hybrid solar cells fabricated at 450 °C showing conversion of ∼10.60% under a tungsten lamp (12.1 mW/cm 2 ) are reported here, while using potassium iodide as an electrolyte. The output photocurrent, I (μA) with input power, P (mW/cm 2 ) is found to be superlinear, showing a relation of I = P n , where n = 1.4.

  13. JIT Manufacturing: A Survey of Implementations in Small and Large U.S. Manufacturers

    OpenAIRE

    Richard E. White; John N. Pearson; Jeffrey R. Wilson

    1999-01-01

    Since the early 1980s, the diffusion of Just-In-Time (JIT) manufacturing from Japanese manufacturers to U.S. manufacturers has progressed at an accelerated rate. At this stage of the diffusion process, JIT implementations are more common and more advanced in large U.S. manufacturers than in small; consequently, U.S. businessmen's understanding of issues associated with JIT implementations in large manufacturers is more developed than that of small manufacturers. When small manufacturers repre...

  14. Hypomorphic temperature-sensitive alleles of NSDHL cause CK syndrome.

    Science.gov (United States)

    McLarren, Keith W; Severson, Tesa M; du Souich, Christèle; Stockton, David W; Kratz, Lisa E; Cunningham, David; Hendson, Glenda; Morin, Ryan D; Wu, Diane; Paul, Jessica E; An, Jianghong; Nelson, Tanya N; Chou, Athena; DeBarber, Andrea E; Merkens, Louise S; Michaud, Jacques L; Waters, Paula J; Yin, Jingyi; McGillivray, Barbara; Demos, Michelle; Rouleau, Guy A; Grzeschik, Karl-Heinz; Smith, Raffaella; Tarpey, Patrick S; Shears, Debbie; Schwartz, Charles E; Gecz, Jozef; Stratton, Michael R; Arbour, Laura; Hurlburt, Jane; Van Allen, Margot I; Herman, Gail E; Zhao, Yongjun; Moore, Richard; Kelley, Richard I; Jones, Steven J M; Steiner, Robert D; Raymond, F Lucy; Marra, Marco A; Boerkoel, Cornelius F

    2010-12-10

    CK syndrome (CKS) is an X-linked recessive intellectual disability syndrome characterized by dysmorphism, cortical brain malformations, and an asthenic build. Through an X chromosome single-nucleotide variant scan in the first reported family, we identified linkage to a 5 Mb region on Xq28. Sequencing of this region detected a segregating 3 bp deletion (c.696_698del [p.Lys232del]) in exon 7 of NAD(P) dependent steroid dehydrogenase-like (NSDHL), a gene that encodes an enzyme in the cholesterol biosynthesis pathway. We also found that males with intellectual disability in another reported family with an NSDHL mutation (c.1098 dup [p.Arg367SerfsX33]) have CKS. These two mutations, which alter protein folding, show temperature-sensitive protein stability and complementation in Erg26-deficient yeast. As described for the allelic disorder CHILD syndrome, cells and cerebrospinal fluid from CKS patients have increased methyl sterol levels. We hypothesize that methyl sterol accumulation, not only cholesterol deficiency, causes CKS, given that cerebrospinal fluid cholesterol, plasma cholesterol, and plasma 24S-hydroxycholesterol levels are normal in males with CKS. In summary, CKS expands the spectrum of cholesterol-related disorders and insight into the role of cholesterol in human development. Copyright © 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  15. Low temperature annealed amorphous indium gallium zinc oxide (a-IGZO) as a pH sensitive layer for applications in field effect based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Narendra [Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Kumar, Jitendra [Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Panda, Siddhartha, E-mail: spanda@iitk.ac.in [Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, Kanpur-208016 (India); Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur-208016 (India)

    2015-06-15

    The use of a-IGZO instead of the conventional high-k dielectrics as a pH sensitive layer could lead to the simplification of fabrication steps of field effect based devices. In this work, the pH sensitivities of a-IGZO films directly deposited over a SiO{sub 2}/Si surface were studied utilizing electrolyte-insulator-semiconductor (EIS) structures. Annealing of the films was found to affect the sensitivity of the devices and the device with the film annealed at 400 {sup o}C in N{sub 2} ambience showed the better sensitivity, which reduced with further increase in the annealing temperature to 500 {sup o}C. The increased pH sensitivity with the film annealed at 400 {sup o}C in N{sub 2} gas was attributed to the enhanced lattice oxygen ions (based on the XPS data) and improved C-V characteristics, while the decrease in sensitivity at an increased annealing temperature of 500 {sup o}C was attributed to defects in the films as well as the induced traps at the IGZO/SiO{sub 2} interface based on the stretched accumulation and the peak in the inversion region of C-V curves. This study could help to develop a sensor where the material (a-IGZO here) used as the active layer in a thin film transistors (TFTs) possibly could also be used as the pH sensitive layer without affecting the TFT characteristics, and thus obviating the need of high-K dielectrics for sensitivity enhancement.

  16. Reconfigurable manufacturing system for agile mass customization manufacturing

    CSIR Research Space (South Africa)

    Xing, B

    2006-07-01

    Full Text Available Manufacturing companies are facing three challenges: low cost production of product, high quality standard and rapid responsiveness to customer requirements. These three goals are equally important for the manufacturing companies who want...

  17. Manufacturing Initiative

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Manufacturing Technologies (AMT) Project supports multiple activities within the Administration's National Manufacturing Initiative. A key component of...

  18. Characterization of CuCrZr and CuCrZr/SS joint strength for different blanket components manufacturing conditions

    Science.gov (United States)

    Gillia, Olivier; Briottet, Laurent; Chu, Isabelle; Lemoine, Patrick; Rigal, Emmanuel; Peacock, Alan

    2009-04-01

    This work describes studies on the strength of CuCrZr/SS joints for different manufacturing conditions foreseen for the fabrication of blanket components. In the meantime, as junction strength is expected to be strongly related to CuCrZr properties, investigation on the properties of the CuCrZr itself after the different manufacturing conditions is also presented. The initial manufacturing conditions retained were made of a HIP treatment combined with a fast cooling plus a subsequent ageing treatment. For security reasons, the HIP-quenching operation was not possible. A supplementary solutionning cycle with fast cooling has thus been inserted in the heat treatment process just after the HIP bonding treatment. The influence of solutionning temperature (1040 °C or 980 °C), the cooling rate after solutionning (70 °C/min to water quench), the ageing temperature (480 °C or 560 °C) and the HIP temperature (1040 °C or 980 °C) have been addressed. Test results show that the ageing temperature is very important for keeping high strength of material whereas elongation properties are not very sensible to the manufacturing conditions. 1040 °C HIP or solutionning temperature gives better strength properties, as well as a higher cooling rate after solutionning. Concerning samples with joints, it appears that CT test is more selective than other tests since tensile test does not give rupture at joint and KCU test eliminates a route without classifying other routes.

  19. Characterization of CuCrZr and CuCrZr/SS joint strength for different blanket components manufacturing conditions

    International Nuclear Information System (INIS)

    Gillia, Olivier; Briottet, Laurent; Chu, Isabelle; Lemoine, Patrick; Rigal, Emmanuel; Peacock, Alan

    2009-01-01

    This work describes studies on the strength of CuCrZr/SS joints for different manufacturing conditions foreseen for the fabrication of blanket components. In the meantime, as junction strength is expected to be strongly related to CuCrZr properties, investigation on the properties of the CuCrZr itself after the different manufacturing conditions is also presented. The initial manufacturing conditions retained were made of a HIP treatment combined with a fast cooling plus a subsequent ageing treatment. For security reasons, the HIP-quenching operation was not possible. A supplementary solutionning cycle with fast cooling has thus been inserted in the heat treatment process just after the HIP bonding treatment. The influence of solutionning temperature (1040 deg. C or 980 deg. C), the cooling rate after solutionning (70 deg. C/min to water quench), the ageing temperature (480 deg. C or 560 deg. C) and the HIP temperature (1040 deg. C or 980 deg. C) have been addressed. Test results show that the ageing temperature is very important for keeping high strength of material whereas elongation properties are not very sensible to the manufacturing conditions. 1040 deg. C HIP or solutionning temperature gives better strength properties, as well as a higher cooling rate after solutionning. Concerning samples with joints, it appears that CT test is more selective than other tests since tensile test does not give rupture at joint and KCU test eliminates a route without classifying other routes.

