WorldWideScience

Sample records for maleic acid anhydride

  1. Partial oxidation of D-xylose to maleic anhydride and acrylic acid over vanadyl pyrophosphate

    Ghaznavi, Touraj; Neagoe, Cristian; Patience, Gregory S.

    2014-01-01

    Xylose is the second most abundant sugar after glucose. Despite its tremendous potential to serve as a renewable feedstock, few commercial processes exploit this resource. Here, we report a new technology in which a two-fluid nozzle atomizes a xylose-water solution into a capillary fluidized bed operating above 300 °C. Xylose-water droplets form at the tip of the injector, vaporize then react with a heterogeneous mixed oxide catalyst. A syringe pump metered the solution to the reactor charged with 1 g of catalyst. Product yield over vanadyl pyrophosphate was higher compared to molybdenum trioxide-cobalt oxide and iron molybdate; it reached 25% for maleic anhydride, 17% for acrylic acid and 11% for acrolein. Gas residence time was 0.2 s. The catalyst was free of coke even after operating for 4 h – based on a thermogravimetric analysis of catalyst withdrawn from the reactor. Below 300 °C, powder agglomerated at the tip of the injector at 300 °C; it also agglomerated with a xylose mass fraction of 7% in water. - Highlights: • D-xylose reacts to form maleic anhydride and acrylic acid above 250 °C. • Vanadyl pyrophosphate is both active and selective for maleic and acrylic acid. • Acid and acrolein yield approaches 50% for a xylose mass fraction of 3% in water. • Catalyst agglomerates at low temperatures and high xylose aqueous mass fraction. • Atomization quality is a determining factor to minimize agglomeration

  2. Tensile and morphology properties of PLA/LNR blends modified with maleic anhydride grafted-polylactic acid and -natural rubber

    Ruf, Mohd Farid Hakim Mohd; Ahmad, Sahrim; Chen, Ruey Shan; Shahdan, Dalila; Zailan, Farrah Diyana

    2018-04-01

    This research was carried out to investigate the addition of grafted copolymers of maleic anhydride grafted-polylactic acid(PLA-g-MA) and maleic anhydride grafted-natural rubber (NR-g-MA) on the tensile and morphology properties of polylactic acid/ liquid natural rubber (PLA/LNR) blends. Prior to blend preparation, the PLA-g-MA and NR-g-MA was first self-synthesized using maleic anhydride (MA) and dicumyl peroxide (DCP) as initiator together with the PLA and NR respectively. The PLA/LNR, PLA/LNR/PLA-g-MA and PLA/LNR/NR-g-MA blends were prepared via melt-blending method. The loading of PLA-g-MA and NR-g-MA was varied by 5, 10 and 15 wt% respectively. The addition of PLA-g-MA led to increment in tensile strength with 5 and 10 wt% while NR-g-MA gives lower than controlled sample (PLA/LNR blend). Scanning electron microscope (SEM) showed the interaction of the components in the blends. The PLA/LNR compatibilized with PLA-g-MA and NR-g-MA shows greater dispersion and adhesion.

  3. Development of chitosan derivatives with anhydride maleic

    Silva, Solranny C.C.C.; Braz, Elton Marks de A.; Brito, Carla Adriana R. de S.; Silva, Durcilene A. da; Junior, Luiz de S.S.; Silva Filho, Edson C. da

    2015-01-01

    Chitosan was chemically modified with maleic anhydride in ratios of 1/2, 1/5 and 1/10 in the absence of solvents. The obtained derivatives were characterized by elemental analysis, FTIR, thermal analysis (TGA / DTG) and XRD where it was possible to prove the chemical modification. Elemental analysis showed an increase of the relation C / N with the increasing of the proportion of anhydrides. The FTIR showed the incorporation of the anhydride in the biopolymer structure. The thermal stability of the derivatives was lower in comparison to the polysaccharide and by XRD the modified materials were less crystalline. (author)

  4. Two-step modification of poly(D, L-lactic acid) by ethylenediamine-maleic anhydride

    Cao Chengbo; Zhu Fanglian; Yu Xueli; Wang Qin; Wang Chuandong; Li Baolu; Lv Ronghui; Li Musen

    2008-01-01

    Poly(lactic acid) (PLA) was modified by maleic anhydride (MAH), then the resultant MAH modified PLA (MPLA) was acylated with ethylenediamine (EDA), so EDA-MAH modified PLA (EMPLA) was prepared. The results of DSC, FT-IR and NMR testified that MAH and EAD were successfully introduced into the original polymer. The hydrophilicity of EMPLA was considerably increased compared with that of PLA. The degradation experiment showed that the introduction of EDA into the original polymer could neutralize the carboxyl end groups of the degradation products. The results of SEM and MTT of rat osteoblasts cultured in vitro showed that the cytocompatibility and cell adhesion of the modified materials were significantly increased compared with the original polymer, especially EMPLA; the number of cells were obviously increased and cells attached firmly to the material; these were ascribed to the EDA neutralizing the carboxyl end groups of the degradation products

  5. Influence of Maleic Anhydride/Glycidyl Methacrylate Cografted Polylactic Acid on Properties of Wood Flour/PLA Composites

    DU Jun

    2017-12-01

    Full Text Available Graft copolymers of PLA-g-MAH, PLA-g-GMA and PLA-co-MAH/GMA were prepared by means of melt grafting. The structure of the graft copolymers were characterized by FTIR.Wood flour/PLA composites were prepared by injection molding with three kinds of graft copolymers as compatibilizers, and the fractured morphology of composites was investigated by scanning electron microscope (SEM. Results show that there is no obvious phase interface between wood flour and PLA,which indicating the interfacial compatibility of wood flour/PLA composites is improved after adding different graft copolymers. The determination results of mechanical properties, processing flowability and dynamic rheological property of composites prepared with different graft copolymers reveal that, compared to the composite without compatibilizer, the tensile strength and impact strength of wood flour/PLA composites are increased by 9.54% and 7.23% respectively, and the equilibrium torque, shear heat, storage modulus and complex viscosity are all increased after adding maleic anhydride/glycidyl methacrylate cografted polylactic acid.

  6. Maleic anhydride grafting on EPDM rubber in the melt

    Oostenbrink, A.J.; Oostenbrink, A.J.; Gaymans, R.J.

    1992-01-01

    The grafting of maleic anhydride on a EPDM rubber was studied with a twin screw extruder. The effect of barrel temperatures, throughput, maleic anhydride concentration and peroxide concentration [bis(t-butyl peroxy isopropyl)benzene] on the degree of grafting and melt viscosity was studied. The

  7. Method for production of dicarbonic acid anhydrides

    Mistr, A.; Necas, J.; Polak, V.

    1975-01-01

    A method is described of producing dicarboxylic acid anhydrides by the reaction of maleic acid anhydride with olefins. The synthesis is initiated by gamma radiation at a total dose of 10 4 to 10 6 rads in the presence of an organic solvent. The addition reactions of maleic acid anhydride to 1-hexadecene, 1-octene and cyclohexene with yields of 43%, 17% and 11%, respectively, are specified. (L.K.)

  8. Styrene-Assisted Maleic Anhydride Grafted Poly(lactic acid as an Effective Compatibilizer for Wood Flour/Poly(lactic acid Bio-Composites

    Jun Du

    2017-11-01

    Full Text Available This study aimed to evaluate the effect of styrene-assisted maleic anhydride-grafted poly(lactic acid (PLA-g-St/MAH on the interfacial properties of wood flour/poly(lactic acid (PLA bio-composites. PLA-g-St/MAH was synthesized by free-radical melt grafting using styrene as a comonomer and dicumyl peroxide as an initiator. The structure of PLA-g-St/MAH was characterized by Fourier transform infrared spectroscopy. Wood flour/PLA composites were prepared by compression molding using PLA-g-St/MAH as a compatibilizer. The effects of PLA-g-St/MAH on the rheological and mechanical properties, as well as on the fractured surface morphology of the composites were investigated. Results indicated that storage modulus, complex viscosity, equilibrium torque, and shear heat were significantly increased. The mechanical properties of the wood flour/PLA composites were also significantly increased after the addition of PLA-g-St/MAH. The maximum values were achieved at the loading rate of 3 wt % because of the improved interfacial adhesion between the wood flour and the PLA matrix.

  9. A new process for the valorisation of a bio-alcohol. The oxidehydration of 1-butanol into maleic anhydride

    Caldarelli, A.; Cavani, F.; Garone, O.; Pavarelli, G. [Bologna Univ. (Italy). Dipt. di Chimica Industriale e dei Materiali; Bologna Univ. (Italy). CIRCC, Research Unit; Dubois, J.L. [ARKEMA, Colombes (France); Mitsova, I.; Simeonova, L. [JSC, Russe (Bulgaria). Orgachim

    2012-07-01

    This paper deals with a study on the gas-phase transformation of 1-butanol into maleic anhydride, using different types of catalysts. Indeed, catalytic acid properties are needed to dehydrate 1-butanol into 1-butene, whereas redox-type properties are required for the oxidation of the olefin into maleic anhydride. The two types of active sites can be combined in bifunctional systems, showing both acid and redox-type properties. We found that vanadyl pyrophosphate catalyzes the one-pot reaction, giving a maximum selectivity to maleic anhydride of 28%. In fact, various side reactions contributed to the formation of by-products, eg, 1-butanol (oxidative) dehydrogenation into butyraldehyde, formation of light carboxylic acids and carbon oxides, and condensation of unsaturated C{sub 4} intermediates (butenes and butadiene) with the formed maleic anhydride to yield heavier compounds. (orig.)

  10. 21 CFR 177.1820 - Styrene-maleic anhydride copolymers.

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Styrene-maleic anhydride copolymers. 177.1820 Section 177.1820 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use...

  11. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials

    Sari, Ahmet; Alkan, Cemil; Karaipekli, Ali; Onal, Adem

    2008-01-01

    Fatty acids such as stearic acid (SA), palmitic acid (PA), myristic acid (MA) and lauric acid (LA) are promising phase change materials (PCMs) for latent heat thermal energy storage (LHTES) applications, but high cost is the major drawback of them, limiting their utility area in thermal energy storage. The use of fatty acids as form stable PCMs will increase their feasibilities in practical applications due to the reduced cost of the LHTES system. In this regard, a series of styrene maleic anhydride copolymer (SMA)/fatty acid composites, SMA/SA, SMA/PA, SMA/MA, and SMA/LA, were prepared as form stable PCMs by encapsulation of fatty acids into the SMA, which acts as a supporting material. The encapsulation ratio of fatty acids was as much as 85 wt.% and no leakage of fatty acid was observed even when the temperature of the form stable PCM was over the melting point of the fatty acid in the composite. The prepared form stable composite PCMs were characterized using optic microscopy (OM), viscosimetry and Fourier transform infrared (FT-IR) spectroscopy methods, and the results showed that the SMA was physically and chemically compatible with the fatty acids. In addition, the thermal characteristics such as melting and freezing temperatures and latent heats of the form stable composite PCMs were measured by using the differential scanning calorimetry (DSC) technique, which indicated they had good thermal properties. On the basis of all the results, it was concluded that form stable SMA/fatty acid composite PCMs had important potential for practical LHTES applications such as under floor space heating of buildings and passive solar space heating of buildings by using wallboard, plasterboard or floors impregnated with a form stable PCM due to their satisfying thermal properties, easy preparation in desired dimensions, direct usability without needing additional encapsulation thereby eliminating the thermal resistance caused by the shell and, thus, reducing the cost of

  12. Blending of Low-Density Polyethylene and Poly-Lactic Acid with Maleic Anhydride as A Compatibilizer for Better Environmentally Food-Packaging Material

    Setiawan, A. H.; Aulia, F.

    2017-05-01

    The common conventional food packaging materialsare using a thin layer plastic or film, which is made of a synthetic polymer, such as Low-Density Poly Ethylene (LDPE). However, the use of these polymers hasan adverse impact on the environment, because the synthetic polymersare difficult to degrade naturally. Poly-Lactic Acid (PLA) is a biodegradable polymer that can be substituted to synthetic polymers. Since LDPE and PLA have a difference in polarity, therefore the first step of research is to graft them with maleic anhydride (MAH) for increasing the properties of its miscibility. The interaction between them is confirmed by FTIR; whereas the environment issueis characterized by the water adsorption and biodegradability. The FTIR spectra indicated that there had been an interaction between LDPE and MAH and LDPE/LDPE-g-MAH/PLA blend. Increasing PLA content in the blend affected to the increasing in their water absorption and biodegradable. Poly-blend with 20% PLA content was the optimum composition for environmentally food packaging.

  13. Selective hydrogenation of maleic anhydride over Pd/Al2O3 ...

    Keywords. Pd/Al2O3 catalyst; maleic anhydride; selective hydrogenation; succinic anhydride. 1. Introduction ... attracted a significant amount of attention because the majority of its ... added, and the colour of the resulting mixture turned brown.

  14. Hydrolysis and stability of thin pulsed plasma polymerised maleic anhydride coatings

    Drews, Joanna Maria; Launay, Héléne; Hansen, Charles M.

    2008-01-01

    Abstract The stability of plasma polymerised layers has become important because of their widespread use. This study explored the hydrolysis and degradation stability of coatings of plasma polymerised maleic anhydride. Coatings made with different plasma parameters were exposed to aqueous media...... of different pH as a function of time. ATR-FTIR was used for structure analysis and a toluidine blue staining method allowed quantitative analysis of the hydrolysis of anhydride groups to acid groups. Coatings with constant thickness were obtained at different plasma powers and layers with varying thickness...

  15. Initiation precursors and initiators in laser-induced copolymerization of styrene and maleic anhydride in acetone

    Miner, Gilda A.; Meador, Willard E.; Chang, C. Ken

    1990-01-01

    The initiation step of photopolymerized styrene/maleic anhydride copolymer was investigated at 365 nm. UV absorption measurements provide decisive evidence that the styrene/maleic anhydride charge transfer complex is the sole absorbing species; however, key laser experiments suggest intermediate reactions lead to a monoradical initiating species. A mechanism for the photoinitiation step of the copolymer is proposed.

  16. Irradiation grafting of natural rubber latex with maleic anhydride and its compatibilization of poly(lactic acid)/natural rubber blends

    Pongsathit, Siriwan; Pattamaprom, Cattaleeya

    2018-03-01

    Maleic anhydride (MA) is an interesting monomer to be grafted onto natural rubber(NR) due to its potential as a compatibilizer of hydrophobic rubbers and polymers with higher polarity. So far, radiation grafting of MA onto NR in latex state has not been reported. In this study, the grafting of NR with MA in latex state was investigated by exposing the latex to cobalt-60 gamma irradiation at a fixed MA content of 9% and a varied absorbed doses from 2 to 10 kGy. The FTIR spectrometer, 1H NMR spectrometer and gel content analysis have confirmed successful grafting of MA onto NR after irradiation. The grafted NRs were then used to increase the compatibility and the impact property of PLA/NR blends. It was found that the highest impact strength of the blends was achieved when the grafting was carried out at the absorbed dose of 4 kGy.

  17. Urea- Hydrogen Peroxide (UHP Oxidation of Thiols to the Corresponding Disulfides Promoted by Maleic Anhydride as Mediator

    M. H. Habibi

    2005-10-01

    Full Text Available Urea-hydrogen peroxide (UHP was used in the presence of maleic anhydride as mediator in a simple and convenient method for the oxidation in high yield of some thiols to the corresponding disulfides. Peroxymaleic acid formed in situ from the reaction of UHP with maleic anhydride has a key role in this oxidation. Performance of the reaction in various solvents showed that methanol was the solvent of choice at 0 oC. The products were isolated by simple filtration on silica gel.

  18. Synthesis and Characterization of Poly(maleic Anhydride)s Cross-linked Polyimide Aerogels

    Guo, Haiquan; Meador, Mary Ann B.

    2015-01-01

    With the development of technology for aerospace applications, new thermal insulation materials are required to be flexible and capable of surviving high heat flux. For instance, flexible insulation is needed for inflatable aerodynamic decelerators which are used to slow spacecraft for entry, descent and landing (EDL) operations. Polyimide aerogels have low density, high porosity, high surface area, and better mechanical properties than silica aerogels and can be made into flexible thin films, thus they are potential candidates for aerospace needs. The previously reported cross-linkers such as octa(aminophenyl)silsesquioxane (OAPS) and 1,3,5-triaminophenoxybenzene (TAB) are either expensive or not commercially available. Here, we report the synthesis of a series of polyimide aerogels cross-linked using various commercially available poly(maleic anhydride)s, as seen in Figure 1. The amine end capped polyimide oligomers were made with 3,3,4,4-biphenyltetracarboxylic dianhydride (BPDA) and diamine combinations of dimethylbenzidine (DMBZ) and 4, 4-oxydianiline (ODA). The resulting aerogels have low density (0.12 gcm3 to 0.16 gcm3), high porosity (90) and high surface area (380-554 m2g). The effect of the different poly(maleic anhydride) cross-linkers and polyimide backbone structures on density, shrinkage, porosity, surface area, mechanical properties, moisture resistance and thermal properties will be discussed.

  19. PDMS-modified poly(styrene-alt-maleic anhydride)s as water-borne coatings based on surfactant-free latexes

    Gunbas, I.D.; Wouters, M.E.L.; Benthem, R.A.T.M. van; Koning, C.E.; Noordover, B.A.J.

    2013-01-01

    In this work, two series of PDMS-modified poly(styrene-alt-maleic anhydride)s (PSMA) were prepared by the partial imidization of their anhydride groups with mono-functional, amine-terminated polydimethyl siloxanes (PDMS-NH2) with two different molecular weights. Subsequently, surfactant-free

  20. Decoration of a Poly(methyl vinyl ether-co-maleic anhydride)-Shelled Selol Nanocapsule with Folic Acid Increases Its Activity Against Different Cancer Cell Lines In Vitro.

    Ganassin, Rayane; Souza, Ludmilla Regina de; Py-Daniel, Karen Rapp; Longo, João Paulo Figueiró; Coelho, Janaína Moreira; Rodrigues, Mosar Correa; Jiang, Cheng-Shi; Gu, Jinsong; Morais, Paulo César de; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; Báo, Sônia Nair; Azevedo, Ricardo Bentes; Muehlmann, Luis Alexandre

    2018-01-01

    Due to the low therapeutic index of different chemotherapeutic drugs used for cancer treatment, the development of new anticancer drugs remains an intense field of research. A recently developed mixture of selenitetriacylglycerides, selol, was shown to be active against different cancer cells in vitro. As this compound is highly hydrophobic, it was encapsulated, in a previous study, into poly(methyl vinyl ether-co-maleic anhydride)-shelled nanocapsules in order to improve its dispersibility in aqueous media. Following this line of research, the present report aimed at enhancing the In Vitro activity of the selol nanocapsules against cancerous cells by decorating their surface with folic acid. It is known that several cancer cells overexpress folate receptors. Stable folic acid-decorated selol nanocapsules (SNP-FA) were obtained, which showed to be spherical, with a hydro-dynamic diameter of 364 nm, and zeta potential of -24 mV. In comparison to non-decorated selol nanocapsules, SNP-FA presented higher activity against 4T1, MCF-7 and HeLa cells. Moreover, the decoration of the nanocapsules did not alter their toxicity towards fibroblasts, NIH-3T3 cells. These results show that the decoration with folic acid increased the toxicity of selol nanocapsules to cancer cells. These nanocapsules, besides enabling to disperse selol in an aqueous medium, increased the toxicity of this drug In Vitro, and may be useful to treat cancer in vivo, potentially increasing the specificity of selol towards cancer cells.

  1. Highly Efficient Gas-Phase Oxidation of Renewable Furfural to Maleic Anhydride over Plate Vanadium Phosphorus Oxide Catalyst.

    Li, Xiukai; Ko, Jogie; Zhang, Yugen

    2018-02-09

    Maleic anhydride (MAnh) and its acids are critical intermediates in chemical industry. The synthesis of maleic anhydride from renewable furfural is one of the most sought after processes in the field of sustainable chemistry. In this study, a plate vanadium phosphorus oxide (VPO) catalyst synthesized by a hydrothermal method with glucose as a green reducing agent catalyzes furfural oxidation to MAnh in the gas phase. The plate catalyst-denoted as VPO HT -has a preferentially exposed (200) crystal plane and exhibited dramatically enhanced activity, selectivity and stability as compared to conventional VPO catalysts and other state-of-the-art catalytic systems. At 360 °C reaction temperature with air as an oxidant, about 90 % yield of MAnh was obtained at 10 vol % of furfural in the feed, a furfural concentration value that is much higher than those (<2 vol %) reported for other catalytic systems. The catalyst showed good long-term stability and there was no decrease in activity or selectivity for MAnh during the time-on-stream of 25 h. The high efficiency and catalyst stability indicate the great potential of this system for the synthesis of maleic anhydride from renewable furfural. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Designing maleic anhydride-{alpha}-olifin copolymeric combs as wax crystal growth nucleators

    Soni, Hemant P. [Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (India); Kiranbala; Bharambe, D.P. [Department of Applied Chemistry, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara-390 001 (India); Agrawal, K.S. [Department of Petrochemical Technology, Polytechnic, The Maharaja Sayajirao University of Baroda, Vadodara-390 002 (India); Nagar, A. [MH ASSET, ONGC, Mumbai (India)

    2010-09-15

    Modification of the wax crystal habit is of great practical interest during transportation and processing of crude oil at low temperature. Various pour point depressant (PPD) additives can facilitate this modification by different mechanisms. Comb shaped polymer additives are known to depress the pour point of crude oil by providing different nucleation sites for the precipitation of wax. This paper describes performance based design, synthesis, characterization and evaluation of comb shaped polymeric diesters. Copolymers of maleic anhydride with different unsaturated C{sub 22} esters were synthesized and copolymers then reacted with two unsaturated fatty alcohols. All products were characterized by Fourier Transform Infra Red (FTIR) spectroscopy and Gel Permeation Chromatography (GPC). Rheological properties of crude (with and without additive) were studied by Advance Rheometer AR-500. In this study the additive based on oleic acid was evaluated as good PPD and rheology modifier. (author)

  3. Development of chitosan derivatives with anhydride maleic; Desenvolvimento de derivados de quitosana com anidrido maleico

    Silva, Solranny C.C.C.; Braz, Elton Marks de A.; Brito, Carla Adriana R. de S.; Silva, Durcilene A. da; Junior, Luiz de S.S.; Silva Filho, Edson C. da, E-mail: solbiologa@hotmail.com [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil)

    2015-07-01

    Chitosan was chemically modified with maleic anhydride in ratios of 1/2, 1/5 and 1/10 in the absence of solvents. The obtained derivatives were characterized by elemental analysis, FTIR, thermal analysis (TGA / DTG) and XRD where it was possible to prove the chemical modification. Elemental analysis showed an increase of the relation C / N with the increasing of the proportion of anhydrides. The FTIR showed the incorporation of the anhydride in the biopolymer structure. The thermal stability of the derivatives was lower in comparison to the polysaccharide and by XRD the modified materials were less crystalline. (author)

  4. Blends of Styrene-Butadiene-Styrene Triblock Copolymer with Random Styrene-Maleic Anhydride Copolymers

    Piccini, Maria Teresa; Ruggeri, Giacomo; Passaglia, Elisa; Picchioni, Francesco; Aglietto, Mauro

    2002-01-01

    Blends of styrene-butadiene-styrene triblock copolymer (SBS) with random styrene-maleic anhydride copolymers (PS-co-MA), having different MA content, were prepared in a Brabender Plastigraph mixer. The presence of polystyrene (PS) blocks in the SBS copolymer and the high styrene content (93 and 86

  5. Maleic anhydride based copolymer dispersions for surface modification of polar substrates

    Gunbas, I.D.; Wouters, M.E.L.; Hendrix, M.M.R.M.; Benthem, R.A.T.M. van; Koning, C.E.; Noordover, B.A.J.

    2012-01-01

    In this article, we report the modification of poly(styrene-alt-maleic anhydride) (PSMA) with monofunctional amine-terminated poly(dimethyl siloxane) (PDMS-NH2) by thermal imidization, followed by the preparation and characterization of a surfactant-free artificial latex thereof and application of

  6. Maleic anhydride based copolymer dispersions for surface modification of polar substrates

    Gunbas, I.D.; Wouters, M.E.L.; Hendrix, M.M.R.M.; Benthem, van R.A.T.M.; Koning, C.E.; Noordover, B.A.J.

    2012-01-01

    In this article, we report the modification of poly(styrene-alt-maleic anhydride) (PSMA) with monofunctional amine-terminated poly(dimethyl siloxane) (PDMS–NH2) by thermal imidization, followed by the preparation and characterization of a surfactant-free artificial latex thereof and application of

  7. THE GRAFTING OF MALEIC-ANHYDRIDE ON HIGH-DENSITY POLYETHYLENE IN AN EXTRUDER

    GANZEVELD, KJ; JANSSEN, LPBM

    The grafting of maleic anhydride (MAH) on high density polyethylene in a counter-rotating twin screw extruder has been studied. As the reaction kinetics appear to be affected by mass transfer, good micro mixing in the extruder is important. Due to the competing mechanisms of increasing mixing and

  8. Towards anti-corrosion coatings from surfactant-free latexes based on maleic anhydride containing polymers

    Soer, W.J.; Ming, W.; Koning, C.E.; Benthem, van R.A.T.M.

    2008-01-01

    We report on the film formation of surfactant-free, artificial latexes based on copolymers containing maleic anhydride. Different metallic substrates, such as aluminum, steel and magnesium alloys, were coated with three different latexes. A commercial polyester based coating was used as a

  9. Controlled Release of Damascone from Poly(styrene-co-maleic anhydride-based Bioconjugates in Functional Perfumery

    Andreas Herrmann

    2013-02-01

    Full Text Available Poly(styrene-co-maleic anhydrides were modified with poly(propylene oxide (PO-co-ethylene oxide (EO side chains (Jeffamine® with different EO/PO molar ratios, varying between 0.11 and 3.60. These copolymers were then further functionalized with a β-mercapto ketone of δ-damascone. The obtained poly(maleic acid monoamide-based β-mercapto ketones were then studied as delivery systems for the controlled release of δ-damascone by retro 1,4-addition. The release of δ-damascone, a volatile, bioactive molecule of the family of rose ketones, was studied by dynamic headspace analysis above a cotton surface after deposition of a cationic surfactant containing fabric softening formulation, as a function of the ethylene oxide (EO/propylene oxide (PO molar ratio of the grafted copolymer side chains. The polarity of the EO/PO side chain influenced the release efficiency of the damascone in a typical fabric softening application. PO-rich copolymers and the corresponding poly(styrene-co-maleic anhydride without Jeffamine® side chains were found to be less efficient for the desired fragrance release than the corresponding bioconjugate with a EO/PO ratio of 3.60 in the side chain. This copolymer conjugate seemed to represent a suitable balance between hydrophilicity and hydrophobicity to favor the release of the δ-damascone and to improve the deposition of the conjugate from an aqueous environment onto a cotton surface.

  10. Preparation and Mechanical Properties of Chitosan-graft Maleic Anhydride Reinforced with Montmorillonite

    Fajrin, A.; Sari, L. A.; Rahmawati, N.; Saputra, O. A.; Suryanti, V.

    2017-02-01

    The research aims to develop biodegradable composites as bio-based plastics from chitosan. The composites were prepared via solution casting method by introducing the maleic anhydride (MAH) as grafting agent and montmorillonite (MMt) as reinforcement. The grafting process of chitosan was conducted by varying concentrations of MAH which were 10, 20, and 30% w/w. It was observed that the chitosan-graft-maleic anhydride (Cs-g-MAH) containing 10% w/w of MAH increased its tensile strength by 70%. Reinforcement material was added to the Cs-g-MAH by varying MMt concentrations, e.g. 3, 6, 9 and 12% w/w. It was noted that the presence of 9% w/w of MMt in the Cs-g-MAH gave the best mechanical properties of the Cs-g-MAH/MMt composite.

  11. Biomaterial properties evaluation of poly(vinyl acetate- alt-maleic anhydride)/chitosan nanocapsules

    Raţă, Delia Mihaela; Popa, Marcel; Chailan, Jean-François; Zamfir, Carmen Lăcrămioara; Peptu, Cătălina Anişoara

    2014-08-01

    Nanocapsules with diameter around 100 nm based on a natural polymer (chitosan) and a synthetic polymer poly(vinyl acetate- alt-maleic anhydride) [poly(MAVA)] by interfacial condensation method were prepared. The present study proposes a new type of biocompatible nanocapsules based on poly(vinyl acetate- alt-maleic anhydride-chitosan) (MCS) able to become a reliable support for inclusion and release of drugs. The spherical shape of the nanocapsules was evidenced by scanning electron microscopy. Nanocapsules presented a good Norfloxacin loading and release capacity. Haemocompatibility tests have demonstrated that the nanocapsules present a low toxicity and a good compatibility with sanguine medium. The biocompatibility properties of the nanocapsules after their intraperitoneal administration in rats were evidenced by histopathological examination of different organs (brain, liver, kidney, and lung). The results are encouraging and the nanocapsules can be used as controlled drug delivery systems.

  12. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, from ammonium hydroxide... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... subject to reporting. (1) The chemical substance identified as amides, from ammonium hydroxide - maleic...

  13. Kaolinite Nanocomposite Platelets Synthesized by Intercalation and Imidization of Poly(styrene-co-maleic anhydride

    Pieter Samyn

    2015-07-01

    Full Text Available A synthesis route is presented for the subsequent intercalation, exfoliation and surface modification of kaolinite (Kln by an imidization reaction of high-molecular weight poly(styrene-co-maleic anhydride or SMA in the presence of ammonium hydroxide. In a first step, the intercalation of ammonolyzed SMA by guest displacement of intercalated dimethylsulfoxide has been proven. In a second step, the imidization of ammonolyzed SMA at 160 °C results in exfoliation of the kaolinite layers and deposition of poly(styrene-co-maleimide or SMI nanoparticles onto the kaolinite surfaces. Compared with a physical mixture of Kln/SMI, the chemically reacted Kln/SMI provides more efficient exfoliation and hydrogen bonding between the nanoparticles and the kaolinite. The kaolinite nanocomposite particles are synthesized in aqueous dispersion with solid content of 65 wt %. The intercalation and exfoliation are optimized for a concentration ratio of Kln/SMI = 70:30, resulting in maximum intercalation and interlayer distance in combination with highest imide content. After thermal curing at 135 °C, the imidization proceeds towards a maximum conversion of the intermediate amic acid moieties. The changes in O–H stretching and kaolinite lattice vibrations have been illustrated by infrared and FT-Raman spectroscopy, which allow for a good quantification of concentration and imidization effects.

  14. Réaction du polyisobutène chloré sur l'anhydride maléique : mécanisme. Catalyse par l'anhydride dichloromaléique Reaction of Chlorinated Polyisobutene on Maleic Anhydride. Mechanism. Catalysis by Dichloromaleic Anhydride

    Sillion B.

    2006-11-01

    Full Text Available Dans cet article le mécanisme de la réaction de condensation du polyisobutène chloré sur l'anhydride maléique, qui sert dans la synthèse d'additif pour lubrifiant, est étudié par une cinétique globale et par un travail sur composés modèles. Il est montré que, dans cette réaction, l'anhydride maléique joue un double rôle : de catalyseur de déshydrochloration par une réactivité de type acide de Lewis organique, de réactif comme diénophile. Grâce à ces résultats, il est proposé une catalyse par l'anhydride dichloromaléique, qui permet une amélioration sensible du procédé. This article examines the mechanism of the chlorinated-polyisobutene condensation reaction on maleic anhydride. The overall kinetics and model compounds are investigated for this reaction which is used in the synthesis of lubricant additives. Maleic anhydride is shown to play the dual role of a dehydrochlorination catalyst by having a reactivity of the organic Lewis acid type and of a reactant like dienophile. These results are used to propose a catalysis by dichloromaleic anhydride which appreciably improves the process.

  15. MECHANICAL, ELECTRICAL, AND THERMAL PROPERTIES OF MALEIC ANHYDRIDE MODIFIED RICE HUSK FILLED PVC COMPOSITES

    Navin Chand; Bhajan Das Jhod

    2008-01-01

    Unmodified and modified rice husk powder filled PVC composites were prepared having different amounts of rice husk powder. Mechanical, thermal, and electrical properties of these composites were determined. The tensile strength of rice husk powder PVC composites having 0, 10, 20, 30, and 40 weight percent of rice husk powder was found to be 33.9, 19.4, 18.1, 14.6, and 9.5 MPa, respectively. Adding of maleic anhydride- modified rice husk powder improved the tensile strength of rice husk powder...

