WorldWideScience

Sample records for manganese non-magnetic steel

  1. Mechanical properties and fatigue strength of high manganese non-magnetic steel/carbon steel welded joints

    International Nuclear Information System (INIS)

    Nakaji, Eiji; Ikeda, Soichi; Kim, You-Chul; Nakatsuji, Yoshihiro; Horikawa, Kosuke.

    1997-01-01

    The dissimilar materials welded joints of high manganese non-magnetic steel/carbon steel (hereafter referred to as DMW joints), in which weld defects such as hot crack or blowhole are not found, were the good quality. Tensile strength of DMW joints was 10% higher than that of the base metal of carbon steel. In the bend tests, the DMW joints showed the good ductility without crack. Charpy absorbed energy at 0(degC) of the DMW joints was over 120(J) in the bond where it seems to be the lowest. Large hardening or softening was not detected in the heat affected zone. Fatigue strength of the DMW joints is almost the same with that of the welded joints of carbon steel/carbon steel. As the fatigue strength of the DMW joints exceeds the fatigue design standard curve of JSSC for carbon steel welded joints, the DMW joints can be treated the same as the welded joints of carbon steel/carbon steel of which strength is lower than that of high manganese non-magnetic steel, from the viewpoint of the fatigue design. (author)

  2. Physical and mechanical properties of high manganese non-magnetic steel and its application to various products for commercial use

    International Nuclear Information System (INIS)

    Sasaki, Terufumi; Watanabe, Kenji; Nohara, Kiyohiko; Ono, Yutaka; Kondo, Nobuyuki; Sato, Shuzo.

    1982-01-01

    In order to develop new high manganese non-magnetic steels that can be employed to extensive applications ranging from cryogenic to elevated temperature uses, the effects of C and Mn on their magnetic permeability, thermal expansion coefficient and mechanical properties are investigated. It is found that the relation between thermal expansion coefficient, β, and both C and Mn contents can be expressed by the following linear regression equation: β( x 10 -6 / 0 C) = 17.66 + 3.82 C (%) - 0.22 Mn (%). Good mechanical properties are exhibited in the wide range of Mn contents between 18 % and 30 % at room temperature, while there is a tendency that this optimum range of Mn content is narrowed at cryogenic temperature. Then, H-shapes, round bars and deformed bars are manufactured at the workshops using 5t vacuum melted ingots, aiming to establish the conditions for practical processes for final products and to study such various characteristics of the products as their physical and mechanical properties, machinability and weldability. As a result, it is shown that all of those products have excellent properties as non-magnetic steels. In addition, the manufacturing of non-magnetic pinch rolls attached to the electro-magnetic stirring equipment on the continuous casting machine is described in detail as one of the practical applications of the high Mn non-magnetic steels. (author)

  3. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  4. R and D of low activated Fe-Mn-Cr high strength non-magnetic steel, (I). Screening test for constituent optimization and fundamental characterization test

    Energy Technology Data Exchange (ETDEWEB)

    Ishiyama, Shintaro; Fukaya, Kiyoshi; Eto, Motokuni; Kikuchi, Mituru [Japan Atomic Energy Research Inst., Tokyo (Japan); Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Tuyoshi [Japan Steel Works Ltd., Tokyo (Japan); Takahashi, Heishitiro [Center for Advanced Research of Energy Technology, Hokkaido Univ., Sapporo (Japan)

    2000-02-01

    It is very important to develop low activated/non-magnetic materials as large scale structural materials for fusion reactors. In the structural design of JT-60SU, low activated/non-magnetic materials with high specific strength and low decay heat characterizations are required. In the present paper, a new low activated/non-magnetic material (15.5 Mn-16Cr-0.2N-0.3Si-0.2C (wt%)) based on the conventional high manganese steel with lower Ni, CO, C, N and Mn contents for the purpose of lower activation and decay heat was developed and the mass production conditions of the material were optimized. Fundamental material characterization tests of the new material developed in present study were carried out, and the following conclusions are derived ; (1) Lower activation characterizations with the new materials in the order of 1/10 of that of SUS316L steel, (2) Higher strength of the material in the order of 2{approx}3 of SUS316L steel and (3) Lower decay heat with higher thermal conductivity with comparison of SUS316L steel. (author)

  5. Phase stability of high manganese austenitic steels for cryogenic applications

    CERN Document Server

    Couturier, K

    2000-01-01

    The aim of this work is to study the austenitic stability against a' martensitic transformation of three non-magnetic austenitic steels : a new stainless steel X2CrMnNiMoN 19-12-11-1 grade, a traditional X8CrMnNiN 19-11-6 grade and a high manganese X8MnCrNi 28-7-1 grade. Measurements of relative magnetic susceptibility at room temperature are performed on strained tensile specimens at 4.2 K. A special extensometer for high precision strain measurements at low temperature has been developed at CERN to test specimens up to various levels of plastic strain. Moreover, the high precision strain recording of the extensometer enables a detailed study of the serrated yield phenomena associated with 4.2 K tensile testing and their influence on the evolution of magnetic susceptibility. The results show that high Mn contents increase the stability of the austenitic structure against a' martensitic transformation, while keeping high strength at cryogenic temperature. Moreover, proper elaboration through primary and possi...

  6. Low carbon manganese-nickel-niobium steel

    International Nuclear Information System (INIS)

    Heisterkamp, F.; Hulka, K.

    1983-11-01

    Experimental heats of a low carbon-manganese-0.5% nickel-0.15% niobium steel have been rolled to plates between 13.5 and 50 mm thickness and to a 16 mm hot strip. Various combinations of soaking temperatures form 1100 0 C to 1300 0 C and of finish rolling temperatures between 710 0 C and 930 0 C have been investigated. From mechanical properties obtained, one can conclude that the investigated steel composition provides very good properties e.g. for pipe steels X65 to X75. In particular, the toughness at low temperature is outstanding despite relaxed rolling conditions. Metalographic and special investigations such as electron microscopy, texture evaluation and chemical extraction, correlated with applied rolling schedules and the mechanical properties obtained resulted in a comprehensive understanding about the benefits of high niobium metallurgy combined with nickel addition. All practically applied welding processes generated mechanical properties, in particular toughness of the weldment, that meet arctic specifications.(Author) [pt

  7. X-ray fractography on fatigue fracture surface of high manganese austenitic steel

    International Nuclear Information System (INIS)

    Akita, Koichi; Misawa, Hiroshi; Kodama, Shotaro; Saito, Tetsuro.

    1997-01-01

    Fatigue tests were carried out under constant stress amplitude, using a non-magnetic high manganese Mn-Cr steel. X-ray fractography was applied on the fatigue fractured surface to investigate the relationship between stress intensity factor and residual stress or half-value breadth of the X-ray diffraction profile. The fatigue crack propagation rate of this non-magnetic Mn-Cr steel had the same tendency as in the ordinary structural ferritic steels. The relationship between stress intensity factor and the residual stress or half-value breadth of the steel was almost the same as that of the ferritic cyclic work hardening steels. No stress induced transformation was observed on the fracture surface, but the residual stress on the fractured surface was compressive in the high stress intensity factors range, which is typical in the cyclic work hardening steels. The half-value breadth on the fractured surface increased with increasing effective stress intensity factor range. The relationship between the half-value breadth and stress intensity factor range was represented by a linear line regardless of the stress ratio. Therefore, the acting stress intensity factor range at the time of fracture can be estimated from the half-value breadth. The depth of monotonic plastic zone was estimated from the distribution of half-value breadth beneath the fractured surface. The relationship between the maximum stress intensity factor and half-value breadth was expressed by the equation ω m α(K max /σ y ) 2 , where the value of α was 0.025. This is about one sixth of the value for ferritic steels, and the fact shows the severe work hardening occuring in the plastic zone in this manganese steel. (author)

  8. Experimental and numerical simulation of carbon manganese steel ...

    African Journals Online (AJOL)

    Experimental and numerical simulation of carbon manganese steel for cyclic plastic behaviour. J Shit, S Dhar, S Acharyya. Abstract. The paper deals with finite element modeling of saturated low cycle fatigue and the cyclic hardening phenomena of the materials Sa333 grade 6 carbon steel and SS316 stainless steel.

  9. Charpy impact behavior of manganese-stabilized martensitic steels

    International Nuclear Information System (INIS)

    Hu, W.L.; Gelles, D.S.

    1986-05-01

    Tests were conducted to evaluate the irradiation-induced shift in ductile-to-brittle transition behavior of two manganese stabilized martensitic steels. Miniature Charpy specimens were fabricated from two heats of steel similar in composition to HT-9 but with 0.1% C and Mn contents ranging from 3.3 to 6.6.%. The 3.3% Mn steel showed a transition temperature similar to that of HT-9 in both the unirradiated condition and in specimens irradiated to 11.3 dpa. The steel containing 6.6% Mn exhibited a higher transition temperature after irradiation than the steel containing 3.3% Mn. The upper shelf energy (USE) after irradiation for the manganese stabilized alloys was much higher than for HT-9. 6 refs., 3 figs., 2 tabs

  10. Investigation of Wear Coefficient of Manganese Phosphate Coated Tool Steel

    Directory of Open Access Journals (Sweden)

    S. Ilaiyavel

    2013-03-01

    Full Text Available In recent years the properties of the coating in terms of wear resistance is of paramount importance in order to prevent the formation of severe damages. In this study, Wear coefficient of uncoated, Manganese Phosphate coated, Manganese Phosphate coated with oil lubricant, Heat treated Manganese Phosphate coated with oil lubricant on AISI D2 steels was investigated using Archard’s equation. The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The volumetric wear loss and wear coefficient were evaluated through pin on disc test using a sliding velocity of 3.0 m/s under normal load of 40 N and controlled condition of temperature and humidity. Based on the results of the wear test, the Heat treated Manganese Phosphate with oil lubricant exhibited the lowest average wear coefficient and the lowest wear loss under 40 N load.

  11. Tensile behavior of irradiated manganese-stabilized stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    Tensile tests were conducted on seven experimental, high-manganese austenitic stainless steels after irradiation up to 44 dpa in the FFTF. An Fe-20Mn-12Cr-0.25C base composition was used, to which various combinations of Ti, W, V, B, and P were added to improve strength. Nominal amounts added were 0.1% Ti, 1% W, 0.1% V, 0.005% B, and 0.03% P. Irradiation was carried out at 420, 520, and 600{degrees}C on the steels in the solution-annealed and 20% cold-worked conditions. Tensile tests were conducted at the irradiation temperature. Results were compared with type 316 SS. Neutron irradiation hardened all of the solution-annealed steels at 420, 520, and 600{degrees}C, as measured by the increase in yield stress and ultimate tensile strength. The steel to which all five elements were added to the base composition showed the least amount of hardening. It also showed a smaller loss of ductility (uniform and total elongation) than the other steels. The total and uniform elongations of this steel after irradiation at 420{degrees}C was over four times that of the other manganese-stabilized steels and 316 SS. There was much less difference in strength and ductility at the two higher irradiation temperatures, where there was considerably less hardening, and thus, less loss of ductility. In the cold-worked condition, hardening occured only after irradiation at 420{degrees}C, and there was much less difference in the properties of the steels after irradiation. At the 420{degrees}C irradiation temperature, most of the manganese-stabilized steels maintained more ductility than the 316 SS. After irradiation at 420{degrees}C, the temperature of maximum hardening, the steel to which all five of the elements were added had the best uniform elongation.

  12. Manganese partitioning in low carbon manganese steel during annealing

    International Nuclear Information System (INIS)

    Lis, J.; Lis, A.; Kolan, C.

    2008-01-01

    For 6Mn16 steel experimental soft annealing at 625 deg. C for periods from 1 h to 60 h and modeling with Thermo-Calc were performed to estimate the partitioning of alloying elements, in particular Mn, between ferrite, cementite and austenite. Using transmission electron microscopy and X-ray analysis it was established that the increase of Mn concentration in carbides to a level 7%-11.2% caused a local decrease of the Ac 1 temperature and led to the presence of austenite around the carbides. Thus, after cooling, small bainite-martensite or bainite-martensite-retained austenite (BM-A) islands were observed. A dispersion of carbides and a coarsening process were observed. The measured amount of Mn in the carbides was in good agreement with theoretical predictions

  13. Thermal stability of manganese-stabilized stainless steels

    International Nuclear Information System (INIS)

    Klueh, R.L.; Kenik, E.A.

    1993-01-01

    Previous work on a series of experimental high-manganese reduced-activation austenitic stainless steels demonstrated that they have improved tensile properties relative to type 316 stainless steel in both the annealed and 20% cold-worked conditions. Steels were tested with an Fe-20Mn-12Cr-0.25C (in weight percent) base composition, to which various combinations of Ti, W, V, P, and B were added. Tensile tests have now been completed on these steels after thermal aging at 600 degrees C. Thermal stability varied with composition, but the alloys were as stable or more stable than type 316 stainless steel. the strength of the annealed steels increased slightly after aging to 5000 h, while a strength decrease occurred for the cold worked steel. In both conditions, a steel containing a combination of all the alloying elements was most stable and had the best strength after thermal aging 5000 h at 600 degrees C. Despite having much higher strength than 316 stainless steel after aging, the ductility of the strongest experimental alloy was still as good as that of 316 stainless steel

  14. Cyclic deformation and fatigue behaviors of Hadfield manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2014-01-03

    The cyclic deformation characteristics and fatigue behaviors of Hadfield manganese steel have been investigated by means of its ability to memorize strain and stress history. Detailed studies were performed on the strain-controlled low cycle fatigue (LCF) and stress-controlled high cycle fatigue (HCF). Initial cyclic hardening to saturation or peak stress followed by softening to fracture occurred in LCF. Internal stress made the dominant contribution to the fatigue crack propagation until failure. Effective stress evolution revealed the existence of C–Mn clusters with short-range ordering in Hadfield manganese steel and demonstrated that the interaction between C atoms in the C–Mn cluster and dislocation was essential for its cyclic hardening. The developing/developed dislocation cells and stacking faults were the main cyclic deformation microstructures on the fractured sample surface in LCF and HCF, which manifested that fatigue failure behavior of Hadfield manganese steel was induced by plastic deformation during strain-controlled or stress-controlled testing.

  15. Manganese

    Science.gov (United States)

    Cannon, William F.; Kimball, Bryn E.; Corathers, Lisa A.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Manganese is an essential element for modern industrial societies. Its principal use is in steelmaking, where it serves as a purifying agent in iron-ore refining and as an alloy that converts iron into steel. Although the amount of manganese consumed to make a ton of steel is small, ranging from 6 to 9 kilograms, it is an irreplaceable component in the production of this fundamental material. The United States has been totally reliant on imports of manganese for many decades and will continue to be so for at least the near future. There are no domestic reserves, and although some large low-grade resources are known, they are far inferior to manganese ores readily available on the international market. World reserves of manganese are about 630 million metric tons, and annual global consumption is about 16 million metric tons. Current reserves are adequate to meet global demand for several decades. Global resources in traditional land-based deposits, including both reserves and rocks sufficiently enriched in manganese to be ores in the future, are much larger, at about 17 billion metric tons. Manganese resources in seabed deposits of ferromanganese nodules and crusts are larger than those on land and have not been fully quantified. No production from seabed deposits has yet been done, but current research and development activities are substantial and may bring parts of these seabed resources into production in the future. The advent of economically successful seabed mining could substantially alter the current scenario of manganese supply by providing a large new source of manganese in addition to traditional land-based deposits.From a purely geologic perspective, there is no global shortage of proven ores and potential new ores that could be developed from the vast tonnage of identified resources. Reserves and resources are very unevenly distributed, however. The Kalahari manganese district in South Africa contains 70 percent of the world’s identified resources

  16. HDM model magnet mechanical behavior with high manganese steel collars

    International Nuclear Information System (INIS)

    Snyder, J.R.

    1994-01-01

    Westinghouse Electric Corporation (WEC) is presently under contract to the SSCL to design, develop, fabricate, and deliver superconducting dipole magnets for the High Energy Booster (HEB). As a first step toward these objectives SSCL supplied a design for short model magnets of 1.8 m in length (DSB). This design was used as a developmental tool for all phases of engineering and fabrication. Mechanical analysis of the HDM (High Energy Booster Dipole Magnets) model magnet design as specified by SSCL was performed with the following objectives: (1) to develop a thorough understanding of the design; (2) to review and verify through analytical and numerical analyses the SSCL model magnet design; (3) to identify any deficiencies that would violate design parameters specified in the HDM Design Requirements Document. A detailed analysis of the model magnet mechanical behavior was pursued by constructing a quarter section finite element model and solving with the ANSYS finite element code. Collar materials of Nitronic-40 and High-Manganese steel were both considered for the HEB model magnet program with the High-Manganese being the final selection. The primary mechanical difference in the two materials is the much lower thermal contraction of the High-Manganese steel. With this material the collars will contract less than the enclosing yoke producing an increased collar yoke interference during cooldown

  17. Multitracer method of diffusion measurement in chromium-manganese steels

    International Nuclear Information System (INIS)

    Dudala, J.; Stegowski, Z.; Gilewicz-Wolter, J.

    2004-01-01

    The paper presents an application of multitracer method to diffusion measurement in Cr-Mn steels. Radioisotope tracers of chromium 51 Cr, manganese 54 Mn and iron 59 Fe were used simultaneously in the diffusion process, Gamma-spectrum measurement and the proper analysis enabled evaluation of concentration distribution for each tracer. As a new tool, artificial neural networks (ANN) method was used for spectrum analysis. The proper solution of the diffusion model was applied to the experimental tracers' distribution data and diffusion coefficients were determined. (author)

  18. Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1989-01-01

    Dissolution of manganese and cobalt and their deposition on Type 304 stainless steel in liquid sodium at 833 K for 3.6 x 10 3 ks were examined using a liquid sodium pot. Manganese was easily dissolved in sodium from the iron-manganese alloy specimen and deposited on the steel to form two kind of deposition particles, α-phase (body-centered cubic) composed of iron and γ-phase (face-centered cubic) composed of iron and manganese, respectively. Cobalt which was less easily dissolved than manganese also deposited on the Type 304 stainless steel, giving an iron-cobalt alloy. These three deposition particles corresponded to the precipitation lines of iron-manganese and iron-cobalt phase diagrams at 833 K, respectively. Therefore, the deposition process of manganese or cobalt in sodium was explained as a precipitation process of iron-manganese or iron-cobalt in the solid region of the binary phase diagram. A sodium chromite (NaCrO 2 ) layer was formed on the steel surface. (author)

  19. Attenuation capability of low activation-modified high manganese austenitic stainless steel for fusion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Eissa, M.M. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El-kameesy, S.U.; El-Fiki, S.A. [Physics Department, Faculty of Science, Ain Shams University, Cairo (Egypt); Ghali, S.N. [Steel Technology Department, Central Metallurgical Research and Development Institute (CMRDI), Helwan (Egypt); El Shazly, R.M. [Physics Department, Faculty of Science, Al-Azhar University, Cairo (Egypt); Saeed, Aly, E-mail: aly_8h@yahoo.com [Nuclear Power station Department, Faculty of Engineering, Egyptian-Russian University, Cairo (Egypt)

    2016-11-15

    Highlights: • Improvement stainless steel alloys to be used in fusion reactors. • Structural, mechanical, attenuation properties of investigated alloys were studied. • Good agreement between experimental and calculated results has been achieved. • The developed alloys could be considered as candidate materials for fusion reactors. - Abstract: Low nickel-high manganese austenitic stainless steel alloys, SSMn9Ni and SSMn10Ni, were developed to use as a shielding material in fusion reactor system. A standard austenitic stainless steel SS316L was prepared and studied as a reference sample. The microstructure properties of the present stainless steel alloys were investigated using Schaeffler diagram, optical microscopy, and X-ray diffraction pattern. Mainly, an austenite phase was observed for the prepared stainless steel alloys. Additionally, a small ferrite phase was observed in SS316L and SSMn10Ni samples. The mechanical properties of the prepared alloys were studied using Vickers hardness and tensile tests at room temperature. The studied manganese stainless steel alloys showed higher hardness, yield strength, and ultimate tensile strength than SS316L. On the other hand, the manganese stainless steel elongation had relatively lower values than the standard SS316L. The removal cross section for both slow and total slow (primary and those slowed down in sample) neutrons were carried out using {sup 241}Am-Be neutron source. Gamma ray attenuation parameters were carried out for different gamma ray energy lines which emitted from {sup 60}Co and {sup 232}Th radioactive sources. The developed manganese stainless steel alloys had a higher total slow removal cross section than SS316L. While the slow neutron and gamma rays were nearly the same for all studied stainless steel alloys. From the obtained results, the developed manganese stainless steel alloys could be considered as candidate materials for fusion reactor system with low activation based on the short life

  20. Mechanical Properties and Fractographic Analysis of High Manganese Steels After Dynamic Deformation Tests

    Directory of Open Access Journals (Sweden)

    Jabłońska M.B.

    2014-10-01

    Full Text Available Since few years many research centres conducting research on the development of high-manganese steels for manufacturing of parts for automotive and railway industry. Some of these steels belong to the group of AHS possessing together with high strength a great plastic elongation, and an ideal uniform work hardening behavior. The article presents the dynamic mechanical properties of two types of high manganese austenitic steel with using a flywheel machine at room temperature with strain rates between 5×102÷3.5×103s?–1. It was found that the both studied steels exhibit a high sensitivity Rm to the strain rate. With increasing the strain rate from 5×102 to 3.5×103s?–1 the hardening dominates the process. The fracture analysis indicate that after dynamic test both steel is characterized by ductile fracture surfaces which indicate good plasticity of investigated steels.

  1. Manganese

    Science.gov (United States)

    ... research suggests that taking a specific product (7-Keto Naturalean) containing manganese, 7-oxo-DHEA, L-tyrosine, ... can absorb.Milk proteinAdding milk protein to the diet might increase the amount of manganese the body ...

  2. A comparison of the iraddiated tensile properties of a high-manganese austenitic steel and type 316 stainless steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Grossbeck, M.L.

    1984-01-01

    The USSR steel EP-838 is a high-manganese, low-nickel steel that also has lower chromium and molybdenum than type 316 stainless steel. Tensile specimens of 20%-cold-worked EP-838 and type 316 stainless steel were irradiated in the High Flux Isotope Reactor (HFIR) at the coolant temperature (approx.=50 0 C). A displacement damage level of 5.2 dpa was reached for the EP-838 and up to 9.5 dpa for the type 316 stainless steel. Tensile tests at room temperature and 300 0 C on the two steels indicated that the irradiation led to increased strength and decreased ductility compared to the unirradiated steels. Although the 0.2% yield stress of the type 316 stainless steel in the unirradiated condition was greater than that for the EP-838, after irradiation there was essentially no difference between the strength or ductility of the two steels. The results indicate that the replacement of the majority of the nickel by manganese and a reduction of chromium and molybdenum in an austenitic stainless steel of composition near that for type 316 stainless steel has little effect on the irradiated and unirradiated tensile properties at low temperatures. (orig.)

  3. Manganese

    International Nuclear Information System (INIS)

    Fayziev, A.R.

    2002-01-01

    Present article is devoted to manganese content in fluoride. The manganese content of some geologic deposits of Tajikistan was determined by means of chemical analysis. The mono mineral samples of fluorite of 5 geologic deposits of various mineralogical and genetic type was studied. The manganese content in fluorite of geologic deposits of various mineralogical and genetic type was defined.

  4. The effect of manganese content on mechanical properties of high titanium microalloyed steels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaolin, E-mail: lixiaolinwork@163.com [Shougang Research Institute of Technology, Beijing 100041 (China); Li, Fei; Cui, Yang; Xiao, Baoliang [Shougang Research Institute of Technology, Beijing 100041 (China); Wang, Xuemin [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-11-20

    In this work, in order to achieve an optimum combination of high strength, ductility and toughness of high Ti microalloyed steel, extensive research efforts were exerted to study the effect of soaking temperature, manganese and sulfur content on properties of titanium steels. Precipitation hardening of Ti-bearing steels has been found to vary with different soaking temperature. Higher strength was achieved in these steels at higher soaking temperature due to dissolution of more TiC, Ti{sub 4}S{sub 2}C{sub 2} and little TiN, which lead to re-precipitation of fine carbides with greater volume fraction. The results of transmission electron microscope (TEM)analysis indicates that there were more and finer TiC precipitates coherent or semi-coherent with the ferrite matrix in the high manganese content steel than in low manganese content steel. The marked improvement in strength is also associated with low sulfur content. TiC particles smaller than 20 nm in 8Ti-8Mn steel help enhance strength to higher than 302 MPa compared with 8Mn steel.

  5. Surface modifications induced by yttrium implantation on low manganese-carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H. [Univ. Blaise Pascal Clermont-Fd II, Le Puy en Velay (France). Lab. Vellave d' Elaboration et d' Etude des Materiaux; Haanapel, V.A.C.; Jacob, Y.P.; Stroosnijder, M.F. [Institute for Health and Consumer Protection, Joint Research Center, The European Commission, 21020, Ispra (Italy)

    1999-12-15

    Low manganese-carbon steel samples were ion implanted with yttrium. Sample compositions and structures were investigated before and after yttrium implantations to determine the yttrium distribution in the sample. Yttrium implantation effects were characterized using several analytical and structural techniques such as X-ray photoelectron spectroscopy, reflection high energy electron diffraction, X-ray diffraction, glancing angle X-ray diffraction and Rutherford backscattering spectrometry. In this paper it is shown that correlation between composition and structural analyses provides an understanding of the main compounds induced by yttrium implantation in low manganese-carbon steel. (orig.)

  6. Benzohydroxamic acid as a reductometric titrant:determination of manganese, chromium and vanadium in steels

    International Nuclear Information System (INIS)

    Ahmed, M.K.; Subbarao, C.

    1981-01-01

    A method has been developed for the rapid determination of manganese and chromium by direct stepwise reductometric titration with benzohydroxamic acid, and of vanadium by titration with ascorbic acid (with benzohydroxamic acid as indicator) in the same aliquot. The method is free from the interference of common alloying elements present in steels. Some BCS steel samples have been analysed with good precision and accuracy. (author)

  7. Manganese: it turns iron into steel (and does so much more)

    Science.gov (United States)

    Cannon, William F.

    2014-01-01

    Manganese is a common ferrous metal with atomic weight of 25 and the chemical symbol Mn. It constitutes roughly 0.1 percent of the Earth’s crust, making it the 12th most abundant element. Its early uses were limited largely to pigments and oxidants in chemical processes and experiments, but the significance of manganese to human societies exploded with the development of modern steelmaking technology in the 1860s. U.S consumption of manganese is about 500,000 metric tons each year, predominantly by the steel industry. Because manganese is essential and irreplaceable in steelmaking and its global mining industry is dominated by just a few nations, it is considered one of the most critical mineral commodities for the United States.

  8. Nanotwin Formation in High-Manganese Austenitic Steels Under Explosive Shock Loading

    Science.gov (United States)

    Canadinc, D.; Uzer, B.; Elmadagli, M.; Guner, F.

    2018-04-01

    The micro-deformation mechanisms active in a high-manganese austenitic steel were investigated upon explosive shock loading. Single system of nanotwins forming within primary twins were shown to govern the deformation despite the elevated temperatures attained during testing. The benefits of nanotwin formation for potential armor materials were demonstrated.

  9. Properties of Mo-alloyed sintered manganese steels

    International Nuclear Information System (INIS)

    Romanski, A.; Cias, A.

    1998-01-01

    Sintered alloy steels are needed for mostly PM structural parts. Powder metallurgy techniques provide a means of fabricating high quality steel parts with tailored mechanical properties. It is now possible to produce sintered steel parts with properties equal to an even superior to those of parts made by more traditional routes. Challenges arise both with the material selection and component fabrication. This work outlines the processing for high performance structural application. (author)

  10. Hot Ductility Behavior of Boron Containing Microalloyed Steels with Varying Manganese Contents

    Science.gov (United States)

    Brune, Tobias; Senk, Dieter; Walpot, Raphael; Steenken, Bernhard

    2015-02-01

    The hot ductility is measured for six different steel grades with different microalloying elements and with varying manganese contents using the hot tensile test machine with melting/solidification unit at the Department of Ferrous Metallurgy RWTH Aachen University. To identify the influence of manganese on hot ductility, tests are performed with varying the manganese content from 0.7 to 18.2 wt pct, a high manganese steel. Additionally, the effect of different cooling and strain rates is analyzed by changing the particular rate for selected samples in the minima. To investigate and detect the cause of cracking during testing, the fracture surfaces in the ductility minima are considered with scanning electron microscope-energy dispersive X-ray spectroscopy. Thermodynamic modeling is conducted on basis of the commercial software ThermoCalc©. A sharp decrease of the hot ductility is recognizable at 1398 K (1125 °C), at only 0.7 wt pct manganese because of the low manganese to sulfur ratio. The grades with a Mn content up to 1.9 wt pct show a good ductility with minimal ductility loss. In comparison, the steel grade with 18.2 wt pct has a poor hot ductility. Because of the formation of complex precipitates, where several alloying elements are involved, the influence of boron on hot ductility is not fully clarified. By increasing the cooling rate, the reduction of area values are shifted to smaller values. For high test temperatures, these measured values are decreased for lower strain rates. Thereby, an early drop of the ductility is noticeable for the high temperatures around 1373 K (1100 °C).

  11. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    Ashassi-Sorkhabi, H.; Moradi-Haghighi, M.; Zarrini, G.

    2012-01-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO 2 deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: ► A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. ► This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. ► In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  12. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Ashassi-Sorkhabi, H., E-mail: habib_ashassi@yahoo.com [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Moradi-Haghighi, M. [Electrochemistry Research Laboratory, Physical Chemistry Department, Faculty of Chemistry, University of Tabriz, Tabriz (Iran, Islamic Republic of); Zarrini, G. [Microbiology laboratory, Biology Department, Science Faculty, University of Tabriz, Tabriz (Iran, Islamic Republic of)

    2012-02-01

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO{sub 2} deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: Black-Right-Pointing-Pointer A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. Black-Right-Pointing-Pointer This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. Black-Right-Pointing-Pointer In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  13. The thermal expansion of austenitic manganese and manganese-chromium steels

    International Nuclear Information System (INIS)

    Richter, F.

    1977-01-01

    The linear coefficient of thermal expansion was determined by dilatometer for 5 Mn steels and 6 Mn-Cr steels between -196 and +500 0 C. Because of the antiferromagnetic properties, the thermal expansion of austenitic Mn and Mn-Cr steels is determined by the position of the magnetic changeover temperature (Neel temperature), which depends on the chemical composition of the steel. Below the Neel temperature, the thermal coefficient of expansion is greatly reduced by volumetric magnetostriction (Invar effect). For this reason, one can only give approximate values for thermal expansion for all Mn and Mn-Cr steels in the temperature range of -100 0 C to about +100 0 C. (GSC) [de

  14. Swelling behavior of manganese-bearing AISI 216 steel

    International Nuclear Information System (INIS)

    Gelles, D.S.; Garner, F.A.

    1984-01-01

    The inclusion of 8.5 wt % manganese in AISI 216 does not appear to alter the swelling behavior from that found to be typical of austenitic alloys with comparable levels of other austentite-stabilizing elements. The swelling in AISI 216 in EBR-II is quite insensitive to irradiation temperature in the range 400-650 0 C. Microscopy reveals that this may arise from the low level of precipitation that occurs in the alloy

  15. Microstructure and properties of TiC-high manganese steel cermet prepared by different sintering processes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi; Lin, Tao, E-mail: lintao@ustb.edu.cn; He, Xinbo; Shao, Huiping; Zheng, Jianshu; Qu, Xuanhui

    2015-11-25

    In the paper, the TiC −50 wt.% high manganese steel cermet was made with different sintering processes including vacuum sintering, hot pressing, microwave sintering and spark plasma sintering (SPS). The microstructure, porosity and fracture morphology of the samples were analyzed with scanning electron microscopy (SEM). Phase analysis was carried out using X-ray diffraction (XRD). The density, hardness, transverse rupture strength (TRS) and wear resistance were investigated for the effect of the sintering processes. The results showed that the core–shell structure was not clearly observed for the TiC particles in microstructures and the high manganese steel matrix is BCC structure. Hot pressing, microwave sintering and SPS are useful processes for densification of the cermet. Nearly full density and higher hardness can be reached by these three processes at a lower sintering temperature and in a shorter sintering time. However, higher TRS can be reached by means of alloying completely in a longer sintering time, for example vacuum sintering. Pre-sintering in a long sintering time at a lower sintering temperature is also useful for improving the TRS. Finally, vacuum sintering is an effective process for producing this composite with the lowest cost in the mass production. - Highlights: • TiC-high manganese steel cermets were prepared by four sintering processes. • The core–shell structure was not clearly observed for the TiC particles in microstructures. • Th high manganese steel matrix is BCC structure instead of FCC structure. • Pre-sintering before microwave sintering is also useful for improving the TRS. • Vacuum sintering can be effective way for prepare this cermet in mass production.

  16. Phase transformations in low-carbon manganese steel 6Mn16

    Directory of Open Access Journals (Sweden)

    J. Lis

    2009-01-01

    Full Text Available The kinetics of phase transformations of the austenite of 6Mn16 steel during continuous cooling are presented in a CCT diagram. Manganese partitioning between ferrite and austenite during intercritical annealing is enhanced by prior soft annealing. Due to the increased Mn concentration in austenite, the temperatures BS and MS have decreased, as compared to those achieved during cooling from the complete austenite region.

  17. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    International Nuclear Information System (INIS)

    Huang, Zhi Yong; Chaboche, Jean-Louis; Wang, Qing Yuan; Wagner, Danièle; Bathias, Claude

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C

  18. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean-Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320 Chatillon (France); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C.

  19. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    Science.gov (United States)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  20. Precipitation Effect on Mechanical Properties and Phase Stability of High Manganese Steel

    Science.gov (United States)

    Bae, Cheoljun; Kim, Rosa; Lee, Un-Hae; Kim, Jongryoul

    2017-09-01

    High manganese (Mn) steels are attractive for automotive applications due to their excellent tensile strength and superior elongation. However, the relatively low yield strength of Mn steels compared to other advanced high-strength steels is a critical problem limiting their use in structural parts. In order to increase the yield strength, the precipitation hardening effect of Mn steels was investigated by the addition of carbide-forming elements. Changes in the austenite phase stability were also evaluated in terms of stacking fault energy (SFE). As a result, fine V(C,N) precipitates were found to increase the yield strength effectively but to lower the SFE by the consumption of matrix carbons. For achieving precipitation hardening without sacrificing austenite stability, the soluble carbon content was discussed.

  1. Effects of Manganese Content on Solidification Structures, Thermal Properties, and Phase Transformation Characteristics in Fe-Mn-Al-C Steels

    Science.gov (United States)

    Yang, Jian; Wang, Yu-Nan; Ruan, Xiao-Ming; Wang, Rui-Zhi; Zhu, Kai; Fan, Zheng-Jie; Wang, Ying-Chun; Li, Cheng-Bin; Jiang, Xiao-Fang

    2015-04-01

    To assist developments of the continuous-casting technology of Fe-Mn-Al-C steels, the solidification structures and the thermal properties of Fe-Mn-Al-C steel ingots with different manganese contents have been investigated and the phase transformation characteristics have been revealed by FactSage (CRCT-ThermFact Inc., Montréal, Canada). The results show that the thermal conductivity of the 0Mn steel is the highest, whereas the thermal conductivity of the 8Mn steel is slightly higher than that of the 17Mn steel. Increasing the manganese content promotes a columnar solidification structure and coarse grains in steel. With the increase of manganese content, the mass fraction of austenite phase is increased. Finally, a single austenite phase is formed in the 17Mn steel. The mean thermal expansion coefficients of the steels are in the range from 1.3 × 10-5 to 2.3 × 10-5 K-1, and these values increase with the increase of manganese content. The ductility of the 17Mn steel and the 8Mn steel are higher than 40 pct in the temperature range from 873 K to 1473 K (600 °C to 1200 °C), and the cracking during the straightening operation should be avoided. However, the ductility of the 0Mn steel is lower than 40 pct at 973 K and 1123 K (700 °C and 850 °C), which indicates that the temperature of the straightening operation during the continuous-casting process should be above 1173 K (900 °C). Manganese has the effect of enlarging the austenite phase region and reducing the δ-ferrite phase region and α-ferrite phase region. At the 2.1 mass pct aluminum level, the precipitate temperature of AlN is high. Thus, the formed AlN is too coarse to deteriorate the hot ductility of steel.

  2. Effect of processing variables on mechanical properties of sintered manganese steels Fe-3%Mn-0.8%C

    International Nuclear Information System (INIS)

    Sulowski, M.; Cias, A.

    1998-01-01

    The powder metallurgy route may allow sintered manganese steels to be made based on pure iron powder and ferromanganese powder with control over alloy microstructure. The factors that contribute to the mechanical properties of sintered Fe-3%Mn-0.8%C manganese steel, such as the sintering atmosphere, dew point, sintering temperature, cooling rate are summarised. The paper shows the influence of these parameters on the tensile strength, yield strength, transverse rupture strength, impact strength and hardness. It is showed that tensile high strength level higher than those of many present sintered steels can be obtained already in the as-sintered condition. (author)

  3. Understanding the nature of the manganese hot dip phosphatizing process of steel

    Energy Technology Data Exchange (ETDEWEB)

    Alvarado M, G.; Fuentes A, J. C.; Salinas R, A.; Rodriguez V, F. J., E-mail: juan.fuentes@cinvestav.edu.mx [IPN, Centro de Investigacion y de Estudios Avanzados, Unidad Saltillo, Av. Industria Metalurgica No. 1062, Parque Industrial Ramos Arizpe, 25900 Saltillo, Coahuila (Mexico)

    2013-07-01

    In this work, the phosphatizing process of steel is investigated using open circuit potential and Tafel curves as well as scanning electron microscopy and energy dispersive X-ray spectroscopy. The results reveal that a ph of 2.57 in the phosphatizing solution promotes the dissociation of phosphoric acid which assist the formation of the manganese tertiary salt (Mn{sub 3}(PO{sub 4}){sub 2}), which is deposited on the substrate. It was also observed that an increase in the temperature from 25 to 90 C and the presence of HNO{sub 3} as catalysts enhances the manganese phosphatizing kinetics. On the other hand, the generation of iron phosphates and oxides is predominant at a ph of 1 and 90 C. These observations are supported by species distribution and Pourbaix thermodynamic diagrams. (Author)

  4. Understanding the nature of the manganese hot dip phosphatizing process of steel

    International Nuclear Information System (INIS)

    Alvarado M, G.; Fuentes A, J. C.; Salinas R, A.; Rodriguez V, F. J.

    2013-01-01

    In this work, the phosphatizing process of steel is investigated using open circuit potential and Tafel curves as well as scanning electron microscopy and energy dispersive X-ray spectroscopy. The results reveal that a ph of 2.57 in the phosphatizing solution promotes the dissociation of phosphoric acid which assist the formation of the manganese tertiary salt (Mn 3 (PO 4 ) 2 ), which is deposited on the substrate. It was also observed that an increase in the temperature from 25 to 90 C and the presence of HNO 3 as catalysts enhances the manganese phosphatizing kinetics. On the other hand, the generation of iron phosphates and oxides is predominant at a ph of 1 and 90 C. These observations are supported by species distribution and Pourbaix thermodynamic diagrams. (Author)

  5. Infrared-spectroscopy analysis of zinc phosphate and nickel and manganese modified zinc phosphate coatings on electrogalvanized steel

    International Nuclear Information System (INIS)

    Fernandes, Kirlene Salgado; Alvarenga, Evandro de Azevedo; Lins, Vanessa de Freitas Cunha

    2011-01-01

    Hopeite-type phosphate coatings in which zinc is partially replaced by other metals like manganese and nickel are of great interest for the automotive and home appliance industries. Such industries use phosphate conversion coatings on galvanized steels in association with cataphoretic electro painting. Zinc phosphates modified with manganese and nickel are isomorphic with the hopeite, and the phase identification using X-ray diffraction is difficult. In this paper, the phosphate coatings are identified using the Fourier transform infrared spectroscopy (FTIR). (author)

  6. Microstructure and texture evolution of different high manganese cast steels during hot deformation and subsequent treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.N.S.; Andrade, C.D.; Abreu, H.F.G. de; Klug, J.; Masoumi, M., E-mail: mohammad@alu.ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Depto. de Engenharia Metalurgica e de Materiais; Ferreira, W.M. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Curso de Engenharia Mecanica

    2016-07-01

    Microstructure and texture evolution were studied in two different austenitic high manganese cast steels in each processing condition. Special attention was paid to the effects of hot deformation and subsequent treatment on grain orientation behavior. The roles of Mn and C elements as well as heat treatment processes were investigated by Thermo-Calc. The texture evolutions in the as-cast, solution heat treatment, as-rolled and subsequent treatment were explored via orientation distribution function. The results showed that face-centred cube austenite was developed in steels. Strong {110}<115> texture component was characterized in as-cast in both alloys. Then, the inhomogeneity microstructure and the pronounced microsegregations were removed by annealing and Brass {110}<112>, {110}<111> and {221}<102> components were formed. Finally, cube {001}<100> component was developed during hot rolling in samples. (author)

  7. Microstructure and texture evolution of different high manganese cast steels during hot deformation and subsequent treatment

    International Nuclear Information System (INIS)

    Lima, M.N.S.; Andrade, C.D.; Abreu, H.F.G. de; Klug, J.; Masoumi, M.; Ferreira, W.M.

    2016-01-01

    Microstructure and texture evolution were studied in two different austenitic high manganese cast steels in each processing condition. Special attention was paid to the effects of hot deformation and subsequent treatment on grain orientation behavior. The roles of Mn and C elements as well as heat treatment processes were investigated by Thermo-Calc. The texture evolutions in the as-cast, solution heat treatment, as-rolled and subsequent treatment were explored via orientation distribution function. The results showed that face-centred cube austenite was developed in steels. Strong {110}<115> texture component was characterized in as-cast in both alloys. Then, the inhomogeneity microstructure and the pronounced microsegregations were removed by annealing and Brass {110}<112>, {110}<111> and {221}<102> components were formed. Finally, cube {001}<100> component was developed during hot rolling in samples. (author)

  8. Influence of non-metallic inclusions on fatigue strength of high manganese steel

    International Nuclear Information System (INIS)

    Maekawa, I.; Shibata, H.; Lee, J.H.; Nishida, Shin-ichi

    1991-01-01

    Six series of high manganese austenitic steel, which contain different inclusion quantity, were prepared. Fatigue experiments, tensile tests and Charpy tests were carried out. Influence of non-metallic inclusion and of temperature on the stress intensity threshold, fatigue crack propagation behavior, elastic-plastic fracture toughness and Charpy value were studied at room temperature and low temperature. In general, strength of this high manganese steel was reduced with increase of inclusion content. Influences of the direction of elongated inclusion with regard to the rolling direction on their strengths were also discussed based on SEM observation and numerical analysis for the stress concentration at a crack tip when an inclusion was near by the tip. According to these results, an inclusion acted as an obstacle to crack propagation for LT specimen. The roughness of fracture surface of ST specimen was larger than that of SL specimen, and the crack growth rate of the former was less than that of the latter. Fatigue life was increased with decrease of temperature, and mechanical parameters such as ΔK th and J 1c were decreased with increase of temperature. The Charpy value decreased clearly with decrease of temperature

  9. Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel

    Science.gov (United States)

    Alturk, Rakan; Hector, Louis G.; Matthew Enloe, C.; Abu-Farha, Fadi; Brown, Tyson W.

    2018-06-01

    The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α'-martensite either directly or through ɛ-martensite. Uniaxial strain rates within the range of 0.005-500 s-1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy ( r) and normal anisotropy ( r n) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and r n with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.

  10. Strain Rate Effect on Tensile Flow Behavior and Anisotropy of a Medium-Manganese TRIP Steel

    Science.gov (United States)

    Alturk, Rakan; Hector, Louis G.; Matthew Enloe, C.; Abu-Farha, Fadi; Brown, Tyson W.

    2018-04-01

    The dependence of the plastic anisotropy on the nominal strain rate for a medium-manganese (10 wt.% Mn) transformation-induced plasticity (TRIP) steel with initial austenite volume fraction of 66% (balance ferrite) has been investigated. The material exhibited yield point elongation, propagative instabilities during hardening, and austenite transformation to α'-martensite either directly or through ɛ-martensite. Uniaxial strain rates within the range of 0.005-500 s-1 along the 0°, 45°, and 90° orientations were selected based upon their relevance to automotive applications. The plastic anisotropy (r) and normal anisotropy (r n) indices corresponding to each direction and strain rate were determined using strain fields obtained from stereo digital image correlation systems that enabled both quasistatic and dynamic measurements. The results provide evidence of significant, orientation-dependent strain rate effects on both the flow stress and the evolution of r and r n with strain. This has implications not only for material performance during forming but also for the development of future strain-rate-dependent anisotropic yield criteria. Since tensile data alone for the subject medium-manganese TRIP steel do not satisfactorily determine the microstructural mechanisms responsible for the macroscopic-scale behavior observed on tensile testing, additional tests that must supplement the mechanical test results presented herein are discussed.

  11. Fatigue crack growth-Microstructure relationships in a high-manganese austenitic TWIP steel

    Energy Technology Data Exchange (ETDEWEB)

    Niendorf, T., E-mail: niendorf@mail.uni-paderborn.de [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany); Rubitschek, F.; Maier, H.J. [University of Paderborn, Lehrstuhl fuer Werkstoffkunde (Materials Science), 33095 Paderborn (Germany); Niendorf, J.; Richard, H.A. [University of Paderborn, Fachgruppe Angewandte Mechanik (Applied Mechanics), 33095 Paderborn (Germany); Frehn, A. [Benteler Automotive, Product Group Chassis Systems, An der Talle 27-31, 33102 Paderborn (Germany)

    2010-04-15

    The crack growth behavior of a high-manganese austenitic steel, which exhibits the twinning-induced plasticity (TWIP) effect, was investigated under positive stress ratios. An experimental study making use of miniature compact tension (CT) specimens and thorough microstructural analyses including transmission electron microscopy and fracture analyses demonstrated that the microstructural evolution in the plastic zone of the fatigued TWIP CT specimens is substantially different as compared to the monotonic plastic deformation case. Specifically, the twin density in the plastic zone of the CT specimens is very low, leading to the conclusion that the deformation mechanisms depend drastically on the loading conditions. The absence of twinning under cyclic loading in the plastic zone of the CT specimens indicates that even large accumulated plastic strains are not sufficient to cause substantial twinning in the TWIP steel. This lack of hardening preserves the ductile character of the TWIP steel in the plastic zone ahead of the crack tip and provides for a crack growth rate in the Paris regime lower than reported for other high strength steels.

  12. Influence of Ti on the Hot Ductility of High-manganese Austenitic Steels

    Science.gov (United States)

    Liu, Hongbo; Liu, Jianhua; Wu, Bowei; Su, Xiaofeng; Li, Shiqi; Ding, Hao

    2017-07-01

    The influence of Ti addition ( 0.10 wt%) on hot ductility of as-cast high-manganese austenitic steels has been examined over the temperature range 650-1,250 °C under a constant strain rate of 10-3 s-1 using Gleeble3500 thermal simulation testing machine. The fracture surfaces and particles precipitated at different tensile temperatures were characterized by means of scanning electron microscope and X-ray energy dispersive spectrometry (SEM-EDS). Hot ductility as a function of reduction curves shows that adding 0.10 wt% Ti made the ductility worse in the almost entire range of testing temperatures. The phases' equilibrium diagrams of precipitates in Ti-bearing high-Mn austenitic steel were calculated by the Thermo-Calc software. The calculation result shows that 0.1 wt% Ti addition would cause Ti(C,N) precipitated at 1,499 °C, which is higher than the liquidus temperature of high-Mn austenitic steel. It indicated that Ti(C,N) particles start forming in the liquid high-Mn austenitic steel. The SEM-EDS results show that Ti(C,N) and TiC particles could be found along the austenite grain boundaries or at triple junction, and they would accelerate the extension of the cracks along the grain boundaries.

  13. On the Prediction of α-Martensite Temperatures in Medium Manganese Steels

    Science.gov (United States)

    Field, Daniel M.; Baker, Daniel S.; Van Aken, David C.

    2017-05-01

    A new composition-based method for calculating the α-martensite start temperature in medium manganese steel is presented and uses a regular solution model to accurately calculate the chemical driving force for α-martensite formation, Δ G_{{Chem}}^{γ \\to α } . In addition, a compositional relationship for the strain energy contribution during martensitic transformation was developed using measured Young's moduli ( E) reported in literature and measured values for steels produced during this investigation. An empirical relationship was developed to calculate Young's modulus using alloy composition and was used where dilatometry literature did not report Young's moduli. A comparison of the Δ G_{{Chem}}^{γ \\to α } normalized by dividing by the product of Young's modulus, unconstrained lattice misfit squared ( δ 2), and molar volume ( Ω) with respect to the measured α-martensite start temperatures, M_{{S}}^{α } , produced a single linear relationship for 42 alloys exhibiting either lath or plate martensite. A temperature-dependent strain energy term was then formulated as Δ G_{{str}}^{γ \\to α } ( {{{J}}/{{mol}}} ) = EΩ δ2 (14.8 - 0.013T) , which opposed the chemical driving force for α-martensite formation. M_{{S}}^{α } was determined at a temperature where Δ G_{{Chem}}^{γ \\to α } + Δ G_{{str}}^{γ \\to α } = 0 . The proposed M_{{S}}^{α } model shows an extended temperature range of prediction from 170 K to 820 K (-103 °C to 547 °C). The model is then shown to corroborate alloy chemistries that exhibit two-stage athermal martensitic transformations and two-stage TRIP behavior in three previously reported medium manganese steels. In addition, the model can be used to predict the retained γ-austenite in twelve alloys, containing ɛ-martensite, using the difference between the calculated M_{{S}}^{ɛ} and M_{{S}}^{α }.

  14. Effect of Surface Pretreatment on Quality and Electrochemical Corrosion Properties of Manganese Phosphate on S355J2 HSLA Steel

    Czech Academy of Sciences Publication Activity Database

    Pastorek, F.; Borko, K.; Fintová, Stanislava; Kajánek, D.; Hadzima, B.

    2016-01-01

    Roč. 6, č. 4 (2016), s. 1-9 ISSN 2079-6412 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : corrosion * steel * sandblasting * manganese phosphate Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.175, year: 2016 http://www.mdpi.com/2079-6412/6/4/46

  15. Scale-Dependent Manganese Leaching from Stainless Steel Impacts Terminal Galactosylation in Monoclonal Antibodies.

    Science.gov (United States)

    Williamson, Jenna; Miller, Jennifer; McLaughlin, Joseph; Combs, Rodney; Chu, Chia

    2018-06-08

    N-linked glycosylation profiles are routinely characterized on mammalian-derived protein therapeutic products and achieving consistency in the product-associated glycan attributes is an important indicator that the manufacturing process is under control. More importantly, meeting target glycan profile is a common criterion for ensuring product efficacy. During laboratory process development and subsequent scale up for pilot demonstration for a monoclonal antibody program, discrepancies in the molecule's terminal galactosylation level at 2-L, 100-L, and 6000-L scales were observed. Results from extensive investigations revealed the root cause as manganese leaching from the stainless steel components and that this leaching is dependent on exposed surface area and cultivation time. Although this metal impurity is only present at nanomolar concentrations and difficult to detect, a spike-in study demonstrated that this low level was sufficient to impact the protein glycosylation profiles. Surprisingly, the 2-L glass bioreactor setup exhibited the highest amount of exposure to stainless steel and resulted in both a greater degree of variability and higher overall levels of terminal galactosylation. The use of disposable vessels to minimize stainless steel surface exposure to the cell culture resulted in comparable terminal galactosylation levels to those measured in pilot and commercial bioreactors. The discovery of this leachable effect on the cell culture production process was an essential step in implementing appropriate process control. This article is protected by copyright. All rights reserved. © 2018 American Institute of Chemical Engineers.

  16. A low cycle fatigue model for low carbon manganese steel including the effect of dynamic strain aging

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle [Université Paris Ouest Nanterre La Défense (France); Wang, Qing Yuan; Khan, Muhammad Kashif [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean–Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320, Chatillon (France)

    2016-01-27

    Carbon–manganese steel A48 (French standards) is used in steam generator pipes of the nuclear power plant where it is subjected to the cyclic thermal load. The Dynamic Strain Aging (DSA) influences the mechanical behavior of the steel in low cycle fatigue (LCF) at favorable temperature and strain rate. The peak stress of A48 steel experiences hardening–softening–hardening (HSH) evolution at 200 °C and 0.4% s{sup −1} strain rate in fatigue loading. In this study, isotropic and kinematic hardening rules with DSA effect have been modified. The HSH evolution of cyclic stress associated with cumulative plastic deformation has also been estimated.

  17. Examination techniques for non-magnetic rings

    International Nuclear Information System (INIS)

    Metala, M.J.; Kilpatrick, N.L.; Frank, W.W.

    1990-01-01

    Until the introduction of 18Mn18Cr rings a few years ago, most non-magnetic steel rings for generator rotors were made from 18Mn5Cr alloy steel, which is highly susceptible to stress corrosion cracking in the presence of water. This, the latest in a series of papers on the subject of non-magnetic rings by the authors' company, provides a discussion of nondestructive examination of 18Mn5Cr rings for stress corrosion distress. With rings on the rotor, fluorescent penetrant, ultrasonic and special visual techniques are applied. With rings off the rotor, the fluorescent penetrant technique is used, with and without stress enhancement

  18. The Wear Characteristics of Heat Treated Manganese Phosphate Coating Applied to AlSi D2 Steel with Oil Lubricant

    Directory of Open Access Journals (Sweden)

    Venkatesan Alankaram

    2012-12-01

    Full Text Available Today, in the area of material design conversion coatings play an important role in the applications where temperature, corrosion, oxidation and wear come in to play. Wear of metals occurs when relative motion between counter-surfaces takes place, leading to physical or chemical destruction of the original top layers. In this study, the tribological behaviour of heat treated Manganese phosphate coatings on AISI D2 steel with oil lubricant was investigated. The Surface morphology of manganese phosphate coatings was examined by Scanning Electron Microscope (SEM and Energy Dispersive X-ray Spectroscopy (EDX .The wear tests were performed in a pin on disk apparatus as per ASTM G-99 Standard. The wear resistance of the coated steel was evaluated through pin on disc test using a sliding velocity of 3.0m/s under Constant loads of 40 N and 100 N with in controlled condition of temperature and humidity. The Coefficient of friction and wear rate were evaluated. Wear pattern of Manganese phosphate coated pins with oil lubricant, Heat treated Manganese phosphate coated pins with oil lubricant were captured using Scanning Electron Microscope (SEM. The results of the wear test established that the heat treated manganese phosphate coating with oil lubricant exhibited the lowest average coefficient of friction and the lowest wear loss up to 6583 m sliding distance under 40 N load and 3000 m sliding distance even under 100 N load respectively. The Wear volume and temperature rise in heat treated Manganese Phosphate coated pins with oil lubricant is lesser than the Manganese Phosphate coated pins with oil lubricant

  19. Structure analysis of aluminium silicon manganese nitride precipitates formed in grain-oriented electrical steels

    International Nuclear Information System (INIS)

    Bernier, Nicolas; Xhoffer, Chris; Van De Putte, Tom; Galceran, Montserrat; Godet, Stéphane

    2013-01-01

    We report a detailed structural and chemical characterisation of aluminium silicon manganese nitrides that act as grain growth inhibitors in industrially processed grain-oriented (GO) electrical steels. The compounds are characterised using energy dispersive X-ray spectrometry (EDX) and energy filtered transmission electron microscopy (EFTEM), while their crystal structures are analysed using X-ray diffraction (XRD) and TEM in electron diffraction (ED), dark-field, high-resolution and automated crystallographic orientation mapping (ACOM) modes. The chemical bonding character is determined using electron energy loss spectroscopy (EELS). Despite the wide variation in composition, all the precipitates exhibit a hexagonal close-packed (h.c.p.) crystal structure and lattice parameters of aluminium nitride. The EDX measurement of ∼ 900 stoichiometrically different precipitates indicates intermediate structures between pure aluminium nitride and pure silicon manganese nitride, with a constant Si/Mn atomic ratio of ∼ 4. It is demonstrated that aluminium and silicon are interchangeably precipitated with the same local arrangement, while both Mn 2+ and Mn 3+ are incorporated in the h.c.p. silicon nitride interstitial sites. The oxidation of the silicon manganese nitrides most likely originates from the incorporation of oxygen during the decarburisation annealing process, thus creating extended planar defects such as stacking faults and inversion domain boundaries. The chemical composition of the inhibitors may be written as (AlN) x (SiMn 0.25 N y O z ) 1−x with x ranging from 0 to 1. - Highlights: • We study the structure of (Al,Si,Mn)N inhibitors in grain oriented electrical steels. • Inhibitors have the hexagonal close-packed symmetry with lattice parameters of AlN. • Inhibitors are intermediate structures between pure AlN and (Si,Mn)N with Si/Mn ∼ 4. • Al and Si share the same local arrangement; Mn is incorporated in both Mn 2+ and Mn 3+ . • Oxygen

  20. Damping Capacity of High Manganese Austenitic Stainless Steel with a Two Phase Mixed Structure of Martensite and Austenite

    International Nuclear Information System (INIS)

    Hwang, Tae Hyun; Kang, Chang-Yong

    2013-01-01

    The damping capacity of high manganese austenitic stainless steel with a two phase mixed structure of deformation-induced martensite and reversed austenite was studied. Reversed austenite with an ultra-fine grain size of less than 0.2 μm was obtained by reversion treatment. The two phase structure of deformation-induced martensite and reversed austenite was obtained by annealing treatment at a range of 500-700 °C and various times in cold rolled high manganese austenitic stainless steel. The damping capacity increased with an increasing annealing temperature and time. In high manganese stainless steel with the two phase mixed structure of martensite and austenite, the damping capacity decreased with an increasing volume fraction of deformation-induced martensite. Thus, the damping capacity was strongly affected by deformation-induced martensite. The results confirmed that austenitic stainless steel with a good combination of strength and damping capacity was obtained from the two phase mixed structure of austenite and martensite.