  20. Elevated temperature mechanical properties of novel ultra-fine grained Cu–Nb composites

    Energy Technology Data Exchange (ETDEWEB)

    Primorac, Mladen-Mateo [Department of Materials Physics, Montanuniversität Leoben (Austria); Abad, Manuel David; Hosemann, Peter [Department of Nuclear Engineering, University of California, Berkeley (United States); Kreuzeder, Marius [Department of Materials Physics, Montanuniversität Leoben (Austria); Maier, Verena [Department of Materials Physics, Montanuniversität Leoben (Austria); Erich-Schmid Institute for Materials Science, Austrian Academy of Sciences, Leoben (Austria); Kiener, Daniel, E-mail: daniel.kiener@unileoben.ac.at [Department of Materials Physics, Montanuniversität Leoben (Austria)

    2015-02-11

    Ultra-fine grained materials exhibit outstanding properties and are therefore favorable for prospective applications. One of these promising systems is the composite assembled by the body centered cubic niobium and the face centered cubic copper. Cu–Nb composites show a high hardness and good thermal stability, as well as a high radiation damage tolerance. These properties make the material interesting for use in nuclear reactors. The aim of this work was to create a polycrystalline ultra-fine grained composite for high temperature applications. The samples were manufactured via a powder metallurgical route using high pressure torsion, exhibiting a randomly distributed oriented grain size between 100 and 200 nm. The mechanical properties and the governing plastic deformation behavior as a function of temperature were determined by high temperature nanoindentation up to 500 °C. It was found that in the lower temperature regions up to 300 °C the plastic deformation is mainly governed by dislocation interactions, such as dislocation glide and the nucleation of kink pairs. For higher temperatures, thermally activated processes at grain boundaries are proposed to be the main mechanism governing plastic deformation. This mechanistic view is supported by temperature dependent changes in hardness, strain rate sensitivity, activation volume, and activation energy.

  1. Manufacturing Cost Levelization Model – A User’s Guide

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, William R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Shehabi, Arman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Smith, Sarah Josephine [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    The Manufacturing Cost Levelization Model is a cost-performance techno-economic model that estimates total large-scale manufacturing costs for necessary to produce a given product. It is designed to provide production cost estimates for technology researchers to help guide technology research and development towards an eventual cost-effective product. The model presented in this user’s guide is generic and can be tailored to the manufacturing of any product, including the generation of electricity (as a product). This flexibility, however, requires the user to develop the processes and process efficiencies that represents a full-scale manufacturing facility. The generic model is comprised of several modules that estimate variable costs (material, labor, and operating), fixed costs (capital & maintenance), financing structures (debt and equity financing), and tax implications (taxable income after equipment and building depreciation, debt interest payments, and expenses) of a notional manufacturing plant. A cash-flow method is used to estimate a selling price necessary for the manufacturing plant to recover its total cost of production. A levelized unit sales price ($ per unit of product) is determined by dividing the net-present value of the manufacturing plant’s expenses ($) by the net present value of its product output. A user defined production schedule drives the cash-flow method that determines the levelized unit price. In addition, an analyst can increase the levelized unit price to include a gross profit margin to estimate a product sales price. This model allows an analyst to understand the effect that any input variables could have on the cost of manufacturing a product. In addition, the tool is able to perform sensitivity analysis, which can be used to identify the key variables and assumptions that have the greatest influence on the levelized costs. This component is intended to help technology researchers focus their research attention on tasks

  2. Effect of oxyanions on the IGSCC inhibition of sensitized 304 stainless steel in high temperature water

    International Nuclear Information System (INIS)

    Tsuge, Hiroyuki; Murayama, Junichiro; Nagano, Hiroo.

    1983-01-01

    Effect of oxyanions such as MoO 4 2- , WO 4 2- , and CrO 4 2- on the intergranular stress corrosion cracking (IGSCC) of Type 304 stainless steel in high temperature water was studied. The results obtained are as follows: 1) Addition of such oxyanion as MoO 4 2- , WO 4 2- , and CrO 4 2- suppresses IGSCC of sensitized Type 304 stainless steel in high temperature nondeaerated water. The effectiveness of the inhibitive action by the oxyanion is ranked in the order of MoO 4 2- >WO 4 2- >CrO 4 2- . 2) The mechanism of IGSCC inhibition by MoO 4 2- ion for sentized Type 304 stainless steel in high temperature water is considered as follows, i.e., the presence MoO 4 2- ion decreases the dissolution rate of Cr depleted zone at grain boundaries to the level of matrix by helping the formation of the Cr rich film containing MoO 3 or adsorbed MoO 4 2- ion on the surface of Type 304 stainless steel. (author)

  3. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing Part I: System Analysis, Component Identification, Additive Manufacturing, and Testing of Polymer Composites

    Science.gov (United States)

    Grady, Joseph E.; Haller, William J.; Poinsatte, Philip E.; Halbig, Michael C.; Schnulo, Sydney L.; Singh, Mrityunjay; Weir, Don; Wali, Natalie; Vinup, Michael; Jones, Michael G.; hide

    2015-01-01

    The research and development activities reported in this publication were carried out under NASA Aeronautics Research Institute (NARI) funded project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing." The objective of the project was to conduct evaluation of emerging materials and manufacturing technologies that will enable fully nonmetallic gas turbine engines. The results of the activities are described in three part report. The first part of the report contains the data and analysis of engine system trade studies, which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. The technical scope of activities included an assessment of the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composites, which were accomplished by fabricating prototype engine components and testing them in simulated engine operating conditions. The manufacturing process parameters were developed and optimized for polymer and ceramic composites (described in detail in the second and third part of the report). A number of prototype components (inlet guide vane (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included turbine nozzle components. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  4. Land surface temperature downscaling using random forest regression: primary result and sensitivity analysis

    Science.gov (United States)

    Pan, Xin; Cao, Chen; Yang, Yingbao; Li, Xiaolong; Shan, Liangliang; Zhu, Xi

    2018-04-01

    The land surface temperature (LST) derived from thermal infrared satellite images is a meaningful variable in many remote sensing applications. However, at present, the spatial resolution of the satellite thermal infrared remote sensing sensor is coarser, which cannot meet the needs. In this study, LST image was downscaled by a random forest model between LST and multiple predictors in an arid region with an oasis-desert ecotone. The proposed downscaling approach was evaluated using LST derived from the MODIS LST product of Zhangye City in Heihe Basin. The primary result of LST downscaling has been shown that the distribution of downscaled LST matched with that of the ecosystem of oasis and desert. By the way of sensitivity analysis, the most sensitive factors to LST downscaling were modified normalized difference water index (MNDWI)/normalized multi-band drought index (NMDI), soil adjusted vegetation index (SAVI)/ shortwave infrared reflectance (SWIR)/normalized difference vegetation index (NDVI), normalized difference building index (NDBI)/SAVI and SWIR/NDBI/MNDWI/NDWI for the region of water, vegetation, building and desert, with LST variation (at most) of 0.20/-0.22 K, 0.92/0.62/0.46 K, 0.28/-0.29 K and 3.87/-1.53/-0.64/-0.25 K in the situation of +/-0.02 predictor perturbances, respectively.

  5. Temperature sensitivity of extreme precipitation events in the south-eastern Alpine forelands

    Science.gov (United States)

    Schroeer, Katharina; Kirchengast, Gottfried

    2016-04-01

    factors leads to the urgent questions of what we might expect from future heavy precipitation, particularly summertime convective storms, and how the associated risks will change if the observed trends persist. Working on an event basis allows us to consider a robust diversity of indicators such as storm duration, total sums, and peak intensities of the individual rainfall events in our analysis. First results suggest that the temperature sensitivity of precipitation events in the study region generally rises in accordance with the CC rate, but rates diverge dependent on the spatio-temporal properties of the sampling. At high temperatures above about 25 °C, the heaviest events do not show increases beyond the CC rate, as have been reported in some other studies for temperatures below 25°C. This is likely due to limitations of moisture availability in hot summer conditions. Observations of relative humidity available for 77 out of the 188 stations used support this hypothesis. When events where humidity is well below saturation are excluded from the sample, quantile regression results show higher scaling rates. The preliminary findings underline the need for a more sophisticated analysis of the temperature-precipitation relationship especially in heterogeneous regions with complex terrain.

  6. Tube manufacturing and characterization of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Ukai, Shigeharu; Mizuta, Shunji; Yoshitake, Tunemitsu; Okuda, Takanari; Fujiwara, Masayuki; Hagi, Shigeki; Kobayashi, Toshimi

    2000-01-01

    Oxide dispersion strengthened (ODS) ferritic steels have an advantage in radiation resistance and superior creep rupture strength at elevated temperature due to finely distributed Y 2 O 3 particles in the ferritic matrix. Using a basic composition of low activation ferritic steel (Fe-12Cr-2W-0.05C), cladding tube manufacturing by means of pilger mill rolling and subsequent recrystallization heat-treatment was conducted while varying titanium and yttria contents. The recrystallization heat-treatment, to soften the tubes hardened due to cold-rolling and to subsequently improve the degraded mechanical properties, was demonstrated to be effective in the course of tube manufacturing. For a titanium content of 0.3 wt% and yttria of 0.25 wt%, improvement of the creep rupture strength can be attained for the manufactured cladding tubes. The ductility is also adequately maintained

  7. Water-Based Coating Simplifies Circuit Board Manufacturing

    Science.gov (United States)

    2008-01-01

    The Structures and Materials Division at Glenn Research Center is devoted to developing advanced, high-temperature materials and processes for future aerospace propulsion and power generation systems. The Polymers Branch falls under this division, and it is involved in the development of high-performance materials, including polymers for high-temperature polymer matrix composites; nanocomposites for both high- and low-temperature applications; durable aerogels; purification and functionalization of carbon nanotubes and their use in composites; computational modeling of materials and biological systems and processes; and developing polymer-derived molecular sensors. Essentially, this branch creates high-performance materials to reduce the weight and boost performance of components for space missions and aircraft engine components. Under the leadership of chemical engineer, Dr. Michael Meador, the Polymers Branch boasts world-class laboratories, composite manufacturing facilities, testing stations, and some of the best scientists in the field.