  16. Comparative Study Of The Preparation Of Maleic Anhydride-g-Polypropylene By Two Grafting Processes Using Peroxide

    Sakahara, R.M.; Wang, S.H.

    2010-01-01

    The Polypropylene grafting with Maleic anhydride is a thoroughly known technique. Its wide application is due, mainly,to the controlled changing in the polarity of this polymer, which increases the interfacial adhesion in blends and compounds. In this study, two grafting processes were compared. In the first, the maleic anhydride was grafted on polypropylene in a solution batch process, carried out in a round-bottom vessel. The second approach was carried out by reactive extrusion of polypropylene in the presence of peroxide and maleic anhydride. The samples thus prepared were characterized by DSC, TGA, FTIR, WAXS, EDS e SEM. It was possible to conclude that the solution technique was more efficient than the reactive extrusion; however the later was easier to accomplish due to the high viscosity of PP. (author)

  17. Selective oxidation of n-butane to maleic anhydride under oxygen-deficient conditions over V-P-O mixed oxides

    Bosch, H.; Bruggink, A.A.; Ross, J.R.H.

    1987-01-01

    The selective oxidation of n-butane to maleic anhydride over V-P-O mixed oxides was studied under oxygen deficient conditions. The mixed oxides were prepared with P/V atomic ratios ranging from 0.7 to 1.0. Catalysts with P/V <1.0 did not show any selectivity to maleic anhydride formation, regardless

  18. Effects of Different Types of Clays and Maleic Anhydride Modified Polystyrene on Polystyrene/Clay Nanocomposites

    M. Mehrabzadeh

    2013-01-01

    Full Text Available Polymer/clay nanocomposites are considered as a new subject of research in Iran and the world. Addition of a minimum amount of clay (2-5wt% can improve the mechanical properties, enhance barrier properties and reduce flammability dramatically. Polystyrene (PS exhibits high strength, high modulus and excellent dimensional stability, but it has poor ductility, elongation, and flexural modulus. By incorporating clay into polystyrene these properties can be improved. In this study preparation of polystyrene/clay nanocomposite, effects of different types of clays (Cloisite 10A andNanomer I.30TC and maleic anhydride modified polystyrene on mechanical properties of the prepared polystyrene/clay nanocomposites were evaluated. Samples were prepared by a twin screw extruder. Transmission electron microscopy (TEM and X-ray diffraction (XRD techniques were employed to evaluate the extent of intercalation and exfoliation of silicate layers in the nanocomposites. Mechanical tests show that by addition of clay and maleic anhydride modified polystyrene the flexural modulus (~30% and elongation-at-break (~40% of prepared nanocomposites have been improved. XRD and TEM results show that nanocomposite have an intercalated structure with ability to change to further exfoliation structure.

  19. A novel reverse osmosis membrane modified by polyvinyl alcohol with maleic anhydride crosslinking

    Samnani, Mohit; Rathod, Harshad; Raval, Hiren

    2018-03-01

    In the era of increasing energy crisis, it is inevitable to decrease process energy consumption to increase process viability and curtail green-house gas emission. The Reverse Osmosis plant requires significant energy to transfer water overcoming the osmotic pressure. This paper focuses on increasing the water flux for Thin Film Composite Reverse Osmosis (TFC RO) membrane without compromising salt rejection performance leading to the environmentally friendly and economically attractive process. The virgin TFC RO membrane was exposed to solution of sodium hypochlorite of concentration 2000 mg l-1 for 1 h to activate the surface of the membrane, followed by the treatment with the mixture of polyvinyl alcohol and maleic anhydride with varying concentrations for 1 h and curing in the oven at 80 °C temperature for 10 min. Out of all the treated membranes, the membrane treated with 2000 mg l-1 polyvinyl alcohol and 1000 mg l-1 maleic anhydride demonstrated the highest salt rejection of 96.83 % with 2% increase as compared to the virgin TFC RO membrane. The water flux of the membrane was around 44% higher than the virgin TFC RO membrane. The membrane samples were characterized by atomic force micrographs, ATR-FTIR, Nuclear magnetic resonance and Dynamic mechanical analysis.

  20. The use of maleic anhydride-modified polypropylene for performance enhancement in continuous glass fiber-reinforced polypropylene composites

    Rijsdijk, H.A.; Contant, M.; Peijs, A.A.J.M.; Miravete, A.

    1993-01-01

    The influence of maleic anhydride-modified polypropylene (m-PP) on static mech. properties of continuous glass fiber-reinforced polypropylene (PP) composites was studied. M-PP was added to the PP homopolymer to improve the adhesion between the matrix and the glass fiber. Three-point bending tests

  1. Oil recovery with sulfomethylated poly (lower alkyl vinyl ether/maleic anhydride)

    Norton, C.J.; Falk, D.O.

    1973-05-22

    Lower alkyl vinyl ether e.g., methyl vinyl ether, propyl vinyl ether, isopropyl vinyl ether, hexyl vinyl ether, is copolymerized conventionally with maleic anhydride, the resulting copolymer is treated with ammonia or ammonium hydroxide to form the partial amide-ammonium salt, and this salt is in turn treated with formaldehyde and thereafter or simultaneously with ammonium or alkali metal salt sulfite (including bisulfites, etc.) to form an at least partially sulfomethylated copolymer. Aqueous solutions of the sulfomethylated copolymer are useful in increasing the viscosity of drive fluids used in the supplemented recovery of petroleum from subterranean formations. In general, enhancing the polyionic character of mobility control agents used in supplemented recovery of petroleum provides enhanced recovery. Achieving this enhancement of polyionic character through use of sulfonate groups provides a mobility control agent with good ability to sustain viscosity in the presence of brine and lime, usually present in the connate waters of petroleum-bearing formations. (7 claims)

  2. Physico-mechanical properties of silanized-montmorillonite reinforced chitosan-co-poly(maleic anhydride) composites

    Saputra, O. A.; Fajrin, A.; Nauqinida, M.; Suryanti, V.; Pramono, E.

    2017-07-01

    To solve the problems of dependence on petroleum as starting material in the manufacturing of plastics in Indonesia, green plastic from biopolymer like chitosan to be one of promising options and alternative to replace the conventional plastics. However, to overcome the mechanical and physical properties of chitosan, the addition of reinforcement agent was introduced. In this study, silanized-montmorillonite (sMMt) has been prepared as a reinforcement agent in the chitosan-co-poly(maleic anhydride) (referred as Cs-MAH) matrix. Silanizing of montmorillonite is one of strategy to improve the interaction between montmorillonite and chitosan, consequently, the mechanical properties, tensile strength of composites contained 6 phr of sMMt improved 56.5% to chitosan. Moreover, the presence both MAH and sMMt on the comosites also reduced swelling degree and swelling area by 20.6% and 26.7%.

  3. Effect of maleic anhydride on the physico-mechanical properties of NR/PE blends

    Yehia, A.A.; El Elnashar, D.

    2005-01-01

    Blending of two or more polymers is considered as a new technique to produce new materials with new properties at low production cost and investment. Rubber / Rubber blends are well known in tire industry. In the last decade rubber and plastic blending attract the interest of many researchers and technologists. In the present work NR and LLDPE was blended in presence of maleic anhydride (MA) on a Brabender premixed at different conditions and namely temperature and time. The obtained blends were cured with sulphur and peroxide curing systems. Peroxide can crosslink both NR and PE, but the sulphur system crosslinks only the rubber phase in the blend. The data showed also that the addition of MA greatly improved the physico-mechanical properties of NR/PE blends. The surface morphology of the blends under investigation was studied by SEM. The results will be presented and discussed in detail

  4. Study of maleic anhydride and styrene grafted onto polypropylene induced by UV irradiation

    Li Zhenzhong; He Wei; Guo Hongjun; Zhang Wenxiong; Ma Yalin

    2007-01-01

    Maleic anhydride (MAH) and styrene (St) grafted onto polypropylene (PP) were prepared by UV irradiation. Effects of the irradiation time, monomer and initiator content on the grafting rate and melt flow rate (MFR) were studied. The results show that the optimal duration of UV irradiation is 30s. The grafting rate increases with initiator content when initiator content less than 0.6 phr, the MFR value of grafted PP reaches the highest point when benzophenone (BP) content is 0.4 phr. The content of MAH and St have an effect on the grafting rate and MFR value of the grafted PP, and the optimal contents of monomer is 4 phr. The existence of St as a comonomer reduces apparently the MFR value of grafted PP greatly. Grafted PP present significant changes in crystallization and fusion peaks, indicating differences in crystal size and formation after grafting reaction. (authors)

  5. nanocomposites of PA6/ABS blends compatibilized with styrene-maleic anhydride copolymer

    Oliveira, Amanda D. de; Pessan, Luiz A.

    2009-01-01

    To achieve a balance between stiffness and toughness, ternary nanocomposites based on blends of polyamide 6 (PA6) and acrylonitrile-butadiene-styrene (ABS) were prepared by the melt intercalation using the organoclay Cloisite R 30B (OMMT) and the styrene-maleic anhydride copolymer (SMA) as compatibilizer. Four blending sequences were used to prepare studied systems and their mechanical properties studied through the Young's modulus and notched Izod impact. It was observed that the materials prepared by all blending sequences studied showed an increase in the Young's modulus compared to the neat PA6. However, a decrease in the toughness was observed for the systems with the addition of the organoclay. The DRX results showed an intercalated structure for the some systems that used ABS in their compositions. HDT measurements of the nanocomposites showed an increase in this property compared to the neat PA6. The use of nanoclay lead to a reinforcement of the polymeric matrix. (author)

  6. Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries

    Ufheil, Joachim; Baertsch, Martin C.; Wuersig, Andreas; Novak, Petr

    2005-01-01

    The effect of maleic anhydride (MA) as a new film-forming additive in γ-butyrolactone (GBL)-based electrolytes for use in Li-ion batteries has been studied to advance the understanding of the solid electrolyte interphase (SEI) formation on graphite electrodes. Cyclic voltammetry measurements showed that even small amounts of MA (up to 4 wt.%) improved the lithium intercalation into graphite. The effect of MA was also verified by electrochemical impedance spectroscopy. In situ subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS) and differential electrochemical mass spectrometry (DEMS) allowed identification of gas formation and decomposition products during the SEI formation. GBL-based electrolytes with MA showed both, higher cycling efficiency and cycle life of graphite electrodes

  7. Effect of maleic anhydride treatment on the mechanical properties of sansevieria fiber/vinyl ester composites

    Pradipta, Rangga; Mardiyati, Steven, Purnomo, Ikhsan

    2017-03-01

    Sanseviera trifasciata commonly called mother-in-law tongue also known as snake plant is native to Indonesia, India and Africa. Sansevieria is a new fiber in composite research and has showed promising properties as reinforcement material in polymer matrix composites. Chemical treatment on reinforcing fiber is crucial to reduce hydrophilic tendency and thus improve compatibility with the matrix. In this study, effect of maleic anhydride as chemical treatment on the mechanical properties of Sansevieria fiber/vinyl ester composite was investigated. Sansevieria fibers were immersed by using NaOH 3% for two hours at 100°C and then treated by using maleic anhydrate for two hours at 120°C. Composites were prepared by solution casting with various volume fractions of fiber; 0%, 2.5%, 5%, 7.5% and 10%. Actual density, volume fraction of void and mechanical properties of composite were conducted according to ASTM standard testing methods D792, D3171 and D3039. It was found that mechanical properties of composites increased as volume fractions of fiber was increased. The highest tensile strength and modulus of elasticity of composites were 57.45 MPa and 3.47 GPa respectively, obtained from composites with volume fraction of fiber 10%.

  8. Samarium-modified vanadium phosphate catalyst for the selective oxidation of n-butane to maleic anhydride

    Wu, Hua-Yi; Wang, Hai-Bo; Liu, Xin-Hua; Li, Jian-Hui; Yang, Mei-Hua; Huang, Chuan-Jing; Weng, Wei-Zheng; Wan, Hui-Lin

    2015-01-01

    Graphical abstract: The addition of a small amount of Sm into VPO catalyst brought about great changes in its physicochemical properties such as surface area, surface morphology, phase composition and redox property, thus leading to a higher catalytic performance in the selective oxidation of n-butane to maleic anhydride, as compared to the undoped VPO catalyst. - Highlights: • The addition of Sm leads to great changes in the structure of VPO catalyst. • Sm improves performance of VPO for oxidation of n-butane to maleic anhydride. • Catalytic performance is closely related to structure of VPO catalyst. - Abstract: A series of samarium-modified vanadium phosphate catalysts were prepared and studied in selective oxidation of n-butane to maleic anhydride. The catalytic evaluation showed that Sm modification significantly increased the overall n-butane conversion and intrinsic activity. N 2 -adsorption, XRD, SEM, Raman, XPS, EPR and H 2 -TPR techniques were used to investigate the intrinsic difference among these catalysts. The results revealed that the addition of Sm to VPO catalyst can increase the surface area of the catalyst, lead to a significant change in catalyst morphology from plate-like structure into rosette-shape clusters, and largely promote the formation of (VO) 2 P 2 O 7 . All of these were related to the different catalytic performance of Sm-doped and undoped VPO catalysts. The roles of the different VOPO 4 phases and the influence of Sm were also described and discussed

  9. A maleic anhydride grafted sugarcane bagasse adsorbent and its performance on the removal of methylene blue from related wastewater

    Ge, Mingliang; Du, Mingyi; Zheng, Luoyun [Key Laboratory of Polymer Processing Engineering of Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Wang, Bingying; Zhou, Xiangyang [College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225 (China); Jia, Zhixin [College of Material Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Hu, Guoqing [Key Laboratory of Polymer Processing Engineering of Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640 (China); Jahangir Alam, S.M., E-mail: mejahangir@scut.edu.cn [Key Laboratory of Polymer Processing Engineering of Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640 (China)

    2017-05-01

    Sugarcane bagasse (SCB) was selected as the supporting material for grafting maleic anhydride (MA) to obtain sugarcane-bagasse-grafting-maleic-anhydride (SCB-g-MA), which was used as an adsorbent for the removal of methylene blue (MB) in the dye-containing wastewater. The granular morphology and functional groups of the material were characterized by the scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR), and solid-state analysis (13C NMR) methods. The effect(s) of the adsorbent dosage, adsorption time, initial concentration of MB, and the pH of solution on the MB adsorption performance of the material have been also investigated. The results showed that the adsorption capacity and removal rate of MB were found to be 82 mg/g and 98%, respectively. It has also showed that the adsorption behavior on the MB could be well described by the pseudo-second-order model integrated with Langmuir model. - Highlights: • Using solid phase grafting method to graft the maleic anhydride (MA) onto the Sugarcane bagasse (SCB) and get the SCB-g-MA. • SEM, FTIR and 13C NMR analysis were used to characterize the grafting of MA on to the SCB by the solid phase grafting method. • The adsorption capacity and removal rate of MB were to be 82 mg/g and 98% respectively, to show an excellent adsorption effect. • Pseudo-second-order model and Langmuir model are better fitted the adsorption kinetics and isotherms in this research.

  10. Grafting of Maleic Anhydride onto Polyethylene by Blend Process forEnvironmentally Friendly Plastics

    Hendrana, Sunit; Retno-Yusiasih; Sudirman; Ipit-Karyaningsih; Djimat-Lisnawati

    2000-01-01

    Grafting maleic anhydride (MAH) onto polyethylene is one of the route tomake plastics which can be consumed by microbe in the soil. High temperaturesolution process is one of the method to perform grafting. This method is notreally handy since it involves many steps. Therefore, in this work a simplemethod is performed to graft MAH onto polyethylene, i.e., blending process.As the process occurs in melt, the reaction is more likely to be diffusioncontrol rather than chemical control. Therefore, there are many parameterscan affect the grafting such as temperature of the blending, speed of therotation, concentration of MAH and concentration of dicumyl peroxide (DCP).Preliminary work in our laboratorium found an optimum condition for the firsttwo parameters. Thus, in this work the effect of concentration of MAH and DCPis studied into the effectiveness of grafting process. One of the indicationof unexpected reaction is formation of gel, or in other words the formationof X-link among polyethylene molecules. The grafted polyethylene ischaracterized by calculation of gel content, thermal properties by TG/DTA andFourier Transform Infrared (FTIR). The results show the concentration of MAHand DCP play roles. However, initiator DCP has more significance effect thanthe MAH. (author)

  11. Morphology, rheology and electrical resistivity of PLLA/HDPE/CNT nanocomposites: Effect of maleic anhydride

    Shao, Li-na; Chen, Jie; Dai, Jian; Chen, Hai-ming; Yang, Jing-hui [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Yong, E-mail: yongwang1976@163.com [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Chao-liang [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China)

    2015-02-15

    As a part of serial work about tuning the selective location of carbon nanotubes (CNTs) in immiscible polymer blends, this work reports the effects of component polarity and viscosity ratio between components on the selective location of CNTs and the resultant electrical resistivity of the nanocomposites. To achieve the research aim, maleic anhydride (MA) was grafted onto poly(L-lactide) (PLLA) main chain through a reactive compounding processing. After that, different contents of CNTs were incorporated into blends of high density polyethylene (HDPE) and PLLA (or PLLA-g-MA). The morphologies of the ternary nanocomposites and the selective location of CNTs in the nanocomposites were characterized using scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructure of nanocomposites and the dispersion of CNTs were further proved by rheological measurement. Finally, the electrical resistivity of nanocomposites containing different CNT contents was measured. The results showed that through increasing the polarity of PLLA and decreasing the melt viscosity, CNTs were kinetically trapped at the blend interface region. Consequently, largely decreased percolation threshold was achieved for the PLLA-g-MA/HDPE/CNT nanocomposites. The morphological changes as well as the rheological properties were also comparatively analyzed. - Highlights: • PLLA/HDPE/CNT and PLLA-g-MA/HDPE/CNT composites were prepared. • Different selective location states of CNTs were achieved in different composites. • Selectively located CNTs at the interface resulted in lower percolation threshold.

  12. Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride

    Yang, Ni; Zhang, Zuo-Cai; Ma, Ning; Liu, Huan-Li; Zhan, Xue-Qing; Li, Bing; Gao, Wei; Tsai, Fang-Chang; Jiang, Tao; Chang, Chang-Jung; Chiang, Tai-Chin; Shi, Dean

    To achieve reinforcement of mechanical and thermal performances of polypropylene (PP) product, this work aimed at fabrication of surface modified kaolin (M-kaolin) filled polypropylene grafted maleic anhydride (PP-g-MAH) composites with varying contents of fillers and investigation of their mechanical and thermal properties. And the prepared PP-g-MAH/M-kaolin composites were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fracture analysis by SEM showed M-kaolin particles were well dispersed in the PP-g-MAH matrix. Mechanical behaviors were determined by tensile strength, tensile strain at break and impact strength analysis. Impact strength of PP-g-MAH/2 wt% M-kaolin composites was improved up to 30% comparing with unfilled composites. Thermostability had been found enhanced when M-kaolin added. The results revealed PP-g-MAH/M-kaolin composites showed the optimal thermal and mechanical properties when 2 wt% of M-kaolin was added.

  13. Photo- and radiation chemical cycloaddition of maleic acid derivatives to ethylene and acetylene under elavated pressure

    Mirbach, M.

    1975-01-01

    Based on spectroscopic and kinetic measurements the influence of high pressure on some selected photochemical cycloaddition-reactions is studied. The photo-cycloaddition-reaction of maleic acid anhydride with ethylen has been performed under high ethylen pressures ( 90%). Surprisingly the quantum yield of the cyclo aduct decreases with increasing ethylene pressure from PHI = 0.06 at p = 1 bar to PHI = 0.022 at p = 42 bar. Based on Stern-Volmer quenching experiments, the decrease in ring formation with increasing ethylene concentrations could be explained by an endoergic triplet energy transfer from maleic acid anhydride to ethylene. The type II dissociation of butyrophenone has been quenched also with ethylene. With a lifetime for the first excited butyrophenone triplett state of tau = 6.8 x 10 -8 sec, obtained from kinetic data, the velocity constant can be calculated for this reaction with the result k 5 = 3 x 10 6 M -1 sec -1 . (orig./HK) [de

  14. Radiation grafting of styrene and maleic anhydride onto PTFE membranes and sequent sulfonation for applications of vanadium redox battery

    Qiu Jingyi; Ni Jiangfeng; Zhai Maolin; Peng Jing; Zhou Henghui; Li Jiuqiang; Wei Genshuan

    2007-01-01

    Using γ-radiation technique, poly(tetrafluoroethylene) (PTFE) membrane was grafted with styrene (St) (PTFE-graft-PS) or binary monomers of St and maleic anhydride (MAn) (PTFE-graft-PS-co-PMAn), respectively. Then grafted membranes were further sulfonated with chlorosulfonic acid into ion-exchange membranes (denoted as PTFE-graft-PSSA and PTFE-graft-PSSA-co-PMAc, respectively) for application of vanadium redox battery (VRB). Micro-FTIR analysis indicated that PTFE was successfully grafted and sulfonated at the above two different conditions. However, a higher degree of grafting (DOG) was obtained in St/MAn binary system at the same dose due to a synergistic effect. Comparing with PTFE-graft-PSSA, PTFE-graft-PSSA-co-PMAc membrane showed higher water uptake and ion-exchange capacity (IEC) and lower area resistance (AR) at the same DOG. In addition, PTFE-graft-PSSA-co-PMAc with 6% DOG also showed a higher IEC and higher conductivity compared to Nafion membrane. Radiation grafting of PTFE in St/MAn binary system and sequent sulfonation is an appropriate method for preparing ion-exchange membrane of VRB

  15. Extraction of Micro- and Nano-Fibrils from Nylon 6/Polypropylene Grafted with Maleic Anhydride/Polypropylene Blended Films

    E. Bagheban Kochak

    2013-01-01

    Full Text Available Atechnical feasibility study has been conducted on production of nano- and micro-fibrils from nylon 6/polypropylene grafted with maleic anhydride/polypropylene blended films. Fibrils are prepared in four consecutive steps.In the first step the polymers melt blended in an extruder with and without compatibilizers to produce chips; in the second step films are extruded from polymer blends chips, in the third step films are cold drawn with different draw ratios at room temperature and in the forth step fibrils are extracted by Soxhlet extraction with formic acid as solvent for nylon 6.  The films and fibrils were examined by scanning electron microscope and FTIR spectroscopy. It is found that the polypropylene dispersed phase deforms and coalesces into elongated fibrils during drawing  operation. The  fibrils’ diameters in the blends containing compatibilizer are more uniform and are smaller than those from films without compatibilizers. The thinnest polypropylene fibril observed has a diameter around 300 nm with the aspect ratio above 150. The stress-elongation curves show three distinctive regions, elastic, yield and hardening-leading to breakage. The elastic region is short and follows by necking and yield, i.e., elongation without increase in load. The hardening region is accompanied by the increase in the slope. The deformations of the polypropylene particles are noticed during the last regions of the extension; the fibril deformations seem to be more severe during breakage.

  16. Carbon Nanotubes Reinforced Maleic Anhydride-Modified Xylan-g-Poly(N-isopropylacrylamide) Hydrogel with Multifunctional Properties

    Liu, Xinxin; Song, Tao; Chang, Minmin; Meng, Ling; Wang, Xiaohui; Sun, Runcang; Ren, Junli

    2018-01-01

    Introducing multifunctional groups and inorganic material imparts xylan-based hydrogels with excellent properties, such as responsiveness to pH, temperature, light, and external magnetic field. In this work, a composite hydrogel was synthesized by introducing acid treated carbon nanotubes (AT-CNTs) into the maleic anhydride modified xylan grafted with poly(N-isopropylacrylamide) (MAX-g-PNIPAM) hydrogels network. It was found that the addition of AT-CNTs affected the MAX-g-PNIPAM hydrogel structure, the swelling ratio and mechanical properties, and imparted the hydrogel with new properties of electrical conductivity and near infrared region (NIR) photothermal conversion. AT-CNTs could reinforce the mechanical properties of MAX-g-PNIPAM hydrogels, being up to 83 kPa for the compressive strength when the amount was 11 wt %, which was eight times than that of PNIPAM hydrogel and four times than that of MAX-g-PNIPAM hydrogel. The electroconductibility was enhanced by the increase of AT-CNTs amounts. Meanwhile, the composite hydrogel also exhibited multiple shape memory and NIR photothermal conversion properties, and water temperature was increased from 26 °C to 56 °C within 8 min under the NIR irradiation. Thus, the AT-CNTs reinforced MAX-g-PNIPAM hydrogel possessed promising multifunctional properties, which offered many potential applications in the fields of biosensors, thermal-arrest technology, and drug-controlled release. PMID:29495611

  17. A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from Tung oil fatty acids: Synthesis and properties

    A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from Tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and can be cured with trace amounts of tertiary amine. This advan...

  18. Biomimetic porous high-density polyethylene/polyethylene- grafted-maleic anhydride scaffold with improved in vitro cytocompatibility.

    Sharma, Swati; Bhaskar, Nitu; Bose, Surjasarathi; Basu, Bikaramjit

    2018-05-01

    A major challenge for tissue engineering is to design and to develop a porous biocompatible scaffold, which can mimic the properties of natural tissue. As a first step towards this endeavour, we here demonstrate a distinct methodology in biomimetically synthesized porous high-density polyethylene scaffolds. Co-extrusion approach was adopted, whereby high-density polyethylene was melt mixed with polyethylene oxide to form an immiscible binary blend. Selective dissolution of polyethylene oxide from the biphasic system revealed droplet-matrix-type morphology. An attempt to stabilize such morphology against thermal and shear effects was made by the addition of polyethylene- grafted-maleic anhydride as a compatibilizer. A maximum ultimate tensile strength of 7 MPa and elastic modulus of 370 MPa were displayed by the high-density polyethylene/polyethylene oxide binary blend with 5% maleated polyethylene during uniaxial tensile loading. The cell culture experiments with murine myoblast C2C12 cell line indicated that compared to neat high-density polyethylene and high-density polyethylene/polyethylene oxide, the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride scaffold significantly increased muscle cell attachment and proliferation with distinct elongated threadlike appearance and highly stained nuclei, in vitro. This has been partly attributed to the change in surface wettability property with a reduced contact angle (∼72°) for 5% PE- g-MA blends. These findings suggest that the high-density polyethylene/polyethylene oxide with 5% polyethylene- grafted-maleic anhydride can be treated as a cell growth substrate in bioengineering applications.

  19. Short-chain grafting of tetrahydrofuran and 1,4-dioxane cycles on vinylchloride-maleic anhydride copolymer

    2009-01-01

    Full Text Available Mass increase of vinylchloride-maleic anhydride (VC-MA copolymer samples aged in tetrahydrofuran (THF or in 1,4-dioxane results from chemical interaction of VC-MA macromolecules with 1,4-dioxane or THF. Microstructure of the products of such modification was proved by infrared spectroscopy (IR- and nuclear magnetic resonance spectroscopy (13C NMR and 1H NMR. Mechanism of modification has been proposed. The results of microstructure research of VC-MA samples aged in THF and in 1,4-dioxane coincide with already known data on the reactions of opening of these and other oxygen-containing cycles under mild conditions.

  20. Grafting amino drugs to poly(styrene-alt-maleic anhydride) as a potential method for drug release

    Khazaei, Ardeshir; Saednia, Shahnaz; Saien, Javad; Abbasi, Fatemeh, E-mail: Khazaei_1326@yahoo.com, E-mail: ssaednia@gmail.com [Faculty of Chemistry, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Kazem-Rostami, Masoud [Young Researchers Club and Elite, Takestan Branch, Islamic Azad University, Takestan (Iran, Islamic Republic of); Sadeghpour, Mahdieh [Department of Chemistry, Takestan Branch, Islamic Azad University, Takestan (Iran, Islamic Republic of); Borazjani, Maryam Kiani [Faculty of Science, Department of Chemistry, Bushehr Payame Noor University (PNU), Bushehr (Iran, Islamic Republic of)

    2013-07-15

    Drug delivery systems based on polymer-drug conjugates give an improved treatment with lower toxicity or side effects and be used for the treatment of different diseases. Conjugates of biodegradable poly(styrene-alt-maleic anhydride) (PSMA), with a therapeutic agents such as amantadine hydrochloride, amlodipine, gabapentin, zonisamide and mesalamine, were afforded by the formation of the amide bonds of the amino drugs that reacted with the PSMA anhydride groups. The amounts of covalently conjugated drugs were determined by a {sup 1}H NMR spectroscopic method, and the in vitro release rate in buffer solution (pH 1.3) was studied at body temperature 37 Degree-Sign C. In kinetic studies, different dissolution models were examined to obtain drug release data and the collected data were well-fitted to the Korsmeyer-Peppas equation, revealing a dominant Fickian diffusion mechanism for drug release under the in vitro conditions. (author)

  1. Removal of Copper ions from aqueous solutions using polymer derivations of poly (styrene-alt-maleic anhydride

    Naser Samadi

    2017-06-01

    Full Text Available In this study chelating resins have been considered to be suitable materials for the recovery of Copper (II ions in water treatments. Furthermore, these modified resins were reacted with 1,2-diaminoethane in the presence of ultrasonic irradiation for the preparation of a tridimensional chelating resin on the Nano scale for the recovery of Copper (II ions from aqueous solutions. This method which is used for removing and determining Copper (II ions using copolymers derived resins of poly (styrene-alternative-maleic anhydride (SMA and atomic absorption spectroscopy. The method is simple, sensitive, inexpensive and fast. The various parameters such as pH, contact time, concentrations of metal ions, mass of resin, and agitation speed were investigated on adsorption effect. The adsorption behavior of Copper (II ions were investigated by the synthesis of chelating resins at various pHs. The prepared resins showed a good tendency for removing the selected metal ions from aqueous solution, even at an acidic pH. Also, the prepared resins were examined for the removal of Copper (II ions from real samples such as industrial wastewater and were shown to be very efficient at adsorption in the cases of Copper (II ions. The pseudo-first-order, pseudo-second-order, and intra-particle diffusion kinetics equations were used for modeling of adsorption data and it was shown that pseudo-second-order kinetic equation could best describe the adsorption kinetics. The intra-particle diffusion study revealed that external diffusion might be involved in this case. The resins were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and X-ray diffraction analysis.

  2. Using maleic anhydride functionalized graphene oxide for improving the interfacial properties of carbon fiber/BMI composites

    W. Li

    2016-11-01

    Full Text Available Maleic anhydride functionalized graphene oxide (MAH-GO was synthesized and then introduced into carbon fiber (CF reinforced bismaleimide (BMI composites, with the aim of improving the interfacial adhesion strength between CF and BMI resin. Various characterization techniques including Fourier transform infrared spectroscopy (FT-IR, X-ray photoelectron spectra (XPS and thermogravimetric analysis (TGA demonstrated that the maleic anhydride has been successfully grafted onto the GO surfaces. The study showed that the interlaminar shear strength (ILSS and flexural properties of CF/BMI composites were all improved by the incorporation of GO and MAH-GO, and the MAH-GO showed the substantially improved effect due to the strong interaction between the MAH-GO and the resin matrix. The maximum increment of the ILSS, flexural strength and flexural modulus of composites were 24.4, 28.7 and 49.7%, respectively. Scanning electron microscope (SEM photographs of the fracture surfaces revealed that the interfacial bonding between CF and resin matrix was significantly strengthened by the addition of MAH-GO. The results suggest that this feasible method may be an ideal substitute for the traditional method in the interfacial modification of composites.

  3. Amphiphilic graft copolymer based on poly(styrene-co-maleic anhydride with low molecular weight polyethylenimine for efficient gene delivery

    Duan XP

    2012-09-01

    Full Text Available Xiaopin Duan,1,2 Jisheng Xiao,2 Qi Yin,2 Zhiwen Zhang,2 Shirui Mao,1 Yaping Li21School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 2Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, ChinaBackground and methods: A new amphiphilic comb-shaped copolymer (SP was synthesized by conjugating poly(styrene-co-maleic anhydride with low molecular weight polyethyleneimine for gene delivery. Fourier transform infrared spectrum, 1H nuclear magnetic resonance, and gel permeation chromatography were used to characterize the graft copolymer.Results: The buffering capability of SP was similar to that of polyethyleneimine within the endosomal pH range. The copolymer could condense DNA effectively to form complexes with a positive charge (13–30 mV and a small particle size (130–200 nm at N/P ratios between 5 and 20, and protect DNA from degradation by DNase I. In addition, SP showed much lower cytotoxicity than polyethyleneimine 25,000. Importantly, the gene transfection activity and cellular uptake of SP-DNA complexes were all markedly higher than that of complexes of polyethyleneimine 25,000 and DNA in MCF-7 and MCF-7/ADR cell lines.Conclusion: This work highlights the promise of SP as a safe and efficient synthetic vector for DNA delivery.Keywords: poly(styrene-co-maleic anhydride, polyethylenimine, DNA, gene delivery

  4. Controlled radical copolymerization of styrene and maleic anhydride and the synthesis of novel polyolefin-based block copolymers by reversible addition-fragmentation chain-transfer (RAFT) polymerization

    Brouwer, de J.A.M.; Schellekens, M.A.J.; Klumperman, B.; Monteiro, M.J.; German, A.L.