  1. Laser cutting of high manganese cast steel; Komangan chuko no laser setsudan

    Energy Technology Data Exchange (ETDEWEB)

    Kataoka, Y.; Tokunaga, T. [University of Industrial Technology, Kanagawa (Japan); Miyazaki, T. [Chiba Institute of Technology, Chiba (Japan)

    1994-08-25

    This paper discusses applicability of CO2 laser to cut high manganese cast steel, and investigates the cutting conditions and characteristics. The tested material is made of steel scrap, ferro Mn and ferro Cr of 50 kg in total, which was deoxidized by using pure aluminum and injected into CO2 die by means of the ordinary casting method to make a circular rod with a diameter of 28 mm. The rod was given a heating and water toughening treatment in a muffle furnace maintaining N2 atmosphere. The base structure is an austenite system of Mn 12.4% by mass with hardness of MHV 220 to 230. The paper describes discussions on test pieces (with a thickness of 2 mm) fabricated under a laser beam frequency of 150 Hz, power outputs of 250, 350 and 500 W, and cutting speeds of 100, 300 and 500 mm/min. The cutting width increases as the laser power is increased, but is not governed by the cutting speed. Increased cutting speed roughens the surface of a cut face. The laser cutting has caused no change in hardness of the base material, and no processing deterioration has been recognized. As described, the laser cutting can be applied to finish-cutting if the cutting condition is selected properly. Simplification of the cutting process and improvement of working environment can be expected from the laser cutting. 14 refs., 12 figs., 2 tabs.

  2. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  3. Phase Transformation Behavior of Medium Manganese Steels with 3 Wt Pct Aluminum and 3 Wt Pct Silicon During Intercritical Annealing

    Science.gov (United States)

    Sun, Binhan; Fazeli, Fateh; Scott, Colin; Yue, Stephen

    2016-10-01

    Medium manganese steels alloyed with sufficient aluminum and silicon amounts contain high fractions of retained austenite adjustable to various transformation-induced plasticity/twinning-induced plasticity effects, in addition to a reduced density suitable for lightweight vehicle body-in-white assemblies. Two hot rolled medium manganese steels containing 3 wt pct aluminum and 3 wt pct silicon were subjected to different annealing treatments in the present study. The evolution of the microstructure in terms of austenite transformation upon reheating and the subsequent austenite decomposition during quenching was investigated. Manganese content of the steels prevailed the microstructural response. The microstructure of the leaner alloy with 7 wt pct Mn (7Mn) was substantially influenced by the annealing temperature, including the variation of phase constituents, the morphology and composition of intercritical austenite, the Ms temperature and the retained austenite fraction. In contrast, the richer variant 10 wt pct Mn steel (10Mn) exhibited a substantially stable ferrite-austenite duplex phase microstructure containing a fixed amount of retained austenite which was found to be independent of the variations of intercritical annealing temperature. Austenite formation from hot band ferrite-pearlite/bainite mixtures was very rapid during annealing at 1273 K (1000 °C), regardless of Mn contents. Austenite growth was believed to be controlled at early stages by carbon diffusion following pearlite/bainite dissolution. The redistribution of Mn in ferrite and particularly in austenite at later stages was too subtle to result in a measureable change in austenite fraction. Further, the hot band microstructure of both steels contained a large fraction of coarse-grained δ-ferrite, which remained almost unchanged during intercritical annealing. A recently developed thermodynamic database was evaluated using the experimental data. The new database achieved a better agreement

  4. Mechanical Properties of High Manganese Austenitic Stainless Steel JK2LB for ITER Central Solenoid Jacket Material

    Science.gov (United States)

    Saito, Toru; Kawano, Katsumi; Yamazaki, Toru; Ozeki, Hidemasa; Isono, Takaaki; Hamada, Kazuya; Devred, Arnaud; Vostner, Alexander

    A suite of advanced austenitic stainless steels are used for the ITER TF, CS and PF coil systems.These materials will be exposed to cyclic-stress at cryogenic temperature. Therefore, high manganese austenitic stainless steel JK2LB, which has high tensile strength, high ductility and high resistance to fatigue at 4 K has been chosen for the CS conductor. The cryogenic temperature mechanical property data of this material are very important for the ITER magnet design. This study is focused on mechanical characteristics of JK2LB and its weld joint.

  5. Effect of silicon on the structure, tribological behaviour, and mechanical properties of nitrogen-containing chromium-manganese austenitic steels

    International Nuclear Information System (INIS)

    Korshunov, L.G.; Chernenko, N.L.; Gojkhenberg, Yu.N.

    2003-01-01

    The effect of silicon in quantity of 3.5-4.5 mass. % on tribological behaviour is studied for nitrogen-bearing (0.20-0.52 mass. % of nitrogen) chromium-manganese austenitic steels (10Kh15G23S4A0.20, 10Kh16G17N3S4A0.30, 10Kh19G20NS4A0.50, 12Kh19G19NS2A0.50, 10Kh18G19A0.50, 08Kh16G8N10S4A0.18). Mechanical properties and corrosion resistance of the steels are determined. Using metallographic, x-ray diffraction and electron microscopical methods a study is made into structural transformations running in the steels considered under friction and static tension. It is shown that additional silicon alloying of nitrogen-bearing chromium-manganese austenitic steels results in an essential increase of adhesion wear resistance of the materials on retention of low friction coefficient (f=0.25-0.33). A strong silicon effect on steel tribological behaviour is related with planar slip activation and with an increase of austenite strength and heat resistance [ru

  6. Computer Simulation of Microsegregation of Sulphur and Manganese and Formation of MnS Inclusions while Casting Rail Steel

    Directory of Open Access Journals (Sweden)

    Kalisz D.

    2016-12-01

    Full Text Available The quality of rail steel is conditioned by its high mechanic qualities, which greatly depend on the presence of undesired nonmetallic inclusions. The paper is devoted to the segregation of components, mainly sulphur, and the formation of manganese sulphide in the process of steel solidification, at the casting rate of 100 and 500 K/min. Sulphur is a steel component which disadvantageously influences its numerous parameters. The oxide-sulphide and sulphide precipitations cause cracks and lower the strength of the material. This phenomenon was modeled with the use of author’s computer program based on Matsumiya interdendritic microsegregation model. The main assumptions of this model and thermodynamic conditions of inclusion formation during casting of steel are discussed in this paper. Two cases were analyzed: in the first one the MnS was assumed to form a pure and constant compound, whereas in the other one the manganese sulfide was precipitated as a component of a liquid oxide solution, and its activity was lower than unity. The final conclusion is that chemical composition of steel is the major parameter deciding about the formation of MnS inclusions.

  7. Modeling of uniaxial ratchetting behavior of SA333 carbon manganese steel

    International Nuclear Information System (INIS)

    Shit, J.; Dhar, S.; Acharyya, S.K.; Goyal, S.

    2012-01-01

    The paper deals with uniaxial ratcheting phenomenon of cyclic plasticity behavior of the materials SA333 carbon Manganese steel. A mechanistic model for the ratcheting phenomenon has been proposed. It is observed that von Mises yield criterion together with Chaboche’s kinematic hardening rules are not sufficient to model ratcheting phenomenon. Other associated phenomena like plastic strain memory surface, back stress memory points and over all the extra hardening behavior have to be incorporated to get a complete material model for ratcheting. The proposed model assembled all these ideas together with von Mises yield criterion and Chabache’s kinematic hardening rule. Low cycle fatigue tests and uniaxial ratcheting tests have been conducted for the materials. The material constants are identified and derived from experimental results. The ratcheting coefficients have been properly calibrated with these material constants. The material model, as mentioned above, for the ratcheting phenomenon has been implemented in an elastic plastic finite element code. The ratcheting results for different stress controlled ratcheting loads have been computed. The good feature of this model is that it reduces to symmetric low cycle fatigue model when loop closes. - Highlights: ► A common material model to simulate symmetric LCF and ratcheting. ► Extra hardening to take care the shift of plastic strain centre. ► Material parameters from tensile and LCF tests. ► Saturated loop in LCF and ratcheting strain rate is compared with experiment. ► Consideration of loading path, memory path and their directions.

  8. Nanocharacterisation of precipitates in austenite high manganese steels with advanced techniques: HRSTEM and DualEELS mapping

    International Nuclear Information System (INIS)

    Bobynko, J; Craven, A J; McGrouther, D; MacLaren, I; Paul, G

    2014-01-01

    To achieve optimal mechanical properties in high manganese steels, the precipitation of nanoprecipitates of vanadium and niobium carbides is under investigation. It is shown that under controlled heat treatments between 850°C and 950°C following hot deformation, few-nanometre precipitates of either carbide can be produced in test steels with suitable contents of vanadium or niobium. The structure and chemistry of these precipitates are examined in detail with a spatial resolution down to better than 1 nm using a newly commissioned scanning transmission electron microscope. In particular, it is shown that the nucleation of vanadium carbide precipitates often occurs at pre-existing titanium carbide precipitates which formed from titanium impurities in the bulk steel. This work will also highlight the links between the nanocharacterisation and changes in the bulk properties on annealing

  9. Behavior of surface residual stress in explosion hardened high manganese austenitic cast steel due to repeated impact loads

    International Nuclear Information System (INIS)

    Oda, Akira; Miyagawa, Hideaki

    1985-01-01

    Explosion hardened high manganese austenitic cast steel is being tried for rail crossing recently. From the previous studies, it became clear that high tensile residual stress was generated in the hardened surface layer by explosion and microcracks were observed. In this study, therefore, the behavior of surface residual stress in explosion hardened steel due to repeated impact loads was examined and compared with those of the original and shot peened steels. The results obtained are summarized as follows: (1) In the initial stage of the repetition of impact, high tensile surface residual stress in explosion hardened steel decreased rapidly with the repetition of impact, while those of the original and shot peened steels increased rapidly. This difference was attributed to the difference in depth of the work hardened layer in three testing materials. (2) Beyond 20 impacts the residual stress of three test specimens decreased gradually, and at more than 2000 impacts the compressive stress of about 500 MPa was produced regardless of the histories of working of testing materials. (3) The linear law in the second stage of residual stress fading was applicable to this case, and the range of the linear relationship was related to the depth of the work hardened layer of testing material. (4) From the changes in half-value breadth and peak intensity of diffraction X-ray, it was supposed that a peculiar microscopic strain exists in explosion hardened steel. (author)

  10. Determination of vanadium, manganese and tungsten in steels with an 241 Am-Be isotopic neutron source

    International Nuclear Information System (INIS)

    Galdino, S.M.L.

    1985-09-01

    A non-destructive neutron activation method was developed for determination of vanadium, manganese, and tungsten in alloy-steel, with the aid of an Am-Be 1,85x10 11 Bq(5Ci) isotopic neutron source, employing NaI (T1) detector well type 2x2 in. The 51 V (n,γ) 52 V, 55 Mn (n,γ) 56 Mn, and 186 W (n,γ) 187 W nuclear reactions are induced in steel samples subject to activation by thermal neutron. After irradiation, the activity of the samples was measured by γ-spectrometry under the 1434 KeV 52 V, 847KeV 56 Mn, and 686 KeV 187 W photopeaks. Possible interferences due to other radionuclides activity were investigated by determining the 52 V, 56 Mn, and 187 W half-lifes. The time of analysis for vanadium determination was 11 min, with 1,5% of precision and 3,4% of average absolute deviation. The time of analysis for manganese determination was 22,8 min with 4,0% of precision and 3,4% of average absolute deviation. The time of analysis for tungsten determination was 44,62 min with 3,8% of precision and 3,1% of average absolute deviation. The activation analysis method is adequated for steel quality control in industry. (Author) [pt

  11. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel.

    Science.gov (United States)

    Haase, Christian; Bültmann, Jan; Hof, Jan; Ziegler, Stephan; Bremen, Sebastian; Hinke, Christian; Schwedt, Alexander; Prahl, Ulrich; Bleck, Wolfgang

    2017-01-11

    Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM) is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP) steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM). In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α'-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics.

  12. Exploiting Process-Related Advantages of Selective Laser Melting for the Production of High-Manganese Steel

    Directory of Open Access Journals (Sweden)

    Christian Haase

    2017-01-01

    Full Text Available Metal additive manufacturing has strongly gained scientific and industrial importance during the last decades due to the geometrical flexibility and increased reliability of parts, as well as reduced equipment costs. Within the field of metal additive manufacturing methods, selective laser melting (SLM is an eligible technique for the production of fully dense bulk material with complex geometry. In the current study, we addressed the application of SLM for processing a high-manganese TRansformation-/TWinning-Induced Plasticity (TRIP/TWIP steel. The solidification behavior was analyzed by careful characterization of the as-built microstructure and element distribution using optical and scanning electron microscopy (SEM. In addition, the deformation behavior was studied using uniaxial tensile testing and SEM. Comparison with conventionally produced TRIP/TWIP steel revealed that elemental segregation, which is normally very pronounced in high-manganese steels and requires energy-intensive post processing, is reduced due to the high cooling rates during SLM. Also, the very fast cooling promoted ε- and α’-martensite formation prior to deformation. The superior strength and pronounced anisotropy of the SLM-produced material was correlated with the microstructure based on the process-specific characteristics.

  13. Welding fumes from stainless steel gas metal arc processes contain multiple manganese chemical species.

    Science.gov (United States)

    Keane, Michael; Stone, Samuel; Chen, Bean

    2010-05-01

    Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (welding process. Mn generation rates for the fractions were tabulated, and the influence of ozone is discussed. The conclusions are that exposures to welding fumes include multiple Mn species, both

  14. Effects of Non-metallic Inclusions on Hot Ductility of High Manganese TWIP Steels Containing Different Aluminum Contents

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Wang, Rui-Zhi; Xin, Xiu-Ling; Xu, Long-Yun

    2016-06-01

    The characteristics of inclusions in Fe-16Mn- xAl-0.6C ( x = 0.002, 0.033, 0.54, 2.10 mass pct) steels have been investigated and their effects on hot ductility of the high manganese TWIP steels have been discussed. Ductility is very poor in the steel containing 0.54 mass pct aluminum, which is lower than 20 pct in the temperature range of 873 K to 1473 K (600 °C to 1200 °C). For the steels containing 0.002 and 2.10 mass pct aluminum, ductility is higher than 40 pct in the same temperature range. The hot ductility of steel containing 0.033 mass pct aluminum is higher than 30 pct throughout the temperature range under examination. With increasing aluminum content, the main inclusions in the steels change along the route of MnO/(MnO + MnS) → MnS/(Al2O3 + MnS) → AlN/(Al2O3 + MnS)/(MgAl2O4 + MnS) → AlN. The thermodynamic results of inclusion types calculated with FactSage software are in agreement with the experimental observation results. The inclusions in the steels containing 0.002 mass pct aluminum do not deteriorate the hot ductility. MnS inclusions whose average size, number density, and volume ratio are 1.12 μm, 15.62 mm-2, and 2.51 × 10-6 in the steel containing 0.033 mass pct aluminum reduce the ductility. In the steel containing 0.54 mass pct aluminum, AlN inclusions whose average size, number density, and volume ratio are 0.878 μm, 16.28 mm-2 and 2.82 × 10-6 can precipitate at the austenite grain boundaries, prevent dynamic recrystallization and deteriorate the hot ductility. On the contrary, in the steel containing 2.10 mass pct aluminum, the average size, number density and volume ratio of AlN inclusions change to 2.418 μm, 35.95 mm-2, and 2.55 × 10-5. They precipitate in the matrix, which do not inhibit dynamic recrystallization and thereby do not lead to poor hot ductility.

  15. Internal and External Oxidation of Manganese in Advanced High Strength Steels

    NARCIS (Netherlands)

    Aghaei Lashgari, V.

    2014-01-01

    Advanced high strength steels (AHSS) have been used extensively in the automotive industries. The main characteristic of these steels is combination of high strength and enhanced formability that makes them very attractive for automotive application. However, the major drawback of these steels is

  16. Evolution of mechanical properties of boron/manganese 22MnB5 steel under magnetic pulse influences

    International Nuclear Information System (INIS)

    Falaleev, A P; Meshkov, V V; Vetrogon, A A; Shymchenko, A V

    2016-01-01

    The boron/manganese 22MnB5 steel can be noted as the widely used material for creation of details, which must withstand high amount of load and impact influences. The complexity and high labor input of restoration of boron steel parts leads to growing interest in the new forming technologies such as magnetic pulse forming. There is the investigation of the evolution of mechanical properties of 22MnB5 steel during the restoration by means of magnetic pulse influence and induction heating. The heating of 22MnB5 blanks to the temperature above 900 0 C was examined. The forming processes at various temperatures (800, 900 and 950 0 C) were performed during the experiments. The test measurements allowed to obtain the relationships between the strain and the operation parameters such as induced current, pulse discharge time and the operation temperature. Based on these results the assumption about usage of these parameters for control of deformation process was made. Taking into account the load distribution and the plasticity evolution during the heating process, the computer simulation was performed in order to obtain more clear strain distribution through the processed area. The measurement of hardness and the comparison with the properties evolution during hot stamping processes confirmed the obtained results. (paper)

  17. Damping capacity of unstable steels on chromium-nickel-manganese base

    International Nuclear Information System (INIS)

    Kochkin, L.I.; Rudakov, A.A.

    1982-01-01

    The paper deals with results of a study on the energy scattering in OKh13N3G8, 20Kh13N3G4 and 30Kh13N3G4 unstable steels. It is shown that the development of microplastic strains most easily occurs in low-carbon steel having a two-phase structure in the initial state. The proceeding of microplastic deformations in carbon unstable steels is limited by the interstitial atom effect on the dislocation movement. It is established that in OKh13N3G8 steel the martensite α→γ- transformation begins under the cyclic stress amplitudes below the yield point of this steel. The steels studied possess a high vibrostrength [ru

  18. Damping capacity of unstable steels on chromium-nickel-manganese base

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, L.I.; Rudakov, A.A. (Kirovskij Politekhnicheskij Inst. (USSR))

    1982-02-01

    The paper deals with results of a study on the energy scattering in OKh13N3G8, 20Kh13N3G4 and 30Kh13N3G4 unstable steels. It is shown that the development of microplastic strains most easily occurs in low-carbon steel having a two-phase structure in the initial state. The proceeding of microplastic deformations in carbon unstable steels is limited by the interstitial atom effect on the dislocation movement. It is established that in OKh13N3G8 steel the martensite ..cap alpha --> gamma..- transformation begins under the cyclic stress amplitudes below the yield point of this steel. The steels studied possess a high vibrostrength.

  19. Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: Chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders.

    Science.gov (United States)

    Kucera, J; Bencko, V; Pápayová, A; Saligová, D; Tejral, J; Borská, L

    2001-11-01

    Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Airborne particulate matter (APM) collected using both personal and stationary samplers was analyzed by instrumental neutron activation analysis (INAA). Quality assurance procedures of both sampling and analytical stages are described. Of the elements determined, results are presented for chromium, iron, manganese, molybdenum, nickel and vanadium. The median values of element concentrations exceeded the maximum admissible limits for workplace pollutants only for chromium, while for nickel the limit was exceeded in several individual cases. Sampling of hair, nails, blood, urine and saliva to be used for biological monitoring of the exposed and control groups is also described.

  20. The Effect of Cooling Conditions on the Evolution of Non-metallic Inclusions in High Manganese TWIP Steels

    Science.gov (United States)

    Wang, Yu-Nan; Yang, Jian; Xin, Xiu-Ling; Wang, Rui-Zhi; Xu, Long-Yun

    2016-04-01

    In the present study, the effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels was investigated based on experiments and thermodynamic calculations. In addition, the formation and growth behavior of AlN inclusions during solidification under different cooling conditions were analyzed with the help of thermodynamics and dynamics. The inclusions formed in the high manganese TWIP steels are classified into nine types: (1) AlN; (2) MgO; (3) CaS; (4) MgAl2O4; (5) AlN + MgO; (6) MgO + MgS; (7) MgO + MgS + CaS; (8) MgO + CaS; (9) MgAl2O4 + MgS. With the increase in the cooling rate, the volume fraction and area ratio of inclusions are almost constant; the size of inclusions decreases and the number density of inclusions increases in the steels. The thermodynamic results of inclusion types calculated with FactSage are consistent with the observed results. With increasing cooling rate, the diameter of AlN decreases. When the cooling rate increases from 0.75 to 4.83 K s-1, the measured average diameter of AlN decreases from 4.49 to 2.42 μm. Under the high cooling rate of 4.83 K s-1, the calculated diameter of AlN reaches 3.59 μm at the end of solidification. However, the calculated diameter of AlN increases to approximately 5.93 μm at the end of solidification under the low cooling rate of 0.75 K s-1. The calculated diameter of AlN decreases with increasing cooling rate. The theoretical calculation results of the change in diameter of AlN under the different cooling rates have the same trend with the observed results. The existences of inclusions in the steels, especially AlN which average sizes are 2.42 and 4.49 μm, respectively, are not considered to have obvious influences on the hot ductility.

  1. Boron effect on plasticity of austenite chromium-nickel-manganese steel with nitrogen

    International Nuclear Information System (INIS)

    Bulat, S.I.; Sorokina, N.A.; Ul'yanin, E.A.

    1975-01-01

    Plasticity of the stainless steels, with boron content changing from 0 to 0.13% is investigated. It follows from the test results that when the boron content amounts to 0.001 - 0.005%, plasticity of the steel rises at temperatures from 800 to 1000 deg C. When the boron content is higher, plasticity of the steel drops down, particularly at a temperature of 1000 deg C. Due to high sensitivity of the test steel to overheating at temperatures above 1260 deg C, the temperatures of 1240 -1260 deg C are considered to be the optimum for ingot heating, provided that the ingots are preliminarily held at the first stage of heating at a temperature of 1200 - 1220 deg C

  2. Galvannealing of (high-)manganese-alloyed TRIP- and X-IP registered -steel

    Energy Technology Data Exchange (ETDEWEB)

    Blumenau, M. [ThyssenKrupp Steel Europe AG, Bamenohler Strasse 211, D-57402 Finnentrop (Germany); Norden, M. [DOC Dortmunder Oberflaechencentrum GmbH, Eberhardstrasse 12, D-44145 Dortmund (Germany); Friedel, F.; Peters, K. [ThyssenKrupp Steel Europe AG, Kaiser-Wilhelm-Strasse 100, D-47166 Duisburg (Germany)

    2010-12-15

    In this study the influence of Mn on galvannealed coatings of 1.7% Mn-1.5% Al TRIP- and 23% Mn X-IP registered -steels was investigated. It is shown that the external selective oxides like Mn, Al and Si of the TRIP steel which occur after annealing at 800 C for 60 s at a dew point (DP) of -25 C (5% H{sub 2}) hamper the Fe/Zn-reaction during subsequent galvannealing. Preoxidation was beneficially utilized to increase the surface-reactivity of the TRIP steel under the same dew point conditions. The influence of Mn on the steel alloy was investigated by using a 23% Mn containing X-IP registered -steel which was bright annealed at 1100 C for 60 s at DP -50 C (5% H{sub 2}) to obtain a mainly oxide free surface prior to hot dip galvanizing (hdg) and subsequent galvannealing. As well known from the literature Mn alloyed to the liquid zinc melt stabilizes {delta}-phase at lower temperatures by participating in the Fe-Zn-phase reactions, it was expected that the metallic Mn of the X-IP registered -steel increases the Fe/Zn-reactivity in the same manner. The approximation of the effective diffusion coefficient (D{sub eff}(Fe)) during galvannealing was found to be higher than compared to a low alloyed steel reference. Contrary to the expectation no increased Fe/Zn-reaction was found by microscopic investigations. Residual {eta}- and {zeta}-phase fractions prove a hampered Fe/Zn-reaction. As explanation for the observed hampered Fe/Zn-reaction the lower Fe-content of the high-Mn-alloyed X-IP registered -steel was suggested as the dominating factor for galvannealing. (Copyright copyright 2010 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Effects of Strain Rate and Temperature on the Mechanical Properties of Medium Manganese Steels

    Energy Technology Data Exchange (ETDEWEB)

    Rana, Radhakanta [Colorado School of Mines, Golden, CO (United States); Matlock, David K [Colorado School of Mines, Golden, CO (United States); Speer, John G [Colorado School of Mines, Golden, CO (United States); De Moor, Emmanuel [Colorado School of Mines, Golden, CO (United States)

    2016-11-16

    The effects of temperature (-60 to 100 °C) and strain rate (0.002 to 0.2 s-1) on the properties of Al-alloyed 7 and 10 wt-% Mn steels containing 34.8 and 57.3 vol-% austenite respectively were evaluated by tensile tests in isothermal liquid baths. The tensile strengths of both medium Mn steels increased with a decrease in temperature owing to the decreased austenite stability with a decrease in temperature. At lower temperatures the strength of the 10MnAl steel was highest, a consequence of the higher strain hardening rate caused by more austenite transformation to martensite with deformation. The resulting properties are assessed with a consideration of the effects of strain rate and deformation on adiabatic heating which was observed to be as high as 95o C.

  4. Corrosion behaviour of high manganese austenitic stainless steels: positive and negative aspects

    International Nuclear Information System (INIS)

    Raja, V.S.

    1999-01-01

    Stainless steel 304 has found use as a most versatile engineering material in many industrial applications. Recently, the Indian industries have developed high Mn stainless steels with low C and Ni contents and simultaneously introduced N and Cu in the system. Composition of some of the alloys which are prevalent in the market are given. Individually, the effect of Ni, C, Mn, N and Cu on various forms of corrosion is reasonably understood. However, it will be worthwhile to review the response of these alloys, containing all these elements, towards various forms of corrosion. The objective of this paper is preciously to do this

  5. Damage observation in a high-manganese austenitic TWIP steel by synchrotron radiation computed tomography

    International Nuclear Information System (INIS)

    Lorthios, J.; Nguyen, F.; Gourgues, A.-F.; Morgeneyer, T.F.; Cugy, P.

    2010-01-01

    Internal damage below the fracture surface of a multiaxial specimen made of twinning-induced plasticity (TWIP) steel was observed by three-dimensional X-ray microtomography as very elongated 'primary' voids. Specific tools for the local damage analysis were developed. A gradient in void volume fraction was measured from the fracture surface down to the bulk of the scanned volume (from ∼0.06% to 90% in area fraction), indicating strongly localized final fracture.

  6. Microstructural and Texture Development in Two Austenitic Steels with High-Manganese Content

    DEFF Research Database (Denmark)

    Bhattacharya, Basudev; Ray, Ranjit Kumar; Leffers, Torben

    2015-01-01

    Two austenitic steels, Fe-21.3Mn-3.44Si-3.74Al-0.5C and Fe-29.8Mn-2.96Si-2.73Al-0.52C, were subjected to cold rolling with 30 to 80 pct reduction with an increment of 10 pct and subsequently the development of their microstructures and textures were studied. The overall texture after 80 pct cold ...

  7. Review of Manganese Processing for Production of TRIP/TWIP Steels, Part 1: Current Practice and Processing Fundamentals

    Science.gov (United States)

    Elliott, R.; Coley, K.; Mostaghel, S.; Barati, M.

    2018-02-01

    The increasing demand for high-performance steel alloys has led to development of transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) alloys over the past three decades. These alloys offer exceptional combinations of high tensile strength and ductility. Thus, the mechanical behavior of these alloys has been a subject of significant work in recent years. However, the challenge of economically providing Mn in the quantity and purity required by these alloys has received considerably less attention. To enable commercial implementation of ultrahigh-Mn alloys, it is desirable to lower the high material costs associated with their production. Therefore, the present work reviews Mn processing routes in the context of the chemical requirements of these alloys. The aim of this review is to assess the current state of the art regarding reduction of manganese ores and provide a comprehensive reference for researchers working to mitigate material processing costs associated with Mn production. The review is presented in two parts: Part 1 introduces TRIP and TWIP alloys, current industrial practice, and pertinent thermodynamic fundamentals; Part 2 addresses available literature regarding reduction of Mn ores and oxides, and seeks to identify opportunities for future process development.

  8. Multi-scale Modeling of the Impact Response of a Strain Rate Sensitive High-Manganese Austenitic Steel

    Directory of Open Access Journals (Sweden)

    Orkun eÖnal

    2014-09-01

    Full Text Available A multi-scale modeling approach was applied to predict the impact response of a strain rate sensitive high-manganese austenitic steel. The roles of texture, geometry and strain rate sensitivity were successfully taken into account all at once by coupling crystal plasticity and finite element (FE analysis. Specifically, crystal plasticity was utilized to obtain the multi-axial flow rule at different strain rates based on the experimental deformation response under uniaxial tensile loading. The equivalent stress – equivalent strain response was then incorporated into the FE model for the sake of a more representative hardening rule under impact loading. The current results demonstrate that reliable predictions can be obtained by proper coupling of crystal plasticity and FE analysis even if the experimental flow rule of the material is acquired under uniaxial loading and at moderate strain rates that are significantly slower than those attained during impact loading. Furthermore, the current findings also demonstrate the need for an experiment-based multi-scale modeling approach for the sake of reliable predictions of the impact response.

  9. Monitoring of occupational exposure in manufacturing of stainless steel constructions. Part I: Chromium, iron, manganese, molybdenum, nickel and vanadium in the workplace air of stainless steel welders

    International Nuclear Information System (INIS)

    Kucera, J.; Hnatowicz, V.; Bencko, V.; Papayova, A.; Saligova, D.; Tejral, J.; Borska, L.

    2000-01-01

    Exposure to workplace airborne pollutants was examined in a group of 20 workers dealing mainly with welding, polishing, drilling and assembling of stainless steel constructions. Monitoring of airborne particulate matter (ARM) was performed using both personal and stationary samplers. For the personal full-shift monitoring, a SKC 224 PCRX-4 constant flow rate pump was used which was connected to a sampling head with mixed cellulose matched-weight filters having a diameter of 32 mm and a 0.8 μm pore size. The constant flow rate amounted to 2 L min -1 . For the stationary sampling, the ''Gent'' stacked filter unit PM10 sampler was used, operating at a flow rate of 16 L min -1 . It collects particles having an equivalent aerodynamic diameter (EAD) of less than 10,um in the separate ''coarse'' (2-10 μm EAD) and ''fine'' (< 2 μm EAD) size fractions on two sequential polycarbonate (Costar, Nuclepore) filters with a 47 mm diameter. The filters of both types were analyzed by instrumental neutron activation analysis (INAA). Of the elements determined, results for chromium, iron, manganese, molybdenum, nickel and vanadium are presented. Procedures for quality assurance of both sampling and analytical stages are described. Sampling of biological material for elemental analysis (hair, nails, urine and blood and/or serum) of exposed and control persons in contamination-free conditions was also performed. In addition, saliva samples were collected for studying immunological and genotoxicity aspects of occupational exposure. (author)

  10. Anisotropy of fracture toughness of austenitic high nitrogen chromium-manganese steel

    International Nuclear Information System (INIS)

    Balitskii, A.I.; Pokhmurskii, V.I.; Diener, M.; Magdowski, R.; Speidel, M.O.

    1999-01-01

    The anisotropy of mechanical properties, in particular of the fracture toughness measured by the J-integral method, is demonstrated for industrially manufactured high strength retaining rings made from the nitrogen alloyed steel 18Mn18Cr. The RT-orientation turns out to be the weakest with regard to the resistance of the material to stable crack growth. The fracture toughness results are compared with results from calorimetric measurements. Here, also an orientation dependence of the heat irradiation energy is observed, clearly showing the same ranking of specimen orientation as the toughness data suggest. (orig.)

  11. Hot rolling of chromium - nickel - manganese stainless steel containing nitrogen and boron

    International Nuclear Information System (INIS)

    Khorosh, V.A.; Bulat, S.I.; Mukhina, M.A.; Sorokina, N.A.; Yushchenko, K.A.; Tsentral'nyj Nauchno-Issledovatel'skij Inst. Chernoj Metallurgii, Moscow; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)

    1976-01-01

    The strength of stainless steel of the 03Kh2ON16AG6 type increases perceptibly with an increase in the nitrogen content from 0.11 to 0.37%. At the same time, however, its ductility in the region of hot deformation temperatures (red brittleness range of 800 to 1,000 deg C) decreases. Microalloying with boron (0.002 to 0.005% by calculation) permits enhancing the hot ductility to an acceptable level without adversely affecting the working properties. The mechaniusm of boron effect is analyzed. The temperature at which ingots are heated prior to rolling to achieve the desired effect must be sufficiently low. Optimum condition for two stage heating of 6.2-ton ingots are recommeded

  12. Exposure to respirable dust and manganese and prevalence of airways symptoms, among Swedish mild steel welders in the manufacturing industry.

    Science.gov (United States)

    Hedmer, Maria; Karlsson, Jan-Eric; Andersson, Ulla; Jacobsson, Helene; Nielsen, Jörn; Tinnerberg, Håkan

    2014-08-01

    Welding fume consists of metal fumes, e.g., manganese (Mn) and gases, e.g., ozone. Particles in the respirable dust (RD) size range dominate. Exposure to welding fume could cause short- and long-term respiratory effects. The prevalence of work-related symptoms among mild steel welders was studied, and the occupational exposure to welding fumes was quantified by repeated measurements of RD, respirable Mn, and ozone. Also the variance components were studied. A questionnaire concerning airway symptoms and occupational history was answered by 79% of a cohort of 484 welders. A group of welders (N = 108) were selected and surveyed by personal exposure measurements of RD and ozone three times during 1 year. The welders had a high frequency of work-related symptoms, e.g., stuffy nose (33%), ocular symptoms (28%), and dry cough (24%). The geometric mean exposure to RD and respirable Mn was 1.3 mg/m(3) (min-max 0.1-38.3 mg/m(3)) and 0.08 mg/m(3) (min-max <0.01-2.13 mg/m(3)), respectively. More than 50% of the Mn concentrations exceeded the Swedish occupational exposure limit (OEL). Mainly, low concentrations of ozone were measured, but 2% of the samples exceeded the OEL. Of the total variance for RD, 30 and 33% can be attributed to within-worker variability and between-company variability, respectively. Welders had a high prevalence of work-related symptom from the airways and eyes. The welders' exposure to Mn was unacceptably high. To reduce the exposure further, control measures in the welding workshops are needed. Correct use of general mechanical ventilation and local exhaust ventilation can, for example, efficiently reduce the exposure.

  13. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    Science.gov (United States)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  14. Effect of initial grain size on inhomogeneous plastic deformation and twinning behavior in high manganese austenitic steel with a polycrystalline microstructure

    Science.gov (United States)

    Ueji, R.; Tsuchida, N.; Harada, K.; Takaki, K.; Fujii, H.

    2015-08-01

    The grain size effect on the deformation twinning in a high manganese austenitic steel which is so-called TWIP (twining induced plastic deformation) steel was studied in order to understand how to control deformation twinning. The 31wt%Mn-3%Al-3% Si steel was cold rolled and annealed at various temperatures to obtain fully recrystallized structures with different mean grain sizes. These annealed sheets were examined by room temperature tensile tests at a strain rate of 10-4/s. The coarse grained sample (grain size: 49.6μm) showed many deformation twins and the deformation twinning was preferentially found in the grains in which the tensile axis is parallel near to [111]. On the other hand, the sample with finer grains (1.8 μm) had few grains with twinning even after the tensile deformation. The electron back scattering diffraction (EB SD) measurements clarified the relationship between the anisotropy of deformation twinning and that of inhomogeneous plastic deformation. Based on the EBSD analysis, the mechanism of the suppression of deformation twinning by grain refinement was discussed with the concept of the slip pattern competition between the slip system governed by a grain boundary and that activated by the macroscopic load.

  15. Mineral resource of the month: manganese

    Science.gov (United States)

    Corathers, Lisa A.

    2012-01-01

    Manganese is a silver-colored metal resembling iron and often found in conjunction with iron. The earliest-known human use of manganese compounds was in the Stone Age, when early humans used manganese dioxide as pigments in cave paintings. In ancient Rome and Egypt, people started using it to color or remove the color from glass - a practice that continued to modern times. Today, manganese is predominantly used in metallurgical applications as an alloying addition, particularly in steel and cast iron production. Steel and cast iron together provide the largest market for manganese (historically 85 to 90 percent), but it is also alloyed with nonferrous metals such as aluminum and copper. Its importance to steel cannot be overstated, as almost all types of steel contain manganese and could not exist without it.

  16. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    International Nuclear Information System (INIS)

    Xu, Yun-bo; Hu, Zhi-ping; Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing; Ma, De-gang; Misra, R.D.K.

    2017-01-01

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  17. Effect of two-step intercritical annealing on microstructure and mechanical properties of hot-rolled medium manganese TRIP steel containing δ-ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yun-bo [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Hu, Zhi-ping, E-mail: huzhiping900401@126.com [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Zou, Ying; Tan, Xiao-dong; Han, Ding-ting; Chen, Shu-qing [State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, People' s Republic China (China); Ma, De-gang [Tangshan Iron and Steel Company, Tangshan 063000, People' s Republic China (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States)

    2017-03-14

    The microstructure-properties relationship, work-hardening behavior and retained austenite stability have been systematically investigated in a hot-rolled medium manganese transformation-induced-plasticity (TRIP) steel containing δ-ferrite subjected to one-step and two-step intercritical annealing. The steel exhibited tensile strength of 752 MPa and total elongation of 52.7% for one-step intercritical annealing at 740 °C, tensile strength of 954 MPa and total elongation of 39.2% in the case of intercritical quenching at 800 °C and annealing at 740 °C. The austenite obtained by two-step annealing mostly consists of refined lath structures and increased fraction of block-type particles existing at various kinds of sites, which is highly distinguished from those characterized by long lath morphology and small amounts of granular shape in one-step annealed samples. In spite of a higher C and Mn content in austenite and finer austenite laths, two-step annealing can lead to an active and continuous TRIP effect provided by a mixed blocky and lath-type austenitic structure with lower stability, contributing to a higher UTS. In contrast, one-step annealing gave rise to a less active but sustained TRIP effect given by the dominant lath-like austenite having higher stability, leading to a very high elongation. The further precipitation of vanadium carbides and the presence of both dislocation substructure and fine equiaxed grain in ferrite matrix facilitate the increase of yield strength after double annealing. - Highlights: • A novel two-step process was applied to a hot-rolled Fe-0.2C-6.5Mn-3Al steel. • The interplay between different microstructures and mechanical properties was studied. • Two-step annealing led to an active and continuous TRIP. • An outstanding combination of strength of 954 MPa and elongation of 39.2% was obtained.

  18. Steel dust in the New York City subway system as a source of manganese, chromium, and iron exposures for transit workers.

    Science.gov (United States)

    Chillrud, Steven N; Grass, David; Ross, James M; Coulibaly, Drissa; Slavkovich, Vesna; Epstein, David; Sax, Sonja N; Pederson, Dee; Johnson, David; Spengler, John D; Kinney, Patrick L; Simpson, H James; Brandt-Rauf, Paul

    2005-03-01

    The United States Clean Air Act Amendments of 1990 reflected increasing concern about potential effects of low-level airborne metal exposure on a wide array of illnesses. Here we summarize results demonstrating that the New York City (NYC) subway system provides an important microenvironment for metal exposures for NYC commuters and subway workers and also describe an ongoing pilot study of NYC transit workers' exposure to steel dust. Results from the TEACH (Toxic Exposure Assessment, a Columbia and Harvard) study in 1999 of 41 high-school students strongly suggest that elevated levels of iron, manganese, and chromium in personal air samples were due to exposure to steel dust in the NYC subway. Airborne concentrations of these three metals associated with fine particulate matter were observed to be more than 100 times greater in the subway environment than in home indoor or outdoor settings in NYC. While there are currently no known health effects at the airborne levels observed in the subway system, the primary aim of the ongoing pilot study is to ascertain whether the levels of these metals in the subway air affect concentrations of these metals or related metabolites in the blood or urine of exposed transit workers, who due to their job activities could plausibly have appreciably higher exposures than typical commuters. The study design involves recruitment of 40 transit workers representing a large range in expected exposures to steel dust, the collection of personal air samples of fine particulate matter, and the collection of blood and urine samples from each monitored transit worker.

  19. A study on low temperature transformation ferrite in ultra low carbon IF steels (I) - effects of manganese and annealing conditions

    International Nuclear Information System (INIS)

    Jeong, Woo Chang; Lee, Jae Yeon; Jin, Young Sool

    2001-01-01

    An investigation was made to determine the effects of Mn content and annealing conditions on the formation of the low temperature transformation products in ultra low carbon interstitial free steels. With increasing the Mn content, yield and tensile strengths increased, but yield ratio decreased. The Mn was found to be effective to decrease the yield point elongation, causing continuous yielding in 3% Mn steel. Low temperature transformation ferrites such as quasi-polygonal ferrite, granular bainitic ferrite, and bainitic ferrite more easily formed with higher Mn content, higher annealing temperature, longer annealing time, and faster cooling rate. Polygonal ferrite grain was readily identified in the light microscope and was characterized by the polyhedral and equiaxed shape while quasi-polygonal ferrite showed the irregular changeful grain boundaries. It was found that both granular bainitic and bainitic ferrites revealed some etching evidence of substructures in the light microscope

  20. Effect of Pre-strain and High Stresses on the Bainitic Transformation of Manganese-boron Steel 22MnB5

    Science.gov (United States)

    Said Schicchi, Diego; Hunkel, Martin

    2018-06-01

    During the last decade, the use of press-hardened components in the automotive industry has grown considerably. The so-called tailored tempering, also known as partial press hardening, employs locally heated tools seeking to obtain bainitic transformations. This leads to (seamless) zones within the formed parts with higher ductility. Due to the intrinsic nature of this process, phase transformations happen under the influence of high loads and in pre-deformed austenite. The austenite pre-strain state and applied stresses affect the kinetics of the bainitic transformation. Moreover, stresses have an additional relevant effect in this process, the so-called transformation plasticity. Linear transformation plasticity models have been successfully used to predict the behavior in the presence of low stresses. Nonetheless, because of the process's severe conditions, these tend to fail. A strong nonlinearity of the transformation plasticity strain is observed for applied stresses above the austenite yield strength. Using thermomechanical tests on sheet specimens of a manganese-boron steel (22MnB5), widely utilized in the industry, the effect on the bainitic transformation of various degrees of deformation in the range of 0 to 18 pct, applied stresses in the range of 0 to 250 MPa and the transformation plasticity effect are investigated in this work.

  1. Synchrotron X-ray measurement of residual strain within the nose of a worn manganese steel railway crossing

    Science.gov (United States)

    Dhar, S.; Zhang, Y.; Xu, R.; Danielsen, HK; Jensen, D. Juul

    2017-07-01

    Switches and crossings are an integral part of any railway network. Plastic deformation associated with wear and rolling contact fatigue due to repeated passage of trains cause severe damage leading to the formation of surface and sub-surface cracks which ultimately may result in rail failure. Knowledge of the internal stress distribution adds to the understanding of crack propagation and may thus help to prevent catastrophic rail failures. In this work, the residual strains inside the bulk of a damaged nose of a manganese railway crossing that was in service for five years has been investigated by using differential aperture synchrotron X-ray diffraction. The main purpose of this paper is to describe how this method allows non-destructive measurement of residual strains in selected local volumes in the bulk of the rail. Measurements were conducted on the transverse surface at a position about 6.5 mm from the rail running surface of a crossing nose. The results revealed the presence of significant compressive residual strains along the running direction of the rail.

  2. EXPERIMENTAL ANALYSIS AND ISHIKAWA DIAGRAM FOR BURN ON EFFECT ON MANGANESE SILICON ALLOY MEDIUM CARBON STEEL SHAFT

    Directory of Open Access Journals (Sweden)

    AsmamawTegegne

    2013-12-01

    Full Text Available Burn on/metal penetration is one of the surface defects of metal castings in general and steel castings in particular. A research on the effect of burn on the six ton medium carbon steel shaft for making a roller of cold rolled steel sheet produced at one of the metals industry was carried out. The shaft was cast using sand casting by pouring through riser/feeding head step by step (with time interval of pouring. As it was required to use foam casting method for better surface finish and dimensional accuracy of the cast, the pattern was prepared from polystyrene and embedded by silica sand. Physical observations, photographic analysis, visual inspection, measurement of depth of penetration and fish bone diagram were used as method of results analysis. The shaft produced has strongly affected by sand sintering (burn on/metal penetration. Many reasons may be the case for these defects, however analysis results showed that the use of poorly designed gating system led to turbulence flow, uncontrollable high temperature fused the silica sand and liquid polystyrene penetrated the poorly reclaimed and rammed sand mold as a result of which eroded sand has penetrated the liquid metal deeply and reacted with it, consequently after solidification and finishing the required 240mm diameter of the shaft has reduced un evenly to 133mm minimum and 229mm maximum mm that end in the rejection of the shaft from the product since it is below the required standard for the designed application. In addition, it was not possible to remove the adhered sand by grinding. Thus burn on is included in mechanical type burn on.

  3. Producción de aceros al carbono en hornos de arco eléctrico en condiciones de mineral de manganeso. // Steel production in electric arc furnaces in the condition of use of manganese.

    Directory of Open Access Journals (Sweden)

    E. E. Navas Medina

    2007-05-01

    Full Text Available El presente trabajo constituye una segunda etapa de investigación relacionada con la producción de acero en hornos de arcoeléctrico con revestimiento básico en condiciones de utilización de mineral de manganeso como sustituto del ferromanganeso.En la investigación se caracteriza el acero producido utilizando el mineral de manganeso en dos variantes tecnológicasdiferentes y se determinan parámetros importantes, tales como la estructura del acero obtenido, la influencia de lacomposición química y la temperatura en la reducción del Mn. Adicionalmente, se determina la composición química de laescoria, su basicidad e influencia en el aprovechamiento del Mn del mineral, así como, lo que significa la sustitución delFeMn en la problemática medioambiental.Palabras claves: Producción de aceros al carbono, hornos de arco eléctricos, mineral de manganeso.______________________________________________________________________________Abstract:This present work constitutes the second stage of investigation in relation with the steel production bymeans of electric arc furnaces in the condition of use of manganese ores as a substitute of theferromanganese. In the investigation, the steel manufactured is analyzed the manganese ore in twodifferent technological variants and some important parameters are determined such as: the chemicalcomposition's structure of the steel, the influence of temperature in the reduction of Mn. Moreover, ananalysis of the chemical composition of the slag and the influence in the environmental is realized.Key words: Carbon steel production, electric arc furnaces, manganese mineral.

  4. The Observation of the Structure of M23C6/ γ Coherent Interface in the 100Mn13 High Carbon High Manganese Steel

    Science.gov (United States)

    Xu, Zhenfeng; Ding, Zhimin; Liang, Bo

    2018-03-01

    The M23C6 carbides precipitate along the austenite grain boundary in the 100Mn13 high carbon high manganese steel after 1323 K (1050 °C) solution treatment and subsequent 748 K (475 °C) aging treatment. The grain boundary M23C6 carbides not only spread along the grain boundary and into the incoherent austenite grain, but also grow slowly into the coherent austenite grain. On the basis of the research with optical microscope, a further investigation for the M23C6/ γ coherent interface was carried out by transmission electron microscope (TEM). The results show that the grain boundary M23C6 carbides have orientation relationships with only one of the adjacent austenite grains in the same planes: (\\bar{1}1\\bar{1})_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}1\\bar{1})_{γ } , (\\bar{1}11)_{{{M}_{ 2 3} {C}_{ 6} }} //(\\bar{1}11)_{γ } ,[ 1 10]_{{{M}_{ 2 3} {C}_{ 6} }} //[ 1 10]_{γ } . The flat M23C6/ γ coherent interface lies on the low indexed crystal planes {111}. Moreover, in M23C6/ γ coherent interface, there are embossments which stretch into the coherent austenite grain γ. Dislocations distribute in the embossments and coherent interface frontier. According to the experimental observation, the paper suggests that the embossments can promote the M23C6/ γ coherent interface move. Besides, the present work has analyzed chemical composition of experimental material and the crystal structures of austenite and M23C6, which indicates that the transformation can be completed through a little diffusion for C atoms and a simple variant for austenite unit cell.

  5. 46 CFR 56.60-5 - Steel (High temperature applications).

    Science.gov (United States)

    2010-10-01

    ....A.) Upon prolonged exposure to temperatures above 775 °F (412 °C), the carbide phase of plain carbon steel, plain nickel-alloy steel, carbon-manganese-alloy steel, manganese-vanadium-alloy steel, and carbon-silicon steel may convert to graphite. (b) (Reproduces 124.2.B.) Upon prolonged exposure to...

  6. Steel

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.; Savukov, V.P.; Runov, A.E.; Belov, V.A.; Sobolev, J.V.; Sobolev, V.V.; Pavlov, N.M.; Paton, B.E.

    1977-01-01

    Steels also containing Al, N and arsenic, are suitable for the construction of large components for high-power nuclear reactors due to their good mechanical properties such as good through-hardening, sufficiently low brittleness conversion temperature and slight displacement of the latter with neutron irradiation. Defined steels and their properties are described. (IHOE) [de

  7. UXC55 Non-Magnetic Robot

    CERN Document Server

    Najjar, Tony

    2017-01-01

    As part of the collaboration between CMS and the Lebanese American University, we are looking into building a non-magnetic inspection rover capable of roaming around UXC55 and specifically under the detector. The robot should be specifically tailored and engineered to cope with the strong magnetic field in the cavern (300 G on average with peaks up to 1500 G) as well as other constraints such as flammability and geometry. Moreover, we are also taking part in the development of the instrumentation and wireless communication of the rover. The biggest challenge in setting up a non-magnetic rover lies in the actuation mechanism, in other words, getting it to move; motors are rotary actuators that rely on the concept of a rotor “trying to catch up” to a rotating magnetic field. We quickly realize the complication with using this popular technology; the strong field created by the CMS magnet greatly interferes with the motor, rendering it utterly stalled. Our approach, on the other hand, consists of using compl...

  8. Metadynamic recrystallization in C steels

    Indian Academy of Sciences (India)

    Unknown

    EN24 and EN2 steels, a drop from 4000 s to 6 s for similar temperature rise was observed. Metadynamic ... carbon–manganese or silicon–manganese steels, but stops after a reduction at ... growth by strain-induced grain boundary migration;.

  9. Liquid metal MHD studies with non-magnetic and ferro-magnetic structural material

    Energy Technology Data Exchange (ETDEWEB)

    Patel, A., E-mail: anipatel2009@gmail.com [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Bhattacharyay, R. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Swain, P.K.; Satyamurthy, P. [Bhabha Atomic Research Center, Mumbai 400085, Maharashtra (India); Sahu, S.; Rajendrakumar, E. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Ivanov, S.; Shishko, A.; Platacis, E.; Ziks, A. [Institute of Physics, University of Latvia, Salaspils 2169 (Latvia)

    2014-10-15

    Highlights: • Effect of structural material on liquid metal MHD phenomena is studied. • Two identical test sections, one made of SS316L (non-magnetic) and other made of SS430 (ferromagnetic) structural material, are considered. • Wall electric potential and liquid metal pressure drop are compared under various experimental conditions. • Experimental results suggest screening of external magnetic field for SS430 material below the saturation magnetic field. - Abstract: In most of the liquid metal MHD experiments reported in the literature to study liquid breeder blanket performance, SS316/SS304 grade steels are used as the structural material which is non-magnetic. On the other hand, the structural material for fusion blanket systems has been proposed to be ferritic martensitic grade steel (FMS) which is ferromagnetic in nature. In the recent experimental campaign, liquid metal MHD experiments have been carried out with two identical test sections: one made of SS316L (non-magnetic) and another with SS430 (ferromagnetic), to compare the effect of structural materials on MHD phenomena for various magnetic fields (up to 4 T). The maximum Hartmann number and interaction number are 1047 and 300, respectively. Each test section consists of square channel (25 mm × 25 mm) cross-section with two U bends, with inlet and outlet at the middle portion of two horizontal legs, respectively. Pb–Li enters into the test section through a square duct and distributed into two parallel paths through a partition plate. In each parallel path, it travels ∼0.28 m length in plane perpendicular to the magnetic field and faces two 90° bends before coming out of the test section through a single square duct. The wall electrical potential and MHD pressure drop across the test sections are compared under identical experimental conditions. Similar MHD behavior is observed with both the test section at higher value of the magnetic field (>2 T)

  10. Autonomic function in manganese alloy workers

    Energy Technology Data Exchange (ETDEWEB)

    Barrington, W.W.; Angle, C.R.; Willcockson, N.K.; Padula, M.A. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Korn, T.

    1998-07-01

    The observation of orthostatic hypotension in an index case of manganese toxicity lead to this prospective attempt to evaluate cardiovascular autonomic function and cognitive and emotional neurotoxicity in eight manganese alloy welders and machinists. The subjects consisted of a convenience sample consisting of an index case of manganese dementia, his four co-workers in a frog shop for gouging, welding, and grinding repair of high manganese railway track and a convenience sample of three mild steel welders with lesser manganese exposure also referred because of cognitive or autonomic symptoms. Frog shop air manganese samples 9.6--10 years before and 1.2--3.4 years after the diagnosis of the index case exceeded 1.0 mg/m{sup 3} in 29% and 0.2 mg/m{sup 3} in 62%. Twenty-four-hour electrocardiographic (Holter) monitoring was used to determine the temporal variability of the heartrate (RR{prime} interval) and the rates of change at low frequency and high frequency. MMPI and MCMI personality assessment and short-term memory, figure copy, controlled oral word association, and symbol digit tests were used.

  11. Fatigue crack growth and fracture behavior of bainitic rail steels.

    Science.gov (United States)

    2011-09-01

    "The microstructuremechanical properties relationships, fracture toughness, fatigue crack growth and fracture surface morphology of J6 bainitic, manganese, and pearlitic rail steels were studied. Microstructuremechanical properties correlation ...

  12. Globally sustainable manganese metal production and use.

    Science.gov (United States)

    Hagelstein, Karen

    2009-09-01

    The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also

  13. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    OpenAIRE

    Tušek, Janez

    2001-01-01

    The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and highalloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-off depends mainly on the type of shielding gas used and the arc length, i.e., from the arc voltage. The manganese burn-off ...

  14. Volatilization from PCA steel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hagrman, D.L.; Smolik, G.R.; McCarthy, K.A.; Petti, D.A.

    1996-08-01

    The mobilizations of key components from Primary Candidate Alloy (PCA) steel alloy have been measured with laboratory-scale experiments. The experiments indicate most of the mobilization from PCA steel is due to oxide formation and spalling but that the spalled particles are large enough to settle rapidly. Based on the experiments, models for the volatization of iron, manganese, and cobalt from PCA steel in steam and molybdenum from PCA steel in air have been derived.

  15. Influence of disorder on superconductivity in non-magnetic rare ...

    Indian Academy of Sciences (India)

    Influence of disorder on superconductivity in non-magnetic rare-earth nickel borocarbides. G FUCHS1,∗. , K-H M ¨ULLER1, J FREUDENBERGER1, K NENKOV1,. S-L DRECHSLER1, S V SHULGA1, D LIPP2, A GLADUN2,. T CICHOREK3 and P GEGENWART3. 1Institut für Festkörper- und Werkstofforschung, D-01171 ...

  16. Adsorption Study of Electric Arc Furnace Slag for the Removal of Manganese from Solution

    OpenAIRE

    C. L. Beh; Luqman Chuah; Thomas S.Y. Choong; Mohd. Z.B. Kamarudzaman; Khalina Abdan

    2010-01-01

    Problem statement: Steel making slag from Electric Arc Furnace (EAF) is an abundant by-product in Malaysia steel making industry. It has potential to be used for heavy metal removal from contaminated water or waste water. Approach: The aim of this study was to investigate the characteristic and behavior of manganese removal by using EAF slag for efficient metal removal. The removal characteristics of manganese were investigated in term of sorption kinetics and isotherm. The batch adsorption k...