  8. Technological assessment of local manufacturers for wind turbine blade manufacturing in Pakistan

    Science.gov (United States)

    Mahmood, Khurram; Haroon, General

    2012-11-01

    Composite materials manufacturing industry is one of the world's hi-tech industry. Manufacturing of wind turbine blades is one of the specialized fields requiring high degree of precision and composite manufacturing techniques. This paper identifies the industries specializing in the composite manufacturing and is able to manufacture wind turbines blades in Pakistan. In the second phase, their technology readiness level is determined, based on some factors and then a readiness level are assigned to them. The assigned technology readiness level will depict the absorptive capacity of each manufacturing unit and its capability to take on such projects. The individual readiness level of manufacturing unit will then be used to establish combined technology readiness level of Pakistan particularly for wind turbine blades manufacturing. The composite manufacturing industry provides many spin offs and a diverse range of products can be manufactured using this facility. This research will be helpful to categorize the strong points and flaws of local industry for the gap analysis. It can also be used as a prerequisite study before the evaluation of technologies and specialties to improve the industry of the country for the most favorable results. This will form a basic data base which can be used for the decision making related to transfer of technology, training of local skilled workers and general up-gradation of the local manufacturing units.

  9. Reducing of Manufacturing Lead Time by Implementation of Lean Manufacturing Principles

    Directory of Open Access Journals (Sweden)

    Hussein Salem Ketan

    2015-08-01

    Full Text Available Many organizations today are interesting to implementing lean manufacturing principles that should enable them to eliminating the wastes to reducing a manufacturing lead time. This paper concentrates on increasing the competitive level of the company in globalization markets and improving of the productivity by reducing the manufacturing lead time. This will be by using the main tool of lean manufacturing which is value stream mapping (VSM to identifying all the activities of manufacturing process (value and non-value added activities to reducing elimination of wastes (non-value added activities by converting a manufacturing system to pull instead of push by applying some of pull system strategies as kanban and first on first out lane (FIFO. ARENA software is used to simulate the current and future state. This work is executed in the state company for electrical industries in Baghdad. The obtained results of the application showed that implementation of lean principles helped on reducing of a manufacturing lead time by 33%.

  10. Tribology in Manufacturing Technology

    CERN Document Server

    2013-01-01

    The present book aims to provide research advances on tribology in manufacturing technology for modern industry. This book can be used as a research book for final undergraduate engineering course (for example, mechanical, manufacturing, materials, etc) or as a subject on manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, manufacturing and tribology researchers, mechanical, mechanical, manufacturing and materials engineers, professionals in related industries with manufacturing and tribology.

  11. Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions

    Directory of Open Access Journals (Sweden)

    Cristina Cornaro

    2018-01-01

    Full Text Available Dye-sensitized solar cell technology is having an important role in renewable energy research due to its features and low-cost manufacturing processes. Devices based on this technology appear very well suited for integration into glazing systems due to their characteristics of transparency, color tuning and manufacturing directly on glass substrates. Field data of thermal and electrical characteristics of dye-sensitized solar modules (DSM are important since they can be used as input of building simulation models for the evaluation of their energy saving potential when integrated into buildings. However, still few studies in the literature provide this information. The study presented here aims to contribute to fill this lack providing a thermal and electrical characterization of a DSM in real operating conditions using a method developed in house. This method uses experimental data coming from test boxes exposed outdoor and dynamic simulation to provide thermal transmittance (U-value and solar heat gain coefficient (SHGC of a DSM prototype. The device exhibits a U-value of 3.6 W/m2·K, confirmed by an additional measurement carried on in the lab using a heat flux meter, and a SHGC of 0.2, value compliant with literature results. Electrical characterization shows an increase of module power with respect to temperature resulting DSM being suitable for integration in building facades.

  12. Steel billet reheat simulation with growth of oxide layer and investigation on zone temperature sensitivity

    International Nuclear Information System (INIS)

    Dubey, Satish Kumar; Srinivasan, P.

    2014-01-01

    This paper presents a three-dimensional heat conduction numerical model and simulation of steel billet reheating in a reheat furnace. The model considers the growth of oxide scale on the billet surfaces. Control-volume approach and implicit scheme of finite difference method are used to discretize the transient heat conduction equation. The model is validated with analytical results subject to limited conditions. Simulations are carried out for predictions of three-dimensional temperature filed in the billet and oxide scale growth on the billet surfaces. The model predictions are in agreement with expected trends. It was found that the effect of oxide scale on billet heating is considerable. In order to investigate the effect of zone temperatures on the responses, a parametric sensitivity subject to six responses of interest are carried out using analysis of mean approach. The simulation approach and parametric study presented will be useful and applicable to the steel industry.

  13. Temperature-sensitive mutations for live-attenuated Rift Valley fever vaccines: Implications from other RNA viruses

    Directory of Open Access Journals (Sweden)

    Shoko eNishiyama

    2015-08-01

    Full Text Available Rift Valley fever (RVF is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae. Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the United States. MP-12 displays a temperature-sensitive (ts phenotype and does not replicate at 41oC. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.

  14. Radiation synthesis of the water-soluble, temperature sensitive polymer, copolymer and study on their properties

    International Nuclear Information System (INIS)

    Zhai Maolin; Yin Min; Ha Hongfei

    1994-01-01

    In order to obtain the water-soluble, temperature sensitive polymer and activated copolymer, the radiation polymerization of N-isopropylacrylamide (NIPAAm), radiation copolymerization of NIPAAm and N-acryloxysuccide (NASI) in aqueous solution or in buffer solution (PBS pH = 7.4) have been carried out by γ-rays from 60 Co source at room temperature. The optimum dose range (1-7 kGy), dose rate (>40 Gy/min) and monomer concentration (1%) were chosen through determining the monomer conversion yield and molecular weight (M w = 6.8 x 10 5 ) of product. Synthesis of the reversible linear polymer was performed in tetrahydrofuran (THF) as well. In this way a white powder product could be obtained which possesses of thermally reversible property too, when it was dissolved in water or PBS. The only disadvantages of this method is that the molecular weight of the polymer produced in THF was much lower than that in aqueous solution

  15. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites

    International Nuclear Information System (INIS)

    Guo, Hui; Huang, Yudong; Liu, Li; Shi, Xiaohua

    2010-01-01

    The changes in oxygen and nitrogen during manufacture of the carbon fiber reinforced resin matrix composites were measured using the X-ray photoelectron spectroscopy method. The effects of the change in oxygen and nitrogen on the strength of the carbon fibers were investigated and the results revealed that the change of the tensile strength with increasing heat curing temperature was attributed to the change in the surface flaws of the carbon fibers because the carbon fibers are sensitive to the surface flaws. The effect of the surface energy that was calculated using Kaelble's method on the strength of the carbon fibers was investigated. Furthermore, the surface roughness of the carbon fibers was measured using atom force microscopy. The change trend of roughness was reverse to that of the strength, which was because of the brittle fracture of the carbon fibers.

  16. Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors.

    Science.gov (United States)

    Mälkiä, Annika; Madrid, Rodolfo; Meseguer, Victor; de la Peña, Elvira; Valero, María; Belmonte, Carlos; Viana, Félix

    2007-05-15

    TRPM8, a member of the melastatin subfamily of transient receptor potential (TRP) cation channels, is activated by voltage, low temperatures and cooling compounds. These properties and its restricted expression to small sensory neurons have made it the ion channel with the most advocated role in cold transduction. Recent work suggests that activation of TRPM8 by cold and menthol takes place through shifts in its voltage-activation curve, which cause the channel to open at physiological membrane potentials. By contrast, little is known about the actions of inhibitors on the function of TRPM8. We investigated the chemical and thermal modulation of TRPM8 in transfected HEK293 cells and in cold-sensitive primary sensory neurons. We show that cold-evoked TRPM8 responses are effectively suppressed by inhibitor compounds SKF96365, 4-(3-chloro-pyridin-2-yl)-piperazine-1-carboxylic acid (4-tert-butyl-phenyl)-amide (BCTC) and 1,10-phenanthroline. These antagonists exert their effect by shifting the voltage dependence of TRPM8 activation towards more positive potentials. An opposite shift towards more negative potentials is achieved by the agonist menthol. Functionally, the bidirectional shift in channel gating translates into a change in the apparent temperature threshold of TRPM8-expressing cells. Accordingly, in the presence of the antagonist compounds, the apparent response-threshold temperature of TRPM8 is displaced towards colder temperatures, whereas menthol sensitizes the response, shifting the threshold in the opposite direction. Co-application of agonists and antagonists produces predictable cancellation of these effects, suggesting the convergence on a common molecular process. The potential for half maximal activation of TRPM8 activation by cold was approximately 140 mV more negative in native channels compared to recombinant channels, with a much higher open probability at negative membrane potentials in the former. In functional terms, this difference translates

  17. submitter Manufacture and Test of ITER 10-kA HTSCL Prototypes

    CERN Document Server

    Zhou, Tingzhi; Liu, Chenglian; Lu, Kun; Ran, Qingxiang; Song, Yuntao; Niu, Erwu; Bauer, Pierre; Devred, Arnaud; Lee, Seungje; Taylor, Thomas; Yang, Yifeng

    2016-01-01

    To carry current for the ITER correction coils, the 10-kA high-temperature superconducting current leads studied here are designed. Current leads provide the transition from 4.5-K low temperature to room temperature. This paper summarizes the major design features of the prototypes, which is followed by a discussion of the manufacturing and testing. The test results approved their excellent performance on low joint resistance and long loss-of-flow accident time. The overheating time, mass flow, and heat loads to 5-K ends also reached the expectation.