    2000-01-01

    Reversible addn.-fragmentation chain transfer (RAFT) was applied to the copolymn. of styrene and maleic anhydride. The product had a low polydispersity and a predetd. molar mass. Novel, well-defined polyolefin-based block copolymers were prepd. with a macromol. RAFT agent prepd. from a com.

  5. Preparation and Characterization of Extruded Composites Based on Polypropylene and Chitosan Compatibilized with Polypropylene-Graft-Maleic Anhydride

    Carrasco-Guigón, Fernando Javier; Rodríguez-Félix, Dora Evelia; Castillo-Ortega, María Mónica; Santacruz-Ortega, Hisila C.; Burruel-Ibarra, Silvia E.; Encinas-Encinas, Jose Carmelo; Plascencia-Jatomea, Maribel; Herrera-Franco, Pedro Jesus; Madera-Santana, Tomas Jesus

    2017-01-01

    The preparation of composites of synthetic and natural polymers represent an interesting option to combine properties; in this manner, polypropylene and chitosan extruded films using a different proportion of components and polypropylene-graft-maleic anhydride (PPgMA) as compatibilizer were prepared. The effect of the content of the biopolymer in the polypropylene (PP) matrix, the addition of compatibilizer, and the particle size on the properties of the composites was analyzed using characterization by fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), tensile strength, and contact angle, finding that in general, the addition of the compatibilizer and reducing the particle size of the chitosan, favored the physicochemical and morphological properties of the films. PMID:28772464

  6. Grafting of copolymer styrene maleic anhydride on poly(ethylene terephthalate) film by chemical reaction and by plasma method

    Bigan, Muriel; Bigot, Julien [Laboratoire de Chimie Organique et Macromoleculaire (UMR 8009), Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France); Mutel, Brigitte [Laboratoire de Genie des Procedes d' Interactions Fluides reactifs-Materiaux (UPRES-EA 3751), Batiment C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: Brigitte.mutel@univ-lille1.fr; Coqueret, Xavier [Laboratoire Reactions Selectives et Applications (UMR-CNRS 6519) Universite de Reims Champagne-Ardennes, B.P. 1039, 51687 Reims Cedex 2 (France)

    2008-02-15

    This work deals with the chemical grafting of a styrene maleic anhydride copolymer on the surface of a previously hydrolyzed polyethylene terephthalate (PET) film 12 {mu}m thick via covalent bond. Two different ways are studied. The first one involves an activation of the hydrolyzed PET by the triethylamine before the grafting step. In the second one, the copolymer reacts with the 4-dimethylaminopyridine in order to form maleinyl pyridinium salt which reacts with alcohol function of the hydrolyzed PET. Characterization and quantification of the grafting are performed by Fourier transform infrared spectroscopy. Factorial experiment designs are used to optimize the process and to estimate experimental parameters effects. The opportunity to associate the chemical process to a cold remote nitrogen plasma one is also examined.

  7. Improved performance of Nb-doped vanadyl pyrophosphate, catalyst for n-butane oxidation to maleic anhydride

    Pavarelli, G.; Caldarelli, A.; Cavani, F. [Bologna Univ. (Italy). Dipt. di Chimica Industriale ' Toso Montanari' ; Cortelli, C.; Luciani, S. [Polynt SpA, Scanzorosciate (Italy)

    2013-11-01

    We report here about an investigation on the role of Nb{sup 5+} when used as a promoter for vanadyl pyrophosphate, catalyst for the oxidation of n-butane to maleic anhydride. The effect of Nb was very complex, a function of both its amount and the reaction temperature used. The optimal catalytic behavior was shown for very low Nb contents, i.e., for a V/Nb atomic ratio as low as 150. The main role of Nb was that of accelerating the formation of a limited amount of {gamma}-VOPO{sub 4} on the surface of vanadyl pyrophosphate, by accelerating the oxidation of V{sup 4+} into V{sup 5+} under reaction conditions. (orig.)

  8. Tailoring magnetic properties of self-biased hexaferrites using an alternative copolymer of isobutylene and maleic anhydride

    Wu, Chuanjian; Yu, Zhong; Sokolov, Alexander S.; Yu, Chengju; Sun, Ke; Jiang, Xiaona; Lan, Zhongwen; Harris, Vincent G.

    2018-05-01

    Discussed is a novel self-biased hexaferrite gelling system based on a nontoxic and water-soluble copolymer of isobutylene and maleic anhydride. This copolymer simultaneously acts as a dispersant and gelling agent, and recently received much attention from the ceramics community. Herein its effects on the rheological conditions throughout magnetic-field pressing, and consequently, orientation, density and magnetic properties of textured hexaferrites were investigated. Ka-band FMR linewidths were measured, and the crystalline anisotropy and porosity induced linewidth broadening were estimated according to Schlömann's theory. The copolymer allowed to reduce the friction between micron-sized magnetic particulates, resulting in higher density and degree of crystalline orientation, and lower FMR linewidth.

  9. Effect of hydrostatic pressure, temperature, and solvent on the rate of the Diels-Alder reaction between 9,10-anthracenedimethanol and maleic anhydride

    Kiselev, V. D.; Kornilov, D. A.; Anikin, O. V.; Latypova, L. I.; Konovalov, A. I.

    2017-03-01

    The rate of the reaction between 9,10-anthracenedimethanol and maleic anhydride in 1,4-dioxane, acetonitrile, trichloromethane, and toluene is studied at 25, 35, 45°C in the pressure range of 1-1772 bar. The rate constants, enthalpies, entropies and activation volumes are determined. It is shown that the rate of reaction with 9,10-anthracenedimethanol is approximately one order of magnitude higher than with 9-anthracenemethanol.

  10. Partial oxidation of Raffinate II and other mixtures of n-Butane and n-Butenes to maleic anhydride in a fixed-bed reactor

    Brandstädter, Willi Michael

    2008-01-01

    The utilisation of the C4 streams of steamcrackers by converting raffinate II to maleic anhydride was studied. The oxidation reactions were investigated in a laboratory-scale fixed-bed reactor to determine reaction kinetics. The effects of pore diffusional resistance were investigated and explained. A two-dimensional pseudo-homogeneous reactor model was used for the simulation of a production-scale fixed-bed reactor. A flow scheme of the reactor section including a recycle was proposed.

  11. Adsorption of heavy metal ions and azo dyes by crosslinked nanochelating resins based on poly(methylmethacrylate-co-maleic anhydride

    M. Ghaemy

    2014-03-01

    Full Text Available Chelating resins are suitable materials for the removal of heavy metals in water treatments. A copolymer, Poly(MMA-co-MA, was synthesized by radical polymerization of maleic anhydride (MA and methyl methacrylate (MMA, characterized and transformed into multifunctional nanochelating resin beads (80–150 nm via hydrolysis, grafting and crosslink reactions. The resin beads were characterized by swelling studies, field emission scanning electron microscopy (FESEM and Fourier transform infrared spectroscopy (FTIR. The main purpose of this work was to determine the adsorption capacity of the prepared resins (swelling ratio ~55% towards metal ions such as Hg2+, Cd2+, Cu2+ from water at three different pH values (3, 6 and 9. Variations in pH and types of metal ions have not significantly affected the chelation capacity of these resins. The maximum chelation capacity of one of the prepared resin beads (Co-g-AP3 for Hg2+ was 63, 85.8 and 71.14 mg/g at pH 3, 6 and 9, respectively. Approximately 96% of the metal ions could be desorbed from the resin. Adsorption capacity of these resins towards three commercial synthetic azo dyes was also investigated. The maximum adsorption of dye AY42 was 91% for the resin Co-g-AP3 at room temperature. This insures the applicability of the synthesized resins for industrial applications.

  12. Optimal oxygen feeding policy to maximize the production of Maleic anhydride in unsteady state fixed bed catalytic reactors

    E. Ali

    2017-07-01

    Full Text Available The effect of different oxygen feeding scenarios in a fixed bed reactor for the production of Maleic anhydride (MA is studied. Two reactor configurations were examined. In the first configuration, a cross flow reactor (CFR with 4 discrete feeding points is considered. Another configuration is the conventional packed-bed reactor (PBR with a single feed. Nonlinear Model Predictive Controller (NLMPC was used as optimal controller to operate the CFR in dynamic mode and to optimize the multiple feed dosages in order to enhance the MA yield. The simulation results indicated that different combinations of the four feed ratios can operate the reactor at the best value for the yield provided the first feeding point is kept as low as possible. For the packed bed reactor configuration, a single oxygen feed is considered and is optimized transiently by NLMPC. The simulation outcomes showed that the reactor performance in terms of the produced MA mole fraction can also be enhanced to the same magnitude obtained by CFR configuration. This improvement requires decreasing the oxygen ratio in the reactor single feed by 70%.

  13. Effect of Surface Modification of Palygorskite on the Properties of Polypropylene/Polypropylene-g-Maleic Anhydride/Palygorskite Nanocomposites

    David Cisneros-Rosado

    2017-01-01

    Full Text Available The effect of surface modification of palygorskite (Pal on filler dispersion and on the mechanical and thermal properties of polypropylene (PP/polypropylene grafted maleic anhydride (PP-g-MAH/palygorskite (Pal nanocomposites was evaluated. A natural Pal mineral was purified and individually surface modified with hexadecyl tributyl phosphonium bromide and (3-Aminopropyltrimethoxysilane; the pristine and modified Pals were melt-compounded with PP to produce nanocomposites using PP-g-MAH as compatibilizer. The grafting of Pal surface was verified by FT-IR and the change in surface hydrophilicity was estimated by the contact angle of sessile drops of ethylene glycol on Pal tablets. The extent of Pal dispersion and the degree of improvement in both the mechanical and thermal properties were related to the surface treatment of Pal. Modified Pals were better dispersed during melt processing and improved Young’s modulus and strength; however, maximum deformation tended to decrease. The thermal stability of PP/PP-g-MAH/Pal nanocomposites was considerably improved with the content of modified Pals. The degree of crystallinity increased with Pal content, regardless of the surface modification. Surfactant modified Pal exhibited better results in comparison with silane Pal; it is possible that longer alkyl chains from surfactant molecules promoted interactions with polymer chains, thereby improving nanofiller dispersion and enhancing the properties.

  14. Separator Membrane from Crosslinked Poly(Vinyl Alcohol and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride

    Charu Vashisth Rohatgi

    2015-03-01

    Full Text Available In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride (PMVE-MA. Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity, thermal and electrochemical properties using differential scanning calorimetry (DSC, dynamic mechanical analysis (DMA, thermo-gravimetric analysis (TGA and electrochemical impedance spectroscopy (EIS. The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications.

  15. Insight into the informational-structure behavior of the Diels-Alder reaction of cyclopentadiene and maleic anhydride.

    Molina-Espíritu, Moyocoyani; Esquivel, Rodolfo O; Kohout, Miroslav; Angulo, Juan Carlos; Dobado, José A; Dehesa, Jesús S; LópezRosa, Sheila; Soriano-Correa, Catalina

    2014-08-01

    The course of the Diels-Alder reactions of cyclopentadiene and maleic anhydride were studied. Two reaction paths were modelled: endo- and exo-selective paths. All structures within the transient region were characterized and analyzed by means of geometrical descriptors, physicochemical parameters and information-theoretical measures in order to observe the linkage between chemical behavior and the carriage of information. We have shown that the information-theoretical characterization of the chemical course of the reaction is in complete agreement with its phenomenological behavior in passing from reactants to products. In addition, we were able to detect the main differences between the two reaction mechanisms. This type of informational analysis serves to provide tools to help understand the chemical reactivity of the two simplest Diels-Alder reactions, which permits the establishment of a connection between the quantum changes that molecular systems exert along reaction coordinates and standard physicochemical phenomenology. In the present study, we have shown that every reaction stage has a family of subsequent structures that are characterized not solely by their phenomenological behavior but also by informational properties of their electronic density distribution (localizability, order, uniformity). Moreover, we were able to describe the main differences between endo-adduct and exo-adduct pathways. With the advent of new experimental techniques, it is in principle possible to observe the structural changes in the transient regions of chemical reactions. Indeed, through this work we have provided the theoretical concepts needed to unveil the concurrent processes associated with chemical reactions.

  16. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride)

    Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy

    2015-01-01

    In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019

  17. Preparation of High Density Polyethylene/Waste Polyurethane Blends Compatibilized with Polyethylene-Graft-Maleic Anhydride by Radiation

    Jong-Seok Park

    2015-04-01

    Full Text Available Polyurethane (PU is a very popular polymer that is used in a variety of applications due to its good mechanical, thermal, and chemical properties. However, PU recycling has received significant attention due to environmental issues. In this study, we developed a recycling method for waste PU that utilizes the radiation grafting technique. Grafting of waste PU was carried out using a radiation technique with polyethylene-graft-maleic anhydride (PE-g-MA. The PE-g-MA-grafted PU/high density polyethylene (HDPE composite was prepared by melt-blending at various concentrations (0–10 phr of PE-g-MA-grafted PU. The composites were characterized using fourier transform infrared spectroscopy (FT-IR, and their surface morphology and thermal/mechanical properties are reported. For 1 phr PU, the PU could be easily introduced to the HDPE during the melt processing in the blender after the radiation-induced grafting of PU with PE-g-MA. PE-g-MA was easily reacted with PU according to the increasing radiation dose and was located at the interface between the PU and the HDPE during the melt processing in the blender, which improved the interfacial interactions and the mechanical properties of the resultant composites. However, the elongation at break for a PU content >2 phr was drastically decreased.

  18. Intranasal Administration of Maleic Anhydride-Modified Human Serum Albumin for Pre-Exposure Prophylaxis of Respiratory Syncytial Virus Infection

    Zhiwu Sun

    2015-02-01

    Full Text Available Respiratory syncytial virus (RSV is the leading cause of pediatric viral respiratory tract infections. Neither vaccine nor effective antiviral therapy is available to prevent and treat RSV infection. Palivizumab, a humanized monoclonal antibody, is the only product approved to prevent serious RSV infection, but its high cost is prohibitive in low-income countries. Here, we aimed to identify an effective, safe, and affordable antiviral agent for pre-exposure prophylaxis (PrEP of RSV infection in children at high risk. We found that maleic anhydride (ML-modified human serum albumin (HSA, designated ML-HSA, exhibited potent antiviral activity against RSV and that the percentages of the modified lysines and arginies in ML- are correlated with such anti-RSV activity. ML-HSA inhibited RSV entry and replication by interacting with viral G protein and blocking RSV attachment to the target cells, while ML-HAS neither bound to F protein, nor inhibited F protein-mediated membrane fusion. Intranasal administration of ML-HSA before RSV infection resulted in significant decrease of the viral titers in the lungs of mice. ML-HSA shows promise for further development into an effective, safe, affordable, and easy-to-use intranasal regimen for pre-exposure prophylaxis of RSV infection in children at high risk in both low- and high-income countries.

  19. Preparation of a Sepia Melanin and Poly(ethylene-alt-maleic Anhydride Hybrid Material as an Adsorbent for Water Purification

    Guido Panzarasa

    2018-01-01

    Full Text Available Meeting the increasing demand of clean water requires the development of novel efficient adsorbent materials for the removal of organic pollutants. In this context the use of natural, renewable sources is of special relevance and sepia melanin, thanks to its ability to bind a variety of organic and inorganic species, has already attracted interest for water purification. Here we describe the synthesis of a material obtained by the combination of sepia melanin and poly(ethylene-alt-maleic anhydride (P(E-alt-MA. Compared to sepia melanin, the resulting hybrid displays a high and fast adsorption efficiency towards methylene blue (a common industrial dye for a wide pH range (from pH 2 to 12 and under high ionic strength conditions. It is easily recovered after use and can be reused up to three times. Given the wide availability of sepia melanin and P(E-alt-MA, the synthesis of our hybrid is simple and affordable, making it suitable for industrial water purification purposes.

  20. Amphiphilic graft copolymer based on poly(styrene-co-maleic anhydride) with low molecular weight polyethylenimine for efficient gene delivery

    Duan, Xiaopin; Xiao, Jisheng; Yin, Qi; Zhang, Zhiwen; Mao, Shirui; Li, Yaping

    2012-01-01

    Background and methods A new amphiphilic comb-shaped copolymer (SP) was synthesized by conjugating poly(styrene-co-maleic anhydride) with low molecular weight polyethyleneimine for gene delivery. Fourier transform infrared spectrum, 1H nuclear magnetic resonance, and gel permeation chromatography were used to characterize the graft copolymer. Results The buffering capability of SP was similar to that of polyethyleneimine within the endosomal pH range. The copolymer could condense DNA effectively to form complexes with a positive charge (13–30 mV) and a small particle size (130–200 nm) at N/P ratios between 5 and 20, and protect DNA from degradation by DNase I. In addition, SP showed much lower cytotoxicity than polyethyleneimine 25,000. Importantly, the gene transfection activity and cellular uptake of SP-DNA complexes were all markedly higher than that of complexes of polyethyleneimine 25,000 and DNA in MCF-7 and MCF-7/ADR cell lines. Conclusion This work highlights the promise of SP as a safe and efficient synthetic vector for DNA delivery. PMID:23028224

  1. Fabrication of Poly(styrene-co-maleic anhydride)@Ag Spheres with High Surface Charge Intensity and their Self-Assembly into Photonic Crystal Films.

    Bi, Jiajie; Fan, Genrui; Wu, Suli; Su, Xin; Xia, Hongbo; Zhang, Shu-Fen

    2017-10-01

    Herein, we developed a method to prepare monodisperse poly(styrene-co-maleic anhydride)@Ag (PSMA@Ag) core-shell microspheres with high surface charge intensity by using an in situ reduction method. In this method, ethylenediamine tetraacetic acid tetrasodium salt (Na 4 EDTA) was used as a reducing agent to promote the growth of Ag, and at the same time endowed the PSMA@Ag spheres with a surface charge. The monodispersity of PSMA and PSMA@Ag and the ordered array of the photonic crystal films were characterized by using SEM. The formation of Ag nanoparticles was confirmed by using TEM, HR-TEM, and XRD characterizations. Due to the existence of surface charges, the obtained PSMA@Ag microspheres easily self-assembled to form photonic crystal structures. In addition, the surface-enhanced Raman scattering (SERS) activity of the PSMA@Ag photonic crystal films was evaluated by detecting the signal from Raman probe molecules, 4-aminothiophenol (4-ATP). The PSMA@Ag photonic crystal films exhibited a high SERS effect, a low detection limit of up to 10 -8 for 4-ATP, good uniformity, and reproducibility.

  2. Syntheses and properties of complex resins obtained by the reaction of polyethyleneimine with maleic anhydride-isobutene copolymer

    Usami, Shiro; Hasegawa, Kiyoshi; Takata, Kyoko; Naito, Ryunosuke; Uchida, Hiroshi; Kozuka, Hiroshi.

    1985-01-01

    Complex resins obtained by the reaction of polyethyleneimine with maleic anhydride-isobutene copolymer around 100 0 C revealed selective ion adsorption depending on the equivalent ratio of nitrogen to carboxyl group (N/COOH). In detail, polyanion-excess complex resins (N/COOH 2+ , Pb 2+ , Zn 2+ and Ni 2+ , and resins containing excess polycation (N/COOH > 1) for metal complex anions such as [CrO 4 ] 2- , [Ag(S 2 O 3 ) 2 ] 3- and [Fe(CN) 6 ] 4- . Furthermore, the polycation-excess complex resins had high adsorption capacity for uranium in solution, for example, a polycationic resin (N/COOH = 1.79) had an adsorption capacity of more than 100 mg U/g-dry base resin in a 75 ppm uranium solution. It also adsorbed and recovered uranium from solution contatining such infinitesimal amounts of uranium as sea water. The results from electron probe X-ray microanalyser (EPMA) of a polycationic resin (N/COOH = 1.79) indicated that cations such as Ca 2+ and Mg 2+ , abundant in sea water, were not adsorbed at all while such anions as Cl - and S 2- were adsorbed. It was found that Br - , I - , etc. were not adsorbed from sea water while these anions were adsorbed from the solutions containing them independently. The result indicated that Cl - in sea water probably interfered the adsorption of Br - , I - , etc. However, uranium was adsorbed from sea water in spite of its extremely low concentration without any disturbance of other co-existing ions. It was found that Ni 2+ and Cu 2+ were also adsorbed. (author)

  3. Synthesis and thermal characterization of CdS nano crystals in previously formed template of maleic anhydride-octene 1-vinyl butyl terpolymer

    Akbarov, O.H; Mammadova, R.E; Malikov, E.Y.

    2008-01-01

    Full text: Nano crystals have dimensions in the range 10100 nm. Crystals in this size range possess unique properties, which enable scientists to manufacture materials and devices capable of performing unimaginable tasks. For that reason synthesis of this semiconductor nano crystals is expedient. Many useful methods have been used for preparing sulphide semiconductor nano crystals, such as colloidal chemistry method, sol-gel method, inverse micelle method, in situ synthesis and assemble on polymer template. The most significant method is in situ synthesis and assemble of sulphide semiconductor nano crystals on polymer. Compared with other methods, the stability of nanoparticles is improved by the protection and confinement of the copolymer. Because of confinement and protection effects of template environmental risk is prevented in this method. On the base of this principles in situ synthesis of CdS nano crystals in maleic anhydride-octene 1-vinyl butyl terpolymer was realized in this scientific work. First of all in specific condition maleic anhydride, octene 1, and vinyl butyl ether were polymerized to form a terpolymer as the result of radical ter polymerization. In second step CdS nano crystals were synthesized in N,N-dimethylformamide solution of maleic anhydride-octene 1-vinyl butyl terpolymer through the reaction of thiourea with cadmium chloride. In this process CdCI 2 x 2.5H 2 O was dissolved in N,N-dimethylformamide solution of previously formed terpolymer and was heated in 90 0 C temperature for 4 hours with vigorous stirring. Then desired amount of thiourea in N,N-dimethylformamide was quickly injected into the reaction flask using a syringe. The reaction continued for another 1 hour, and a yellow clear solution was obtained, which indicated the formation of CdS nano crystals

  4. A computational study of the Diels-Alder reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride

    Rivero, Uxía; Meuwly, Markus; Willitsch, Stefan

    2017-09-01

    The neutral and cationic Diels-Alder-type reactions between 2,3-dibromo-1,3-butadiene and maleic anhydride have been computationally explored as the first step of a combined experimental and theoretical study. Density functional theory calculations show that the neutral reaction is concerted while the cationic reaction can be either concerted or stepwise. Further isomerizations of the Diels-Alder products have been studied in order to predict possible fragmentation pathways in gas-phase experiments. Rice-Ramsperger-Kassel-Marcus (RRKM) calculations suggest that under single-collision experimental conditions the neutral product may reform the reactants and the cationic product will most likely eliminate CO2.

  5. Comparative Study Of The Preparation Of Maleic Anhydride-g-Polypropylene By Two Grafting Processes Using Peroxide; Estudo comparativo de dois processos de graftizacao de polipropileno com anidrido maleico utilizando peroxidos

    Sakahara, R.M.; Wang, S.H., E-mail: sakahara@usp.b, E-mail: wangshui@usp.b [Universidade de Sao Paulo (EPUSP), SP (Brazil). Escola Politecnica. Dept. de Engenharia Metalurgica e de Materiais

    2010-07-01

    The Polypropylene grafting with Maleic anhydride is a thoroughly known technique. Its wide application is due, mainly,to the controlled changing in the polarity of this polymer, which increases the interfacial adhesion in blends and compounds. In this study, two grafting processes were compared. In the first, the maleic anhydride was grafted on polypropylene in a solution batch process, carried out in a round-bottom vessel. The second approach was carried out by reactive extrusion of polypropylene in the presence of peroxide and maleic anhydride. The samples thus prepared were characterized by DSC, TGA, FTIR, WAXS, EDS e SEM. It was possible to conclude that the solution technique was more efficient than the reactive extrusion; however the later was easier to accomplish due to the high viscosity of PP. (author)

  6. Effect of polypropylene maleic anhydride (PPMAH) on mechanical and morphological properties of polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr)/empty fruit bunch (EFB) composites

    Othman, Nurul Syazwani; Santiagoo, Ragunathan; Abdillahi, Khalid Mohamed; Ismail, Hanafi

    2017-07-01

    The fabrication of polypropylene (PP)/ recycled acrylonitrile butadiene rubber (NBRr)/ empty fruit bunch (EFB) composites were investigated. The effects of polypropylene maleic anhydride (PPMAH) as a compatibilizer on the mechanical and morphological properties of PP/NBRr/EFB composites were studied. Composites were prepared through melt mixing using heated two roll mill at 180 °C for 9 minutes and rotor speed of 15 rpm. NBRr loading were varied from 0 to 60 phr and PPMAH was fixed for 5 phr. The composites were moulded into a 1 mm thin sheet using hot press machine and then cut into dumbbell shape. The mechanical and morphological properties of composites were examined using universal tensile machine (UTM) and scanning electron microscope (SEM), respectively. Tensile strength and Young's modulus of PP/NBRr/EFB composites decreased with increasing NBRr loading, whilst increasing the elongation at break. However, PPMAH compatibilized composites have resulted 27% to 40% and 25% to 42% higher tensile strength and Young's modulus, respectively, higher compared to uncompatibilized composites. This was due to the better adhesion between PP/NBRr matrices and EFB filler with the presence of maleic anhydride moieties. From the morphological study, the micrograph of PPMAH compatibilized composites has proved the well bonded and good attachments of EFB filler with PP/NBRr matrices which results better tensile strength to the PP/NBRr/EFB composites.

  7. Amphiphilic poly{[α-maleic anhydride-ω-methoxypoly(ethylene glycol]-co-(ethyl cyanoacrylate} graft copolymer nanoparticles as carriers for transdermal drug delivery

    Jinfeng Xing

    2009-10-01

    Full Text Available Jinfeng Xing, Liandong Deng, Jun Li, Anjie DongDepartment of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, People’s Republic of ChinaAbstract: In this study, the transdermal drug delivery properties of D,L-tetrahydropalmatine (THP-loaded amphiphilic poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate} (PEGECA graft copolymer nanoparticles (PEGECAT NPs were evaluated by skin penetration experiments in vitro. The transdermal permeation experiments in vitro were carried out in Franz diffusion cells using THP-loaded PEGECAT NPs as the donor system. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize the receptor fluid. The results indicate that the THP-loaded PEGECAT NPs are able to penetrate the rat skin. Fluorescent microscopy measurements demonstrate that THP-loaded PEGECAT NPs can penetrate the skin not only via appendage routes but also via epidermal routes. This nanotechnology has potential application in transdermal drug delivery. Keywords: poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol]-co-(ethyl cyanoacrylate}, nanoparticles, transdermal drug delivery, D,L-tetrahydropalmatine

  8. Selective deoxygenation of stearic acid via an anhydride pathway

    Hollak, S.A.W.; Bitter, W.; Haveren, van J.; Es, van D.S.

    2012-01-01

    Stearic anhydride is proposed as reactive intermediate in the hydrogen free decarbonylation and ketonization of stearic acid over Pd/Al2O3 at 523 K. This information is crucial towards developing of a selective low temperature decarbonylation process of fatty acids towards olefins.

  9. The Formation of Polycomplexes of Poly(Methyl Vinyl Ether-Co-Maleic Anhydride and Bovine Serum Albumin in the Presence of Copper Ions

    Karahan Mesut

    2014-09-01

    Full Text Available The binary and ternary complex formations of poly(methyl vinyl ether-co-maleic anhydride (PMVEMA with copper ions and with bovine serum albumin (BSA in the presence of copper ions in phosphate buffer solution at pH = 7 were examined by the techniques of UV-visible, fluorescence, dynamic light scattering, atomic force microscopy measurements. In the formation of binary complexes of PMVEMA-Cu(II, the addition of copper ions to the solution of PMVEMA in phosphate buffer solution at pH = 7 forms homogeneous solutions when the molar ratio of Cu(II/MVEMA is 0.5. Then the formations of ternary complexes of PMVEMA-Cu(II-BSA were examined. Study analysis revealed that the toxicities of polymer-metal and polymer-metal-protein mixture solutions depend on the nature and ratio of components in mixtures.

  10. Compatibility analysis of Nylon 6 and poly(ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using isothermal crystallization kinetics

    Biber, Erkan, E-mail: ebiber@cankaya.edu.tr [Middle East Technical University, Polymer Science and Technology Department, Ankara (Turkey); Cankaya University, Industrial Engineering Department, Ankara (Turkey); Guenduez, Guengoer [Middle East Technical University, Polymer Science and Technology Department, Ankara (Turkey); Middle East Technical University, Chemical Engineering Department, Ankara (Turkey); Mavis, Bora [Hacettepe University, Mechanical Engineering Department, Ankara (Turkey); Colak, Uner [Hacettepe University, Nuclear Energy Engineering Department, Ankara (Turkey)

    2010-07-01

    Nylon 6 is a widely used engineering polymer, and has relatively poor impact strength. Ethylene, n-Butyl acrylate, maleic anhydride (E-nBA-MAH) terpolymer is blended with Nylon 6 to enhance its impact strength. Mixture should be compatible to be used in applications. The bare interaction energy between Nylon 6 and E-nBA-MAH terpolymer is calculated according to melting point depression approach using both Flory-Huggins (FH) Theory and Sanchez-Lacombe Equation of State (SL EOS). It demonstrates that blends are thermodynamically favorable to any arrangements. Yet, isothermal crystallization kinetics and WAXS crystallization peaks of blends reveal that mixtures of various compositions have different crystallization behaviors and require alternating crystallization energy due to crystalline structures of individual polymers. Also, SEM images support that after 5% addition of elastomeric terpolymer, interaction loosens due to strong crystalline structure of Nylon 6.

  11. Effects of Polyethylene Grafted Maleic Anhydride on the Mechanical, Morphological, and Swelling Properties of Poly (Vinyl Chloride / Epoxidized Natural Rubber / Kenaf Core Powder Composites

    Rohani Abdul Majid

    2014-10-01

    Full Text Available The effects of polyethylene grafted maleic anhydride (PE-g-MA on the properties of poly (vinyl chloride/epoxidized natural rubber (PVC/ENR kenaf core powder composites were studied, with four different loadings of kenaf core powder (5, 10, 15, and 20 phr. The tensile properties indicated that the strength and elongation at break of the composites exhibited an increase for samples with PE-g-MA. Morphological analysis using a scanning electron microscope (SEM showed better dispersion of kenaf fiber with the addition of PE-g-MA and less kenaf powder agglomeration. Furthermore, the swelling index indicated that composites with PE-g-MA showed lower toluene absorption than composites without PE-g-MA.

  12. Carboxy terminated rubber based on natural rubber grafted with acid anhydrides and its adhesion properties

    Klinpituksa, P; Kongkalai, P; Kaesaman, A

    2014-01-01

    The chemical modification of natural rubber by grafting of various polar functional molecules is an essential method, improving the versatility of rubber in applications. This research investigated the preparation of natural rubber-graft-citraconic anhydride (NR-g-CCA), natural rubber-graft-itaconic anhydride (NR-g-ICA), and natural rubber-graft-maleic anhydride (NR-g-MA), with the anhydrides grafted to natural rubber in toluene using benzoyl peroxide as an initiator. Variations of monomer content, initiator content, temperature and reaction time of the grafting copolymerization were investigated. The maximum degrees of grafting were 1.06% for NR-g-CCA, 4.66% for NR-g-ICA, and 5.03% for NR-g-MA, reached using 10 phr citraconic anhydride, 10 phr of itaconic anhydride, or 8 phr of maleic anhydride, 3 phr benzoyl peroxide, at 85, 80 and 80°C for 2, 2 and 3 hrs, respectively. Solvent-based wood adhesives were formulated from these copolymers with various contents of wood resin in the range 10-40 phr. The maximal 289 N/in cleavage peel and 245.7 KPa shear strength for NR-g-MA (5.03% grafting) were obtained at 40 phr wood resin

  13. Pharmacokinetics of Maleic Acid as a Food Adulterant Determined by Microdialysis in Rat Blood and Kidney Cortex

    Mei-Ling Hou

    2016-03-01

    Full Text Available Maleic acid has been shown to be used as a food adulterant in the production of modified starch by the Taiwan Food and Drug Administration. Due to the potential toxicity of maleic acid to the kidneys, this study aimed to develop an analytical method to investigate the pharmacokinetics of maleic acid in rat blood and kidney cortex. Multiple microdialysis probes were simultaneously inserted into the jugular vein and the kidney cortex for sampling after maleic acid administration (10 or 30 mg/kg, i.v., respectively. The pharmacokinetic results demonstrated that maleic acid produced a linear pharmacokinetic phenomenon within the doses of 10 and 30 mg/kg. The area under concentration versus time curve (AUC of the maleic acid in kidney cortex was 5-fold higher than that in the blood after maleic acid administration (10 and 30 mg/kg, i.v., respectively, indicating that greater accumulation of maleic acid occurred in the rat kidney.