  17. Evolución microestructural del acero austenítico al manganeso sometido a tratamiento térmico de temple y revenido Microstructural evolution of manganese austenitic steel submitted to thermal treatments of quenching and tempering

    Directory of Open Access Journals (Sweden)

    Óscar Fabián Higuera Cobos

    2010-07-01

    Full Text Available En el presente trabajo de investigación se evaluaron los cambios microestructurales en aceros austeníticos al manganeso con 9 y 13% Mn en presencia de cromo (1.4 - 2.0% . Se evaluó el ciclo térmico de temple y revenido sobre la estabilidad de la fase austenita y la presencia de compuestos de segunda fase como carburos de hierro y cromo del tipo (Fe, Mn3C y (Fe, Cr7C3. La temperatura de austenización fue de 1050 °C, con un tiempo de sostenimiento de 1 hora y el medio de enfriamiento agua. Los tratamientos de revenido se efectuaron en un rango de 200 a 800 °C con intervalos de 200 °C y tiempo de permanencia 2 horas. Para este análisis el material se sometió a pruebas de caracterización tales como: microscopia electrónica de barrido (SEM-EDS, espectrometría de emisión óptica y difracción de rayos X, en estado de suministro y bonificado.In this study the microstructural changes in manganese austenitic steel with 9 and 13% Mn in presence of chromium with (1,4-2,0% was evaluated, thermal cycles of quenching and tempering in order to evaluate the influence of kinetic of cooling on the stability of the phase austenite and the presence of composed of second phase like iron and chromium carbides of type (Fe, Mn3C and (Fe, Cr7C3. were also evaluated. The temperature of austenitizing was of 1050 °C, with a time of support of 1 hour and means of cooling water. The tempering treatments took place in a rank of 200 to 800 °C with intervals of 200 °C and dwell time 2 hours. The material was evaluated by electronic microscopy of sweeping (SEM-EDS, spectrometry of optical emission and X-ray diffraction, in state as cast and heat treating.

  18. Small angle neutron scattering modeling of copper-rich precipitates in steel

    International Nuclear Information System (INIS)

    Spooner, S.

    1997-11-01

    The magnetic to nuclear scattering intensity ratio observed in the scattering from copper rich precipitates in irradiated pressure vessel steels is much smaller than the value of 11.4 expected for a pure copper precipitate in iron. A model for precipitates in pressure vessel steels which matches the observed scattering typically incorporates manganese, nickel, silicon and other elements and it is assumed that the precipitate is non-magnetic. In the present work consideration is given to the effect of composition gradients and ferromagnetic penetration into the precipitate on the small angle scattering cross section for copper rich clusters as distinguished from conventional precipitates. The calculation is an extension of a scattering model for micelles which consist of shells of varying scattering density. A discrepancy between recent SANS scattering experiments on pressure vessel steels was found to be related to applied magnetic field strength. The assumption of cluster structure and its relation to atom probe FIM findings as well as the effects of insufficient field for magnetic saturation is discussed

  19. from Tailings Material of Ghana Manganese Company (GMC)

    African Journals Online (AJOL)

    user

    arrive at large scale secondary manganese sourcing by recycling from steel, beverage ... rpm, and the tangential flow of water through jets was at the rate of 210.10 ... the limitation of the machine‟s discharge pipes, frac- tions coarser than 20 ...

  20. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    International Nuclear Information System (INIS)

    Tusek, J.

    2001-01-01

    The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and high-alloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-of-depends mainly on the type of shielding gas used and the arc length,i. e., from the arc voltage. The manganese burn-off increases with an increase of the content of active gases, i.e., CO 2 and O 2 in the neutral gas i. e., argon. It also increases with an increase in arc voltage. The longer the welding arc, the longer exposition of the filler materials to the welding arc and the wider the penetration, Which allows manganese vapours to evaporate from the weld pool. The most important finding is that manganese burn-off from the 18/8/6 wire during welding of austenitic stainless steel with low-alloy ferritic steel is considerably strong, i.e., from 20% to 30%; nevertheless the wire concerned is perfectly suitable for welding of different types of steel. (Author) 23 refs

  1. Austenitic stainless steels with cryogenic resistance

    International Nuclear Information System (INIS)

    Tarata, Daniela Florentina

    1999-01-01

    The most used austenitic stainless steels are alloyed with chromium and nickel and have a reduced carbon content, usually lower than 0.1 % what ensures corresponding properties for processing by plastic deformation at welding, corrosion resistance in aggressive environment and toughness at low temperatures. Steels of this kind alloyed with manganese are also used to reduce the nickel content. By alloying with manganese which is a gammageneous element one ensures the stability of austenites. Being cheaper these steels may be used extensively for components and equipment used in cryogenics field. The best results were obtained with steels of second group, AMnNi, in which the designed chemical composition was achieved, i.e. the partial replacement of nickel by manganese ensured the toughness at cryogenic temperatures. If these steels are supplementary alloyed, their strength properties may increase to the detriment of plasticity and toughness, although the cryogenic character is preserved

  2. Magnetic field dependent atomic tunneling in non-magnetic glasses

    International Nuclear Information System (INIS)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-01-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field

  3. Magnetic field dependent atomic tunneling in non-magnetic glasses

    Science.gov (United States)

    Ludwig, S.; Enss, C.; Hunklinger, S.

    2003-05-01

    The low-temperature properties of insulating glasses are governed by atomic tunneling systems (TSs). Recently, strong magnetic field effects in the dielectric susceptibility have been discovered in glasses at audio frequencies at very low temperatures. Moreover, it has been found that the amplitude of two-pulse polarization echoes generated in non-magnetic multi-component glasses at radio frequencies and at very low temperatures shows a surprising non-monotonic magnetic field dependence. The magnitude of the latter effect indicates that virtually all TSs are affected by the magnetic field, not only a small subset of systems. We have studied the variation of the magnetic field dependence of the echo amplitude as a function of the delay time between the two excitation pulses and at different frequencies. Our results indicate that the evolution of the phase of resonant TSs is changed by the magnetic field.

  4. Interaction of the electromagnetic waves and non-magnetized plasmas

    International Nuclear Information System (INIS)

    Sun Aiping; Qiu Xiaoming; Dong Yuying; Li Liqiong

    2002-01-01

    The propagation of electromagnetic waves with 0.5 - 10 GHz in a non-magnetized collisional plasma slab is studied numerically. The change in the absorbed power, reflected power and transmitted power of the electromagnetic wave with collisional frequency of electrons and neutral atoms in plasma from 0.1 - 10 GHz, is calculated, in the condition of the uniform plasma with density of 10 10 or 10 11 cm -3 and depth of 10 cm, and the non-uniform plasma with density distribution of n = n 0 exp[2(z/d-1)] and depth of 10 cm, respectively. The results show that the absorbed power in either uniform or non-uniform plasma is large when the plasma density is large and collision frequency is high, and the peak value is 90%

  5. Manganese in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Linnarsson, M.K., E-mail: marga@kth.se [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden); Hallen, A. [Royal Institute of Technology, School of Information and Communication Technology, P.O. Box E229, SE-16440 Kista-Stockhom (Sweden)

    2012-02-15

    Structural disorder and relocation of implanted Mn in semi-insulating 4H-SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400-2000 Degree-Sign C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [112{sup Macron }3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  6. Manganese in silicon carbide

    International Nuclear Information System (INIS)

    Linnarsson, M.K.; Hallén, A.

    2012-01-01

    Structural disorder and relocation of implanted Mn in semi-insulating 4H–SiC has been studied. Subsequent heat treatment of Mn implanted samples has been performed in the temperature range 1400–2000 °C. The depth distribution of manganese is recorded by secondary ion mass spectrometry. Rutherford backscattering spectrometry has been employed for characterization of crystal disorder. Ocular inspection of color changes of heat-treated samples indicates that a large portion of the damage has been annealed. However, Rutherford backscattering shows that after heat treatment, most disorder from the implantation remains. Less disorder is observed in the [0 0 0 1] channel direction compared to [112 ¯ 3] channel direction. A substantial rearrangement of manganese is observed in the implanted region. No pronounced manganese diffusion deeper into the sample is recorded.

  7. Size dependence of non-magnetic thickness in YIG nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Niyaifar, M., E-mail: md.niyaifar@gmail.com; Mohammadpour, H.; Dorafshani, M.; Hasanpour, A.

    2016-07-01

    This study is focused on particle size dependence of structural and magnetic properties in yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) nanoparticles. A series of YIG samples with different particle size were produced by varying the annealing temperatures. The X-ray analysis revealed an inverse correlation between lattice parameter and the crystallite size. The normal distribution is used for fitting the particles size distribution which is extracted from scanning electron micrographs. Also, by using the results of vibrating sample magnetometer, the magnetic diameter was calculated based on Langevin model in order to investigate the variation of dead layer thickness. Furthermore, the observed line broadening in Mössbauer spectra confirmed the increase of non-magnetic thickness due to the reduction of particle size. - Highlights: • Pure phase Y{sub 3}Fe{sub 5}O{sub 12} nanoparticles are fabricated in different particle size by a thermal treatment. • The size effect on magnetic properties is studied with a core/shell (magnetic/nonmagnetic) model. • The logarithmic variation of (dead layer thickness)/(particle size) ratio with the particle size is investigated. • The results of Mossbauer are explained based on the correlation between lattice constant and particle size variation.

  8. Fractography of Sinteraustempered and Sinterhardened Fe-3Mn-0.8C PM Steels

    Directory of Open Access Journals (Sweden)

    Tenerowicz M.

    2016-12-01

    Full Text Available Sintered steels with the addition of manganese are widely used in industry because of their attractive mechanical properties. The main problem of using manganese in powder metallurgy steel production is its high affinity for oxygen. The choice of proper sintering parameters can significantly improve the properties of the final product.

  9. Manganese dipyridoxyl diphosphate:

    DEFF Research Database (Denmark)

    H, Brurok; Ardenkjær-Larsen, Jan Henrik; G, Hansson

    1999-01-01

    Manganese dipyridoxyl diphosphate (MnDPDP) is a contrast agent for magnetic resonance imaging (MRI) of the liver. Aims of the study were to examine if MnDPDP possesses superoxide dismutase (SOD) mimetic activity in vitro, and if antioxidant protection can be demonstrated in an ex vivo rat heart...

  10. Manganese, Metallogenium, and Martian Microfossils

    Science.gov (United States)

    Stein, L. Y.; Nealson, K. H.

    1999-01-01

    Manganese could easily be considered an abundant element in the Martian regolith, assuming that the composition of martian meteorites reflects the composition of the planet. Mineralogical analyses of 5 SNC meteorites have revealed an average manganese oxide concentration of 0.48%, relative to the 0.1% concentration of manganese found in the Earth's crust. On the Earth, the accumulation of manganese oxides in oceans, soils, rocks, sedimentary ores, fresh water systems, and hydrothermal vents can be largely attributed to microbial activity. Manganese is also a required trace nutrient for most life forms and participates in many critical enzymatic reactions such as photosynthesis. The wide-spread process of bacterial manganese cycling on Earth suggests that manganese is an important element to both geology and biology. Furthermore, there is evidence that bacteria can be fossilized within manganese ores, implying that manganese beds may be good repositories for preserved biomarkers. A particular genus of bacteria, known historically as Metallogenium, can form star-shaped manganese oxide minerals (called metallogenium) through the action of manganese oxide precipitation along its surface. Fossilized structures that resemble metallogenium have been found in Precambrian sedimentary formations and in Cretaceous-Paleogene cherts. The Cretaceous-Paleogene formations are highly enriched in manganese and have concentrations of trace elements (Fe, Zn, Cu, and Co) similar to modern-day manganese oxide deposits in marine environments. The appearance of metallogenium-like fossils associated with manganese deposits suggests that bacteria may be preserved within the minerals that they form. Additional information is contained in the original extended abstract.

  11. A modified Katsumata probe - ion sensitive probe for measurement in non-magnetized plasmas

    Czech Academy of Sciences Publication Activity Database

    Čada, Martin; Hubička, Zdeněk; Adámek, Petr; Olejníček, Jiří; Kment, Štěpán; Adámek, Jiří; Stöckel, Jan

    2015-01-01

    Roč. 86, č. 7 (2015), "073510-1"-"073510-7" ISSN 0034-6748 R&D Projects: GA MŠk LH12043 Institutional support: RVO:68378271 ; RVO:61389021 Keywords : Katsumata probe * non-magnetized plasma * magnetron * ion temperature * non-magnetized plasmas Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.336, year: 2015

  12. Selective oxidation of dual phase steel after annealing at different dew points

    Science.gov (United States)

    Lins, Vanessa de Freitas Cunha; Madeira, Laureanny; Vilela, Jose Mario Carneiro; Andrade, Margareth Spangler; Buono, Vicente Tadeu Lopes; Guimarães, Juliana Porto; Alvarenga, Evandro de Azevedo

    2011-04-01

    Hot galvanized steels have been extensively used in the automotive industry. Selective oxidation on the steel surface affects the wettability of zinc on steel and the grain orientation of inhibition layer (Fe-Al-Zn alloy) and reduces the iron diffusion to the zinc layer. The aim of this work is to identify and quantify selective oxidation on the surface of a dual phase steel, and an experimental steel with a lower content of manganese, annealed at different dew points. The techniques employed were atomic force microscopy, X-ray photoelectron spectroscopy, and glow discharge optical emission spectroscopy. External selective oxidation was observed for phosphorus on steel surface annealed at 0 °C dp, and for manganese, silicon, and aluminum at a lower dew point. The concentration of manganese was higher on the dual phase steel surface than on the surface of the experimental steel. The concentration of molybdenum on the surface of both steels increased as the depth increased.

  13. Separation of magnetic from non-magnetic information in the Bitter pattern method

    International Nuclear Information System (INIS)

    Szmaja, Witold

    2001-01-01

    The paper deals with the problem of separating magnetic and non-magnetic contributions to the image contrast in the Bitter pattern method. With the help of the digital image difference procedure, it is demonstrated for the first time for the Bitter method that the separation is easy to achieve for relatively soft magnetic specimens, when an external field can be applied to simply produce the non-magnetic reference image of the specimen area under study. It is also shown that obtaining satisfactory results is principally impossible when removing the colloid from the specimen surface is used for the purpose of recording the non-magnetic image

  14. Checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) by RF magnetron sputtering on a stainless steel in all-solid-state thin film battery

    Science.gov (United States)

    Hsueh, T. H.; Yu, Y. Q.; Jan, D. J.; Su, C. H.; Chang, S. M.

    2018-03-01

    All-solid-state thin film lithium batteries (TFLBs) are the most competitive low-power sources to be applied in various kinds of micro-electro-mechanical systems and have been draw a lot of attention in academic research. In this paper, the checkerboard deposition of all-solid-state TFLB was composed of thin film lithium metal anode, lithium phosphorus oxynitride (LiPON) solid electrolyte, and checkerboard deposition of lithium manganese oxide spinel (LiMn2O4) cathode. The LiPON and LiMn2O4 were deposited by a radio frequency magnetron sputtering system, and the lithium metal was deposited by a thermal evaporation coater. The electrochemical characterization of this lithium battery showed the first discharge capacity of 107.8 μAh and the capacity retention was achieved 95.5% after 150 charge-discharge cycles between 4.3V and 3V at a current density of 11 μA/cm2 (0.5C). Obviously, the checkerboard of thin film increased the charge exchange rate; also this lithium battery exhibited high C-rate performance, with better capacity retention of 82% at 220 μA/cm2 (10C).

  15. Microwave Production of Manganese from Manganese (IV) Oxide ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... energy consumption occurs in the upper part of the ferromanganese furnace ... The pre-reduction of manganese ores by carbon has been investigated by Abdel ..... Awaso Bauxite Ore using Waste Pure Water. Sachets as ...

  16. Manganese deficiency in plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund; Jensen, Poul Erik; Husted, Søren

    2016-01-01

    Manganese (Mn) is an essential plant micronutrient with an indispensable function as a catalyst in the oxygen-evolving complex (OEC) of photosystem II (PSII). Even so, Mn deficiency frequently occurs without visual leaf symptoms, thereby masking the distribution and dimension of the problem...... restricting crop productivity in many places of the world. Hence, timely alleviation of latent Mn deficiency is a challenge in promoting plant growth and quality. We describe here the key mechanisms of Mn deficiency in plants by focusing on the impact of Mn on PSII stability and functionality. We also address...... the mechanisms underlying the differential tolerance towards Mn deficiency observed among plant genotypes, which enable Mn-efficient plants to grow on marginal land with poor Mn availability....

  17. Producción de hierros nodulares ferríticos directamente de fundición partiendo de chatarra de acero de alto manganeso // Production of ferrítics nodular irons directly from foundry leaving of high manganese scrap steel

    Directory of Open Access Journals (Sweden)

    C. DeFranch

    1999-07-01

    ñinos; lo que necesitaría de una gran inversión en cuanto a extractores y procesadores de estos gases.Los factores críticos en el proceso que emplea óxido de hierro para la eliminación del manganeso son: temperatura,composición química del baño y elementos presentes en la escoria, con el mismo se han logrado eliminaciones del manganesode hasta un 80% del contenido inicial y fundiciones ferríticas con elongaciones de hasta un 23%.Palabras claves: hierro nodular, fundición___________________________________________________________________________AbstractThe production of nodular irons with main ferrític is usually achieved with the use of special arrabios with contained first floorof elements formadores of carbides, or by means of long and expensive thermal treatments. These arrabios has high prices, forwhat becomes necessary the search of more economic variants for the production of this material type. The objective of thiswork is the obtaining of this material using like load steel scrap, which has a price a lot but I lower.The structure of the womb in the nodular iron, depends on its chemical composition, its cooling speed, as well as of the formand quantity of graphite nodules. When is wanted a main ferrítics, the elements who make the perlitic estructure they shouldbe maintained in contents the lowest thing possible for less susecful this way the solidification according to the diagram.The scrap use outlines the problem of the present manganese levels in the same one (generally between 0.6 and 0.8%. Themanganese that is an element who make the perlitic estructure avoids the obtaining of high elongations since the womb itDr. Ing C. DeFranch, Dr. Ing. T. Rodríguez Moliner26would be never completely ferrític. It is for this reason that if she/he wants himself to use steel scrap as load material it isnecessary the study in ways of eliminating it of the bathroom.For the elimination of the manganese diverse references exist in the literature to processes

  18. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors.

    Science.gov (United States)

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V

    2015-07-03

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  19. Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide

    International Nuclear Information System (INIS)

    Shinomiya, Takuya; Gupta, Vinay; Miura, Norio

    2006-01-01

    The amorphous nano-structured manganese oxide was electrochemically deposited onto a stainless-steel electrode. The structure and surface morphology of the obtained manganese oxide were studied by means of X-ray diffraction analysis and scanning electron microscopy. The capacitive characteristics of the manganese oxide electrodes were investigated by means of cyclic voltammetry and constant current charge-discharge cycling. The morphological and capacitive characteristics of the hydrous manganese oxide was found to be strongly influenced by the electrochemical deposition conditions. The highest specific capacitance value of ca. 410 F g -1 and the specific power of ca. 54 kW kg -1 were obtained at 400 mV s -1 sweep rate of potentiodynamic deposition condition. The cyclic-life data showed that the specific capacitance was highly stable up to 10,000 cycles examined. This suggests the excellent cyclic stability of the obtained amorphous hydrous manganese oxide for supercapacitor application

  20. Effects of electrochemical-deposition method and microstructure on the capacitive characteristics of nano-sized manganese oxide

    Energy Technology Data Exchange (ETDEWEB)

    Shinomiya, Takuya; Gupta, Vinay; Miura, Norio [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga-shi, Fukuoka 816-8580 (Japan)

    2006-06-01

    The amorphous nano-structured manganese oxide was electrochemically deposited onto a stainless-steel electrode. The structure and surface morphology of the obtained manganese oxide were studied by means of X-ray diffraction analysis and scanning electron microscopy. The capacitive characteristics of the manganese oxide electrodes were investigated by means of cyclic voltammetry and constant current charge-discharge cycling. The morphological and capacitive characteristics of the hydrous manganese oxide was found to be strongly influenced by the electrochemical deposition conditions. The highest specific capacitance value of ca. 410Fg{sup -1} and the specific power of ca. 54kWkg{sup -1} were obtained at 400mVs{sup -1} sweep rate of potentiodynamic deposition condition. The cyclic-life data showed that the specific capacitance was highly stable up to 10,000 cycles examined. This suggests the excellent cyclic stability of the obtained amorphous hydrous manganese oxide for supercapacitor application. (author)

  1. Manganese Research Health Project (MHRP)

    Science.gov (United States)

    2009-02-01

    green nucleic acid staining further confirmed the neurotoxic effect of cadmium in this cell model (Fig 10C). Next, we examined the enzymatic activity...Quantification of Nissl bodies revealed a widespread reduction in SNpc cell numbers. Other areas of the basal ganglia were also altered by manganese as...the substantia nigra pars compacta (SNpc) following manganese treatment. Quantification of Nissl bodies revealed a widespread reduction in SNpc

  2. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays

    Science.gov (United States)

    Hejazian, Majid

    2016-01-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis. PMID:27478527

  3. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials

    International Nuclear Information System (INIS)

    Yu Zhenzhong; Feng Yijun; Xu Xiaofei; Zhao Junming; Jiang Tian

    2011-01-01

    We present optimized design of cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. Through an optimization procedure based on genetic algorithm, simpler cloak structure and more realizable material parameters can be achieved with better cloak performance than that of an ideal non-magnetic cloak with a reduced set of parameters. We demonstrate that a cloak shell with only five layers of two normal materials can result in an average 20 dB reduction in the scattering width for all directions when covering the inner conducting cylinder with the cloak. The optimized design can substantially simplify the realization of the invisibility cloak, especially in the optical range.

  4. Extraction of manganese from electrolytic manganese residue by bioleaching.

    Science.gov (United States)

    Xin, Baoping; Chen, Bing; Duan, Ning; Zhou, Changbo

    2011-01-01

    Extraction of manganese from electrolytic manganese residues using bioleaching was investigated in this paper. The maximum extraction efficiency of Mn was 93% by sulfur-oxidizing bacteria at 4.0 g/l sulfur after bioleaching of 9days, while the maximum extraction efficiency of Mn was 81% by pyrite-leaching bacteria at 4.0 g/l pyrite. The series bioleaching first by sulfur-oxidizing bacteria and followed by pyrite-leaching bacteria evidently promoted the extraction of manganese, witnessing the maximum extraction efficiency of 98.1%. In the case of sulfur-oxidizing bacteria, the strong dissolution of bio-generated sulfuric acid resulted in extraction of soluble Mn2+, while both the Fe2+ catalyzed reduction of Mn4+ and weak acidic dissolution of Mn2+ accounted for the extraction of manganese with pyrite-leaching bacteria. The chemical simulation of bioleaching process further confirmed that the acid dissolution of Mn2+ and Fe2+ catalyzed reduction of Mn4+ were the bioleaching mechanisms involved for Mn extraction from electrolytic manganese residues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. LOCAL COLLISION SIMULATION OF AN SC WALL USING ENERGY ABSORBING STEEL

    Directory of Open Access Journals (Sweden)

    CHUL-HUN CHUNG

    2013-08-01

    Full Text Available This study evaluates the local damage of a turbine in an auxiliary building of a nuclear power plant due to an external impact by using the LS-DYNA finite element program. The wall of the auxiliary building is SC structure and the material of the SC wall plate is high manganese steel, which has superior ductility and energy absorbance compared to the ordinary steel used for other SC wall plates. The effects of the material of the wall, collision speed, and angle on the magnitude of the local damage were evaluated by local collision analysis. The analysis revealed that the SC wall made of manganese steel had significantly less damage than the SC wall made of ordinary steel. In conclusion, an SC wall made of manganese steel can have higher effective resistance than an SC wall made of ordinary steel against the local collision of an airplane engine or against a turbine impact.

  6. Local Collision Simulation of an SC Wall Using Energy Absorbing Steel

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chulhun; Choi, Hyun; Park, Jaegyun [Dankook Univ., Yongin (Korea, Republic of)

    2013-08-15

    This study evaluates the local damage of a turbine in an auxiliary building of a nuclear power plant due to an external impact by using the LS-DYNA finite element program. The wall of the auxiliary building is SC structure and the material of the SC wall plate is high manganese steel, which has superior ductility and energy absorbance compared to the ordinary steel used for other SC wall plates. The effects of the material of the wall, collision speed, and angle on the magnitude of the local damage were evaluated by local collision analysis. The analysis revealed that the SC wall made of manganese steel had significantly less damage than the SC wall made of ordinary steel. In conclusion, an SC wall made of manganese steel can have higher effective resistance than an SC wall made of ordinary steel against the local collision of an airplane engine or against a turbine impact.

  7. A combined SEM and CV Study of Solid Oxide Fuel Cell Interconnect Steels

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Ofoegbu, Stanley; Mikkelsen, Lars

    2012-01-01

    Scanning electron microscopy and cyclic voltammetry were used to investigate the high temperature oxidation behavior of two solid oxide fuel cell interconnect steels. One alloy had a low content of manganese; the other alloy had a high content of manganese. Four reduction and four oxidation peaks...

  8. Steel for nuclear applications

    International Nuclear Information System (INIS)

    Zorev, N.N.; Astafiev, A.A.; Loboda, A.S.

    1978-01-01

    A steel contains, in percent by weight, the following constituents: carbon from 0.13 to 0.18, silicon from 0.17 to 0.37, manganese from 0.30 to 0.60, chromium from 1.7 to 2.4, nickel from 1.0 to 1.5, molybdenum from 0.5 to 0.7, vanadium from 0.05 to 0.12, aluminium from 0.01 to 0.035, nitrogen from 0.05 to 0.012, copper from 0.11 to 0.20, arsenic from 0.0035 to 0.0055, iron and impurities, the balance. This steel is preferable for use in the manufacture of nuclear reactors. 1 table

  9. Comparison of non-magnetic and magnetic beads in bead-based assays

    NARCIS (Netherlands)

    Hansenová Maňásková, S.; van Belkum, A.; Endtz, H.P.; Bikker, F.J.; Veerman, E.C.I.; van Wamel, W.J.B.

    2016-01-01

    Multiplex bead-based flow cytometry is an attractive way for simultaneous, rapid and cost-effective analysis of multiple analytes in a single sample. Previously, we developed various bead-based assays using non-magnetic beads coated with Staphylococcus aureus and Streptococcus pneumoniae antigens

  10. Determination of manganese content in aqueous solutions

    International Nuclear Information System (INIS)

    Reeder, S.D.; Smith, J.R.

    1977-01-01

    The three analytical methods used in the hydrogen-to-manganese cross-section ratio measurement were: volumetric determination of manganese, gravimetric analysis of manganous sulfate; and densimetric determination of manganous sulfate

  11. Manganese activated phosphate glass for dosimetry

    International Nuclear Information System (INIS)

    Regulla, D.

    1975-01-01

    A measuring element comprises a metaphosphate glass doped with manganese as an activator. The manganese activated metaphosphate glass can detect and determine radiation doses in the range between milliroentgens and more than 10 megaroentgens. (auth)

  12. On the balanced composition of the unkilled steel

    International Nuclear Information System (INIS)

    Urazgil'deev, A.Kh.

    1977-01-01

    A investigation of a ''balanced'' composition of a molten Fe-C-O system, which is distinguished by an invariable concentration of carbon and oxygen in the molten phase, has shown that the composition of the balanced melt will depend on the content of manganese in boiling steel, as the introduction into the system of small amounts of manganese shifts the position of the maximum point of the Fe-C-O system toward higher carbon concentrations. Solidification of melts containing more carbon than the balanced melts results in an enrichment of the molten phase in carbon and its impoverishment in oxygen. Manganese raises the concentration of carbon in the balanced composition. For a common content of manganese in a boiling steel of 0.30 to 0.40%, that of C in the balanced composition is approximately 0.10%

  13. MICROALLOYED STEELS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Debanshu Bhattacharya

    2014-12-01

    is the so-called “3rd Generation” AHSS. These steels are designed to fill the region between the dual-phase/TRIP and the Twin Induced Plasticity (TWIP steels with very high ductility at strength levels comparable to the conventional AHSS. Enhanced Q&P steels may be one method to achieve this target. Other ideas include TRIP assisted dual phase steels, high manganese steels and carbide-free bainitic (CFB steels. Finally the post hardened steels (PHS are an important component of the strategy of future vehicles. In this paper, some of the above families of advanced formable and high strength steels with micro-alloying additions, utilized in the automotive industry will be discussed.

  14. Fabrication of birnessite-type layered manganese oxide films for super capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y.K.; Dorval-Douville, G.; Favier, F. [Montpellier-2 Univ., LAMMI, UMR CNRS 5072, 34 (France)

    2004-07-01

    Birnessite-type layered manganese oxide films were anodically deposited at the surface of an inexpensive stainless steel. MnSO{sub 4} plating solutions were used at various potentials and for various durations. X-ray diffraction and scanning electron microscopy were used to examine the material structure and surface morphologies of obtained manganese oxide films. The capacitive characteristics and stability of these oxides were systematically investigated by means of cyclic voltammetry method in aqueous electrolytes. Deposition conditions affected the oxides structure and morphologies, and consequently greatly affected their electrochemical capacitance performance. (authors)

  15. 21 CFR 184.1446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Manganese chloride. 184.1446 Section 184.1446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Specific Substances Affirmed as GRAS § 184.1446 Manganese chloride. (a) Manganese chloride (MnCl2·4H2O, CAS...

  16. 21 CFR 582.5446 - Manganese chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Manganese chloride. 582.5446 Section 582.5446 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5446 Manganese chloride. (a) Product. Manganese chloride. (b) Conditions of use. This...

  17. 75 FR 5947 - Stainless Steel Sheet and Strip in Coils from Taiwan: Final Results and Rescission in Part of...

    Science.gov (United States)

    2010-02-05

    ... defined as a non-magnetic stainless steel manufactured to American Society of Testing and Materials... magnetic remanence between 9,000 and 12,000 gauss, and a coercivity of between 50 and 300 oersteds. This... percent. This steel has a carbide density on average of 100 carbide particles per 100 square microns. An...

  18. Diode laser heat treatment of lithium manganese oxide films

    International Nuclear Information System (INIS)

    Pröll, J.; Kohler, R.; Mangang, A.; Ulrich, S.; Bruns, M.; Seifert, H.J.; Pfleging, W.

    2012-01-01

    The crystallization of lithium manganese oxide thin films prepared by radio frequency magnetron sputtering on stainless steel substrates under 10 Pa argon pressure is demonstrated by a laser annealing technique. Laser annealing processes were developed as a function of annealing time and temperature with the objective to form an electrochemically active lithium manganese oxide cathode. It is demonstrated, that laser annealing with 940 nm diode laser radiation and an annealing time of 2000 s at 600 °C delivers appropriate parameters for formation of a crystalline spinel-like phase. Characteristic features of this phase could be detected via Raman spectroscopy, showing the characteristic main Raman band at 627 cm -1 . Within cyclic voltammetric measurements, the two characteristic redox pairs for spinel lithium manganese oxide in the 4 V region could be detected, indicating that the film was well-crystallized and de-/intercalation processes were reversible. Raman post-analysis of a cycled cathode showed that the spinel-like structure was preserved within the cycling process but mechanical degradation effects such as film cracking were observed via scanning electron microscopy. Typical features for the formation of an additional surface reaction layer could be detected using X-ray photoelectron spectroscopy.

  19. Microstructure and Properties of a New Cr - Mn Steel without Boron Additions for Use in Hot Stamping

    Science.gov (United States)

    Zhou, H.; Zhu, G.; Li, Q.; Chen, Q.

    2015-09-01

    Anew hot-stamping steel that is alloyed with chromium and manganese and does not contain boron additions has been developed. The effect of reheating temperature and cooling rates on the mechanical properties and structure of the steel is determined. Atreatment regime that increases the ductility of the steel without a noticeable decrease in its strength is proposed.

  20. Laser beam welding of new ultra-high strength and supra-ductile steels

    OpenAIRE

    Dahmen, M.

    2015-01-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting t...

  1. Dietary manganese in the Glasgow area

    International Nuclear Information System (INIS)

    Cross, J.D.; Dale, I.M.; Raie, R.M.

    1979-01-01

    The manganese content of the diet and human tissue (adult and infant) in the Glasgow area is established. The total manganese intake by a breast fed infant (6 μg/day) is very much lower than that of an adult (5 mg/day). This does not appear to cause any upset in the infant's metabolism and the tissue levels of both groups are similar. This indicates that the human system can obtain its required manganese from both levels of intake. Tea is the major source of manganese in the diet: tobacco, which is rich in manganese, does not contribute a significant amount when smoked. (author)

  2. Noncollinear magnetism in manganese nanostructures

    Czech Academy of Sciences Publication Activity Database

    Zelený, Martin; Šob, Mojmír; Hafner, J.

    2009-01-01

    Roč. 80, č. 14 (2009), 144414/1-144414/19 ISSN 1098-0121 R&D Projects: GA AV ČR IAA100100920; GA MŠk OC09011 Institutional research plan: CEZ:AV0Z20410507 Keywords : magnetism of nanostructures * nanowires * noncollinear magnetism * manganese Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  3. Electronic and magnetic properties of SnS2 monolayer doped with non-magnetic elements

    Science.gov (United States)

    Xiao, Wen-Zhi; Xiao, Gang; Rong, Qing-Yan; Wang, Ling-Ling

    2018-05-01

    We performed a systematic study of the electronic structures and magnetic properties of SnS2 monolayer doped with non-magnetic elements in groups IA, IIA and IIIA based on the first-principles methods. The doped systems exhibit half-metallic and metallic natures depending on the doping elements. The formation of magnetic moment is attributable to the cooperative effect of the Hund's rule coupling and hole concentration. The spin polarization can be stabilized and enhanced through confining the delocalized impurity states by biaxial tensile strain in hole-doped SnS2 monolayer. Both the double-exchange and p-p exchange mechanisms are simultaneously responsible for the ferromagnetic ground state in those hole-doped materials. Our results demonstrate that spin polarization can be induced and controlled in SnS2 monolayers by non-magnetic doping and tensile strain.

  4. Apparatus and method for continuous separation of magnetic particles from non-magnetic fluids

    Science.gov (United States)

    Oder, Robin R.; Jamison, Russell E.

    2010-02-09

    A magnetic separator vessel (1) for separating magnetic particles from non-magnetic fluid includes a separation chamber having an interior and exterior wall, a top and bottom portion; a magnet (3) having first and second poles (2) positioned adjacent to the exterior wall, wherein the first pole is substantially diametrically opposed to the second pole; a inlet port (5) is directed into the top portion of the separation chamber, wherein the inlet port (5) is positioned adjacent to one of the first and second poles (2), wherein the inlet port (5) is adapted to transfer a mixture into the separation chamber; an underflow port (6) in communication with the bottom portion, wherein the underflow port (6) is adapted to receive the magnetic particles; and an overflow port (9) in communication with the separation chamber, wherein the overflow port (9) is adapted to receive the non-magnetic fluid.

  5. Selective Method for the Determination of Manganese in End-fitting of Spoolable Reinforced Plastic Line Pipe for Petroleum Industries

    Science.gov (United States)

    Shao, Xiaodong; Zhang, Dongna; Li, Houbu; Cai, Xuehua

    2017-10-01

    The fact that spoolable reinforced plastic line pipe is more flexible and spoolable than steel, and is also much lighter, means that it can becarried and deployedfrom smaller vessels and managed more easily. It was well known that manganese is an important element in end-fitting of spoolable reinforced plastic line pipe. In this paper, a simple spectrophotometric method was described for the determination of manganese in end-fitting of spoolable reinforced plastic line pipe. The method was based on the oxidation-reduction reaction between ammonium persulfate and manganese(II) producing manganese(VII) in the presence of silver nitrate as a catalyst. The characteristic wavelength of maximum absorption of manganese(VII) was obtained locating at 530 nm. Under the optimum reaction conditions the absorption value was proportional to the concentration of manganese in the range of 0.50%˜1.80% (R2 = 0.9997), and the relative standard deviation was less than 3.0% (n=5). The proposed method was applied successfully to determine manganese in end-fitting of spoolable reinforced plastic line pipe samples.

  6. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Harald; Mattissen, Dorothea; Schaumann, Thomas Wilhelm [ThyssenKrupp Steel AG, Center of Materials Excellence, Dortmund (Germany)

    2009-01-15

    Advanced high-strength steels offer a great potential for the further development of automobile bodies-in-white due to their combined mechanical properties of high formability and strength. They represent the first choice in material selection for strength and crash-relevant parts with challenging geometries. The intensive development of multiphase steels by ThyssenKrupp Steel has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex-phase steels are currently produced in addition to cold rolled dual phase (DP) and retained austenite (RA) or transformation induced plasticity (TRIP) steels. New continuously annealed grades of steel are being developed with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for the high demands of structural automobile components. These steels make use of the classic advantages of microalloying as well as the principles of DP steels and RA / TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (orig.)

  7. Spectroscopic characterization of manganese minerals.

    Science.gov (United States)

    Lakshmi Reddy, S; Padma Suvarna, K; Udayabhaska Reddy, G; Endo, Tamio; Frost, R L

    2014-01-03

    Manganese minerals ardenite, alleghanyite and leucopoenicite originated from Madhya Pradesh, India, Nagano prefecture Japan, Sussex Country and Parker Shaft Franklin, Sussex Country, New Jersey respectively are used in the present work. In these minerals manganese is the major constituent and iron if present is in traces only. An EPR study of on all of the above samples confirms the presence of Mn(II) with g around 2.0. Optical absorption spectrum of the mineral alleghanyite indicates that Mn(II) is present in two different octahedral sites and in leucophoenicite Mn(II) is also in octahedral geometry. Ardenite mineral gives only a few Mn(II) bands. NIR results of the minerals ardenite, leucophoenicite and alleghanyite are due to hydroxyl and silicate anions which confirming the formulae of the minerals. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Aircraft Steels

    Science.gov (United States)

    2009-02-19

    component usage. PH 13-8Mo is a precipitation-hardenable martensitic stainless steel combining excellent corrosion resistance with strength. Custom 465 is...a martensitic , age-hardenable stainless steel capable of about 1,724 MPa (250 ksi) UTS when peak-aged (H900 condition). Especially, this steel can...NOTES 14. ABSTRACT Five high strength steels (4340, 300M, AerMet 100, Ferrium S53, and Hy-Tuf) and four stainless steels (High Nitrogen, 13

  9. Substrate pH and butterfly bush response to dolomitic lime or steel slag amendment

    Science.gov (United States)

    Steel slag is a fertilizer amendment with a high concentration of calcium oxide, and thus capable of raising substrate pH similar to dolomitic lime. Steel slag, however, contains higher concentrations of some nutrients, such as iron, manganese, and silicon, compared to dolomitic lime. The objectiv...

  10. Radiation induced microstructural evolution in ferritic/martensitic steels

    International Nuclear Information System (INIS)

    Kohno, Y.; Kohyama, A.; Asakura, K.; Gelles, D.S.

    1993-01-01

    R and D of ferritic/martensitic steels as structural materials for fusion reactor is one of the most important issues of fusion technology. The efforts to characterize microstructural evolution under irradiation in the conventional Fe-Cr-Mo steels as well as newly developed Fe-Cr-Mn or Fe-Cr-W low activation ferritic/ martensitic steels have been continued. This paper provides some of the recent results of heavy irradiation effects on the microstructural evolution of ferritic/martensitic steels neutron irradiated in the FFTF/MOTA (Fast Flux Test Facility/Materials Open Test Assembly). Materials examined are Fe-10Cr-2Mo dual phase steel (JFMS: Japanese Ferritic/Martensitic Steel), Fe-12Cr-XMn-1Mo manganese stabilized martensitic steels and Fe-8Cr-2W Tungsten stabilized low activation martensitic steel (F82H). JFMS showed excellent void swelling resistance similar to 12Cr martensitic steel such as HT-9, while the manganese stabilized steels and F82H showed less void swelling resistance with small amount of void swelling at 640-700 K (F82H: 0.14% at 678 K). As for irradiation response of precipitate behavior, significant formation of intermetallic χ phase was observed in the manganese stabilized steels along grain boundaries which is though to cause mechanical property degradation. On the other hand, precipitates identified were the same type as those in unirradiated condition in F82H with no recognition of irradiation induced precipitates, which suggested satisfactory mechanical properties of F82H after the irradiation. (author)

  11. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    OpenAIRE

    Liren Fan; Jiqing Song; Wenbo Bai; Shengping Wang; Ming Zeng; Xiaoming Li; Yang Zhou; Haifeng Li; Haiwei Lu

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shel...

  12. Implementation of Cavity Perturbation Method for Determining Relative Permittivity of Non Magnetic Materials

    Directory of Open Access Journals (Sweden)

    FAHIM GOHARAWAN

    2017-04-01

    Full Text Available Techniques for the cavity measurement of the electrical characteristics of the materials are well established using the approximate method due to its simplicity in material insertion and fabrication. However, the exact method which requires more comprehensive mathematical analysis as well, owing to the practical difficulties for the material insertion, is not mostly used while performing the measurements as compared to approximate method in most of the works. In this work the comparative analysis of both the approximate as well as Exact method is performed and accuracy of the Exact method is established by performing the measurements of non-magnetic material Teflon within the cavity.

  13. Implementation of cavity perturbation method for determining relative permittivity of non magnetic materials

    International Nuclear Information System (INIS)

    Awan, F.G.; Sheikh, N.A.; Qureshi, S.A.; Sheikh, N.M.

    2017-01-01

    Techniques for the cavity measurement of the electrical characteristics of the materials are well established using the approximate method due to its simplicity in material insertion and fabrication. However, the exact method which requires more comprehensive mathematical analysis as well, owing to the practical difficulties for the material insertion, is not mostly used while performing the measurements as compared to approximate method in most of the works. In this work the comparative analysis of both the approximate as well as Exact method is performed and accuracy of the Exact method is established by performing the measurements of non-magnetic material Teflon within the cavity. (author)

  14. Kramers non-magnetic superconductivity in LnNiAsO superconductors.

    Science.gov (United States)

    Li, Yuke; Luo, Yongkang; Li, Lin; Chen, Bin; Xu, Xiaofeng; Dai, Jianhui; Yang, Xiaojun; Zhang, Li; Cao, Guanghan; Xu, Zhu-an

    2014-10-22

    We investigated a series of nickel-based oxyarsenides LnNiAsO (Ln=La, Ce, Pr, Nd, Sm) compounds. CeNiAsO undergoes two successive anti-ferromagnetic transitions at TN1=9.3 K and TN2=7.3 K; SmNiAsO becomes an anti-ferromagnet below TN≃3.5 K; NdNiAsO keeps paramagnetic down to 2 K but orders anti-ferromagnetically below TN≃1.3 K. Superconductivity was observed only in Kramers non-magnetic LaNiAsO and PrNiAsO with Tc=2.7 K and 0.93 K, respectively. The superconductivity of PrNiAsO is further studied by upper critical field and specific heat measurements, which reveal that PrNiAsO is a weakly coupled Kramers non-magnetic superconductor. Our work confirms that the nickel-based oxyarsenide superconductors are substantially different in mechanism to iron-based ones, and are likely to be described by the conventional superconductivity theory.

  15. Pitting corrosion resistant austenite stainless steel

    Science.gov (United States)

    van Rooyen, D.; Bandy, R.

    A pitting corrosion resistant austenite stainless steel comprises 17 to 28 wt. % chromium, 15 to 26 wt. % nickel, 5 to 8 wt. % molybdenum, and 0.3 to 0.5 wt. % nitrogen, the balance being iron, unavoidable impurities, minor additions made in the normal course of melting and casting alloys of this type, and may optionally include up to 10 wt. % of manganese, up to 5 wt. % of silicon, and up to 0.08 wt. % of carbon.

  16. 10Be in manganese nodules

    International Nuclear Information System (INIS)

    Thomas, J.; Parker, P.; Mangini, A.; Cochran, K.; Turekian, K.; Krishnaswami, S.; Sharma, P.

    1981-01-01

    10 Be (t/sub 1/2) = 1.5 MY) is(formed in the upper atmosphere by cosmic ray spallation on nitrogen and oxygen. It is transported to the earth's surface via precipitation. In the oceans it is eventually associated with solid phases depositing on the ocean floor such as manganese nodules and deep-sea sediments. One of the assumptions that is normally made in analysis of such processes is that 10 Be has been produced at a relatively uniform rate over the pat several million years. If we assume, in addition, that the initial specific concentration of 10 Be as it precipitates with a solid phase is invariant with time, then we would expect that the decrease of the 10 Be concentration as a function of depth in a deep-sea core or in a manganese nodule would provide a record of sediment accumulation rate in the former and of growth rate in the latter. The possibility of using cosmic-ray produced 10 Be for the dating of marine deposits had been proposed 25 years ago by Arnold and Goel et al. The method of analysis used by these investigators, and those subsequently pursuing the problem, was low-level β counting. Though the potential of using 10 Be for dating manganese nodules was explored more than a decade ago, only a few measurements of 10 Be in nodules exist in date. This is largely because of the 10 Be measurements in environmental samples have gained considerable momentum during the past 3 to 4 years, after the development of accelerator mass spectrometry for its determination

  17. Microstructural evolution in deformed austenitic TWinning Induced Plasticity steels

    NARCIS (Netherlands)

    Van Tol, R.T.

    2014-01-01

    This thesis studies the effect of plastic deformation on the stability of the austenitic microstructure against martensitic transformation and diffusional decomposition and its role in the phenomenon of delayed fracture in austenitic manganese (Mn)-based TWinning Induced Plasticity (TWIP) steels.

  18. Steel making

    CERN Document Server

    Chakrabarti, A K

    2014-01-01

    "Steel Making" is designed to give students a strong grounding in the theory and state-of-the-art practice of production of steels. This book is primarily focused to meet the needs of undergraduate metallurgical students and candidates for associate membership examinations of professional bodies (AMIIM, AMIE). Besides, for all engineering professionals working in steel plants who need to understand the basic principles of steel making, the text provides a sound introduction to the subject.Beginning with a brief introduction to the historical perspective and current status of steel making together with the reasons for obsolescence of Bessemer converter and open hearth processes, the book moves on to: elaborate the physiochemical principles involved in steel making; explain the operational principles and practices of the modern processes of primary steel making (LD converter, Q-BOP process, and electric furnace process); provide a summary of the developments in secondary refining of steels; discuss principles a...

  19. Designing the coordinate transformation function for non-magnetic invisibility cloaking

    International Nuclear Information System (INIS)

    Xu Xiaofei; Feng Yijun; Zhao Lin; Jiang Tian; Lu Chunhua; Xu Zhongzi

    2008-01-01

    An optical invisibility cloak based on a transformation approach has recently been proposed by a reduced set of material properties due to their easier implementation in reality and little need for an inhomogeneous permeability distribution, but the drawback of undesired scattering caused by the impedance mismatching at the outer boundary is unavoidable in such a cloak. By properly designing the coordinate transformation function to ensure impedance matching at the outer surface, we show that the performance of a nonmagnetic cylindrical cloak could be improved with minimized scattering fields. Using either a single high order power function or an optimized piecewise continuous power function, a cylindrical non-magnetic cloak has been designed with nearly perfect cloaking performance, which is better than those generated with a linear or a quadratic function. Due to the monotonicity of the designed power functions, the resulting cloak has no restriction on the size of the cloaking shell, therefore is suitable for both thick and thin cloaking structures.

  20. Reversible rectification of vortex motion in magnetic and non-magnetic asymmetric pinning potentials

    International Nuclear Information System (INIS)

    Gonzalez, E.M.; Gonzalez, M.P.; Nunez, N.O.; Villegas, J.E.; Anguita, J.V.; Jaafa, M.; Asenjo, A.; Vicent, J.L.

    2006-01-01

    Nb films have been grown on arrays of asymmetric pinning centers. The lattice vortex dynamics could be modified, almost at will, by periodic pinning potentials. In the case of asymmetric pinning potentials a vortex ratchet effect occurs: the vortex lattice motion is rectified. That is, an injected ac current yields an output dc voltage, which polarity could be tuned. The output signal polarity could be switched with the applied magnetic field and the ac current strength. Ratchet effect occurs when asymmetric potentials induce outward particles flow under external fluctuations in the lack of driven direct outward forces. The output signal is similar using magnetic or non-magnetic submicrometric array of pinning centers. This device works as an adiabatic rocking ratchet. This superconducting ratchet could be a model to study biological motors

  1. Magnetic levitation by induced eddy currents in non-magnetic conductors and conductivity measurements

    International Nuclear Information System (INIS)

    Iniguez, J; Raposo, V; Flores, A G; Zazo, M; Hernandez-Lopez, A

    2005-01-01

    We report a study on magnetic levitation by induced ac currents in non-magnetic conductors at low frequencies. Our discussion, based on Faraday's induction law, allows us to distinguish the two components of the current responsible for levitation and heating, respectively. The experimental evaluation of the levitation force in a copper ring revealed the accuracy of our analysis, clearly illustrating its asymptotic behaviour versus frequency, and validating it for the qualitative analysis of magnetic levitation and heating in conductors of different shapes such as tubes and discs, composed of collections of conductive loops. The analysis of the results allows precise values of its electrical conductivity to be found. With the help of a simulation technique, this work also reveals the progressive deformation undergone by magnetic induction lines due to magnetic screening when frequency increases

  2. Magnetic levitation by induced eddy currents in non-magnetic conductors and conductivity measurements

    Energy Technology Data Exchange (ETDEWEB)

    Iniguez, J; Raposo, V; Flores, A G; Zazo, M; Hernandez-Lopez, A [Departamento de Fisica Aplicada, Universidad de Salamanca, E-37071, Salamanca (Spain)

    2005-11-01

    We report a study on magnetic levitation by induced ac currents in non-magnetic conductors at low frequencies. Our discussion, based on Faraday's induction law, allows us to distinguish the two components of the current responsible for levitation and heating, respectively. The experimental evaluation of the levitation force in a copper ring revealed the accuracy of our analysis, clearly illustrating its asymptotic behaviour versus frequency, and validating it for the qualitative analysis of magnetic levitation and heating in conductors of different shapes such as tubes and discs, composed of collections of conductive loops. The analysis of the results allows precise values of its electrical conductivity to be found. With the help of a simulation technique, this work also reveals the progressive deformation undergone by magnetic induction lines due to magnetic screening when frequency increases.

  3. Magnetically gated accretion in an accreting 'non-magnetic' white dwarf.

    Science.gov (United States)

    Scaringi, S; Maccarone, T J; D'Angelo, C; Knigge, C; Groot, P J

    2017-12-13

    White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15 per cent of these binaries, the magnetic field of the white dwarf is strong enough (at 10 6 gauss or more) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as 'non-magnetic', because until now there has been no evidence that they have a magnetic field that is strong enough to affect the accretion dynamics. Here we report an analysis of archival optical observations of the 'non-magnetic' accreting white dwarf in the binary system MV Lyrae, whose light curve displays quasi-periodic bursts of about 30 minutes duration roughly every 2 hours. The timescale and amplitude of these bursts indicate the presence of an unstable, magnetically regulated accretion mode, which in turn implies the existence of magnetically gated accretion, in which disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyrae of between 2 × 10 4 gauss and 1 × 10 5 gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cycles have been identified.

  4. Invariance of the magnetic behavior and AMI in ferromagnetic biphase films with distinct non-magnetic metallic spacers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.F. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Gamino, M. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Instituto de Física, Universidade Federal do Rio Grande de Sul, 91501-970 Porto Alegre, RS (Brazil); Andrade, A.M.H. de [Instituto de Física, Universidade Federal do Rio Grande de Sul, 91501-970 Porto Alegre, RS (Brazil); Vázquez, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Correa, M.A. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Bohn, F., E-mail: felipebohn@fisica.ufrn.br [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2017-02-01

    We investigate the quasi-static magnetic, magnetotransport, and dynamic magnetic properties in ferromagnetic biphase films with distinct non-magnetic metallic spacer layers. We observe that the nature of the non-magnetic metallic spacer material does not have significant influence on the overall biphase magnetic behavior, and, consequently, on the magnetotransport and dynamic magnetic responses. We focus on the magnetoimpedance effect and verify that the films present asymmetric magnetoimpedance effect. Moreover, we explore the possibility of tuning the linear region of the magnetoimpedance curves around zero magnetic field by varying the probe current frequency in order to achieve higher sensitivity values. The invariance of the magnetic behavior and the asymmetric magnetoimpedance effect in ferromagnetic biphase films with distinct non-magnetic metallic spacers place them as promising candidates for probe element and open possibilities to the development of lower-cost high sensitivity linear magnetic field sensor devices.

  5. Recovery of manganese from manganese oxide ores in the EDTA solution

    Science.gov (United States)

    Zhang, Chao; Wang, Shuai; Cao, Zhan-fang; Zhong, Hong

    2018-04-01

    A new process has been experimentally and theoretically established for the recovery of manganese from manganese oxide ores, mainly including the reductive leaching of manganese by ethylenediaminetetraacetic acid (EDTA), EDTA recovery, and manganese electrolysis. The experimental conditions for this process were investigated. Moderate leaching environment by EDTA with the pH in the range of 5-6 is of benefit to leach manganese from some manganese oxide ores with high-content impurities, such as iron and aluminum. Most of EDTA can be recovered by acidification. A small amount of the residual EDTA in the electrolyte can prevent the generation of anode mud. In addition, trimanganese tetroxide (Mn3O4) can be obtained by the roasting of the EDTA-Mn crystallized product.

  6. Manganese oxide nanoparticles, methods and applications

    Science.gov (United States)

    Abruna, Hector D.; Gao, Jie; Lowe, Michael A.

    2017-08-29

    Manganese oxide nanoparticles having a chemical composition that includes Mn.sub.3O.sub.4, a sponge like morphology and a particle size from about 65 to about 95 nanometers may be formed by calcining a manganese hydroxide material at a temperature from about 200 to about 400 degrees centigrade for a time period from about 1 to about 20 hours in an oxygen containing environment. The particular manganese oxide nanoparticles with the foregoing physical features may be used within a battery component, and in particular an anode within a lithium battery to provide enhanced performance.

  7. Microstructural stability of 21-6-9 stainless steel

    International Nuclear Information System (INIS)

    Krenzer, R.W.; Sanderson, E.C.

    1978-01-01

    Two experiments were designed to better define parameters for thermomechanical processing of 21-6-9 stainless steel. This steel is one of the nitrogen-strengthened chromium, manganese, and nickel austenitic stainless steels having mechanical properties that can be improved by a combination of plastic deformation and heat treatments. By heat-treating coupons, the time-temperature relationship of the precipitate phase, and the solutionizing, recrystallizing, and stress-relieving temperature ranges in 21-6-9 were established. Secondly, mechanical properties and microstructure as a function of percent deformation and stress-relieving temperature are reported

  8. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria

    OpenAIRE

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-01-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the p...

  9. Manganese Oxidation by Bacteria: Biogeochemical Aspects

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; LokaBharathi, P.A.

    Manganese is an essential trace metal that is not as readily oxidizable like iron. Several bacterial groups posses the ability to oxidize Mn effectively competing with chemical oxidation. The oxides of Mn are the strongest of the oxidants, next...

  10. Manganese(II) chelate contrast media

    International Nuclear Information System (INIS)

    Rocklage, S.M.; Quay, S.C.

    1994-01-01

    New chelate forming compounds for use as contrast media in NMR imaging are described. Especially mentioned are manganese(II) ion chelates of N,N' dipyridoxaldiamine, N,N' diacetic acid, and salts and esters thereof. 1 fig

  11. 21 CFR 73.2775 - Manganese violet.

    Science.gov (United States)

    2010-04-01

    .... Mercury (as Hg), not more than 1 part per million. Total color, based on Mn content in “as is” sample, not less than 93 percent. (c) Uses and restrictions. Manganese violet is safe for use in coloring cosmetics...

  12. Personality traits in persons with manganese poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, A A

    1976-10-01

    Results of studies with the Minnesota Multiphasic Personality Inventory (MMPI) in 3 groups of arc welders with various degrees of manganese poisoning (22 symptom-free, 23 with functional disturbances, 55 with organic symptoms) and 50 controls were discussed. There was a close relation between the severity of the poisoning and quantitative and qualitative personality changes. Personality tests are considered a useful addition to the clinical diagnosis of chronic manganese poisoning.

  13. Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline

    International Nuclear Information System (INIS)

    Rajasekar, A.; Ganesh Babu, T.; Karutha Pandian, S.; Maruthamuthu, S.; Palaniswamy, N.; Rajendran, A.

    2007-01-01

    The degradation problem of petroleum products arises since hydrocarbon acts as an excellent food source for a wide variety of microorganisms. Microbial activity leads to unacceptable level of turbidity, corrosion of pipeline and souring of stored product. The present study emphasizes the role of Bacillus cereus ACE4 on degradation of diesel and its influence on corrosion of API 5LX steel. A demonstrating bacterial strain ACE4 was isolated from corrosion products and 16S rRNA gene sequence analysis showed that it has more than 99% similarity with B. cereus. The biodegradation and corrosion studies revealed that B. cereus degraded the aliphatic protons and aromatic protons in diesel and is capable of oxidizing ferrous/manganese into oxides. This is the first report that discloses the involvement of manganese oxidizer B. cereus ACE4 on biodegradation of diesel and its influence on corrosion in a tropical country pipeline

  14. Magnesium and manganese content of halophilic bacteria

    International Nuclear Information System (INIS)

    de Medicis, E.; Paquette, J.; Gauthier, J.J.; Shapcott, D.