  18. Influence of temperature in polymethylmethacrylate (PMMA) dosemeters response

    International Nuclear Information System (INIS)

    Napolitano, Celia Marina; Ferreira, Danilo Cardenuto; Camargo, Fabio de; Goncalves, Josemary Angelica Correa; Tobias, Carmen Cecilia Bueno

    2005-01-01

    The use of gamma irradiation sterilization processes in medical products and food preservation has encouraged the emergence of industrial facilities responsible for generation of doses as high as a few dozen kGy. The characterization of this radiation field requires the use of dosimeters with high spatial resolution, high resistance to radiation damage, maintenance of information absorbed doses at a time suitable for the analysis and processing of data, easy handling, etc. The dosimeters that meet most of these requirements are based on polymethylmethacrylate (PMMA) with dyes sensitive to radiation. The dose that can be measured with these dosimeters extends from 100Gy to 50kGy, with the estimated accuracies by manufacturers from 2 to 3%. However, in practice, there are procedures that require irradiation in different conditions of temperature, which results in changes in the response of the dosimeter. This way, considering the irradiations made in the center of radiation technology of Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP - Brazilian nuclear and energy research institute -, has studied the effect of temperature on the response of routine dosimeters PMMA type where the operational characteristics of Gammachrome YR dosimeters type and Red Perspex are being investigated respect to temperature and dose, whose results will be presented in this paper

  19. Carbon Nanotubes Counter Electrode for Dye-Sensitized Solar Cells Application

    Directory of Open Access Journals (Sweden)

    Drygała A.

    2016-06-01

    Full Text Available The influence of the carbon nanotubes counter electrode deposited on the FTO glass substrates on the structure and optoelectrical properties of dye-sensitized solar cells counter electrode (CE was analysed. Carbon materials have been applied in DSSC s in order to produce low-cost solar cells with reasonable efficiency. Platinum is a preferred material for the counter electrode because of its high conductivity and catalytic activity. However, the costs of manufacturing of the platinum counter electrode limit its use to large-scale applications in solar cells. This paper presents the results of examining the structure and properties of the studied layers, defining optical properties of conductive layers and electrical properties of dye-sensitized solar cells manufactured with the use of carbon nanotubes.

  20. Manufacture of anti-bogus label by track-etching technique

    International Nuclear Information System (INIS)

    He Xiangming; Wan Chunrong

    2006-01-01

    Anti-bogus label is manufactured by the track-etching technique. The apparent pattern on the label consists of track-etched pores on the membrane. The manufacture of the label depends on the intricate technology and the state strictly controls the sensitive nuclear facilities, ensuring that the label is not copied. The pattern on the label is specially characterized by permeability of liquid in order to distinguish it from a forged one. A genuine label can be distinguished from a sham one by a transparent liquid (e.g. water) or a colorful pen. Nowadays, the products of more than 100 famous brands (trade mark) have been protected from forgery by this technology in the market of China. This is a new method for the utilization of a research reactor

  1. Competitive manufacturing strategies for the manufacturing industries in Turkey

    OpenAIRE

    Ulusoy, Gündüz; Ulusoy, Gunduz

    2003-01-01

    In this study, results of the research into competitive manufacturing strategies of companies in four different sector studies covering 82 companies from the electronics, cement, automotive manufacturers, and appliances part and component suppliers in Turkey are presented. The data used in the study are gathered by conducting four sector surveys in 1997 and 1998 using a questionnaire supported by some follow-up interviews and site visits. A competitive manufacturing strategy is represented he...

  2. Modular mechatronic control of reconfigurable manufacturing system for mass customization manufacturing

    CSIR Research Space (South Africa)

    Xing, B

    2007-01-01

    Full Text Available Manufacturing companies are faced with the challenge of unpredictable, high frequency market changes in both local and international markets. There is a need for greater, more effective responsiveness by manufacturers to change their manufacturing...

  3. Method of manufacturing a niobium-aluminum-germanium superconductive material

    Science.gov (United States)

    Wang, J.L.F.; Pickus, M.R.; Douglas, K.E.

    A method for manufacturing flexible Nb/sub 3/ (Al,Ge) multifilamentary superconductive material in which a sintered porous Nb compact is infiltrated with an Al-Ge alloy. It is deformed and heat treated in a series of steps at successively higher temperatures preferably below 1000/sup 0/C during the heat treatment, cladding material such as copper can be applied to facilitate a deformation step preceding the heat treatment and can remain in place through the heat treatment to serve as a temperature stabilizer for the superconductive material produced. These lower heat treatment temperatures favor formation of filaments with reduced grain size and with more grain boundaries which in turn increase the current-carrying capacity of the superconductive material.

  4. MANUFACTURING AND TESTING OF A V-TYPE STIRLING ENGINE

    Directory of Open Access Journals (Sweden)

    B. Demir

    2012-01-01

    Full Text Available In this study, a V-type Stirling engine with 163 cc total swept volume was designed and manufactured. Air was used as working fluid. Performance tests were conducted at the range of 1-3 bar charge pressure and within the range of hot source temperature 700-1050 °C. Experimental results are given. Variation of engine power and torque with hot source temperature at various air charge pressure are tested. Also variation of engine torque with engine speed for different air charge pressure are tested. According to experimental analysis, the maximum engine power was obtained as 21.334 W at 1050 ˚C hot source temperature and 1.5 bars charge pressure.

  5. Highly sensitive work function hydrogen gas sensor based on PdNPs/SiO2/Si structure at room temperature

    Directory of Open Access Journals (Sweden)

    G. Behzadi pour

    Full Text Available In this study, fabrication of highly sensitive PdNPs/SiO2/Si hydrogen gas sensor using experimental and theoretical methods has been investigated. Using chemical method the PdNPs are synthesized and characterized by X-ray diffraction (XRD. The average size of PdNPs is 11 nm. The thickness of the oxide film was 20 nm and the surface of oxide film analyzed using Atomic-force microscopy (AFM. The C-V curve for the PdNPs/SiO2/Si hydrogen gas sensor in 1% hydrogen concentration and at the room temperature has been reported. The response time and recovery time for 1% hydrogen concentration at room temperature were 1.2 s and 10 s respectively. The response (R% for PdNPs/SiO2/Si MOS capacitor hydrogen sensor was 96%. The PdNPs/SiO2/Si MOS capacitor hydrogen sensor showed very fast response and recovery times compared to SWCNTs/PdNPs, graphene/PdNPs, nanorod/PdNPs and nanowire/PdNPs hydrogen gas sensors. Keywords: Sensitive, Oxide film, Capacitive, Resistance

  6. Sensitivity of microorganisms distributed through Japanese tea manufacturing process by radiation

    International Nuclear Information System (INIS)

    Ogura, M.; Kimura, S.; Sugimoto, Y.; Jo, N.; Nosaka, K.; Iwasaki, I.; Nishimoto, S.