  14. Poly(vinyl methyl ether/maleic anhydride)-Doped PEG-PLA Nanoparticles for Oral Paclitaxel Delivery To Improve Bioadhesive Efficiency.

    Wang, Qian; Li, Chan; Ren, Tianyang; Chen, Shizhu; Ye, Xiaoxia; Guo, Hongbo; He, Haibing; Zhang, Yu; Yin, Tian; Liang, Xing-Jie; Tang, Xing

    2017-10-02

    Bioadhesive nanoparticles based on poly(vinyl methyl ether/maleic anhydride) (PVMMA) and poly(ethylene glycol) methyl ether-b-poly(d,l-lactic acid) (mPEG-b-PLA) were produced by the emulsification solvent evaporation method. Paclitaxel was utilized as the model drug, with an encapsulation efficiency of up to 90.2 ± 4.0%. The nanoparticles were uniform and spherical in shape and exhibited a sustained drug release compared with Taxol. m-NPs also exhibited favorable bioadhesive efficiency at the same time. Coumarin 6 or DiR-loaded nanoparticles with/without PVMMA (C6-m-NPs/DiR-m-NPs or C6-p-NPs/DiR-p-NPs) were used for cellular uptake and intestinal adhesion experiments, respectively. C6-m-NPs were shown to enhance cellular uptake, and caveolae/lipid raft mediated endocytosis was the primary route for the uptake of the nanoparticles. Favorable bioadhesive efficiency led to prolonged retention in the intestine reflected by the fluorescence in isolated intestines ex vivo. In a ligated intestinal loops model, C6-m-NPs showed a clear advantage for transporting NPs across the mucus layer over C6-p-NPs and free C6. The apparent permeability coefficient (Papp) of PTX-m-NPs through Caco-2/HT29 monolayers was 1.3- and 1.6-fold higher than PTX-p-NPs and Taxol, respectively, which was consistent with the AUC 0-t of different PTX formulations after oral administration in rats. PTX-m-NPs also exhibited a more effective anticancer efficacy, with an IC 50 of 0.2 ± 1.4 μg/mL for A549 cell lines, further demonstrating the advantage of bioadhesive nanoparticles. The bioadhesive nanoparticles m-NPs demonstrated both mucus permeation and epithelial absorption, and thus, this bioadhesive drug delivery system has the potential to improve the bioavailability of drugs that are insoluble in the gastrointestinal environment.

  15. Resonance energy transfer from quinolinone modified polystyrene-block-poly(styrene-alt-maleic anhydride) copolymer to terbium(III) metal ions

    Výprachtický, Drahomír, E-mail: vyprachticky@imc.cas.cz [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6 (Czech Republic); Mikeš, František [New York University Polytechnic School of Engineering, Polymer Research Institute, 6 MetroTech Center, Brooklyn, NY 11201 (United States); Lokaj, Jan; Pokorná, Veronika; Cimrová, Věra [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6 (Czech Republic)

    2015-04-15

    Polystyrene-block-poly(styrene-alt-maleic anhydride) was synthesized by nitroxide mediated radical polymerization and modified with 7-amino-4-methylquinolin-2(1H)-one (I) and methanol. The formed block polymer ligand contained a quinolinone fluorophore (Ω) and carboxyl (III) or sodium carboxylate (IV) binding sites. The ligand-to-metal resonance energy transfer (RET) and ligand binding properties of [III–Tb{sup 3+}] and [IV–Tb{sup 3+}] complexes were investigated by steady-state and time-resolved luminescence spectroscopy in tetrahydrofuran/methanol and/or tetrahydrofuran/deuterated methanol mixtures and compared with those of a low-molecular-weight model ligand, i.e. the sodium salt of N-(4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)succinamic acid (II). The long-lived emission intensities of Tb{sup 3+} at 490, 545, 585, and 620 nm corresponding to the {sup 5}D{sub 4}→{sup 7}F{sub 6}, {sup 5}D{sub 4}→{sup 7}F{sub 5}, {sup 5}D{sub 4}→{sup 7}F{sub 4}, and {sup 5}D{sub 4}→{sup 7}F{sub 3} transitions, respectively, were strongly increased by the addition of ligands in the order [II-Tb{sup 3+}]⪡[III-Tb{sup 3+}]<[IV-Tb{sup 3+}]. The efficiency of energy transfer (E) was evaluated from the emission intensity of the donor (Ω) in the presence or absence of the acceptor (Tb{sup 3+}) depending on the acceptor concentration and ligand neutralization. It was concluded that the macromolecular ligand structural properties (polymer coil and supramolecular structures, e.g. micelles) were responsible for the increase in RET. The time-resolved luminescence measurements revealed that the binding affinity of the ligands II, III, and IV increased in the order II

  16. Maleic acid treatment of biologically detoxified corn stover liquor.

    Kim, Daehwan; Ximenes, Eduardo A; Nichols, Nancy N; Cao, Guangli; Frazer, Sarah E; Ladisch, Michael R

    2016-09-01

    Elimination of microbial and enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases, and other soluble inhibitors were eliminated by biological detoxification. Corn stover at 20% (w/v) solids was LHW pretreated LHW (severity factor: 4.3). The 20% solids (w/v) pretreated corn stover derived liquor was recovered and biologically detoxified using the fungus Coniochaeta ligniaria NRRL30616. After maleic acid treatment, and using 5 filter paper units of cellulase/g glucan (8.3mg protein/g glucan), 73% higher cellulose conversion from corn stover was obtained for biodetoxified samples compared to undetoxified samples. This corresponded to 87% cellulose to glucose conversion. Ethanol production by yeast of pretreated corn stover solids hydrolysate was 1.4 times higher than undetoxified samples, with a reduction of 3h in the fermentation lag phase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Separation and recovery of lead from a low concentration solution of lead(II) and zinc(II) using the hydrolysis production of poly styrene-co-maleic anhydride

    Liang, Xing; Su, Yibing [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou (China); Yang, Ying, E-mail: Yangying@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou (China); Qin, Wenwu [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou (China)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Separation and recovery of Pb(II) from a solution of Pb(II) and Zn(II) was performed. Black-Right-Pointing-Pointer Pb(II) can be recovered using the hydrolysis production of poly styrene-co-maleic anhydride. Black-Right-Pointing-Pointer The adsorption capacity of the PSMA resin for Pb(II) is 641.62 mg g{sup -1}. Black-Right-Pointing-Pointer Pb(II) can be recovered through desorption of Pb-PSMA into Pb(II) ion and the solid PSMA resin. Black-Right-Pointing-Pointer The resin can be repeatedly used through desorption by an inorganic acid condition (6 M H{sub 2}SO{sub 4}). - Abstract: The Pb-Zn separation/preconcentration technique, based on the complex formation reaction of Pb(II) and Zn(II), using a copolymer poly(styrene-co-maleic anhydride) (PSMA), without adding any carrier element was developed. The effects of several experimental parameters such as solution pH, temperature and adsorption time were studied. The experimental results show that the PSMA resin-Pb equilibrium was achieved in 2 min and the Pb(II) loading capacity is up to 641.62 mg g{sup -1} in aqueous solution under optimum conditions, which is much higher than the Zn(II) loading capacity within 80 min. The adsorption test for Pb(II) indicates that PSMA can recover Pb(II) from a mixed solution of Pb(II), Zn(II) and light metals such as Ca(II) and Mg(II) with higher adsorption rate and larger selective coefficient. A further study indicates that PSMA as chelating resins recovering Pb(II) can be regenerated via mineral acid (6 M H{sub 2}SO{sub 4}). PSMA was synthesized by radical polymerization and tested as an adsorbent for the selective recovery of Pb(II). In addition, the formation procedure and structure of Pb-PSMA complex were also studied. Both the PSMA and the Pb-PSMA complex were characterized by means of FTIR spectroscopy, elemental analysis, gel permeation chromatography (GPC) and atomic absorption spectrometry (AAS).

  18. Synthesis of Terpolymers with Homogeneous Composition by Free Radical Copolymerization of Maleic Anhydride, Perfluorooctyl and Butyl or Dodecyl Methacrylates: Application of the Continuous Flow Monomer Addition Technique

    Marian Szkudlarek

    2017-11-01

    Full Text Available Terpolymers of homogeneous composition were prepared by free radical copolymerization of butyl or dodecyl methacrylate, 1H,1H,2H,2H-perfluorodecyl methacrylate and maleic anhydride using the continuous monomer addition technique. The copolymerization reactions were performed at 65 °C in the presence of azobisisobutyronitrile as an initiator in a mixture of methyl ethyl ketone and 1,3-bis (trifluoromethylbenzene. The monomers and initiator are added to the reaction mixture with the same rate they are consumed in 5- and 10-fold excess compared to the initial monomer stock. The obtained terpolymers with molecular weights Mn = 50,000–70,000 are of uniform composition, close to the composition determined in low conversion experiments, proving the principle of the chosen concept. The kinetic data necessary for the design of the continuous addition experiment were obtained from binary copolymerization experiments at low monomer conversion (to avoid compositional drift. In addition, the so-called terpolymerization parameter was determined from ternary copolymerization experiments.

  19. Viscometric investigation of compatibilization of the poly(vinyl chloride)/poly(ethylene-co-vinyl acetate) blends by terpolymer of maleic anhydride styrene vinyl acetate

    İmren, Dilek; Boztuğ, Ali; Yılmaz, Ersen; Zengin, H. Bayram

    2008-11-01

    In this study, a blend of poly(vinyl chloride) (PVC)/ethylene-co-vinyl acetate (EVA) was compatibilized by terpolymer of maleic anhydride-styrene-vinyl acetate (MAStVA) used as a compatibilizer. It was prepared the blends of 50/50 PVC/EVA containing 2-10% of the terpolymer. The compatibility experiences of these blends were investigated by using viscometric method in the range of concentrations (0.5-2.0 g dL -1) where tetrahydrofuran (THF) is the solvent. The interaction parameter (Δ b) was used to study the miscibility and compatibility of polymer blend in solution, obtained from the modified Krigbaum and Wall theory. Turbidity and FTIR measurements were also used to investigate the miscibility of this pair of polymers. The values of the relative viscosities of the each polymer solution and their blends were measured by a Cannon-Fenske type viscometer. In consequence of the study, it was observed that a considerable improvement was achieved in the miscibility of PVC/EVA blends by adding among 5 and 10 wt% of compatibilizer.

  20. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE Addition

    Yun Lu

    2013-06-01

    Full Text Available This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs. The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%–8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  1. Enhancement of the Mechanical Properties of Basalt Fiber-Wood-Plastic Composites via Maleic Anhydride Grafted High-Density Polyethylene (MAPE) Addition.

    Chen, Jinxiang; Wang, Yong; Gu, Chenglong; Liu, Jianxun; Liu, Yufu; Li, Min; Lu, Yun

    2013-06-18

    This study investigated the mechanisms, using microscopy and strength testing approaches, by which the addition of maleic anhydride grafted high-density polyethylene (MAPE) enhances the mechanical properties of basalt fiber-wood-plastic composites (BF-WPCs). The maximum values of the specific tensile and flexural strengths are achieved at a MAPE content of 5%-8%. The elongation increases rapidly at first and then continues slowly. The nearly complete integration of the wood fiber with the high-density polyethylene upon MAPE addition to WPC is examined, and two models of interfacial behavior are proposed. We examined the physical significance of both interfacial models and their ability to accurately describe the effects of MAPE addition. The mechanism of formation of the Model I interface and the integrated matrix is outlined based on the chemical reactions that may occur between the various components as a result of hydrogen bond formation or based on the principle of compatibility, resulting from similar polarity. The Model I fracture occurred on the outer surface of the interfacial layer, visually demonstrating the compatibilization effect of MAPE addition.

  2. Separation and recovery of lead from a low concentration solution of lead(II) and zinc(II) using the hydrolysis production of poly styrene-co-maleic anhydride.

    Liang, Xing; Su, Yibing; Yang, Ying; Qin, Wenwu

    2012-02-15

    The PbZn separation/preconcentration technique, based on the complex formation reaction of Pb(II) and Zn(II), using a copolymer poly(styrene-co-maleic anhydride) (PSMA), without adding any carrier element was developed. The effects of several experimental parameters such as solution pH, temperature and adsorption time were studied. The experimental results show that the PSMA resin-Pb equilibrium was achieved in 2 min and the Pb(II) loading capacity is up to 641.62 mg g(-1) in aqueous solution under optimum conditions, which is much higher than the Zn(II) loading capacity within 80 min. The adsorption test for Pb(II) indicates that PSMA can recover Pb(II) from a mixed solution of Pb(II), Zn(II) and light metals such as Ca(II) and Mg(II) with higher adsorption rate and larger selective coefficient. A further study indicates that PSMA as chelating resins recovering Pb(II) can be regenerated via mineral acid (6M H(2)SO(4)). PSMA was synthesized by radical polymerization and tested as an adsorbent for the selective recovery of Pb(II). In addition, the formation procedure and structure of Pb-PSMA complex were also studied. Both the PSMA and the Pb-PSMA complex were characterized by means of FTIR spectroscopy, elemental analysis, gel permeation chromatography (GPC) and atomic absorption spectrometry (AAS). Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Evaluation of Scotchbond Multipurpose and maleic acid as alternative methods of bonding orthodontic brackets.

    Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R

    1997-05-01

    Damage to the enamel surface during bonding and debonding of orthodontic brackets is a clinical concern. Alternative bonding methods that minimize enamel surface damage while maintaining a clinically useful bond strength is an aim of current research. The purpose of this study was to compare the effects on bond strength and bracket failure location of two adhesives (System 1+ and Scotchbond Multipurpose, 3M Dental Products Division) and two enamel conditioners (37% phosphoric acid and 10% maleic acid). Forty-eight freshly extracted human premolars were pumiced and divided into four groups of 12 teeth, and metal orthodontic brackets were attached to the enamel surface by one of four protocols: (1) System 1+ and phosphoric acid, (2) Scotchbond and phosphoric acid, (3) System 1+ and maleic acid, and (4) Scotchbond and maleic acid. After bracket attachment, the teeth were mounted in phenolic rings and stored in deionized water at 37 degrees C for 72 hours. A Zwick universal testing machine (Zwick GmbH & Co.) was used to determine shear bond strengths. The residual adhesive on the enamel surface was evaluated with the Adhesive Remnant Index. The analysis of variance was used to compare the four groups. Significance was predetermined at p adhesives on the enamel surfaces, revealed significant differences among the four groups (mean 2 = 0.005). A Duncan multiple range test revealed the difference occurred between the phosphoric acid and maleic acid groups, with maleic acid having bond failures at the enamel-adhesive interface. In conclusion, the use of Scotchbond Multipurpose and/or maleic acid does not significantly effect bond strength, however, the use of maleic acid resulted in an unfavorable bond failure location.

  4. Kinetics of Maleic Acid and Aluminum Chloride Catalyzed Dehydration and Degradation of Glucose

    Zhang, Ximing; Hewetson, Barron B.; Mosier, Nathan S.

    2015-04-16

    We report the positive effect of maleic acid, a dicarboxylic acid, on the selectivity of hexose dehydration to 5-hydroxymethyfurfural (HMF) and subsequent hydrolysis to levulinic and formic acids. We also describe the kinetic analysis of a Lewis acid (AlCl3) alone and in combination with HCl or maleic acid to catalyze the isomerization of glucose to fructose, dehydration of fructose to HMF, hydration of HMF to levulinic and formic acids, and degradation of these compounds to humins. The results show that AlCl3 significantly enhances the rate of glucose conversion to HMF and levulinic acid in the presence of both maleic acid and HCl. In addition, the degradation of HMF to humins, rather than levulinic and formic acids, is reduced by 50% in the presence of maleic acid and AlCl3 compared to HCl combined with AlCl3. The results suggest different reaction mechanisms for the dehydration of glucose and rehydration of HMF between maleic acid and HCl.

  5. Controlling Styrene Maleic Acid Lipid Particles through RAFT.

    Smith, Anton A A; Autzen, Henriette E; Laursen, Tomas; Wu, Vincent; Yen, Max; Hall, Aaron; Hansen, Scott D; Cheng, Yifan; Xu, Ting

    2017-11-13

    The ability of styrene maleic acid copolymers to dissolve lipid membranes into nanosized lipid particles is a facile method of obtaining membrane proteins in solubilized lipid discs while conserving part of their native lipid environment. While the currently used copolymers can readily extract membrane proteins in native nanodiscs, their highly disperse composition is likely to influence the dispersity of the discs as well as the extraction efficiency. In this study, reversible addition-fragmentation chain transfer was used to control the polymer architecture and dispersity of molecular weights with a high-precision. Based on Monte Carlo simulations of the polymerizations, the monomer composition was predicted and allowed a structure-function analysis of the polymer architecture, in relation to their ability to assemble into lipid nanoparticles. We show that a higher degree of control of the polymer architecture generates more homogeneous samples. We hypothesize that low dispersity copolymers, with control of polymer architecture are an ideal framework for the rational design of polymers for customized isolation and characterization of integral membrane proteins in native lipid bilayer systems.

  6. Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles

    Boehm, Ryan D; Miller, Philip R; Singh, Ritika; Narayan, Roger J; Shah, Akash; Stafslien, Shane; Daniels, Justin

    2012-01-01

    Microneedles are needle-like projections with microscale features that may be used for transdermal delivery of a variety of pharmacologic agents, including antibacterial agents. In the study described in this paper, an indirect rapid prototyping approach involving a combination of visible light dynamic mask micro-stereolithography and micromolding was used to prepare microneedle arrays out of a biodegradable acid anhydride copolymer, Gantrez® AN 169 BF. Fourier transform infrared spectroscopy, energy dispersive x-ray spectrometry and nanoindentation studies were performed to evaluate the chemical and mechanical properties of the Gantrez® AN 169 BF material. Agar plating studies were used to evaluate the in vitro antimicrobial performance of these arrays against Bacillus subtilis, Candida albicans, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Large zones of growth inhibition were noted for Escherichia coli, S. aureus, Enterococcus faecalis and B. subtilis. The performance of Gantrez® AN 169 BF against several bacteria suggests that biodegradable acid anhydride copolymer microneedle arrays prepared using visible light dynamic mask micro-stereolithography micromolding may be useful for treating a variety of skin infections. (communication)

  7. Structure and thermal performance of poly(styrene-co-maleic anhydride)-g-alkyl alcohol comb-like copolymeric phase change materials

    Wang, Haixia; Shi, Haifeng; Qi, Miao; Zhang, Lingjian; Zhang, Xingxiang; Qi, Lu

    2013-01-01

    Graphical abstract: SMA-g-CnOH comb-like PCMs exhibit the better thermal stability against 1-alcohols due to the protection of SMA backbones, and the degradation temperature is dependent on the side-chain length, where at 5 wt% weight loss T d increased from 193 to 257 °C with n changing from 14 to 26. SMA-g-CnOH PCMs can be widely used under 300 °C for preparation of energy-saving products and materials. - Highlights: • The length of alkyl side-chains determines the thermal energy storage ability. • SMA backbone restricts the crystallization of alkyl side groups. • SMA-g-CnOH PCMs have the better thermal stability against 1-alcohols. - Abstract: A series of comb-like copolymeric phase change materials (SMA-g-CnOH) composed of poly(styrene-co-maleic anhydride) (SMA) and 1-alcohols CnOH with n = 14, 16, 18 or 26, respectively, was synthesized through grafting reaction. The structure and thermal properties of SMA-g-CnOH were investigated by 1 H nuclear magnetic resonance ( 1 H NMR), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The DSC analysis indicates that SMA-g-CnOH exhibit good structure stability with phase change enthalpies changing from 37.9 to 110.7 J g −1 . The results showed that the low thermal efficiency of SMA-g-CnOH was ascribed to the small CH 2 segments of side chains participating in the assembled structure of side-chain crystallites. Their advantageous structural stability and thermal performance of SMA-g-CnOH were favorable for phase change materials in the thermal energy storage systems. Additionally, the influence of side-chain length on thermal properties of SMA-g-CnOH also was discussed in detail in combination with the published results

  8. Synthesis, characterization, and assessment of cytotoxic, antiproliferative, and antiangiogenic effects of a novel procainamide hydrochloride-poly(maleic anhydride-co-styrene) conjugate.

    Karakus, Gulderen; Akin Polat, Zubeyde; Sahin Yaglıoglu, Ayse; Karahan, Mesut; Yenidunya, Ali Fazil

    2013-01-01

    Poly(maleic anhydride-co-styrene) (MAST) was synthesized by a free-radical polymerization reaction. A bioactive molecule, procainamide hydrochloride (PH), was then conjugated to MAST. The conjugation product was named as MAST/PH. Structural characterization of MAST and MAST/PH was carried out by Fourier Transform Infrared and Nuclear Magnetic Resonance spectroscopy. Their molecular weights were determined by size-exclusion chromatography. A mechanism was then suggested for the conjugation reaction. The results of the cytotoxicity assay, employing a mouse fibroblast cell line (L929), indicated that MAST/PH had no cytotoxicity at concentrations [Formula: see text] 62 μg mL(-1) (p > 0.05). Antiproliferative activities of MAST/PH and PH were determined by the BrdU cell proliferation ELISA assay, using C6 and HeLa cell lines. In the experiment, two anticancer chemotherapy drugs, cisplatin and 5-fluorouracil, were included as positive control. Antiproliferative activity results demonstrated that MAST/PH yielded the highest suppression profile (approximately 42%) at 20 μg/ml, while free PH exerted the same activity at 100 μg/ml. Interestingly, both MAST/PH and PH suppressed the proliferation of only one of the cell lines, C6 cells. Both cisplatin and 5-fluorouracil yielded approximately 60% antiproliferative activity on C6 cells at 20 and 100 μg/ml concentrations. Antiangiogenic capacity of both MAST and MAST/PH was also investigated by using the chicken chorioallantoic membrane assay. Results obtained indicated that while MAST/PH could be included into the category of good antiangiogenic substances, the activity score of MAST was within the weak category.

  9. Modification of wheat starch with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures I. Thermophysical and pasting properties.

    Subarić, Drago; Ačkar, Durđica; Babić, Jurislav; Sakač, Nikola; Jozinović, Antun

    2014-10-01

    The aim of this research was to investigate the influence of modification with succinic acid/acetic anhydride and azelaic acid/acetic anhydride mixtures on thermophysical and pasting properties of wheat starch. Starch was isolated from two wheat varieties and modified with mixtures of succinic acid and acetic anhydride, and azelaic acid and acetic anhydride in 4, 6 and 8 % (w/w). Thermophysical, pasting properties, swelling power, solubility and amylose content of modified starches were determined. The results showed that modifications with mixtures of afore mentioned dicarboxylic acids with acetic anhydride decreased gelatinisation and pasting temperatures. Gelatinisation enthalpy of Golubica starch increased, while of Srpanjka starch decreased by modifications. Retrogradation after 7 and 14 day-storage at 4 °C decreased after modifications of both starches. Maximum, hot and cold paste viscosity of both starches increased, while stability during shearing at high temperatures decreased. % setback of starches modified with azelaic acid/acetic anhydride mixture decreased. Swelling power and solubility of both starches increased by both modifications.

  10. Plasma Polymerized Thin Films of Maleic Anhydride and 1,2-methylenedioxybenzene for Improving Adhesion to Carbon Surfaces

    Drews, Joanna Maria; Goutianos, Stergios; Kingshott, Peter

    2007-01-01

    Low power 2-phase AC plasma polymerization has been used to surface modify glassy carbon substrates that are used as an experimental model for carbon fibers in reinforced composites. In order to probe the role of carboxylic acid density on the interfacial adhesion strength a combination...

  11. Structure and thermal performance of poly(styrene-co-maleic anhydride)-g-alkyl alcohol comb-like copolymeric phase change materials

    Wang, Haixia; Shi, Haifeng, E-mail: haifeng.shi@gmail.com; Qi, Miao; Zhang, Lingjian; Zhang, Xingxiang; Qi, Lu

    2013-07-20

    Graphical abstract: SMA-g-CnOH comb-like PCMs exhibit the better thermal stability against 1-alcohols due to the protection of SMA backbones, and the degradation temperature is dependent on the side-chain length, where at 5 wt% weight loss T{sub d} increased from 193 to 257 °C with n changing from 14 to 26. SMA-g-CnOH PCMs can be widely used under 300 °C for preparation of energy-saving products and materials. - Highlights: • The length of alkyl side-chains determines the thermal energy storage ability. • SMA backbone restricts the crystallization of alkyl side groups. • SMA-g-CnOH PCMs have the better thermal stability against 1-alcohols. - Abstract: A series of comb-like copolymeric phase change materials (SMA-g-CnOH) composed of poly(styrene-co-maleic anhydride) (SMA) and 1-alcohols CnOH with n = 14, 16, 18 or 26, respectively, was synthesized through grafting reaction. The structure and thermal properties of SMA-g-CnOH were investigated by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The DSC analysis indicates that SMA-g-CnOH exhibit good structure stability with phase change enthalpies changing from 37.9 to 110.7 J g{sup −1}. The results showed that the low thermal efficiency of SMA-g-CnOH was ascribed to the small CH{sub 2} segments of side chains participating in the assembled structure of side-chain crystallites. Their advantageous structural stability and thermal performance of SMA-g-CnOH were favorable for phase change materials in the thermal energy storage systems. Additionally, the influence of side-chain length on thermal properties of SMA-g-CnOH also was discussed in detail in combination with the published results.

  12. A Novel Voltammetric Method for the Determination of Maleic Acid Using Silver Amalgam Paste Electrode

    Niaz, A.; Fischer, J.; Barek, J.; Josypčuk, Bohdan; Sirajuddin, C.; Bhanger, M. I.

    2009-01-01

    Roč. 21, č. 15 (2009), s. 1719-1722 ISSN 1040-0397 R&D Projects: GA MŠk(CZ) LC06035; GA ČR GA203/07/1195 Institutional research plan: CEZ:AV0Z40400503 Keywords : voltammetry * maleic acid * silver amalgam paste electrode Subject RIV: CG - Electrochemistry Impact factor: 2.630, year: 2009

  13. A novel approach in acidic disinfection through inhibition of acid resistance mechanisms; Maleic acid-mediated inhibition of glutamate decarboxylase activity enhances acid sensitivity of Listeria monocytogenes.

    Paudyal, Ranju; Barnes, Ruth H; Karatzas, Kimon Andreas G

    2018-02-01

    Here it is demonstrated a novel approach in disinfection regimes where specific molecular acid resistance systems are inhibited aiming to eliminate microorganisms under acidic conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for survival of Listeria monocytogenes and other pathogens under acidic conditions, its potential inhibition by specific compounds that could lead to its elimination from foods or food preparation premises has not been studied. The effects of maleic acid on the acid resistance of L. monocytogenes were investigated and found that it has a higher antimicrobial activity under acidic conditions than other organic acids, while this could not be explained by its pKa or Ka values. The effects were found to be more pronounced on strains with higher GAD activity. Maleic acid affected the extracellular GABA levels while it did not affect the intracellular ones. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes significantly enhancing its sensitivity to acidic conditions and together with its ability to remove biofilms, make a good candidate for disinfection regimes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Synthesis and property characterization of cassava starch grafted poly(acrylamide-co-(maleic acid)) superabsorbent via γ-irradiation

    Kiatkamjornwong, Suda; Mongkolsawat, Kanlaya; Sonsuk, Manit

    2004-01-01

    Graft copolymerizations of acrylamide and maleic acid onto cassava starch by a simultaneous irradiation technique using γ-rays as a initiator were carried out. Various important parameters of total dose, dose rate, monomer-to-cassava starch ratio and maleic acid content were studied. Addition of 2% ww -1 diprotic acid of maleic acid into the reaction mixture yields a saponified starch graft copolymer with a water absorption in distilled water as high as 2256g g -1 of its dried weight. The water absorption of these saponified graft copolymers insaline and buffer solutions was also measured. The water absorption depends largely on the cationic type and concentration of these solutions in terms of ionic strength. This research explains a charge transfer mechanism for graft copolymerization of maleic acid and acrylamide onto cassava starch, and describes the influential parameters that affect grafting efficiency and water absorption. (author)

  15. Maleic acid and aluminum chloride catalyzed conversion of glucose to 5-(hydroxymethyl) furfural and levulinic acid in aqueous media

    Zhang, Ximing [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Murria, Priya [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Jiang, Yuan [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Xiao, Weihua [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; College of Engineering; Kenttämaa, Hilkka I. [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Abu-Omar, Mahdi M. [The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio); Discovery Park; Purdue University; West Lafayette; USA; Mosier, Nathan S. [Laboratory of Renewable Resources Engineering and Department of Agricultural and Biological Engineering; Purdue University; West Lafayette; USA; The Center for Direct Catalytic Conversion of Biomass to Biofuels (C3Bio)

    2016-01-01

    Maleic acid (MA) and AlCl3self-assemble into catalytic complexes (Al–(MA)2–(OH)2(aq)) with improved selectivity for converting glucose to HMF, and levulinic acid.

  16. Antimicrobial residual effects of irrigation regimens with maleic acid in infected root canals

    Ferrer-Luque, Carmen Mar?a; Gonz?lez-Castillo, Silvia; Ruiz-Linares, Matilde; Arias-Moliz, Mar?a Teresa; Rodr?guez-Archilla, Alberto; Baca, Pilar

    2015-01-01

    Background The success of endodontic treatment depends largely on the control of microorganisms present in infected root canals. The aim of this study was to determine the residual antimicrobial activity of several final irrigation protocols with 7% maleic acid (MA) alone and combined with chlorhexidine (CHX), cetrimide (CTR) or both, in root canals infected with Enterococcus faecalis. Biofilms of E. faecalis were grown in uniradicular roots for 4 weeks. A total of 72 specimens were divided i...

  17. Laser-induced photochemical reaction of aqueous maleic acid solutions containing H2O2

    Shimizu, Yuichi; Kawanishi, Shunichi; Suzuki, Nobutake

    1995-01-01

    Hydroxy acid such as glycolic, tartaric and malic acids was directly produced by XeF-laser irradiation of the N 2 -saturated maleic acid aqueous solution containing H 2 O 2 . The selectivities of these products at the maximum of tartaric acid were 71, 4, and 2% at H 2 O 2 feeding rate of 3.2 ml h -1 , respectively. On the other hand, the irradiation of maleates such as dipotassium, calcium, and disodium greatly enhanced the selectivities of tartaric acid formation to 19%, and of malic acid formation to 13%, respectively, for dipotassium maleate. It may be considered from these results that the stability of the hydroxylated intermediate radical plays an important role for the efficient formations of tartaric and malic acids. (author)

  18. Nicotine-selective radiation-induced poly(acrylamide/maleic acid) hydrogels

    Saraydin, D.; Karadag, E.; Caldiran, Y.; Gueven, O.