    1986-01-01

    Magnesium and manganese contents were measured by atomic absorption spectrophotometry in bacteria of several halophilic levels, in Vibrio costicola, a moderately halophilic eubacterium growing in 1 M NaCl, Halobacterium volcanii, a halophilic archaebacterium growing in 2.5 NaCl, Halobacterium cutirubrum, an extremely halophilic archaebacterium growing in 4 M NaCl, and Escherichia coli, a nonhalophilic eubacterium growing in 0.17 M NaCl. Magnesium and manganese contents varied with the growth phase, being maximal at the early log phase. Magnesium and manganese molalities in cell water were shown to increase with the halophilic character of the logarithmically growing bacteria, from 30 mmol of Mg per kg of cell water and 0.37 mmol of Mn per kg of cell water for E. coli to 102 mmol of Mg per kg of cell water and 1.6 mmol of Mn per kg of cell water for H cutirubrum. The intracellular concentrations of manganese were determined independently by a radioactive tracer technique in V. costicola and H. volcanii. The values obtained by 54 Mn loading represented about 70% of the values obtained by atomic absorption. The increase of magnesium and manganese contents associated with the halophilic character of the bacteria suggests that manganese and magnesium play a role in haloadaptation

  15. Fabrication of a Textured Non-Magnetic Ni-12at.%V Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Grivel, Jean-Claude; Suo, H. L.

    2011-01-01

    Ni-12at.%V alloy is a promising candidate for non-magnetic cube textured metallic substrates used for high temperature coated conductors. In this work, a textured Ni-12at.%V substrate has been fabricated by powder metallurgy route. After cold rolling and recrystallization annealing, a cube texture...

  16. Pathophysiology of Manganese-Associated Neurotoxicity

    Science.gov (United States)

    Racette, Brad A.; Aschner, Michael; Guilarte, Tomas R.; Dydak, Ulrike; Criswell, Susan R.; Zheng, Wei

    2012-01-01

    Conference Summary Manganese (Mn) is a well established neurotoxin associated with specific damage to the basal ganglia in humans. The phenotype associated with Mn neurotoxicity was first described in two workers with occupational exposure to Mn oxide.(Couper, 1837) Although the description did not use modern clinical terminology, a parkinsonian illness characterized by slowness of movement (bradykinesia), masked facies, and gait impairment (postural instability) appears to have predominated. Nearly 100 years later an outbreak of an atypical parkinsonian illness in a Chilean Mn mine provided a phenotypic description of a fulminant neurologic disorder with parkinsonism, dystonia, and neuropsychiatric symptoms.(Rodier J, 1955) Exposures associated with this syndrome were massive and an order of magnitude greater than modern exposures.(Rodier J, 1955; Hobson et al., 2011) The clinical syndrome associated with Mn neurotoxicity has been called manganism. Modern exposures to Mn occur primarily through occupations in the steel industry and welding. These exposures are often chronic and varied, occurring over decades in the healthy workforce. Although the severe neurologic disorder described by Rodier and Couper are no longer seen, several reports have suggested a possible increased risk of neurotoxicity in these workers.(Racette et al., 2005b; Bowler et al., 2007; Harris et al., 2011) Based upon limited prior imaging and pathologic investigations into the pathophysiology of neurotoxicity in Mn exposed workers,(Huang et al., 2003) many investigators have concluded that the syndrome spares the dopamine system distinguishing manganism from Parkinson disease (PD), the most common cause of parkinsonism in the general population, and a disease with characteristic degenerative changes in the dopaminergic system.(Jankovic, 2005) The purpose of this symposium was to highlight recent advances in the understanding of the pathophysiology of Mn associated neurotoxicity from C. elegans

  17. Reduced-activation austenitic stainless steels: The Fe--Mn--Cr--C system

    International Nuclear Information System (INIS)

    Klueh, R.L.; Maziasz, P.J.

    1988-01-01

    Nickel-free manganese-stabilized steels are being developed for fusion-reactor applications. As the first part of this effort, the austenite-stable region in the Fe--Mn--Cr--C system was determined. Results indicated that the Schaeffler diagram developed for Fe--Ni--Cr--C alloys cannot be used to predict the constituents expected for high-manganese steels. This is true because manganese is not as strong an austenite stabilizer relative to δ-ferrite formation as predicted by the diagram, but it is a stronger austenite stabilizer relative to martensite than predicted. Therefore, the austenite-stable region for Ne--Mn--Cr--C alloys occurs at lower chromium and hugher combinations of manganese and carbon than predicted by the Schaeffler diagram. Development of a manganese-stabilized stainless steel should be possible in the composition range of 20 to 25% Mn, 10 to 15% Cr, and 0.01 to 0.25%C. Tensile behavior of an Fe--20%Mn--12%Cr--0.25%C alloy was determined. The strength and ductility of this possible base composition was comparable to type 316 stainless steel in both the solution-annealed and cold-worked condition

  18. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  19. Deformation induced martensitic transformation in stainless steels

    International Nuclear Information System (INIS)

    Nagy, E.; Mertinger, V.; Tranta, F.; Solyom, J.

    2003-01-01

    Deformation induced martensitic transformation was investigated in metastable austenitic stainless steel. This steel can present a microstructure of austenite (γ), α' martensite and non magnetic ε martensite. Uni-axial tensile test was used for loading at different temperatures below room temperature (from -120 to 20 deg. C). During the deformation the transformation takes place at certain places in an anisotropic way and texture also develops. Quantitative phase analysis was done by X-ray diffraction (XRD) and magnetic methods while the texture was described by X-ray diffraction using a special inverse pole figure. The quantitative phase analysis has shown that the formation of α' and ε martensite from austenite is the function of deformation rate, and deformation temperature. The transformation of the textured austenite takes place in an anisotropic way and a well defined crystallographic relationship between the parent and α' martensite phase has been measured

  20. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    Cruz V, J. P.; Vite T, J.; Castillo S, M.; Vite T, M.

    2009-01-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  1. New magnetic materials obtained by ion-exchange reactions from non-magnetic layered perovskites

    International Nuclear Information System (INIS)

    Kageyama, H; Viciu, L; Caruntu, G; Ueda, Y; Wiley, J B

    2004-01-01

    New layered magnetic materials (MCl)Ca 2 Ta 3 O 10 (M = Cu, Fe), have been prepared by ion-exchange reactions of non-magnetic perovskite derivatives, ACa 2 Ta 3 O 10 (A = Rb, Li), in corresponding anhydrous molten salts. Powder x-ray diffraction patterns of the products are successfully indexed assuming tetragonal symmetry with cell dimensions a = 3.829 A and c = 15.533 A for Cu, and a = 3.822 A and c = 15.672 A for Fe. Being separated by the Ca 2 Ta 3 O 10 triple-layer perovskite slabs, the transition-metal chloride (MCl) network provides a two-dimensional magnetic lattice. Magnetic susceptibility measurements show that (CuCl)Ca 2 Ta 3 O 10 is in an antiferromagnetic state below 8 K, while (FeCl)Ca 2 Ta 3 O 10 has two anomalies at 91 and 125 K, suggesting successive phase transitions due to geometrical spin frustration

  2. Electromagnetic Screening and Skin-Current Distribution with Magnetic and Non-Magnetic Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Dahlberg, E [Dept. of Plasma Physics, Royal Institute of Technology, Stockholm (SE)

    1974-12-15

    In many applications it is permissible to assume that eddy currents are essentially confined to the skin of the conductor. However, the perfect-conductor approach, commonly employed for skin-current estimates, requires that also mud << L{sub t}, where mu is the relative permeability of the conductor, d its skin depth, and L{sub t} a characteristic length along its surface. The need for this restriction does not seem to be sufficiently well known. In this note simple formulae giving quantitative estimates - valid for arbitrary mud/L - for far-field skin-currents, eddy current losses and screening efficiency are derived for several simple configurations. Boundary conditions that should allow calculations for more complicated configurations are also presented. The parameter mud is important also for non-magnetic materials. Thus, the equivalence of a thin real screen (thickness D) and an infinitely thin screen with the same rhoomegaD will be improved if - in addition - mud is the same for both

  3. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  4. Leaching of manganese from electrolytic manganese residue by electro-reduction.

    Science.gov (United States)

    Shu, Jiancheng; Liu, Renlong; Liu, Zuohua; Chen, Hongliang; Tao, Changyuan

    2017-08-01

    In this study, an improved process for leaching manganese from electrolytic manganese residue (EMR) by electro-reduction was developed. The mechanisms of the electro-reduction leaching were investigated through X-ray diffraction, scanning electron microscopy, X-ray fluorescence, and Brunauer Emmett Teller. The results show that the electric field could change the surface charge distribution of EMR particles, and the high-valent manganese can be reduced by electric field. The leaching efficient of manganese reached 84.1% under the optimal leaching condition: 9.2 wt% H 2 SO 4 , current density of 25 mA/cm 2 , solid-to-liquid ratio of 1:5, and leaching time for 1 h. It is 37.9% higher than that attained without an electric field. Meanwhile, the manganese content in EMR decreased from 2.57% to 0.48%.

  5. Effect of manganese on neonatal rat: manganese concentration and enzymatic alterations in brain

    Energy Technology Data Exchange (ETDEWEB)

    Seth, P K; Husain, R; Mushtaq, M; Chandra, S V

    1977-01-01

    Suckling rats were exposed for 15 and 30 days to manganese through the milk of nursing dams receiving 15 mg MnCl/sub 2/.4H/sub 2/O/kg/day orally and after which the neurological manifestations of metal poisoning were studied. No significant differences in the growth rate, developmental landmarks and walking movements were observed between the control and manganese-exposed pups. The metal concentration was significantly increased in the brain of manganese-fed pups at 15 days and exhibited a further three-fold increase over the control, at 30 days. The accumulation of the metal in the brain of manganese-exposed nursing dams was comparatively much less. A significant decrease in succinic dehydrogenase, adenosine triphosphatase, adenosine deaminase, acetylcholine esterase and an increase in monoamine oxidase activity was observed in the brain of experimental pups and dams. The results suggest that the developing brain may also be susceptible to manganese.

  6. Evaluation of properties of low activation Mn-Cr steel. 3. Evaluation of corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukaya, Kiyoshi [Nihon Advanced Technology Co., Ltd., Tokai, Ibaraki (Japan); Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Takeshi [Japan Steel Works Ltd., Muroran, Hokkaido (Japan). Muroran Plant; Takahashi, Heishichiro [Hokkaido Univ., Sapporo, Hokkaido (Japan); Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-05-01

    JAERI and the Japan Steel Works LTD. (JSW) have developed new Mn-Cr steels as low induced activation material. Until now, chemical composition and metallurgical processes were optimized and some steels named VC-series were selected. The properties of the steels have been evaluated and reported elsewhere. In this study, corrosion resistance of VC-series was studied. Corrosion tests for stainless steels were performed to investigate a relationship between corrosion rate and chemical composition or sensitization. Furthermore, corrosion tests under actual environment for the vacuum vessel of the reinforced JT-60 were done for non-magnetic steels. As a result, almost no weight change was observed for uniform and gap corrosion tests, No crack was shown for double U-bend corrosion tests. (author)

  7. Old age and gender influence the pharmacokinetics of inhaled manganese sulfate and manganese phosphate in rats

    International Nuclear Information System (INIS)

    Dorman, David C.; McManus, Brian E.; Marshall, Marianne W.; James, R. Arden; Struve, Melanie F.

    2004-01-01

    In this study, we examined whether gender or age influences the pharmacokinetics of manganese sulfate (MnSO 4 ) or manganese phosphate (as the mineral form hureaulite). Young male and female rats and aged male rats (16 months old) were exposed 6 h day -1 for 5 days week -1 to air, MnSO 4 (at 0.01, 0.1, or 0.5 mg Mn m -3 ), or hureaulite (0.1 mg Mn m -3 ). Tissue manganese concentrations were determined in all groups at the end of the 90-day exposure and 45 days later. Tissue manganese concentrations were also determined in young male rats following 32 exposure days and 91 days after the 90-day exposure. Intravenous 54 Mn tracer studies were also performed in all groups immediately after the 90-day inhalation to assess whole-body manganese clearance rates. Gender and age did not affect manganese delivery to the striatum, a known target site for neurotoxicity in humans, but did influence manganese concentrations in other tissues. End-of-exposure olfactory bulb, lung, and blood manganese concentrations were higher in young male rats than in female or aged male rats and may reflect a portal-of-entry effect. Old male rats had higher testis but lower pancreas manganese concentrations when compared with young males. Young male and female rats exposed to MnSO 4 at 0.5 mg Mn m -3 had increased 54 Mn clearance rates when compared with air-exposed controls, while senescent males did not develop higher 54 Mn clearance rates. Data from this study should prove useful in developing dosimetry models for manganese that consider age or gender as potential sensitivity factors

  8. Influence of Mn contents in 0Cr18Ni10Ti thin wall stainless steel tube on TIG girth weld quality

    Science.gov (United States)

    Liu, Bo

    2017-03-01

    Three kinds of cold worked 0Cr18Ni10Ti thin wall stainless steel tubes with the manganese contents of 1.27%, 1.35% and 1.44% and the cold worked 0Cr18Ni10Ti stainless steel end plug with manganese content of 1.35% were used for TIG girth welding in the present investigation. The effect of different manganese contents in stainless steel tube on weld quality was studied. The results showed that under the same welding conditions, the metallographic performance of the girth weld for the thin wall stainless steel tube with the manganese element content 1.44% welded with end plug was the best. Under the appropriate welding conditions, the quality of the girth weld increased with the increase of the manganese content till 1.44%. It was found that in the case of the Mn content of 1.44%, and under the proper welding condition the welding defects, such as welding cracks were effectively avoided, and the qualified weld penetration can be obtained.. It is concluded that the appropriate increase of the manganese content can significantly improve the TIG girth weld quality of the cold worked 0Cr18Ni10Ti stainless steel tube.

  9. Photogeochemical reactions of manganese under anoxic conditions

    Science.gov (United States)

    Liu, W.; Yee, N.; Piotrowiak, P.; Falkowski, P. G.

    2017-12-01

    Photogeochemistry describes reactions involving light and naturally occurring chemical species. These reactions often involve a photo-induced electron transfer that does not occur in the absence of light. Although photogeochemical reactions have been known for decades, they are often ignored in geochemical models. In particular, reactions caused by UV radiation during an ozone free early Earth could have influenced the available oxidation states of manganese. Manganese is one of the most abundant transition metals in the crust and is important in both biology and geology. For example, the presence of manganese (VI) oxides in the geologic record has been used as a proxy for oxygenic photosynthesis; however, we suggest that the high oxidation state of Mn can be produced abiotically by photochemical reactions. Aqueous solutions of manganese (II) as well as suspensions of rhodochrosite (MnCO3) were irradiated under anoxic condition using a 450 W mercury lamp and custom built quartz reaction vessels. The photoreaction of the homogeneous solution of Mn(II) produced H2 gas and akhtenskite (ɛ-MnO2) as the solid product . This product is different than the previously identified birnessite. The irradiation of rhodochrosite suspensions also produced H2 gas and resulted in both a spectral shift as well as morphology changes of the mineral particles in the SEM images. These reactions offer alternative, abiotic pathways for the formation of manganese oxides.

  10. Enhanced nuclear magnetic resonance in a non-magnetic cubic doublet

    International Nuclear Information System (INIS)

    Veenendaal, E.J.

    1982-01-01

    In this thesis two lanthanide compounds are studied which show enhanced nuclear magnetism at low temperatures: Rb 2 NaHoF 6 and CsNaHoF 6 . Chapter II gives a description of the 4 He-circulating refrigerator, which was built to provide the low temperatures required for the polarization of the enhanced nuclear moments. This type of dilution refrigerator was chosen because of its simple design and large cooling power. Chapter III is devoted to a comparison of the different types of dilution refrigerators. A theoretical discussion is given of their performance, starting from the differential equations, which govern the temperature distribution in the refrigerator. In chapter IV the actual performance of the refrigerator, described in chapter II is discussed. In chapter V a description of the NMR-apparatus, developed for very-low-temperature NMR experiments is given. In chapter VI experimental results on the compound Rb 2 NaHoF 6 are presented. The CEF-ground state of this compound is probably the non-magnetic doublet GAMMA 3 , but at a temperature of 170 K a structural phase transition lowers the crystal symmetry from cubic to tetragonal and the doublet is split into two singlets. In chapter VII specific heat, (enhanced) nuclear magnetic resonance and magnetization measurements on the compound Cs 2 NaHoF 6 are presented which also has a GAMMA 3 -doublet ground state. In zero magnetic field the degeneracy of the doublet is removed at a temperature of 393 mK, where a phase transition is induced by quadrupolar interactions. (Auth.)

  11. The Cracking Mechanism of Ferritic-Austenitic Cast Steel

    Directory of Open Access Journals (Sweden)

    Stradomski G.

    2016-12-01

    Full Text Available In the high-alloy, ferritic - austenitic (duplex stainless steels high tendency to cracking, mainly hot-is induced by micro segregation processes and change of crystallization mechanism in its final stage. The article is a continuation of the problems presented in earlier papers [1 - 4]. In the range of high temperature cracking appear one mechanism a decohesion - intergranular however, depending on the chemical composition of the steel, various structural factors decide of the occurrence of hot cracking. The low-carbon and low-alloy cast steel casting hot cracking cause are type II sulphide, in high carbon tool cast steel secondary cementite mesh and / or ledeburite segregated at the grain solidified grains boundaries, in the case of Hadfield steel phosphorus - carbide eutectic, which carrier is iron-manganese and low solubility of phosphorus in high manganese matrix. In duplex cast steel the additional factor increasing the risk of cracking it is very “rich” chemical composition and related with it processes of precipitation of many secondary phases.

  12. Manganese and acute paranoid psychosis: a case report

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Egger, J.I.M.; Kuijpers, H.J.H.

    2011-01-01

    Introduction Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional instability. Later,

  13. Manganese and acute paranoid psychosis: A case report

    NARCIS (Netherlands)

    W.M.A. Verhoeven (Wim); J.I.M. Egger (Jos); H.J. Kuijpers (Harold)

    2011-01-01

    textabstractIntroduction: Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional

  14. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    Directory of Open Access Journals (Sweden)

    Tušek, Janez

    2001-06-01

    Full Text Available The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and highalloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-off depends mainly on the type of shielding gas used and the arc length, i.e., from the arc voltage. The manganese burn-off increases with an increase of the content of active gases, i.e., CO2 and O2, in the neutral gas, i.e., argon. It also increases with an increase in arc voltage. The longer the welding arc, the longer exposition of the filler material to the welding arc and the wider the penetration, which allows manganese vapours to evaporate from the weld pool. The most important finding is that manganese burn-off from the 18/8/6 wire during welding of austenitic stainless steel with low-alloy ferritic steel is considerably strong, i.e., from 20% to 30%; nevertheless the wire concerned is perfectly suitable for welding of different types of steel.

    El artículo describe el estudio de un acero ferrítico poco aleado con un acero austenítico altamente aleado con el alambre 18/8/6 mediante el procedimiento MAG/MIG. Se ha investigado el consumo del manganeso del alambre durante la soldadura a tope con la preparación en V. Con los análisis se ha comprobado que el manganeso se consume en el arco desde la formación de la gota en la punta del alambre hasta la solidificación del metal aportado fundido. La cantidad perdida del manganeso depende, sobre todo, del tipo del gas de protección y de la longitud del arco, esto es, de la tensión convencional en el arco. Con el aumento de los gases activos (CO2 y O2 respecto al gas neutro argon, el consumo del manganeso va aumentando. También se observó que el consumo del manganeso va

  15. Silver manganese oxide electrodes for lithium batteries

    Science.gov (United States)

    Thackeray, Michael M.; Vaughey, John T.; Dees, Dennis W.

    2006-05-09

    This invention relates to electrodes for non-aqueous lithium cells and batteries with silver manganese oxide positive electrodes, denoted AgxMnOy, in which x and y are such that the manganese ions in the charged or partially charged electrodes cells have an average oxidation state greater than 3.5. The silver manganese oxide electrodes optionally contain silver powder and/or silver foil to assist in current collection at the electrodes and to improve the power capability of the cells or batteries. The invention relates also to a method for preparing AgxMnOy electrodes by decomposition of a permanganate salt, such as AgMnO4, or by the decomposition of KMnO4 or LiMnO4 in the presence of a silver salt.

  16. Tool steels

    DEFF Research Database (Denmark)

    Højerslev, C.

    2001-01-01

    On designing a tool steel, its composition and heat treatment parameters are chosen to provide a hardened and tempered martensitic matrix in which carbides are evenly distributed. In this condition the matrix has an optimum combination of hardness andtoughness, the primary carbides provide...... resistance against abrasive wear and secondary carbides (if any) increase the resistance against plastic deformation. Tool steels are alloyed with carbide forming elements (Typically: vanadium, tungsten, molybdenumand chromium) furthermore some steel types contains cobalt. Addition of alloying elements...... serves primarily two purpose (i) to improve the hardenabillity and (ii) to provide harder and thermally more stable carbides than cementite. Assuming proper heattreatment, the properties of a tool steel depends on the which alloying elements are added and their respective concentrations....

  17. AN INVESTIGATION ON SOFT MAGNETIC AND NON-MAGNETIC MATERIALS UNDER LOW FREQUENCY FOR BIOMEDICAL SENSOR APPLICATION

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2012-02-01

    Full Text Available In consequence of the recent development of magnetic sensors in biomedical sector, the investigation of magneticmaterials has been a contributing factor in application stage. This paper proposes a novel technique to investigate materials by obtaining unique distinctive impedance peaks with unique impedance values. A magneto-inductive sensoris used to measure the induction of magnetic and non-magnetic impedance peaks related to the change in permeability, thus characterizing the materials under low frequency.

  18. INDUCTION HEATING OF NON-MAGNETIC SHEET METALS IN THE FIELD OF A FLAT CIRCULAR MULTITURN SOLENOID

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2016-06-01

    Full Text Available The theoretical analysis of electromagnetic processes in the system for induction heating presented by a flat circular multiturn solenoid positioned above a plane of thin sheet non-magnetic metal has been conducted. The calculated dependences for the current induced in a metal sheet blank and ratio of transformation determined have been obtained. The maximal value of the transformation ratio with regard to spreading the eddy-currents over the whole area of the sheet metal has been determined.

  19. Manganese (II) induces chemical hypoxia by inhibiting HIF-prolyl hydroxylase: Implication in manganese-induced pulmonary inflammation

    International Nuclear Information System (INIS)

    Han, Jeongoh; Lee, Jong-Suk; Choi, Daekyu; Lee, Youna; Hong, Sungchae; Choi, Jungyun; Han, Songyi; Ko, Yujin; Kim, Jung-Ae; Mi Kim, Young; Jung, Yunjin

    2009-01-01

    Manganese (II), a transition metal, causes pulmonary inflammation upon environmental or occupational inhalation in excess. We investigated a potential molecular mechanism underlying manganese-induced pulmonary inflammation. Manganese (II) delayed HIF-1α protein disappearance, which occurred by inhibiting HIF-prolyl hydroxylase (HPH), the key enzyme for HIF-1α hydroxylation and subsequent von Hippel-Lindau(VHL)-dependent HIF-1α degradation. HPH inhibition by manganese (II) was neutralized significantly by elevated dose of iron. Consistent with this, the induction of cellular HIF-1α protein by manganese (II) was abolished by pretreatment with iron. Manganese (II) induced the HIF-1 target gene involved in pulmonary inflammation, vascular endothelial growth factor (VEGF), in lung carcinoma cell lines. The induction of VEGF was dependent on HIF-1. Manganese-induced VEGF promoted tube formation of HUVEC. Taken together, these data suggest that HIF-1 may be a potential mediator of manganese-induced pulmonary inflammation

  20. Manganese exposure in foundry furnacemen and scrap recycling workers

    DEFF Research Database (Denmark)

    Lander, F; Kristiansen, J; Lauritsen, Jens

    1999-01-01

    Cast iron products are alloyed with small quantities of manganese, and foundry furnacemen are potentially exposed to manganese during tapping and handling of smelts. Manganese is a neurotoxic substance that accumulates in the central nervous system, where it may cause a neurological disorder...

  1. Development of an accelerator based system for in vivo neutron activation analysis measurements of manganese in humans

    Science.gov (United States)

    Arnold, Michelle Lynn

    2001-11-01

    Manganese is required by the human body, but as with many heavy elements, in large amounts it can be toxic, producing a neurological disorder similar to that of Parkinson's Disease. The primary industrial uses of the element are for the manufacturing of steel and alkali batteries. Environmental exposure may occur via drinking water or exhaust emissions from vehicles using gasoline with the manganese containing compound MMT as an antiknock agent (MMT has been approved for use in both Canada and the United States). Preclinical symptoms of toxicity have recently been detected in individuals occupationally exposed to airborne manganese at levels below the present threshold limit value set by the EPA. Evidence also suggests that early detection of manganese toxicity is crucial since once the symptoms have developed past a certain point, the syndrome will continue to progress even if manganese exposure ceases. The development of a system for in vivo neutron activation analysis (IVNAA) measurement of manganese levels was investigated, with the goal being to have a means of monitoring both over exposed and manganese deficient populations. The McMaster KN-accelerator was used to provide low-energy neutrons, activation within an irradiation site occurred via the 55Mn(n,gamma) 56Mn capture reaction, and the 847 keV gamma-rays emitted when 56Mn decayed were measured using one or more Nal(TI) detectors. The present data regarding manganese metabolism and storage within the body are limited, and it is unclear what the optimal measurement site would be to provide a suitable biomarker of past exposure. Therefore the feasibility of IVNAA measurements in three sites was examined---the liver, brain and hand bones. Calibration curves were derived, minimum detectable limits determined and resulting doses calculated for each site (experimentally in the case of the liver and hand bones, and through computer simulations for the brain). Detailed analytical calculations of the 7Li(p,n) 7Be

  2. Manganese phospate physical chemistry and surface properties

    International Nuclear Information System (INIS)

    Najera R, N.; Romero G, E. T.

    2008-01-01

    This paper presents the methodology for the manganese phosphate (III) synthesis (MnP0 4 H 2 0) from manganese chloride. The physicochemical characterization was carried out by: X-ray diffraction, scanning electron microscopy, infrared analysis and thermal gravimetric analysis. The surface characterization is obtained through the determination of surface area, point of zero charge and kinetics of moisture. As a phosphate compound of a metal with low oxidation state is a promising compound for removal pollutants from water and soil, can be used for the potential construction of containment barriers for radioactive wastes. (Author)

  3. Effects of S and Mn on the hot workability of STS 316L and 309S steels

    International Nuclear Information System (INIS)

    Lee, Soo Chan; Kim, Young Hwan; Lee, Yun Yong

    1998-01-01

    Effects of sulfur and manganese on the hot workability of STS 316L and 309S steels have been investigated. From the results of hot workability test, the hot ductility was decreased with increasing sulfur content and reheating temperature. This is considered to be caused by sulfur segregations and sulfide precipitates at grain boundaries. Sulfur would be dissolved under the reheating conditions and reprecipitated with decreasing temperatures during hot rolling. The content of reprecipitated sulfur is decreased with increasing manganese content and decreasing reheating temperature. Therefore, the hot ductility is increased with increasing manganese content. It was also found that the hot ductility is increased with decreasing reheating temperature

  4. Cavitation erosion of chromium-manganese and chromium-cobalt coatings processed by laser beam

    International Nuclear Information System (INIS)

    Giren, B.G.; Szkodo, M.

    2002-01-01

    In this work the cavitation erosion of chromium-manganese and chromium-cobalt clads were tested, each of them for three cases: (1) without additional processing; (2) after laser heating of the solid state and (3) after laser remelting of the material. Armco iron, carbon steel 45 and chromium-nickel steel 0H18N9T were used as substrates. C.W. CO 2 laser with a beam power of 1000 W was used as a source of radiation. The investigated samples were subjected to cavitation impingement in a rotating disk facility. The results indicate that laser processing of the thick, electrode deposited coatings by laser beam leads in some cases to an increase of their cavitation resistance. Strong dependence of the coatings performance on the substrate, both for the laser processed or unprocessed parts of the materials was also discovered. (author)

  5. Effect of manganese on neonatal rat: manganese distribution in vital organs

    Energy Technology Data Exchange (ETDEWEB)

    Husain, R; Mushtaq, M; Seth, P K; Chandra, S V

    1976-01-01

    At present very little is known about the effect of manganese on the early stage of life, though the metal poisoning in adult humans and experimental animals has been known for quite some time. The possibility of the exposure of the general public to the deleterious effects of the metal through the environmental contamination resulting from its increasing industrial applications, and the use of Methyl Cyclopentadienyl Manganese Tricarbonyl (MMT) in gasoline and motor fuel, points to the need for such an information. Our recent studies in this direction have shown that manganese exposed nursing dams can transfer significant amounts of the metal via maternal milk of their sucklings and the brain of the latter exhibited marked enzymatic alterations. The present communication deals with the distribution of manganese in the vital organs of rat pups nursing on mothers receiving the metal orally.

  6. Microstructural characterization of irradiated PWR steels using the atom probe field-ion microscope

    International Nuclear Information System (INIS)

    Miller, M.K.; Burke, M.G.

    1987-08-01

    Atom probe field-ion microscopy has been used to characterize the microstructure of a neutron-irradiated A533B pressure vessel steel weld. The atomic spatial resolution of this technique permits a complete structural and chemical description of the ultra-fine features that control the mechanical properties to be made. A variety of fine scale features including roughly spherical copper precipitates and clusters, spherical and rod-shaped molybdenum carbide and disc-shaped molybdenum nitride precipitates were observed to be inhomogeneously distributed in the ferrite. The copper content of the ferrite was substantially reduced from the nominal level. A thin film of molybdenum carbides and nitrides was observed on grain boundaries in addition to a coarse copper-manganese precipitate. Substantial enrichment of manganese and nickel were detected at the copper-manganese precipitate-ferrite interface and this enrichment extended into the ferrite. Enrichment of nickel, manganese and phosphorus were also measured at grain boundaries

  7. Thermodynamic Properties of Manganese and Molybdenum

    International Nuclear Information System (INIS)

    Desai, P.D.

    1987-01-01

    This work reviews and discusses the data on the various thermodynamic properties of manganese and molybdenum available through March 1985. These include heat capacity, enthalpy, enthalpy of transitions and melting, vapor pressure, and enthalpy of vaporization. The existing data have been critically evaluated and analyzed. The recommended values for the heat capacity, enthalpy, entropy, and Gibbs energy function from 0.5 to 2400 K for manganese and from 0.4 to 5000 K for molybdenum have been generated, as have heat capacity values for supercooled β-Mn and for γ-Mn below 298.15 K. The recommended values for vapor pressure cover the temperature range from 298.15 to 2400 K for manganese and from 298.15 to 5000 K for molybdenum. These values are referred to temperatures based on IPTS-1968. The uncertainties in the recommended values of the heat capacity range from +-3% to +-5% for manganese and from +-1.5% to +-3% for molybdenum

  8. Iron and manganese deposits in Uruguay

    International Nuclear Information System (INIS)

    Alvarado, B.

    1959-01-01

    This report is the results of the study carried out for the United Nations expert which the main object was: the study of the information available about iron and manganese formation in Uruguay, as well as the main researching deposit to determinate economical possibilities in the exportation.

  9. Crystallization and spectroscopic studies of manganese malonate

    Indian Academy of Sciences (India)

    Administrator

    ... and its esters are important intermediates in syntheses of vitamins B1 and B6, barbitu- ... been a subject of interest because of the importance of such interactions in a ... The d-values of the Bragg peaks in the XRD. Figure 1. (a) Manganese ...

  10. Treating electrolytic manganese residue with alkaline additives for stabilizing manganese and removing ammonia

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Changbo; Wang, Jiwei [Chinese Research Academy of Environmental Sciences, Beijing (China); Wang, Nanfang [Hunan Institute of Engineering, Xiangtan (China)

    2013-11-15

    Electrolytic manganese residue (EMR) from the electrolytic manganese industry is a solid waste containing mainly calcium sulfate dihydrate and quartzite. It is impossible to directly use the EMR as a building material due to some contaminants such as soluble manganese, ammonia nitrogen and other toxic substances. To immobilize the contaminants and reduce their release into the environment, treating EMR using alkaline additives for stabilizing manganese and removing ammonia was investigated. The physical and chemical characteristics of the original EMR were characterized by XRFS, XRD, and SEM. Leaching test of the original EMR shows that the risks to the environment are the high content of soluble manganese and ammonia nitrogen. The influence of various alkaline additives, solidifying reaction time, and other solidifying reaction conditions such as outdoor ventilation and sunlight, and rain flow on the efficiencies of Mn{sup 2+} solidification and ammonia nitrogen removal was investigated. The results show that with mass ratio of CaO to residue 1 : 8, when the solidifying reaction was carried out indoors for 4 h with no rain flow, the highest efficiencies of Mn{sup 2+} solidification and ammonia nitrogen removal (99.98% and 99.21%) are obtained. Leaching test shows that the concentration and emission of manganese and ammonia nitrogen of the treated EMR meets the requirements of the Chinese government legislation (GB8978-1996)

  11. Treating electrolytic manganese residue with alkaline additives for stabilizing manganese and removing ammonia

    International Nuclear Information System (INIS)

    Zhou, Changbo; Wang, Jiwei; Wang, Nanfang

    2013-01-01

    Electrolytic manganese residue (EMR) from the electrolytic manganese industry is a solid waste containing mainly calcium sulfate dihydrate and quartzite. It is impossible to directly use the EMR as a building material due to some contaminants such as soluble manganese, ammonia nitrogen and other toxic substances. To immobilize the contaminants and reduce their release into the environment, treating EMR using alkaline additives for stabilizing manganese and removing ammonia was investigated. The physical and chemical characteristics of the original EMR were characterized by XRFS, XRD, and SEM. Leaching test of the original EMR shows that the risks to the environment are the high content of soluble manganese and ammonia nitrogen. The influence of various alkaline additives, solidifying reaction time, and other solidifying reaction conditions such as outdoor ventilation and sunlight, and rain flow on the efficiencies of Mn"2"+ solidification and ammonia nitrogen removal was investigated. The results show that with mass ratio of CaO to residue 1 : 8, when the solidifying reaction was carried out indoors for 4 h with no rain flow, the highest efficiencies of Mn"2"+ solidification and ammonia nitrogen removal (99.98% and 99.21%) are obtained. Leaching test shows that the concentration and emission of manganese and ammonia nitrogen of the treated EMR meets the requirements of the Chinese government legislation (GB8978-1996)

  12. Nanoscale analysis of the influence of pre-oxidation on oxide formation and wetting behavior of hot-dip galvanized high strength steel

    International Nuclear Information System (INIS)

    Arndt, M.; Duchoslav, J.; Steinberger, R.; Hesser, G.; Commenda, C.; Samek, L.; Arenholz, E.

    2015-01-01

    Highlights: • Pre-oxidized hot-dip galvanized advanced high strength steel was examined. • The interface was analyzed in detail via high energy resolution Auger spectra. • Evidence for an aluminothermic reduction of the Mn oxide was found. • A new model for galvanizing high manganese steel was developed. - Abstract: Hot-dip galvanized (HDG) 2nd generation advanced high strength steel (AHSS), nano-TWIP (twinning induced plasticity) with 15.8 wt.% Mn, 0.79 wt.% C, was analyzed at the interface between steel and zinc by scanning Auger electron microscopy (AES) in order to confirm and improve an existing model of additional pre-oxidation treatment before annealing and immersion into the hot zinc bath. Furthermore these steel samples were fractured in the analysis chamber of the AES and analyzed without breaking vacuum. In these measurements the results of an aluminothermic reduction of the manganese and iron surface oxides on the steel could be confirmed by AES

  13. Study of phosphate formation on S355J2 HSLA steel

    Czech Academy of Sciences Publication Activity Database

    Borko, K.; Pastorek, F.; Fintová, Stanislava; Neslušan-Jacková, M.; Hadzima, B.

    2017-01-01

    Roč. 17, č. 1 (2017), s. 8-14 ISSN 1213-2489 Institutional support: RVO:68081723 Keywords : Corrosion resistance * Manganese phosphate * Steel S355J2 Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films

  14. Investigation of non-magnetic alloys for the suppression of tritium permeation. Final report

    International Nuclear Information System (INIS)

    1980-07-01

    This report describes a small (300 man hour) literature survey relating to the suppression of tritium loss by permeation through the walls of fusion reactors. The program was based on prior in-house Thermacore work to suppress hydrogen permeation into high temperature (800 0 C) heat pipes. The Thermacore approach involves selection of a steel with a small (.5 to 5%) aluminum content. The aluminum is diffused to the surface and oxidized. The present work was aimed at identification of alloys which might combine low tritium permeation with other properties desired in fusion reactor vessels, heat exchangers, lithium-handling plumbing and other components likely to contain tritium. These properties include low radiation damage, low magnetic permeability, high temperature strength, and compatibility with potential heat transfer and blanket materials. The work consisted of two tasks: Problem Definition and Literature Search and Analysis

  15. Modification of steel 35 HL surge current during crystallization

    Directory of Open Access Journals (Sweden)

    Zhbanova O.M.

    2017-04-01

    Full Text Available The method of electro steel melt modification 35 HL variable polarity current pulses with a duration of more 10-3s frequency within the 5–33 Hz, 5–24 porosity meanders, strength 30–40 A at a voltage of 180–240 V during crystallization, which allows to obtain high-quality castings 35 HL steel grade. Show that electro melt processing improves the structure and reduces the physical heterogeneity of castings and increases the rate of dissolution of metallic impurities and other components in the melt, providing fine-grained structure and increases the homogeneity of metal carbides reduces the amount of manganese reduces gases and nonmetallic inclusions. Modifying steel 35 HL pulse current during crystallization of the melt increases the physical and mechanical properties of tempered steel, increasing yield strength by 30 %, the tensile strength at 7 % elongation of 1,5 % relative narrowing by 2 %, toughness at 20 %.

  16. Stress corrosion cracking of austenitic stainless steels in high temperature water and alternative stainless steel

    International Nuclear Information System (INIS)

    Yonezawa, T.

    2015-01-01

    In order to clarify the effect of SFE on SCC resistance of austenitic stainless steels and to develop the alternative material of Type 316LN stainless steel for BWR application, the effect of chemical composition and heat treatment on SFE value and SCCGR in oxygenated high temperature water were studied. The correlation factors between SFE values for 54 heats of materials and their chemical compositions for nickel, molybdenum, chromium, manganese, nitrogen, silicon and carbon were obtained. From these correlation factors, original formulae for SFE values calculation of austenitic stainless steels in the SHTWC, SHTFC and AGG conditions were established. The maximum crack length, average crack length and cracked area of the IGSCC for 33 heats were evaluated as IGSCC resistance in oxygenated high temperature water. The IGSCC resistance of strain hardened nonsensitized austenitic stainless steels in oxygenated high temperature water increases with increasing of nickel contents and SFE values. From this study, it is suggested that the SFE value is a key parameter for the IGSCC resistance of non-sensitized strain hardened austenitic stainless steels. As an alternative material of Type 316LN stainless steel, increased SFE value material, which is high nickel, high chromium, low silicon and low nitrogen material, is recommendable. (author)

  17. Soil manganese enrichment from industrial inputs: a gastropod perspective.

    Directory of Open Access Journals (Sweden)

    Despina-Maria Bordean

    Full Text Available Manganese is one of the most abundant metal in natural environments and serves as an essential microelement for all living systems. However, the enrichment of soil with manganese resulting from industrial inputs may threaten terrestrial ecosystems. Several studies have demonstrated harmful effects of manganese exposure by cutaneous contact and/or by soil ingestion to a wide range of soil invertebrates. The link between soil manganese and land snails has never been made although these invertebrates routinely come in contact with the upper soil horizons through cutaneous contact, egg-laying, and feeding activities in soil. Therefore, we have investigated the direct transfer of manganese from soils to snails and assessed its toxicity at background concentrations in the soil. Juvenile Cantareus aspersus snails were caged under semi-field conditions and exposed first, for a period of 30 days, to a series of soil manganese concentrations, and then, for a second period of 30 days, to soils with higher manganese concentrations. Manganese levels were measured in the snail hepatopancreas, foot, and shell. The snail survival and shell growth were used to assess the lethal and sublethal effects of manganese exposure. The transfer of manganese from soil to snails occurred independently of food ingestion, but had no consistent effect on either the snail survival or shell growth. The hepatopancreas was the best biomarker of manganese exposure, whereas the shell did not serve as a long-term sink for this metal. The kinetics of manganese retention in the hepatopancreas of snails previously exposed to manganese-spiked soils was significantly influenced by a new exposure event. The results of this study reveal the importance of land snails for manganese cycling in terrestrial biotopes and suggest that the direct transfer from soils to snails should be considered when precisely assessing the impact of anthropogenic Mn releases on soil ecosystems.

  18. Steel alloys

    International Nuclear Information System (INIS)

    Bloom, E.E.; Stiegler, J.O.; Rowcliffe, A.F.; Leitnaker, J.M.

    1977-01-01

    The invention deals with a fuel element for fast breeder reactors. It consits essentially of a uranium oxide, nitride, or carbide or a mixture of these fuels with a plutonium or thorium oxide, nitride, or carbide. The fuel elements are coated with an austenitic stainless steel alloy. Inside the fuel elements, vacancies or small cavities are produced by neutron effects which causes the steel coating to swell. According to the invention, swelling is prevented by a modification of type 304, 316, 321, or 12 K 72HV commercial steels. They consist mainly of Fe, Cr, and Ni in a ratio determined by a temary diagram. They may also contain 1.8 to 2.3% by weight of Mo and a fraction of Si (0.7 to 2% by weight) and Ti(0.10 to 0.5% by weight) to prevent cavity formation. They are structurally modified by cold working. (IHOE) [de

  19. Fracture toughness of stainless steel welds

    International Nuclear Information System (INIS)

    Mills, W.J.

    1985-11-01

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  20. Quest for steel quality: the role of metallurgical chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McLean, A. [Toronto Univ., ON (Canada). Dept. of Metallurgy and Materials Science

    2000-10-01

    Improvements in the quality of steels and the role played by metallurgical chemistry to bring about those improvements are discussed. The particular emphasis is on the chemical behaviour of solutes in molten steel and the reaction between steel, slag and refractory materials and the manner in which they influence the physical properties and performance of the steel product. As an illustration of the contribution of chemistry to steel making the case of the steel plates used in the construction of the Titanic is cited. In 1911 when the Titanic was constructed by Harland and Wolff at their Belfast shipyard, the steel plates used in the hull met all then current specifications. In 1992 when a number of steel samples recovered from the Titanic were examined, it was found that the hull of the vessel was constructed of low carbon, semi-killed steel, produced in the open-hearth process. Microstructural analysis showed extensive carbon banding, typical of hot rolled 0.2 per cent carbon steel. Also found were long manganese sulphide inclusions elongated in the rolling direction, some of which exceeded 25 mm in length. It was determined that as a consequence of these inclusions, at a seawater temperature of 0 degree C, the hull plates of the Titanic had essentially no resistance to fracture. Today's high quality steels used in applications such as Arctic pipelines, offshore platforms, icebreakers and ships for the transportation of natural gas, oxygen and sulphur concentrations are frequently less than 10 ppm. These elements have a profound influence of the quality of the final steel products by virtue of their effect of hindering the formation of inclusions. 2 refs., 3 figs.

  1. Radiographic findings in 4 cows with traumatic reticuloperitonitis due to a non-magnetic foreign body composed of copper

    International Nuclear Information System (INIS)

    Braun, U.; Gansohr, B.; Flückiger, M.

    2003-01-01

    The goal of this study was to describe the findings in four cows with non-magnetic reticular foreign bodies composed of copper. The cows were referred to our clinic because of reduced appetite and a marked decrease in milk production. Based on the clinical findings, a tentative diagnosis of traumatic reticuloperitonitis was made in all cows. The reticulum of all cows was then examined ultrasonographically and radiographically. In all cows, radiographs of the reticulum showed wire-shaped foreign bodies, ranging from 3 to 7 cm in length, which appeared to have penetrated the reticular wall. Two cows (No. 3, 4) had a magnet in the reticulum close to the foreign body but there was no direct contact between the two. A magnet was administered to cows No. 1 and 2, and radiography of the reticulum was performed for a second time the following day. The magnets were observed in the reticulum however, they did not contact the foreign bodies. Because all the magnets were correctly placed in the reticulum yet, despite close proximity, did not contact the foreign bodies, the latter were thought to be non-magnetic. Cow No. 1 was slaughtered. Left flank laparoruminotomy was performed in the remaining three cows. In all cows, copper foreign bodies ranging in length from 3.0 to 7.0 cm, were found in the reticulum. They had penetrated the reticular wall and were not attached to magnets. The radiographic findings described in the present study are strongly indicative of a non-magnetic foreign body. Ruminotomy is the treatment of choice but slaughter may also be considered

  2. The effects of Dresselhaus and Rashba spin-orbit interactions on the electron tunneling in a non-magnetic heterostructure

    International Nuclear Information System (INIS)

    Lu Jianduo; Li Jianwen

    2010-01-01

    We theoretically investigate the electron transport properties in a non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit interactions. The detailed-numerical results show that (1) the large spin polarization can be achieved due to Dresselhaus and Rashba spin-orbit couplings induced splitting of the resonant level, although the magnetic field is zero in such a structure, (2) the Rashba spin-orbit coupling plays a greater role on the spin polarization than the Dresselhaus spin-orbit interaction does, and (3) the transmission probability and the spin polarization both periodically change with the increase of the well width.

  3. Giant magnetoimpedance in composite wires with insulator layer between non-magnetic core and soft magnetic shell

    International Nuclear Information System (INIS)

    Buznikov, N.A.; Antonov, A.S.; Granovsky, A.B.; Kim, C.G.; Kim, C.O.; Li, X.P.; Yoon, S.S.

    2006-01-01

    A method for calculation of the magnetoimpedance in composite wires having an insulator layer between non-magnetic core and soft magnetic shell is described. It is assumed that the magnetic shell has a helical anisotropy and the driving current flows through the core only. The distribution of eddy currents and expressions for the impedance are found by means of a solution of Maxwell equations taking into account the magnetization dynamics within the shell governed by the Landau-Lifshitz equation. The effect of the insulator layer on the magnetoimpedance is analyzed

  4. Giant magnetoimpedance in composite wires with insulator layer between non-magnetic core and soft magnetic shell

    Energy Technology Data Exchange (ETDEWEB)

    Buznikov, N.A. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Antonov, A.S. [Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, Moscow 125412 (Russian Federation); Granovsky, A.B. [Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation); Kim, C.G. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of)]. E-mail: cgkim@cnu.ac.kr; Kim, C.O. [Research Center for Advanced Magnetic Materials, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Li, X.P. [Department of Mechanical Engineering and Division of Bioengineering, National University of Singapore, Singapore 119260 (Singapore); Yoon, S.S. [Department of Physics, Andong National University, Andong 760-749 (Korea, Republic of)

    2006-05-15

    A method for calculation of the magnetoimpedance in composite wires having an insulator layer between non-magnetic core and soft magnetic shell is described. It is assumed that the magnetic shell has a helical anisotropy and the driving current flows through the core only. The distribution of eddy currents and expressions for the impedance are found by means of a solution of Maxwell equations taking into account the magnetization dynamics within the shell governed by the Landau-Lifshitz equation. The effect of the insulator layer on the magnetoimpedance is analyzed.

  5. Creating a context for excellence and innovation: comparing chief nurse executive leadership practices in magnet and non-magnet hospitals.

    Science.gov (United States)

    Porter-O'grady, Tim

    2009-01-01

    Chief nurse executives create a context for leadership, innovation, and practice in hospitals. It is valuable to get a sense of nurse executives' perceptions regarding their leadership practices and how they value them. Furthermore, it is of interest to see if there is significant differentiation in these perceptions between chief nurse executives in Magnet hospitals and those in non-Magnet hospitals. This article discusses a study of the leadership practices of these 2 groups of nurse executive's leadership practices and reports the results. Concluding is a brief discussion regarding impact and importance of the nurse executive related to excellence and innovation.

  6. Hegelian Steel

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    2015-01-01

    Even in our globalized world the notion of national economies remain incredibly strong, just as a considerable part of the literature on transnational governance and globalization continue to rely on a zero-sum perspective concerning the relationship between the national and the transnational. De...... of the European steel industry....

  7. A simple route to synthesize manganese germanate nanorods

    International Nuclear Information System (INIS)

    Pei, L.Z.; Yang, Y.; Yuan, C.Z.; Duan Taike; Zhang Qianfeng

    2011-01-01

    Manganese germanate nanorods have been synthesized by a simple route using germanium dioxide and manganese acetate as the source materials. X-ray diffraction observation shows that the nanorods are composed of orthorhombic and monoclinic manganese germanate phases. Scanning electron microscopy and transmission electron microscopy observations display that the manganese germanate nanorods have flat tips with the length of longer than 10 micrometers and diameter of 60-350 nm, respectively. The role of the growth conditions on the formation of the manganese germanate nanorods shows that the proper selection and combination of the growth conditions are the key factor for controlling the formation of the manganese germanate nanorods. The photoluminescence spectrum of the manganese germanate nanorods exhibits four fluorescence emission peaks centered at 422 nm, 472 nm, 487 nm and 530 nm showing the application potential for the optical devices. - Research Highlights: → Manganese germanate nanorods have been synthesized by simple hydrothermal process. → The formation of manganese germanate nanorods can be controlled by growth conditions. → Manganese germanate nanorods exhibit good PL emission ability for optical device.

  8. Manganese binding proteins in human and cow's milk

    International Nuclear Information System (INIS)

    Loennerdal, B.; Keen, C.L.; Hurley, L.S.

    1985-01-01

    Manganese nutrition in the neonatal period is poorly understood, due in part to a lack of information on the amount of manganese in infant foods and its bioavailability. Since the molecular localization of an element in foods is one determinant of its subsequent bioavailability, a study was made of the binding of manganese in human and cow's milk. An extrinsic label of 54 Mn was shown to equilibrate isotopically with native manganese in milks and formulas. Milk samples were separated into fat, casein and whey by ultracentrifugation. In human milk, the major part (71%) of manganese was found in whey, 11% in casein and 18% in the lipid fraction. In contrast, in cow's milk, 32% of total manganese was in whey, 67% in casein and 1% in lipid. Within the human whey fraction, most of the manganese was bound to lactoferrin, while in cow's whey, manganese was mostly complexed to ligands with molecular weights less than 200. The distribution of manganese in formulas was closer to that of human milk than of cow's milk. The bioavailability of manganese associated with lactoferrin, casein and low molecular weight complexes needs to be assessed

  9. Foucault current testing of ferritic steel fuel cans

    International Nuclear Information System (INIS)

    Stossel, A.

    1984-10-01

    The analysis of impedance involved by a Foucault current test of ferritic steel tubes, is quite different from the classical analysis which refers to non-magnetic tubes; more particularly, volume defects are considered as magnetic anomalies. Contrarily to current instructions which recommend to test the product in a satured magnetic state, it is very interesting to work with a continuous energizing field, comparatively low, corresponding to a sequenced magnetization, of which value is obtained according to the magnetic structure of the product. This analysis is useful when testing fast reactor fuel cans [fr

  10. The CCT diagrams of ultra low carbon bainitic steels and their impact toughness properties

    International Nuclear Information System (INIS)

    Lis, A.K.; Lis, J.; Jeziorski, L.

    1998-01-01

    The CCT diagrams of ULCB N i steels, HN3MV, HN3MVCu having 5.1% Ni and 3.5% Ni and Cu bearing steels; HN3M1.5Cu, HSLA 100 have been determined. The reduced carbon concentration in steel, in order to prevent the formation of cementite, allowed for using nickel, manganese, chromium and molybdenum to enhance hardenability and refinement of the bainitic microstructures by lowering B S temperature. Copper and microadditions of vanadium and niobium are successfully used for precipitation strengthening of steel both in thermomechanically or heat treated conditions. Very good fracture toughness at low temperatures and high yield strength properties of HN3MVCu and HN3MV steels allowed for fulfillment of the requirements for steel plates for pressure vessels and cryogenic applications. (author)

  11. Effect of carbon and manganese on the microstructure and mechanical properties of 9Cr2WVTa deposited metals

    Science.gov (United States)

    Wang, Jian; Rong, Lijian; Li, Dianzhong; Lu, Shanping

    2017-03-01

    Six 9Cr2WVTa deposited metals with different carbon and manganese contents have been studied to reveal the role of major elements, which guide for the design of welding consumables for reduced activation ferritic/martensitic steel and meet for the requirements of accelerator driven systems-lead fusion reactors. The typical microstructure for the 9Cr2WVTa deposited metals is the lath martensite along with the fine stripe δ-ferrite. The chemical compositions influence the solidification sequence and therefore, change the δ-ferrite content in the deposited metal. The impact toughness for the 9Cr2WVTa deposited metals decreases remarkably when the δ-ferrite content is more than 5.2 vol%, also the impact toughness decreases owing to the high quenching martensite formation. Increasing the level of manganese addition, α phase of each alloy shifts to the bottom right according to the CCT diagram.

  12. Characterization of Sumbawa manganese ore and recovery of manganese sulfate as leaching products

    Science.gov (United States)

    Kusumaningrum, Retno; Rahmani, Siti Astari; Widayatno, Wahyu Bambang; Wismogroho, Agus Sukarto; Nugroho, Dwi Wahyu; Maulana, Syahrizal; Rochman, Nurul Taufiqu; Amal, M. Ikhlasul

    2018-05-01

    The aims of this research were to study the leaching process of manganese ore which originated from Sumbawa, Indonesia and its characterization. A high grade Indonesian manganese ore from Sumbawa, West of Nusa Tenggara was characterized by X-Ray Fluorescence (XRF). The result showed composition of 78.8 % Mn, 17.77% Fe and the rest were trace elements such as Si, Co, Ti, Zn, V and Zr contents. X-Ray Diffraction analysis showed that the manganese ore was consisted of pyrolusite (MnO2), rhodonite (MnSiO3), rhodochrosite (MnCO3) and hematite (Fe2O3). Manganese ore was also analyzed by thermal analysis to observe their thermal decomposition character. In this study, sulphuric acid (H2SO4, 6 M) was deployed as leaching agent. The leaching process was performed at 90 °C for two hours with the addition of NH4OH to control pH. Recovery percentage of leaching process yielded of 87 % Mn extracted. The crystallization process result at heating temperature of 200 °C was confirmed by XRD as manganese sulfate.

  13. Hydrometallurgical Process and Kinetics of Leaching Manganese from Semi-Oxidized Manganese Ores with Sucrose

    Directory of Open Access Journals (Sweden)

    Yuhong Wang

    2017-02-01

    Full Text Available The extraction of manganese from a semi-oxidized manganese ore was investigated with sucrose as the reducing agent in dilute sulfuric acid medium. The kinetics of leaching manganese from the complex ore containing MnCO3 and MnO2 was also investigated. The effects of sucrose and sulfuric acid concentrations, leaching temperature and reaction time on the total Mn (TMn, MnO2 and MnCO3 leaching were investigated. Results showed that MnCO3 could more easily react with hydrogen ions than MnO2 in ores, and MnO2 decomposition could be advantageous for MnCO3 leaching. The leaching efficiencies of 91.8% for total Mn, 91.4% for MnO2 and 96.9% for MnCO3 were obtained under the following optimized conditions: 0.035 mol/L sucrose concentration, 5 mol/L sulfuric acid concentration, 60 min of reaction time and 363.2 K of leaching temperature. In addition, it was found that the leaching process of semi-oxidized manganese ore follows the shrinking core model and the leaching rate was controlled by chemical reaction and diffusion. The apparent activation energy of the total manganese, MnO2, and MnCO3 leaching were 40.83, 40.59, and 53.33 kJ·mol−1, respectively.