    2002-01-01

    The number of bacteria adhering to Japanese tea is 10E7-10E8 cfu/g in picked fresh tea leaves (almost radiation irresistance), decreasing every heat-treatment in manufacturing process to 10E3-10E4 cfu/g in tea on the market (only radiation resistance). Still more, its decreasing one figures after half a year by effect of anti-bacterium component contained Japanese tea. The number of fungi adhering to almost samples is below 50cfu/g, but that adhering to some powdered tea is 10E2 cfu/g. At heat treatment (80degC, 15min), the number of bacteria decrease very little. The other side, by EB-irradiated treatment (2kGy), its below 10E2 cfu/g (D sub(10-)value; 1.4 ~ 3.8kGy). The needed dose to decrease 10E2 cfu/g is 0.9 ~ 2.5kGy

  7. JT-60SA vacuum vessel manufacturing and assembly

    Energy Technology Data Exchange (ETDEWEB)

    Masaki, Kei, E-mail: masaki.kei@jaea.go.jp [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan); Shibama, Yusuke K.; Sakurai, Shinji; Shibanuma, Kiyoshi; Sakasai, Akira [Japan Atomic Energy Agency, Naka, Ibaraki-ken 311-0193 (Japan)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer The design of the JT-60SA vacuum vessel body was completed with the demonstration of manufacturing procedure by the mock-up fabrication of the 20 Degree-Sign upper half of VV. Black-Right-Pointing-Pointer The actual VV manufacturing has started since November 2009. Black-Right-Pointing-Pointer The first product of the VV 40 Degree-Sign sector was completed in May 2011. Black-Right-Pointing-Pointer A basic VV assembly scenario and procedure were studied to complete the 360 Degree-Sign VV including positioning method and joint welding. - Abstract: The JT-60SA vacuum vessel (VV) has a D-shaped poloidal cross section and a toroidal configuration with 10 Degree-Sign segmented facets. A double wall structure is adopted to ensure high rigidity at operational load and high toroidal one-turn resistance. The material is 316L stainless steel with low cobalt content (<0.05%). The design temperatures of the VV at plasma operation and baking are 50 Degree-Sign C and 200 Degree-Sign C, respectively. In the double wall, boric-acid water is circulated at plasma operation to reduce the nuclear heating of the superconducting magnets. For baking, nitrogen gas is circulated in the double wall after draining of the boric-acid water. The manufacturing of the VV started in November 2009 after a fundamental welding R and D and a trial manufacturing of 20 Degree-Sign upper half mock-up. The manufacturing of the first VV 40 Degree-Sign sector was completed in May 2011. A basic concept and required jigs of the VV assembly were studied. This paper describes the design and manufacturing of the vacuum vessel. A plan of VV assembly in torus hall is also presented.

  8. Out-of-Autoclave Manufacturing of Aerospace Representative Parts

    Science.gov (United States)

    Cauberghs, Julien

    The use of carbon fibre reinforced composites for aerospace structures has seen a high increase in recent years, and is still growing. The high stiffness-to-weight ratio of these materials makes them ideal for primary structures on airplanes, satellites, and spacecrafts. Nevertheless, the manufacturing of composites remains very costly since it requires equipment investment such as an autoclave, and very qualified workers. Out-of-autoclave manufacturing technology is very promising since it only requires a traditional oven, while still aiming at similar part quality. However, the absence of positive pressure compared with an autoclave makes it more difficult to achieve low porosity parts. This research investigates the manufacturing of complex features with out-of autoclave prepreg technology. The features studied are tight-radius corners with a curvature change, and ply drop-offs. Ply drop-offs tests were conducted to identify if porosity is higher at ply terminations. In corners, the bagging arrangement was modified to achieve the most uniform thickness in areas of curvature change, even with small radii. The conclusions from these studies provided us with guidelines to manufacture larger representative parts, which included these features. The representative parts were tested for porosity, thickness uniformity, mechanical performance, and glass transition temperature (Tg). A total of four representative parts were manufactured with out-of-autoclave technology, and one more was manufactured with an autoclave to allow for a proper comparison between the two processes. The materials used were MTM45-1 5 harness satin and CYCOM5320 plain weave for the out-of-autoclave parts, and CYCOM5276-1 plain weave for the autoclave part. The effect of ply drop-offs on porosity was found to be negligible. Thickness deviation in corners was attributed to a combination of consumable bridging, prepreg's bulk factor and inter-ply shear. Overall, out-of-autoclave prepregs showed

  9. Coordinating a Supply Chain When Manufacturer Makes Cost Reduction Investment in Supplier

    Directory of Open Access Journals (Sweden)

    Shilei Huang

    2016-01-01

    Full Text Available We consider a supply chain consisting of an upstream supplier and a downstream manufacturer, in which the supplier provides a component to the manufacturer, facing a price-sensitive and uncertain demand. The manufacturer makes cost reduction investment in the supplier to improve the supplier’s production efficiency, which benefits the entire supply chain. We derive the optimal investment and operating decisions. Both the centralized and decentralized supply chains are studied. We show that the optimal investment and operating decisions in the decentralized setting may deviate from that in the centralized setting. To avoid the profit loss caused by such a deviation, we develop a coordination mechanism by introducing a combined policy of revenue-sharing policy and investment cost-sharing policy. We also show that the developed coordination mechanism can achieve Pareto improvement for the two players.

  10. Soil respiration fluxes in a temperate mixed forest: seasonality and temperature sensitivities differ among microbial and root-rhizosphere respiration.

    Science.gov (United States)

    Ruehr, Nadine K; Buchmann, Nina

    2010-02-01

    Although soil respiration, a major CO(2) flux in terrestrial ecosystems, is known to be highly variable with time, the response of its component fluxes to temperature and phenology is less clear. Therefore, we partitioned soil respiration (SR) into microbial (MR) and root-rhizosphere respiration (RR) using small root exclusion treatments in a mixed mountain forest in Switzerland. In addition, fine root respiration (FRR) was determined with measurements of excised roots. RR and FRR were strongly related to each other (R(2) = 0.92, n = 7), with RR contributing about 46% and FRR about 32% to total SR. RR rates increased more strongly with temperature (Q(10) = 3.2) than MR rates (Q(10) = 2.3). Since the contribution of RR to SR was found to be higher during growing (50%) than during dormant periods (40%), we separated the 2-year data set into phenophases. During the growing period of 2007, the temperature sensitivity of RR (Q(10) = 2.5, R(2) = 0.62) was similar to that of MR (Q(10) = 2.2, R(2) = 0.57). However, during the dormant period of 2006/2007, RR was not related to soil temperature (R(2) = 0.44, n.s.), in contrast to MR (Q(10) = 7.2; R(2) = 0.92). To better understand the influence of plant activity on root respiration, we related RR and FRR rates to photosynthetic active radiation (both R(2) = 0.67, n = 7, P = 0.025), suggesting increased root respiration rates during times with high photosynthesis. During foliage green-up in spring 2008, i.e., from bud break to full leaf expansion, RR increased by a factor of 5, while soil temperature increased only by about 5 degrees C, leading to an extraordinary high Q(10) of 10.6; meanwhile, the contribution of RR to SR increased from 29 to 47%. This clearly shows that root respiration and its apparent temperature sensitivity highly depend on plant phenology and thus on canopy assimilation and carbon allocation belowground.

  11. Micro Manufacturing

    DEFF Research Database (Denmark)

    Hansen, Hans Nørgaard

    2003-01-01

    Manufacturing deals with systems that include products, processes, materials and production systems. These systems have functional requirements, constraints, design parameters and process variables. They must be decomposed in a systematic manner to achieve the best possible system performance....... If a micro manufacturing system isn’t designed rationally and correctly, it will be high-cost, unreliable, and not robust. For micro products and systems it is a continuously increasing challenge to create the operational basis for an industrial production. As the products through product development...... processes are made applicable to a large number of customers, the pressure in regard to developing production technologies that make it possible to produce the products at a reasonable price and in large numbers is growing. The micro/nano manufacturing programme at the Department of Manufacturing...

  12. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic Acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes.

    Science.gov (United States)

    Argyris, Jason; Dahal, Peetambar; Hayashi, Eiji; Still, David W; Bradford, Kent J

    2008-10-01

    Lettuce (Lactuca sativa 'Salinas') seeds fail to germinate when imbibed at temperatures above 25 degrees C to 30 degrees C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37 degrees C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature. Germination of the two genotypes was differentially sensitive to abscisic acid (ABA) and gibberellin (GA) at elevated temperatures. Quantitative trait loci associated with these phenotypes colocated with a major quantitative trait locus (Htg6.1) from UC96US23 conferring germination thermotolerance. ABA contents were elevated in Salinas seeds that exhibited thermoinhibition, consistent with the ability of fluridone (an ABA biosynthesis inhibitor) to improve germination at high temperatures. Expression of many genes involved in ABA, GA, and ethylene biosynthesis, metabolism, and response was differentially affected by high temperature and light in the two genotypes. In general, ABA-related genes were more highly expressed when germination was inhibited, and GA- and ethylene-related genes were more highly expressed when germination was permitted. In particular, LsNCED4, a gene encoding an enzyme in the ABA biosynthetic pathway, was up-regulated by high temperature only in Salinas seeds and also colocated with Htg6.1. The temperature sensitivity of expression of LsNCED4 may determine the upper temperature limit for lettuce seed germination and may indirectly influence other regulatory pathways via interconnected effects of increased ABA biosynthesis.

  13. Transportable high sensitivity small sample radiometric calorimeter

    International Nuclear Information System (INIS)

    Wetzel, J.R.; Biddle, R.S.; Cordova, B.S.; Sampson, T.E.; Dye, H.R.; McDow, J.G.