    2001-01-01

    Nicotine-selective poly(acrylamide/maleic acid) (AAm/MA) hydrogels prepared by γ-irradiation were used in experiments on swelling, diffusion, and interactions of the pharmaceuticals nicotine, nicotinic acid, nicotinamide, and nikethamide. For AAm/MA hydrogel containing 60 mg maleic acid and irradiated at 5.2 kGy, the studies indicated that swelling increased in the following order; nicotine>nicotinamide>nikethamide>nicotinic acid>water. Diffusions of water and the pharmaceuticals within the hydrogels were found to be non-Fickian in character. AAm/MA hydrogel sorbed only nicotine and did not sorb nicotinamide, nikethamide and nicotinic acid in the binding experiments. S-type adsorption in Giles's classification system was observed. Some binding and thermodynamic parameters for AAm/MA hydrogel-nicotine system were calculated using the Scatchard method. The values of adsorption heat and free energy of this system were found to be negative whereas adsorption entropy was found to be positive. (author)

  19. Study on thermal properties and crystallization behavior of electron beam irradiated ethylene vinyl acetate (EVA)/waste tyre dust (WTD) blends in the presence of polyethylene graft maleic anhydride (PEgMAH)

    Ramli, Syuhada; Ahmad, S. H. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan (Malaysia); Ratnam, C. T. [Radiation Processing Technology Division, Malaysian Nuclear Agency (Nuclear Malaysia), Bangi, 43000 Kajang (Malaysia); Athirah, Nurul [School of Materials and Mineral Resources, USM Engineering Campus (Malaysia)

    2013-11-27

    The aim of this article is to show the effects of the electron beam irradiation dose and presence of a compatibiliser on the thermal properties and crystallinity of EVA/WTD blends. The purpose of applying electron beam radiation with doses range 50 to 200 kGy and adding a compatibiliser was to enhance the compatibility of the studied blends and at the same time to investigate the possibility of using this technique in the process of recycling polymeric materials. As the compatibilisers, the polyethylene grafted maleic anhydride (PEgMAH) was utilized, they were added at the amounts of 1-5 phr respectively. The enhancement of thermal properties was accompanied by the following effects, discussed in this article: i) an irradiated EVA/WTD blend at 200kGy was found to improve the thermal properties of EVA, ii) the addition of PEgMAH in EVA/WTD blends and the subsequent irradiation allowed prevention of degradation mechanism. iii) the ΔH{sub f} and crystallinity percentage decrease at higher PEgMAH content.

  20. Thermotropic properties of phosphatidylcholine nanodiscs bounded by styrene-maleic acid copolymers.

    Dominguez Pardo, J J; Dörr, J M; Renne, M F; Ould-Braham, T; Koorengevel, M C; van Steenbergen, M J; Killian, J A

    2017-11-01

    Styrene-maleic acid copolymers (SMA) have been gaining interest in the field of membrane research due to their ability to solubilize membranes into nanodics. The SMA molecules act as an amphipathic belt that surrounds the nanodiscs, whereby the hydrophobic styrene moieties can insert in between the lipid acyl chains. Here we used SMA variants with different styrene-to-maleic acid ratio (i.e. 2:1, 3:1 and 4:1) to investigate how lipid packing in the nanodiscs is affected by the presence of the polymers and how it depends on polymer composition. This was done by analyzing the thermotropic properties of a series of saturated phosphatidylcholines in nanodiscs using laurdan fluorescence and differential scanning calorimetry. In all cases it was found that the temperature of the main phase transition (T m ) of the lipids in the nanodiscs is downshifted and that its cooperativity is strongly reduced as compared to the situation in vesicles. These effects were least pronounced for lipids in nanodiscs bounded by SMA 2:1. Unexpected trends were observed for the calorimetric enthalpy of the transition, suggesting that the polymer itself contributes, possibly by rearranging around the nanodiscs when the lipids adopt the fluid phase. Finally, distinct differences in morphology were observed for nanodiscs at relatively high polymer concentrations, depending on the SMA variant used. Overall, the results suggest that the extent of preservation of native thermodynamic properties of the lipids as well as the stability of the nanodiscs at high polymer concentrations is better for SMA 2:1 than for the other SMA variants. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Barrier and adhesion properties of anti-corrosion coatings based on surfactant-free latexes from anhydride-containing polymers

    Soer, W.J.; Ming, W.; Koning, C.E.; Benthem, van R.A.T.M.; Mol, J.M.C.; Terryn, H.

    2009-01-01

    We have successfully obtained surfactant-free latexes from anhydride-containing polymers, including poly(styrene-alt-maleic anhydride) (PSMA), maleinized polybutadiene (PBDMA), and poly(octadecene-alt-maleic anhydride) (POMA). Here we report barrier and adhesion properties of the coatings made from

  2. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  3. The Free-Radical Copolymerization of Difurylmethane with Maleic

    Prof. Jo Michael

    Reaction feeds containing 85 mol % and higher of difurylmethane ... Keywords: difurylmethane; maleic anhydride; copolymerization; thermodecomposition ... delivery apparatus set at 500 psi for a flow rate of 1 cm3 min-1; a Waters model U6K.

  4. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure.

    Morrison, Kerrie A; Akram, Aneel; Mathews, Ashlyn; Khan, Zoeya A; Patel, Jaimin H; Zhou, Chumin; Hardy, David J; Moore-Kelly, Charles; Patel, Roshani; Odiba, Victor; Knowles, Tim J; Javed, Masood-Ul-Hassan; Chmel, Nikola P; Dafforn, Timothy R; Rothnie, Alice J

    2016-12-01

    The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  5. Morphological control of calcium oxalate particles in the presence of poly-(styrene-alt-maleic acid)

    Yu Jiaguo; Tang Hua; Cheng Bei; Zhao Xiujian

    2004-01-01

    Calcium oxalate (CaOx) particles exhibiting different shapes and phase structures were fabricated by a simple precipitation reaction of sodium oxalate with calcium chloride in the absence and presence of poly-(styrene-alt-maleic acid) (PSMA) as a crystal modifier at room temperature. The as-obtained products were characterized with scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of reaction conditions including pH, [Ca 2+ ]/[C 2 O 4 2- ] ratio and concentration of PSMA and CaC 2 O 4 on the crystal forms and morphologies of the as-obtained calcium oxalate were investigated. The results show that various crystal morphologies of calcium oxalate, such as parallelograms, plates, spheres, bipyramids etc. can be obtained depending on the experimental conditions. Higher polymer concentration favors formation of the metastable calcium oxalate dihydrate (COD) crystals. Lower pH is beneficial to the formation of plate-like CaOx crystals. Especially, the monodispersed parallelogram-like CaOx crystals can be produced by PSMA as an additive at pH 2. PSMA may act as a good inhibitor for urolithiasis since it induces the formation of COD and reduces the particle size of CaOx. This research may provide new insight into the morphological control of CaOx particles and the prevention of urolithiasis

  6. Solubilization of human cells by the styrene-maleic acid copolymer: Insights from fluorescence microscopy.

    Dörr, Jonas M; van Coevorden-Hameete, Marleen H; Hoogenraad, Casper C; Killian, J Antoinette

    2017-11-01

    Extracting membrane proteins from biological membranes by styrene-maleic acid copolymers (SMAs) in the form of nanodiscs has developed into a powerful tool in membrane research. However, the mode of action of membrane (protein) solubilization in a cellular context is still poorly understood and potential specificity for cellular compartments has not been investigated. Here, we use fluorescence microscopy to visualize the process of SMA solubilization of human cells, exemplified by the immortalized human HeLa cell line. Using fluorescent protein fusion constructs that mark distinct subcellular compartments, we found that SMA solubilizes membranes in a concentration-dependent multi-stage process. While all major intracellular compartments were affected without a strong preference, plasma membrane solubilization was found to be generally slower than the solubilization of organelle membranes. Interestingly, some plasma membrane-localized proteins were more resistant against solubilization than others, which might be explained by their presence in specific membrane domains with differing properties. Our results support the general applicability of SMA for the isolation of membrane proteins from different types of (sub)cellular membranes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The behaviour of tungsten electrodes in a mixture of acetic acid and acetic anhydride

    Pastor, T.J.; Vajgand, V.H.

    1976-01-01

    Tungsten electrodes have advantageously been used for potentiometric end-point detection in perchloric acid titration of bases in a mixture of acetic acid and acetic anhydride. They have also given good results in biamperometric detection of the equivalence point in continuous coulometric titration of small quantities of bases and acids in the same solvent. Tungsten electrodes in the presence of quinhydrone behave like platinum electrodes, but in biamperometric end-point determination in the absence of quinhydrone it is better to remove the oxide layer from their surface. Some other factors affecting their behaviour have also been studied. Errors in determination do not exceed +-2% even in titration of very small quantities of substances. (author)

  8. The properties of poly(lactic acid)/starch blends with a functionalized plant oil: tung oil anhydride.

    Xiong, Zhu; Li, Chao; Ma, Songqi; Feng, Jianxian; Yang, Yong; Zhang, Ruoyu; Zhu, Jin

    2013-06-05

    Bio-sourced polymers, polylactide (PLA) and starch, have been melt-blended by lab-scale co-extruder with tung oil anhydride (TOA) as the plasticizer. The ready reaction between the maleic anhydride on TOA and the hydroxyl on starch led TOA molecules to accumulate on starch and increased the compatibility of PLA/starch blends, which was confirmed by FT-IR analyses and SEM. The TOA could change the mechanical properties and physical behaviors of PLA/starch blends. DSC and DMA analysis show that the TOA layer on starch has an effect on the thermal behavior of PLA in the ternary blend. The enrichment of TOA on starch improves the toughness and impact strength of the PLA/starch blends. The adding amount of TOA in PLA/starch blends primarily determined the compatibility and mechanical properties of the resulted ternary blends. The tensile and impact fracture modes of the PLA/starch blend with or without TOA has also been investigated by SEM analysis. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  9. Anhydrous formic acid and acetic anhydride as solvent or additive in nonaqueous titrations.

    Buvári-Barcza, A; Tóth, I; Barcza, L

    2005-09-01

    The use and importance of formic acid and acetic anhydride (Ac2O) is increasing in nonaqueous acid-base titrations, but their interaction with the solutes is poorly understood. This paper attempts to clarify the effect of the solvents; NMR and spectrophotometric investigations were done to reveal the interactions between some bases and the mentioned solvents. Anhydrous formic acid is a typical protogenic solvent but both the relative permittivity and acidity are higher than those of acetic acid (mostly used in assays of bases). These differences originate from the different chemical structures: liquid acetic acid contains basically cyclic dimers while formic acid forms linear associates. Ac2O is obviously not an acidic but an aprotic (very slightly protophilic) solvent, which supposedly dissociates slightly into acetyl (CH3CO+) and acetate (AcO-) ions. In fact, some bases react with Ac2O forming an associate: the Ac+ group is bound to the delta- charged atom of the reactant while AcO- is associated with the delta+ group at appropriate distance.

  10. Importance of relative humidity in the oxidative ageing of organic aerosols: case study of the ozonolysis of maleic acid aerosol

    P. J. Gallimore

    2011-12-01

    Full Text Available Many important atmospheric aerosol processes depend on the chemical composition of the aerosol, e.g. water uptake and particle cloud interactions. Atmospheric ageing processes, such as oxidation reactions, significantly and continuously change the chemical composition of aerosol particles throughout their lifetime. These ageing processes are often poorly understood. In this study we utilize an aerosol flow tube set up and an ultra-high resolution mass spectrometer to explore the effect of relative humidity (RH in the range of <5–90% on the ozonolysis of maleic acid aerosol which is employed as model organic aerosol system. Due to the slow reaction kinetics relatively high ozone concentrations of 160–200 ppm were used to achieve an appreciable degree of oxidation of maleic acid. The effect of oxidative ageing on the hygroscopicity of maleic acid particles is also investigated using an electrodynamic balance and thermodynamic modelling. RH has a profound effect on the oxidation of maleic acid particles. Very little oxidation is observed at RH < 50% and the only observed reaction products are glyoxylic acid and formic acid. In comparison, when RH > 50% there are about 15 oxidation products identified. This increased oxidation was observed even when the particles were exposed to high humidities long after a low RH ozonolysis reaction. This result might have negative implications for the use of water as an extraction solvent for the analysis of oxidized organic aerosols. These humidity-dependent differences in the composition of the ozonolyzed aerosol demonstrate that water is both a key reactant in the oxidation scheme and a determinant of particle phase and hence diffusivity. The measured chemical composition of the processed aerosol is used to model the hygroscopic growth, which compares favourably with water uptake results from the electrodynamic balance measurements. A reaction mechanism is presented which takes into account the RH dependent

  11. Identifying airway sensitizers: cytokine mRNA profiles induced by various anhydrides

    Plitnick, L.M.; Loveless, S.E.; Ladics, G.S.; Holsapple, M.P.; Smialowicz, R.J.; Woolhiser, M.R.; Anderson, P.K.; Smith, C.; Selgrade, M.J.K.

    2003-01-01

    Exposure to low molecular weight (LMW) chemicals in the workplace has been linked to a variety of respiratory effects. Within the LMW chemicals, one of the major classes involved in these effects are the acid anhydrides. The immunological basis of respiratory hypersensitivity involves CD4+ cells. By virtue of their induction of cytokines typical of CD4+ T-helper type 2 (Th2) cells--interleukin (IL)-4, 10, and 13--respiratory sensitizers may be identified and differentiated from contact sensitizers which induce Th1 cytokines (IL-2 and IFN-γ). Our previous work suggested that the ribonuclease protection assay (RPA) was useful in identifying the respiratory sensitizer, trimellitic anhydride (TMA), based on quantitative differences in Th2 cytokine mRNA as compared to the contact sensitizer dinitrochlorobenzene (DNCB). Therefore, the purpose of the studies described in this report was to expand the chemicals tested in the RPA. To this end, four acid anhydrides with known respiratory sensitization potential, TMA, maleic anhydride (MA), phthalic anhydride (PA) and hexahydrophthalic anhydride (HHPA), were tested. Although previously determined to induce immunologically equivalent responses in a local lymph node assay (LLNA), the initial dose chosen (2.5%) failed to induce Th2 cytokine mRNA expression. To determine if the lack of cytokine expression was related to dose, LLNAs were conducted at higher doses for each of the anhydrides. The highest doses evaluated (four- to six-fold higher than those used in the initial RPA) gave equivalent proliferative responses for the various anhydrides and were used for subsequent RPA testing. At these higher doses, significant increases in Th2 versus Th1 cytokine mRNA were observed for all anhydrides tested. These results suggest that the RPA has the potential to serve as a screen for the detection of LMW airway sensitizing chemicals. However, the basis for selecting immunologically equivalent doses may require some modification

  12. Styrene maleic acid encapsulated raloxifene micelles for management of inflammatory bowel disease.

    Greish, Khaled; Taha, Safa; Jasim, Anfal; Elghany, Sara Abd; Sultan, Ameera; AlKhateeb, Ali; Othman, Manal; Jun, Fang; Taurin, Sebastien; Bakhiet, Moiz

    2017-12-01

    Inflammatory bowel disease (IBD) comprises a group of disorders that manifest through chronic inflammation of the colon and small intestine. Although the exact cause of IBD is still unclear, dysfunctional immunoregulation involving overproduction of inflammatory cytokines such as TNF-α, and IL-6 have been implicated in pathogenesis. Current therapy relies on immunosuppression, cytotoxic drugs, and monoclonal antibodies against TNF-α. These classes of drugs have severe side-effects, especially when used for long duration. Our previous work with raloxifene, a selective estrogen receptor modulator, has shown that the drug, and to a greater extent its micellar formulation, has a significant suppressive effect on NF-κB, an essential immune-regulator. This finding directed the current work towards testing the anti-inflammatory and immunomodulatory effects of raloxifene using cell lines, as well as testing the potential use of the styrene maleic acid (SMA) micelles loaded with raloxifene (SMA-Ral) against dextran sulfate sodium (DSS) induced colitis in an in vivo model of IBD. Treatment of MCF-7 cells with TNF-α was shown to protect the cells from the cytotoxic effect of raloxifene (42 vs. 10% cell death, with TNF-α. Treating CaCo-2 cells with both free and SMA-Ral improved cell survival after exposure to 2% DDS with significantly higher protection with SMA-Ral. Treatment of U-937 with SMA-Ral and free-Ral resulted in down-regulation of TNF-α, IL-1β, IL-6, and MIP1α, with greater inhibition of the SMA-Ral, compared to free Ral. Balb/c mice treated with raloxifene and SMA-Ral showed weight gain at 14 days, compared to the control group (122, and 115% respectively). Treatment with raloxifene prevented DSS-induced diarrhea in 6/6 of free raloxifene treated mice and in 5/6 mice treated with SMA-Ral. Control group of DSS-treated mice showed average colon length of 7.4 cm compared to 13 cm in the control group. The average colon length was 12.3 and 11.5 cm for

  13. Compatibility of polyvinyl alcohol and poly(methyl vinyl ether-co-maleic acid) blends estimated by molecular dynamics

    Moolman, FS

    2005-07-25

    Full Text Available are not dissociated (ionized). At pH below pKa (negative logarithm of acid dissociation constant) of maleic acid (first and second dissociation constants at 25 8C are pKa1Z1.91 and pKa 2Z6.33, respectively [22]), ioniz- ation of the carboxylic acid groups in the PMVE...-MA. Decreasing pH also reduces absolute viscosities and broadens the optimum blend ratio peak. Fig. 2. Density of a selected number of runs (11?15) as a function of time. F.S. Moolman et al. / Polymer 46 (2005) 6192?6200 6195 The cohesive energy densities display...

  14. EFFECT OF SUBSTITUTION POSITION OF HYDROXY GROUP AT BENZOIC ACID ON THE LUMINESCENT AND DEGRADATION PROPERTIES OF POLY[DI(CARBOXYPHENYL) SUCCINATE-co-SEBACIC ANHYDRIDE]S

    Jun Fan; Hong-liang Jiang; Kang-jie Zhu

    2007-01-01

    In this work, two new diacids, di(m-carboxyphenyl) succinate (m-dCPS) and di(o-carboxyphenyl) succinate (o-dCPS), were synthesized by reaction of m-, o-hydroxy benzoic acid with succinic chloride, respectively. Their corresponding copolymers with sebacic acid (SA), P(m-dCPS:SA) and P(o-dCPS:SA), were prepared by melt copolycondensation and characterized by NMR, UV and DSC methods. Compared with inherently fluorescent poly[di(p-carboxyphenyl) succinateco-sebacic anhydride] (P(p-dCPS:SA)), P(m-dCPS:SA) and P(o-dCPS:SA) displayed different luminescent properties. P(m-dCPS:SA) could emit fluorescence under the excitation of both visible and UV light, while P(o-dCPS:SA) could only emit fluorescence when excited with UV light. Degradation rate of the two new copolyanhydrides increased with the increase of SA fraction in the copolymers. In addition, P(o-dCPS:SA) degraded more rapidly than P(m-dCPS:SA) with the same composition. Typical surface-degradation characteristics of these copolyanhydrides were observed.

  15. Nanoparticle self-assembly in mixtures of phospholipids with styrene/maleic acid copolymers or fluorinated surfactants

    Vargas, Carolyn; Arenas, Rodrigo Cuevas; Frotscher, Erik; Keller, Sandro

    2015-12-01

    Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and synthetic membranes and membrane proteins. Considerable efforts are currently underway to replace conventional detergents by milder alternatives such as styrene/maleic acid (SMA) copolymers and fluorinated surfactants. However, these compounds and their nanosized assemblies remain poorly understood as regards their interactions with lipid membranes, particularly, the thermodynamics of membrane partitioning and solubilisation. Using 19F and 31P nuclear magnetic resonance spectroscopy, static and dynamic light scattering, and isothermal titration calorimetry, we have systematically investigated the aggregational state of a zwitterionic bilayer-forming phospholipid upon exposure to an SMA polymer with a styrene/maleic acid ratio of 3 : 1 or to a fluorinated octyl phosphocholine derivative called F6OPC. The lipid interactions of SMA(3 : 1) and F6OPC can be thermodynamically conceptualised within the framework of a three-stage model that treats bilayer vesicles, discoidal or micellar nanostructures, and the aqueous solution as distinct pseudophases. The exceptional solubilising power of SMA(3 : 1) is reflected in very low membrane-saturating and solubilising polymer/lipid molar ratios of 0.10 and 0.15, respectively. Although F6OPC saturates bilayers at an even lower molar ratio of 0.031, this nondetergent does not solubilise lipids even at >1000-fold molar excess, thus highlighting fundamental differences between these two types of mild membrane-mimetic systems. We rationalise these findings in terms of a new classification of surfactants based on bilayer-to-micelle transfer free energies and discuss practical implications for membrane-protein research.Self-assembling nanostructures in aqueous mixtures of bilayer-forming lipids and micelle-forming surfactants are relevant to in vitro studies on biological and

  16. Bacterial Reaction Centers Purified with Styrene Maleic Acid Copolymer Retain Native Membrane Functional Properties and Display Enhanced Stability**

    Swainsbury, David J K; Scheidelaar, Stefan; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2014-01-01

    Integral membrane proteins often present daunting challenges for biophysical characterization, a fundamental issue being how to select a surfactant that will optimally preserve the individual structure and functional properties of a given membrane protein. Bacterial reaction centers offer a rare opportunity to compare the properties of an integral membrane protein in different artificial lipid/surfactant environments with those in the native bilayer. Here, we demonstrate that reaction centers purified using a styrene maleic acid copolymer remain associated with a complement of native lipids and do not display the modified functional properties that typically result from detergent solubilization. Direct comparisons show that reaction centers are more stable in this copolymer/lipid environment than in a detergent micelle or even in the native membrane, suggesting a promising new route to exploitation of such photovoltaic integral membrane proteins in device applications. PMID:25212490

  17. Diastereoselective and one-pot synthesis of trans-isoquinolonic acids via three-component condensation of homophthalic anhydride, aldehydes, and ammonium acetate catalyzed by aspartic acid

    Ghorbani-Choghamarani, A.; Hajjami, M.; Norouzi, M.; Abbasityula, Y.; Eigner, Václav; Dušek, Michal

    2013-01-01

    Roč. 69, č. 32 (2013), s. 6541-6544 ISSN 0040-4020 Grant - others:AVČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : isoquinolonic acid * diastereoselective * aldehyde * homophthalic anhydride * ammonium acetate Subject RIV: CC - Organic Chemistry Impact factor: 2.817, year: 2013

  18. Monosaccharide anhydrides, monocarboxylic acids and OC/EC in PM1 aerosols in urban areas in the Czech Republic

    Křůmal, Kamil; Mikuška, Pavel; Večeřa, Zbyněk

    2015-01-01

    Roč. 6, č. 6 (2015), s. 917-927 ISSN 1309-1042 R&D Projects: GA MŽP SP/1A3/148/08; GA ČR(CZ) GBP503/12/G147; GA ČR GA13-01438S; GA ČR(CZ) GA14-25558S Institutional support: RVO:68081715 Keywords : Monosaccharide anhydrides * carboxylic acids * fatty acids * organic carbon * biomass burning Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.401, year: 2015

  19. Cellulose-polyhydroxylated fatty acid ester-based bioplastics with tuning properties: Acylation via a mixed anhydride system.

    Heredia-Guerrero, José A; Goldoni, Luca; Benítez, José J; Davis, Alexander; Ceseracciu, Luca; Cingolani, Roberto; Bayer, Ilker S; Heinze, Thomas; Koschella, Andreas; Heredia, Antonio; Athanassiou, Athanassia

    2017-10-01

    The synthesis of microcrystalline cellulose (MCC) and 9,10,16-hydroxyhexadecanoic (aleuritic) acid ester-based bioplastics was investigated through acylation in a mixed anhydride (trifluoroacetic acid (TFA)/trifluoroacetic acid anhydride (TFAA)), chloroform co-solvent system. The effects of chemical interactions and the molar ratio of aleuritic acid to the anhydroglucose unit (AGU) of cellulose were investigated. The degree of substitution (DS) of new polymers were characterized by two-dimensional solution-state NMR and ranged from 0.51 to 2.60. The chemical analysis by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) confirmed the presence of aleuritate groups in the structure induces the formation of new H-bond networks. The tensile analysis and the contact angle measurement confirmed the ductile behavior and the hydrophobicity of the prepared bioplastics. By increasing the aleuritate amounts, the glass transition temperature decreased and the solubility of bioplastic films in most common solvents was improved. Furthermore, this new polymer exhibits similar properties compared to commercial cellulose derivatives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Simultaneous determination of furfural and its degradation products, furoic acid and maleic acid, in transformer oil by the reversed-phase vortex-assisted liquid-liquid microextraction followed by high-performance liquid chromatography.

    Wang, Yifan; Li, Haiyan; Yang, Zhen; Zhang, Weijie; Hua, Jia

    2017-12-01

    To explore why the use of furfural as a transformer oil-paper insulation aging characteristic is problematic in real world application, we developed a method for the simultaneous determination of furfural, furoic acid, and maleic acid in transformer oil by reversed-phase vortex-assisted liquid-liquid microextraction combined with high-performance liquid chromatography. The conditions for the proposed method were optimized, and the obtained extract can be directly analyzed by high-performance liquid chromatography. The detection limits (signal-to-noise ratio = 3) of the method ranged from 1.0 to 4.6 μg/L, the enrichment factors for furfural, furoic acid, maleic acid, and fumaric acid were 4.6, 25.1, 15.6, and 17.5, respectively, and the recovery rates for three analytes (fumaric acid was undetected) range from 82.1 to 106.2%. The contents of furfural, furoic acid, and maleic acid resulted from accelerated aging of transformer insulation oil-paper were measured using the present method for the first time, and the aging samples were analyzed by liquid chromatography with mass spectrometry for the identification of furoic acid and maleic acid in the aging transformer oil samples. Using the optimal method, the target products of samples at different aging time were tracked and measured. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. α-Costic anhydride

    Moha Berraho

    2010-03-01

    Full Text Available The title compound [systematic name: 2-(4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalen-2-ylacrylic acid anhydride], C30H42O3, is a new isocostic anhydride which was synthesized from the aerial part of Inula Viscosa (L Aiton [or Dittrichia Viscosa (L Greuter]. The molecule adopts an essentially linear shape with two terminal fused-rings bridged by the anhydride group. The external rings have the same conformation (half-chair while each of the two inner rings has an almost ideal chair conformation. In the crystal, intermolecular C—H...O interactions link the molecules into a two-dimensional array in the bc plane.

  2. Preparation of epoxy/zirconia hybrid materials via in situ polymerization using zirconium alkoxide coordinated with acid anhydride

    Ochi, Mitsukazu; Nii, Daisuke; Harada, Miyuki

    2011-01-01

    Highlights: → Novel epoxy/zirconia hybrid materials were synthesized via in situ polymerization using zirconium alkoxide coordinated with acid anhydride. → The half-ester compound of acid anhydride desorbed from zirconium played as curing agent of epoxy resin. → The zirconia was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale by synchronizing the epoxy curing and sol-gel reactions. → The refractive indices of the hybrid materials significantly improved with an increase in the zirconia content. - Abstract: Novel epoxy/zirconia hybrid materials were synthesized using a bisphenol A epoxy resin (diglycidyl ether of bisphenol A; DGEBA), zirconium(IV)-n-propoxide (ZTNP), and hexahydrophthalic anhydride (HHPA) via in situ polymerization. HHPA played two roles in this system: it acted as a modifier to control the hydrolysis and condensation reactions of zirconium alkoxide and also as a curing agent - the half-ester compound of HHPA desorbed from zirconium reacted with the epoxy resin to form the epoxy network. As a result, both the sol-gel reaction and epoxy curing occurred simultaneously in a homogeneous solution, and organic-inorganic hybrid materials were readily obtained. Further, the zirconia produced by the in situ polymerization was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale; thus, hybrid materials that exhibited excellent optical transparency were obtained. Furthermore, the heat resistance of the hybrid materials could be improved by hybridization with zirconia. And, the refractive indices of the hybrid materials significantly improved with an increase in the zirconia content.

  3. Prolonged Hypocalcemic Effect by Pulmonary Delivery of Calcitonin Loaded Poly(Methyl Vinyl Ether Maleic Acid Bioadhesive Nanoparticles

    J. Varshosaz

    2014-01-01

    Full Text Available The purpose of the present study was to design a pulmonary controlled release system of salmon calcitonin (sCT. Therefore, poly(methyl vinyl ether maleic acid [P(MVEMA] nanoparticles were prepared by ionic cross-linking method using Fe2+ and Zn2+ ions. Physicochemical properties of nanoparticles were studied in vitro. The stability of sCT in the optimized nanoparticles was studied by electrophoretic gel method. Plasma calcium levels until 48 h were determined in rats as pulmonary-free sCT solution or nanoparticles (25 μg·kg−1, iv solution of sCT (5 μg·kg−1, and pulmonary blank nanoparticles. The drug remained stable during fabrication and tests on nanoparticles. The optimized nanoparticles showed proper physicochemical properties. Normalized reduction of plasma calcium levels was at least 2.76 times higher in pulmonary sCT nanoparticles compared to free solution. The duration of hypocalcemic effect of pulmonary sCT nanoparticles was 24 h, while it was just 1 h for the iv solution. There was not any significant difference between normalized blood calcium levels reduction in pulmonary drug solution and iv injection. Pharmacological activity of nanoparticles after pulmonary delivery was 65% of the iv route. Pulmonary delivery of P(MVEMA nanoparticles of sCT enhanced and prolonged the hypocalcemic effect of the drug significantly.

  4. Poly(methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization.

    Shahbazi, Mohammad-Ali; Almeida, Patrick V; Mäkilä, Ermei; Correia, Alexandra; Ferreira, Mónica P A; Kaasalainen, Martti; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-03-01

    Currently, developing a stable nanocarrier with high cellular internalization and low toxicity is a key bottleneck in nanomedicine. Here, we have developed a successful method to covalently conjugate poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) copolymer on the surface of (3-aminopropyl)triethoxysilane-functionalized thermally carbonized porous silicon nanoparticles (APSTCPSi NPs), forming a surface negatively charged nanovehicle with unique properties. This polymer conjugated NPs could modify surface smoothness, charge, and hydrophilicity of the developed NPs, leading to considerable improvement in the colloidal and plasma stabilities via enhanced suspensibility and charge repulsion. Furthermore, despite the surface negative charge of the polymer-conjugated NPs, the cellular internalization was increased in both MDA-MB-231 and MCF-7 breast cancer cells. These results provide a proof-of-concept evidence that such polymer-based PSi nanocomposite can be extensively used as a promising candidate for intracellular drug delivery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Evaluation of final irrigation regimens with maleic acid for smear layer removal and wettability of root canal sealer.

    Ballal, Nidambur Vasudev; Ferrer-Luque, Carmen Maria; Sona, Mrunali; Prabhu, K Narayan; Arias-Moliz, Teresa; Baca, Pilar

    2018-04-01

    To evaluate the smear layer removal and wettability of AH Plus sealer on root canal dentin treated with MA (maleic acid), MA + CTR (cetrimide) and MA + CTR + CHX (chlorhexidine) as final irrigating regimens. For smear layer removal, 40 teeth were instrumented to size F4 and divided into four groups: (1) 7% MA, (2) 7% MA + 0.2% CTR, (3) 7% MA + 0.2% CTR + 2% CHX, (4) distilled water (control). After irrigation, teeth were subjected to SEM analysis. For contact angle analysis, 20 teeth were split longitudinally and divided into four groups similar to smear layer analysis. AH plus sealer was placed on each specimen and contact angle was analysed. In both smear layer (p = .393) and contact angle analysis (p = .961), there was no significant difference between the groups MA and MA + CTR. However, MA + CTR + CHX removed smear layer less effectively (p = .023) and increased the contact angle of the sealer (p = .005). In smear layer analysis, specimens in negative control group were heavily smeared. In case of contact angle analysis, samples in the control group had least contact angle. MA alone or in combination with CTR removed smear layer effectively and increased the wettability of AH plus sealer to root canal dentin.

  6. Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin

    Larson, Nate; Greish, Khaled; Bauer, Hillevi; Maeda, Hiroshi; Ghandehari, Hamidreza

    2011-01-01

    Polymeric micelles carrying the heat shock protein 90 inhibitor tanespimycin (17-N-Allylamino-17-demethoxygeldanamycin) were synthesized using poly(styrene-co-maleic acid) (SMA) copolymers and evaluated in vitro and in vivo. SMA-tanespimycin micelles were prepared with a loading efficiency of 93%. The micelles incorporated 25.6% tanespimycin by weight, exhibited a mean diameter of 74 ± 7 nm by dynamic light scattering and a zeta potential of -35 ± 3 mV. Tanespimycin was released from the micelles in a controlled manner in vitro, with 62% released in 24 hours from a pH 7.4 buffer containing bovine serum albumin. The micellar drug delivery systems for tanespimycin showed potent activity against DU145 human prostate cancer cells, with an IC50 of 230 nM. They further exhibited potent anti-cancer activity in vivo in nu/nu mice bearing subcutaneous DU145 human prostate cancer tumor xenografts, with significantly higher anticancer efficacy as measured by tumor regression when compared to free tanespimycin at an equivalent single dose of 10 mg/kg. These data suggest further investigation of SMA-tanespimycin as a promising agent in the treatment of prostate cancer. PMID:21856392

  7. Styrene-maleic acid-copolymer conjugated zinc protoporphyrin as a candidate drug for tumor-targeted therapy and imaging.