  14. Bioleaching of a manganese and silver Ore

    International Nuclear Information System (INIS)

    Porro, S.; Tedesco, P.H.; La Plata

    1990-01-01

    The bioleaching with a strain of Thiobacillus thiooxidans of the ore of Farallon Negro (Catamarca, Argentina) was studied in order to estimate its application to the solution and recovery of the manganese, and to improve the silver extraction. The State company which works the mine has not yet found an economical process to extract the manganese and has only reached a 30% efficiency in the recovery of silver by cianuration. The effects of pulp density variations and the addition of different quantities of FeS were analysed looking for the best working conditions. 74 μm (mesh Tyler 200) of ore particles were used because that is the size used in this plant for the cianuration process. (Author)

  15. Arsenic removal by manganese greensand filters

    Energy Technology Data Exchange (ETDEWEB)

    Phommavong, T. [Saskatchewan Environment, Regina (Canada); Viraraghavan, T. [Univ. of Regina, Saskatchewan (Canada). Faculty of Engineering

    1994-12-31

    Some of the small communities in Saskatchewan are expected to have difficulty complying with the new maximum acceptable concentration (MAC) of 25 {micro}g/L for arsenic. A test column was set up in the laboratory to study the removal of arsenic from the potable water using oxidation with KMnO{sub 4}, followed by manganese greensand filtration. Tests were run using water from the tap having a background arsenic concentration of <0.5 {micro}g/L and iron concentration in the range of 0.02 to 0.77 mg/L. The test water was spiked with arsenic and iron. Results showed that 61 % to 98% of arsenic can be removed from the potable water by oxidation with KMnO{sub 4} followed by manganese greensand filtration.

  16. Iron and manganese removal from drinking water

    OpenAIRE

    Pascu, Daniela-Elena; Neagu (Pascu), Mihaela; Alina Traistaru, Gina; Nechifor, Aurelia Cristina; Raluca Miron, Alexandra

    2016-01-01

    The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering both local economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption m...

  17. Manganese concentration in human saliva using NAA

    Energy Technology Data Exchange (ETDEWEB)

    Lewgoy, Hugo R., E-mail: hugorl@usp.br [Universidade Bandeirante Anhanguera (UNIBAN), Sao Paulo, SP (Brazil); Zamboni, Cibele B.; Medeiros, Ilca M.M.A.; Medeiros, Jose A.G. de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In this investigation the Manganese levels in human whole saliva were determined using Neutron Activation Analysis (NAA) technique for the proposition of an indicative interval. The measurements were performed considering gender and lifestyle factors of Brazilian inhabitants (non-smokers, non-drinkers and no history of toxicological exposure). The results emphasize that the indicative interval is statistically different by gender. These data are useful for identifying or preventing some diseases in the Brazilian population. (author)

  18. Manganese concentration in human saliva using NAA

    International Nuclear Information System (INIS)

    Lewgoy, Hugo R.; Zamboni, Cibele B.; Medeiros, Ilca M.M.A.; Medeiros, Jose A.G. de

    2013-01-01

    In this investigation the Manganese levels in human whole saliva were determined using Neutron Activation Analysis (NAA) technique for the proposition of an indicative interval. The measurements were performed considering gender and lifestyle factors of Brazilian inhabitants (non-smokers, non-drinkers and no history of toxicological exposure). The results emphasize that the indicative interval is statistically different by gender. These data are useful for identifying or preventing some diseases in the Brazilian population. (author)

  19. Component masses of young, wide, non-magnetic white dwarf binaries in the Sloan Digital Sky Survey Data Release 7

    Science.gov (United States)

    Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.

    2014-06-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.

  20. Manganese contents of soils as determined by activation analysis

    International Nuclear Information System (INIS)

    El-Kholi, A.F.; Hamdy, A.A.; Al Metwally, A.I.; El-Damaty, A.H.

    1976-01-01

    The object of this investigation is to determine total manganese by means of neutron activation analysis and evaluate this technique in comparison with the corresponding data obtained by conventional chemical analysis. Data obtained revealed that the values of total manganese in calcareous soils obtained by both chemical analysis and that by neutron activation analysis were similar. Therefore, activation analysis could be recommended as a quick laboratory, less tedious, and time consuming method for the determination of Mn content in both soils and plants than the conventional chemical techniques due to its great specificity, sensitivity and simplicity. Statistical analysis showed that there is a significant correlation at 5% probability level between manganese content in Soybean plant and total manganese determined by activation and chemical analysis giving the evidence that in the case of those highly calcareous soils of low total manganese content this fraction has to be considered as far as available soil manganese is concerned

  1. Manganese deposition in drinking water distribution systems.

    Science.gov (United States)

    Gerke, Tammie L; Little, Brenda J; Barry Maynard, J

    2016-01-15

    This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Manganese-enhanced magnetic resonance imaging (MEMRI).

    Science.gov (United States)

    Koretsky, Alan P; Silva, Afonso C

    2004-12-01

    Manganese ion (Mn2+) is an essential metal that participates as a cofactor in a number of critical biological functions, such as electron transport, detoxification of free radicals and synthesis of neurotransmitters. Mn2+ can enter excitable cells using some of the same transport systems as Ca2+ and it can bind to a number of intracellular sites because it has high affinity for Ca2+ and Mg2+ binding sites on proteins and nucleic acids. Paramagnetic forms of manganese ions are potent MRI relaxation agents. Indeed, Mn2+ was the first contrast agent proposed for use in MRI. Recently, there has been renewed interest in combining the strong MRI relaxation effects of Mn2+ with its unique biology, in order to further expand the already broad assortment of useful information that can be measured by MRI. Such an approach has been continuously developed in the past several years to provide unique tissue contrast, to assess tissue viability, to act as a surrogate marker of calcium influx into cells and to trace neuronal connections. This special issue of NMR in Biomedicine on manganese-enhanced MRI (MEMRI) is aimed at providing the readers of this journal with an extensive review of some of the most prominent applications of MEMRI in biological systems. Written by several of the leaders in the field, the reviews and original research articles featured in this special issue are likely to offer an exciting and inspiring view of the broad range of applications of MEMRI. Copyright 2004 John Wiley & Sons, Ltd.

  3. Manganese and the II system in photosynthesis

    International Nuclear Information System (INIS)

    Joyard, Jacques

    1971-01-01

    The evolution during greening of some components of system II of photosynthesis has been followed in plastids extracted from Zea mays grown in the dark. Manganese studies were done by means of neutron activation, electron spin resonance (ESR) was also used in some experiments. Oxygen evolution of isolated plastids was followed by polarography (with a membrane electrode). The evolution of manganese/carotenoids ratio can be divided in three parts. During the first hour of greening, the increase shows an input of Mn in the plastids; then, whereas carotenoids content of those plastids presents no changes, Mn is released in the medium; at last, carotenoids synthesis is parallel to Mn fixation in the plastids, the ratio being constant after 24 hours of greening. From various measurements on chloroplastic manganese, it is shown that the development of system II can be divided in two main phases: during the first one (that is during the first day of light) the components are not yet bound together but the relations become more and more strong. Then, during the last period of the development, the organisation of system II is complete and the transformations of the plastids are parallel to the raise of their activity. (author) [fr

  4. Nature of higher chaomium steels tendency to carbide formation during cementation

    International Nuclear Information System (INIS)

    Pereverzev, V.M.; Kolmykov, V.I.

    1980-01-01

    The effect of manganese, chromium and vanadium upon carbide formation in steels during cementation was investigated. It was found that the increase in the tendency of chromium steels to form carbides during cementation is caused by the stabilization of cementite by chromium. As a result of the dissolution of chromium, the isobaric-isothermal potential of cementite increases to such a point, as to make possible the formation, on energy grounds, of granular cementite. The formation of granular cementite in chromium steels is promoted also by a substantial magnitude of the coefficient of thermal activity of chromium in austenite

  5. The comparative studies of ADI versus Hadfield cast steel wear resistance

    Directory of Open Access Journals (Sweden)

    Mieczysław Kaczorowski

    2011-04-01

    Full Text Available The results of comparative studies of wear resistance of ADI versus high manganese Hadfield cast steel are presented. For evaluation ofwear resistance three type of ADI were chosen. Two of them were of moderate strength ADI with 800 and 1000MPa tensile strength whilethe third was 1400MPa tensile strength ADI. The specimens were cut from ADI test YII type casting poured and heat treated in Institute ofFoundry in Krakow. The pin on disc method was used for wear resistance experiment. The specimens had a shape of 40mm long rod withdiameter 6mm. The load and speed were 100N and 0,54m/s respectively. It was concluded that the wear resistance of ADI is comparablewith high manganese cast steel and in case of low tensile grade ADI and is even better for high strength ADI than Hadfield steel.

  6. Metabolism of manganese, iron, copper, and selenium in calves

    International Nuclear Information System (INIS)

    Ho, S.Y.

    1981-01-01

    Sixteen male Holstein calves were used to study manganese and iron metabolism. The calves were fed one of the following diets for 18 days: control, control + iron, control + manganese, and control + iron and manganese. All calves were dosed orally with manganese-54. Tissue concentrations of manganese, iron and manganese-54 were determined. Small intestinal iron was lower in calves fed the high manganese diet than in controls. Tissue manganese-54 was lower in calves fed a high manganese diet. Fecal manganese content increased in calves fed both high manganese and high manganese-high iron diets. Serum total iron was not affected by the dietary treatments. To study the effects of high dietary levels of copper and selenium on the intracellular distributions of these two elements in liver and kidney cytosol, calves were fed one of four diets for 15 days. These were 0 and 100 ppM supplemental copper and 0 and 1 ppM added selenium. The control diet containing 0.1 ppM of selenium and 15 ppM of copper. All calves were orally dosed 48 hrs prior to sacrifice with selenium-75. A high copper diet increased copper concentrations in all intracellular liver fractions and most kidney fractions. Only the effects in the liver were significant. Less copper was found in the mitochondria fractions in liver and kidney of calves fed a high selenium diet. Three major copper-binding protein peaks were separated from the soluble fractions of calf liver and kidney. Peak 1 appeared to be the major copper-binding protein in liver and kidney cytosol of copper-loaded animals. Added selenium alone or in combination with copper accentuated the copper accumulation in this peak. Most of selenium-75 was recovered in the same peak as the copper. The results of this experiment indicated that the large molecular proteins in liver and kidney cytosol of calves play an important role in copper and selenium-75 metabolism

  7. Modeling Manganese Sorption and Surface Oxidation During Filtration

    OpenAIRE

    Bierlein, Kevin Andrew

    2012-01-01

    Soluble manganese (Mn) is a common contaminant in drinking water sources. High levels of Mn can lead to aesthetic water quality problems, necessitating removal of Mn during treatment to minimize consumer complaints. Mn may be removed during granular media filtration by the â natural greensand effect,â in which soluble Mn adsorbs to manganese oxide-coated (MnOx(s)) media and is then oxidized by chlorine, forming more manganese oxide. This research builds on a previous model developed by Mer...

  8. Nanostructured manganese oxides as highly active water oxidation catalysts: a boost from manganese precursor chemistry.

    Science.gov (United States)

    Menezes, Prashanth W; Indra, Arindam; Littlewood, Patrick; Schwarze, Michael; Göbel, Caren; Schomäcker, Reinhard; Driess, Matthias

    2014-08-01

    We present a facile synthesis of bioinspired manganese oxides for chemical and photocatalytic water oxidation, starting from a reliable and versatile manganese(II) oxalate single-source precursor (SSP) accessible through an inverse micellar molecular approach. Strikingly, thermal decomposition of the latter precursor in various environments (air, nitrogen, and vacuum) led to the three different mineral phases of bixbyite (Mn2 O3 ), hausmannite (Mn3 O4 ), and manganosite (MnO). Initial chemical water oxidation experiments using ceric ammonium nitrate (CAN) gave the maximum catalytic activity for Mn2 O3 and MnO whereas Mn3 O4 had a limited activity. The substantial increase in the catalytic activity of MnO in chemical water oxidation was demonstrated by the fact that a phase transformation occurs at the surface from nanocrystalline MnO into an amorphous MnOx (1manganese oxides including the newly formed amorphous MnOx . Both Mn2 O3 and the amorphous MnOx exhibit tremendous enhancement in oxygen evolution during photocatalysis and are much higher in comparison to so far known bioinspired manganese oxides and calcium-manganese oxides. Also, for the first time, a new approach for the representation of activities of water oxidation catalysts has been proposed by determining the amount of accessible manganese centers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Cathodic current enhancement via manganese and oxygen related reactions in marine biofilms

    Science.gov (United States)

    Strom, Matthew James

    Corrosion is a threat that has economic, and environmental impacts worldwide. Many types of corrosive attack are the subject of ongoing research. One of these areas of research is microbiologically influenced corrosion, which is the enhancement and/or initiation of corrosion events caused by microorganisms. It is well known that colonies of microorganisms can enhance cathodic currents through biofilm formation. The aim of the present work was to elucidate the role of manganese in enhancing cathodic currents in the presence of biofilms. Repeated polarizations conducted in Delaware Bay waters, on biofilm coated Cr identified potentially sustainable reduction reactions. The reduction of MnO2 and the enhancement of the oxygen reduction reaction (ORR) were proven to be factors that influence cathodic current enhancement. The removal of ambient oxygen during polarizations resulted in a shutdown of cathodic current enhancement. These field data led to an exploration of the synergistic relationship between MnO2 and the ORR. Laboratory studies of the catalysis of peroxide disproportionation by MnO2 were monitored using a hanging mercury drop electrode. Experiments were run at an ambient sweater pH of 8 and pH 9, which simulated the near-surface conditions typical of cathodes immersed in seawater. Rapid reoxidation at the more basic pH was shown to allow manganese to behave as a persistent catalyst under the typical electrochemical surface conditions of a cathode. As a result a mechanism for ORR enhancement by manganese was proposed as a unique mechanism for cathodic current enhancement in biofilms. A separate field study of Delaware biofilms on stainless steel coupled to a sacrificial Al anode was carried out to identify the ORR enhancement mechanism and sustainable redox reactions at the cathode. Chemical treatments of glutaraldehyde and formaldoxime were applied to cathodes with biofilms to distinguish between enzymatic and MnO2 related ORR enhancement. The results ruled

  10. Nanostructured manganese oxide thin films as electrode material for supercapacitors

    Science.gov (United States)

    Xia, Hui; Lai, Man On; Lu, Li

    2011-01-01

    Electrochemical capacitors, also called supercapacitors, are alternative energy storage devices, particularly for applications requiring high power densities. Recently, manganese oxides have been extensively evaluated as electrode materials for supercapacitors due to their low cost, environmental benignity, and promising supercapacitive performance. In order to maximize the utilization of manganese oxides as the electrode material for the supercapacitors and improve their supercapacitive performance, the nanostructured manganese oxides have therefore been developed. This paper reviews the synthesis of the nanostructured manganese oxide thin films by different methods and the supercapacitive performance of different nanostructures.

  11. Manganese Catalyzed C–H Halogenation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei; Groves, John T.

    2015-06-16

    The remarkable aliphatic C–H hydroxylations catalyzed by the heme-containing enzyme, cytochrome P450, have attracted sustained attention for more than four decades. The effectiveness of P450 enzymes as highly selective biocatalysts for a wide range of oxygenation reactions of complex substrates has driven chemists to develop synthetic metalloporphyrin model compounds that mimic P450 reactivity. Among various known metalloporphyrins, manganese derivatives have received considerable attention since they have been shown to be versatile and powerful mediators for alkane hydroxylation and olefin epoxidation. Mechanistic studies have shown that the key intermediates of the manganese porphyrin-catalyzed oxygenation reactions include oxo- and dioxomanganese(V) species that transfer an oxygen atom to the substrate through a hydrogen abstraction/oxygen recombination pathway known as the oxygen rebound mechanism. Application of manganese porphyrins has been largely restricted to catalysis of oxygenation reactions until recently, however, due to ultrafast oxygen transfer rates. In this Account, we discuss recently developed carbon–halogen bond formation, including fluorination reactions catalyzed by manganese porphyrins and related salen species. We found that biphasic sodium hypochlorite/manganese porphyrin systems can efficiently and selectively convert even unactivated aliphatic C–H bonds to C–Cl bonds. An understanding of this novel reactivity derived from results obtained for the oxidation of the mechanistically diagnostic substrate and radical clock, norcarane. Significantly, the oxygen rebound rate in Mn-mediated hydroxylation is highly correlated with the nature of the trans-axial ligands bound to the manganese center (L–MnV$=$O). Based on the ability of fluoride ion to decelerate the oxygen rebound step, we envisaged that a relatively long-lived substrate radical could be trapped by a Mn–F fluorine source, effecting carbon–fluorine bond

  12. Effects of solute interstitial elements on swelling of stainless steel

    International Nuclear Information System (INIS)

    Stiegler, J.O.; Leitnaker, J.M.; Bloom, E.E.

    1975-01-01

    High-purity stainless steel (HPS), equivalent to type 316 stainless steel in major alloy elements but with greatly reduced interstitial elements and manganese contents, was irradiated in the temperature range 725 to 875 K to fluences ranging from 1.0 to 3.5 x 10 26 neutrons/m 2 (>0.1 MeV). The HPS swelled 20 to 50 times more than commercial grade 316 stainless steel (316 SS), and about the same as commercial-purity nickel, which has about the same interstitial content as HPS. A fine-grained 316 SS in which interstitial elements but not manganese were precipitated by thermomechanical treatments also showed exaggerated swelling, approaching that of HPS, which suggests that swelling in commercial stainless steels is retarded by small amounts of interstitial elements normally present in them and not by the major alloying elements. Interstitials tend to precipitate from solution during irradiation, and bulk extractions of precipitate particles were made to evaluate the extent of the precipitation reactions. At both 643 and 853 K precipitation was clearly enhanced by irradiation significantly enough to alter the matrix composition, which suggests that swelling may be increased at high fluences over that predicted by extrapolation of lower fluence data. These observations are discussed in terms of potential behaviour of fuel cladding materials and of the validity and interpretation of accelerated schemes for simulating neutron damage. (author)

  13. Filler metal selection for welding a high nitrogen stainless steel

    Science.gov (United States)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  14. Splitting in Dual-Phase 590 high strength steel plates

    International Nuclear Information System (INIS)

    Yang Min; Chao, Yuh J.; Li Xiaodong; Tan Jinzhu

    2008-01-01

    Charpy V-notch impact tests on 5.5 mm thick, hot-rolled Dual-Phase 590 (DP590) steel plate were evaluated at temperatures ranging from 90 deg. C to -120 deg. C. Similar tests on 2.0 mm thick DP590 HDGI steel plate were also conducted at room temperature. Splitting or secondary cracks was observed on the fractured surfaces. The mechanisms of the splitting were then investigated. Fracture surfaces were analyzed by optical microscope (OM) and scanning electron microscope (SEM). Composition of the steel plates was determined by electron probe microanalysis (EPMA). Micro Vickers hardness of the steel plates was also surveyed. Results show that splitting occurred on the main fractured surfaces of hot-rolled steel specimens at various testing temperatures. At temperatures above the ductile-brittle-transition-temperature (DBTT), -95 deg. C, where the fracture is predominantly ductile, the length and amount of splitting decreased with increasing temperature. At temperatures lower than the DBTT, where the fracture is predominantly brittle, both the length and width of the splitting are insignificant. Splitting in HDGI steel plates only appeared in specimens of T-L direction. The analysis revealed that splitting in hot-rolled plate is caused by silicate and carbide inclusions while splitting in HDGI plate results from strip microstructure due to its high content of manganese and low content of silicon. The micro Vickers hardness of either the inclusions or the strip microstructures is higher than that of the respective base steel

  15. Advanced cold rolled steels for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, H. [ThyssenKrupp Steel AG, Eberhardstrasse 12, 44145 Dortmund (Germany); Mattissen, D.; Schaumann, T.W. [ThyssenKrupp Steel AG, Duisburg (Germany)

    2006-09-15

    Advanced multiphase steels offer a great potential for bodies-in-white through their combination of formability and achievable component strength levels. They are first choice for strength and crash-relevant parts of challenging geometry. The intensive development of high-strength multiphase steels by ThyssenKrupp has led to hot dip galvanizing concepts with an outstanding forming potential. Hot rolled, hot dip galvanized complex phase steels are currently produced in addition to cold rolled DP and RA steels. New continuously annealed grades with tensile strength levels of up to 1000 MPa in combination with sufficient ductility for applications mainly in the field of structural automobile elements make use of the classic advantages of microalloying as well as the principles of DP and TRIP steels. Further improvement of properties will be reached by the new class of high manganese alloyed steels. (Abstract Copyright [2006], Wiley Periodicals, Inc.) [German] Fortschrittliche Multiphasen-Staehle eroeffnen wegen der inzwischen erreichbaren Kombination aus Umformbarkeit und Bauteilfestigkeit ein enormes Potenzial fuer Rohkarosserien. Sie stellen eine erste Wahl dar, wenn es um Festigkeit und um Crashsicherheit geht und besondere Anforderungen an die Bauteilgeometrien gestellt werden. Bei ThyssenKrupp hat die Entwicklung hochfester Multiphasen-Staehle in Verbindung mit dem Feuerverzinken zur Realisierung von Blechhalbzeugen gefuehrt, die hervorragend formbar sind. Es werden heute feuerverzinkte Komplexphasenstaehle neben den bewaehrten kaltgewalzten Dualphasen(DP) - und Retained Austenit(RA)-Staehlen produziert. Die neuen kontinuierlich gegluehten Stahlvarianten mit Festigkeiten bis zu 1000 MPa in Kombination mit der bei Strukturbauteilen im Automobilbau geforderten Duktilitaet nutzen sowohl die klassischen Vorteile des Mikrolegierens aus und dazu die Prinzipien, die man bei DP- und TRIP-Staehlen anwendet. Eine weitere Verbesserung des Eigenschaftsprofils wird mit dem

  16. Low-activation Mn-Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, M.; Saida, T.; Hirai, S. [Mitsubishi Heavy Ind. Ltd., Yokohama (Japan); Kusuhashi, M.; Sato, I.; Hatakeyama, T. [The Japan Steel Works Ltd., Chatsu-machi 4, Muroran 051-8505 (Japan)

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels. (orig.) 22 refs.

  17. Low-activation Mn Cr austenitic stainless steel with further reduced content of long-lived radioactive elements

    Science.gov (United States)

    Onozuka, Masanori; Saida, Tomikane; Hirai, Shouzou; Kusuhashi, Mikio; Sato, Ikuo; Hatakeyama, Tsuyoshi

    1998-06-01

    Low-activation austenitic stainless steel based on Mn-Cr non-magnetic steels has been developed. The alloying elements of long-life activation, such as Ni, Mo and Co, were eliminated and substituted with Mn along with an addition of N. A Mn-Cr austenitic stainless steel, 24.5Mn-13.5Cr-0.02C-0.2N, has been developed successfully. Examined material properties, including mechanical, thermal and magnetic properties, as well as weldability and characteristics of corrosion resistance, are presented. It was found that the alloy has excellent material properties virtually equivalent to those of 316SS. In this study, the applicability of the Schaeffler, DeLong and Hull constitution diagrams for the stainless steels with low Ni and high Mn contents was also examined. The boundary conditions distinguishing the single austenite phase from the others have been identified for the Mn-Cr steels.

  18. Battery recycling: recovery of manganese in the form of electrolytic manganese dioxide

    International Nuclear Information System (INIS)

    Roriz, Elizabeth Rodrigues Rangel; Von Krüge, Paulo; Espinosa, Denise Crocce Romano; Tenorio, Jorge Alberto Soares

    2010-01-01

    This work seeks to verify the possibility of using depleted batteries as a source of manganese applying the electrolytic process, considering the growing demand for products containing manganese in their composition. It was used an electrolyte solution containing the metal ions: Ca (270mg / L), Ni (3000 mg / L), Co (630 mg / L), Mn (115.300 mg / L) , Ti (400 mg / L) and Pb (20 mg / L) in concentrated sulfuric acid. The production of electrolytic manganese dioxide (EMD) was performed through galvanization using a stabilized source that monitored the potential of the working electrode. It was used an electrode of lead and two counter electrodes of graphite at a temperature of 98 deg C (± 2 deg C) and current density of 1.69A.dm"-"2. The material obtained was analyzed through the process of X-ray fluorescence spectrometry and X-ray diffraction. The results indicated that it is possible to obtain electrolytic manganese dioxide with a purity of about 94% and that the main allotropic variety obtained under the conditions of the experiment was the ε-MnO_2. (author)

  19. Resistance microwelding of 316L stainless steel wire to block

    DEFF Research Database (Denmark)

    Friis, Kasper Storgaard; Khan, M.I.; Bay, Niels

    2011-01-01

    The excellent corrosion resistance of low carbon vacuum melted 316 stainless steel coupled with its non-magnetic properties makes it ideal for biomedical applications. The typical joint geometry for microcomponents, such as medical implants, includes joining of fine wire to a larger block. However......, this type of joint has received little attention in the current literature. The present study was conducted to examine the microstructure and mechanical properties of low carbon vacuum melted 316 stainless steel wire welded to a larger block. Results revealed solid state bonding occurring at low currents......, while fusion bonding occurred at higher currents. This was due to the highly asymmetrical heat generation resulting in almost complete melting of the wire before the initiation of interfacial melting. This is a distinctly different bonding mechanism compared to previous studies on crossed wire joints....

  20. Monte Carlo study of the magnetic properties in a bilayer dendrimer structure with non-magnetic layers

    Science.gov (United States)

    Jabar, A.; Masrour, R.

    2017-12-01

    In this paper, we study the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions and magnetic layer effects on the bilayer transitions of a spin-5/2 Blume-Capel model formed by two magnetic blocs separated by a non-magnetic spacer of finite thickness. The thermalization process of magnetization for systems sizes has been given. We have shown that the magnetic order in the two magnetic blocs depend on the thickness of the magnetic layer. In the total magnetization profiles, the susceptibility peaks correspond to the reduced critical temperature. This critical temperature is displaced towards higher temperatures when increasing the number of magnetic layers. In addition, we have discussed and interpreted the behaviors of the magnetic hysteresis loops.

  1. Observation of transverse spin Nernst magnetoresistance induced by thermal spin current in ferromagnet/non-magnet bilayers.

    Science.gov (United States)

    Kim, Dong-Jun; Jeon, Chul-Yeon; Choi, Jong-Guk; Lee, Jae Wook; Surabhi, Srivathsava; Jeong, Jong-Ryul; Lee, Kyung-Jin; Park, Byong-Guk

    2017-11-09

    Electric generation of spin current via spin Hall effect is of great interest as it allows an efficient manipulation of magnetization in spintronic devices. Theoretically, pure spin current can be also created by a temperature gradient, which is known as spin Nernst effect. Here, we report spin Nernst effect-induced transverse magnetoresistance in ferromagnet/non-magnetic heavy metal bilayers. We observe that the magnitude of transverse magnetoresistance in the bilayers is significantly modified by heavy metal and its thickness. This strong dependence of transverse magnetoresistance on heavy metal evidences the generation of thermally induced pure spin current in heavy metal. Our analysis shows that spin Nernst angles of W and Pt have the opposite sign to their spin Hall angles. Moreover, our estimate implies that the magnitude of spin Nernst angle would be comparable to that of spin Hall angle, suggesting an efficient generation of spin current by the spin Nernst effect.

  2. Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria.

    Science.gov (United States)

    Vandieken, Verona; Pester, Michael; Finke, Niko; Hyun, Jung-Ho; Friedrich, Michael W; Loy, Alexander; Thamdrup, Bo

    2012-11-01

    Dissimilatory manganese reduction dominates anaerobic carbon oxidation in marine sediments with high manganese oxide concentrations, but the microorganisms responsible for this process are largely unknown. In this study, the acetate-utilizing manganese-reducing microbiota in geographically well-separated, manganese oxide-rich sediments from Gullmar Fjord (Sweden), Skagerrak (Norway) and Ulleung Basin (Korea) were analyzed by 16S rRNA-stable isotope probing (SIP). Manganese reduction was the prevailing terminal electron-accepting process in anoxic incubations of surface sediments, and even the addition of acetate stimulated neither iron nor sulfate reduction. The three geographically distinct sediments harbored surprisingly similar communities of acetate-utilizing manganese-reducing bacteria: 16S rRNA of members of the genera Colwellia and Arcobacter and of novel genera within the Oceanospirillaceae and Alteromonadales were detected in heavy RNA-SIP fractions from these three sediments. Most probable number (MPN) analysis yielded up to 10(6) acetate-utilizing manganese-reducing cells cm(-3) in Gullmar Fjord sediment. A 16S rRNA gene clone library that was established from the highest MPN dilutions was dominated by sequences of Colwellia and Arcobacter species and members of the Oceanospirillaceae, supporting the obtained RNA-SIP results. In conclusion, these findings strongly suggest that (i) acetate-dependent manganese reduction in manganese oxide-rich sediments is catalyzed by members of taxa (Arcobacter, Colwellia and Oceanospirillaceae) previously not known to possess this physiological function, (ii) similar acetate-utilizing manganese reducers thrive in geographically distinct regions and (iii) the identified manganese reducers differ greatly from the extensively explored iron reducers in marine sediments.

  3. Synthesis and characterization of monomeric manganese(II) and ...

    African Journals Online (AJOL)

    The geometry at the manganese center is seven-coordinate, and is best described as a capped trigonal pyramid with the water molecule forming the cap and the six nitrogen atoms of the tpen ligand occupying the pyramidal sites. The manganese atom and the water molecule lie on a crystallographic twofold axis.

  4. Adsorptive removal of manganese, arsenic and iron from groundwater

    NARCIS (Netherlands)

    Buamah, R.

    2009-01-01

    Arsenic, manganese and iron in drinking water at concentrations exceeding recommended guideline values pose health risks and aesthetic defects. Batch and pilot experiments on manganese adsorption equilibrium and kinetics using iron-oxide coated sand (IOCS), Aquamandix and other media have been

  5. Gastroprotective Properties of Manganese Chloride on Acetic Acid

    African Journals Online (AJOL)

    Dr Olaleye

    Drugs with multiple mechanisms of protective action may be effective in minimizing ... that Manganese had dose and treatment duration dependent effect on healing of ulcerated stomach. .... The stomach was bathed with normal saline ..... Arnaud, J., and Favier, A. (1995): "Copper, iron, manganese ... Experimental Toxic.

  6. Behavior of manganese ion in basic medium: consequence for the ...

    African Journals Online (AJOL)

    Dr. J. T. Ekanem

    2006-01-25

    Jan 25, 2006 ... adding manganese chloride or manganese sulfate to sodium hydroxyde or sodium carbonate in aqueous ... carbonate (1 M). The release of p- nitrophenoxide anion (pNP) was quantified at. 420 nm using a spectrophotometer (Spectronic. Genesis 5). .... These curves were bell-type with an ascending.

  7. Bioconcentration of manganese and iron in Panaeoloideae Sing

    NARCIS (Netherlands)

    Stijve, T.; Blake, C.

    1994-01-01

    According to literature, the manganese content of most basidiomycetes fluctuates between 10 and 60 mg/kg, whereas the iron levels range from 100-500 mg/kg (both expressed on dry weight). The present authors report that bioconcentration of manganese is a distinguishing feature of the Panaeoloideae,

  8. 40 CFR 721.10011 - Barium calcium manganese strontium oxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium calcium manganese strontium... Specific Chemical Substances § 721.10011 Barium calcium manganese strontium oxide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium calcium...

  9. Characterization and concentration of manganese ore waste

    International Nuclear Information System (INIS)

    Lima, Rosa Malena Fernandes; Pereira, Eder Esper; Reis, Erica Linhares; Silva, Glaucia Regina da

    2010-01-01

    In this work is presented the tests results of characterization and concentration by gravity and flotation methods carried out with a manganese sample waste. By optical microscopy, SEM/EDS and X-ray diffractometry were identified the Mn minerals spessartite (20%), tephroite (15%), rhodonite (5%), rhodochrosite and carbonates minerals (29%), opaque minerals and others (16%), micaceus minerals (6%) and quartz (4%). It was obtained Mn metallurgical recovery of 58% with Mn concentrate contents varying from 30 to 32.5%. The concentrates SiO_2 contents of flotation were until 1.5% smaller than those contents of gravity method concentrates. (author)

  10. Manganese accumulation in the brain: MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Uchino, A.; Nomiyama, K.; Takase, Y.; Nakazono, T.; Nojiri, J.; Kudo, S. [Saga Medical School, Department of Radiology, Saga (Japan); Noguchi, T. [Kyushu University, Department of Clinical Radiology, Graduate School of Medicine, Fukuoka (Japan)

    2007-09-15

    Manganese (Mn) accumulation in the brain is detected as symmetrical high signal intensity in the globus pallidi on T1-weighted MR images without an abnormal signal on T2-weighted images. In this review, we present several cases of Mn accumulation in the brain due to acquired or congenital diseases of the abdomen including hepatic cirrhosis with a portosystemic shunt, congenital biliary atresia, primary biliary cirrhosis, congenital intrahepatic portosystemic shunt without liver dysfunction, Rendu-Osler-Weber syndrome with a diffuse intrahepatic portosystemic shunt, and patent ductus venosus. Other causes of Mn accumulation in the brain are Mn overload from total parenteral nutrition and welding-related Mn intoxication. (orig.)

  11. Resistivity, hysteresis, and magnetization of 9% Cr stainless steel as a function of temperature and its electromagnetic shielding effects in cylindrical structures

    International Nuclear Information System (INIS)

    Praeg, W.F.

    1979-01-01

    Ferromagnetic stainless steels may offer significantly greater wall life-times for first wall/blanket and vacuum vessel structures than commonly used non-magnetic stainless steels. One steel under consideration has the following composition, in wt %, Fe(86.24), Cr(9), Mo(2), Mn(1), Si(0.75), Nb(0.50), V(0.30), C(0.15), P(0.3), S(0.30). There appears to be no literature on the electromagnetic properties of this material. Therefore, the resistivity, the hysteresis loops, and magnetization were measured as a function of temperature up to the Curie point

  12. Alternative irradiation system for efficiency manganese bath determination

    Energy Technology Data Exchange (ETDEWEB)

    Passos Leite, Sandro, E-mail: sandro@ird.gov.b [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Wagner Pereira, Walsan, E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/no, Recreio dos Bandeirantes, CEP: 22780-160, Rio de Janeiro (Brazil); Xavier da Silva, Ademir, E-mail: ademir@con.ufrj.b [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Simoes da Fonseca, Evaldo, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/no, Recreio dos Bandeirantes, CEP: 22780-160, Rio de Janeiro (Brazil); Souza Patrao, Karla Cristina de, E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/no, Recreio dos Bandeirantes, CEP: 22780-160, Rio de Janeiro (Brazil)

    2010-12-15

    An alternative irradiation system, which works with a radionuclide neutron source and manganese sulphate solution volume have been proposed for efficiency determination of a Manganese Bath System (MBS). This irradiation system was designed by simulation with MCNP5 code, considering a californium neutron source in several manganese sulphate volumes and different neutron reflectors. Although its solution specific activity are less than those in nuclear reactors, the simulation results have showed that the irradiation system proposed takes a manganese neutron capture increase up to 200 times when it compared to manganese neutron capture from a MBS whose diameter is about 100 cm. That becomes possible to use those samples for some of the absolute specific activity measuring methods.

  13. Diffusion abnormalities of the globi pallidi in manganese neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Alexander M.; Filice, Ross W.; Teksam, Mehmet; Casey, Sean; Truwit, Charles; Clark, H. Brent; Woon, Carolyn; Liu, Hai Ying [Department of Radiology, Medical School, Box 292, 420 Delaware Street S.E., 55455, Minneapolis, MN (United States)

    2004-04-01

    Manganese is an essential trace metal required for normal central nervous system function, which is toxic when in excess amounts in serum. Manganese neurotoxicity has been demonstrated in patients with chronic liver/biliary failure where an inability to excrete manganese via the biliary system causes increased serum levels, and in patients on total parenteral nutrition (TPN), occupational/inhalational exposure, or other source of excess exogenous manganese. Manganese has been well described in the literature to deposit selectively in the globi pallidi and to induce focal neurotoxicity. We present a case of a 53-year-old woman who presented for a brain MR 3 weeks after liver transplant due to progressively decreasing level of consciousness. The patient had severe liver failure by liver function tests and bilirubin levels, and had also been receiving TPN since the transplant. The MR demonstrated symmetric hyperintensity on T1-weighted images in the globi pallidi. Apparent diffusion coefficient (ADC) map indicated restricted diffusion in the globi pallidi bilaterally. The patient eventually succumbed to systemic aspergillosis 3 days after the MR. The serum manganese level was 195 mcg/l (micrograms per liter) on postmortem exam (over 20 times the upper limits of normal). The patient was presumed to have suffered from manganese neurotoxicity since elevated serum manganese levels have been shown in the literature to correlate with hyperintensity on T1-weighted images, neurotoxicity symptoms, and focal concentration of manganese in the globi pallidi. Neuropathologic sectioning of the globi pallidi at autopsy was also consistent with manganese neurotoxicity. (orig.)

  14. Reduction of ripening time of full-scale manganese removal filters with manganese oxide-coated media

    NARCIS (Netherlands)

    Bruins, J.H.; Petrusevski, B.; Slokar, Y.M.; Huysman, K.; Joris, K.; Kruithof, J.C.; Kennedy, M.D.

    2015-01-01

    Effective manganese removal by conventional aeration-filtration with virgin filter media requires a long ripening time. The aim of this study was to assess the potential of manganese oxide-coated media to shorten the ripening time of filters with virgin media, under practical conditions. A full

  15. Ferromagnetic properties of manganese doped iron silicide

    Science.gov (United States)

    Ruiz-Reyes, Angel; Fonseca, Luis F.; Sabirianov, Renat

    We report the synthesis of high quality Iron silicide (FeSi) nanowires via Chemical Vapor Deposition (CVD). The materials exhibits excellent magnetic response at room temperature, especially when doped with manganese showing values of 2.0 X 10-04 emu for the FexMnySi nanowires. SEM and TEM characterization indicates that the synthesized nanowires have a diameter of approximately 80nm. MFM measurements present a clear description of the magnetic domains when the nanowires are doped with manganese. Electron Diffraction and XRD measurements confirms that the nanowires are single crystal forming a simple cubic structure with space group P213. First-principle calculations were performed on (111) FeSi surface using the Vienna ab initio simulation package (VASP). The exchange correlations were treated under the Ceperley-Alder (CA) local density approximation (LDA). The Brillouin Zone was sampled with 8x8x1 k-point grid. A total magnetic moment of about 10 μB was obtained for three different surface configuration in which the Iron atom nearest to the surface present the higher magnetization. To study the effect of Mn doping, Fe atom was replaced for a Mn. Stronger magnetization is presented when the Mn atom is close to the surface. The exchange coupling constant have been evaluated calculating the energy difference between the ferromagnetic and anti-ferromagnetic configurations.

  16. Iron and manganese removal from drinking water

    Directory of Open Access Journals (Sweden)

    Daniela-Elena Pascu

    2016-04-01

    Full Text Available The purpose of the present study is to find a suitable method for removal of iron and manganese from ground water, considering bothlocal economical and environmental aspects. Ground water is a highly important source of drinking water in Romania. Ground water is naturally pure from bacteria at a 25 m depth or more. However, solved metals may occur and if the levels are too high, the water is not drinkable. Different processes, such as electrochemical and combined electrochemical-adsorption methods have been applied to determine metals content in accordance to reports of National Water Agency from Romania (ANAR. Every water source contains dissolved or particulate compounds. The concentrations of these compounds can affect health, productivity, compliance requirements, or serviceability and cannot be economically removed by conventional filtration means. In this study, we made a comparison between the electrochemical and adsorption methods (using membranes. Both methods have been used to evaluate the efficiency of iron and manganese removal at various times and temperatures. We used two membrane types: composite and cellulose, respectively. Different approaches, including lowering the initial current density and increasing the initial pH were applied. Reaction kinetics was achieved using mathematical models: Jura and Temkin.

  17. Advanced automobile steels subjected to plate rolling at 773 K or 1373 K

    Science.gov (United States)

    Torganchuk, Vladimir; Belyakov, Andrey; Kaibyshev, Rustam

    2017-12-01

    The high manganese steels exhibiting the effects of twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) demonstrate an excellent combination of enhanced formability, strength and ductility. Such unique mechanical properties make high-manganese steel the most attractive material for various applications, including the segment of advanced automobile steels. The strain hardening in such steels can be achieved through martensitic transformation, when the stacking fault energy (SFE) is about 10 mJ m-2, and/or twinning, when SFE is about 20 to 50 mJ m-2. The actual mechanical properties of high-Mn steels could vary, depending on the conditions of thermo-mechanical processing. In the present study, the effect of rolling temperature on the microstructure and mechanical properties of 18% Mn steels was clarified. The steels hot rolled at 1373 K were characterized by uniform almost equiaxed grains with near random crystallographic orientations that resulted in relatively low yield strengths of 300-360 MPa, followed by pronounced strain hardening that led to the total elongation above 60%. In contrast, the steels warm rolled at 773 K were characterized by flattened grains with a strong rolling texture and high yield strengths of 850-950 MPa combined with a total elongation of about 30%.

  18. Biological removal of iron and manganese in rapid sand filters - Process understanding of iron and manganese removal

    DEFF Research Database (Denmark)

    Lin, Katie

    to precipitation and corrosion. Manganese and iron can either be removed physico-chemically or biologically or combined. The physico-chemical oxidation and precipitation of manganese can theoretically be achieved by aeration, but this process is slow unless pH is raised far above neutral, making the removal...... of manganese by simple aeration and precipitation under normal drinking water treatment conditions insignificant. Manganese may also be oxidized autocatalytically. Iron is usually easier to remove. First, iron is rapidly chemically oxidized by oxygen at neutral pH followed by precipitation and filtration......-filter, where iron is removed. Step 2: Filtration in an after-filter where e.g. ammonium and manganese is removed. The treatment relies on microbial processes and may present an alternative, greener and more sustainable approach for drinking water production spending less chemicals and energy than chemical (e...

  19. Corrosion resistant steel

    International Nuclear Information System (INIS)

    Zubchenko, A.S.; Borisov, V.P.; Latyshev, V.B.

    1980-01-01

    Corrosion resistant steel for production of sheets and tubes containing C, Mn, Cr, Si, Fe is suggested. It is alloyed with vanadium and cerium for improving tensile properties and ductility. The steel can be melted by a conventional method in electric-arc or induction furnaces. The mentioned steel is intended to be used as a substitute for nickel-bearing austenitic steels

  20. Determination of semi-empirical relationship between the manganese and hydrogen atoms ratio, physical density and concentration in an aqueous solution of manganese sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Bittencourt, Guilherme, E-mail: bittencourt@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Souza Patrao, Karla Cristina de, E-mail: karla@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Passos Leite, Sandro, E-mail: sandro@ird.gov.b [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68509, 21945-970, Rio de Janeiro, RJ (Brazil); Wagner Pereira, Walsan, E-mail: walsan@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil); Simoes da Fonseca, Evaldo, E-mail: evaldo@ird.gov.b [Instituto de Radioprotecao e Dosimetria LNMRI/IRD/CNEN, Av. Salvador Allende, s/n Recreio dos Bandeirantes, CEP 22780-160, Rio de Janeiro, RJ (Brazil)

    2010-12-15

    The Manganese sulphate solution has been used for neutron metrology through the method of Manganese Bath. This method uses physical parameters of manganese sulphate solution to obtain its corrections. This work established a functional relationship, using the gravimetric method, between those physical parameters: density, concentration and hydrogen to manganese ratio. Comparisons were done between manganese sulphate solution concentration from the Manganese Bath system of Laboratory of Metrology of Ionising Radiation and estimated values from the functional relationship obtained, showing percentage difference of less than 0.1%. This result demonstrates the usefulness in the correlation of the physical values of the solution to the MB.

  1. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  2. Removal of Iron and Manganese in Groundwater using Natural Biosorbent

    Science.gov (United States)

    Baharudin, F.; Tadza, M. Y. Mohd; Imran, S. N. Mohd; Jani, J.

    2018-04-01

    This study was conducted to measure and compare the concentration of iron, manganese and hardness of the river and groundwater and to determine the effectiveness of iron and manganese removal by using natural biosorbent which is banana peels. The samples of river and groundwater were collected at riverbank filtration site at Jenderam Hilir, Dengkil. Based on the water quality investigation, the concentration of iron and manganese in the samples of groundwater have exceeded the drinking water quality standard which are 0.3 mg/L for iron and 0.1 mg/L for manganese. The removal process of the iron and manganese in the groundwater was done by using 2, 4 and 8 grams of banana peels activated carbon. It is found that with higher amount of activated banana peels, the removal of iron and manganese is more effective. The ranges of percentage of iron and manganese removal are between 82.25% to 90.84% and 98.79% to 99.43% respectively. From the result, banana peels activated carbon can be concluded as a one of the most effective low-cost adsorbent for groundwater treatment.

  3. Facile N...N coupling of manganese(V) imido species.

    Science.gov (United States)

    Yiu, Shek-Man; Lam, William W Y; Ho, Chi-Ming; Lau, Tai-Chu

    2007-01-31

    (Salen)manganese(V) nitrido species are activated by electrophiles such as trifluoroacetic anhydride (TFAA) or trifluoroacetic acid (TFA) to produce N2. Mechanistic studies suggest that the manganese(V) nitrido species first react with TFAA or TFA to produce an imido species, which then undergoes N...N coupling. It is proposed that the resulting manganese(III) mu-diazene species decomposes via internal redox to give N2 and manganese(II). The manganese(II) species is then rapidly oxidized by manganese(V) imide to give manganese(III) and CF3CONH2 (for TFAA) or NH3 (for TFA).

  4. Lattice specific heat for the RMIn5 (R=Gd, La, Y; M=Co, Rh) compounds: Non-magnetic contribution subtraction

    International Nuclear Information System (INIS)

    Facio, Jorge I.; Betancourth, D.; Cejas Bolecek, N.R.; Jorge, G.A.; Pedrazzini, Pablo; Correa, V.F.; Cornaglia, Pablo S.; Vildosola, V.; García, D.J.

    2016-01-01

    We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn 5 (M=Co, Rh) and for the non-magnetic YMIn 5 and LaMIn 5 (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn 5 is an excellent approximation to the one of GdCoIn 5 in the full temperature range, for GdRhIn 5 we find a better agreement with LaCoIn 5 , in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn 5 (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong–Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.

  5. Lattice specific heat for the RMIn{sub 5} (R=Gd, La, Y; M=Co, Rh) compounds: Non-magnetic contribution subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Facio, Jorge I., E-mail: jorge.facio@cab.cnea.gov.ar [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Betancourth, D.; Cejas Bolecek, N.R. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Jorge, G.A. [Instituto de Ciencias, Universidad Nacional de General Sarmiento, Buenos Aires (Argentina); Pedrazzini, Pablo; Correa, V.F.; Cornaglia, Pablo S. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); Vildosola, V. [Centro Atómico Constituyentes, CNEA, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); García, D.J. [Centro Atómico Bariloche and Instituto Balseiro, CNEA, 8400 Bariloche (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina)

    2016-06-01

    We analyze theoretically a common experimental process used to obtain the magnetic contribution to the specific heat of a given magnetic material. In the procedure, the specific heat of a non-magnetic analog is measured and used to subtract the non-magnetic contributions, which are generally dominated by the lattice degrees of freedom in a wide range of temperatures. We calculate the lattice contribution to the specific heat for the magnetic compounds GdMIn{sub 5} (M=Co, Rh) and for the non-magnetic YMIn{sub 5} and LaMIn{sub 5} (M=Co, Rh), using density functional theory based methods. We find that the best non-magnetic analog for the subtraction depends on the magnetic material and on the range of temperatures. While the phonon specific heat contribution of YRhIn{sub 5} is an excellent approximation to the one of GdCoIn{sub 5} in the full temperature range, for GdRhIn{sub 5} we find a better agreement with LaCoIn{sub 5}, in both cases, as a result of an optimum compensation effect between masses and volumes. We present measurements of the specific heat of the compounds GdMIn{sub 5} (M=Co, Rh) up to room temperature where it surpasses the value expected from the Dulong–Petit law. We obtain a good agreement between theory and experiment when we include anharmonic effects in the calculations.

  6. Electromagnetic field analyses of two-layer power transmission cables consisting of coated conductors with magnetic and non-magnetic substrates and AC losses in their superconductor layers

    International Nuclear Information System (INIS)

    Nakahata, Masaaki; Amemiya, Naoyuki

    2008-01-01

    Two-dimensional electromagnetic field analyses were undertaken using two representative cross sections of two-layer cables consisting of coated conductors with magnetic and non-magnetic substrates. The following two arrangements were used for the coated conductors between the inner and outer layers: (1) tape-on-tape and (2) alternate. The calculated magnetic flux profile around each coated conductor was visualized. In the case of the non-magnetic substrate, the magnetic field to which coated conductors in the outer layer are exposed contains more perpendicular component to the conductor wide face (perpendicular field component) when compared to that in the inner layer. On the other hand, for the tape-on-tape arrangement of coated conductors with a magnetic substrate, the reverse is true. In the case of the alternate arrangement of the coated conductor with a magnetic substrate, the magnetic field to which the coated conductors in the inner and outer layers are exposed experiences a small perpendicular field component. When using a non-magnetic substrate, the AC loss in the superconductor layer of the coated conductors in the two-layer cables is dominated by that in the outer layer, whereas the reverse is true in the case of a magnetic substrate. When comparing the AC losses in superconductor layers of coated conductors with non-magnetic and magnetic substrates in two-layer cables, the latter is larger than the former, but the influence of the magnetism of substrates on AC losses in superconductor layers is not remarkable

  7. Brain manganese, catecholamine turnover, and the development of startle in rats prenatally exposed to manganese

    International Nuclear Information System (INIS)

    Kontur, P.J.; Fechter, L.D.

    1985-01-01

    Manganese (Mn) can be neurotoxic when present in high concentrations. Neonatal animals show differential absorption, accumulation, and excretion of Mn relative to adults. If similar kinetic differences exist during gestation, then fetal animals may be susceptible to Mn neurotoxicity. The objective of this study was to examine maternal-fetal Mn transfer and the susceptibility of prenatal animals to Mn neurotoxicity. This was approached by studying the ability of Mn to cross the placenta and reach the fetal central nervous system using radiotracer and atomic absorption spectroscopy techniques. Manganese is thought to disrupt catecholamine neurotransmission in the central nervous system. This was examined in newborn rats by alpha-methyl-para-tyrosine induced catecholamine turnover and the development of the acoustic startle response. The results suggest that there are limits on fetal Mn accumulation under conditions of both normal and excessive dietary Mn levels. Manganese accumulation in the fetal brain after exposure to increased dietary Mn does not alter either dopamine or norepinephrine turnover or the development of the acoustic startle response. Excess Mn does not appear to be neurotoxic to fetal rats in spite of its limited accumulation in nervous tissue after gestational exposure

  8. Manganese superoxide dismutase and breast cancer recurrence

    DEFF Research Database (Denmark)

    Cronin-Fenton, Deirdre P; Christensen, Mariann; Lash, Timothy L

    2014-01-01

    BACKGROUND: Manganese superoxide dismutase (MnSOD) inhibits oxidative damage and cancer therapy effectiveness. A polymorphism in its encoding gene (SOD2: Val16Ala rs4880) may confer poorer breast cancer survival, but data are inconsistent. We examined the association of SOD2 genotype and breast......-metastatic breast cancer from 1990-2001, received adjuvant Cyclo, and were registered in the Danish Breast Cancer Cooperative Group. We identified 118 patients with BCR and 213 matched breast cancer controls. We genotyped SOD2 and used conditional logistic regression to compute the odds ratio (OR) and associated 95...... cancer recurrence (BCR) among patients treated with cyclophosphamide-based chemotherapy (Cyclo). We compared our findings with published studies using meta-analyses. METHODS: We conducted a population-based case-control study of BCR among women in Jutland, Denmark. Subjects were diagnosed with non...

  9. Comparison of the enrollment percentages of magnet and non-magnet schools in a large urban school district.

    Directory of Open Access Journals (Sweden)

    Emily Arcia

    2006-12-01

    Full Text Available Are magnet schools in a position to meet diversity ideals? As districts are declared unitary and released from court ordered desegregation, many are framing their commitments to fairness and equity in terms of diversity˜i.e., comparable rates of participation and comparable educational outcomes in all segments the student population. In this study, the enrollment statistics for magnet and contiguous non-magnet public schools in Miami-Dade County Public Schools, a large, urban district that had been released from court ordered desegregation, were compared to each other and to district enrollment averages at two time points: the year the district was declared unitary and four years hence. Findings indicated that within four years of being declared unitary, the gains that the magnet schools had made with regards to Black/non-Black desegregation had eroded substantially. Also, in the four year span, magnet schools had not made significant strides in meeting the diversity ideals adopted by the district at being released from supervision by the court. These findings highlight the difficulty of attaining diversity in student enrollment characteristics when quotas are not used and suggest that recruitment and enrollment policies must be crafted with care if districts are to achieve diversity goals.

  10. Different doping effect on physical properties of non-magnetic Pt and Ga in CaFe4As3

    International Nuclear Information System (INIS)

    Wu, Dapeng

    2015-01-01

    Highlights: • CaFe 3.64 Pt 0.36 As 3 and CaFe 3.64 Ga 0.36 As 3 were grown using Sn flux method. • The two magnetic transition temperatures of CaFe 4 As 3 remain untouched upon Pt or Ga doping. • The effects of Pt and Ga doping give a different modification of physical properties and electronic structure in CaFe 4 As 3 . • The magnetic structure of CaFe 4 As 3 is insusceptible to non-magnetic dopants. - Abstract: We have successfully doped Pt and Ga into CaFe 4 As 3 and investigated the structure and physical properties of CaFe 3.64 X 0.36 As 3 (X = Pt, Ga). Two magnetic transition temperatures remain unchanged upon Pt or Ga doping, as confirmed by specific heat, electrical resistivity and magnetic susceptibility. The electrical resistivity of CaFe 4 As 3 is reduced by approximately half with Pt dopant but increases by an order of magnitude with Ga doping, consistent with the changes in their Hall coefficients, which indicates the effects of Pt and Ga doping give us a different modification on physical properties and electronic structure in CaFe 4 As 3

  11. Phase transformations in Higher Manganese Silicides

    Energy Technology Data Exchange (ETDEWEB)

    Allam, A. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Boulet, P. [MADIREL, UMR 7246 CNRS - Universite Aix-Marseille, av Normandie-Niemen, 13397 Marseille Cedex 20 (France); Nunes, C.A. [Departamento de Engenharia de Materiais (DEMAR), Escola de Engenharia de Lorena (EEL), Universidade de Sao Paulo - USP, Caixa Postal 116, 12600-970 Lorena, Sao Paulo (Brazil); Sopousek, J.; Broz, P. [Masaryk University, Faculty of Science, Department of Chemistry, Kolarska 2, 611 37 Brno (Czech Republic); Masaryk University, Central European Institute of Technology, CEITEC, Kamenice 753/5, 625 00 Brno (Czech Republic); Record, M.-C., E-mail: m-c.record@univ-cezanne.fr [IM2NP, UMR 7334 CNRS - Universite Aix-Marseille, av Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2013-02-25

    Highlights: Black-Right-Pointing-Pointer The phase transitions of the Higher Manganese Silicides were investigated. Black-Right-Pointing-Pointer The samples were characterised by XRD, DTA and DSC. Black-Right-Pointing-Pointer Mn{sub 27}Si{sub 47} is the stable phase at room temperature and under atmospheric pressure. Black-Right-Pointing-Pointer At around 800 Degree-Sign C, Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. Black-Right-Pointing-Pointer The phase transition is of a second order. - Abstract: This work is an investigation of the phase transformations of the Higher Manganese Silicides in the temperature range [100-1200 Degree-Sign C]. Several complementary experimental techniques were used, namely in situ X-ray Diffraction (XRD), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). The evolution of both the lattice parameters and the thermal expansion coefficients was determined from in situ XRD measurements. The stability of the samples was investigated by thermal analysis (DTA) and Cp measurements (DSC). This study shows that Mn{sub 27}Si{sub 47} which is the stable phase at room temperature and under atmospheric pressure undergoes a phase transformation at around 800 Degree-Sign C. Mn{sub 27}Si{sub 47} is transformed into Mn{sub 15}Si{sub 26}. This phase transformation seems to be of a second order one. Indeed it was not evidenced by DTA and by contrast it appears on the Cp curve.

  12. Developing very hard nanostructured bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Amel-Farzad, H., E-mail: hh_amel@yahoo.com [Department of Materials Engineering and Metallurgy, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Faridi, H.R., E-mail: faridihr@yahoo.com [Department of Materials Engineering and Metallurgy, Hamedan University of Technology, Hamedan (Iran, Islamic Republic of); Rajabpour, F.; Abolhasani, A.; Kazemi, Sh.; Khaledzadeh, Y. [Department of Materials Engineering and Metallurgy, Faculty of Engineering, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of)

    2013-01-01

    Novel nanostructured high carbon high silicon, carbide-free bainitic steels with very high strength and good ductility have been developed in the recent decade. In this work, an alloy with a high carbon content and no manganese was designed and cast. The prepared samples were heat treated through an austempering process in the range 200-350 Degree-Sign C. Optical and scanning electron microscopes and XRD were used to analyze the microstructures precisely. Bainitic ferrite plates of just a few tens of nanometer thickness were obtained with the hardness of 697{+-}6 HV. It is reasonable to say that the unprecedented hardness values obtained in this work are mostly caused by the extraordinary carbon content of the alloy.