    1998-01-01

    A new small-sample, high-sensitivity transportable radiometric calorimeter, which can be operated in different modes, contains an electrical calibration method, and can be used to develop secondary standards, will be described in this presentation. The data taken from preliminary tests will be presented to indicate the precision and accuracy of the instrument. The calorimeter and temperature-controlled bath, at present, require only a 30-in. by 20-in. tabletop area. The calorimeter is operated from a laptop computer system using unique measurement module capable of monitoring all necessary calorimeter signals. The calorimeter can be operated in the normal calorimeter equilibration mode, as a comparison instrument, using twin chambers and an external electrical calibration method. The sample chamber is 0.75 in (1.9 cm) in diameter by 2.5 in. (6.35 cm) long. This size will accommodate most 238 Pu heat standards manufactured in the past. The power range runs from 0.001 W to <20 W. The high end is only limited by sample size

  14. New Nomenclatures for Heat Treatments of Additively Manufactured Titanium Alloys

    Science.gov (United States)

    Baker, Andrew H.; Collins, Peter C.; Williams, James C.

    2017-07-01

    The heat-treatment designations and microstructure nomenclatures for many structural metallic alloys were established for traditional metals processing, such as casting, hot rolling or forging. These terms do not necessarily apply for additively manufactured (i.e., three-dimensionally printed or "3D printed") metallic structures. The heat-treatment terminology for titanium alloys generally implies the heat-treatment temperatures and their sequence relative to a thermomechanical processing step (e.g., forging, rolling). These designations include: β-processing, α + β-processing, β-annealing, duplex annealing and mill annealing. Owing to the absence of a thermomechanical processing step, these traditional designations can pose a problem when titanium alloys are first produced via additive manufacturing, and then heat-treated. This communication proposes new nomenclatures for heat treatments of additively manufactured titanium alloys, and uses the distinct microstructural features to provide a correlation between traditional nomenclature and the proposed nomenclature.

  15. Exploring manufacturing competencies of a two wheeler manufacturing unit

    Science.gov (United States)

    Deep Singh, Chandan; Singh Khamba, Jaimal; Singh, Rajdeep; Singh, Navdeep

    2014-07-01

    The two wheeler industry of India is one of the most dependable industries as every person has at least a two wheeler with him, if not any four wheeler. Earlier there were scooters like Bajaj Chetak, Priya but with evolution of motorcycles like splendor, splendor+, etc. the scooter market started declining but with arrival of gearless scooters like Honda Activa, Scooty Pep, etc. the market place has become increasingly competitive in recent time and industries are facing tough test of improving products and thus market share. The competitiveness among industries is an important issue. Competency development is a vital tool to enhance the competitiveness of industries. Based, on aggregate performance of a firm, it comprehensively explores the varying importance of manufacturing competencies and drives of industrial competitiveness. Hence by, exploring the manufacturing competencies of a two wheeler industry, one can reflect the competitiveness of two wheeler manufacturing industry as a whole. This study presents various factors of manufacturing competencies affecting industrial competitiveness as the significance of these competencies is increasing day by day in two wheeler manufacturing industry.

  16. Exploring manufacturing competencies of a two wheeler manufacturing unit

    International Nuclear Information System (INIS)

    Singh, Chandan Deep; Khamba, Jaimal Singh; Singh, Rajdeep; Singh, Navdeep

    2014-01-01

    The two wheeler industry of India is one of the most dependable industries as every person has at least a two wheeler with him, if not any four wheeler. Earlier there were scooters like Bajaj Chetak, Priya but with evolution of motorcycles like splendor, splendor+, etc. the scooter market started declining but with arrival of gearless scooters like Honda Activa, Scooty Pep, etc. the market place has become increasingly competitive in recent time and industries are facing tough test of improving products and thus market share. The competitiveness among industries is an important issue. Competency development is a vital tool to enhance the competitiveness of industries. Based, on aggregate performance of a firm, it comprehensively explores the varying importance of manufacturing competencies and drives of industrial competitiveness. Hence by, exploring the manufacturing competencies of a two wheeler industry, one can reflect the competitiveness of two wheeler manufacturing industry as a whole. This study presents various factors of manufacturing competencies affecting industrial competitiveness as the significance of these competencies is increasing day by day in two wheeler manufacturing industry

  17. Global Value Chain and Manufacturing Analysis on Geothermal Power Plant Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Akar, Sertac [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Augustine, Chad R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kurup, Parthiv [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mann, Margaret K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    manufactured in a single run. Sensitivity analysis indicated these savings come largely from reduced labor costs for design and engineering and manufacturing setup.

  18. Firing temperature of pottery using TL and OSL techniques

    International Nuclear Information System (INIS)

    Polymeris, G.S.; Sakalis, A.; Papadopoulou, D.; Dallas, G.; Kitis, G.; Tsirliganis, N.C.

    2007-01-01

    Several methods of thermal analysis are used to determine in the laboratory the firing temperature of ancient ceramic sherds. These methods are based primarily on changes of physical characteristics occurring when clay minerals are heated. The luminescence properties of quartz grains in a ceramic matrix also undergo certain changes during firing. The possibility of measuring the sensitivity change (sensitization) of quartz in order to determine the firing temperature of archeological ceramic artifacts was investigated. The sensitivity change was studied for both the thermoluminescence (TL) and the optically stimulated luminescence (OSL) signal for a ceramic sample of known firing temperature. Various segments of the sample were annealed to a different temperature. Subsequently, the initial sensitivity, as well as the thermal and the pre-dose sensitization were measured for both TL and OSL at room temperature as a function of the annealing temperature. The obtained TL glow curves showed different shapes for annealing temperatures above the firing temperature. Thermal and pre-dose sensitizations also exhibited a similar, although less prominent, rise. The OSL signal was analyzed by integrating the raw signal over the initial second of stimulation. The initial sensitivity showed an abrupt change for annealing temperatures around the firing temperature. An alternative approach used for the analysis of the OSL signal involved a full-component resolved sensitization study. The same abrupt change for the initial sensitivity of both the first and second components was observed, as well as, a clear but not very prominent thermal sensitization trend for annealing temperatures above the firing temperature

  19. Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective

    Science.gov (United States)

    Schroeer, K.; Kirchengast, G.

    2018-06-01

    Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.

  20. Effects of Soil Moisture on the Temperature Sensitivity of Soil Heterotrophic Respiration: A Laboratory Incubation Study

    Science.gov (United States)

    Zhou, Weiping; Hui, Dafeng; Shen, Weijun

    2014-01-01

    The temperature sensitivity (Q10) of soil heterotrophic respiration (Rh) is an important ecological model parameter and may vary with temperature and moisture. While Q10 generally decreases with increasing temperature, the moisture effects on Q10 have been controversial. To address this, we conducted a 90-day laboratory incubation experiment using a subtropical forest soil with a full factorial combination of five moisture levels (20%, 40%, 60%, 80%, and 100% water holding capacity - WHC) and five temperature levels (10, 17, 24, 31, and 38°C). Under each moisture treatment, Rh was measured several times for each temperature treatment to derive Q10 based on the exponential relationships between Rh and temperature. Microbial biomass carbon (MBC), microbial community structure and soil nutrients were also measured several times to detect their potential contributions to the moisture-induced Q10 variation. We found that Q10 was significantly lower at lower moisture levels (60%, 40% and 20% WHC) than at higher moisture level (80% WHC) during the early stage of the incubation, but became significantly higher at 20%WHC than at 60% WHC and not significantly different from the other three moisture levels during the late stage of incubation. In contrast, soil Rh had the highest value at 60% WHC and the lowest at 20% WHC throughout the whole incubation period. Variations of Q10 were significantly associated with MBC during the early stages of incubation, but with the fungi-to-bacteria ratio during the later stages, suggesting that changes in microbial biomass and community structure are related to the moisture-induced Q10 changes. This study implies that global warming’s impacts on soil CO2 emission may depend upon soil moisture conditions. With the same temperature rise, wetter soils may emit more CO2 into the atmosphere via heterotrophic respiration. PMID:24647610

  1. Quartz Crystal Temperature Sensor for MAS NMR

    Science.gov (United States)

    Simon, Gerald

    1997-10-01

    Quartz crystal temperature sensors (QCTS) were tested for the first time as wireless thermometers in NMR MAS rotors utilizing the NMR RF technique itself for exiting and receiving electro-mechanical quartz resonances. This new tool in MAS NMR has a high sensitivity, linearity, and precision. When compared to the frequently used calibration of the variable temperature in the NMR system by a solid state NMR chemical shift thermometer (CST), such as lead nitrate, QCTS shows a number of advantages. It is an inert thermometer in close contact with solid samples operating parallel to the NMR experiment. QCTS can be manufactured for any frequency to be near a NMR frequency of interest (typically 1 to 2 MHz below or above). Due to the strong response of the crystal, signal detection is possible without changing the tuning of the MAS probe. The NMR signal is not influenced due to the relative sharp crystal resonance, restricted excitation by finite pulses, high probeQvalues, and commonly used audio filters. The quadratic dependence of the temperature increase on spinning speed is the same for the QCTS and for the CST lead nitrate and is discussed in terms of frictional heat in accordance with the literature about lead nitrate and with the results of a simple rotor speed jump experiment with differently radial located lead nitrate in the rotor.