    Fang, Jun; Tsukigawa, Kenji; Liao, Long; Yin, Hongzhuan; Eguchi, Kanami; Maeda, Hiroshi

    2016-01-01

    Previous studies indicated the potential of zinc protoporphyrin (ZnPP) as an antitumor agent targeting to the tumor survival factor heme oxygenase-1, and/or for photodynamic therapy (PDT). In this study, to achieve tumor-targeted delivery, styrene-maleic acid-copolymer conjugated ZnPP (SMA-ZnPP) was synthesized via amide bond, which showed good water solubility, having ZnPP loading of 15%. More importantly, it forms micelles in aqueous solution with a mean particle size of 111.6 nm, whereas it has an apparent Mw of 65 kDa. This micelle formation was not detracted by serum albumin, suggesting it is stable in circulation. Further SMA-ZnPP conjugate will behave as an albumin complex in blood with much larger size (235 kDa) by virtue of the albumin binding property of SMA. Consequently, SMA-ZnPP conjugate exhibited prolonged circulating retention and preferential tumor accumulation by taking advantage of enhanced permeability and retention (EPR) effect. Clear tumor imaging was thus achieved by detecting the fluorescence of ZnPP. In addition, the cytotoxicity and PDT effect of SMA-ZnPP conjugate was confirmed in human cervical cancer HeLa cells. Light irradiation remarkably increased the cytotoxicity (IC50, from 33 to 5 μM). These findings may provide new options and knowledge for developing ZnPP based anticancer theranostic drugs.

  8. Effect of styrene maleic acid WIN55,212-2 micelles on neuropathic pain in a rat model.

    Linsell, Oliver; Brownjohn, Philip W; Nehoff, Hayley; Greish, Khaled; Ashton, John C

    2015-05-01

    Cannabinoid receptor agonists are moderately effective at reducing neuropathic pain but are limited by psychoactivity. We developed a styrene maleic acid (SMA) based on the cannabinoid WIN 55,212-2 (WIN) and tested in a rat model of neuropathic pain and in the rotarod test. We hypothesized that miceller preparation can ensure prolonged plasma half-life being above the renal threshold of excretion. Furthermore, SMA-WIN could potentially reduce the central nervous system effects of encapsulated WIN by limiting its transport across the blood-brain barrier. Using the chronic constriction injury model of sciatic neuropathy, the SMA-WIN micelles were efficacious in the treatment of neuropathic pain for a prolonged period compared to control (base WIN). Attenuation of chronic constriction injury-induced mechanical allodynia occurred for up to 8 h at a dose of 11.5 mg/kg of SMA-WIN micelles. To evaluate central effects on motor function, the rotarod assessment was utilized. Results showed initial impairment caused by SMA-WIN micelles to be identical to WIN control for up to 1.5 h. Despite this, the SMA-WIN micelle formulation was able to produce prolonged analgesia over a time when there was decreased impairment in the rotarod test compared with base WIN.

  9. Solution blow spun nanocomposites of poly(lactic acid)/cellulose nanocrystals from Eucalyptus kraft pulp

    Cellulose nanocrystals (CNCs) were extracted from Eucalyptus kraft pulp by sulfuric acid hydrolysis, and esterified with maleic anhydride (CNCMA). The incorporation of sulfate ester groups on the cellulose surface resulted in higher stability of the nanoparticles in aqueous suspensions and lower the...

  10. Distribution of Europium between poly-maleic acid in solution or adsorbed onto alumina and Bacillus subtilis

    Markai, S.

    2002-07-01

    In order to understand the interactions of radionuclides under natural water conditions, the interactions were studied in a quaternary system composed of well characterized reference substances: europium as a heavy metal, poly-maleic acid (PMA) as model of humic substances, alumina as mineral phase and Bacillus subtilis representing biomass. The work was performed at pH=5 in 0,1 mol/L of NaClO 4 . The fundamental question addressed was to know if parameters deduced from the quantitative study of the reference systems Eu/PMA, Eu/PMA-Al 2 O 3 and Eu/Bacillus subtilis, could be used to quantify the distribution of Eu in the multi-substrate systems Eu/PMA/Bacillus subtilis and Eu/PMA-Al 2 O 3 /Bacillus subtilis. The experimental interaction data were described by a Langmuir-type model or by a surface complexation model, with surface speciation assessment by time resolved laser induced fluorescence spectroscopy. The study of the Eu/PMA system showed similarities with the Eu/ humic substances system as far as interaction strength and the nature of Eu environment were concerned. When PMA was adsorbed onto Al 2 O 3 , its complexation properties towards Eu were different. For high concentrations of Eu, a ternary complex was formed in which Eu was bound to a carboxylic function of PMA and to an aluminol function of Al 2 O 3 . For the Eu/B.subtilis system, Eu was bound to a carboxylic function and to a phosphate function. For the PMA/Eu/bacteria system, the reference systems were reversible and the parameters deduced from sub-systems allowed to quantify the distribution of Eu in the global system. In the PMA A l 2 O 3 /Eu/bacteria system, the equilibrium Eu/PMA-Al 2 O 3 was not reversible due to a diffusion of Eu in the adsorbed layer of PMA, reducing its bio-availability. (author)

  11. Preparation and structural characterisation of novel and versatile amphiphilic octenyl succinic anhydride-modified hyaluronic acid derivatives

    Eenschooten, Corinne Diane; Guillaumie, Fanny; Kontogeorgis, Georgios

    2010-01-01

    and structurally characterised by Fourier transform-infrared spectroscopy and proton nuclear magnetic resonance spectroscopy (1H NMR). The influence of four reaction parameters on the DS of the derivatives was studied by means of an experimental design. The results showed that the OSA/HA molar ratio, the buffer......The purpose of the present study was to prepare amphiphilic hyaluronic acid (HA) derivatives and to study the influence of a selection of reaction parameters on the degree of substitution (DS) of the derivatives. Octenyl succinic anhydride (OSA)–modified HA (OSA–HA) derivatives were prepared...... (NaHCO3) concentration and their interaction had the largest influence while the HA concentration and the reaction time only had a negligible effect. According to 1H NMR the maximum DS achieved within the experimental conditions tested was 43% per disaccharide unit. Moreover optimal reaction...

  12. Continuous Preparation of 1:1 Haloperidol-Maleic Acid Salt by a Novel Solvent-Free Method Using a Twin Screw Melt Extruder.

    Lee, Hung Lin; Vasoya, Jaydip M; Cirqueira, Marilia de Lima; Yeh, Kuan Lin; Lee, Tu; Serajuddin, Abu T M

    2017-04-03

    Salts are generally prepared by acid-base reaction in relatively large volumes of organic solvents, followed by crystallization. In this study, the potential for preparing a pharmaceutical salt between haloperidol and maleic acid by a novel solvent-free method using a twin-screw melt extruder was investigated. The pH-solubility relationship between haloperidol and maleic acid in aqueous medium was first determined, which demonstrated that 1:1 salt formation between them was feasible (pH max 4.8; salt solubility 4.7 mg/mL). Extrusion of a 1:1 mixture of haloperidol and maleic acid at the extruder barrel temperature of 60 °C resulted in the formation of a highly crystalline salt. The effects of operating temperature and screw configuration on salt formation were also investigated, and those two were identified as key processing parameters. Salts were also prepared by solution crystallization from ethyl acetate, liquid-assisted grinding, and heat-assisted grinding and compared with those obtained by melt extrusion by using DSC, PXRD, TGA, and optical microscopy. While similar salts were obtained by all methods, both melt extrusion and solution crystallization yielded highly crystalline materials with identical enthalpies of melting. During the pH-solubility study, a salt hydrate form was also identified, which, upon heating, converted to anhydrate similar to that obtained by other methods. There were previous reports of the formation of cocrystals, but not salts, by melt extrusion. 1 H NMR and single-crystal X-ray diffraction confirmed that a salt was indeed formed in the present study. The haloperidol-maleic acid salt obtained was nonhygroscopic in the moisture sorption study and converted to the hydrate form only upon mixing with water. Thus, we are reporting for the first time a relatively simple and solvent-free twin-screw melt extrusion method for the preparation of a pharmaceutical salt that provides material comparable to that obtained by solution

  13. Reaction of N-acetylneuraminic acid derivatives with perfluorinated anhydrides: a short access to N-perfluoracylated glycals with antiviral properties.

    Rota, Paola; Allevi, Pietro; Mattina, Roberto; Anastasia, Mario

    2010-08-21

    An efficient short protocol for the preparation of N-perfluoroacylated glycals of neuraminic acid, by simple short treatment of differently protected N-acetylneuraminic acid with perfluorinated anhydrides in acetonitrile at 135 degrees C, is reported, together with a rationalitazion of the reaction that allows the alternative formation of N-perfluoroacylated 1,7-lactones to be previewed under the same reaction conditions.

  14. Tailoring the morphology and properties of poly(lactic acid)/poly(ethylene-co-vinyl acetate)/starch blends via reactive compatibilization

    Ma, P.; Hristova - Bogaerds, D.G.; Schmit, P.; Goossens, J.G.P.; Lemstra, P.J.

    2012-01-01

    Poly(lactic acid)/poly(ethylene-co-vinyl acetate)/starch (PLA/EVA/starch) ternary blends were prepared by multi-step melt processing (reactive extrusion) in the presence of maleic anhydride (MA), benzoyl peroxide and glycerol. The effects of MA and glycerol concentration on the morphology and

  15. Enhanced Stability of Gold Magnetic Nanoparticles with Poly(4-styrenesulfonic acid-co-maleic acid): Tailored Optical Properties for Protein Detection

    Zhang, Xiaomei; Zhang, Qinlu; Ma, Ting; Liu, Qian; Wu, Songdi; Hua, Kai; Zhang, Chao; Chen, Mingwei; Cui, Yali

    2017-09-01

    Gold magnetic nanoparticles (GoldMag) have attracted great attention due to their unique physical and chemical performances combining those of individual Fe3O4 and Au nanoparticles. Coating GoldMag with polymers not only increases the stability of the composite particles suspended in buffer but also plays a key role for establishing point-of-care optical tests for clinically relevant biomolecules. In the present paper, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), a negatively charged polyelectrolyte with both sulfonate and carboxylate anionic groups, was used to coat the positively charged GoldMag (30 nm) surface. The PSS-MA-coated GoldMag complex has a stable plasmon resonance adsorption peak at 544 nm. A pair of anti-D-dimer antibodies has been coupled on this GoldMag composite nanoparticle surface, and a target protein, D-dimer was detected, in the range of 0.3-6 μg/mL. The shift of the characteristic peak, caused by the assembly of GoldMag due to the formation of D-dimer-antibody sandwich bridges, allowed the detection.

  16. 4f-4f absorption spectral analysis of complexation of Pr(IlI) and Nd(IlI) with fumaric acid and maleic acid in different solvents

    Singh, Th. David; Taru Taru, T.; Nimita, L.; Singh, N. Rajmuhon

    2008-01-01

    Full text: Dimensions to lanthanide co-ordination chemistry in solution become a new age with the increase use of lanthanides as PROBES in the exploration of the structural function of biomolecular reactions. Absorption difference and comparative absorption spectrophotometric studies involving 4f-4f transitions for the complexation of Pr(III)/Nd(lIl) with fumaric acid and maleic acid have been carried out in CH 3 OH,CH 3 CN, dioxane and DMF. The small chemical and structural differences due to the ligands and solvents are shown to produce significant red shift and variation in the intensities of observed 4f-4f absorption bands. The variation in the spectral energy parameters - Slater Condon (F K ), Lande spin orbit coupling constant (ζ 4f ), nephelauxetic ratio (β), bonding parameter (b 1/2 ) and percent covalency (δ) are calculated and correlated with binding of the ligands with Pr(III)/Nd(III). In addition to this experimentally calculated oscillator strengths (P) and calculated values of Judd-Ofelt electric dipole intensity parameters, T λ (λ=2,4,6) are discussed for different 4f-4f transitions in different experimental conditions to discuss the nature of bonding between Ln(lIl) and ligands. The participation of π-electron density of ligands with complexation is also discussed

  17. The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes.

    Swainsbury, David J K; Scheidelaar, Stefan; Foster, Nicholas; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2017-10-01

    Solubilisation of biological lipid bilayer membranes for analysis of their protein complement has traditionally been carried out using detergents, but there is increasing interest in the use of amphiphilic copolymers such as styrene maleic acid (SMA) for the solubilisation, purification and characterisation of integral membrane proteins in the form of protein/lipid nanodiscs. Here we survey the effectiveness of various commercially-available formulations of the SMA copolymer in solubilising Rhodobacter sphaeroides reaction centres (RCs) from photosynthetic membranes. We find that formulations of SMA with a 2:1 or 3:1 ratio of styrene to maleic acid are almost as effective as detergent in solubilising RCs, with the best solubilisation by short chain variants (membranes was uniformly low, but could be increased through a variety of treatments to increase the lipid:protein ratio. However, proteins isolated from such membranes comprised clusters of complexes in small membrane patches rather than individual proteins. We conclude that short-chain 2:1 and 3:1 formulations of SMA are the most effective in solubilising integral membrane proteins, but that solubilisation efficiencies are strongly influenced by the size of the target protein and the density of packing of proteins in the membrane. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Investigation of the ageing effects on phenol-urea-formaldehyde binder and alkanol amine-acid anhydride binder coated mineral fibres

    Zafar, Ashar; Schjødt-Thomsen, Jan; Sodhi, R.

    2013-01-01

    -ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) were employed to identify the chemical changes occurring in the PUF binder coated mineral fibres and alkanol amine-acid anhydride binder coated mineral fibres during that ageing. The samples were aged in a climate......Phenol-Urea-Formaldehyde (PUF) binder coated mineral fibres' mechanical properties have been observed to degrade during ageing at elevated temperatures and humidity, while alkanol amine-acid anhydride binder based mineral fibres exhibited better ageing properties for same duration of ageing. X...... chamber for 7 days at 70 °C and 95% relative humidity. In the case of the PUF binder coated fibres, quantitative XPS measurements showed some significant changes in the atomic composition of the PUF binder coated mineral fibres after ageing, including decreased urea and carbonyl groups concentrations...

  19. Membrane polypeptide in rabbit erythrocytes associated with the inhibition of L-lactate transport by a synthetic anhydride of lactic acid

    Donovan, J.A.; Jennings, M.L.

    1985-01-01

    The synthetic lactyl anhydride isobutylcarbonyl lactyl anhydride (iBCLA), a selective and potent inhibitor of L-(+)-lactate transport in rabbit erythrocytes, reduces the chemical labeling of a 40-50-kdalton polypeptide by tritiated 4,4'-diisothiocyanato-2,2'-dihydrostilbenedisulfonate ([ 3 H]H 2 DIDS). iBCLA does so in a dose-dependent manner at concentrations that strongly inhibit lactate-lactate exchange but not chloride-phosphate exchange. These labeling experiments and inhibition reversal studies using iBCLA, p-(chloro-mercuri)benzenesulfonic acid (pCMBS), and dithiothreitol (DDT) suggest that iBCLA does not act at sulfhydryl groups but at or near an amino group that is near a disulfide linkage in the polypeptide which catalyzes lactate transport. These experiments support the association between specific monocarboxylate transport and a 40-50-kdalton membrane-bound polypeptide of the rabbit erythrocyte

  20. Effect of Maleic Acid Content on the Thermal Stability, Swelling Behaviour and Network Structure of Gelatin -Based Hydrogels Prepared by Gamma Irradiation

    Eid, M.; Dessouki, A.M.; Abdel-Ghaffar, M.A.

    2005-01-01

    The preparation of highly swelling hydrogels containing diprotic acid and gelatin carried out by gamma-irradiation of acrylamide/maleic acid/gelatine/water mixture at ambient temperature. Poly (acrylamide/maleic acid/gelatin) p(AAm/MA/G) hydrogels were prepared in different MA and G contents at low dose rate (0.94 kGy/h), and moderate dose rate (3.84 kGy/h). The prepared hydrogels were confirmed by FT1R . The effect of copolymer composition, dose and dose rate on the swelling behaviour and the type of water diffusion in the network structure of the hydrogels was discussed. Increasing of MA content and G in the initial mixture leads to an increase in the amount of MA and G in the gel system and decrease in the gelation percent. The swelling behaviours of the hydrogel prepared at moderate dose rate increased with increasing MA mole content in the gel system. On the other hand, no systematic dependence of swelling on MA content was observed for the hydrogels obtained at low dose rate. Pore structure of the hydrogels was monitored by using scanning electron microscopy. Systematic swelling of P(AAm/MA/G) hydrogels prepared at moderate dose rates can be explained by the homogeneous pore size distribution of network. Thermogravimetric analysis (TGA) was employed to study the effect of network structure formation on the thermal behavior of the copolymer. To give a better understanding of the thermal stability of polymers, the rate of the thermal decomposition of P(AAm/MA/G) hydrogels has been evaluated

  1. Mixture Genotoxicity of 2,4-Dichlorophenoxyacetic Acid, Acrylamide, and Maleic Hydrazide on Human Caco-2 Cells Assessed with Comet Assay

    Syberg, Kristian; Binderup, Mona-Lise; Cedergreen, Nina

    2015-01-01

    Assessment of genotoxic properties of chemicals is mainly conducted only for single chemicals, without taking mixture genotoxic effects into consideration. The current study assessed mixture effects of the three known genotoxic chemicals, 2,4-dichlorophenoxyacetic acid (2,4-D), acrylamide (AA......), and maleic hydrazide (MH), in an experiment with a fixed ratio design setup. The genotoxic effects were assessed with the single-cell gel electrophoresis assay (comet assay) for both single chemicals and the ternary mixture. The concentration ranges used were 0-1.4, 0-20, and 0-37.7 mM for 2,4-D, AA, and MH......, respectively. Mixture toxicity was tested with a fixed ratio design at a 10:23:77% ratio for 2.4-D:AA:MH. Results indicated that the three chemicals yielded a synergistic mixture effect. It is not clear which mechanisms are responsible for this interaction. A few possible interactions are discussed...

  2. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass

    Hesaraki, S., E-mail: S-hesaraki@merc.ac.ir

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~ 32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. - Highlights: • Light cure cement based on SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass and polymer-like matrix was formed. • The matrix includes poly(acrylic/maleic acid) and poly(hydroxyethyl methacrylate). • The cement is as strong as polymethylmethacrylate bone cement. • The cement exhibits apatite formation ability in simulated body fluid. • The cement is biodegradable and supports proliferation of osteoblastic cells.

  3. Urinary loss of glucose, phosphate, and protein by diffusion into proximal straight tubules injured by D-serine and maleic acid

    Carone, F.A.; Nakamura, S.; Goldman, B.

    1985-01-01

    In several models of acute renal failure leakage of glomerular filtrate out of the tubule is an important pathogenetic mechanism; however, bidirectional diffusion of solute to account for certain pathophysiologic features of acute renal failure has received meager attention. Using micropuncture and clearance methods, the authors assessed sequentially leakage of solutes and inulin across proximal straight tubules (PST) injured by two nephrotoxins. In d-serine-treated rats with extensive necrosis of PST, the basis for glucosuria and tubular leakage of inulin was studied. Glucose absorption by the proximal convoluted tubule and glucose delivery to the PST were normal, but glucose delivery to the distal tubule was increased nearly 8-fold, indicating diffusion of glucose from interstitial to tubular luminal fluid across the necrotic PST. Total kidney inulin clearance was greatly reduced, but single nephron glomerular filtration rate, based on proximal convoluted tubule samples, was normal, indicating tubular loss of inulin. Urinary recovery of [ 14 C]inulin infused into tubular lumina revealed that proximal convoluted tubule and distal tubule were impermeable to inulin and that inulin diffused out of the necrotic PST. The progressive return over 6 days of tubular impermeability for inulin correlated with relining of PST with new cells. In maleic acid-treated rats the site and extent of tubular necrosis and the nature of urinary loss of solutes were studied. Microdissection revealed that maleic acid caused limited necrosis of PST which averaged 7.4% of total proximal tubular length. Increased urinary excretion of protein, phosphate, and glucose and increased tubular permeability to microinfused [ 14 C]inulin occurred with the onset of PST necrosis, and return of these abnormalities to normal correlated with the degree of cellular repair of the PST

  4. Radical coupling of maleic anhydride onto graphite to fabricate ...

    graphene is oxidation of graphite to graphene oxide (GO) and subsequently modification of GO with modifiers [5,6]. However, oxidation process is performed under harsh condi- tions with different oxidizing agents such ..... Sci. 87 392. [20] Nakajima T, Žemva B and Tressaud A 2000 Advanced inor- ganic fluorides: synthesis ...

  5. Influence of the composition of hydroxypropyl cellulose/maleic acid-alt-styrene copolymer blends on their properties as matrix for drug release

    2009-05-01

    Full Text Available Poly(carboxylic acid-polysaccharide compositions have been found suitable for obtaining drug formulations with controlled release, most formulations being therapeutically efficacious, stable, and non-irritant. The influence of the characteristics of the aqueous solutions from which the polymer matrix is prepared (i.e. the total concentration of polymer in solutions and the mixing ratio between the partners, hydroxypropyl cellulose, HPC and maleic acid-alternating-styrene copolymer, MAc-alt-S on the kinetics of some drugs release in acidic environment (pH = 2 has been followed by ‘in vitro’ dissolution tests. It has been established that the kinetics of procaine hydrochloride release from HPC/MAc-alt-S matrix depends on its composition; the diffusion exponent, n is close to 0.5 for matrices where one of the components is in large excess and n~0.02 for middle composition range. The lower value of diffusion exponent for middle composition range could be caused by the so called ‘burst effect’, therefore the kinetic evaluation is difficult.

  6. A Styrene-alt-Maleic Acid Copolymer Is an Effective Inhibitor of R5 and X4 Human Immunodeficiency Virus Type 1 Infection

    Vanessa Pirrone

    2010-01-01

    Full Text Available An alternating copolymer of styrene and maleic acid (alt-PSMA differs from other polyanionic antiviral agents in that the negative charges of alt-PSMA are provided by carboxylic acid groups instead of sulfate or sulfonate moieties. We hypothesized that alt-PSMA would have activity against human immunodeficiency virus type 1 (HIV-1 comparable to other polyanions, such as the related compound, poly(sodium 4-styrene sulfonate (PSS. In assays using cell lines and primary immune cells, alt-PSMA was characterized by low cytotoxicity and effective inhibition of infection by HIV-1 BaL and IIIB as well as clinical isolates of subtypes A, B, and C. In mechanism of action assays, in which each compound was added to cells and subsequently removed prior to HIV-1 infection (“washout” assay, alt-PSMA caused no enhancement of infection, while PSS washout increased infection 70% above control levels. These studies demonstrate that alt-PSMA is an effective HIV-1 inhibitor with properties that warrant further investigation.

  7. Stability of binary complexes of Pb(II, Cd(II and Hg(II with maleic acid in TX100-water mixtures

    M. Ramanaiah

    2014-09-01

    Full Text Available Binary complexes of maleic acid with toxic metal ions such as Pb(II, Cd(II and Hg(II have been studied in 0.0-2.5% v/v tritonX-100 (TX100 - water media at 303 K at an ionic strength of 0.16 M. The active forms of the ligand are LH2, LH- and L2-. The derived ‘best fit’ chemical speciation models are based on crystallographic R-factors, χ2 and Skewness and Kurtosis factors. The predominant species formed are of the type ML2, ML2H and ML3. The trend in variation of complex stability constants with change in the mole fraction of the medium is explained on the basis of prevailing electrostatic and non-electrostatic forces. The species distribution as a function of pH at different compositions of TX100-water mixtures and plausible speciation equilibria are presented and discussed. DOI: http://dx.doi.org/10.4314/bcse.v28i3.7

  8. Characterization of particulate sol-gel synthesis of LiNi0.8Co0.2O2 via maleic acid assistance with different solvents

    Zhong, Y.D.; Zhao, X.B.; Cao, G.S.; Tu, J.P.; Zhu, T.J.

    2006-01-01

    Particulate sol-gel LiNi 0.8 Co 0.2 O 2 has been synthesized by a maleic-acid-assisted process using de-ionized water or ethanol as the solvent. A comparison of the effect on these two different solvents was made on the basis of thermal studies, Fourier transform infrared spectroscopy, X-ray diffraction analysis, chemical diffusion coefficients measurement, and electrochemical cyclability tests. An esterification reaction occurred on the xerogel prepared with ethanol as solvent, reducing Ni and Co from their nitrate salts. LiNi 0.8 Co 0.2 O 2 grew at the expense of Li 2 CO 3 , NiO, and CoO during calcination. Better results of capacity and cyclability were obtained in a DI-water-solvent sample associated with a larger interslab thickness between O-Li-O and lower Ni occupancy on the Li site. The activation energy for the calcinations of DI-water-solvent sample is one-half of that of the ethanol-solvent one, which could be the reason for its better properties. Chemical diffusion coefficients of Li + ion are of the same order 10 -10 cm 2 /s, is not affected by the solvents used and/or the temperature raise to 55 deg. C

  9. Radiation grafting of acrylamide and maleic acid on chitosan and effective application for removal of Co(II) from aqueous solutions

    Saleh, Alaaeldine Sh.; Ibrahim, Ahmed G.; Elsharma, Emad M.; Metwally, Essam; Siyam, Tharwat

    2018-03-01

    The graft copolymerization has been proven as a superior polymerization technique because it combines the functional advantages of the grafted and base polymers. In this work, the radiation-induced grafting of acrylamide (AAm) and maleic acid (MA) onto chitosan (CTS) was developed and optimized by determining the grafting percentage and efficiency as a function of grafting conditions such as AAm, MA, and CTS concentrations, and absorbed dose. Fourier transform infrared spectroscopic analysis (FTIR) confirmed the graft copolymerization. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) further characterized the grafted copolymers and showed their high thermal stability. Using batch sorption experiments and 60Co as a radiotracer, poly(CTS-AAm) and poly(CTS-MA) were evaluated for Co(II) removal from aqueous solutions. The Co(II) removal increases with increasing time, pH, polymer, and Co(II) concentrations. Experimentally, P(CTS-AAm) and P(CTS-MA) show high sorption capacities of Co(II), i.e. 150 mg g-1 and 421 mg g-1, respectively, which makes them potential sorbents of Co(II) for water and wastewater treatment. Finally, the Co(II) sorption was examined using sorption isotherm and kinetic models. The sorption was best fitted to Langmuir model which suggests the sorption is of chemisorption type. On the other hand, the sorption kinetics was best represented by Elovich model which also indicates the chemical nature of Co(II) sorption on P(CTS-AAm) and P(CTS-MA).

  10. Effect of maleic acid content on the thermal stability, swelling behaviour and network structure of gelatin-based hydrogels prepared by gamma irradiation

    Eid, M. [National Center For Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo 11731 (Egypt)], E-mail: mona_eid2000@yahoo.com; Abdel-Ghaffar, M.A. [National Research Center, Dokki, Cairo (Egypt); Dessouki, A.M. [National Center For Radiation Research and Technology, P.O. Box 29, Nasr City, Cairo 11731 (Egypt)

    2009-01-15

    The highly swelling Poly (acrylamide/maleic acid/gelatin) P(AAm/MA/G) hydrogels were prepared by gamma-irradiation at low dose rate (0.94 kGy/h) and moderate dose rate (3.84 kGy/h). The hydrogels were confirmed by FTIR. The effect of copolymer composition, dose and dose rate on the swelling behaviour was discussed. Increasing of MA content and G in the initial mixture leads to an increase in the amount of MA and G in the gel system and decrease in the gelation %. The swelling behaviours of the hydrogel prepared at moderate dose rate increased with increasing MA mole content in the gel system but, there is no systematic dependence of swelling on MA content was observed for the hydrogels obtained at low dose rate. Pore structure of the hydrogels was monitored by using scanning electron microscopy. Thermogravimetric analysis (TGA) and the rate of the thermal decomposition of P(AAm/MA/G) hydrogels has been evaluated to give a better understanding of the thermal stability of polymers, The X-ray data of P(AAm/MA/G) hydrogels was discussed to investigate some features namely the degree of ordering and crystallite size.

  11. Probing molecular interactions of poly(styrene-co-maleic acid) with lipid matrix models to interpret the therapeutic potential of the co-polymer.

    Banerjee, Shubhadeep; Pal, Tapan K; Guha, Sujoy K

    2012-03-01

    To understand and maximize the therapeutic potential of poly(styrene-co-maleic acid) (SMA), a synthetic, pharmacologically-active co-polymer, its effect on conformation, phase behavior and stability of lipid matrix models of cell membranes were investigated. The modes of interaction between SMA and lipid molecules were also studied. While, attenuated total reflection-Fourier-transform infrared (ATR-FTIR) and static (31)P nuclear magnetic resonance (NMR) experiments detected SMA-induced conformational changes in the headgroup region, differential scanning calorimetry (DSC) studies revealed thermotropic phase behavior changes of the membranes. (1)H NMR results indicated weak immobilization of SMA within the bilayers. Molecular interpretation of the results indicated the role of hydrogen-bond formation and hydrophobic forces between SMA and zwitterionic phospholipid bilayers. The extent of membrane fluidization and generation of isotropic phases were affected by the surface charge of the liposomes, and hence suggested the role of electrostatic interactions between SMA and charged lipid headgroups. SMA was thus found to directly affect the structural integrity of model membranes. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer.

    Martey, Orleans; Nimick, Mhairi; Taurin, Sebastien; Sundararajan, Vignesh; Greish, Khaled; Rosengren, Rhonda J

    2017-01-01

    Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA) micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks) also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg) for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles.

  13. Styrene maleic acid-encapsulated RL71 micelles suppress tumor growth in a murine xenograft model of triple negative breast cancer

    Martey O

    2017-10-01

    Full Text Available Orleans Martey,1 Mhairi Nimick,1 Sebastien Taurin,1 Vignesh Sundararajan,1 Khaled Greish,2 Rhonda J Rosengren1 1Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand; 2Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain Abstract: Patients with triple negative breast cancer have a poor prognosis due in part to the lack of targeted therapies. In the search for novel drugs, our laboratory has developed a second-generation curcumin derivative, 3,5-bis(3,4,5-trimethoxybenzylidene-1-methylpiperidine-4-one (RL71, that exhibits potent in vitro cytotoxicity. To improve the clinical potential of this drug, we have encapsulated it in styrene maleic acid (SMA micelles. SMA-RL71 showed improved biodistribution, and drug accumulation in the tumor increased 16-fold compared to control. SMA-RL71 (10 mg/kg, intravenously, two times a week for 2 weeks also significantly suppressed tumor growth compared to control in a xenograft model of triple negative breast cancer. Free RL71 was unable to alter tumor growth. Tumors from SMA-RL71-treated mice showed a decrease in angiogenesis and an increase in apoptosis. The drug treatment also modulated various cell signaling proteins including the epidermal growth factor receptor, with the mechanisms for tumor suppression consistent with previous work with RL71 in vitro. The nanoformulation was also nontoxic as shown by normal levels of plasma markers for liver and kidney injury following weekly administration of SMA-RL71 (10 mg/kg for 90 days. Thus, we report clinical potential following encapsulation of a novel curcumin derivative, RL71, in SMA micelles. Keywords: curcumin derivatives, nanomedicine, EGFR, biodistribution

  14. Styrene maleic acid-encapsulated paclitaxel micelles: antitumor activity and toxicity studies following oral administration in a murine orthotopic colon cancer model

    Parayath NN

    2016-08-01

    Full Text Available Neha N Parayath,1 Hayley Nehoff,1 Samuel E Norton,2 Andrew J Highton,2 Sebastien Taurin,1,3 Roslyn A Kemp,2 Khaled Greish1,4 1Department of Pharmacology and Toxicology, 2Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; 3Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT, USA; 4Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Manama, Kingdom of Bahrain Abstract: Oral administration of paclitaxel (PTX, a broad spectrum anticancer agent, is challenged by its low uptake due to its poor bioavailability, efflux through P-glycoprotein, and gastrointestinal toxicity. We synthesized PTX nanomicelles using poly(styrene-co-maleic acid (SMA. Oral administration of SMA-PTX micelles doubled the maximum tolerated dose (60 mg/kg vs 30 mg/kg compared to the commercially available PTX formulation (PTX [Ebewe]. In a murine orthotopic colon cancer model, oral administration of SMA-PTX micelles at doses 30 mg/kg and 60 mg/kg reduced tumor weight by 54% and 69%, respectively, as compared to the control group, while no significant reduction in tumor weight was observed with 30 mg/kg of PTX (Ebewe. In addition, toxicity of PTX was largely reduced by its encapsulation into SMA. Furthermore, examination of the tumors demonstrated a decrease in the number of blood vessels. Thus, oral delivery of SMA-PTX micelles may provide a safe and effective strategy for the treatment of colon cancer. Keywords: oral delivery, anticancer nanomedicine, CT-26, enhanced permeability and retention (EPR effect, HUVEC, antiangiogenic

  15. Study on HCl Driving Force for the Reaction of NaCl-Maleic Acid Mixing Single Droplet Using Micro-FTIR Spectroscopy

    He, Xiang; Zhang, Yunhong

    2016-04-01

    Chemical aging is the one of the most important physicochemical process in atmospheric aerosols. Mixing of sea salt and water-soluble organic components has profound effects on the volatile characteristic and evolving chemical composition of the anthropogenic origin aerosols, which are poorly understood. In this study, the chemical reaction behavior of the mixture of NaCl and maleic acid (H2MA) micron-level single droplet was investigated using a gas-flow system combined with microscopic Fourier transform infrared (micro-FTIR) spectrometer over the range of relative humidity (63˜95% RH) for the first time. The results showed that the mixture of NaCl and H2MA single droplet could react to form monosodium maleate salt (NaHMA) at the constant RH from the characterization of the FTIR. The reaction is a result of an acid displacement reaction R1, which is driven by high volatility of the HCl product. NaCl(aq)+H2MA(aq)=NaHMA(aq)+HCl(aq,g) (R1) According to the change tendency of the absorbance values of 1579 cm-1 COO- stretching band of the NaHMA dependent upon reaction times at different RHs, the growth range of the trend which could lead to the faster reaction rate was obvious at lower RH. The water content of the droplet was also more likely to reduce rapidly with the loss of the RH from the absorbance changes of 3400 cm-1H2O stretching band dependent upon reaction times. These may be due to irreversible evaporation of HCl gas which is the main driving force for this type of reaction and the NaHMA is a less hygroscopic component compared to H2MA. And the HCl gas is more likely to evaporate faster from the single droplet and promote the reaction rate and the consumption of water content at lower RH. These results could help in understanding the chemical conversion processes of water-soluble dicarboxylic acids to dicarboxylate salts, as well as the consumption of Cl in sea salt aerosols by organic acids in the atmosphere.