  13. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  14. Creep resistant high temperature martensitic steel

    Science.gov (United States)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  15. Correlation between airborne manganese concentration at the workstations in the iron foundry and manganese concentration in workers’ blood

    Directory of Open Access Journals (Sweden)

    Seyedtaghi Mirmohammadi

    2017-08-01

    Full Text Available Background: Manganese (Mn used as raw material for melting process in the ferrous foundry is considered as hazardous neurotoxic substance because it accumulates in the central nervous system and may cause neurological disorders. The furnace-men and melting department workers are potentially exposed to manganese particles or fume in the workplace. The objective of the research has been to investigate the sources and levels of manganese exposure in the foundry by correlation of blood-manganese (B-Mn and air-manganese (air-Mn measurement. Material and Methods: Air-Mn and Mn of blood serum were measured involving workers who worked in a big-sized foundry during 1 year. The standard method of the Occupational Safety and Health Administration (OSHA ID-121 was used for air and blood assessment and atomic absorption spectroscopy (AAS was carried out for air and blood sample analysis. Results: The air sampling results have revealed that there is a high exposure to manganese (4.5 mg/m3 in the workplace as compared to the National Institute for Occupational Safety and Health’s (NIOSH time weighted average (the reference time-weighted average (TWA = 1 mg/m3. The average blood serum Mn concentration was 2.745 μg/l for subjects working for shorter than 3 months and 274.85 μg/l for subjects working 3–12 months. Conclusions: Against the research hypothesis there was no correlation between the air-Mn concentration and the B-Mn (serum level of manganese in the serum of the exposed subjects. It may be due to short time of air sampling of manganese airborne particles, and a real-time monitoring of airborne manganese particles is suggested for any future study. Med Pr 2017;68(4:449–458

  16. Utilization of aluminum to obtaining a duplex type stainless steel using high energy ball milling

    International Nuclear Information System (INIS)

    Pavlak, I.E.; Cintho, O.M.; Capocchi, J.D.T.

    2010-01-01

    The obtaining of stainless steel using aluminum in its composition - FeMnAl system, has been researches subject since the sixties, by good mechanical properties and resistance to oxidation presented, when compared with conventional FeNiCr stainless steel system. In another point, the aluminum and manganese are low cost then traditional elements. This work, metallic powders of iron, manganese and pure aluminum, were processed in a Spex type high-energy ball mill in nitrogen atmosphere. The milling products were compressed into pastille form and sintered under inert atmosphere. The final products were characterized by optical and electronic microscopy and microhardness test. The metallographic analysis shows a typical austenite and ferrite duplex type microstructure. The presence of these phases was confirmed according X ray diffraction analysis. (author)

  17. Steel, specially for the fabrication of welded structure working under pressure in nuclear installations

    International Nuclear Information System (INIS)

    Dolbenko, E.T.; Astafiev, A.A.; Kark, G.S.

    1981-01-01

    The present invention is in the field of metallurgy. Steels have found an increasing number of applications in mechanical constructions, and notably in the construction of materials for the production of energy and for the fabrication of welded structures operating under pressure at temperatures as high as 450 0 C. A possible application is the pressurized vessels of nuclear facilities. The steels of interest contain carbon, silicon, manganese, nickel, molybdenum, vanadium, aluminium, nitrogen, phosphorus and iron, but are characterized by the fact that they also contain arsenic, tin and calcium. The sum of the weighted percentages of nickel and manganese and the weighted percentage of phosphorous are related as follows: (Ni + Mn) . P [fr

  18. Irradiation effects in strain aged pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Grounes, M; Myers, H P

    1962-02-15

    Tensile specimens, Charpy-V notch and subsize impact specimens of an aluminium killed carbon manganese steel, have been irradiated at 160 - 190 deg C in the reactor G1. The total neutron dose received was 2.4 x 10{sup 18} n/cm{sup 2} (> 1 MeV). Specimens were prepared from normalized plate and from strain aged material from the same plate. It was found that the changes in brittle ductile transition temperature due to neutron irradiation and those due to strain ageing must be considered additive.

  19. Evaluation of properties of low activation Mn-Cr steel. 1. Mechanical properties and weldability

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Fukaya, Kiyoshi; Ishiyama, Shintaro; Eto, Motokuni [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Takeshi; Takahashi, Heishichiro; Kikuchi, Mitsuru

    1999-10-01

    In JAERI, JT-60SU (Super Upgrade) program is discussed. In the design optimization activity of JT-60SU, it is required for vacuum vessel material to be highly strong, low activated and nonmagnetic. However, there is no suitable material to fulfill all the requirements. Therefore, JAERI started to develop a new material for vacuum vessel together with The Japan Steel Works LTD. (JSW). Chemical composition and production processes were optimized and a new Mn-Cr steel named VC9 with a non-magnetic single {gamma} phase was selected as a candidate material for vacuum vessel of JT-60SU. In this study, characterization of mechanical properties and weldability of VC9 were studied and the results were compared with those of 316L stainless steel. (author)

  20. Evaluation of properties of low activation Mn-Cr steel (2). Physical properties and aging properties

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shigeru; Fukaya, Kiyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ishiyama, Shintaro [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Sato, Ikuo; Kusuhashi, Mikio; Hatakeyama, Takeshi [Japan Steel Works Ltd., Muroran, Hokkaido (Japan). Muroran Plant; Takahashi, Heishichiro [Hokkaido Univ., Sapporo (Japan); Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2000-08-01

    The JT-60SU (Super Upgrade) program is under discussion at JAERI. Its design optimization activity requires the vacuum vessel material to be non-magnetic, very strong and with low induced activation. However, there is no suitable material available to fulfill all the requirements. JAERI started to develop a new material for the vacuum vessel together with the Japan Steel Works LTD. (JSW). Chemical composition and metallurgical processes were optimized and a new steel named VC9, which has the composition of Cr :16wt%, Mn :15.5wt%, C :0.2wt%, N :0.2wt% with nonmagnetic single {gamma} phase, was selected as a candidate material. Here, physical properties and aging properties of VC9 were studied and the results were compared with those of 316L stainless steel. (author)

  1. Manganese Exposure in the General Population in a Mining District ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Manganese Exposure in the General Population in a Mining District (Mexico) ... in a population living close to a mine and mineral processing plant in Mexico ... Call for proposals: Innovations for the economic inclusion of marginalized youth.

  2. Beneficiation studies of Bajaur manganese ore by different processing techniques

    International Nuclear Information System (INIS)

    Riaz, M.; Khan, F.U.; Yamin, A.; Bilquees, R.; Muhammad, N.

    2010-01-01

    The manganese ore of Bajaur Agency of Pakistan was subjected to flotation, heavy medium separation, gravity concentration and magnetic separation techniques for beneficiation. The original composition of the manganese ore was 45.56% Mn , 4% Fe/sub 2/O/sub 3/, 40% SiO/sub 2/. The Mn content was raised to a maximum 48.76 % in the concentrate with the recovery of 67.78 % through flotation technique. Other techniques rendered marginal increase in Mn concentration against the theoretical possibility of substantial enrichment by rejecting the 20 % gangue minerals. The separation of manganese minerals from associated gangue was difficult, due to mineralogical complexity of the ore, extreme fineness of the particle size, texture and minerals intergrowth. High Mn/Fe ratio, phosphorus, and silica contents were within tolerable limits for utilisation of the ore in ferro-manganese production. (author)

  3. By lithology Zbruch deposits (Lower Sarmatian Nikopol manganese ore Basin

    Directory of Open Access Journals (Sweden)

    Bogdanovich V.V.

    2010-06-01

    Full Text Available Based on lithologic-paleogeographic study Zbruch layers of Nikopol manganese ore Basin sediments described lithological and genetic types of rocks and facies conditions of formation of deposits.

  4. Manganese nodules in the Exclusive Economic Zone of Mauritius

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; ShyamPrasad, M.

    The distribution of manganese nodules in the Exclusive Economic Zone of the island nation Mauritius was delineated during cruise SK-35 of ORV Sagar Kanya in 1987. The areas surveyed included Saya de Malha and Nazareth Banks, the Cargados Carajos...

  5. Manganese oxidation by bacterial isolates from the Indian Ridge System

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; Krishnan, K.P.; Khedekar, V.D.; LokaBharathi, P.A.

    The abundance and activity of culturable manganese-oxidizing bacteria were assessed from near-bottom water samples of the tectonically active Carlsberg Ridge. Retrievable counts as colony forming units (CFU) on dilute nutrient agar medium (dilNA = 2...

  6. Spectroscopic characterization of manganese-doped alkaline earth ...

    Indian Academy of Sciences (India)

    The shapes of spectra are also changed with varying alkaline earth ions content. ... of manganese ion and electrical properties of glass contain- ing mobile ions like .... octahedral crystal field are located above the ground 6S state. Figure 2.

  7. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks.

  8. Production of manganese peroxidase by white rot fungi from potato ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-18

    Jan 18, 2010 ... production rate of the MnP using the potato-processing wastewater-based medium were higher (ca. 2.5- ... Ligninolytic enzymes, such as manganese peroxidase ... not currently reached industrial levels except for the laccase.

  9. Relation between grade and abundance of manganese nodules

    Digital Repository Service at National Institute of Oceanography (India)

    Sudhakar, M.

    Data from more than 1000 locations in the Central Indian Ocean Basin (CIOB) where both bulk nodule chemistry and abundance were determined and utilized to study the relationship between grade and abundance of manganese nodule deposits. Grade...

  10. India's manganese nodule mine site in the Central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Banakar, V.K.

    This commentary highlights the activities of massive exploration programme for manganese nodule deposits in the Central Indian Basin located 5 km below the ocean surface and India's claim for mine site development and registration with UNCLOS...

  11. Preparation of manganese-based perovskite nanoparticles using a ...

    Indian Academy of Sciences (India)

    Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: ... ted much attention in various fields of medicine and pharma- cology such as .... In addition, the SAR value of sample was calculated through ...

  12. Anodically generated manganese(III) sulphate for the oxidation of ...

    Indian Academy of Sciences (India)

    Unknown

    oxidation of dipeptides in aqueous sulphuric acid medium: A kinetic study ... acetic acid (TFA) and N-methylmorpholine (NMM) were purchased ... and chloroform–methanol– acetic acid .... tion), manganese(II) sulphate and water (to keep the.

  13. Status and Role of Manganese in the Environment

    Directory of Open Access Journals (Sweden)

    RK Kamble

    2014-09-01

    Full Text Available Manganese is the second most abundant heavy metal, and in frequency list of elements it occupies 12th place. The Earth’s core contains about 1.5% manganese. According to Indian Standards for Drinking water (IS 10500:2012 manganese concentration in drinking water is 0.1 ppm (acceptable limit and 0.3 ppm as permissible limit. An attempt has been made to record the presence of manganese in different environmental matrices such as air, water, soil, food, its effects on plants, animals including human beings. DOI: http://dx.doi.org/10.3126/ije.v3i3.11081 International Journal of Environment Vol.3(3 2014: 222-234

  14. Investigation of manganese homeostasis in dogs with anaemia and ...

    African Journals Online (AJOL)

    Investigation of manganese homeostasis in dogs with anaemia and chronic enteropathy. Marisa da Fonseca Ferreira, Arielle Elizabeth Ann Aylor, Richard John Mellanby, Susan Mary Campbell, Adam George Gow ...

  15. Occupational neurotoxicology due to heavy metals-especially manganese poisoning

    International Nuclear Information System (INIS)

    Inoue, Naohide

    2007-01-01

    The most hazardous manganese exposures occur in mining and smelting of ore. Recently, the poisoning has been frequently reported to be associated with welding. In occupational exposure, manganese is absorbed mainly by inhalation. Manganese preferentially accumulates in tissues rich in mitochondria. It also penetrates the blood brain barrior and accumulate in the basal ganglia, especially the globus pallidus, but also the striatum. Manganese poisoning is clinically characterized by the central nervous system involvement including psychiatric symptomes, extrapyramidal signs, and less frequently other neurological manifestations. Psychiatric symptomes are well described in the manganese miners and incrude sleep disturbance, disorientation, emotional lability, compulsive acts, hallucinations, illusions, and delusions. The main characteristic manifestations usually begin shortly after the appearance of these psychiatric symptomes. The latter neurological signs are progressive bradykinesia, dystonia, and disturbance of gait. Bradykinesia is one of the most important findings. There is a remarkable slowing of both active and passive movements of the extremities. Micrographia is frequently observed and a characteristic finding. The patients may show some symmetrical tremor, which usually not so marked. The dystonic posture of the limbs is often accompanied by painfull cramps. This attitudal hypertonia has a tendency to decrease or disappear in the supine position and to increase in orthostation. Cog-wheel rigidity is also elisited on the passive movement of all extremities. Gait disturbance is also characteristic in this poisoning. In the severe cases, cook gait has been reported. The patient uses small steps, but has a tendency to elevate the heels and to rotate them outward. He progress without pressing on the flat of his feet, but only upon the metatarsophalangeal articulations, mainly of the fourth and fifth toes. Increased signal in T1-weighted image in the basal

  16. Effects of Dynamic Impact Loading on Microstructure of FCC (TWIP) Steel

    Science.gov (United States)

    2014-08-01

    the plate to the maximum bulge at the centre of the plate after a blast. Figure 2 shows the aluminium bulge depth measuring device in which the...is shown in Table 1. The most notable feature of the steel is the high level of manganese (18%) combined with significant levels of aluminium ...representatively in the current investigation. Figure 9(a) shows the typical rolling texture components in FCC alloys [12] as reference, consisting of ideal

  17. Aging behaviour of 25Cr-17Mn high nitrogen duplex stainless steel

    OpenAIRE

    Machado, I. F.; Padilha, A. F.

    2000-01-01

    The precipitation behaviour of a nickel free stainless steel containing 25% chromium, 17% manganese and 0.54% nitrogen, with duplex ferritic-austenitic microstructure, was studied using several complementary techniques of microstructural analysis after aging heat treatments between 600 and 1 000 degrees C for periods of lime between 15 and 6 000 min. During aging heat treatments, ferrite was decomposed into sigma phase and austenite by a eutectoid reaction, like in the Fe-Cr-Ni duplex stainle...

  18. A Study on the Effects of the Use of Gas or Water Atomized AISI 316L Steel Powder on the Corrosion Resistance of Laser Deposited Material

    Science.gov (United States)

    Tobar, M. J.; Amado, J. M.; Montero, J.; Yáñez, A.

    Water atomized and gas atomized powders are commonly used in 3D laser manufacturing. Both types of AISI 316L stainless steel powders are available which differ in their manganese content. This is due to specific procedures related to the two different atomization process. The amount of manganese in the laser processed part might have important implications in its corrosion resistance. It could lead to the formation of manganese sulfides (MnS) which are known to be initiation sites for pitting corrosion. In this work, corrosion performance of laser deposited 316L steel using gas and atomized powders is compared by means of potentiodynamic polarization tests in 0.35%wt. NaCL solution. Worse performance of the gas atomized samples is observed as with respect to the water atomized ones in terms of polarization resistance, corrosion rate and pitting susceptibility.

  19. Aquatic environmental risk assessment of manganese processing industries.

    Science.gov (United States)

    Marks, Becky; Peters, Adam; McGough, Doreen

    2017-01-01

    An environmental risk assessment (ERA) has been conducted for sites producing and processing manganese and its inorganic compounds, focussing on potential risks to freshwater. A site specific questionnaire was used to collect information. Sites fall into three broad categories: mining sites, refining sites, and sites producing chemicals and pigments. Waste disposal is principally carried out by the treatment of liquid wastes to separate solids for disposal off-site with a consented wastewater discharge, or disposal on-site using evaporation or settlement ponds in order to maintain the waste materials in a suitable manner following site closure. The main source of emissions from refining and alloying sites is from the treatment of emissions to air using wet scrubber air filters. There is also the potential for fugitive environmental emissions of manganese from stockpiles of raw material held on-site. Data provided from the questionnaires were both site-specific and also commercially sensitive. Therefore, this paper has undertaken the manganese exposure assessment, using a probabilistic approach to reflect the distribution of emissions of manganese and also to maintain the confidentiality of site specific data. An inverse correlation was observed between the total annual tonnage of manganese processed at the site and the emission factor, such that sites processing larger quantities resulted in lower emissions of manganese per tonne processed. The hazard assessment determined a Predicted No Effect Concentration (PNEC) for freshwater using a species sensitivity distribution approach, resulting in a freshwater PNEC of 0.075mgL -1 for soluble manganese. Based on the exposure data and the freshwater PNEC derived for this study, the distributions of risk characterisation ratios using the probabilistic approach indicates that two thirds of manganese processing sites would not be expected to pose a potential risk to the local aquatic environment due to wastewater emissions

  20. Iron and manganese oxide mineralization in the Pacific

    Science.gov (United States)

    Hein, J. R.; Koschinsky, A.; Halbach, P.; Manheim, F. T.; Bau, M.; Jung-Keuk, Kang; Lubick, N.

    1997-01-01

    Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. These processes are discussed.

  1. Bioconcentration of manganese and iron in Panaeoloideae Sing

    OpenAIRE

    Stijve, T.; Blake, C.

    1994-01-01

    According to literature, the manganese content of most basidiomycetes fluctuates between 10 and 60 mg/kg, whereas the iron levels range from 100-500 mg/kg (both expressed on dry weight). The present authors report that bioconcentration of manganese is a distinguishing feature of the Panaeoloideae, as demonstrated by the analysis of 44 collections representing 15 taxons. Carpophores generally contain between 250 and 2500 mg/kg on dry weight, and, with the notable exception of Panaeolus semiova...

  2. Effects of nickel on irradiation embrittlement of light water reactor pressure vessel steels

    International Nuclear Information System (INIS)

    2005-06-01

    This TECDOC was developed under the IAEA Coordinated Research Project (CRP) entitled Effects of Nickel on Irradiation Embrittlement of Light Water Reactor Pressure Vessel (RPV) Steels. This CRP is the sixth in a series of CRPs to determine the influence of the mechanism and quantify the influence of nickel content on the deterioration of irradiation embrittlement of reactor pressure vessel steels of the Ni-Cr-Mo-V or Mn-Ni-Cr-Mo types. The scientific scope of the programme includes procurement of materials, determination of mechanical properties, irradiation and testing of specimens in power and/or test reactors, and microstructural characterization. Eleven institutes from eight different countries and the European Union participated in this CRP and six institutes conducted the irradiation experiments of the CRP materials. In addition to the irradiation and testing of those materials, irradiation experiments of various national steels were also conducted. Moreover, some institutes performed microstructural investigations of both the CRP materials and national steels. This TECDOC presents and discusses all the results obtained and the analyses performed under the CRP. The results analysed are clear in showing the significantly higher radiation sensitivity of high nickel weld metal (1.7 wt%) compared with the lower nickel base metal (1.2 wt%). These results are supported by other similar results in the literature for both WWER-1000 RPV materials, pressurized water reactor (PWR) type materials, and model alloys. Regardless of the increased sensitivity of WWER-1000 high nickel weld metal (1.7 wt%), the transition temperature shift for the WWER-1000 RPV design fluence is still below the curve predicted by the Russian code (standard for strength calculations of components and piping in NPPs - PNAE G 7-002-86). For higher fluence, no data were available and the results should not be extrapolated. Although manganese content was not incorporated directly in this CRP

  3. Cryogenic properties of austenitic stainless steels for superconducting magnet

    International Nuclear Information System (INIS)

    Nohara, K.; Kato, T.; Ono, Y.; Sasaki, T.; Suzuki, S.

    1983-01-01

    The present study examines the magnetic and mechanical properties of a variety of austenitic stainless steels and high maganese steel which are candidate materials for the superconducting magnet attached to high energy particle accelerators. The effect of a specified heat treatment for the precipitation of intermetallic compound Nb3Sn to be used as superconductor on ductility and toughness are especially examined. It is found that nitrogen-strengthened austenitic stainless steels have high strength and good ductility and toughness, but that these are destroyed by precipitation treatment. The poor ductility and toughness after precipitation are caused by a weakening of the grain boundaries due to the agglomerated chromium carbide percipitates. The addition of vanadium suppresses this effect by refining the grain. Austenitic steels are found to have low magnetic permeabilities and Neel temperatures, and show serrated flow in traction test due to strained martensitic transformation. High manganese steel has extremely low permeability, a Neel temperature about room temperature, and has a serrated flow in traction test due to adiabatic deformation at liquid helium temperature

  4. Low copper and high manganese levels in prion protein plaques

    Science.gov (United States)

    Johnson, Christopher J.; Gilbert, P.U.P.A.; Abrecth, Mike; Baldwin, Katherine L.; Russell, Robin E.; Pedersen, Joel A.; McKenzie, Debbie

    2013-01-01

    Accumulation of aggregates rich in an abnormally folded form of the prion protein characterize the neurodegeneration caused by transmissible spongiform encephalopathies (TSEs). The molecular triggers of plaque formation and neurodegeneration remain unknown, but analyses of TSE-infected brain homogenates and preparations enriched for abnormal prion protein suggest that reduced levels of copper and increased levels of manganese are associated with disease. The objectives of this study were to: (1) assess copper and manganese levels in healthy and TSE-infected Syrian hamster brain homogenates; (2) determine if the distribution of these metals can be mapped in TSE-infected brain tissue using X-ray photoelectron emission microscopy (X-PEEM) with synchrotron radiation; and (3) use X-PEEM to assess the relative amounts of copper and manganese in prion plaques in situ. In agreement with studies of other TSEs and species, we found reduced brain levels of copper and increased levels of manganese associated with disease in our hamster model. We also found that the in situ levels of these metals in brainstem were sufficient to image by X-PEEM. Using immunolabeled prion plaques in directly adjacent tissue sections to identify regions to image by X-PEEM, we found a statistically significant relationship of copper-manganese dysregulation in prion plaques: copper was depleted whereas manganese was enriched. These data provide evidence for prion plaques altering local transition metal distribution in the TSE-infected central nervous system.

  5. Permanganate-based synthesis of manganese oxide nanoparticles in ferritin

    Science.gov (United States)

    Olsen, Cameron R.; Smith, Trevor J.; Embley, Jacob S.; Maxfield, Jake H.; Hansen, Kameron R.; Peterson, J. Ryan; Henrichsen, Andrew M.; Erickson, Stephen D.; Buck, David C.; Colton, John S.; Watt, Richard K.

    2017-05-01

    This paper investigates the comproportionation reaction of MnII with {{{{MnO}}}4}- as a route for manganese oxide nanoparticle synthesis in the protein ferritin. We report that {{{{MnO}}}4}- serves as the electron acceptor and reacts with MnII in the presence of apoferritin to form manganese oxide cores inside the protein shell. Manganese loading into ferritin was studied under acidic, neutral, and basic conditions and the ratios of MnII and permanganate were varied at each pH. The manganese-containing ferritin samples were characterized by transmission electron microscopy, UV/Vis absorption, and by measuring the band gap energies for each sample. Manganese cores were deposited inside ferritin under both the acidic and basic conditions. All resulting manganese ferritin samples were found to be indirect band gap materials with band gap energies ranging from 1.01 to 1.34 eV. An increased UV/Vis absorption around 370 nm was observed for samples formed under acidic conditions, suggestive of MnO2 formation inside ferritin.

  6. Spatial and temporal variations of manganese concentrations in drinking water.

    Science.gov (United States)

    Barbeau, Benoit; Carrière, Annie; Bouchard, Maryse F

    2011-01-01

    The objective of this study was to assess the variability of manganese concentrations in drinking water (daily, seasonal, spatial) for eight communities who participated in an epidemiological study on neurotoxic effects associated with exposure to manganese in drinking water. We also assessed the performance of residential point-of-use and point-of-entry devices (POE) for reducing manganese concentrations in water. While the total Mn concentrations measured during this study were highly variable depending on the location (manganese concentration for 4 out of 5 sampling locations. The efficiency of reverse osmosis and ion exchange for total Mn removal was consistently high while activated carbon provided variable results. The four POE greensand filters investigated all increased (29 to 199%) manganese concentration, indicating deficient operation and/or maintenance practices. Manganese concentrations in the distribution system were equal or lower than at the inlet, indicating that sampling at the inlet of the distribution system is conservative. The decline in total Mn concentration was linked to higher water residence time in the distribution system.

  7. Failure of manganese to protect from Shiga toxin.

    Directory of Open Access Journals (Sweden)

    Marsha A Gaston

    Full Text Available Shiga toxin (Stx, the main virulence factor of Shiga toxin producing Escherichia coli, is a major public health threat, causing hemorrhagic colitis and hemolytic uremic syndrome. Currently, there are no approved therapeutics for these infections; however manganese has been reported to provide protection from the Stx1 variant isolated from Shigella dysenteriae (Stx1-S both in vitro and in vivo. We investigated the efficacy of manganese protection from Stx1-S and the more potent Stx2a isoform, using experimental systems well-established for studying Stx: in vitro responses of Vero monkey kidney cells, and in vivo toxicity to CD-1 outbred mice. Manganese treatment at the reported therapeutic concentration was toxic to Vero cells in culture and to CD-1 mice. At lower manganese concentrations that were better tolerated, we observed no protection from Stx1-S or Stx2a toxicity. The ability of manganese to prevent the effects of Stx may be particular to certain cell lines, mouse strains, or may only be manifested at high, potentially toxic manganese concentrations.

  8. Yttrium implantation and addition element effects on the oxidation behaviour of reference steels at 973 K

    Energy Technology Data Exchange (ETDEWEB)

    Caudron, E.; Buscail, H.; Cueff, R.; Issartel, C.; El Messki, S.; Perrier, S.; Riffard, F. [Lab. Vellave d' Elaboration et d' Etude des Materiaux, Univ. Blaise Pascal Clermont-Fd 2, Le Puy en Velay (France)

    2004-07-01

    Yttrium implantation effects on reference steels (extra low carbon and low manganese steel) were studied by rutherford backscattering spectrometry (RBS), reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD) and glancing angle X-ray diffraction (GAXRD). Thermogravimetry and in situ X-ray diffraction at 700 C and P{sub O2}=0.04 Pa for 24h were used to determine the yttrium implantation and addition element effects on sample oxidation resistance at high temperatures. This study clearly shows that yttrium implantation and subsequent high temperature oxidation induced the formation of several yttrium mixed oxides which closely depend on the reference steel addition elements. Moreover, these yttrium mixed oxides seem to be responsible for the improved reference steel oxidation resistance at high temperatures. (orig.)

  9. Strength of "Light" Ferritic and Austenitic Steels Based on the Fe - Mn - Al - C System

    Science.gov (United States)

    Kaputkina, L. M.; Svyazhin, A. G.; Smarygina, I. V.; Kindop, V. E.

    2017-01-01

    The phase composition, the hardness, the mechanical properties at room temperature, and the resistance to hot (950 - 1000°C) and warm (550°C) deformation are studied for cast deformable "light" ferritic and austenitic steels of the Fe - (12 - 25)% Mn - (0 - 15)% Al - (0 - 2)% C system alloyed additionally with about 5% Ni. The high-aluminum high-manganese low-carbon and carbonless ferritic steels at a temperature of about 0.5 T melt have a specific strength close to that of the austenitic steels and may be used as weldable scale-resistant and wear-resistant materials. The high-carbon Fe - (20 - 24)% Mn - (5 - 9)% Al - 5% Ni - 1.5% C austenitic steels may be applied as light high-strength materials operating at cryogenic temperatures after a solution treatment and as scale- and heat-resistant materials in an aged condition.

  10. Microbiological influence on the electro-chemical potential of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Guempel, P.; Moos, O. [Fachhochschule Konstanz, Brauneggerstr. 55, 78462 Konstanz (Germany); Arlt, N. [ThyssenKrupp Nirosta, Postfach 18 02 61, 40569 Duesseldorf (Germany); Telegdi, J. [Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri ut 59/67, H-1025 Budapest (Hungary); Schiller, D. [WITg, Institut fuer Werkstoffsystemtechnik, Konstanzer Str. 19, CH-8274 Taegerwilen (Switzerland)

    2006-09-15

    The microbiologically caused ennoblement appears in natural water on all stainless steels equally and can only be prevented by the use of biocides. Temperature and supply of nutrients have an influence on the increasing rate of the potential, as well as the presence of manganese ions in the water favors the potential rise. The final value of the potential is substantially regulated by the biological system and is independent of the steel composition. An endangerment of stainless steels by a selective corrosion attack e.g. pitting corrosion arises if the critical repassivation potential of the steel lies below the open-circuit potential appearing in the natural system. This can be due to the alloy composition or due to process-conditioned weakening of the passive layer, for example by annealing colors on and beside welded joints. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  11. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    International Nuclear Information System (INIS)

    Hyun, Youngmin; Kim, Heesan

    2016-01-01

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  12. Effects of Alloying Elements (Cr, Mn) on Corrosion Properties of Carbon Steel in Synthetic Seawater

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, Youngmin; Kim, Heesan [Hongik University, Sejong (Korea, Republic of)

    2016-02-15

    Effects of alloying elements, manganese and chromium, on corrosion resistance of carbon steel were examined using weight loss test and electrochemical tests (polarization test and electrochemical impedance spectroscopy (EIS)) in synthetic seawater at 60 ℃. The results from the weight loss test showed that chromium effectively improved corrosion resistance of carbon steel during the entire immersion time, but manganese improved corrosion resistance after the lowered corrosion resistance at the beginnings of immersion. Unlike the weight loss test, the electrochemical tests showed that the corrosion resistance did not increase with immersion time, in all the specimens. This disagreement is explained by the presence of rust involved in electrochemical reaction during electrochemical tests. The analysis of rust with transmission electron microscopy (TEM)−energy dispersive spectroscopy (EDS) showed that the amorphous-like rust layer located at the metal/rust interface with enriched alloying element (Cr, Mn) prevents diffusion of corrosive species into a metal/rust interface effectively, which leads to increased corrosion resistance. The initial corrosion behaviour is also affected by the rust types. In other words, manganese accelerated the formation of spinel oxides, negatively affecting corrosion resistance. Meanwhile, chromium accelerated the formation of goethite but impeded the formation of spinel oxides, positively affecting the corrosion resistance. From the above results, the corrosion resistance of steel is closely related with a rust type.

  13. Methods of forging steel

    OpenAIRE

    Pečoler, Primož

    2014-01-01

    The following work presents processes of steel forming, challenges when forging steel, forming machines suitable for forging and which choice of machine is most suitable for forging. We can separate steel forming to free forging and drop forging. Free forging can be divided to hand forging and machine forging. The correct choice of furnaces is also very important. We must reach correct temperature in the furnace for raw steel to melt with less scalings. In diploma I mentioned some machine...

  14. Prospects of structural steels

    International Nuclear Information System (INIS)

    Bannykh, O.A.

    2012-01-01

    The current state of world steel production is considered as well as the development strategy of metallurgy industry in the Russian Federation through to 2020. The main factors determining the conservation of steel as perspective material for industry are given: energy expenses on production, the well-proven recirculation technology, the capability of changing steel properties in wide range, temperature range of operation. The conclusion is made that in the immediate future steel will not lose its importance [ru

  15. Trends in steel technology

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Dual phase steels, composite products, and microalloyed steels are making inroads in the automotive industry applications for bumpers, automotive parts, bodies, mechanical parts, suspension and steering equipment and truck bumpers. New steels are also used to support solar mirrors and cells, in corrosive environments in the oil and gas industry, fusion reactors, and pressure vessels in nuclear power plants

  16. Study of pitting corrosion in line-pipe steel under the influence of remanent magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J H; Caleyo, F; Hallen, J M [Instituto Politecnico Nacional (IPN), Zacatenco (Mexico)

    2009-07-01

    The influence of remanent magnetization on pitting corrosion in line-pipe steels is studied. Pitting corrosion experiments have been carried out on samples of an API 5L grade 52 steel under a magnetization level of the same order of magnitude of the remanent magnetization in the pipeline wall after in-line inspection based on magnetic flux leakage. The samples were magnetized using rings of the same grade as the investigated steel. Immediately after magnetization, the investigated samples were subjected to pitting by immersing them in a solution containing dissolved Cl{sup -} and SO{sup 2-}{sub 4} and ions. The pitting experiments were conducted during a seven days period. The pit depth distribution and the maximum pit depth in each sample were recorded and used to conduct extreme value analyses of the pitting process in magnetized and non-magnetized control samples. The statistical assessment of the pitting corrosion data collected during this study shows that the magnetic field reduces the average depth of the pit population and also the extreme pit depth values that can be predicted from the maximum values observed in the magnetized samples in comparison with to the non-magnetized control samples. Scanning electron microscopy observations show that the magnetic field alters the pit morphology by increasing the pit mouth opening. (author)

  17. Fracture of Fe--Cr--Mn austenitic steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1979-01-01

    Tensile tests of Tenelon (U.S. Steel), a nitrogen-strengthened iron-base alloy containing 18% chromium and 15% manganese, demonsterated that cleavage fracture can occur in some austenitic steels and is promoted by the presence of hydrogen. Tensile failure of Tenelon at 78 0 K occurred with no detectable necking at low strain levels. The fracture surface contained cleavage facets that lay along coherent twin boundaries oriented transversely to the tensile axis. Charging gaseous hydrogen at 679 MPa pressure and 650 0 K had no significant effect on the mechanical behavior or fracture mode at 78 0 K, but raised the ductile-to-brittle transition temperature from less than 200 0 K to about 250 0 K

  18. A non-magnetic spacer layer effect on spin layers (7/2,3) in a bi-layer ferromagnetic dendrimer structure: Monte Carlo study

    Science.gov (United States)

    Jabar, A.; Tahiri, N.; Bahmad, L.; Benyoussef, A.

    2016-11-01

    A bi-layer system consisting of layers of spins (7/2, 3) in a ferromagnetic dendrimer structure, separated by a non-magnetic spacer, is studied by Monte Carlo simulations. The effect of the RKKY interactions is investigated and discussed for such system. It is shown that the magnetic properties in the two magnetic layers depend strongly on the thickness of the magnetic and non-magnetic layers. The total magnetizations and susceptibilities are studied as a function of the reduced temperature. The effect of the reduced exchange interactions as well as the reduced crystal field is outlined. On other hand, the critical temperature is discussed as a function of the magnetic layer values. To complete this study we presented and discussed the magnetic hysteresis cycles.

  19. Restoration of growth by manganese in a mutant strain of Escherichia coli lacking most known iron and manganese uptake systems

    DEFF Research Database (Denmark)

    Taudte, Nadine; German, Nadezhda; Zhu, Yong-Guan

    2016-01-01

    The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron/manganese-uptake ......The interplay of manganese and iron homeostasis and oxidative stress in Escherichia coli can give important insights into survival of bacteria in the phagosome and under differing iron or manganese bioavailabilities. Here, we characterized a mutant strain devoid of all know iron...

  20. Structure and mechanical properties of improved cast stainless steels for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; Busby, J.T. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States); Gussev, M.N., E-mail: gussevmn@ornl.gov [Nuclear Fuel & Isotopes Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6136 (United States); Maziasz, P.J.; Hoelzer, D.T.; Rowcliffe, A.F.; Vitek, J.M. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6064 (United States)

    2017-01-15

    Casting of stainless steels is a promising and cost saving way of directly producing large and complex structures, such a shield modules or divertors for the ITER. In the present work, a series of modified high-nitrogen cast stainless steels has been developed and characterized. The steels, based on the cast equivalent of the composition of 316 stainless steel, have increased N (0.14–0.36%) and Mn (2–5.1%) content; copper was added to one of the heats. Mechanical tests were conducted with non-irradiated and 0.7 dpa neutron irradiated specimens. It was established that alloying by nitrogen significantly improves the yield stress of non-irradiated steels and the deformation hardening rate. Manganese tended to decrease yield stress but increased radiation hardening. The role of copper on mechanical properties was negligibly small. Analysis of structure was conducted using SEM-EDS and the nature and compositions of the second phases and inclusions were analyzed in detail. No ferrite formation or significant precipitation were observed in the modified steels. It was shown that the modified steels, compared to reference material (commercial cast 316L steel), had better strength level, exhibit significantly reduced elemental inhomogeneity and only minor second phase formation.

  1. APT characterization of high nickel RPV steels

    International Nuclear Information System (INIS)

    Miller, M.K.; Russell, K.F

    2004-01-01

    Full text: The microstructures of several high nickel content pressure vessel steels have been characterized by atom probe tomography. The purposes of this study were to investigate the influence of high nickel levels on the response to neutron irradiation of high and low copper pressure vessel steels and to establish whether any additional phases were present after neutron irradiation. The nickel levels in these steels were at least twice that typically found in Western pressure vessel steels. Two different types of pressure vessel steels with low and high copper contents were selected for this study. The first set of alloys was low copper (∼0.05% Cu) base (15Ch2NMFAA) and weld (12Ch2N2MAA) materials used in a VVER-1000 reactor. The composition of the lower nickel VVER-1000 base material was Fe- 0.17 wt% C, 0.30% Si, 0.46% Mn, 2.2% Cr, 1.26% Ni, 0.05% Cu, 0.01% S, 0.008% P, 0.10% V and 0.50% Mo. The composition of the higher nickel VVER-1000 weld material was Fe- 0.06 wt % C, 0.33% Si, 0.80% Mn, 1.8% Cr, 1.78% Ni, 0.07% Cu, 0.009% S, 0.005% P, and 0.63% Mo. The VVER-1000 steels were irradiated in the HSSI Program's irradiation facilities at the University of Michigan, Ford Nuclear Reactor at a temperature of 288 o C for 2,137 h at an average flux of 7.08 x 10 11 cm 2 s -1 for a fluence of 5.45 x 10 18 n cm -2 (E >1 MeV) and for 5,340 h at an average flux of 4.33 x 10 11 cm -2 s -1 for a fluence of 8.32 x 10 1 28 n cm -2 (E >1 MeV). Therefore, the total fluence was 1.38 x 10 19 n cm -2 (E >1 MeV). The second type of pressure vessel steel was a high copper (0.20% Cu) weld from the Palisades reactor. The average composition of the Palisades weld was Fe- 0.11 wt% C, 0.18% Si, 1.27% Mn, 0.04% Cr, 1.20% Ni, 0.20% Cu, 0.017% S, 0.014% P, 0.003% V and 0.55% Mn. The Palisades weld, designated weldment 'B' from weld heat 34B009, was irradiated at a temperature of 288 o C and a flux of ∼7 x 10 11 cm -2 s -1 to a fast fluence of 1.4 x 10 19 n cm -2 (E >1 MeV). These three

  2. Submicron Features in Higher Manganese Silicide

    Directory of Open Access Journals (Sweden)

    Yatir Sadia

    2013-01-01

    Full Text Available The world energy crisis had increased the demand for alternative energy sources and as such is one of the topics at the forefront of research. One way for reducing energy consumption is by thermoelectricity. Thermoelectric effects enable direct conversion of thermal into electrical energy. Higher manganese silicide (HMS, MnSi1.75 is one of the promising materials for applications in the field of thermoelectricity. The abundance and low cost of the elements, combined with good thermoelectric properties and high mechanical and chemical stability at high temperatures, make it very attractive for thermoelectric applications. Recent studies have shown that Si-rich HMS has improved thermoelectric properties. The most interesting of which is the unusual reduction in thermal conductivity. In the current research, transmission (TEM and scanning (SEM electron microscopy as well as X-ray diffraction methods were applied for investigation of the govern mechanisms resulting in very low thermal conductivity values of an Si-rich HMS composition, following arc melting and hot-pressing procedures. In this paper, it is shown that there is a presence of sub-micron dislocations walls, stacking faults, and silicon and HMS precipitates inside each other apparent in the matrix, following a high temperature (0.9 Tm hot pressing for an hour. These are not just responsible for the low thermal conductivity values observed but also indicate the ability to create complicate nano-structures that will last during the production process and possibly during the application.

  3. Manganese Superoxide Dismutase: Guardian of the Powerhouse

    Directory of Open Access Journals (Sweden)

    Daret K. St. Clair

    2011-10-01

    Full Text Available The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.

  4. Environmental Exposure to Manganese in Air: Associations ...

    Science.gov (United States)

    Manganese (Mn), an essential element, can be neurotoxic in high doses. This cross-sectional study explored the oognitive function of adults residing in two towns (Marietta and East Liverpool, Ohio, USA) identified as having high levels of environmental airborne Mn from industrial sources. Air-Mn site surface emissions method modeling for total suspended particulate (TSP) ranged from 0.03 to 1.61 µg/m(3) in Marietta and 0.01-6.32 µg/m(3) in East Liverpool. A comprehensive screening test battery of cognitive function, including the domains of abstract thinking, attention/concentration, executive function and memory was administered. The mean age of the participants was 56 years (±10.8 years). Participants were mostly female (59.1) and primarily white (94.6%). Significant relationships (pworking and visuospatial memory (e.g., Rey-0 Immediate B3=0.19, Rey-0 Delayed B3=0.16) and verbal skills (e.g., Similarities B3=0.19). Using extensive cognitive testing and computer modeling of 10-plus years of measured air monitoring data, this study suggests that long-term environmental exposure to high levels of air-Mn, the exposure metric of this paper, may result in mild deficits of cognitive function in adult populations. This study addresses research questions under Sustainable and Healthy Communities (2.2.1.6 lessons learned, best practices and stakeholder feedback from community and tribal participa

  5. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    International Nuclear Information System (INIS)

    Ling, Chen; Zhang, Ruigang

    2017-01-01

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg 2+ -intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO 2 in magnesium cells. In recent years, the cathodic performance of MnO 2 was impressively improved to the capacity of >150–200 mAh g −1 at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO 2 cathode has been changed and how it paved the road to the improvement of cathode performance.

  6. Manganese Dioxide As Rechargeable Magnesium Battery Cathode

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Chen, E-mail: chen.ling@toyota.com; Zhang, Ruigang [Toyota Research Institute of North America, Ann Arbor, MI (United States)

    2017-11-03

    Rechargeable magnesium battery (rMB) has received increased attention as a promising alternative to current Li-ion technology. However, the lack of appropriate cathode that provides high-energy density and good sustainability greatly hinders the development of practical rMBs. To date, the successful Mg{sup 2+}-intercalation was only achieved in only a few cathode hosts, one of which is manganese dioxide. This review summarizes the research activity of studying MnO{sub 2} in magnesium cells. In recent years, the cathodic performance of MnO{sub 2} was impressively improved to the capacity of >150–200 mAh g{sup −1} at voltage of 2.6–2.8 V with cyclability to hundreds or more cycles. In addition to reviewing electrochemical performance, we sketch a mechanistic picture to show how the fundamental understanding about MnO{sub 2} cathode has been changed and how it paved the road to the improvement of cathode performance.

  7. Investigation of technology for manufacturing the non-magnetic temperature-sensitive composite materials and their properties

    International Nuclear Information System (INIS)

    Kobelev, A.G.; Kolesnikov, F.V.; Gul'bin, V.N.; Nikitin, I.S.

    2004-01-01

    Investigation results are presented on structure and properties of nonmagnetic thermobimetals on the basis of beryllium bronze which is used both as active and passive layers. The second layer of thermosensitive element consists of stainless steel 12Kh18N10T, titanium base alloy VT1-0 and aluminum base alloy AD1. The manufacturing of the layered composite materials includes explosion welding, plastic deformation and heat treatment. It is established that strain hardening of the thermobimetals results in an increase of yield strength, microstresses, hardness and specific resistance [ru

  8. Non-magnetic impurity effect on suppression of Tc and gap evolution in the two-gap superconductor Lu2Fe3Si5

    International Nuclear Information System (INIS)

    Nakajima, Y.; Hidaka, H.; Tamegai, T.

    2013-01-01

    Highlights: ► Non-magnetic impurities suppress T c and the amplitude of gaps in Lu 2 Fe 3 Si 5 . ► Critical scattering rate is higher than that expected in s ± -pairing scenario. ► The evolution of two distinct gaps dose not show merging the amplitude of gaps. -- Abstract: We report the suppression of T c and the evolution of amplitudes of the two gaps with the introduction of non-magnetic impurities in a two-gap superconductor Lu 2 Fe 3 Si 5 . While T c rapidly decreases by a small amount of substitution of Sc for Lu, the suppression of T c is more than ten times slower than that expected from the Abrikosov–Gor’kov equation describing the reduction of T c in a superconductor with sign reversal in the gap function. The evolution of two distinct gaps by the introduction of non-magnetic impurities does not show merging the amplitude of two gaps, which is strikingly different from the typical two-gap superconductor MgB 2

  9. Digestion of Alumina from Non-Magnetic Material Obtained from Magnetic Separation of Reduced Iron-Rich Diasporic Bauxite with Sodium Salts

    Directory of Open Access Journals (Sweden)

    Guanghui Li

    2016-11-01

    Full Text Available Recovery of iron from iron-rich diasporic bauxite ore via reductive roasting followed by magnetic separation has been explored recently. However, the efficiency of alumina extraction in the non-magnetic materials is absent. In this paper, a further study on the digestion of alumina by the Bayer process from non-magnetic material obtained after magnetic separation of reduced iron-rich diasporic bauxite with sodium salts was investigated. The results indicate that the addition of sodium salts can destroy the original occurrences of iron-, aluminum- and silicon-containing minerals of bauxite ore during reductive roasting. Meanwhile, the reactions of sodium salts with complex aluminum- and silicon-bearing phases generate diaoyudaoite and sodium aluminosilicate. The separation of iron via reductive roasting of bauxite ore with sodium salts followed by magnetic separation improves alumina digestion in the Bayer process. When the alumina-bearing material in bauxite ore is converted into non-magnetic material, the digestion temperature decreases significantly from 280 °C to 240 °C with a nearly 99% relative digestion ratio of alumina.

  10. Weldability of Stainless Steels

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi

    2010-01-01

    It gives an outline of metallographic properties of welding zone of stainless steels, generation and mechanisms of welding crack and decreasing of corrosion resistance of welding zone. It consists of seven chapters such as introduction, some kinds of stainless steels and properties, metallographic properties of welding zone, weld crack, toughness of welding zone, corrosion resistance and summary. The solidification modes of stainless steels, each solidification mode on the cross section of Fe-Cr-Ni alloy phase diagram, each solidification mode of weld stainless steels metal by electron beam welding, segregation state of alloy elements at each solidification mode, Schaeffler diagram, Delong diagram, effects of (P + S) mass content in % and Cr/Ni equivalent on solidification cracking of weld stainless steels metal, solidification crack susceptibility of weld high purity stainless steels metal, effects of trace impurity elements on solidification crack susceptibility of weld high purity stainless steels metal, ductile fracture susceptibility of weld austenitic stainless steels metal, effects of H2 and ferrite content on generation of crack of weld 25Cr-5N duplex stainless steels, effects of O and N content on toughness of weld SUS 447J1 metals, effect of ferrite content on aging toughness of weld austenitic stainless steel metal, corrosion morphology of welding zone of stainless steels, generation mechanism of knife line attack phenomenon, and corrosion potential of some kinds of metals in seawater at room temperature are illustrated. (S.Y.)

  11. The steel scrap age.

    Science.gov (United States)

    Pauliuk, Stefan; Milford, Rachel L; Müller, Daniel B; Allwood, Julian M

    2013-04-02

    Steel production accounts for 25% of industrial carbon emissions. Long-term forecasts of steel demand and scrap supply are needed to develop strategies for how the steel industry could respond to industrialization and urbanization in the developing world while simultaneously reducing its environmental impact, and in particular, its carbon footprint. We developed a dynamic stock model to estimate future final demand for steel and the available scrap for 10 world regions. Based on evidence from developed countries, we assumed that per capita in-use stocks will saturate eventually. We determined the response of the entire steel cycle to stock saturation, in particular the future split between primary and secondary steel production. During the 21st century, steel demand may peak in the developed world, China, the Middle East, Latin America, and India. As China completes its industrialization, global primary steel production may peak between 2020 and 2030 and decline thereafter. We developed a capacity model to show how extensive trade of finished steel could prolong the lifetime of the Chinese steelmaking assets. Secondary steel production will more than double by 2050, and it may surpass primary production between 2050 and 2060: the late 21st century can become the steel scrap age.

  12. Effect of metal surface composition on deposition behavior of stainless steel component dissolved in liquid sodium

    International Nuclear Information System (INIS)

    Yokota, Norikatsu; Shimoyashiki, Shigehiro

    1988-01-01

    Deposition behavior of corrosion products has been investigated to clarify the effect of metal surface composition on the deposition process in liquid sodium. For the study a sodium loop made of Type 304 stainless steel was employed. Deposition test pieces, which were Type 304 stainless steel, iron, nickel or Inconel 718, were immersed in the sodium pool of the test pot. Corrosion test pieces, which were Type 304 stainless steel, 50 at% Fe-50 at%Mn and Inconel 718, were set in a heater pin assembly along the axial direction of the heater pin surface. Sodium temperatures at the outlet and inlet of the heater pin assembly were controlled at 943 and 833 K, respectively. Sodium was purified at a cold trap temperature of 393 K and the deposition test was carried out for 4.3 x 10 2 - 2.9 x 10 4 ks. Several crystallized particles were observed on the surface of the deposition test pieces. The particles had compositions and crystal structures which depended on both the composition of deposition test pieces and the concentration of iron and manganese in sodium. Only iron-rich particles having a polyhedral shape deposited on the iron surface. Two types of particles, iron-rich α-phase and γ-phase with nearly the same composition as stainless steel, were deposited on Type 304 stainless steel. A Ni-Mn alloy was deposited on the nickel surface in the case of a higher concentration of manganese in sodium. On the other hand, for a lower manganese concentration, a Fe-Ni alloy was precipitated on the nickel surface. Particles deposited on nickel had a γ-phase crystal structure similar to the deposition test piece of nickel. Hence, the deposition process can be explained as follows: Corrosion products in liquid sodium were deposited on the metal surface by forming a metal alloy selectively with elements of the metal surface. (author)

  13. Dynamic Strain Aging Phenomena and Tensile Response of Medium-Mn TRIP Steel

    Science.gov (United States)

    Field, Daniel M.; Van Aken, David C.

    2018-04-01

    Dynamic strain aging (DSA) and rapid work hardening are typical behaviors observed in medium-Mn transformation-induced plasticity (TRIP) steel. Three alloys with manganese ranging from 10.2 to 13.8 wt pct with calculated room temperature stacking fault energies varying from - 2.1 to 0.7 mJ/m2 were investigated. Significant serrations were observed in the stress-strain behavior for two of the steels and the addition of 4.6 wt pct chromium was effective in significantly reducing the occurrence of DSA. Addition of chromium to the alloy reduced DSA by precipitation of M23(C,N)6 during batch annealing at 873 K (600 °C) for 20 hours. Three distinct DSA mechanisms were identified: one related to manganese ordering in stacking faults associated with ɛ-martensite and austenite interface, with activation energies for the onset and termination of DSA being 145 and 277 kJ/mol. A second mechanism was associated with carbon diffusion in γ-austenite where Mn-C bonding added to the total binding energy, and activation energies of 88 and 155 kJ/mol were measured for the onset and termination of DSA. A third mechanism was attributed to dislocation pinning and unpinning by nitrogen in α-ferrite with activation energies of 64 and 123 kJ/mol being identified. Tensile behaviors of the three medium manganese steels were studied in both the hot band and batch annealed after cold working conditions. Ultimate tensile strengths ranged from 1310 to 1404 MPa with total elongation of 24.1 to 34.1 pct. X-ray diffraction (XRD) was used to determine the transformation response of the steels using interrupted tensile tests at room temperature. All three of the processed steels showed evidence of two-stage TRIP where γ-austenite first transformed to ɛ-martensite, and subsequently transformed to α-martensite.

  14. Seismic damage sensing of bridge structures with TRIP reinforcement steel bars

    Science.gov (United States)

    Adachi, Yukio; Unjoh, Shigeki

    2001-07-01

    Intelligent reinforced concrete structures with transformation-induced-plasticity (TRIP) steel rebars that have self-diagnosis function are proposed. TRIP steel is special steel with Fe-Cr based formulation. It undergoes a permanent change in crystal structure in proportion to peak strain. This changes from non-magnetic to magnetic steel. By using the TRIP steel rebars, the seismic damage level of reinforced concrete structures can be easily recognized by measuring the residual magnetic level of the TRIP rebars, that is directly related to the peak strain during a seismic event. This information will be most helpful for repairing the damaged structures. In this paper, the feasibility of the proposed intelligent reinforced concrete structure for seismic damage sensing is experimentally studied. The relation among the damage level, peak strain of rebars, and residual magnetic level of rebars of reinforced concrete beams implemented with TRIP steel bars was experimentally studied. As the result of this study, this intelligent structure can diagnose accumulated strain/damage anticipated during seismic event.

  15. Mercury distribution characteristics in primary manganese smelting plants

    International Nuclear Information System (INIS)

    Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil

    2017-01-01

    The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1–99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. - Graphical abstract: 1. Lack of data on mercury (Hg) distribution in manganese smelters. 2. Mass distribution of Hg released from 3 plants (as normalized values) were made as follows by measurements. 3. Information of distribution of Hg in Manganese smelters would be used for emission in to air and releases to other streams for the nation and globe in UNEP mercury report. - Highlights: • The mass balance study by on-site measurement from primary manganese smelting plants was made at first time in the world. • Hg distribution and main input and release pathways of Hg from primary manganese smelting plants could be found as the first time. • Gas temperature in bag filter affects Hg behavior and speciation changes in APCDs. • National inventory of Hg emssion has been updated with new data. - Mercury distribution in manganese smelting plant was investigated as the first measurements at commercial plants in the world. National Hg release

  16. Quantification of manganese in human hand bones: a feasibility study

    International Nuclear Information System (INIS)

    Aslam; Pejovic-Milic, A; Chettle, D R; McNeill, F E

    2008-01-01

    Manganese is both an essential element to human health and also toxic when humans are exposed to excessive levels, particularly by means of inhalation. Biological monitoring of manganese exposure is problematic. It is subject to homeostasis; levels in blood (or serum/plasma) reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive technique for measurement of manganese stored in bone, using in vivo neutron activation analysis. Following preliminary feasibility studies, the technique has been enhanced by two significant infrastructure advances. A specially designed irradiation facility serves to maximize the activation of manganese with respect to the dose of ionizing radiation. Secondly, an array of eight NaI(Tl) crystals provides a detection system with very close to 4π geometry. This feasibility study, using neutron activation analysis to measure manganese in the bones of the hand, takes two features into account. Firstly, there is considerable magnesium present in the bone and this produces a spectral interference with the manganese. The 26 Mg(n,γ) 27 Mg reaction produces γ-rays of 0.843 MeV from the decay of 27 Mg, which interfere with the 0.847 MeV γ-rays from the decay of 56 Mn, produced by the 55 Mn(n,γ) 56 Mn reaction. Secondly, this work provides estimates of the levels of manganese to be expected in referent subjects. A revised estimate has been made from the most recent literature to explore the potential of the technique as a suitable means of screening patients and people exposed to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. This report presents the enhancements to the neutron activation system, by which manganese can be measured, which resulted in a detection limit in the hand of human subjects of 1.6

  17. Quantification of manganese in human hand bones: a feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Aslam; Pejovic-Milic, A; Chettle, D R; McNeill, F E [Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, L8S 4K1 (Canada)], E-mail: aslamib@mcmaster.ca

    2008-08-07

    Manganese is both an essential element to human health and also toxic when humans are exposed to excessive levels, particularly by means of inhalation. Biological monitoring of manganese exposure is problematic. It is subject to homeostasis; levels in blood (or serum/plasma) reflect only the most recent exposure and rapidly return to within normal ranges, even when there has been a temporary excursion in response to exposure. In this context, we have been developing a non-invasive technique for measurement of manganese stored in bone, using in vivo neutron activation analysis. Following preliminary feasibility studies, the technique has been enhanced by two significant infrastructure advances. A specially designed irradiation facility serves to maximize the activation of manganese with respect to the dose of ionizing radiation. Secondly, an array of eight NaI(Tl) crystals provides a detection system with very close to 4{pi} geometry. This feasibility study, using neutron activation analysis to measure manganese in the bones of the hand, takes two features into account. Firstly, there is considerable magnesium present in the bone and this produces a spectral interference with the manganese. The {sup 26}Mg(n,{gamma}){sup 27}Mg reaction produces {gamma}-rays of 0.843 MeV from the decay of {sup 27}Mg, which interfere with the 0.847 MeV {gamma}-rays from the decay of {sup 56}Mn, produced by the {sup 55}Mn(n,{gamma}){sup 56}Mn reaction. Secondly, this work provides estimates of the levels of manganese to be expected in referent subjects. A revised estimate has been made from the most recent literature to explore the potential of the technique as a suitable means of screening patients and people exposed to excessive amounts of Mn who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. This report presents the enhancements to the neutron activation system, by which manganese can be measured, which resulted in a detection

  18. Manganese and acute paranoid psychosis: a case report

    Directory of Open Access Journals (Sweden)

    Egger Jos I

    2011-04-01

    Full Text Available Abstract Introduction Manganese regulates many enzymes and is essential for normal development and body function. Chronic manganese intoxication has an insidious and progressive course and usually starts with complaints of headache, fatigue, sleep disturbances, irritability and emotional instability. Later, several organ systems may be affected and, due to neurotoxicity, an atypical parkinsonian syndrome may emerge. With regard to neuropsychiatry, an array of symptoms may develop up to 30 years after intoxication, of which gait and speech abnormalities, cognitive and motor slowing, mood changes and hallucinations are the most common. Psychotic phenomena are rarely reported. Case presentation We describe the case of a 49-year-old Caucasian man working as a welder who was referred to our facility for evaluation of acute paranoid psychotic behavior. Our patient's medical history made no mention of any somatic complaints or psychiatric symptoms, and he had been involved in a professional career as a metalworker. On magnetic resonance imaging scanning of his brain, a bilateral hyperdensity of the globus pallidus, suggestive for manganese intoxication, was found. His manganese serum level was 52 to 97 nmol/L (range: 7 to 20 nmol/L. A diagnosis of organic psychotic disorder due to manganese overexposure was made. His psychotic symptoms disappeared within two weeks of treatment with low-dose risperidone. At three months later, serum manganese was decreased to slightly elevated levels and the magnetic resonance imaging T1 signal intensity was reduced. No signs of Parkinsonism were found and a definite diagnosis of manganese-induced apathy syndrome was made. Conclusion Although neuropsychiatric and neurological symptoms caused by (chronic manganese exposure have been reported frequently in the past, in the present day the disorder is rarely diagnosed. In this report we stress that manganese intoxication can still occur, in our case in a confined

  19. Manganese and iron oxidation by fungi isolated from building stone.

    Science.gov (United States)

    de la Torre, M A; Gomez-Alarcon, G

    1994-01-01

    Acid and nonacid generating fungal strains isolated from weathered sandstone, limestone, and granite of Spanish cathedrals were assayed for their ability to oxidize iron and manganese. In general, the concentration of the different cations present in the mineral salt media directly affected Mn(IV) oxide formation, although in some cases, the addition of glucose and nitrate to the culture media was necessary. Mn(II) oxidation in acidogenic strains was greater in a medium containing the highest concentrations of glucose, nitrate, and manganese. High concentrations of Fe(II), glucose, and mineral salts were optimal for iron oxidation. Mn(IV) precipitated as oxides or hydroxides adhered to the mycelium. Most of the Fe(III) remained in solution by chelation with organic acids excreted by acidogenic strains. Other metabolites acted as Fe(III) chelators in nonacidogenic strains, although Fe(III) deposits around the mycelium were also detected. Both iron and manganese oxidation were shown to involve extracellular, hydrosoluble enzymes, with maximum specific activities during exponential growth. Strains able to oxidize manganese were also able to oxidize iron. It is concluded that iron and manganese oxidation reported in this work were biologically induced by filamentous fungi mainly by direct (enzymatic) mechanisms.