  2. Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications

    Science.gov (United States)

    Al-mahmod, Md. Jubayer; Hyder, Rakib; Islam, Md Zahurul

    2017-07-01

    A nanosensor, based on a metal-insulator-metal (MIM) plasmonic ring resonator, is proposed for potential on-chip temperature sensing and its performance is evaluated numerically. The sensor components can be fabricated by using planar processes on a silicon substrate, making its manufacturing compatible to planar electronic fabrication technology. The sensor, constructed using silver as the metal rings and a thermo-optic liquid ethanol film between the metal layers, is capable of sensing temperature with outstanding optical sensitivity, as high as -0.53 nm/°C. The resonance wavelength is found to be highly sensitive to the refractive index of the liquid dielectric film. The resonance peak can be tuned according to the requirement of intended application by changing the radii of the ring resonator geometries in the design phase. The compact size, planar and silicon-based design, and very high resolutions- these characteristics are expected to make this sensor technology a preferred choice for lab-on-a-chip applications, as compared to other contemporary sensors.

  3. Manufacturing engineering and technology

    CERN Document Server

    Kalpakjian, Serope; Vijai Sekar, K S

    2014-01-01

    For courses in manufacturing processes at two- or four-year schools. An up-to-date text that provides a solid background in manufacturing processes. Manufacturing Engineering and Technology, SI Edition, 7e, presents a mostly qualitative description of the science, technology, and practice of manufacturing. This includes detailed descriptions of manufacturing processes and the manufacturing enterprise that will help introduce students to important concepts. With a total of 120 examples and case studies, up-to-date and comprehensive coverage of all topics, and superior two-color graphics, this text provides a solid background for manufacturing students and serves as a valuable reference text for professionals. Teaching and Learning Experience To provide a better teaching and learning experience, for both instructors and students, this program will: * Apply Theory and/or Research: An excellent overview of manufacturing conceptswith a balance of relevant fundamentals and real-world practices. * Engage Students: E...

  4. Extremely low temperature properties of epoxy GFRP

    International Nuclear Information System (INIS)

    Kadotani, Kenzo; Nagai, Matao; Aki, Fumitake.

    1983-01-01

    The examination of fiber-reinforced plastics, that is, plastics such as epoxy, polyester and polyimide reinforced with high strength fibers such as glass, carbon, boron and steel, for extremely low temperature use began from the fuel tanks of rockets. Therafter, the trial manufacture of superconducting generators and extremely low temperature transformers and the manufacture of superconducting magnets for nuclear fusion experimental setups became active, and high performance FRPs have been adopted, of which the extremely low temperature properties have been sufficiently grasped. Recently, the cryostats made of FRPs have been developed, fully utilizing such features of FRPs as high strength, high rigidity, non-magnetic material, insulation, low heat conductivity, light weight and the freedom of molding. In this paper, the mechanical properties at extremely low temperature of the plastic composite materials used as insulators and structural materials for extremely low temperature superconducting equipment is outlined, and in particular, glass fiber-reinforced epoxy laminates are described somewhat in detail. The fracture strain of GFRP at extremely low temperature is about 1.3 times as large as that at room temperature, but at extremely low temperature, clear cracking occurred at 40% of the fracture strain. The linear thermal contraction of GFRP showed remarkable anisotropy. (Kako, I.)

  5. Smart Manufacturing.

    Science.gov (United States)

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing.

  6. Arginine vasopressin antagonizes the effects of prostaglandin E2 on the spontaneous activity of warm-sensitive and temperature-insensitive neurons in the medial preoptic area in rats.

    Science.gov (United States)

    Xu, Jian-Hui; Hou, Xiao-Yu; Tang, Yu; Luo, Rong; Zhang, Jie; Liu, Chang; Yang, Yong-Lu

    2018-01-01

    Arginine vasopressin (AVP) plays an important role in thermoregulation and antipyresis. We have demonstrated that AVP could change the spontaneous activity of thermosensitive and temperature insensitive neurons in the preoptic area. However, whether AVP influences the effects of prostaglandin E 2 (PGE 2 ) on the spontaneous activity of neurons in the medial preoptic area (MPO) remains unclear. Our experiment showed that PGE 2 decreased the spontaneous activity of warm-sensitive neurons, and increased that of low-slope temperature-insensitive neurons in the MPO. AVP attenuated the inhibitory effect of PGE 2 on warm-sensitive neurons, and reversed the excitatory effect of PGE 2 on low-slope temperature-insensitive neurons, demonstrating that AVP antagonized the effects of PGE 2 on the spontaneous activity of these neurons. The effect of AVP was suppressed by an AVP V 1a receptor antagonist, suggesting that V 1a receptor mediated the action of AVP. We also demonstrated that AVP attenuated the PGE 2 -induced decrease in the prepotential's rate of rise in warm-sensitive neurons and the PGE 2 -induced increase in that in low-slope temperature-insensitive neurons through the V 1a receptor. Together, these data indicated that AVP antagonized the PGE 2 -induced change in the spontaneous activity of warm-sensitive and low-slope temperature-insensitive neurons in the MPO partly by reducing the PGE 2 -induced change in the prepotential of these neurons in a V 1a receptor-dependent manner. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities

    Directory of Open Access Journals (Sweden)

    C. Bréant

    2017-07-01

    Full Text Available The transformation of snow into ice is a complex phenomenon that is difficult to model. Depending on surface temperature and accumulation rate, it may take several decades to millennia for air to be entrapped in ice. The air is thus always younger than the surrounding ice. The resulting gas–ice age difference is essential to documenting the phasing between CO2 and temperature changes, especially during deglaciations. The air trapping depth can be inferred in the past using a firn densification model, or using δ15N of air measured in ice cores. All firn densification models applied to deglaciations show a large disagreement with δ15N measurements at several sites in East Antarctica, predicting larger firn thickness during the Last Glacial Maximum, whereas δ15N suggests a reduced firn thickness compared to the Holocene. Here we present modifications of the LGGE firn densification model, which significantly reduce the model–data mismatch for the gas trapping depth evolution over the last deglaciation at the coldest sites in East Antarctica (Vostok, Dome C, while preserving the good agreement between measured and modelled modern firn density profiles. In particular, we introduce a dependency of the creep factor on temperature and impurities in the firn densification rate calculation. The temperature influence intends to reflect the dominance of different mechanisms for firn compaction at different temperatures. We show that both the new temperature parameterization and the influence of impurities contribute to the increased agreement between modelled and measured δ15N evolution during the last deglaciation at sites with low temperature and low accumulation rate, such as Dome C or Vostok. We find that a very low sensitivity of the densification rate to temperature has to be used in the coldest conditions. The inclusion of impurity effects improves the agreement between modelled and measured δ15N at cold East Antarctic sites during the last

  8. Case study of lean manufacturing application in a die casting manufacturing company

    Science.gov (United States)

    Ching, Ng Tan; Hoe, Clarence Chan Kok; Hong, Tang Sai; Ghobakhloo, Morteza; Pin, Chen Kah

    2015-05-01

    The case study of lean manufacturing aims to study the application of lean manufacturing in a die casting manufacturing company located in Pulau Penang, Malaysia. This case study describes mainly about the important concepts and applications of lean manufacturing which could gradually help the company in increasing the profit by studying and analyzing their current manufacturing process and company culture. Many approaches of lean manufacturing are studied in this project which includes: 5S housekeeping, Kaizen, and Takt Time. Besides, the lean tools mentioned, quality tool such as the House of Quality is being used as an analysis tool to continuously improve the product quality. In short, the existing lean culture in the company is studied and analyzed, with recommendations written at the end of this paper.

  9. Gender diversity and innovation in manufacturing and service firms

    OpenAIRE

    Segarra Blasco, Agustí, 1958-; Parra, Maria Dolores; Teruel, Mercedes

    2015-01-01

    Traditionally, researchers have considered the innovation process as being gender neutral. However, recently some studies have begun to take gender diversity into account as a determinant of firms’ innovation. This paper aims to analyse how the effect of gender diversity on innovation output at firm level is sensitive to team size. Using the Spanish PITEC (Panel de Innovación Tecnológica) from 2007 to 2012 for innovative manufacturing and service firms, we estimate...

  10. Additive manufacturing of ceramics: Stereolithography versus binder jetting

    OpenAIRE

    Nachum, Sarig; Vogt, Joachim; Raether, Friedrich

    2016-01-01

    Stereolithography and Binder Jetting are two promising Additive Manufacturing techniques for the fabrication of complex ceramics components. The Fraunhofer Center for High Temperature Material and Design HTL/DE has experience in the fabrication and development of ceramic and metallic components with both technologies. This paper describes and compares the respective process setups as well as the advantages and disadvantages of both techniques, and discusses future challenges and developments ...

  11. Modeling and investigations on TID-ASETs synergistic effect in LM124 operational amplifier from three different manufacturers

    International Nuclear Information System (INIS)

    Roig, F.; Dusseau, L.; Privat, A.; Vaille, J.R.; Boch, J.; Saigne, F.; Ribeiro, P.; Auriel, G.; Khachatrian, A.; Roche, N.J.H.; Warner, J.H.; Buchner, S.P.; Mc- Morrow, D.; Azais, B.; Marec, R.; Calvel, P.; Bezerra, F.; Ecoffet, R.