  16. Determinacion de la configuracion E-Z de los acidos Fumarico y Maleico. Un experimento orientado a incentivar el desarrollo de la investigacion cientifica en alumnos de Pregrado Determination of the E-Z fumaric and maleic acids configuration. An experiment designed to develop scientific research abilities in undergraduates students

    Carlos Bustos

    2000-08-01

    Full Text Available In this work we intend to eliminate the idea that laboratory exercises seem like cookbooks. That is, exercises shall be presented as a problematic situation. Based on observation and experimentation, the students should determine the E-Z configuration of maleic and fumaric acids. The basis of this laboratory exercise is the acid-catalyzed isomerization of maleic acid to fumaric acid. Students are given the starting material, reagents and the experimental procedure. They are told that the starting material is a dicarboxylic acid containing a C=C double bond of formula C4H4O4. Students determine melting points, solubilities, acidity and chromatographic patterns for both the starting material and the product, so that a configuration of each acid can be proposed. This type of experiment yields excellent results, because the students are left to deduce that maleic acid is less stable than fumaric acid. Additionally, they conclude that maleic acid is the "Z" isomer and fumaric acid is the "E" isomer. Finally, this laboratory exercise allows the students to develop simultaneously their critical-thinking skills with the respective laboratory techniques and not to see chemistry as recipes to be followed.

  17. Simultaneous efficient adsorption of Pb2+ and MnO4− ions by MCM-41 functionalized with amine and nitrilotriacetic acid anhydride

    Chen, Feiyun; Hong, Mingzhu; You, Weijie; Li, Chong; Yu, Yan

    2015-01-01

    Highlights: • MCM-41 was successfully modified with amine and nitrilotriacetic acid anhydride. • The adsorbent can simultaneously remove Pb 2+ and MnO 4 − by adjusting pH of the system. • The maximum adsorption capacities of Pb 2+ and MnO 4 − are 147 mg/g and 156 mg/g. • The absorbent exhibits good regeneration and reusability for 5 cycles use. - Abstract: A novel adsorbent NH 2 /MCM-41/NTAA, capable of simultaneous adsorption of cations and anions from aqueous solution, was prepared by immobilization of amine and nitrilotriacetic acid anhydride (NTAA) onto MCM-41. The structures and properties before and after surface modification were systematically investigated through X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), nitrogen adsorption–desorption, and infrared spectroscopy (FTIR), thermogravimetry (TGA) and X-ray photoelectron spectroscopy (XPS). They together confirm that the amine and NTAA group were chemically bonded to the internal surface of the mesoporous. The NH 2 /MCM-41/NTAA were used to adsorb Pb 2+ and MnO 4 − in an aqueous solution in a batch system, and the maximum adsorption efficiency was found to occur at pH 5.0 and 3.0, respectively. NH 2 /MCM-41/NTAA exhibit preferable removal of Pb 2+ through electrostatic interactions and chelation, whereas it captures MnO 4 − by means of electrostatic interactions. The experimental data are fitted the Langmuir isotherm model reasonably well, with the maximum adsorption capacity of 147 mg/g for Pb 2+ and of 156 mg/g for MnO 4 − . The adsorption rates of both Pb 2+ and MnO 4 − are found to follow the pseudo-second order kinetics. Furthermore, the NH 2 /MCM-41/NTAA adsorbent performs good recyclability and reusability for 5 cycles use. This study indicates a potential applicability of NH 2 /MCM-41/NTAA as new absorbents for effective simultaneous adsorption of hazardous metal ions and anions from wastewater.

  18. Effects of electric fields in polymerization on enthalpy of PMAA anhydridization

    Chang Zhenqi; Liu Gang; Zhang Zhicheng

    2004-02-19

    PMAA (polymethacrylic acid) polymerized by {gamma}-irradiation in electric field forms six-membered cyclic anhydride during heating process and the enthalpy of PMAA anhydridization was determined by DSC. Why the endothermic peak of PMAA anhydridization in DSC curve between 200 and 300 deg. C appears is particularly explained by calculation. The relations between applied electric field and the enthalpy of PMAA anhydridization are studied. The results show that, with the increases of the intensity of electric field in polymerization, the enthalpy of PMAA forming anhydrides nonlinearly increase, which might be related to orientation of carboxylic acid groups of the PMAA in an electric field.

  19. Highly Carboxylated Cellulose Nanofibers via Succinic Anhydride Esterification of Wheat Fibers and Facile Mechanical Disintegration.

    Sehaqui, H; Kulasinski, K; Pfenninger, N; Zimmermann, T; Tingaut, P

    2017-01-09

    We report herein the preparation of 4-6 nm wide carboxyl-functionalized cellulose nanofibers (CNF) via the esterification of wheat fibers with cyclic anhydrides (maleic, phtalic, and succinic) followed by an energy-efficient mechanical disintegration process. Remarkable results were achieved via succinic anhydride esterification that enabled CNF isolation by a single pass through the microfluidizer yielding a transparent and thick gel. These CNF carry the highest content of carboxyl groups ever reported for native cellulose nanofibers (3.8 mmol g -1 ). Compared to conventional carboxylated cellulose nanofibers prepared via Tempo-mediated oxidation of wheat fibers, the present esterified CNF display a higher molar-mass and a better thermal stability. Moreover, highly carboxylated CNF from succinic anhydride esterification were effectively integrated into paper filters for the removal of lead from aqueous solution and are potentially of interest as carrier of active molecules or as transparent films for packaging, biomedical or electronic applications.

  20. Dimethylthioarsinic anhydride: A standard for arsenic speciation

    Fricke, Michael; Zeller, Matthias; Cullen, William; Witkowski, Mark; Creed, John

    2007-01-01

    Dimethylthioarsinic acid (DMTA V ) has recently been identified in biological, dietary and environmental matrices. The relevance of this compound to the toxicity of arsenic in humans is unknown and further exposure assessment and metabolic studies are difficult to conduct because of the unavailability of a well characterized standard. The synthesis of DMTA V was accomplished by the reaction of dimethylarsinic acid (DMA V ) with hydrogen sulfide. The initial reaction product produced is DMTA V but multiple products over the course of the reaction are also observed. Therefore, a chromatographic separation was developed to monitor the reaction progress via LC-ICP-MS. In this synthesis, conversion of DMA V to DMTA V was not taken to completion to avoid the production of side products. The product was isolated from the starting material by standard organic techniques. Single crystal diffraction demonstrated that solid DMTA V is present in the form of the oxygen-bridged dimethylthioarsinic anhydride. Dissolution of the anhydride in water produces the acid form of DMTA V and the aqueous phase DMTA V provided a characteristic molecular ion of m/z 155 by LC-ESI-MS. The synthesis and isolation of dimethylthioarsinic anhydride provides a stable crystalline standard suitable for identification, toxicological study and exposure assessment of dimethylthioarsinic acid

  1. Dimethylthioarsinic anhydride: A standard for arsenic speciation

    Fricke, Michael [United States Environmental Protection Agency, National Exposure Research Laboratory, Microbiological and Chemical Exposure Assessment Research Division, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States); Zeller, Matthias [STaRBURSTT-Cyberdiffraction Consortium, Department of Chemistry, Youngstown State University, One University Plaza, Youngstown, OH 44555-3663 (United States); Cullen, William [Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1 (Canada); Witkowski, Mark [Food and Drug Administration, Forensic Chemistry Center, Vibrational Spectroscopy Laboratory, 6751 Steger Drive, Cincinnati, OH 45237 (United States); Creed, John [United States Environmental Protection Agency, National Exposure Research Laboratory, Microbiological and Chemical Exposure Assessment Research Division, 26 W. Martin Luther King Drive, Cincinnati, OH 45268 (United States)]. E-mail: creed.jack@epa.gov

    2007-01-30

    Dimethylthioarsinic acid (DMTA{sup V}) has recently been identified in biological, dietary and environmental matrices. The relevance of this compound to the toxicity of arsenic in humans is unknown and further exposure assessment and metabolic studies are difficult to conduct because of the unavailability of a well characterized standard. The synthesis of DMTA{sup V} was accomplished by the reaction of dimethylarsinic acid (DMA{sup V}) with hydrogen sulfide. The initial reaction product produced is DMTA{sup V} but multiple products over the course of the reaction are also observed. Therefore, a chromatographic separation was developed to monitor the reaction progress via LC-ICP-MS. In this synthesis, conversion of DMA{sup V} to DMTA{sup V} was not taken to completion to avoid the production of side products. The product was isolated from the starting material by standard organic techniques. Single crystal diffraction demonstrated that solid DMTA{sup V} is present in the form of the oxygen-bridged dimethylthioarsinic anhydride. Dissolution of the anhydride in water produces the acid form of DMTA{sup V} and the aqueous phase DMTA{sup V} provided a characteristic molecular ion of m/z 155 by LC-ESI-MS. The synthesis and isolation of dimethylthioarsinic anhydride provides a stable crystalline standard suitable for identification, toxicological study and exposure assessment of dimethylthioarsinic acid.

  2. Bioconjugation of laminin peptide YIGSR with poly(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells.

    Mu, Y; Kamada, H; Kaneda, Y; Yamamoto, Y; Kodaira, H; Tsunoda, S; Tsutsumi, Y; Maeda, M; Kawasaki, K; Nomizu, M; Yamada, Y; Mayumi, T

    1999-02-05

    A comb-shaped polymeric modifier, SMA [poly(styrene comaleic anhydride)], which binds to plasma albumin in blood was used to modify the synthetic cell-adhesive laminin peptide YIGSR, and its inhibitory effect on experimental lung metastasis of B16-BL6 melanoma cells was examined. YIGSR was chemically conjugated with SMA via formation of an amide bond between the N-terminal amino group of YIGSR and the carboxyl anhydride of SMA. The antimetastatic effect of SMA-conjugated YIGSR was approximately 50-fold greater than that of native YIGSR. When injected intravenously, SMA-YIGSR showed a 10-fold longer plasma half-life than native YIGSR in vivo. In addition, SMA-YIGSR had the same binding affinity to plasma albumin as SMA, while native YIGSR did not bind to albumin. These findings suggested that the enhanced antimetastatic effect of SMA-YIGSR may be due to its prolonged plasma half-life by binding to plasma albumin, and that bioconjugation of in vivo unstable peptides with SMA may facilitate their therapeutic use. Copyright 1999 Academic Press.

  3. The polymerization of furfuryl alcohol with p-toluenesulfonic acid: photo cross-linkable feature of the polymer

    Principe, Martha; Martinez, Ricardo; Ortiz, Pedro; Rieumont, Jacques

    2000-01-01

    Poly (furfuryl alcohol) with different amounts of oxymethylenic bridges was synthesized using trifluoroacetic and p-toluenesulfonic acid. All polymers displayed a tendency to retain acids. The isolated products containing traces of acid became insoluble in a few hours; while neutral material maintains theirs solubility for at least one month. Polymers stored in solution were stable according to their HNMR spectra. Polymers cross-linked after being exposed to UV radiation. The product of the reaction of polymer with maleic anhydride is useful for preparing negative photo resists. (author)

  4. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  5. Poly(ester-anhydride):poly(beta-amino ester) micro- and nanospheres: DNA encapsulation and cellular transfection.

    Pfeifer, Blaine A; Burdick, Jason A; Little, Steve R; Langer, Robert

    2005-11-04

    Poly(ester-anhydride) delivery devices allow flexibility regarding carrier dimensions (micro- versus nanospheres), degradation rate (anhydride versus ester hydrolysis), and surface labeling (through the anhydride functional unit), and were therefore tested for DNA encapsulation and transfection of a macrophage P388D1 cell line. Poly(l-lactic acid-co-sebacic anhydride) and poly(l-lactic acid-co-adipic anhydride) were synthesized through melt condensation, mixed with 25 wt.% poly(beta-amino ester), and formulated with plasmid DNA (encoding firefly luciferase) into micro- and nanospheres using a double emulsion/solvent evaporation technique. The micro- and nanospheres were then characterized (size, morphology, zeta potential, DNA release) and assayed for DNA encapsulation and cellular transfection over a range of poly(ester-anhydride) copolymer ratios. Poly(ester-anhydride):poly(beta-amino ester) composite microspheres (6-12 microm) and nanospheres (449-1031 nm), generated with copolymers containing between 0 and 25% total polyanhydride content, encapsulated plasmid DNA (>or=20% encapsulation efficiency). Within this polyanhydride range, poly(adipic anhydride) copolymers provided DNA encapsulation at an increased anhydride content (10%, microspheres; 10-25%, nanospheres) compared to poly(sebacic anhydride) copolymers (1%, microspheres and nanospheres) with cellular transfection correlating with the observed DNA encapsulation.

  6. Chemical functionalization of hyaluronic acid for drug delivery applications

    Vasi, Ana-Maria [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. dr. docent Dimitrie Mangeron Street, 700050 Iasi (Romania); Popa, Marcel Ionel, E-mail: mipopa@ch.tuiasi.ro [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. dr. docent Dimitrie Mangeron Street, 700050 Iasi (Romania); Butnaru, Maria [“Grigore T. Popa” University of Medicine Pharmacy, Faculty of Medical Bioengineering, 9-13 Kogalniceanu Street, 700454 Iasi (Romania); Dodi, Gianina [“Gheorghe Asachi” Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, 73 Prof. dr. docent Dimitrie Mangeron Street, 700050 Iasi (Romania); SCIENT — Research Center for Instrumental Analysis, S.C. CROMATEC PLUS, 18 Sos. Cotroceni, 060114 Bucharest (Romania); Verestiuc, Liliana [“Grigore T. Popa” University of Medicine Pharmacy, Faculty of Medical Bioengineering, 9-13 Kogalniceanu Street, 700454 Iasi (Romania)

    2014-05-01

    Functionalized hyaluronic acid (HA) derivatives were obtained by ring opening mechanism of maleic anhydride (MA). FTIR and H{sup 1} NMR spectroscopy were used to confirm the chemical linkage of MA on the hyaluronic acid chains. Thermal analysis (TG-DTG and DSC) and GPC data for the new products revealed the formation of new functional groups, without significant changes in molecular weight and thermal stability. New gels based on hyaluronic acid modified derivatives were obtained by acrylic acid copolymerization in the presence of a redox initiation system. The resulted circular and interconnected pores of the gels were visualized by SEM. The release profiles of an ophthalmic model drug, pilocarpine from tested gels were studied in simulated media. Evaluation of the cytotoxicity and cell proliferation properties indicates the potential of the new systems to be used in contact with biological media in drug delivery applications. - Highlights: • New functionalized hyaluronic acid was prepared by ring opening of maleic anhydride. • Gels with circular pores based on acrylic acid copolymerization were formulated. • In vitro drug loading/release profile was evaluated in simulated ophthalmic media. • The cytotoxicity indicates the potential of derivatives to be used in vivo.

  7. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  8. Pt.3. Carbon-13 fractionation in the decomposition of formic acid initiated by phosphoric anhydride. 13C fractionation in the decomposition of HCOOH initiated by P2O5

    Zielinski, M.; Zielinska, A.

    1998-01-01

    13 C isotope effects in the decarbonylation of formic acid of natural isotopic composition initiated by phosphorus pentoxide have been studied in a large temperature range (-5 o C) - (+90 o C). The 13 C fractionation in the carbon monooxide production at -5 o C increased from a low value of 1.2% characteristic of the first fractions of consecutively controlled portions of carbon monooxide to higher values of 13 C KIE observed in the decarbonylation of pure formic acid at corresponding temperatures. The temperature and time dependences of the measured 13 C fractionation are functions of the relative number of milimoles of formic acid and the dehydrating phosphoric anhydride, P 2 O 5 . The addition of metaphosphoric acid reagent to unreacted formic acid containing H 3 PO 4 significantly increased the 13 C fractionation in subsequent decarbonylations at 70.4 o C but to a slightly less degree than expected ( 13 C KIE = 1.0503 instead 1.0535). The addition of metaphosphoric acid reagent to formic acid saturated with NaCl results in the experimental 13 C fractionation of the value of 1.0534 very close to the theoretical one. An explanation of the low values of 13 C KIE in the initial stages of HCOOH/P 2 O 5 decarbonylations has been presented. (author)

  9. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers

    Díaz, A.; Valle, L.; Franco, L. del [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Sarasua, J.R. [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain); Estrany, F. [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, J., E-mail: Jordi.Puiggali@upc.es [Department of Mining-Metallurgy Engineering and Materials Science, University of the Basque Country (UPV/EHU), Bilbao (Spain)

    2014-09-01

    Lactide and trimethylene carbonate copolymers were successfully grafted with polyethylene glycol via previous functionalization with maleic anhydride and using N,N′-diisopropylcarbodiimide as condensing agent. Maleinization led to moderate polymer degradation. Specifically, the weight average molecular weight decreased from 36,200 to 30,200 g/mol for the copolymer having 20 mol% of trimethylene carbonate units. Copolymers were characterized by differential scanning calorimetry, thermogravimetry and X-ray diffraction. Morphology of spherulites and lamellar crystals was evaluated with optical and atomic force microscopies, respectively. The studied copolymers were able to crystallize despite the randomness caused by the trimethylene carbonate units and the lateral groups. Contact angle measurements indicated that PEG grafted copolymers were more hydrophilic than parent copolymers. This feature justified that enzymatic degradation in lipase medium and proliferation of both epithelial-like and fibroblast-like cells were enhanced. Grafted copolymers were appropriate to prepare regular drug loaded microspheres by the oil-in-water emulsion method. Triclosan release from loaded microspheres was evaluated in two media. - Highlights: • Pegylated copolymers of lactide and trimethylene carbonate have been synthesized. • Grafting with polyethylene glycol was able via maleic anhydride functionalization. • Drug-loaded microspheres could be prepared from new pegylated copolymers. • Hydrophilicity of lactide/trimethylene carbonate copolymers increased by pegylation. • New pegylated copolymers supported cell adhesion and proliferation.

  10. Preparation of deuterated succinic acids

    Tashiro, Masashi; Tsuzuki, Hirohisa; Goto, Hideyuki; Ogasahara, Shoji; Mataka, Shuntaro (Kyushu Univ., Fukuoka (Japan)); Isobe, Shin-ichiro; Yonemitsu, Tadashi (Kyushu Sangyo Univ., Fukuoka (Japan). Dept. of Industrial Chemistry)

    1991-04-01

    Succinic (2,3-{sup 2}H{sub 2})- and (2,2,3,3-{sup 2}H{sub 4})-acids were prepared from maleic anhydride and dimethyl fumarate, and acetylene dicarboxylic acid and its dimethyl ester by treatment with Cu-Al and Ni-Al alloys in 10% NaOD-D{sub 2}0 in 95% to 100% isotopic purity. The succinic {sup 2}H{sub 4} acid having high isotopic purity was also obtained on the hydrolysis of 1,2-ethanedinitrile with alkaline deuterium oxide. Based on the {sup 1}H({sup 2}H) spectra analysis of N-(o-biphenyl)(2,3-{sup 2}H{sub 2})succinimide, it was elucidated that the Raney alloy reduction with alkaline deuterium oxide proceeds stepwise. (author).

  11. pH-sensitive polymeric cisplatin-ion complex with styrene-maleic acid copolymer exhibits tumor-selective drug delivery and antitumor activity as a result of the enhanced permeability and retention effect.

    Saisyo, Atsuyuki; Nakamura, Hideaki; Fang, Jun; Tsukigawa, Kenji; Greish, Khaled; Furukawa, Hiroyuki; Maeda, Hiroshi

    2016-02-01

    Cisplatin (CDDP) is widely used to treat various cancers. However, its distribution to normal tissues causes serious adverse effects. For this study, we synthesized a complex of styrene-maleic acid copolymer (SMA) and CDDP (SMA-CDDP), which formed polymeric micelles, to achieve tumor-selective drug delivery based on the enhanced permeability and retention (EPR) effect. SMA-CDDP is obtained by regulating the pH of the reaction solution of SMA and CDDP. The mean SMA-CDDP particle size was 102.5 nm in PBS according to electrophoretic light scattering, and the CDDP content was 20.1% (w/w). The release rate of free CDDP derivatives from the SMA-CDDP complex at physiological pH was quite slow (0.75%/day), whereas it was much faster at pH 5.5 (4.4%/day). SMA-CDDP thus had weaker in vitro toxicity at pH 7.4 but higher cytotoxicity at pH 5.5. In vivo pharmacokinetic studies showed a 5-fold higher tumor concentration of SMA-CDDP than of free CDDP. SMA-CDDP had more effective antitumor potential but lower toxicity than did free CDDP in mice after i.v. administration. Administration of parental free CDDP at 4 mg/kg×3 caused a weight loss of more than 5%; SMA-CDDP at 60 mg/kg (CDDP equivalent)×3 caused no significant weight change but markedly suppressed S-180 tumor growth. These findings together suggested using micelles of the SMA-CDDP complex as a cancer chemotherapeutic agent because of beneficial properties-tumor-selective accumulation and relatively rapid drug release at the acidic pH of the tumor-which resulted in superior antitumor effects and fewer side effects compared with free CDDP. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Atypical cleavage of protonated N-fatty acyl amino acids derived from aspartic acid evidenced by sequential MS3 experiments.

    Boukerche, Toufik Taalibi; Alves, Sandra; Le Faouder, Pauline; Warnet, Anna; Bertrand-Michel, Justine; Bouchekara, Mohamed; Belbachir, Mohammed; Tabet, Jean-Claude

    2016-12-01

    Lipidomics calls for information on detected lipids and conjugates whose structural elucidation by mass spectrometry requires to rationalization of their gas phase dissociations toward collision-induced dissociation (CID) processes. This study focused on activated dissociations of two lipoamino acid (LAA) systems composed of N-palmitoyl acyl coupled with aspartic and glutamic acid mono ethyl esters (as LAA (*D) and LAA (*E) ). Although in MS/MS, their CID spectra show similar trends, e.g., release of water and ethanol, the [(LAA (*D/*E) +H)-C 2 H 5 OH] + product ions dissociate via distinct pathways in sequential MS 3 experiments. The formation of all the product ions is rationalized by charge-promoted cleavages often involving stepwise processes with ion isomerization into ion-dipole prior to dissociation. The latter explains the maleic anhydride or ketene neutral losses from N-palmitoyl acyl aspartate and glutamate anhydride fragment ions, respectively. Consequently, protonated palmitoyl acid amide is generated from LAA (*D), whereas LAA (*E) leads to the [*E+H-H 2 O] + anhydride. The former releases ammonia to provide acylium, which gives the C n H (2n-1) and C n H (2n-3) carbenium series. This should offer structural information, e.g., to locate either unsaturation(s) or alkyl group branching present on the various fatty acyl moieties of lipo-aspartic acid in further studies based on MS n experiments.

  13. Propensities of oxalic, citric, succinic, and maleic acids for the aqueous solution/vapour interface: Surface tension measurements and molecular dynamics simulations

    Mahiuddin, S.; Minofar, Babak; Borah, J. M.; Das, M. R.; Jungwirth, Pavel

    2008-01-01

    Roč. 462, 4/6 (2008), s. 217-221 ISSN 0009-2614 R&D Projects: GA MŠk LC512; GA ČR(CZ) GD203/05/H001 Grant - others:NSF(US) CHE0431312 Institutional research plan: CEZ:AV0Z40550506 Keywords : carboxylic acids * molecular dynamics * ab initio calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.169, year: 2008

  14. PSD Applicability for Ashland Chemical's Maleic Anhydride Plant in Neal, West Virginia

    This document may be of assistance in applying the New Source Review (NSR) air permitting regulations including the Prevention of Significant Deterioration (PSD) requirements. This document is part of the NSR Policy and Guidance Database. Some documents in the database are a scanned or retyped version of a paper photocopy of the original. Although we have taken considerable effort to quality assure the documents, some may contain typographical errors. Contact the office that issued the document if you need a copy of the original.

  15. Physico-chemical characterization of mixed-ligand complexes of Mn(III based on the acetylacetonate and maleic acid and its hydroxylamine derivative

    Cakić Suzana M.

    2005-01-01

    Full Text Available Two new Mn(III mixed-ligand complexes with two acetylacetonate (acac ligands and one maleate ligand and its hydroxylamine derivative of the general formula [Mn(C5H7O22L] were prepared. Their structure was established by using elemental analysis, FTIR and UV/VIS spectroscopic methods, as well as magnetic measurement. Replacement of the acetylacetonate ligand by the corresponding acid ligand has been confirmed in Mn(III acetylacetonate. Based on the obtained experimental data and literature indications, structural formulae to these compounds were assigned.

  16. In vitro Degradation of Butanediamine-Grafted Poly(DL-Lactic acids)

    2007-01-01

    The degradation of butanediamine-grafted poly(DL-lactic acid) polymers (BDPLAs) in vitro together with PDLLA and maleic anhydride-grafted poly(DL-lactic acid) polymers (MPLAs) was investigated by observation of the changes of the pH value of incubation media, and weight loss ratio during degradation duration of 12 weeks. The results reveal that the acidity of PDLLA degradation products was weakened or neutralized by grafting butanediamine onto PDLLA. A uniform degradation of BDPLAs was observed in comparison with an acidity-induced auto-accelerating degradation featured by PDLLA and MPLAs. The biodegradation behaviors of BDPLAs can be adjusted by controlling the content of BDA. BDPLAs might be a new derivative of PDLLA-based biodegradable materials for medical applications without acidity-caused irritations and acidity-induced auto-accelerating degradation behavior as that of PDLLA.

  17. Alternating copolymerization of propylene oxide with biorenewable terpene-based cyclic anhydrides: a sustainable route to aliphatic polyesters with high glass transition temperatures.

    Van Zee, Nathan J; Coates, Geoffrey W

    2015-02-23

    The alternating copolymerization of propylene oxide with terpene-based cyclic anhydrides catalyzed by chromium, cobalt, and aluminum salen complexes is reported. The use of the Diels-Alder adduct of α-terpinene and maleic anhydride as the cyclic anhydride comonomer results in amorphous polyesters that exhibit glass transition temperatures (Tg ) of up to 109 °C. The polymerization conditions and choice of catalyst have a dramatic impact on the molecular weight distribution, the relative stereochemistry of the diester units along the polymer chain, and ultimately the Tg of the resulting polymer. The aluminum salen complex exhibits exceptional selectivity for copolymerization without transesterification or epimerization side reactions. The resulting polyesters are highly alternating and have high molecular weights and narrow polydispersities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermochemistry of sarcosine and sarcosine anhydride: Theoretical and experimental studies

    Amaral, Luísa M.P.F.; Santos, Ana Filipa L.O.M.; Ribeiro da Silva, Maria das Dores M.C.; Notario, Rafael

    2013-01-01

    Highlights: ► Study on the Energetics of the sarcosine and sarcosine anhydride. ► Experimental and computational thermochemistry of sarcosine and its anhydride. ► Ab initio calculations for two amino acid derivatives by G3(MP2)//B3LYP method. -- Abstract: The standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, of sarcosine, −(388.0 ± 1.0) kJ · mol −1 , and sarcosine anhydride, −(334.5 ± 1.6) kJ · mol −1 , were calculated by combining, for each compound, the standard molar enthalpy of formation, in the crystalline phase, and the standard molar enthalpy of sublimation, derived from measurements of the standard massic energies of combustion by static bomb combustion calorimetry, and from measurements of vapour pressures by the Knudsen mass-loss effusion method, respectively. The standard (p o = 0.1 MPa) molar enthalpies, entropies and Gibbs functions of sublimation, at T = 298.15 K, were also calculated. A theoretical study at the G3 and G4 levels has been carried out, and the calculated enthalpies of formation have been compared with the experimental ones

  19. Hydrolysis of Acetic Anhydride in a CSTR

    Veronica N. Coraci

    2016-05-01

    Full Text Available To find the optimal reactor volume and temperature for the hydrolysis of acetic anhydride at the lowest possible cost with a 90% conversion of acetic anhydride, a formula for the total cost of the reaction was created. Then, the first derivative was taken to find a value for the temperature. This value was then inputted into the second derivative of the equation to find the sign of the value which would indicate whether that point was a minima or maxima value. The minima value would then be the lowest total cost for the optimum reaction to take place.

  20. Synthetic studies with Pinus elliottiis rosin derivatives. Oxidation of maleopimaric anhydride methyl ester and trimethyl fumaropimarate

    Hess Sonia C.

    2000-01-01

    Full Text Available Ozonolysis of maleopimaric anhydride methyl ester in the presence of tetracyanoethylene led to an epoxide and an ozonide. Ozonolysis of the trimethyl fumaropimarate, followed by treatment with Me2S, led to an epoxide, a diene, a keto-acid and an allylic oxidation product. Some of the compounds obtained were active against Staphylococcus aureus, Bacillus subtilis and Micrococcus luteus.

  1. Substituted Phthalic Anhydrides from Biobased Furanics : A New Approach to Renewable Aromatics

    Thiyagarajan, Shanmugam; Genuino, Homer C.|info:eu-repo/dai/nl/371571685; Sliwa, Michal; van der Waal, Jan C.; de Jong, Ed; van Haveren, Jacco; Weckhuysen, Bert M.|info:eu-repo/dai/nl/285484397; Bruijnincx, Pieter C. A.|info:eu-repo/dai/nl/33799529X; van Es, Daan S.

    2015-01-01

    A novel route for the production of renewable aromatic chemicals, particularly substituted phthalic acid anhydrides, is presented. The classical two-step approach to furanics-derived aromatics via Diels-Alder (DA) aromatization has been modified into a three-step procedure to address the general

  2. Respiratory irritation by trimellitic anhydride in Brown Norway and Wistar rats

    Arts, J.H.E.; Koning, M.W.de; Bloksma, N.; Kuper, C.F.

    2001-01-01

    Several acid anhydrides are known for their sensitizing and irritative properties. Since both irritation and respiratory allergy can cause changes of lung function, proper testing of allergen-dependent effects on the respiratory tract requires knowledge of the respiratory irritant effects. To study

  3. Actinic-radiation curable polymers prepared from a reactive polymer, halogenated cyclic anhydride and glycidyl ester

    Pastor, S.D.

    1979-01-01

    A novel class of photosensitive polymers are disclosed which are prepared by the reaction, preferably in the presence of a catalyst, of a reactive polymer, a halogenated cyclic anhydride and glycidyl ester of an alpha, beta-unsaturated carboxylic acid. These polymers are capable of undergoing vinyl-type polymerization when exposed to actinic radiation

  4. Hybrid composites

    Jacob John, Maya

    2009-04-01

    Full Text Available mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites was investigated by Kalaprasad et al [25].Chemical surface modifications such as alkali, acetic anhydride, stearic acid, permanganate, maleic anhydride, silane...