  20. [Factors affecting biological removal of iron and manganese in groundwater].

    Science.gov (United States)

    Xue, Gang; He, Sheng-Bing; Wang, Xin-Ze

    2006-01-01

    Factors affecting biological process for removing iron and manganese in groundwater were analyzed. When DO and pH in groundwater after aeration were 7.0 - 7.5 mg/L and 6.8 - 7.0 respectively, not only can the activation of Mn2+ oxidizing bacteria be maintained, but also the demand of iron and manganese removal can be satisfied. A novel inoculating approach of grafting mature filter material into filter bed, which is easier to handle than selective culture media, was employed in this research. However, this approach was only suitable to the filter material of high-quality manganese sand with strong Mn2+ adsorption capacity. For the filter material of quartz sand with weak adsorption capacity, only culturing and domesticating Mn2+ oxidizing bacteria by selective culture media can be adopted as inoculation in filter bed. The optimal backwashing rate of biological filter bed filled with manganese sand and quartz sand should be kept at a relatively low level of 6 - 9 L/(m2 x s) and 7 -11 L/( m2 x s), respectively. Then the stability of microbial phase in filter bed was not disturbed, and iron and manganese removal efficiency recovered in less than 5h. Moreover, by using filter material with uniform particle size of 1.0 - 1.2 mm in filter bed, the filtration cycle reached as long as 35 - 38h.

  1. The sorption of silver by poorly crystallized manganese oxides

    Science.gov (United States)

    Anderson, B.J.; Jenne, E.A.; Chao, T.T.

    1973-01-01

    The sorption of silver by poorly crystallized manganese oxides was studied using synthesized samples of three members of the manganous manganite (birnessite) group, of different chemical composition and crystallinity, and a poorly organized ??-MnO2. All four oxides sorbed significant quantities of silver. The manganous manganites showed the greatest sorption (up to 0.5 moles silver/mole MnOx at pH 7) while the ??-MnO2 showed the least (0.3 moles silver/ mole MnOx at pH 7). Sorption of silver was adequately described by the Langmuir equation over a considerable concentration range. The relationship failed at low pH values and high equilibrium silver concentrations. The sorption capacity showed a direct relationship with pH. However, the rate of increase of sorption capacity decreased at the higher pH values. Silver sorption maxima. were not directly related to surface area but appeared to vary with the amount of occluded sodium and potassium present in the manganese oxide. The important processes involved in the uptake of silver by the four poorly crystallized manganese oxides ara considered to be surface exchange for manganese, potassium and sodium as well as exchange for structural manganese, potassium and sodium. ?? 1973.

  2. Manganese oxide-based materials as electrochemical supercapacitor electrodes.

    Science.gov (United States)

    Wei, Weifeng; Cui, Xinwei; Chen, Weixing; Ivey, Douglas G

    2011-03-01

    Electrochemical supercapacitors (ECs), characteristic of high power and reasonably high energy densities, have become a versatile solution to various emerging energy applications. This critical review describes some materials science aspects on manganese oxide-based materials for these applications, primarily including the strategic design and fabrication of these electrode materials. Nanostructurization, chemical modification and incorporation with high surface area, conductive nanoarchitectures are the three major strategies in the development of high-performance manganese oxide-based electrodes for EC applications. Numerous works reviewed herein have shown enhanced electrochemical performance in the manganese oxide-based electrode materials. However, many fundamental questions remain unanswered, particularly with respect to characterization and understanding of electron transfer and atomic transport of the electrochemical interface processes within the manganese oxide-based electrodes. In order to fully exploit the potential of manganese oxide-based electrode materials, an unambiguous appreciation of these basic questions and optimization of synthesis parameters and material properties are critical for the further development of EC devices (233 references).

  3. Influence of remanent magnetization on pitting corrosion in pipeline steel

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H. [ESIME Zacatenco, SEPI Electronica Instituto Politecnico Nacional Mexico, D. F. (Mexico); Caleyo, F.; Hallen, J. M. [DIM-ESIQIE, Instituto Politecnico Nacional Mexico D. F. (Mexico); Lopez-Montenegro, A.; Perez-Baruch, E. [Pemex Exploracion y Produccion, Region Sur Villahermosa, Tabasco (Mexico)

    2010-07-01

    Statistical studies performed in Mexico indicate that leakage due to external pitting corrosion is the most likely cause of failure of buried pipelines. When pipelines are inspected with the magnetic flux leakage (MFL) technology, which is routinely used, the magnetization level of every part of the pipeline changes as the MFL tool travels through it. Remanent magnetization stays in the pipeline wall after inspection, at levels that may differ from a point to the next. This paper studies the influence of the magnetic field on pitting corrosion. Experiments were carried out on grade 52 steel under a level of remanent magnetization and other laboratory conditions that imitated the conditions of a pipeline after an MLF inspection. Non-magnetized control samples and magnetized samples were subjected to pitting by immersion in a solution containing chlorine and sulfide ions for seven days, and then inspected with optical microscopy. Results show that the magnetic field in the pipeline wall significantly increases pitting corrosion.

  4. Solvent extractions applications to hydrometallurgy. Pt.III: Nickel, cobalt, manganese and ocean nodules

    International Nuclear Information System (INIS)

    Amer, S.

    1981-01-01

    The main applications of solvent extraction to the hydrometallurgy of nickel, cobalt, manganese and manganese rich ocean nodules, which also contain nickel, cooper and cobalt, are exposed. A short description of the processes with commercial applications is made. (author)

  5. Effects of dietary manganese contents on 54Mn metabolism in mice

    International Nuclear Information System (INIS)

    Sato, I.; Matsusaka, N.; Kobayashi, H.; Nishimura, Y.

    1996-01-01

    Several parameters of 54 Mn metabolism were noted in mice maintained on diets with manganese contents of 80 to 8000 mg/kg. Excretion of 54 Mn was promoted as the dietary manganese contents increased. Clearance of 54 Mn from the liver, kidneys, pancreas, and spleen was markedly accelerated by feeding mice a high-manganese diet, but clearance from the muscles, femurs, and brain was relatively insensitive to the dietary manganese. Manganese concentrations in the tissue were regulated homoestatically upto the dietary manganese content of 2400 mg/kg, but marked accumulations of manganese occurred when mice were given 8000 mg/kg diet. No toxic symptoms were found up to the 2400 mg/kg diet, but consumption of the 8000 mg/kg diet was less than for other diets. These results suggest that an oral intake of excess manganese is effective for promoting the excretion of 54 Mn from a body contaminated with this isotope. (author)

  6. The complex compounds of manganese (II) with poly dental ligands and polyhedron borane anions

    International Nuclear Information System (INIS)

    Buranova, S.A.

    1996-01-01

    The purpose of the present work is synthesis of complex compounds of manganese with organic ligands. Their studying by spectroscopic methods purposely to determinate the influence of borane anions on composition and structure of coordinating sphere of manganese

  7. Biological Superoxide In Manganese Oxide Formation

    Science.gov (United States)

    Hansel, C.; Learman, D.; Zeiner, C.; Santelli, C. M.

    2011-12-01

    Manganese (Mn) oxides are among the strongest sorbents and oxidants within the environment, controlling the fate and transport of numerous elements and the degradation of recalcitrant carbon. Both bacteria and fungi mediate the oxidation of Mn(II) to Mn(III/IV) oxides but the genetic and biochemical mechanisms responsible remain poorly understood. Furthermore, the physiological basis for microbial Mn(II) oxidation remains an enigma. We have recently reported that a common marine bacterium (Roseobacter sp. AzwK-3b) oxidizes Mn(II) via reaction with extracellular superoxide (O2-) produced during exponential growth. Here we expand this superoxide-mediated Mn(II) oxidation pathway to fungi, introducing a surprising homology between prokaryotic and eukaryotic metal redox processes. For instance, Stibella aciculosa, a common soil Ascomycete filamentous fungus, precipitates Mn oxides at the base of asexual reproductive structures (synnemata) used to support conidia (Figure 1). This distribution is a consequence of localized production of superoxide (and it's dismutation product hydrogen peroxide, H2O2), leading to abiotic oxidation of Mn(II) by superoxide. Disruption of NADPH oxidase activity using the oxidoreductase inhibitor DPI leads to diminished cell differentiation and subsequent Mn(II) oxidation inhibition. Addition of Cu(II) (an effective superoxide scavenger) leads to a concentration dependent decrease in Mn oxide formation. We predict that due to the widespread production of extracellular superoxide within the fungal and likely bacterial kingdoms, biological superoxide may be an important contributor to the cycling of Mn, as well as other metals (e.g., Hg, Fe). Current and future explorations of the genes and proteins involved in superoxide production and Mn(II) oxidation will ideally lend insight into the physiological and biochemical basis for these processes.

  8. Manganese and the Evolution of Photosynthesis

    Science.gov (United States)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2015-09-01

    Oxygenic photosynthesis is the most important bioenergetic event in the history of our planet—it evolved once within the Cyanobacteria, and remained largely unchanged as it was transferred to algae and plants via endosymbiosis. Manganese plays a fundamental role in this history because it lends the critical redox behavior of the water-oxidizing complex of photosystem II. Constraints from the photoassembly of the Mn-bearing water-oxidizing complex fuel the hypothesis that Mn(II) once played a key role as an electron donor for anoxygenic photosynthesis prior to the evolution of oxygenic photosynthesis. Here we review the growing body of geological and geochemical evidence from the Archean and Paleoproterozoic sedimentary records that supports this idea and demonstrates that the oxidative branch of the Mn cycle switched on prior to the rise of oxygen. This Mn-oxidizing phototrophy hypothesis also receives support from the biological record of extant phototrophs, and can be made more explicit by leveraging constraints from structural biology and biochemistry of photosystem II in Cyanobacteria. These observations highlight that water-splitting in photosystem II evolved independently from a homodimeric ancestral type II reaction center capable of high potential photosynthesis and Mn(II) oxidation, which is required by the presence of homologous redox-active tyrosines in the modern heterodimer. The ancestral homodimer reaction center also evolved a C-terminal extension that sterically precluded standard phototrophic electron donors like cytochrome c, cupredoxins, or high-potential iron-sulfur proteins, and could only complete direct oxidation of small molecules like Mn2+, and ultimately water.

  9. Study on Spheroidization and Related Heat Treatments of Medium Carbon Alloy Steels

    Directory of Open Access Journals (Sweden)

    Harisha S. R.

    2018-01-01

    Full Text Available The importance of medium carbon steels as engineering materials is reflected by the fact that out of the vast majority of engineering grade ferrous alloys available and used in the market today, a large proportion of them are from the family of medium carbon steels. Typically medium carbon steels have a carbon range of 0.25 to 0.65% by weight, and a manganese content ranging from 0.060 to 1.65% by weight. Medium carbon steels are more resistive to cutting, welding and forming as compared to low carbon steels. From the last two decades a number of research scholars reported the use of verity of heat treatments to tailor the properties of medium carbon steels. Spheroidizing is the novel industrial heat treatment employed to improve formability and machinability of medium/high carbon low alloy steels. This exclusive study covers procedure, the effects and possible outcomes of various heat treatments on medium carbon steels. In the present work, other related heat treatments like annealing and special treatments for property alterations which serve as pretreatments for spheroidizing are also reviewed. Medium carbon steels with property alterations by various heat treatment processes are finding increased responsiveness in transportation, aerospace, space, underwater along with other variegated fields. Improved tribological and mechanical properties consisting of impact resistance, stiffness, abrasion and strength are the main reasons for the increased attention of these steels in various industries. In the present scenario for the consolidation of important aspects of various heat treatments and effects on mechanical properties of medium carbons steel, a review of different research papers has been attempted. This review may be used as a guide to provide practical data for heat treatment industry, especially as a tool to enhance workability and tool life.

  10. Relation between microstructure and adhesion of hot dip galvanized zinc coatings on dual phase steel

    International Nuclear Information System (INIS)

    Song, G.M.; Vystavel, T.; Pers, N. van der; De Hosson, J.Th.M.; Sloof, W.G.

    2012-01-01

    Highlights: ► Amorphous manganese oxides present at the steel surface impair the adhesion of the zinc coating. ► The adhesion of the various interfaces that exist in zinc coated steel is quantitatively estimated using the “Macroscopic Atom” model. ► Zinc coating delaminates along the zinc layer/inhibition layer and ζ-FeZn 13 particle/inhibition layer interfaces, which agrees the theoretical calculation. - Abstract: The microstructure of hot dip galvanized zinc coatings on dual phase steel was investigated by electron microscopy and the coating adhesion characterized by tensile testing. The zinc coating consists of a zinc layer and columnar ζ-FeZn 13 particles on top of a thin inhibition layer adjacent to the steel substrate. The inhibition layer is a thin compact and continuous layer that consists of η-Fe 2 Al 5–x Zn x fine and coarse particles. The coarse faceted particles are on top and fine faceted particles are at the bottom. The steel surface is covered with small fraction manganese oxides, which may impair adhesion of the zinc coating. The adhesion at various interfaces that exist in zinc-coated steel was quantitatively estimated using a so-called “macroscopic atom” model. In addition, the adhesion at the interfaces in zinc-coated steel was qualitatively assessed by examining the fracture and delamination behavior upon tensile testing. In accordance with this model, fracture along zinc grain boundaries preceded fracture along the zinc layer/inhibition layer and ζ-FeZn 13 particle/inhibition layer interfaces.

  11. Efficacies of manganese chloride and Ca-DTPA for the elimination of incorporated manganese-54 in mice

    International Nuclear Information System (INIS)

    Sato, Itaru; Matsusaka, Naonori; Shinagawa, Kunihiro; Kobayashi, Haruo; Nishimura, Yoshikazu.

    1993-01-01

    Efficacies of manganese chloride and Ca-DTPA (calcium diethylenetriaminepentaacetic acid) for the elimination of incorporated 54 Mn were investigated in mice. Each mouse was given an intraperitoneal injection of 54 Mn and initial whole-body radioactivity was measured immediately. Manganese chloride (10 mg-Mn/kg) or Ca-DTPA (10 or 100 mg/kg) was injected intraperitoneally once or repeatedly at various times after 54 Mn injection. Efficacies for elimination were estimated by measuring the whole body retention of 54 Mn for 14 or 21 days. A single injection of manganese chloride eliminated more than 80% of the incorporated 54 Mn when it was injected within 24 h after the injection of 54 Mn. Although the efficacy was decreased with the passage of time after the injection of 54 Mn, about 50% was still eliminated after 14 days. Repeated injection of this agent raised the efficacy, but the second or later injection was less effective than the first injection. Ca-DTPA eliminated the incorporated 54 Mn by 57% for 100 mg/kg and by 19% for 10 mg/kg when it was injected after 3 h. But after 6 h or later, Ca-DTPA had little efficacy. These results indicate that manganese chloride is very effective to eliminate the 54 Mn from accidentally contaminated persons and the efficacy of Ca-DTPA is less than that of manganese chloride. (author)

  12. Contribution of arginase to manganese metabolism of Aspergillus niger.

    Science.gov (United States)

    Keni, Sarita; Punekar, Narayan S

    2016-02-01

    Aspects of manganese metabolism during normal and acidogenic growth of Aspergillus niger were explored. Arginase from this fungus was a Mn[II]-enzyme. The contribution of the arginase protein towards A. niger manganese metabolism was investigated using arginase knockout (D-42) and arginase over-expressing (ΔXCA-29) strains of A. niger NCIM 565. The Mn[II] contents of various mycelial fractions were found in the order: D-42 strain niger mycelia harvested from acidogenic growth media contain substantially less Mn[II] as compared to those from normal growth media. Nevertheless, acidogenic mycelia harbor considerable Mn[II] levels and a functional arginase. Altered levels of mycelial arginase protein did not significantly influence citric acid production. The relevance of arginase to cellular Mn[II] pool and homeostasis was evaluated and the results suggest that arginase regulation could occur via manganese availability.

  13. Manganese and Iron Catalysts in Alkyd Paints and Coatings

    Directory of Open Access Journals (Sweden)

    Ronald Hage

    2016-04-01

    Full Text Available Many paint, ink and coating formulations contain alkyd-based resins which cure via autoxidation mechanisms. Whilst cobalt-soaps have been used for many decades, there is a continuing and accelerating desire by paint companies to develop alternatives for the cobalt soaps, due to likely classification as carcinogens under the REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals legislation. Alternative driers, for example manganese and iron soaps, have been applied for this purpose. However, relatively poor curing capabilities make it necessary to increase the level of metal salts to such a level that often coloring of the paint formulation occurs. More recent developments include the application of manganese and iron complexes with a variety of organic ligands. This review will discuss the chemistry of alkyd resin curing, the applications and reactions of cobalt-soaps as curing agents, and, subsequently, the paint drying aspects and mechanisms of (model alkyd curing using manganese and iron catalysts.

  14. Factors affecting radium removal using mixed iron-manganese oxides

    International Nuclear Information System (INIS)

    Mott, H.V. Singh, S.; Kondapally, V.R.

    1993-01-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment

  15. A redox-assisted supramolecular assembly of manganese oxide nanotube

    International Nuclear Information System (INIS)

    Tao Li; Sun Chenggao; Fan Meilian; Huang Caijuan; Wu Hailong; Chao Zisheng; Zhai Hesheng

    2006-01-01

    In this paper, we report the hydrothermal synthesis of manganese oxide nanotube from an aqueous medium of pH 7, using KMnO 4 and MnCl 2 as inorganic precursors, polyoxyethylene (10) nonyl phenyl ether (TX-10) a surfactant and acetaldehyde an additive. The characterization of X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and N 2 adsorption at 77 K (BET) reveals that the synthesized manganese oxide nanotube has a mesopore size of ca. 3.65 nm and a wall thickness of ca. 12 nm, with the wall being composed of microporous crystals of monoclinic manganite. The X-ray photoelectron spectroscopy (XPS) result demonstrates a decrease of the binding energy of the Mn 3+ in the manganese oxide nanotube, which may be related to both the nanotubular morphology and the crystalline pore wall. A mechanism of a redox-assisted supramolecular assembly, regulated by acetaldehyde, is postulated

  16. Factors affecting radium removal using mixed iron-manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Mott, H.V. Singh, S.; Kondapally, V.R. (South Dakota School of Mines and Technology, Rapid City, SD (United States))

    1993-10-01

    Batch experiments confirmed that sorption of radium by a mixed iron-manganese oxide solid phase shows promise for treating radium-contaminated water. The capacities of these mixed oxides for sorption of radium depend on the composition of the solid phase, the pH of the aqueous solution, and the presence of competing cations. The removal of the oxide-radium complexes from aqueous suspension by manganese greensand filtration was also investigated. It was found that influent radium concentrations of 100 pCi/L were reduced to 2--9 pCi/L by this process. Additional study of the fate of radium in manganese greensand filters is recommended before this procedure is used for drinking water treatment.

  17. Superplasticity in a lean Fe-Mn-Al steel.

    Science.gov (United States)

    Han, Jeongho; Kang, Seok-Hyeon; Lee, Seung-Joon; Kawasaki, Megumi; Lee, Han-Joo; Ponge, Dirk; Raabe, Dierk; Lee, Young-Kook

    2017-09-29

    Superplastic alloys exhibit extremely high ductility (>300%) without cracks when tensile-strained at temperatures above half of their melting point. Superplasticity, which resembles the flow behavior of honey, is caused by grain boundary sliding in metals. Although several non-ferrous and ferrous superplastic alloys are reported, their practical applications are limited due to high material cost, low strength after forming, high deformation temperature, and complicated fabrication process. Here we introduce a new compositionally lean (Fe-6.6Mn-2.3Al, wt.%) superplastic medium Mn steel that resolves these limitations. The medium Mn steel is characterized by ultrafine grains, low material costs, simple fabrication, i.e., conventional hot and cold rolling, low deformation temperature (ca. 650 °C) and superior ductility above 1300% at 850 °C. We suggest that this ultrafine-grained medium Mn steel may accelerate the commercialization of superplastic ferrous alloys.Research in new alloy compositions and treatments may allow the increased strength of mass-produced, intricately shaped parts. Here authors introduce a superplastic medium manganese steel which has an inexpensive lean chemical composition and which is suited for conventional manufacturing processes.

  18. Study of aluminum nitride precipitation in Fe- 3%Si steel

    Directory of Open Access Journals (Sweden)

    F.L. Alcântara

    2013-01-01

    Full Text Available For good performance of electrical steels it is necessary a high magnetic induction and a low power loss when submitted to cyclic magnetization. A fine dispersion of precipitates is a key requirement in the manufacturing process of Fe- 3%Si grain oriented electrical steel. In the production of high permeability grain oriented steel precipitate particles of copper and manganese sulphides and aluminium nitride delay normal grain growth during primary recrystallization, causing preferential growth of grains with Goss orientation during secondary recrystallization. The sulphides precipitate during the hot rolling process. The aluminium nitride particles are formed during hot rolling and the hot band annealing process. In this work AlN precipitation during hot deformation of a high permeability grain oriented 3%Si steel is examined. In the study, transfer bar samples were submitted to controlled heating, compression and cooling treatments in order to simulate a reversible hot rolling finishing. The samples were analyzed using the transmission electron microscope (TEM in order to identify the precipitates and characterize size distribution. Precipitate extraction by dissolution method and analyses by inductively coupled plasma optical emission spectrometry (ICP-OES were used to quantify the precipitation. The results allowed to describe the precipitation kinetics by a precipitation-time-temperature (PTT diagram for AlN formation during hot rolling.

  19. Preparation of the electrochemically formed spinel-lithium manganese oxides

    Energy Technology Data Exchange (ETDEWEB)

    Katakura, Katsumi; Wada, Kohei; Kajiki, Yoshiyuki; Yamamoto, Akiko [Department of Chemical Engineering, Nara National College of Technology, 22 Yata-cho Yamotokoriyama, Nara 639-1080 (Japan); Ogumi, Zempachi [Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2009-04-01

    Electrochemically formed spinel-lithium manganese oxides were synthesized from manganese hydroxides prepared by a cathodic electrochemical precipitation from various concentrations of manganese nitrate solutions. Two types of manganese hydroxides were formed from diluted and concentrated Mn(NO{sub 3}){sub 2} aqueous solutions. Uniform and equi-sized disk shaped Mn(OH){sub 2} crystals of 0.2-5 {mu}m in diameter were obtained on a Pt substrate after the electrochemical precipitation from lower concentration of ranging from 2 mmol dm{sup -3} to 2 mol dm{sup -3} Mn(NO{sub 3}){sub 2} aq., while the grass blade-like precipitate which is ascribed to manganese hydroxide with 20-80 {mu}m long and 1-5 {mu}m wide were formed from concentrated Mn(NO{sub 3}){sub 2} aq. Both manganese hydroxides gave the electrochemically formed spinel-LiMn{sub 2}O{sub 4} onto a Pt sheet, which is ready for electrochemical measurement, after calcination of the Li incorporated precipitate at 750 C without any additives. While the shape and size of the secondary particle frameworks (aggregates) of the electrochemically formed spinel-LiMn{sub 2}O{sub 4} can be controlled by the electrolysis conditions, the nanostructured primary crystals of 200 nm in diameter were obtained in all cases except that the fiber-like nanostructured spinel-LiMn{sub 2}O{sub 4} crystals with 200 nm in diameter were obtained from concentrated Mn(NO{sub 3}){sub 2} aq. Though these two types of electrochemically formed spinel-LiMn{sub 2}O{sub 4} showed well-shaped CVs even in higher scan rates, it would be suitable for high power density battery applications. These behaviors are assumed to be ascribed to the crystal size and shape of the processed spinel-LiMn{sub 2}O{sub 4}. (author)

  20. Manganese oxidation state mediates toxicity in PC12 cells

    International Nuclear Information System (INIS)

    Reaney, S.H.; Smith, D.R.

    2005-01-01

    The role of the manganese (Mn) oxidation state on cellular Mn uptake and toxicity is not well understood. Therefore, undifferentiated PC12 cells were exposed to 0-200 μM Mn(II)-chloride or Mn(III)-pyrophosphate for 24 h, after which cellular manganese levels were measured along with measures of cell viability, function, and cytotoxicity (trypan blue exclusion, medium lactate dehydrogenase (LDH), 8-isoprostanes, cellular ATP, dopamine, serotonin, H-ferritin, transferrin receptor (TfR), Mn-superoxide dismutase (MnSOD), and copper-zinc superoxide dismutase (CuZnSOD) protein levels). Exposures to Mn(III) >10 μM produced 2- to 5-fold higher cellular manganese levels than equimolar exposures to Mn(II). Cell viability and ATP levels both decreased at the highest Mn(II) and Mn(III) exposures (150-200 μM), while Mn(III) exposures produced increases in LDH activity at lower exposures (≥50 μM) than did Mn(II) (200 μM only). Mn(II) reduced cellular dopamine levels more than Mn(III), especially at the highest exposures (50% reduced at 200 μM Mn(II)). In contrast, Mn(III) produced a >70% reduction in cellular serotonin at all exposures compared to Mn(II). Different cellular responses to Mn(II) exposures compared to Mn(III) were also observed for H-ferritin, TfR, and MnSOD protein levels. Notably, these differential effects of Mn(II) versus Mn(III) exposures on cellular toxicity could not simply be accounted for by the different cellular levels of manganese. These results suggest that the oxidation state of manganese exposures plays an important role in mediating manganese cytotoxicity

  1. Statistical Optimization of Synthesis of Manganese Carbonates Nanoparticles by Precipitation Methods

    International Nuclear Information System (INIS)

    Javidan, A.; Rahimi-Nasrabadi, M.; Davoudi, A.A.

    2011-01-01

    In this study, an orthogonal array design (OAD), OA9, was employed as a statistical experimental method for the controllable, simple and fast synthesis of manganese carbonate nanoparticle. Ultrafine manganese carbonate nanoparticles were synthesized by a precipitation method involving the addition of manganese ion solution to the carbonate reagent. The effects of reaction conditions, for example, manganese and carbonate concentrations, flow rate of reagent addition and temperature, on the diameter of the synthesized manganese carbonate nanoparticle were investigated. The effects of these factors on the width of the manganese carbonate nanoparticle were quantitatively evaluated by the analysis of variance (ANOVA). The results showed that manganese carbonate nanoparticle can be synthesized by controlling the manganese concentration, flow rate and temperature. Finally, the optimum conditions for the synthesis of manganese carbonate nanoparticle by this simple and fast method were proposed. The results of ANOVA showed that 0.001 mol/ L manganese ion and carbonate reagents concentrations, 2.5 mL/ min flow rate for the addition of the manganese reagent to the carbonate solution and 0 degree Celsius temperature are the optimum conditions for producing manganese carbonate nanoparticle with 75 ± 25 nm width. (author)

  2. 40 CFR 721.10010 - Barium manganese oxide (BaMnO3).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Barium manganese oxide (BaMnO3). 721... Substances § 721.10010 Barium manganese oxide (BaMnO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as barium manganese oxide (BaMnO3) (PMN P-00...

  3. The Effect of Si and Mn on Microstructure and Selected Properties of Cr-Ni Stainless Steels

    Directory of Open Access Journals (Sweden)

    Kalandyk B.

    2017-03-01

    Full Text Available Cast stainless steel of the Cr-Ni duplex type is used, among others, for the cast parts of pumps and valves handling various chemically aggressive media. Therefore, the main problem discussed in this article is the problem of abrasion wear resistance in a mixture of SiC and water and resistance to electrochemical corrosion in a 3% NaCl-H2O solution of selected cast steel grades, i.e. typical duplex cast steel, high silicon and manganese duplex cast steel, and Cr-Ni austenitic cast steel (type AISI 316L. The study shows that the best abrasion wear resistance comparable to Ni-Hart cast iron was obtained in the cast duplex steel, where Ni was partially replaced with Mn and N. This cast steel was also characterized by the highest hardness and matrix microhardness among all the tested cast steel grades. The best resistance to electrochemical corrosion in 3% NaCl-H2O solution showed the cast duplex steel with high content of Cr, Mo and N. The addition of Ni plays rather insignificant role in the improvement of corrosion resistance of the materials tested.

  4. Manganese Loading and Photosystem II Stability are Key Components of Manganese Efficiency in Plants

    DEFF Research Database (Denmark)

    Schmidt, Sidsel Birkelund

    Manganese (Mn) deficiency constitutes a major plant nutritional problem in commercial crop production of winter cereals. In plants, Mn has an indispensable role in the oxygen evolving complex (OEC) of photosystem II (PSII). Hence, the consequences of Mn deficiency are reduced plant growth......, and eventually substantial yield losses. It is well known, that genotypes within plant species differ considerably in tolerance to growth under Mn limiting conditions, a phenomenon designated as Mn efficiency. However, the physiological responses reflecting the underlying mechanisms of Mn efficiency are still...... not fully understood. In this PhD study, a new method for determination and characterization of metal binding in size-fractionated photosynthetic protein complexes from barley thylakoids was established. The applicability of the method was shown by quantification of Mn binding in PSII from thylakoids of two...

  5. Determination of the oxidizing capacity of manganese ores.

    Science.gov (United States)

    Prasad, R

    1974-09-01

    An accurate method is described for determining the amount of active oxygen in manganese ores, based on the oxidation-reduction reaction between the ore and arsenic(III) in presence of ammonium molybdate, followed by the back-titration of excess of arsenic(III) with cerium(IV), using osmium tetroxide as catalyst and Disulphine Blue V as indicator. A survey has been made of the applicability of this method to various pyrolusite ores containing less than 0.2% phosphorus. Aluminium(III), copper(II), iron(III), manganese(II), and molybdenum(VI) do not interfere. Up to 30% phosphorus(V) causes no interference.

  6. Biostimulation strategies to enhance manganese removal in drinking water biofilters

    DEFF Research Database (Denmark)

    Breda, Inês Lousinha Ribeiro; Ramsay, Loren; Søborg, Ditte

    to national drinking water criteria. The period during which virgin filter media matures into a fully functional biofilter is designated as the start-up period. The duration of a start-up for efficient manganese removal varies from weeks to more than a year. The aim of this study was to investigate...... growth and activity of specific bacteria. Biostimulation of virgin media to enhance initial manganese removal using different amendments strategies is possible especially in the early stages of filter development whereas autocatalytic processes appear to become dominant with time. The complex...

  7. Influence of metallurgical and electrochemical factors on cracking of steels at nuclear power plants under high temperature

    International Nuclear Information System (INIS)

    Pokhmurskii, V.I.; Gnyp, I.P.

    1994-01-01

    The influence of metallurgical heterogeneities in steels and electrochemical factors on corrosion cracking under high temperature water environment is studied, with special emphasis on the influence of manganese sulfide inclusions and other non-metallic ones on the crack growth rate. Results show that the electro-chemical conditions for an hydrogen concentration increase in a pre-failure zone exist at a crack tip under cyclic loading; hydrogen penetrating into metals at high temperature reduces manganese sulfides, ferric carbides, and cause high pressure of gases in micro-discontinuities, thus leading to cyclic corrosion cracking; anodic (relatively to a metal matrix) inclusions are rather the cause of steel cracking resistance decrease than cathodic ones. 16 refs., 4 figs

  8. Manganese removal from mine waters - investigating the occurrence and importance of manganese carbonates

    International Nuclear Information System (INIS)

    Bamforth, Selina M.; Manning, David A.C.; Singleton, Ian; Younger, Paul L.; Johnson, Karen L.

    2006-01-01

    Manganese is a common contaminant of mine water and other waste waters. Due to its high solubility over a wide pH range, it is notoriously difficult to remove from contaminated waters. Previous systems that effectively remove Mn from mine waters have involved oxidising the soluble Mn(II) species at an elevated pH using substrates such as limestone and dolomites. However it is currently unclear what effect the substrate type has upon abiotic Mn removal compared to biotic removal by in situ micro-organisms (biofilms). In order to investigate the relationship between substrate type, Mn precipitation and the biofilm community, net-alkaline Mn-contaminated mine water was treated in reactors containing one of the pure materials: dolomite, limestone, magnesite and quartzite. Mine water chemistry and Mn removal rates were monitored over a 3-month period in continuous-flow reactors. For all substrates except quartzite, Mn was removed from the mine water during this period, and Mn minerals precipitated in all cases. In addition, the plastic from which the reactor was made played a role in Mn removal. Manganese oxyhydroxides were formed in all the reactors; however, Mn carbonates (specifically kutnahorite) were only identified in the reactors containing quartzite and on the reactor plastic. Magnesium-rich calcites were identified in the dolomite and magnesite reactors, suggesting that the Mg from the substrate minerals may have inhibited Mn carbonate formation. Biofilm community development and composition on all the substrates was also monitored over the 3-month period using denaturing gradient gel electrophoresis (DGGE). The DGGE profiles in all reactors showed no change with time and no difference between substrate types, suggesting that any microbiological effects are independent of mineral substrate. The identification of Mn carbonates in these systems has important implications for the design of Mn treatment systems in that the provision of a carbonate-rich substrate

  9. Environmental contamination and human exposure to manganese--contribution of methylcyclopentadienyl manganese tricarbonyl in unleaded gasoline.

    Science.gov (United States)

    Zayed, J; Vyskocil, A; Kennedy, G

    1999-01-01

    The organomanganese compound MMT (methylcyclopentadienyl manganese tricarbonyl), an antiknock additive in unleaded gasoline, has been used in Canada since 1976. Indeed, Canada is the only country where MMT is almost exclusively used. In October 1995, by court decision the Environmental protection Agency (EPA) granted Ethyl's waiver for the use of MMT in the United States. Paradoxically, in 1997 the federal government of Canada adopted a law (C-29) that banned both the interprovincial trade and the importation for commercial purposes of manganese-based substances, including MMT. However, MMT is currently widely used in Canada because of substantial stockpiling, and six Canadian provinces are challenging the law in the courts. Moreover, MMT has been approved for use in Argentina, Australia, Bulgaria, Russia, and conditionally, in New Zealand. It has been suggested by some scientists that combustion of MMT may be a significant source of exposure to inorganic Mn in urban areas. The crucial question is whether Mn contamination from industrial sources combined with the additional contamination that would result from the widespread use of MMT would lead to toxic effects. Our research efforts have attempted to assess the environmental/ecosystem Mn contamination arising from the combustion of MMT in abiotic and biotic systems as well as human exposure. The experimental evidence acquired so far provides useful information on certain environmental consequences of the use of MMT as well as raising a number of questions. Our results gave evidence indicating that roadside air, soils, plants, and animals may be contaminated by Mn. As well, some specific groups of the population could have a higher level of exposure to Mn. Nevertheless, the levels of exposure remain below international guide values. Further studies and further characterization of dose-response relationships are thus needed to provide successful implementation of evidence-based risk-assessment approaches.

  10. Effect of carbon and manganese on the microstructure and mechanical properties of 9Cr2WVTa deposited metals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Rong, Lijian [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Li, Dianzhong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Lu, Shanping, E-mail: shplu@imr.ac.cn [Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China); Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016, Shenyang (China)

    2017-03-15

    Six 9Cr2WVTa deposited metals with different carbon and manganese contents have been studied to reveal the role of major elements, which guide for the design of welding consumables for reduced activation ferritic/martensitic steel and meet for the requirements of accelerator driven systems-lead fusion reactors. The typical microstructure for the 9Cr2WVTa deposited metals is the lath martensite along with the fine stripe δ-ferrite. The chemical compositions influence the solidification sequence and therefore, change the δ-ferrite content in the deposited metal. The impact toughness for the 9Cr2WVTa deposited metals decreases remarkably when the δ-ferrite content is more than 5.2 vol%, also the impact toughness decreases owing to the high quenching martensite formation. Increasing the level of manganese addition, α phase of each alloy shifts to the bottom right according to the CCT diagram. - Highlights: • The typical deposited metals is the lath martensite with the fine stripe δ-ferrite. • The impact toughness is dependent on the δ-ferrite and the high quenching martensite. • The chemical compositions influence the solidification sequence.

  11. The effect of manganese on the kinetics of phase transformations of austenite in structural steels

    International Nuclear Information System (INIS)

    Pacyna, J.; Jedrzejewska-Strach, A.

    1995-01-01

    The aim of this work was to examine the effect of Mn on the kinetics of phase transformations of supercooled austenite. It was executed the 4 CCT diagrams for alloys of a variable Mn content. The obtained results indicate that with the increase of Mn concentrations in austenite in the range 0.73-2.94% the times to the beginning of its transformation are lengthened and the temperatures of these transformations into ferrite and the bainitic transformations are lengthened slightly whole only the time to the beginning of a pearlitic transformation is lengthened more strongly. In the range of 2.0-2.94% Mn the times to the beginnings of all transformations grow very strongly. (author)

  12. Steel: Price and Policy Issues

    National Research Council Canada - National Science Library

    Cooney, Stephen

    2006-01-01

    Steel prices remain at historically elevated levels. The rapid growth of steel production and demand in China is widely considered as a major cause of the increases in both steel prices and the prices of steelmaking inputs...

  13. Influence of grain size and additions of Al and Mn on the magnetic properties of non-oriented electrical steels with 3 wt. (% Si

    Directory of Open Access Journals (Sweden)

    Rodrigo Felix de Araujo Cardoso

    2008-03-01

    Full Text Available The influence of hot-band grain size and additions of aluminum and manganese on the magnetic properties of non-oriented grain (NOG low-carbon electrical steel with about 3 wt. (% Si were investigated using optical microscopy and X ray diffraction. The addition of manganese resulted in larger grains after final annealing. Coarse grains in the hot-band and addition of Mn led to a Goss orientation component after final annealing, which resulted in an increase in the magnetic permeability.

  14. Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange.

    Science.gov (United States)

    Ramírez-Solís, A; Zicovich-Wilson, C M; Hernández-Lamoneda, R; Ochoa-Calle, A J

    2017-01-25

    The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε 1 phase and a higher pressure NM ε 0 phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O 2 molecules in the (O 2 ) 4 unit cell were studied. Full enthalpy-driven geometry optimizations of the (O 2 ) 4 unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O 2 ) 4 unit cell for the low-pressure regime of the ε phase.

  15. Determination of V, W and Mn in high-speed steel by neutron activation source of 241Am/Be

    International Nuclear Information System (INIS)

    Villar, H.P.; Galdino, S.M.L.; Godoy, M.O.; Dantas, C.C.

    1982-01-01

    Alloying elements are responsible for certain characteristics of the steels which enable their utilization for specific purposes. The concentrations of these elements must comply with strict standards, and the determination of these concentrations involve chemical analyses which are as a rule tedious and expensive. It is proposed here a fast and precise analytical process based on the neutron activation analysis. A significant correlation (r = 0.998) between manganese concentration and mean specific count rate of 56 Mn was obtained for activated tool steel samples. Later on, bases for tungsten vanadium determinations were set. (Author) [pt

  16. Contamination assessment of heavy metals in the soils around Khouzestan Steel Company (Ni, Mn, Pb, Fe, Zn, Cr)

    International Nuclear Information System (INIS)

    Hormozi Nejad, F.; Rastmanesh, F.; Zarasvandi, A.

    2016-01-01

    The highest concentrations were found at soil samples 4 and 12. Comparison of heavy metals concentration with unpolluted soil standard indicated that, concentrations of Cr, Zn, Fe, Ni and Pb is higher than that of unpolluted soil standard. In general, Manganese, Chromium, Zinc and Lead are the most important elements that are found in emissions of steel plants. The soil samples near the steel plant and downwind direction have much higher pollution level. The results showed that Mn, Pb and Zn is related to human activity and Cr have geogenic source and Fe and Ni have both geogenic and anthropogenic source in the study area in the city of Ahwaz.

  17. Fractographic examination of reduced activation ferritic/martensitic steel charpy specimens irradiated to 30 dpa at 370{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Hamilton, M.L. [Pacific Northwest National Lab., Richland, WA (United States); Schubert, L.E. [Univ. of Missouri, Rolla, MO (United States)

    1996-10-01

    Fractographic examinations are reported for a series of reduced activation ferritic/Martensitic steel Charpy impact specimens tested following irradiation to 30 dpa at 370{degrees}C in FFTF. One-third size specimens of six low activation steels developed for potential application as structural materials in fusion reactors were examined. A shift in brittle fracture appearance from cleavage to grain boundary failure was noted with increasing manganese content. The results are interpreted in light of transmutation induced composition changes in a fusion environment.

  18. Determination of V, W and Mn in fast steels by neutron activation analysis of 241Am/Be source

    International Nuclear Information System (INIS)

    Villar, H.P.; Galdino, S.M.L.; Godoy, M.O.; Dantas, C.C.

    1982-01-01

    Alloying elements are responsible for certain characteristics of the steels which enable their utilization for specific purposes. The concentrations of these elements must comply with strict standards, and the determination of these concentrations involve chemical analyses which are as a rule tedious and expensive. It is proposed here a fast and precise analytical process based on the neutron activation analysis. A significant correlation (r = 0.998) between manganese concentration and mean specific count rate of 56 Mn was obtained for activated tool steel sampes. Later on, bases for tungsten vanadium determinations were set. (Author) [pt

  19. Parallel between steels alloyed with chrome-nickel and Fe-Mn-Al-C steels, in their response to fracture and wear (Review)

    International Nuclear Information System (INIS)

    Ramos, J; Perez, G.A

    2008-01-01

    The big worldwide demand for chrome-nickel alloy steels ('conventional steel') leads to the need for advanced materials for applications in different engineering systems that operate at high temperatures and in aggressive environmental conditions, favoring research and development in alternate alloys. In this technological race in search of these new materials, the FeMnAlC alloys ('new steels') have attracted attention for their excellent mechanical and tribological properties as well as for their good performance in corrosive-oxide environments, which make them similar to conventional steel. There are two important similarities between these two steels. First, an agent that causes the passive film to become stainless appears in both steels: chrome in the conventional steel, and aluminum in the FeMnAl alloy. The second similarity is that a stabilizing agent of the austenitic phase (FCC) appears in both, so that excellent mechanical properties can be obtained: nickel in the conventional steel, and manganese in the FeMnAl alloy. In certain sectors, such as aeronautics, conventional steel is rarely used because it is a very heavy material. This conventional steel is almost three times heavier that aluminum (7.85/2.7). Two advantages that the new FeMnAIC steels have compared to the conventional steels are that they are about 13% lighter in weight and they are less expensive. The FeMnAl also have excellent mechanical properties and good corrosion-oxidation resistance, which generates big expectations for their application in a broad scientific spectrum. This work reports the state of the information currently available about FeMnAlC alloys, comparing the mechanical and tribological behaviors of conventional alloy steels with chrome and nickel alloys, specifying the scopes of their application. A condition that favors the steels' fragility is the high speed of deformation and impact, where the FCC crystalline structure materials do not have a fragile ductile transition

  20. Phosphate coating on stainless steel 304 sensitized;Recubrimiento fosfatado sobre acero inoxidable 304 sensibilizado

    Energy Technology Data Exchange (ETDEWEB)

    Cruz V, J. P. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Km. 14.5 Carretera Tampico-Puerto Industrial Altamira, 89600 Altamira, Tamaulipas (Mexico); Vite T, J. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Castillo S, M.; Vite T, M., E-mail: jpcruz@ipn.m [IPN, Escuela Superior de Ingenieria Mecanica y Electrica, Seccion de Estudios de Posgrado e Investigacion, Unidad Profesional -Adolfo Lopez Mateos-, Zacatenco, 07738 Mexico, D. F. (Mexico)

    2009-07-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  1. Environmental Exposure to Manganese in Air: Associations with Cognitive Functions

    Science.gov (United States)

    Manganese (Mn), an essential element, can be neurotoxic in high doses. This cross-sectional study explored the oognitive function of adults residing in two towns (Marietta and East Liverpool, Ohio, USA) identified as having high levels of environmental airborne Mn from indu...

  2. Effect of increased manganese addition and mould type on the ...

    Indian Academy of Sciences (India)

    Administrator

    Effect of increased manganese addition and mould type on the slurry erosion characteristics of .... slurry erosion data in the form of bar diagrams for 5M24 and 10M24 ... being bigger in size with higher austenite retention and the attendant ...

  3. Adsorptive removal of manganese, arsenic and iron from groundwater

    NARCIS (Netherlands)

    Buamah, R.

    2009-01-01

    To determine the scale of the problem of arsenic, iron and manganese contamination of groundwater in Ghana a survey was performed in the first phase of the research to provide in depth information with respect to these contaminants. Presence of these mentioned contaminants in groundwater is not

  4. Effect of increased manganese addition and mould type on the ...

    Indian Academy of Sciences (India)

    The wear resistance of high chromium iron is well recorded. However, the same is not the case as regards the use of manganese at higher percentages in high chromium irons and its influence on wear behaviour. Hence, this work highlights the slurry wear characteristics of chromium (□ ◻ 16–19%) iron following the ...

  5. Arsenic, chromium, copper, iron, manganese, lead, selenium and ...

    African Journals Online (AJOL)

    2014-05-20

    May 20, 2014 ... Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the ... and sediment were collected and trace element concentrations were measured with an ICP-MS. ..... Clay minerals are known to have high sorption affinities ..... sediment/water quality interaction with particular reference to the.

  6. Manganese, iron and copper contents in leaves of maize plants ...

    African Journals Online (AJOL)

    Micronutrients such as boron (B), copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) play important physiological roles in humans and animals. Zn and B are the micronutrients most often deficient in maize, in Iran. A completely randomized factorial block design experiment was carried out at Fars province of Iran during ...

  7. Assessment of Serum Levels of Magnesium and Manganese among ...

    African Journals Online (AJOL)

    Pregnant women in developing countries have been reported to consume diets with low density of minerals and essential trace elements. Therefore, this study aims to assess the serum levels of magnesium and manganese and its trimester correlates among pregnant women in Ika community of Delta state, Nigeria.

  8. Bioleaching of copper, aluminum, magnesium and manganese from ...

    African Journals Online (AJOL)

    The present study was done to check the bioleaching feasibility of brown shale for the recovery of copper (Cu), aluminum (Al), magnesium (Mg) and manganese (Mn) ions using Ganoderma lucidum. Different experimental parameters were optimized for the enhanced recovery of metals ions. Effect of different substrates like ...

  9. Bentonite Modification with Manganese Oxides and Its Characterization

    Czech Academy of Sciences Publication Activity Database

    Dolinská, S.; Schütz, T.; Znamenáčková, I.; Lovás, M.; Vaculíková, Lenka

    2015-01-01

    Roč. 35, č. 1 (2015), s. 213-218 ISSN 1640-4920 Institutional support: RVO:68145535 Keywords : bentonite * natrification * manganese oxide Subject RIV: CB - Analytical Chemistry, Separation http://www.potopk.com.pl/ Full _text/2015_full/IM%202-2015-a35.pdf

  10. Selective Synthesis of Manganese/Silicon Complexes in Supercritical Water

    Directory of Open Access Journals (Sweden)

    Jiancheng Wang

    2014-01-01

    Full Text Available A series of manganese salts (Mn(NO32, MnCl2, MnSO4, and Mn(Ac2 and silicon materials (silica sand, silica sol, and tetraethyl orthosilicate were used to synthesize Mn/Si complexes in supercritical water using a tube reactor. X-ray diffraction (XRD, X-ray photoelectron spectrometer (XPS, transmission electron microscopy (TEM, and scanning electron microscopy (SEM were employed to characterize the structure and morphology of the solid products. It was found that MnO2, Mn2O3, and Mn2SiO4 could be obtained in supercritical water at 673 K in 5 minutes. The roles of both anions of manganese salts and silicon species in the formation of manganese silicon complexes were discussed. The inorganic manganese salt with the oxyacid radical could be easily decomposed to produce MnO2/SiO2 and Mn2O3/SiO2. It is interesting to found that Mn(Ac2 can react with various types of silicon to produce Mn2SiO4. The hydroxyl groups of the SiO2 surface from different silicon sources enhance the reactivity of SiO2.

  11. Uranium in Pacific Deep-Sea Sediments and Manganese Nodules

    DEFF Research Database (Denmark)

    Kunzendorf, Helmar; Pluger, W. L.; Friedrich, G. H.

    1983-01-01

    A total of 1344 manganese nodules and 187 pelagic sediments from 9 areas in the North and the South Pacific were analyzed for U by the delayed-neutron counting technique. A strong positive correlation between U and Fe in nodules and sediments suggests a co-precipitative removal from sea water int...

  12. Covalent Functionalization of Carbon Nanotube by Tetrasubtituted Amino Manganese Phthalocyanine

    Institute of Scientific and Technical Information of China (English)

    Zheng Long YANG; Hong Zheng CHEN; Lei CAO; Han Yin LI; Mang WANG

    2004-01-01

    The multiwall carbon nanotube (MWCNT) bonded to 2, 9, 16, 23-tetraamino manganese phthalocyanine (TAMnPc) was obtained by covalent functionalization, and its chemical structure was characterized by TEM. The photoconductivity of single-layered photoreceptors, where MWCNT bonded by TAMnPc (MWCNT-b-TAMnPc) served as the charge generation material (CGM), was also studied.

  13. Cognitive Function Related to Environmental Exposure to Manganese

    Science.gov (United States)

    Background: The towns of Marietta and East Liverpool (EL), Ohio, have been identified as having elevated manganese (Mn) in air due to industrial pollution. Objectives: To evaluate relationships between environmental Mn (Mn-air) exposure and distance from the source and cognitive...

  14. Pilot study points way to iron/manganese removal

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, N.; Barnes, A. [Progressive Consulting Engineers Inc., Minneapolis, MN (United States)

    1994-12-31

    The use of coal, greensand and sand in filters for removing iron and manganese from the Brooklyn Park, Minnesota, water supply was investigated. The most effective and economic treatment involved using a dual media filtration and potassium permanganate as the oxidant.

  15. 40 CFR 721.10003 - Manganese heterocyclic tetraamine complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese heterocyclic tetraamine complex (generic). 721.10003 Section 721.10003 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... section. (2) The significant new uses are: (i) Industrial, commercial, and consumer activities...

  16. Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation

    KAUST Repository

    Wang, Chengming

    2018-05-08

    A new efficient manganese-catalyzed selective C2-alkylation of indoles via carbenoid insertion has been achieved. The newly developed C-H functionalization protocol provides access to diverse products and shows good functional group tolerance. Mechanistic and computational studies support the formation of a Mn(CO)3 acetate complex as the catalytically active species.

  17. Manganese Catalyzed α-Olefination of Nitriles by Primary Alcohols.

    Science.gov (United States)

    Chakraborty, Subrata; Das, Uttam Kumar; Ben-David, Yehoshoa; Milstein, David

    2017-08-30

    Catalytic α-olefination of nitriles using primary alcohols, via dehydrogenative coupling of alcohols with nitriles, is presented. The reaction is catalyzed by a pincer complex of an earth-abundant metal (manganese), in the absence of any additives, base, or hydrogen acceptor, liberating dihydrogen and water as the only byproducts.

  18. Cognitive dysfunction, MRI findings and manganese levels in alcoholics

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Tsutomu; Nakane, Yoshibumi [Nagasaki Univ. (Japan). School of Medicine; Takahashi, Katsurou; Shimanaga, Masaki [National Nagasaki Medical Center, Omura (Japan)

    2002-12-01

    Alcoholic patients have been known to have brain atrophy and cognitive dysfunction. However, recent studies have reported bilateral signal hyperintensities of the globus pallidus on T1-weighted magnetic resonance imaging (MRI) in liver failure, findings that are typically associated with manganese intoxication. The present study compared brain atrophy on T1-weighted MRI, signal intensity ratios of the globus pallidus on T1-weighted MRI, whole blood manganese levels, and Wechsler Adult Intelligence Scale-Revised (WAIS-R) IQ parameters between alcoholics with and without liver cirrhosis, to investigate cognitive dysfunction, MRI findings and manganese levels in alcoholics. Pallidal hyperintensity was visually identified in 80% of alcoholic patients with liver cirrhosis. In addition, a significant correlation was seen between pallidal signal intensity (P.S.I.) ratio and blood manganese level. However, no significant correlations were found between pallidal signal intensity ratio and any of the WAIS-R parameters. These findings suggest that no direct connection exists between cognitive dysfunction and pallidal hyperintensity in alcoholic patients with liver cirrhosis. We confirmed that brain MRI in alcoholics could detect pallidal signal hyperintensity, suggesting severe liver dysfunction. In addition to diagnosis, brain MRI is useful for therapeutic psychoeducation to alcoholic patients with liver cirrhosis, visualizing the severe liver dysfunction. (author)

  19. Manganese Biogeochemistry in a Central Czech Republic Catchment

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Shanley, J. B.; Krám, P.; Mihaljevič, M.; Drahota, Petr

    2007-01-01

    Roč. 186, 1-4 (2007), s. 149-165 ISSN 0049-6979 R&D Projects: GA ČR GA205/04/0060 Institutional research plan: CEZ:AV0Z30130516 Keywords : manganese * catchment * weathering * biogeochemistry * biotite weathering * forest ecosystem * mass balance Subject RIV: DD - Geochemistry Impact factor: 1.224, year: 2007

  20. Cognitive dysfunction, MRI findings and manganese levels in alcoholics

    International Nuclear Information System (INIS)

    Itoh, Tsutomu; Nakane, Yoshibumi

    2002-01-01

    Alcoholic patients have been known to have brain atrophy and cognitive dysfunction. However, recent studies have reported bilateral signal hyperintensities of the globus pallidus on T1-weighted magnetic resonance imaging (MRI) in liver failure, findings that are typically associated with manganese intoxication. The present study compared brain atrophy on T1-weighted MRI, signal intensity ratios of the globus pallidus on T1-weighted MRI, whole blood manganese levels, and Wechsler Adult Intelligence Scale-Revised (WAIS-R) IQ parameters between alcoholics with and without liver cirrhosis, to investigate cognitive dysfunction, MRI findings and manganese levels in alcoholics. Pallidal hyperintensity was visually identified in 80% of alcoholic patients with liver cirrhosis. In addition, a significant correlation was seen between pallidal signal intensity (P.S.I.) ratio and blood manganese level. However, no significant correlations were found between pallidal signal intensity ratio and any of the WAIS-R parameters. These findings suggest that no direct connection exists between cognitive dysfunction and pallidal hyperintensity in alcoholic patients with liver cirrhosis. We confirmed that brain MRI in alcoholics could detect pallidal signal hyperintensity, suggesting severe liver dysfunction. In addition to diagnosis, brain MRI is useful for therapeutic psychoeducation to alcoholic patients with liver cirrhosis, visualizing the severe liver dysfunction. (author)

  1. Investigation of paramagnetic saturation in lanthanum manganese nitrate

    NARCIS (Netherlands)

    Flokstra, Jakob; Meijer, H.C.; Bots, G.J.C.; Verheij, W.A.; van der Marel, L.C.