    2013-01-01

    The synergistic effect between Total Ionizing Dose (TID) and Analog Single Event Transient (ASET) in LM124 operational amplifiers (op-amps) from three different manufacturers is investigated. This effect is clearly identified on only two manufacturers by three, highlighting manufacturer dependent. In fact, significant variations were observed on both the TID sensitivity and the ASET response of LM124 devices from different manufacturers. Hypotheses are made on the cause of the differences observed. A previously developed ASET simulation tool is used to model the transient response. The effects of TID on devices are taken into account in the model by injecting the variations of key electrical parameters obtained during Co irradiation. An excellent agreement is observed between the experimental responses and the model outputs, independently of the TID level, the bias configuration and the manufacturer of the device. (authors)

  12. Drug-printing by flexographic printing technology--a new manufacturing process for orodispersible films.

    Science.gov (United States)

    Janssen, Eva Maria; Schliephacke, Ralf; Breitenbach, Armin; Breitkreutz, Jörg

    2013-01-30

    Orodispersible films (ODFs) are intended to disintegrate within seconds when placed onto the tongue. The common way of manufacturing is the solvent casting method. Flexographic printing on drug-free ODFs is introduced as a highly flexible and cost-effective alternative manufacturing method in this study. Rasagiline mesylate and tadalafil were used as model drugs. Printing of rasagiline solutions and tadalafil suspensions was feasible. Up to four printing cycles were performed. The possibility to employ several printing cycles enables a continuous, highly flexible manufacturing process, for example for individualised medicine. The obtained ODFs were characterised regarding their mechanical properties, their disintegration time, API crystallinity and homogeneity. Rasagiline mesylate did not recrystallise after the printing process. Relevant film properties were not affected by printing. Results were comparable to the results of ODFs manufactured with the common solvent casting technique, but the APIs are less stressed through mixing, solvent evaporation and heat. Further, loss of material due to cutting jumbo and daughter rolls can be reduced. Therefore, a versatile new manufacturing technology particularly for processing high-potent low-dose or heat sensitive drugs is introduced in this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Mechanical strength of welding zones produced by material extrusion additive manufacturing.

    Science.gov (United States)

    Davis, Chelsea S; Hillgartner, Kaitlyn E; Han, Seung Hoon; Seppala, Jonathan E

    2017-08-01

    As more manufacturing processes and research institutions adopt customized manufacturing as a key element in their design strategies and finished products, the resulting mechanical properties of parts produced through additive manufacturing (AM) must be characterized and understood. In material extrusion (MatEx), the most recently extruded polymer filament must bond to the previously extruded filament via polymer diffusion to form a "weld". The strength of the weld limits the performance of the manufactured part and is controlled through processing conditions. Under-standing the role of processing conditions, specifically extruder velocity and extruder temperature, on the overall strength of the weld will allow optimization of MatEx-AM parts. Here, the fracture toughness of a single weld is determined through a facile "trouser tear" Mode III fracture experiment. The actual weld thickness is observed directly by optical microscopy characterization of cross sections of MatEx-AM samples. Representative data of weld strength as a function of printing parameters on a commercial 3D printer demonstrates the robustness of the method.

  14. The scope of additive manufacturing in cryogenics, component design, and applications

    Science.gov (United States)

    Stautner, W.; Vanapalli, S.; Weiss, K.-P.; Chen, R.; Amm, K.; Budesheim, E.; Ricci, J.

    2017-12-01

    Additive manufacturing techniques using composites or metals are rapidly gaining momentum in cryogenic applications. Small or large, complex structural components are now no longer limited to mere design studies but can now move into the production stream thanks to new machines on the market that allow for light-weight, cost optimized designs with short turnaround times. The potential for cost reductions from bulk materials machined to tight tolerances has become obvious. Furthermore, additive manufacturing opens doors and design space for cryogenic components that to date did not exist or were not possible in the past, using bulk materials along with elaborate and expensive machining processes, e.g. micromachining. The cryogenic engineer now faces the challenge to design toward those new additive manufacturing capabilities. Additionally, re-thinking designs toward cost optimization and fast implementation also requires detailed knowledge of mechanical and thermal properties at cryogenic temperatures. In the following we compile the information available to date and show a possible roadmap for additive manufacturing applications of parts and components typically used in cryogenic engineering designs.

  15. Uncertainty and Sensitivity Analysis for an Ibuprofen Synthesis Model Based on Hoechst Path

    DEFF Research Database (Denmark)

    da Conceicao Do Carmo Montes, Frederico; Gernaey, Krist V.; Sin, Gürkan

    2017-01-01

    into consideration the effects of temperature, acidity, and the choice of the catalyst. Parameter estimation and uncertainty analysis were conducted on the kinetic model parameters using experimental data available in the literature. Finally, one factor at a time sensitivity analysis in the form of deviations......The pharmaceutical industry faces several challenges and barriers when implementing new or improving current pharmaceutical processes, such as competition from generic drug manufacturers and stricter regulations from the U.S. Food and Drug Administration and the European Medicine agency. The demand...... for efficient and reliable models to simulate and design/improve pharmaceutical processes is therefore increasing. For the case of ibuprofen, a well-known anti-inflammatory drug, the existing models do not include its complete synthesis path, usually referring only to one out of aset of different reactions...

  16. Method for automatically evaluating a transition from a batch manufacturing technique to a lean manufacturing technique

    Science.gov (United States)

    Ivezic, Nenad; Potok, Thomas E.

    2003-09-30

    A method for automatically evaluating a manufacturing technique comprises the steps of: receiving from a user manufacturing process step parameters characterizing a manufacturing process; accepting from the user a selection for an analysis of a particular lean manufacturing technique; automatically compiling process step data for each process step in the manufacturing process; automatically calculating process metrics from a summation of the compiled process step data for each process step; and, presenting the automatically calculated process metrics to the user. A method for evaluating a transition from a batch manufacturing technique to a lean manufacturing technique can comprise the steps of: collecting manufacturing process step characterization parameters; selecting a lean manufacturing technique for analysis; communicating the selected lean manufacturing technique and the manufacturing process step characterization parameters to an automatic manufacturing technique evaluation engine having a mathematical model for generating manufacturing technique evaluation data; and, using the lean manufacturing technique evaluation data to determine whether to transition from an existing manufacturing technique to the selected lean manufacturing technique.

  17. Cloud manufacturing: a service-oriented manufacturing paradigm. A review paper

    Directory of Open Access Journals (Sweden)

    Siderska Julia

    2018-03-01

    Full Text Available This paper introduces cloud manufacturing (CMfg as a new manufacturing paradigm that joins the emerging technologies – such as the Internet of Things, cloud computing, and service-oriented technologies – for solving complex problems in manufacturing applications and performing large-scale collaborative manufacturing. Using scientific publications indexed in Scopus database during the period 2012–2017, the concept and fundamentals of CMfg are presented and discussed given the results of the most recent research. While focusing on the current state of the art, the recent research trends within CMfg concept were also identified. The review involved the methods of bibliometric analysis and network analysis. A prototype of CMfg and the existing related work conducted by various researchers are presented, and the map of co-occurrence is introduced to indicate the most commonly occurring issues related to the “cloud manufacturing” term. The VOSviewer software was used for this purpose. Finally, cloud-based manufacturing areas for further research are identified.

  18. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    2018-04-01

    Full Text Available Proopiomelanocortin (POMC neurons in the arcuate nucleus of the hypothalamus (ARC respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR, immunohistochemistry, electrophysiology, TRPV1 knock-out (KO, and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5 carrying a Cre-dependent channelrhodopsin-2 (ChR2-enhanced yellow fluorescent protein (eYFP expression cassette under the control of the two neuronal POMC enhancers (nPEs. Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake.

  19. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture.

    Science.gov (United States)

    Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean

    2009-01-01

    Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.

  20. Cost Models for MMC Manufacturing Processes

    Science.gov (United States)

    Elzey, Dana M.; Wadley, Haydn N. G.

    1996-01-01

    Processes for the manufacture of advanced metal matrix composites are rapidly approaching maturity in the research laboratory and there is growing interest in their transition to industrial production. However, research conducted to date has almost exclusively focused on overcoming the technical barriers to producing high-quality material and little attention has been given to the economical feasibility of these laboratory approaches and process cost issues. A quantitative cost modeling (QCM) approach was developed to address these issues. QCM are cost analysis tools based on predictive process models relating process conditions to the attributes of the final product. An important attribute, of the QCM approach is the ability to predict the sensitivity of material production costs to product quality and to quantitatively explore trade-offs between cost and quality. Applications of the cost models allow more efficient direction of future MMC process technology development and a more accurate assessment of MMC market potential. Cost models were developed for two state-of-the art metal matrix composite (MMC) manufacturing processes: tape casting and plasma spray deposition. Quality and Cost models are presented for both processes and the resulting predicted quality-cost curves are presented and discussed.