    1973-01-01

    Paramagnetic saturation of lanthanum manganese nitrate, La2Mn3(NO3)12·24H2O, has been investigated at liquid He temperatures in a static as well as a dynamical way. With the aid of the molecular-field theory the Casimir and Du Pré dispersion and absorption curves are adapted explicitly to the

  2. Manganese Catalyzed Regioselective C–H Alkylation: Experiment and Computation

    KAUST Repository

    Wang, Chengming; Maity, Bholanath; Cavallo, Luigi; Rueping, Magnus

    2018-01-01

    A new efficient manganese-catalyzed selective C2-alkylation of indoles via carbenoid insertion has been achieved. The newly developed C-H functionalization protocol provides access to diverse products and shows good functional group tolerance. Mechanistic and computational studies support the formation of a Mn(CO)3 acetate complex as the catalytically active species.

  3. THE STATE OF MANGANESE IN THE PHOTOSYNTHETIC APPARATUS. I. EXAFS STUDIES ON CHLOROPLASTS AND di-u-oxo BRIDGED di-MANGANESE MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, J. A.; Robertson, A. S.; Smith, J. P.; Thompson, A. C.; Thompson, A. C.; Klein, M. P.

    1980-11-01

    Extended X-ray Absorption Fine Structure (EXAFS) studies on the manganese contained in spinach chloroplasts and on certain di-u-oxo bridged manganese dimers of the form (X{sub 2}Mn)O{sub 2}(MnX{sub 2} (X=2,2'-bypyridine and 1,10-phenanthroline) are reported. From these studies, the manganese associated with photosynthetic oxygen evolution is suggested to occur as a bridged transition metal dimer with most likely another manganese. Extensive details on the analysis are included.

  4. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  5. The reactor vessel steels

    International Nuclear Information System (INIS)

    Bilous, W.; Hajewska, E.; Szteke, W.; Przyborska, M.; Wasiak, J.; Wieczorkowski, M.

    2005-01-01

    In the paper the fundamental steels using in the construction of pressure vessel water reactor are discussed. The properties of these steels as well as the influence of neutron irradiation on its degradation in the time of exploitation are also done. (authors)

  6. Steel Industry Wastes.

    Science.gov (United States)

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  7. Effect of rhenium and osmium on mechanical properties of a 9Cr-2W-0.25V-0.07Ta-0.1C steel

    International Nuclear Information System (INIS)

    Klueh, R.L.; Alexander, D.J.; Sokolov, M.A.

    2000-01-01

    The nuclear transmutation of tungsten to rhenium and osmium in a tungsten-containing steel irradiated in a fission or fusion reactor will change the chemical composition of the steel. To determine the possible consequences of such compositional changes on the mechanical properties, tensile and Charpy impact properties were measured on five 9Cr-2W-0.25V-0.07Ta-0.1C steels that contained different amounts of rhenium, osmium, and tungsten. The mechanical properties changes caused by these changes in composition were minor. Observations were also made on the effect of carbon concentration. The effect of carbon on tensile behavior was minor, but there was a large effect on Charpy properties. Several of the steels showed little effect of tempering temperature on the Charpy transition temperature, a behavior that was tentatively attributed to the low silicon and/or manganese concentration of the experimental steels

  8. Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co-limitation

    NARCIS (Netherlands)

    Middag, R.; de Baar, H.J.W.; Klunder, M.B.; Laan, P.

    2013-01-01

    The trace metals aluminum (Al) and manganese (Mn) were studied in the Weddell Sea in March 2008. Concentrations of dissolved Al ([Al]) were slightly elevated (0.23-0.35 nmol L-1) in the surface layer compared to the subsurface minimum (0.07-0.21 nmol L-1) observed in the winter water. Atmospheric

  9. Non-magnetic compensation in ferromagnetic Ga1-xMnxAs and Ga1-xMnxP synthesized by ion implantation and pulsed-laser melting

    Energy Technology Data Exchange (ETDEWEB)

    Scarpulla, M.A.; Stone, P.R.; Sharp, I.D.; Haller, E.E.; Dubon, O.D.; Beeman, J.W.; Yu, K.M.

    2008-02-05

    The electronic and magnetic effects of intentional compensation with non-magnetic donors are investigated in the ferromagnetic semiconductors Ga1-xMnxAs and Ga1-xMnxP synthesized using ion implantation and pulsed-laser melting (II-PLM). It is demonstrated that compensation with non-magnetic donors and MnI have similarqualitative effects on materials properties. With compensation TC decreases, resistivity increases, and stronger magnetoresistance and anomalous Hall effect attributed to skew scattering are observed. Ga1-xMnxAs can be controllably compensated with Te through a metal-insulator transition through which the magnetic and electrical properties vary continuously. The resistivity of insulating Ga1-xMnxAs:Te can be described by thermal activation to the mobility edge and simply-activated hopping transport. Ga1-xMnxP doped with S is insulating at all compositions but shows decreasing TC with compensation. The existence of a ferromagnetic insulating state in Ga1-xMnxAs:Te and Ga1-xMnxP:S having TCs of the same order as the uncompensated materials demonstrates that localized holes are effective at mediating ferromagnetism in ferromagnetic semiconductors through the percolation of ferromagnetic 'puddles' which at low temperatures.

  10. Magnetic vs. non-magnetic colloids - A comparative adsorption study to quantify the effect of dye-induced aggregation on the binding affinity of an organic dye.

    Science.gov (United States)

    Williams, Tyler A; Lee, Jenny; Diemler, Cory A; Subir, Mahamud

    2016-11-01

    Due to attractive magnetic forces, magnetic particles (MPs) can exhibit colloidal instability upon molecular adsorption. Thus, by comparing the dye adsorption isotherms of MPs and non-magnetic particles of the same size, shape and functional group it should be possible to characterize the influence of magnetic attraction on MP aggregation. For a range of particle densities, a comparative adsorption study of malachite green (MG(+)) onto magnetic and non-magnetic colloids was carried out using a combination of a separation technique coupled with UV-vis spectroscopy, optical microscopy, and polarization dependent second harmonic generation (SHG) spectroscopy. Significant MP aggregation occurs in aqueous solution due to MG(+) adsorption. This alters the adsorption isotherm and challenges the determination of the adsorption equilibrium constant, Kads. The dye-induced aggregation is directly related to the MG(+) concentration, [MG(+)]. A modified Langmuir equation, which incorporates loss of surface sites due to this aggregation, accurately describes the resulting adsorption isotherms. The Kads of 1.1 (±0.3)×10(7) and a loss of maximum MP surface capacity of 2.8 (±0.7)×10(3)M(-1) per [MG(+)] has been obtained. Additionally, SHG has been established as an effective tool to detect aggregation in nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Low cyclic fatigue behavior of 32 % Mn nonmagnetic steel and the effects of C and N in liquid nitrogen and liquid helium

    International Nuclear Information System (INIS)

    Shibata, Koji; Fujita, Toshio

    1987-01-01

    The effects of testing temperature, C, and N on the low cyclic deformation behavior of 32 % Mn non-magnetic steels have been investigated in ambient air, liquid nitrogen, and liquid helium. It was observed that several problems exsisted in fatigue tests in liquid helium due to special phenomena occurred at very low temperatures. The steel containing 0.3 % N, which showed large fatigue softening at room temperature, increased the trend toward the softening at low temperatures. The steel containing 0.14 % C and 0.13 % N also increased the tendency of softening with the temperature decrease, while it was not so large at room temperature. Dislocation configuration in steels showing the softening tended to be mainly planne at very low temperatures same as at room temperature. The steel with a very low content of C and N, the 0.3 % C steel, and the 0.12 % N steel did not show the softening at low temperatures, but showed only fatigue hardening. The hardening of the former two steels increased remarkably as the temperature decreased. This phenomenon was attributable to ε martensite induced by the cyclic deformation. The fatigue softening behavior observed at low temperatures could qualitatively be explained with the hypothesis that the softening occurred through the breakdown of solid solution strengthening due to IS complexes during the cyclic deformation. (author)

  12. Preparation and performance of manganese-oxide-coated zeolite for the removal of manganese-contamination in groundwater.

    Science.gov (United States)

    Lyu, Cong; Yang, Xuejiao; Zhang, Shengyu; Zhang, Qihui; Su, Xiaosi

    2017-12-29

    A promising and easily prepared catalytic filler media, manganese-oxide-coated zeolite (MOCZ), for the removal of Mn (II) contamination in groundwater was studied. The optimal condition for MOCZ preparation was given as follows: acid activation of zeolite with 5% HCl mass percent for 12 h, then soaking of acid-activated zeolite with 7% KMnO 4 mass percent for 8 h, and finally calcination at 300°C for 5 h. Acid activation significantly enlarged the specific surface area of the zeolite (>79 m 2  g -1 ), subsequently enhancing the coating of manganese oxides onto the surface of the zeolite. This was further supported by the manganese-to-zeolite ratio (γ Mn ) and Energy dispersive analysis-mapping. The γ Mn was over 12.26 mg Mn g -1 zeolite, representing more active sites for the adsorption and catalytic-oxidation of Mn (II). As such, great performance of Mn (II) removal by MOCZ was obtained in the filter experiment. An estimated 98-100% removal efficiency of Mn (II) was achieved in a greatly short startup time (only 2 h). During the filtration process, newborn flocculent manganese oxides with a mixed-valence of manganese (Mn (II) and Mn (IV)) were generated on the MOCZ surface, further facilitating the adsorption and catalytic-oxidation of Mn (II). The filter with MOCZ as adsorbent had a great performance on the Mn (II) removal in a wide range of hydraulic retention time (HRT) (4-40 min), particularly in a short HRT. Besides, the filter prolonged the filtration period (60 days), which would significantly reduce the frequency of backwash. Thus, it could be concluded that MOCZ prepared in this study showed a good performance in terms of Mn (II) removal in waterworks, especially small waterworks in the villages/towns.

  13. Removal of Heavy Metals from Steel Making Waste Water by Using Electric Arc Furnace Slag

    Directory of Open Access Journals (Sweden)

    C. L. Beh

    2012-01-01

    Full Text Available This work investigated the reduction of chemical oxygen demand (COD, biological oxygen demand (BOD, total suspended solids (TSS and the concentration of heavy metals of wastewater from a steel making plant. Adsorption experiments were carried out by electric arc furnace slag (EAFS in a fixed-bed column mode. The raw wastewater did not meet the standard B limitations, having high values of BOD, COD, TSS, Iron, Zinc, Manganese and Copper. After passing through the fixed bed column, BOD, COD and TSS values decreased to 1.6, 6.3 and <2 mgL-1, respectively while the concentration of Iron, Zinc, Manganese and Copper were 0.08, 0.01, 0.03 and 0.07 mgL-1, respectively. The results confirmed that EAFS can be used as an efficient adsorbent for producing treated water that comply with the Standard B limitations for an industrial effluent.

  14. Manganese Deposits in the Artillery Mountains Region, Mohave County, Arizona

    Science.gov (United States)

    Lasky, S.G.; Webber, B.N.

    1944-01-01

    The manganese deposits of the Artillery Mountains region lie within an area of about 25 square miles between the Artillery and Rawhide Mountains, on the west side of the Bill Williams River in west-central Arizona. The richest croppings are on the northeast side of this area, among the foothills of the Artillery Mountains. They are 6 to 10 miles from Alamo. The nearest shipping points are Congress, about 50 miles to the east, and Aguila, about 50 miles to the southeast. The principal manganese deposits are part of a sequence of alluvial fan and playa material, probably of early Pliocene age, which were laid down in a fault basin. They are overlain by later Pliocene (?) basalt flows and sediments and by Quaternary basalt and alluvium. The Pliocene (?) rocks are folded into a shallow composite S1ncline ttat occupies the valley between the Artillery and Rawhide Mountains, and the folded rocks along either side of the valley, together with the overlying Quaternary basalt, are broken by faults that have produced a group of horsts, grabens, and step-fault blocks. The manganiferous beds, lie at two zones, 750 to 1,000 feet apart stratigraphically, each of which is locally as much as 300 to 400 feet thick. The main, or upper, zone contains three kinds of ore - sandstone ore, clay ore, and 'hard' ore. The sandstone and clay ores differ from the associated barren sandstone and clay, with which they are interlayered and into which they grade, primarily in containing a variable proportion of amorphous manganese oxides, besides iron oxides and clayey material such as are present in the barren beds. The 'hard' ore is sandstone that has been impregnated with opal and calcite and in which the original amorphous manganese oxides have been largely converted to psilomelane and manganite. The average manganese content of the sandstone and clay ores is between 3 and 4 percent and that of the 'hard' ore is between 6 and 7 percent. The ore contains an average of 3 percent of iron, 0

  15. Relationships Between Essential Manganese Biology and Manganese Toxicity in Neurological Disease.

    Science.gov (United States)

    Pfalzer, Anna C; Bowman, Aaron B

    2017-06-01

    Manganese (Mn) is critical for neurodevelopment but also has been implicated in the pathophysiology of several neurological diseases. We discuss how Mn requirements intersect with Mn biology and toxicity, and how these requirements may be altered in neurological disease. Furthermore, we discuss the emerging evidence that the level of Mn associated with optimal overall efficiency for Mn biology does not necessarily coincide with optimal cognitive outcomes. Studies have linked Mn exposures with urea cycle metabolism and autophagy, with evidence that exposures typically neurotoxic may be able to correct deficiencies in these processes at least short term. The line between Mn-dependent biology and toxicity is thus blurred. Further, new work suggests that Mn exposures correlating to optimal cognitive scores in children are associated with cognitive decline in adults. This review explores relationships between Mn-dependent neurobiology and Mn-dependent neurotoxicity. We propose the hypothesis that Mn levels/exposures that are toxic to some biological processes are beneficial for other biological processes and influenced by developmental stage and disease state.

  16. Microstructure and mechanical behavior of neutron irradiated ultrafine grained ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Alsabbagh, Ahmad, E-mail: ahalsabb@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Sarkar, Apu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Miller, Brandon [ATR National Scientific User Facility, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Burns, Jatuporn [Center for Advanced Energy Studies, Idaho Falls, ID 83401 (United States); Squires, Leah; Porter, Douglas; Cole, James I. [ATR National Scientific User Facility, Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Murty, K.L. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2014-10-06

    Neutron irradiation effects on ultra-fine grain (UFG) low carbon steel prepared by equal channel angular pressing (ECAP) have been examined. Counterpart samples with conventional grain (CG) sizes have been irradiated alongside with the UFG ones for comparison. Samples were irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to 1.37 dpa. Atom probe tomography revealed manganese and silicon-enriched clusters in both UFG and CG steel after neutron irradiation. Mechanical properties were characterized using microhardness and tensile tests, and irradiation of UFG carbon steel revealed minute radiation effects in contrast to the distinct radiation hardening and reduction of ductility in its CG counterpart. After irradiation, micro hardness indicated increases of around 9% for UFG versus 62% for CG steel. Similarly, tensile strength revealed increases of 8% and 94% respectively for UFG and CG steels while corresponding decreases in ductility were 56% versus 82%. X-ray quantitative analysis showed that dislocation density in CG increased after irradiation while no significant change was observed in UFG steel, revealing better radiation tolerance. Quantitative correlations between experimental results and modeling were demonstrated based on irradiation induced precipitate strengthening and dislocation forest hardening mechanisms.

  17. Aluminum deoxidation equilibria and inclusion modification mechanism by calcium treatment of stainless steel melts

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Kim, Dong Sik; Kim, Yong Hwan; Lee, Sang Beom

    2005-01-01

    A thermodynamic equilibrium between aluminum and oxygen along with the inclusion morphology in Fe-16%Cr stainless steel was investigated to understand the fundamentals of aluminum deoxidation technology for ferritic stainless steels. Further, the effects of calcium addition on the changes in chemistry and morphology of inclusions were discussed. The measured results for aluminum-oxygen equilibria exhibit relatively good agreement with the calculated values, indicating that the introduction of the first- and second-order interaction parameters, recently reported, is reasonable to numerically express aluminum deoxidation equilibrium in a ferritic stainless steel. In the composition of dissolved aluminum content greater than about 60 ppm, pure alumina particles were observed, while the alumino-manganese silicates containing Cr 2 O 3 were appeared at less than 20 mass ppm of dissolved aluminum. The formation of calcium aluminate inclusions after Ca treatment could be discussed based on the thermodynamic equilibrium with calcium, aluminum, and oxygen in the steel melts. In the composition of steel melt with relatively high content of calcium and low aluminum, the log(X CaO /X Al 2 O 3 ) of inclusions linearly increases with increasing the log [a Ca /a Al 2 ·a O 2 ] with the slope close to unity. However, the slope of the line is significantly lower than the expected value in the composition of steel melt with relatively low calcium and high aluminum contents

  18. Superconducting magnetic separation of ground steel slag powder for recovery of resources

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. W.; Kim, J. J.; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, D. W. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Choi, J. H. [Dept. of Environmental Engineering, Catholic University of Pusan, Pusan (Korea, Republic of)

    2017-03-15

    Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

  19. Damascus steel ledeburite class

    Science.gov (United States)

    Sukhanov, D. A.; Arkhangelsky, L. B.; Plotnikova, N. V.

    2017-02-01

    Discovered that some of blades Damascus steel has an unusual nature of origin of the excess cementite, which different from the redundant phases of secondary cementite, cementite of ledeburite and primary cementite in iron-carbon alloys. It is revealed that the morphological features of separate particles of cementite in Damascus steels lies in the abnormal size of excess carbides having the shape of irregular prisms. Considered three hypotheses for the formation of excess cementite in the form of faceted prismatic of excess carbides. The first hypothesis is based on thermal fission of cementite of a few isolated grains. The second hypothesis is based on the process of fragmentation cementite during deformation to the separate the pieces. The third hypothesis is based on the transformation of metastable cementite in the stable of angular eutectic carbide. It is shown that the angular carbides are formed within the original metastable colony ledeburite, so they are called “eutectic carbide”. It is established that high-purity white cast iron is converted into of Damascus steel during isothermal soaking at the annealing. It was revealed that some of blades Damascus steel ledeburite class do not contain in its microstructure of crushed ledeburite. It is shown that the pattern of carbide heterogeneity of Damascus steel consists entirely of angular eutectic carbides. Believe that Damascus steel refers to non-heat-resistant steel of ledeburite class, which have similar structural characteristics with semi-heat-resistant die steel or heat-resistant high speed steel, differing from them only in the nature of excess carbide phase.

  20. Effects of Leptothrix discophora on the potential behavior of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Carpen, L.; Hakkarainen, T. [VTT Industrial Systems, P.O. Box 1704, FIN-02044 VTT (Finland); Raaska, L.; Kujanpaeae, K. [VTT Biotechnology, P.O. Box 1500, FIN-02044 VTT (Finland)

    2003-07-01

    Biofilm formation and electrochemical behavior of stainless steel have been studied in well water, in tap water and in water taken from fire extinguishing system. Some of the waters have been modified by adding manganese ions as well as in some cases acetate and yeast extract as a nutrient. Manganese oxidizing bacteria Leptothrix discophora has been used in these studies. To eliminate crevices in the specimen holder and to simulate reasonably well the conditions in fire-extinguishing systems where the water is stagnant most of the time, a tape test arrangement with very slow flowing rate has been used in most of these studies. Also specimens with heat tint areas produced by heating inductively a small section of the specimen under flowing argon shielding gas were used in these studies. The results of these tape tests show that manganese oxidizing bacteria are able to increase the potential of both the base material (stainless steel UNS S30400) and of specimens with heat tint areas in well water, in tap water and in water taken from fire extinguishing system. Manganese oxidizing bacteria are also able to increase the cathodic reaction and thus enhance the initiation of corrosion. However, the increase of potential is not alone enough to start the corrosion. In these tests corrosion was initiated only in the specimens with heat tint areas in one of the waters taken from fire extinguishing system. No corrosion was detected in the specimens exposed to the well water or to the tap water used in these tests. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  1. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide

    Science.gov (United States)

    Balistrieri, L.S.; Chao, T.T.

    1990-01-01

    This work compares and models the adsorption of selenium and other anions on a neutral to alkaline surface (amorphous iron oxyhydroxide) and an acidic surface (manganese dioxide). Selenium adsorption on these oxides is examined as a function of pH, particle concentration, oxidation state, and competing anion concentration in order to assess how these factors might influence the mobility of selenium in the environment. The data indicate that 1. 1) amorphous iron oxyhydroxide has a greater affinity for selenium than manganese dioxide, 2. 2) selenite [Se(IV)] adsorption increases with decreasing pH and increasing particle concentration and is stronger than selenate [Se(VI)] adsorption on both oxides, and 3. 3) selenate does not adsorb on manganese dioxide. The relative affinity of selenate and selenite for the oxides and the lack of adsorption of selenate on a strongly acidic surface suggests that selenate forms outer-sphere complexes while selenite forms inner-sphere complexes with the surfaces. The data also indicate that the competition sequence of other anions with respect to selenite adsorption at pH 7.0 is phosphate > silicate > molybdate > fluoride > sulfate on amorphous iron oxyhydroxide and molybdate ??? phosphate > silicate > fluoride > sulfate on manganese dioxide. The adsorption of phosphate, molybdate, and silicate on these oxides as a function of pH indicates that the competition sequences reflect the relative affinities of these anions for the surfaces. The Triple Layer surface complexation model is used to provide a quantitative description of these observations and to assess the importance of surface site heterogeneity on anion adsorption. The modeling results suggest that selenite forms binuclear, innersphere complexes with amorphous iron oxyhydroxide and monodentate, inner-sphere complexes with manganese dioxide and that selenate forms outer-sphere, monodentate complexes with amorphous iron oxyhydroxide. The heterogeneity of the oxide surface sites

  2. Influence of alloying elements on the corrosion properties of shape memory stainless steels

    International Nuclear Information System (INIS)

    Della Rovere, C.A.; Alano, J.H.; Silva, R.; Nascente, P.A.P.; Otubo, J.; Kuri, S.E.

    2012-01-01

    Highlights: ► The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape-memory stainless steels (SMSSs) were compared with those of a type 304 (SS 304) austenitic stainless steel. ► A considerably high Si content (about 40 at%) is present in the anodic passive films formed on SMSSs in 0.5 M H 2 SO 4 solution. ► The high protectiveness of the anodic passive film formed on SMSSs in 0.5 M H 2 SO 4 solution results from a protective film consisting of a (Fe, Cr)–mixed silicate. ► The SMSSs exhibited higher corrosion resistance than SS 304 in highly oxidizing environments. ► The SMSSs showed poor corrosion resistance in 3.5% NaCl solution compared to that of SS 304. - Abstract: The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape memory stainless steels were studied based on X-ray photoelectron spectroscopy (XPS) analyses, immersion and polarization tests. The test results were compared with those of a type 304 austenitic stainless steel. The XPS analyses indicated substantial Si content in the anodic passive films formed on shape memory stainless steels in sulfuric acid solution and that the high protectiveness of these films results from a protective film consisting of a (iron, chromium)–mixed silicate. The corrosion rate of the shape memory stainless steels in boiling nitric acid solution was lower than that of austenitic stainless steel. The high silicon content was found to play an important role in the corrosion behavior of these shape memory alloys in highly oxidizing environments. Due to their high manganese content, the shape memory stainless steels showed poor corrosion behavior in 3.5% sodium chloride solution when compared with austenitic stainless steel.

  3. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    Science.gov (United States)

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw oxides iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Nanoscale surface analysis on second generation advanced high strength steel after hot dip galvanizing.

    Science.gov (United States)

    Arndt, M; Duchoslav, J; Preis, K; Samek, L; Stifter, D

    2013-09-01

    Second generation advanced high strength steel is one promising material of choice for modern automotive structural parts because of its outstanding maximal elongation and tensile strength. Nonetheless there is still a lack of corrosion protection for this material due to the fact that cost efficient hot dip galvanizing cannot be applied. The reason for the insufficient coatability with zinc is found in the segregation of manganese to the surface during annealing and the formation of manganese oxides prior coating. This work analyses the structure and chemical composition of the surface oxides on so called nano-TWIP (twinning induced plasticity) steel on the nanoscopic scale after hot dip galvanizing in a simulator with employed analytical methods comprising scanning Auger electron spectroscopy (SAES), energy dispersive X-ray spectroscopy (EDX), and focused ion beam (FIB) for cross section preparation. By the combination of these methods, it was possible to obtain detailed chemical images serving a better understanding which processes exactly occur on the surface of this novel kind of steel and how to promote in the future for this material system galvanic protection.

  5. Influence of non-metallic second phases on fatigue behaviour of high strength steel components

    International Nuclear Information System (INIS)

    Gonzalez, L.; Elvira, R.; Garcia de Andoin, A.; Pizarro, R.; Bertrand, C.

    2005-01-01

    To assess the real effect of the inclusion type on fatigue life of ultra clean high strength steels mechanical components made of 100Cr6 steel were fatigue tested and fracture surfaces analysed to determine the origin of fatigue cracks.Two heats proceedings from different steelmaking routes were taken for the tests. The material were forged into ring shape components which were fatigue tested under compression-compression loads. Failures were analysed by SFEM (Scanning field Emission Microscopy), proving that most of failures at high loads were originated by manganese sulphides of small size (10-70 micros), while less than 40% of all fatigue cracks due to inclusions were caused by titanium carbonitrides and hard oxides. It has been demonstrated that once number and size of hard inclusions have been reduced, the hazardous effect of oxides and carbonitrides on the fatigue life decreases also. However, softer inclusions as manganese sulphides, currently considered as less hazardous, play a more relevant role as direct cause of fatigue failure and they should be taken into account in a deeper way in order to balance both machinability and fatigue life requirements in high strength steel components. (Author) 11 refs

  6. Structural amorphous steels

    International Nuclear Information System (INIS)

    Lu, Z.P.; Liu, C.T.; Porter, W.D.; Thompson, J.R.

    2004-01-01

    Recent advancement in bulk metallic glasses, whose properties are usually superior to their crystalline counterparts, has stimulated great interest in fabricating bulk amorphous steels. While a great deal of effort has been devoted to this field, the fabrication of structural amorphous steels with large cross sections has remained an alchemist's dream because of the limited glass-forming ability (GFA) of these materials. Here we report the discovery of structural amorphous steels that can be cast into glasses with large cross-section sizes using conventional drop-casting methods. These new steels showed interesting physical, magnetic, and mechanical properties, along with high thermal stability. The underlying mechanisms for the superior GFA of these materials are discussed

  7. Manganese oxide nanowires, films, and membranes and methods of making

    Science.gov (United States)

    Suib, Steven Lawrence [Storrs, CT; Yuan, Jikang [Storrs, CT

    2008-10-21

    Nanowires, films, and membranes comprising ordered porous manganese oxide-based octahedral molecular sieves, and methods of making, are disclosed. A single crystal ultra-long nanowire includes an ordered porous manganese oxide-based octahedral molecular sieve, and has an average length greater than about 10 micrometers and an average diameter of about 5 nanometers to about 100 nanometers. A film comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is stacked on a surface of a substrate, wherein the nanowires of each layer are substantially axially aligned. A free standing membrane comprises a microporous network comprising a plurality of single crystal nanowires in the form of a layer, wherein a plurality of layers is aggregately stacked, and wherein the nanowires of each layer are substantially axially aligned.

  8. Influence of metallic additives on manganese ferrites sintering

    Science.gov (United States)

    Shevelev, S. A.; Luchnikov, P. A.; Yarullina, A. R.

    2018-01-01

    Influence of cuprum nanopowder additive received by electric explosion on the process of manganese ferrites MgFe2O4 consolidating at thermal sintering was researched by dilatometry method. Cuprum nanopowder at a rate of 5 mass % was added into the original commercial-grade powder of manganese ferrite MgFe2O4. Powder mixture was numerously blended with screening for better blending before pressing. Powder compacts were formed by cold one-axle static pressing. It was proved that introduction of cuprum additive caused shrinkage increase at final heating stage. There was abnormal compact enlarging at sintering in the air at isothermal stage; the specified process was not observed in vacuum. This difference can be explained by changes in conditions of gaseous discharge from volume of pores.

  9. Uranium in Pacific deep-sea sediments and manganese nodules

    International Nuclear Information System (INIS)

    Kunzendorf, H.; Plueger, W.L.; Friedrich, G.H.

    1983-01-01

    A total of 1344 manganese nodules and 187 pelagic sediments from 9 areas in the North and the South Pacific were analyzed for U by the delayed-neutron counting technique. A strong positive correlation between U and Fe in nodules and sediments suggests a co-precipitative removal from sea water into the Fe-rich (ferromanganese mineral phase MnO 2 . Enrichment of U and Fe in nodules from the northwestern slopes of two submarine hills (U between 6 and 9 ppm) in the equatorial nodule belt is thought to be caused by directional bottom water flow creating elevated oxygenized conditions in areas opposed to the flow. Economically important nodule deposits from the nodule belt and the Peru Basin have generally low U contents, between 3 and 5 ppm. Insignificant resources of U of about 4 x 10 5 in the Pacific manganese nodules are estimated. (orig.)

  10. Advanced manganese oxide material for rechargeable lithium cells

    Energy Technology Data Exchange (ETDEWEB)

    Atwater, Terrill B.; Salkind, Alvin J. [Rutgers University, Piscataway, NJ (United States)

    2006-11-22

    A family of potassium-doped manganese oxide materials were synthesized with the stoichiometric formula Li{sub 0.9-X}K{sub X}Mn{sub 2}O{sub 4}, where X=0.0-0.25 and evaluated for their viability as a cathode material for a rechargeable lithium battery. A performance maximum was found at X=0.1 where the initial specific capacity for the lithium-potassium-doped manganese dioxide electrochemical couple was 130mAhg{sup -1} of active cathode material. The discharge capacity of the system was maintained through 90 cycles (95% initial capacity). Additionally, the capacity was maintained at greater than 90% initial discharge through 200 cycles. Other variants demonstrated greater than 75% initial discharge through 200 cycles at comparable capacity. (author)

  11. In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.

    Science.gov (United States)

    Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten

    2017-04-01

    Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

  12. Methylcyclopentadienyl manganese tricarbonyl (MMT), plant uptake and effects on metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A.R.; Lytle, C.M.; Stone, R.L.; Smith, B.N [Department of Botany and Range Science, Brigham Young University, Provo (United States); Hansen, L.D. [Department of Chemistry and Biochemistry, Brigham Young University, Provo (United States)

    2000-04-01

    In the USA and Canada, methylcyclopentadienyl manganese (MMT) is currently added to gasoline to replace tetraethyl lead as an antiknock fuel additive. Manganese concentrations in roadside soil and plants are increasing and correlated with distance from the roadway, traffic volume, plant type, and microhabitat. Radish (Raphanus sativus L.) seedlings were treated for either five or thirty-five days with different levels of manganous chloride (0-1000ppm). Metabolic heat rates (q) and respiration rates (R{sub CO{sub 2}}), measured calorimetrically, indicated severe stress at Mn concentrations between 10 and 100ppm and at temperatures above 20C. Predicted growth rates (R{sub SG}) also decreased in these circumstances.

  13. Performance Steel Castings

    Science.gov (United States)

    2012-09-30

    system components to be built. Figure la shows the machine design . PSC-2012 Page 94 Glue Application Sheet Transfer Feed Elevator Figure la...Department of Defense such as cleats, ejection chutes , control arms, muzzle brakes, mortar components, clevises, tow bar clamps, ammo conveyor elements...Foundry and the members of Steel Founders’ Society of America. Abstract Weapon system designers and builders need advanced steel casting technology

  14. Life after Steel

    Science.gov (United States)

    Mangan, Katherine

    2013-01-01

    Bobby Curran grew up in a working-class neighborhood in Baltimore, finished high school, and followed his grandfather's steel-toed bootprints straight to Sparrows Point, a 3,000-acre sprawl of industry on the Chesapeake Bay. College was not part of the plan. A gritty but well-paying job at the RG Steel plant was Mr. Curran's ticket to a secure…

  15. The separation of trace elements in manganese dioxide

    International Nuclear Information System (INIS)

    Jones, E.A.; Dixon, K.

    1981-01-01

    Separations from manganese are discribed for (a)Al(III), Mo(VI), V(V), and Ti(IV), and (b)trace elements in general. In the first separation, a combined anion-cation exchange, the oxalate complexes are absorbed onto the anionic BIO.RAD 1-X8 resin. V(V) and Al(III) are then eluted into a cation-exchange column from which they are eluted successively, Mo(VI) and Ti(IV) then being eluted from the anionic resin. In the second separation, up to 2g of manganese is absorbed onto BIO.RAD AG 50W-X8 resin, from which V(V) is eluted with dilute hydrochloric acid prior to the elution of Co(II), Cu(II), Zn(II), Cd(II), Fe(III), As(III), Sb(III), Mo(VI), W(VI), and Sn(II) with a mixture of 1 M hydrochloric acid, 80 per cent acetone, and 0,1 per cent hydrogen peroxide. Mn(11) is eluted next with a mixture of 0,75M hydrochloric acid and 90 per cent acetone, after which the remaining cations are eluted with 4M hydrochloric acid. Satisfactory recoveries ranging from 0,8 to 60 mg/l were obtained for 18 of the 21 elements tested. After concentration by evaporation, final measurements were made by the use of atomic-absorption spectrophotometry, or direct-reading spectrometry with excitation from an inductively coupled plasma source. Comparative results were obtained with atomic-absorption procedures where the manganese was not separated. However, the separation procedure can reduce the time required for analysis by the direct method because it limits the number of dilutions necessary and eliminates the need for the use of the method of additions to compensate for interferences from manganese

  16. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming

    2018-04-06

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  17. Determination of manganese in blood by neutron activation analysis

    International Nuclear Information System (INIS)

    Kocsis, E.; Kovats, M.; Molnar, M.

    1981-01-01

    A new method has been elaborated: the manganese content of a blood sample was precipitated by H 2 O 2 , and analysed by neutron activation analysis. The mean value was 2.67x10 -8 g/g in men, 3.25x10 -8 g/g in women and 3.57x10 -8 g/g in men working as welders for several years. (L.E.)

  18. Processes of formation of ferromanganese manganese nodules and crusts

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.

    oceanic cycling assume importance in view of the fact that it is the tenth most abundant element in the Earth’s crust. It occurs in two valency states whose stability lies within the limits of the natural importance. Oxides of manganese also have high... cations. Thus, both can migrate under the influence of redox gradients. Fractionation between this pair can probably occur in anoxic and high temperature conditions. In balancing the Mn between different oceanic reservoirs, Goldschmidt in 1954 has...

  19. Manganese: Recent advances in understanding its transport and neurotoxicity

    International Nuclear Information System (INIS)

    Aschner, Michael; Guilarte, Tomas R.; Schneider, Jay S.; Zheng Wei

    2007-01-01

    The present review is based on presentations from the meeting of the Society of Toxicology in San Diego, CA (March 2006). It addresses recent developments in the understanding of the transport of manganese (Mn) into the central nervous system (CNS), as well as brain imaging and neurocognitive studies in non-human primates aimed at improving our understanding of the mechanisms of Mn neurotoxicity. Finally, we discuss potential therapeutic modalities for treating Mn intoxication in humans

  20. Purification of arsenic contaminated ground water using hydrated manganese dioxide

    International Nuclear Information System (INIS)

    Raje, N.; Swain, K.K.

    2002-01-01

    An analytical methodology has been developed for the separation of arsenic from ground water using inorganic material in neutral medium. The separation procedure involves the quantitative retention of arsenic on hydrated manganese dioxide, in neutral medium. The validity of the separation procedure has been checked by a standard addition method and radiotracer studies. Neutron activation analysis (NAA), a powerful measurement technique, has been used for the quantitative determination of arsenic. (author)

  1. Rhenium and Manganese-Catalyzed Selective Alkenylation of Indoles

    KAUST Repository

    Wang, Chengming; Rueping, Magnus

    2018-01-01

    An efficient rhenium‐catalyzed regioselective C‐H bond alkenylation of indoles is reported. The protocol operates well for internal as well as terminal alkynes, affording products in good to excellent yields. Furthermore, a manganese catalyzed, acid free, regioselective C2‐alkenylation of indoles with internal alkynes is described. The directing groups can be easily removed after the reaction and the resulting products can be used as valuable building blocks for the synthesis of diverse heterocyclic compounds.

  2. Gold, iron and manganese in central Amapá, Brazil

    Directory of Open Access Journals (Sweden)

    Wilson Scarpelli

    Full Text Available ABSTRACT: Greenstone belts with deposits of gold, iron and manganese are common in the Paleoproterozoic Maroni-Itacaiunas Tectonic Province of the Guiana Shield. In Brazil, in the State of Amapá and northwest of Pará, they are represented by the Vila Nova Group, constituted by a basal unit of metabasalts, covered by metasediments of clastic and chemical origin. The basal metasediments, the Serra do Navio Formation, are made of a cyclothem with lenses of manganese marbles at the top of each cycle. Under the intense weathering of the Amazon, these lenses were oxidized to large deposits of high-grade manganese oxides. The exploitation of these oxides left behind the manganese carbonates and low-grade oxides. The overlaying Serra da Canga Formation presents a calcium and magnesium domain grading to an iron domain with banded silicate and oxide iron formations, mined for iron ores. Overlapping structures and superposed metamorphic crystallizations indicate two phases of dynamothermal metamorphism, the first one with axis to north-northeast and the second one to northwest, with an intermediate phase of thermal metamorphism related to syntectonic granitic intrusions. Shears oriented north-south, possibly formed during the first dynamothermal metamorphism and reactivated in the second, are ideal sites for hydrothermalism and gold mineralization, which is greater when occurs in iron formation and carbonate-bearing rocks, as it happened at the Tucano mine. Layered mafic-ultramafic intrusions in the greenstones represent a potential for chromite and platinum group elements. Pegmatites are source of cassiterite and tantalite exploited from alluvial deposits.

  3. Manganese accumulation in hair and teeth as a biomarker of manganese exposure and neurotoxicity in rats.

    Science.gov (United States)

    Liang, Guiqiang; Zhang, Li'e; Ma, Shuyan; Lv, Yingnan; Qin, Huiyan; Huang, Xiaowei; Qing, Li; Li, Qin; Chen, Kangcheng; Xiong, Feng; Ma, Yifei; Nong, Jie; Yang, Xiaobo; Zou, Yunfeng

    2016-06-01

    Manganese (Mn) is an essential trace element to humans. However, excessive Mn causes cognitive impairment resulting from injury to the central nervous system within the hippocampus. No ideal biomarker is currently available for evaluating Mn exposure and associated neurotoxicity in the body. Hence, this study used Mn levels in the serum (MnS), teeth (MnT), and hair (MnH) as biomarkers for evaluating the association between Mn exposure and cognitive impairment in Mn-treated rats. A total of 32 male Sprague-Dawley rats were randomly divided into four groups, received 0, 5, 10, and 20 mg/(kg day) of MnCl2·4H2O for 5 days a week for 18 weeks, respectively. Lifetime Mn cumulative dose (LMCD) was used to evaluate external Mn exposure. Hippocampus, serum, teeth, and hair specimens were collected from the rats for Mn determination by graphite furnace atomic absorption spectrometry. Learning and memory functions were assessed using the Morris water maze test. Results showed that chronic Mn exposure increased the hippocampus (MnHip), MnS, MnT, and MnH levels, as well as impaired learning and memory function in rats. MnHip, MnT, and MnH levels were positively correlated with LMCD (r = 0.759, r = 0.925, and r = 0.908, respectively; p  0.05). Thus, MnT and MnH detected long-term low-dose Mn exposure. These parameters can be reliable biomarkers for Mn exposure and associated neurotoxicity in Mn-treated rats.

  4. Preparation of Baking-Free Brick from Manganese Residue and Its Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-01-01

    Full Text Available The increasing amount of waste residue produced during the electrolytic preparation process of manganese has nowadays brought about serious environmental problems. The research on utilization of manganese slag has been a hot spot around the world. The utilization of manganese slag is not only environment friendly, but also economically feasible. In the current work, a summarization of the main methods to produced building materials from manganese slag materials was given. Baking-free brick, a promising building material, was produced from manganese slag with the addition of quicklime and cement. The physical properties, chemical composition, and mechanical performances of the obtained samples were measured by several analyses and characterization methods. Then the influence of adding materials and molding pressure during the preparation of baking-free brick samples on their compressive strength properties was researched. It is concluded that the baking-free brick prepared from manganese residue could have excellent compressive strength performance under certain formula.

  5. Sinterization of manganese ore tailings under argon atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Valduga, M.M.F.; Lima, F.; Lima, R.M.F. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2014-07-01

    Manganese is an element widely used in Metallurgy, however the Brazilian reserves has low grade. The aim of this work was to obtain and characterize the sinters from manganese ore tailings. The fines (less than 400⧣) were calcinated (800°C - 3600s) and homogenized with activated charcoal (7 and 10%) and CaO (5 and 10%). The sintering were carried out at 1135, 1140 and 1145°C during 7200 and 14400s under argon atmosphere. The sintered products were characterized by EDS analysis, BET surface area, apparent density, X-rays diffraction and SEM/EDS. The surface area was 0.03m2/g. The alkali element present (potassium) justified the low melting point of waste (1140°C). Due to the chemical complexity of the tailings, several phases were characterized in the products: pores, silicates with high content of manganese in the matrix, other silicates with different proportions of Al, Mn, Mg and Ca, pure Fe, SiO2, etc. (author)

  6. Sinterization of manganese ore tailings under natural air

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.M.F.; Souza, L.G.P.R.M.F. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)

    2014-07-01

    The manganese ore has wide application in metallurgy. However, from each of three hundred concentrations found, only one can be seen as a deposit. The aim of this study was to obtain and characterize a sinter from manganese ore tailing. The tailing was milled, classified (<400 ⧣) and calcinated (800°C - 3600s). The mixture had 12% moisture, 7 and 9% of activated charcoal. After homogenization, the sintering were carried out at 1140, 1145 and 1150°C during 1800, 7200 and 14400s at natural air. The sintered products were characterized by EDS analysis, BET surface area, apparent density, X-rays diffraction and SEM/EDS. The mass loss was approximately 14% and 16% in the calcination and sintering, respectively, due to the elimination of volatile products and water. The main phases characterized: SiO2, silicate with high content of manganese in the matrix and other silicates with different proportions of Ti, Na, Mn, Mg and Ca. (author)

  7. Selective uptake of manganese in seawater by hybrid microcapsules

    International Nuclear Information System (INIS)

    Kuzumaki, Takenori; Yan, Wu; Mimura, Hitoshi; Niibori, Yuichi

    2008-01-01

    The selective separation and recovery of low concentrated elements in seawater are very important subjects for the advancement of environmental monitoring. Selective uptake of manganese from seawater was carried out by using two kinds of microcapsules (MCs) including activated carbon (AC) and insoluble tannin (T). The adsorbents, AC and T, having affinity for manganese, were enclosed into MCs (ACMS, TMC) by sol-gel method using matrices of biopolymer (calcium alginate gel polymer, CaALG). The uptake properties and selectivity of Mn 2+ (1 ppm) for MCs were examined by batch method. Relatively large uptake percentages of Mn 2+ above 80% were obtained within 1 h, and the uptake percentage above 80% was kept at pH 3-6. The uptake order was found to be T, AC, CaALG > ACMC, TMC. The uptake of Mn 2+ decreased with increasing Na + ion concentration. This tendency depends on the swelling property of CaALG; it tends to solate in the presence of highly concentrated Na + ions. The manganese ions were adsorbed on CaALG, ACMC and TMC from seawater containing 1,000 ppm Mn 2+ . ACMC and TMC had selectivity to Mn 2+ , and, especially, the matrices of CaALG also had an excellent uptake and selectivity properties. (author)

  8. Magnetic properties and morphology of manganese ferrite nanoparticles in glasses

    International Nuclear Information System (INIS)

    Edelman, I; Ivanova, O; Ivantsov, I; Velikanov, D; Petrakovskaja, E; Artemenko, A; Curély, J; Kliava, J; Zaikovskiy, V; Stepanov, S

    2011-01-01

    Static magnetization (SM), magnetic circular dichroism (MCD) and electron magnetic resonance (EMR) studies are reported of borate glasses 22.5 K 2 O-22.5 Al 2 O 3 -55 B 2 O 3 co-doped with iron and manganese oxides. In as-prepared glasses the paramagnetic ions usually are in diluted state; however, if the ratio of the iron and manganese oxides in the charge is 3/2, magnetic nanoparticles are found already in as-prepared glass. After additional thermal treatment all glasses show magnetic behaviour, MCD and EMR due to the presence of magnetic nanoparticles with characteristics close to those of manganese ferrite. By computer simulating the EMR spectra at variable temperatures, their morphological characteristics are deduced: relatively broad size and shape distribution with average diameter of ca. 3-4 nm. The characteristic temperature-dependent shift of the apparent resonance field is explained by a strong temperature dependence of the magnetocrystalline anisotropy in the nanoparticles. The potassium-alumina-borate glasses containing magnetic nanoparticles represent a novel class of materials: t ransparent magnets . Indeed, they remain transparent in a part of visible and near infrared spectral range while showing magnetic and magneto-optical properties characteristic of magnetically ordered materials.

  9. Autoradiography of manganese: accumulation and retention in the pancreas

    International Nuclear Information System (INIS)

    Lyden, A.; Lindquist, N.G.; Larsson, B.S.

    1983-01-01

    By means of whole-body autoradiography, the general distribution of 54 MnCl 2 was studied in mice and a Marmoset monkey. High accumulation and retention were observed in the pancreas in both species. Gamma counting experiments in mice after a single intravenous injection of 54 MnCl 2 showed that the level in the pancreas exceeded that of the liver at all survival times (20 min. - 30 days). Also in the monkey, the concentration in the pancreas exceeded that of the liver, and the pancreas had the highest tissue/liver ratio of the organs measured at 24 hours after injection. The high uptake and long retention in the pancreas suggest that manganese is of importance for the pancreatic function but also that the pancreas may be a target organ for manganese toxicity. Positron tomography, using 11 C-labelled amino acids, has been found to be a promising diagnostic technique for the study of pancreatic disease. Positron emitting manganese isotopes may be worth further studies as possible agents for pancreatic imaging. (author)

  10. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  11. Evidence for polaron conduction in nanostructured manganese ferrite

    International Nuclear Information System (INIS)

    Gopalan, E Veena; Anantharaman, M R; Malini, K A; Saravanan, S; Kumar, D Sakthi; Yoshida, Yasuhiko

    2008-01-01

    Nanoparticles of manganese ferrite were prepared by the chemical co-precipitation technique. The dielectric parameters, namely, real and imaginary dielectric permittivity (ε' and ε-prime), ac conductivity (σ ac ) and dielectric loss tangent (tanδ), were measured in the frequency range of 100 kHz-8 MHz at different temperatures. The variations of dielectric dispersion (ε') and dielectric absorption (ε-prime) with frequency and temperature were also investigated. The variation of dielectric permittivity with frequency and temperature followed the Maxwell-Wagner model based on interfacial polarization in consonance with Koops phenomenological theory. The dielectric loss tangent and hence ε-prime exhibited a relaxation at certain frequencies and at relatively higher temperatures. The dispersion of dielectric permittivity and broadening of the dielectric absorption suggest the possibility of a distribution of relaxation time and the existence of multiple equilibrium states in manganese ferrite. The activation energy estimated from the dielectric relaxation is found to be high and is characteristic of polaron conduction in the nanosized manganese ferrite. The ac conductivity followed a power law dependence σ ac = Bω n typical of charge transport assisted by a hopping or tunnelling process. The observed minimum in the temperature dependence of the frequency exponent n strongly suggests that tunnelling of the large polarons is the dominant transport process

  12. Characterisation of chemically lithiated heat-treated electrolytic manganese dioxide

    International Nuclear Information System (INIS)

    Dose, Wesley M.; Lehr, Joshua; Donne, Scott W.

    2012-01-01

    Highlights: ► Manganese oxides are a promising cathode material for lithium ion batteries. Here we examine the structural and morphological changes that occur upon reduction, and assess its impact on material performance. ► Upon reduction, MnO 2 transforms into LiMn 2 O 4 , which is subsequently reduced to Li 2 Mn 2 O 4 . ► Significant morphological changes occur, particularly to the material porosity. ► This transformation for MnO 2 has not been reported previously. -- Abstract: Heat treated manganese dioxide is partially lithiated using butyl-lithium to determine the changes in crystal structure, chemical composition and morphology upon reduction, as a means of simulating its discharge behaviour in a non-aqueous battery cathode. As reduction proceeds, and lithium ions are inserted into the heat treated electrolytic manganese dioxide (EMD) structure, the material undergoes a phase transition to LiMn 2 O 4 . This new phase is further reduced to Li 2 Mn 2 O 4 . Reduction initially results in a 56% decrease in the surface area of the material; however, at higher degrees of reduction a slight increase in this value is observed, as a consequence of the strain placed on the lattice through continued lithium insertion.

  13. Dimensional crossover in manganese based analogues of iron pnictides

    Energy Technology Data Exchange (ETDEWEB)

    Zingl, Manuel; Assmann, Elias; Aichhorn, Markus [University of Technology, Institute of Theoretical Physics and Computational Physics, Graz (Austria)

    2016-07-01

    The manganese pnicitides BaMn{sub 2}As{sub 2} and LaOMnAs crystallize in the same structure as the extensively studied iron pnictide high-temperature superconductors BaFe{sub 2}As{sub 2} and LaOFeAs. In contrast to the d{sup 6} configuration of the iron systems, the manganese d-shell is only half-filled (d{sup 5}). As a consequence, electronic correlations are much stronger, placing these compounds at the verge of the Mott metal-insulator transition. In this region of the phase diagram materials are prone to enhanced magnetism, apparent in the remarkably high Neel temperature of 625 K for BaMn{sub 2}As{sub 2}. We demonstrate that the experimentally observed differences in the Neel temperatures, the band gap, and the optical properties of the manganese compounds under consideration can be traced back to their effective dimensionality. Our fully charge self-consistent DFT+DMFT calculations show excellent agreement with experiments, especially measured optical spectra.

  14. Iron and manganese removal from a groundwater supply

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, W.; Seifert, K.; Kasch, O.K. (Arber Richard P. Associates, Inc., Denver, CO (USA))

    1988-11-01

    The treatment options and planning techniques used by the town of Castle Rock (Colorado) for a new water treatment facility are described. Castle Rock officials assessed the available treatment options for dissolved iron and manganese removal and selected potassium permanganate as the primary oxidant to be followed by manganese greensand. A backup prechlorination system for oxidation was also installed. In addition, to prevent excess headloss buildup in the manganese greensand filter media, an anthracite carbon cap was used as the top filter medium for precipitate removal. It is recommended that a treatability study be performed to determine individual design criteria to allow for specific site conditions. The town also assessed the capital and operation and maintenance costs for both treatment at individual well fields and a centralized location for treatment of a cluster of well fields. The results indicate that it is more economical to provide centralized water treatment even though there are capital costs associated with piping raw water from the individual well fields to the central facility. 3 refs.

  15. Mercury distribution characteristics in primary manganese smelting plants.

    Science.gov (United States)

    Back, Seung-Ki; Sung, Jin-Ho; Moon, Young-Hoon; Kim, Young-Hee; Seok, Kwang-Seol; Song, Geum-Ju; Seo, Yong-Chil

    2017-08-01

    The mercury (Hg) distribution characteristics were investigated in three primary manganese smelting plants in Korea for the assessment of anthropogenic Hg released. Input and output materials were sampled from each process, and Hg concentrations in the samples were analyzed. Among the input materials, the most mercury was found in the manganese ore (83.1-99.7%) and mercury was mainly released through fly ash or off gas, depending on the condition of off gas cleaning system. As off gas temperature decreases, proportion and concentration of emitted gaseous elemental mercury (Hg 0 ) in off gas decreases. Based on mass balance study from these three plants and national manganese production data, the total amount of mercury released from those Korean plants was estimated to 644 kg/yr. About half of it was emitted into the air while the rest was released to waste as fly ash. With the results of this investigation, national inventory for Hg emission and release could be updated for the response to Minamata Convention on Mercury. Copyright © 2017. Published by Elsevier Ltd.

  16. Laser microstructuring and annealing processes for lithium manganese oxide cathodes

    International Nuclear Information System (INIS)

    Proell, J.; Kohler, R.; Torge, M.; Ulrich, S.; Ziebert, C.; Bruns, M.; Seifert, H.J.; Pfleging, W.

    2011-01-01

    It is expected that cathodes for lithium-ion batteries (LIB) composed out of nano-composite materials lead to an increase in power density of the LIB due to large electrochemically active surface areas but cathodes made of lithium manganese oxides (Li-Mn-O) suffer from structural instabilities due to their sensitivity to the average manganese oxidation state. Therefore, thin films in the Li-Mn-O system were synthesized by non-reactive radiofrequency magnetron sputtering of a spinel lithium manganese oxide target. For the enhancement of the power density and cycle stability, large area direct laser patterning using UV-laser radiation with a wavelength of 248 nm was performed. Subsequent laser annealing processes were investigated in a second step in order to set up a spinel-like phase using 940 nm laser radiation at a temperature of 680 deg. C. The interaction processes between UV-laser radiation and the material was investigated using laser ablation inductively coupled plasma mass spectroscopy. The changes in phase, structure and grain shape of the thin films due to the annealing process were recorded using Raman spectroscopy, X-ray diffraction and scanning electron microscopy. The structured cathodes were cycled using standard electrolyte and a metallic lithium anode. Different surface structures were investigated and a significant increase in cycling stability was found. Surface chemistry of an as-deposited as well as an electrochemically cycled thin film was investigated via X-ray photoelectron spectroscopy.

  17. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  18. Radiocarbon dating of magnetic and non magnetic soil fractions as a method to estimate the heterotrophic component of soil respiration in a primary forest of Ghana.

    Science.gov (United States)

    Chiti, T.; Certini, G.; Marzaioli, F.; Valentini, R.

    2012-04-01

    We estimated the heterotrophic component (Rh) of soil respiration in a primary forest of Ghana by radiocarbon dating, a method we already successfully applied in temperate and Mediterranean forests. In this case, given the advanced stage of alteration of tropical soils, which are thus rich in oxides, we implemented the method on soil fractions obtained by High Gradient Magnetic Separation (HGMS), hence based on different degrees of magnetic susceptibility. In particular, we separated an organic pool associated with magnetic minerals (e.g iron oxides) from an organic pool engaged with non-magnetic minerals. This non destructive method of fractionation, often applied to the finest fraction of soil (clay), is here attempted on the bulk fine earth (sieved at 2 mm and further at 0.5 mm ,so as to have two size fractions: 2 to 0.5 mm and aggregates. Surprisingly, the non magnetic fraction is not influenced at all by the bomb C (negative delta 14) already at a depth of 5-15 cm and, even, at 15-30 cm all the four fractions have pre-bomb C, which means relatively high radiocarbon age. The finest fractions are the main contributors to the Rh flux, particularly the magnetic fraction (analysis of the bulk soil alone, and only by means of a SOC fractionation the Rh flux can be estimated quite accurately. This alternative approach for estimating the Rh component of CO2 from soils of tropical areas is currently being applied in 10 tropical forest sites in western and central Africa in the context of the ERC Africa GHG project, and together with measurements of the C inputs annually entering the soil will allow determining the sink-source capacity of primary forest soils.

  19. Effect of aging on properties of pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Druce, S.G.; Gage, G.; Jordan, G.

    1986-04-01

    Manganese-molybdenum-nickel steels are used in nuclear pressure vessels operating at temperatures up to 350/sup 0/C. The effects of thermal ageing in the temperature range 300-550/sup 0/C for durations up to 2 x 10/sup 4/ h have been studied in conventionally quenched and tempered and simulated heat-affected-zone (HAZ) microstructural conditions. Quantitative fractography and Auger spectroscopy have been used to relate changes in mechanical properties with changes in fracture mode and grain boundary chemistry. Aging increases the ductile-brittle transition temperature by an amount dependent on material, prior heat treatment, aging temperature and time. Embrittlement is associated with segregation of phosphorus to grain boundaries and is modelled using McLean's approach to equilibrium segregation.

  20. Effect of metallurgical variables on environmental fracture of steels

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, I M; Thompson, A W

    1976-12-01

    The susceptibility of iron alloys, in particular, steels, to hydrogen embrittlement is examined. It is demonstrated by a review of available data on metallurgically well-characterized alloys that the nature and extent of hydrogen susceptibility are sensitive and often predictable functions of such metallurgical variables as composition, grain size, texture, microstructure, and thermal treatment. Specifically, solutes such as carbon and manganese are shown to be capable of leading to a degradation of performance in hydrogen, whereas silicon and titanium are often beneficial additions. Microstructures at equivalent strength levels are ranked in order of susceptibility; generally, a refined substructure gives the best results. The role of heat treatment in controlling the hydrogen-induced crack path and its relationship to thermal embrittlement phenomena are stressed. Finally, possible hydrogen embrittlement mechanisms are assessed in terms of the critical roles of metallurgical variables in the embrittlement.