  5. Synthesis and characterization of unsatured polyesters from the reaction of glycerol with fumaric acid

    Medeiros, Marina A.O.; Brioude, Michel M.; Agrela, Sara P.; Rosa, Leandro O.S.; Jose, Nadia M.; Prado, Luis A.S.A.

    2009-01-01

    The biodiesel production from vegetable oils has been encouraged by the Brazilian Federal Government, since biodiesel is a renewable fuel. The utilization of glycerol (by-product of biodiesel production) has gained importance, since it corresponds to 30 wt-% of the produced biodiesel. In this context, the present work aims at preparing and characterizing polymers based on glycerol, which could have an application. In this way, the production of biodiesel could be further stimulated. Unsaturated polyesters were preparing by esterification of glycerol with fumaric acid. The reaction mixture was heated up to 240 deg C. After the polymerization was complete, the material was cast onto Teflon molds. The materials were characterized by Infrared Spectroscopy, X-ray diffraction. The thermal stability was evaluated by thermogravimetric analysis and differential scanning calorimetry. The materials showed thermal stability comparable to alkyd thermoset derived from maleic anhydride and glycerol. (author)

  6. Structural Changes of Bagasse dusring the Homogeneous Esterification with Maleic Anhydride in Ionic Liquid 1-Allyl-3-methylimidazolium Chloride

    Huihui Wang

    2018-04-01

    Full Text Available The maleation of bagasse could greatly increase the compatibility between bagasse and composite matrixes, and the percentage of substitution (PS of bagasse maleates could be regulated in the homogeneous system. However, due to the complicated components and the linkages of bagasse, it was difficult to control the reaction behaviors of each component. In this paper, the detailed structural changes of bagasse during the homogeneous maleation in ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl were comparatively investigated with the three main components (cellulose, hemicelluloses, and lignin from bagasse. The PS of the maleated bagasse was 12.52%, and the PS of the maleated cellulose, hemicelluloses, and lignin were 13.50%, 10.89%, and 14.03%, respectively. Fourier translation infrared (FT-IR and NMR analyses confirmed that the three main components were all involved in the homogeneous maleation. 1H-13C HSQC analysis indicated that the predominant monoesterification of cellulose, diesterification of hemicelluloses and lignin, and the degradation of the three main components simultaneously occurred. Besides, the quantitative analysis from 1H-13C HSQC revealed the relative PS of reactive sites in each component. 31P NMR results showed that the reactivity of lignin aliphatic hydroxyls was higher than that of phenolic ones, and the reactivity of phenolic hydroxyls followed the order of p-hydroxyphenyl hydroxyls > guaiacyl hydroxyls > syringyl hydroxyls.

  7. Thermal Stability of Clay's Galleries in Polypropylene - Clay (montmorillonite Nanocomposites using Polypropylene-gMaleic Anhydride as Compatibilizer

    Sotya Astutiningsih

    2010-10-01

    Full Text Available Superior properties of food packaging can be achieved using nanocomposite technology. However, fabrication of this materials are complex and expensive. Long term objectives of this research is the synthesis of low cost polypropylene clay nanocomposites (PPCN via a short-cut method known as ‘cascade engineering’. Cascade engineering principle in PPCN fabrication is performed by using compatibilizer (to enable the mixing of PP and clay masterbatch, and PPCN in one pot process using melt mixer. This paper present the experimental results using small-angle x-ray diffraction (XRD on the thermal stability of the PPCN. Results from the XRD analysis showed that the clay was intercalated, however no significant changes were observed as a result of variation in mixing time. XRD patterns of the annealed PPCN showed reduction of MMT’s gallery (deintercalation These phenomenon was probably caused by insufficient bonding and lack of compatibility between PP-g-MA and MMT.

  8. Effect of modified starch and nanoclay particles on biodegradability and mechanical properties of cross-linked poly lactic acid.

    Shayan, M; Azizi, H; Ghasemi, I; Karrabi, M

    2015-06-25

    Mechanical properties and biodegradation of cross-linked poly(lactic acid) (PLA)/maleated thermoplastic starch (MTPS)/montmorillonite (MMT) nanocomposite were studied. Crosslinking was carried out by adding di-cumyl peroxide (DCP) in the presence of triallyl isocyanurate (TAIC) as coagent. At first, MTPS was prepared by grafting maleic anhydride (MA) to thermoplastic starch in internal mixer. Experimental design was performed by using Box-Behnken method at three variables: MTPS, nanoclay and TAIC at three levels. Results showed that increasing TAIC amount substantially increased the gel fraction, enhanced tensile strength, and caused a decrease in elongation at break. Biodegradation was prevented by increasing TAIC amount in nanocomposite. Increasing MTPS amount caused a slight increase in gel fraction and decreased the tensile strength of nanocomposite. Also, MTPS could increase the elongation at break of nanocomposite and improve the biodegradation. Nanoclay had no effect on the gel fraction, but it improved tensile strength. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.

    Zhou, Yanmei; Min, Yinghao; Qiao, Han; Huang, Qi; Wang, Enze; Ma, Tongsen

    2015-03-01

    Cellulose modified with maleic (M) and phthalic (P) anhydride, to be named CMA and CPA, were tested as feasible adsorbents for the removal of malachite green from aqueous solution. At the same time, the uptake ability of natural cellulose was also studied for comparison. The structure of material was characterized by FT-IR and XRD. The effects of solution pH, initial dye concentration, contact time and temperature were investigated in detail by batch adsorption experiments. The kinetic and isotherm studies suggested that the adsorption followed the pseudo-second-order model and Langmuir isotherm. The maximum adsorption capacity on CMA and CPA were 370 mg g(-1) and 111 mg g(-1), respectively. Furthermore, the thermodynamics studies indicated the spontaneous nature of adsorption of malachite green on adsorbents. All the studied results showed that the modified cellulose could be used as effective adsorption material for the removal of malachite green from aqueous solutions. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effect of maleic hydrazide and waxing on quality and shelf life of papaya (carica papaya L.) fruits

    Abu-Goukh, A. A.; Shattir, A. E.

    2012-01-01

    The effect of post harvest treatment of maleic hydrazide (MH) with and with out waxing on the quality and shelf-life of Baladi and Ekostika I papaya fruits at 18 ±1°C and 85%-90% relative humidity was evaluated. Maleic hydrazide at 250 and 500 ppm significantly delayed fruit ripening by two and three days in both papaya cultivars, respectively, compared with untreated fruits. The higher the concentration, the more was the delay in fruit ripening. The results also showed that waxing addition to MH resulted in a delay of two more days in fruit ripening that treatment with MH alone. The effect of MH and waxing treatments in delaying papaya fruits ripening was manifested in retarded respiratory climacteric, reduced weight loss and delayed fruit softening and increase in total soluble solids and ascorbic acid content.(Author)

  11. Alternating copolymerization of epoxides with anhydrides initiated by organic bases

    Hošťálek, Z.; Trhlíková, Olga; Walterová, Zuzana; Martinez, T.; Peruch, F.; Cramail, H.; Merna, J.

    2017-01-01

    Roč. 88, March (2017), s. 433-447 ISSN 0014-3057 Institutional support: RVO:61389013 Keywords : copolymerization * epoxides * anhydrides Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.531, year: 2016

  12. Analysis physical properties of composites polymer from cocofiber and polypropylene plastic waste with maleic anhydrate as crosslinking agent

    Pelita, E.; Hidayani, T. R.; Akbar, A.

    2017-07-01

    This research was conducted with the aim to produce composites polymer with polypropylene plastic waste materials and cocofiber which aims to produce wood replacement material in the home furnishings industry. This research was conducted with several stages. The first stage is the process of soaking coco fiber with detergent to remove oil and 2% NaOH. The second stage is to combine the polypropylene plastic waste with cocofiber is a chemical bond, modification by adding maleic anhydride as a crosslinking agent and benzoyl peroxide as an initiator each as much as 1%. Mixing materials done by reflux method using xylene solvent. In this study, carried out a wide range of weight variation of coco fiber are added to the 10, 20, 30, 40 and 50%. The third stage is a polymer composite molding process using hot press at a temperature of 158°C. The results of polymer composites Showed optimum condition on the addition of 40% cocofiber with supple tensile strength value of 90.800 kgf /cm2 and value of elongation break at 3.6726 x 104 (kgf/cm2), melting point at 160.02°C, burning point 463.43°C, residue of TGA is 19%, the density of 0.84 g/mL. From these data, conclude that the resulting polymer composites meet the SNI 03-2105-2006 about ordinary composite polymer and polymer composite structural type 8 regular types from 17.5 to 10.5.

  13. Esterification of maleic acid and butanol using cationic exchange ...

    AARTI MULAY

    2017-11-15

    Nov 15, 2017 ... Special Issue on Recent Trends in the Design and Development of Catalysts and their Applications ... non-corrosive and eco-friendly nature, easy to separate and no ... of heterogeneous catalysts using ion exchange resin. ... The reactor was continu- ... 2.3a Gas chromatographic analysis: The liquid sam-.

  14. Blends of nitrile butadiene rubber/poly (vinyl chloride: The use of maleated anhydride castor oil based plasticizer

    Indiah Ratna Dewi

    2016-06-01

    Full Text Available Recently, much attention has been focused on research to replace petroleum-based plasticizers, with biodegradable materials, such as biopolymer which offers competitive mechanical properties. In this study, castor oil was modified with maleic anhydride (MAH to produce bioplasticizer named maleated anhydride castor oil (MACO, and used in nitrile butadiene rubber (NBR/poly vinyl chloride (PVC blend. The effect of MACO on its cure characteristics and mechanical properties of NBR/PVC blend has been determined. The reactions were carried out at different castor oil (CO/xylene ratios, i.e. 1:0 and 1:1 by weight, and fixed CO/MAH ratio, 1:3 by mole. DOP, CO, and MACO were added into each NBR/PVC blend according to the formula. It was found that the viscosity and safe process level of NBR/PVC blend is similar from all plasticizer, however, MACO (1:0 showed the highest cure rate index (CRI. MACO-based plasticizer gave a higher value of the mechanical properties of the NBR/PVC blend as compared to DOP based plasticizer. MACO (1:1 based plasticizer showed a rather significance performance compared to another type of plasticizers both before and after aging. The value of hardness, elongation at break, tensile strength, and tear strength were 96 Shore A, 155.91 %, 19.15 MPa, and 74.47 MPa, respectively. From this result, NBR/PVC blends based on MACO plasticizer can potentially replace the DOP, and therefore, making the rubber blends eco-friendly.

  15. Modification of montmorillonite fillers by ionizing radiation

    Zimek, Z.; Przybytniak, G.; Nowicki, A.; Mirkowski, K.

    2006-01-01

    The mineral fillers can be modified by using unsaturated compounds: styrene, methacrylic acid and maleic anhydride (MA), following by irradiation with high energy electron beam. In presented paper the authors have used this method to change properties of bentonite S pecjal , containing about 70% of pure montmorillonite. It has been shown that: (a) the particles obtained in this process can be good fillers for the production of composites; (b) maleic anhydride reacts via anhydride group with active ionic sites of bentonite, forming a salt-like compound. Irradiation with electron beam leads to the breakage of double bond in maleic anhydride and to the production of new organic phases

  16. Effect of carboxylic acids as compatibilizer agent on mechanical properties of thermoplastic starch and polypropylene blends.

    Martins, Andréa Bercini; Santana, Ruth Marlene Campomanes

    2016-01-01

    In this work, polypropylene/thermoplastic starch (PP/TPS) blends were prepared as an alternative material to use in disposable packaging, reducing the negative polymeric environmental impact. Unfortunately, this material displays morphological characteristics typical of immiscible polymer blends and a compatibilizer agent is needed. Three different carboxyl acids: myristic (C14), palmitic (C16) and stearic acids (C18) were used as natural compatibilizer agent (NCA). The effects of NCA on the mechanical, physical, thermal and morphological properties of PP/TPS blends were investigated and compared against PP/TPS with and without PP-grafted maleic anhydride (PPgMA). When compared to PP/TPS, blends with C18, PPgMA and C14 presented an improvement of 25, 22 and 17% in tensile strength at break and of 180, 194 and 259% in elongation at break, respectively. The highest increase, 54%, in the impact strength was achieved with C14 incorporation. Improvements could be seen, through scanning electron microscopy (SEM) images, in the compatibility between the immiscible components by acids incorporation. These results showed that carboxylic acids, specifically C14, could be used as compatibilizer agent and could substitute PPgMA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. One-pot synthesis of thermoplastic mixed paramylon esters using trifluoroacetic anhydride.

    Shibakami, Motonari; Tsubouchi, Gen; Sohma, Mitsugu; Hayashi, Masahiro

    2015-03-30

    Mixed paramylon esters prepared from paramylon (a storage polysaccharide of Euglena), acetic acid, and a long-chain fatty acid by one-pot synthesis using trifluoroacetic anhydride as a promoter and solvent were shown to have thermoplasticity. Size exclusion chromatography indicated that the mixed paramylon esters had a weight average molecular weight of approximately 4.9-6.7×10(5). Thermal analysis showed that these esters were stable in terms of the glass transition temperature (>90°C) and 5% weight loss temperature (>320°C). The degree of substitution of the long alkyl chain group, a dominant factor determining thermoplasticity, was controlled by tuning the feed molar ratio of acetic acid and long-chain fatty acid to paramylon. These results implied that the one-pot synthesis is useful for preparing structurally-well defined thermoplastic mixed paramylon esters with high molecular weight. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Crystallo-chemistry of boric anhydride and of anhydrous borates

    Bernardin, Jacques

    1968-01-01

    After an overview of various aspects related to the atomic structure of boron and of its three-bind and four-bind compounds, this report briefly presents the different forms of boric anhydride (in solid, liquid, glassy and gaseous state), presents and comments the structure of these different forms, and addresses the molten boric anhydride which is used as oxide solvent. The next part addresses the structure of anhydrous borates. It presents some generalities on their structure, and describes examples of known structures: dimers, trimers, polymers with a degree higher than three like calcium metaborate, caesium tri-borate, lithium tetraborate, or potassium pentaborate

  19. 78 FR 76567 - Tall Oil, Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs...

    2013-12-18

    ..., Polymer With Polyethylene Glycol and Succinic Anhydride Monopolyisobutylene Derivs.; Tolerance Exemption... an exemption from the requirement of a tolerance for residues of tall oil, polymer with polyethylene..., polymer with polyethylene glycol and succinic anhydride monopolyisobutylene derivs. on food or feed...

  20. Preparation and Characterization of Films Extruded of Polyethylene/Chitosan Modified with Poly(lactic acid)

    Quiroz-Castillo, Jesús Manuel; Rodríguez-Félix, Dora Evelia; Grijalva-Monteverde, Heriberto; Lizárraga-Laborín, Lauren Lucero; Castillo-Ortega, María Mónica; del Castillo-Castro, Teresa; Rodríguez-Félix, Francisco; Herrera-Franco, Pedro Jesús

    2014-01-01

    The use of mixtures of synthetic and natural polymers is a potential option to reduce the pollution by plastic waste. In this work, the method for the chemical modification of chitosan with poly(lactic acid) was developed; then, the preparation of films of blends of polyethylene and chitosan-poly(lactic acid) produced by an extrusion method using polyethylene-graft maleic anhydride as a compatibilizer. It was possible to obtain films with a maximum content of 20 wt% and 30 wt%, chitosan, with and without compatibilizer, respectively. Scanning electron microscope (SEM) analysis showed a homogeneous surface on all films. The addition of the compatibilizer had a significant effect on the mechanical properties of the films, such as an increase in Young’s modulus and a decrease in the elongation at break; additionally, the compatibilizer promotes thermal degradation in a single step and gives the film a slight increase in thermal resistance. These results are attributed to an improved interaction in the interface of polyethylene and chitosan-poly(lactic acid), promoted by the compatibilizer. PMID:28787928

  1. Preparation and Characterization of Films Extruded of Polyethylene/Chitosan Modified with Poly(lactic acid

    Jesús Manuel Quiroz-Castillo

    2014-12-01

    Full Text Available The use of mixtures of synthetic and natural polymers is a potential option to reduce the pollution by plastic waste. In this work, the method for the chemical modification of chitosan with poly(lactic acid was developed; then, the preparation of films of blends of polyethylene and chitosan-poly(lactic acid produced by an extrusion method using polyethylene-graft maleic anhydride as a compatibilizer. It was possible to obtain films with a maximum content of 20 wt% and 30 wt%, chitosan, with and without compatibilizer, respectively. Scanning electron microscope (SEM analysis showed a homogeneous surface on all films. The addition of the compatibilizer had a significant effect on the mechanical properties of the films, such as an increase in Young’s modulus and a decrease in the elongation at break; additionally, the compatibilizer promotes thermal degradation in a single step and gives the film a slight increase in thermal resistance. These results are attributed to an improved interaction in the interface of polyethylene and chitosan-poly(lactic acid, promoted by the compatibilizer.

  2. The Use of Maleic Hydrazide for Effective Hybridization of Setaria viridis.

    Govinda Rizal

    Full Text Available An efficient method for crossing green foxtail (Setaria viridis is currently lacking. S. viridis is considered to be the new model plant for the study of C4 system in monocots and so an effective crossing protocol is urgently needed. S. viridis is a small grass with C4-NADP (ME type of photosynthesis and has the advantage of having small genome of about 515 Mb, small plant stature, short life cycle, multiple tillers, and profuse seed set, and hence is an ideal model species for research. The objectives of this project were to develop efficient methods of emasculation and pollination, and to speed up generation advancement. We assessed the response of S. viridis flowers to hot water treatment (48°C and to different concentrations of gibberellic acid, abscisic acid, maleic hydrazide (MH, and kinetin. We found that 500 μM of MH was effective in the emasculation of S. viridis, whilst still retaining the receptivity of the stigma to pollination. We also report effective ways to accelerate the breeding cycle of S. viridis for research through the germination of mature as well as immature seeds in optimized culture media. We believe these findings will be of great interest to researchers using Setaria.

  3. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    Zargarian, S. Sh.; Haddadi-Asl, V., E-mail: haddadi@aut.ac.ir; Hematpour, H. [Amirkabir University of Technology, Department of Polymer Engineering and Color Technology (Iran, Islamic Republic of)

    2015-05-15

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite.

  4. Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride

    Zargarian, S. Sh.; Haddadi-Asl, V.; Hematpour, H.

    2015-01-01

    Halloysite nanotubes (HNT) (cylindrical shape with external diameter and length in the range of 30–80 nm and 0.2–1 µm, respectively) were functionalized with 3-aminopropyltriethoxysilane (APTES) from hydroxyl groups by a coupling reaction. Subsequently, maleic anhydride was attached to the APTES moieties to yield carboxylic acid-functionalized HNT. Loading and subsequent release of a model drug molecule diphenhydramine hydrochloride (DPH) on modified and unmodified nanotubes were investigated. Morphology of HNT was studied by electron microscopy. Successful attachment of APTES and carboxylic acid groups to halloysite and drug loading were evaluated by Fourier transform infrared spectroscopy. The amount of surface modification and drug adsorption capacity were calculated via thermogravimetric analysis. The ordered crystal structure of loaded drug was evaluated by X-ray diffraction. UV–Visible spectrophotometer was used to study drug release from modified and unmodified samples. Carboxylated halloysite exhibits higher loading capacity and prolonged release of DPH as compared to that of the natural halloysite

  5. Characteristic of Irradiation Result Film of Poly-Propylene-Co-Ethylene/Poly-ε-Caprolactone and Poly-Propylene Grafted Maleic Anhydrate Blend

    Nikham

    2004-01-01

    The effect of gamma rays irradiation to film of melt-blending polypropylene-co-ethylene (CPP) and poly-ε-caprolactone (PCL) with polypropylene grafted maleic anhydride (PP-g-MAH) blend as compatibilizer has been studied. The objective of the research is to prepare the biodegradable polyblend. The composition blend of CPP/PCL with 0, 10, 15, 20 wt % PP-g-MAH i.e. 100/0, 75/25, 50/50, 25/75 and 0/100 were irradiated by using gamma rays 60 Co with activity 420 kCi at doses; 0, 50, 100, 150, 200 kGy, at dose rate 8.2 kGy/hrs and temperature 90 o C. The elongation at break, tensile strength, gel fraction, enzymatic degradation and heat resistance were evaluated. The results showed that the compatibility of PP-g-MAH to reach good enough polyblend is 20 % weight. Elongation at break film of CPP/PCL 50/50 blend which irradiated at dose 200 kGy decreased, whereas the tensile strength increased. Gel fraction and heat resistance of the film irradiated increased. Enzyme of lipase AK can degraded either without irradiated or irradiated film. Thus quality of the polyblend can be called as biodegradable plastic material. (author)

  6. Influence of phase composition and structure of V-Mo mixed catalysts on the activity and selectivity in the oxidation of benzene to maleic anhydride

    Kripylo, P.; Ritter, D.; Hahn, H.; Spiess, H.; Kraak, P.

    1981-01-01

    Whereas MoO 3 and phosphate stabilize the low valence states of vanadium in the phase structure of V-Mo mixed catalysts, CoO influences the activity only, but not the selectivity. The catalysts show maxima of activity and selectivity at V/Mo ratios of 4 to 6. Ageing is caused by phase separation connected with the appearance of an MoO 3 phase and an increase of the V/Mo ratio in the phase of the active component

  7. Dynamic mechanical analysis of binary and ternary polymer blends based on nylon copolymer/EPDM rubber and EPM grafted maleic anhydride compatibilizer

    2007-10-01

    Full Text Available The dynamic mechanical properties such as storage modulus, loss modulus and damping properties of blends of nylon copolymer (PA6,66 with ethylene propylene diene (EPDM rubber was investigated with special reference to the effect of blend ratio and compatibilisation over a temperature range –100°C to 150°C at different frequencies. The effect of change in the composition of the polymer blends on tanδ was studied to understand the extent of polymer miscibility and damping characteristics. The loss tangent curve of the blends exhibited two transition peaks, corresponding to the glass transition temperature (Tg of individual components indicating incompatibility of the blend systems. The morphology of the blends has been examined by using scanning electron microscopy. The Arrhenius relationship was used to calculate the activation energy for the glass transition of the blends. Finally, attempts have been made to compare the experimental data with theoretical models.

  8. Resonance energy transfer from quinolinone modified polystyrene-block-poly(styrene-alt-maleic anhydride) copolymer to terbium(III) metal ions

    Výprachtický, Drahomír; Mikeš, F.; Lokaj, Jan; Pokorná, Veronika; Cimrová, Věra

    2015-01-01

    Roč. 160, April (2015), s. 27-34 ISSN 0022-2313 R&D Projects: GA ČR GAP106/12/0827; GA ČR(CZ) GA13-26542S Institutional support: RVO:61389013 Keywords : energy transfer * terbium luminescence * quinolinone donor Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.693, year: 2015

  9. Effect of propylene-graft-maleic anhydride and the co-intercalant cis-13- docosenamide on the structure and mechanical properties of PP/organoclay clay systems

    Silva Neto, J.E. da; Almeida, T.G.; Leite, R.C.N.; Carvalho, L.H.; Alves, T.S.

    2014-01-01

    In this work, PP/organoclay hybrids were prepared by melt intercalation and the effect of adding different amounts of a compatibilizer (PP-G-MA) and a co-intercalating agent (cis-13-docosenamide) to maximize the compatibility between filler and the polymeric matrix were investigated. The systems were processed under a single condition on a co-rotating twin screw extruder. The morphology and mechanical properties of the nanocomposites were investigated. The hybrids were characterized by x-ray diffraction, tensile (ASTM D638) and impact properties (ASTM D256). The results indicated an approximately 45% increase of the basal interplanar distance d_(_0_0_1_) of the clay on hybrid systems, containing both compatibilizing and co-intercalating agents, forming intercalated structures. The tensile strength of the systems was not affected significantly by compatibilizer and/or co-intercalant addition, however, increases of up to 30% in elastic modulus and 48% in impact strength were obtained. (author)

  10. Fumaric acid production by Rhizopus oryzae and its facilitated ...

    Anupreet

    2014-03-05

    Mar 5, 2014 ... Currently, fumaric acid is produced from petroleum based derivative maleic ... best possible option that came up for the strip phase was an alkaline medium. .... Future directions of membrane gas separation technology. Indus.

  11. A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends.

    Akrami, Marzieh; Ghasemi, Ismaeil; Azizi, Hamed; Karrabi, Mohammad; Seyedabadi, Mohammad

    2016-06-25

    In this study, a new compatibilizer was synthesized to improve the compatibility of the poly(lactic acid)/thermoplastic starch blends. The compatibilizer was based on maleic anhydride grafted polyethylene glycol grafted starch (mPEG-g-St), and was characterized using Fourier transform infrared spectroscopy (FTIR), dynamic mechanical thermal analysis (DMTA) and back titration techniques. The results indicated successful accomplishment of the designed reactions and formation of a starch cored structure with many connections to m-PEG chains. To assess the performance of synthesized compatibilizer, several PLA/TPS blends were prepared using an internal mixer. Consequently, their morphology, dynamic-mechanical behavior, crystallization and mechanical properties were studied. The compatibilizer enhanced interfacial adhesion, possibly due to interaction between free end carboxylic acid groups of compatibilizer and active groups of TPS and PLA phases. In addition, biodegradability of the samples was evaluated by various methods consisting of weight loss, FTIR-ATR analysis and morphology. The results revealed no considerable effect of compatibilizer on biodegradability of samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Poly(anhydride-co-imides): in vivo biocompatibility in a rat model.

    Ibim, S M; Uhrich, K E; Bronson, R; El-Amin, S F; Langer, R S; Laurencin, C T

    1998-05-01

    The degradation and tissue compatibility characteristics of a novel class of biodegradable poly(anhydride-co-imide) polymers: poly[trimellitylimidoglycine-co-1,6-bis(carboxyphenoxy)hexan e] (TMA-gly: CPH) (in 10:90; 30:70 and 50: 50 molar ratios) and poly[pyromellitylimidoalanine-co-1,6-bis(carboxyphenoxy)hexa ne] (PMA-ala:CPH) (in 10:90 and 30:70 molar ratios) were investigated and compared with control poly(lactic acid/glycolic acid) (PLAGA in 50:50 molar ratio) matrices, a well-characterized biocompatible polymer, in rat subcutaneous tissues for 60 days. Polymers were compression-molded into circular discs of 14 mm x 1 mm in diameter. On post-operative days 7, 14, 28 and 60, histological tissue samples were removed, prepared by fixation and staining, and analyzed by light microscopy. PLAGA matrices produced mild inflammatory reactions and were completely degraded at the end of 60 days, leaving implant tissues that were similar to surgical wounds without implants. TMA-gly:CPH (10:90 and 30:70) matrices produced mild inflammatory reactions by the end of 60 days, similar to those seen with PLAGA. TMA-gly: CPH (50: 50) produced moderate inflammatory reactions characterized by macrophages and edema. PMA-ala:CPH matrices elicited minimal inflammatory reactions that were characterized by fibrous encapsulation by the end of 60 days. In vivo degradation rates of poly(anhydride-co-imides) were similar to PLAGA. Both PMA-ala:CPH and TMA-gly: CPH matrices maintained their shapes and degraded at a constant rate over the period of two months. These polymers, possessing good mechanical properties and tissue compatibility, may be useful in weight-bearing applications in bone.

  13. Toughening of Poly(lactic acid and Thermoplastic Cassava Starch Reactive Blends Using Graphene Nanoplatelets

    Anibal Bher

    2018-01-01

    Full Text Available Poly(lactic acid (PLA was reactively blended with thermoplastic cassava starch (TPCS and functionalized with commercial graphene (GRH nanoplatelets in a twin-screw extruder, and films were produced by cast-film extrusion. Reactive compatibilization between PLA and TPCS phases was reached by introducing maleic anhydride and a peroxide radical during the reactive blending extrusion process. Films with improved elongation at break and toughness for neat PLA and PLA-g-TPCS reactive blends were obtained by an addition of GRH nanoplatelets. Toughness of the PLA-g-TPCS-GRH was improved by ~900% and ~500% when compared to neat PLA and PLA-g-TPCS, respectively. Crack bridging was established as the primary mechanism responsible for the improvement in the mechanical properties of PLA and PLA-g-TPCS in the presence of the nanofiller due to the high aspect ratio of GRH. Scanning electron microscopy images showed a non-uniform distribution of GRH nanoplatelets in the matrix. Transmittance of the reactive blend films decreased due to the TPCS phase. Values obtained for the reactive blends showed ~20% transmittance. PLA-GRH and PLA-g-TPCS-GRH showed a reduction of the oxygen permeability coefficient with respect to PLA of around 35% and 50%, respectively. Thermal properties, molecular structure, surface roughness, XRD pattern, electrical resistivity, and color of the films were also evaluated. Biobased and compostable reactive blend films of PLA-g-TPCS compounded with GRH nanoplatelets could be suitable for food packaging and agricultural applications.

  14. Poly(Lactic Acid) Filled with Cassava Starch-g-Soybean Oil Maleate

    Kiangkitiwan, Nopparut; Srikulkit, Kawee

    2013-01-01

    Poly(lactic acid), PLA, is a biodegradable polymer, but its applications are limited by its high cost and relatively poorer properties when compared to petroleum-based plastics. The addition of starch powder into PLA is one of the most promising efforts because starch is an abundant and cheap biopolymer. However, the challenge is the major problem associated with poor interfacial adhesion between the hydrophilic starch granules and the hydrophobic PLA, leading to poorer mechanical properties. In this paper, soybean oil maleate (SOMA) was synthesized by grafting soybean oil with various weight percents of maleic anhydride (MA) using dicumyl peroxide (DCP) as an initiator. Then, SOMA was employed for the surface modifying of cassava starch powder, resulting in SOMA-g-STARCH. The obtained SOMA-g-STARCH was mixed with PLA in various weight ratios using twin-screw extruder, resulting in PLA/SOMA-g-STARCH. Finally, the obtained PLA/SOMA-g-STARCH composites were prepared by a compression molding machines. The compatibility, thermal properties, morphology properties, and mechanical properties were characterized and evaluated. The results showed that the compatibility, surface appearance, and mechanical properties at 90 : 10 and 80 : 20 ratios of PLA/SOMA-g-STARCH were the best. PMID:24307883

  15. Chemical radiolabeling of carboxyatractyloside by [14C]acetic anhydride

    Block, M.R.; Pougeois, R.; Vignais, P.V.

    1980-01-01

    The authors report the synthesis and biological properties of a radiolabeled derivative of CAT obtained with acetylation of the primary alcohol of CAT with radiolabeled acetic anhydride. They also investigate the question of mutual exclusion of CAT and BA for binding to the mitochondrial ADP/ATP carrier in double labeling experiments based on the use of [ 3 H]BA and [ 14 C]Ac-CAT. The results are consistent with the view that the ADP/ATP carrier possesses two separate interacting binding sites for AT (or CAT) and for BA. (Auth.)

  16. Efficient synthesis of zinc-containing mesoporous silicas by microwave irradiation method and their high activities in acetylation of 1,2-dimethoxybenzene with acetic anhydride

    K. Bachari

    2016-09-01

    Full Text Available A series of acid zinc-containing mesoporous materials have been synthesized by microwave irradiation method with different Si/Zn ratios (Si/Zn = 100, 65, 15 and characterized by several spectroscopic techniques such as: N2 physical adsorption, ICP, XRD, TEM, FT-IR and a temperature-programmed-desorption (TPD of pyridine. The liquid phase of acetylation of 1,2-dimethoxybenzene with acetic anhydride has been investigated over this series of catalysts. In fact, the catalyst Zn-JLU-15 (15 showed bigger performance in the acid-catalyzed acetylation of 1,2-dimethoxybenzene employing acetic anhydride as an acylating agent. Furthermore, the kinetics of the acetylation of 1,2-dimethoxybenzene over these catalysts have also been investigated.

  17. Preliminary in vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model.

    Ibim, S E; Uhrich, K E; Attawia, M; Shastri, V R; El-Amin, S F; Bronson, R; Langer, R; Laurencin, C T

    1998-01-01

    A novel class of polymers with mechanical properties similar to cancellous bone are being investigated for their ability to be used in weight-bearing areas for orthopedic applications. The poly(anhydride-co-imide) polymers based on poly[trimellitylimidoglycine-co-1,6-bis(carboxyphenoxy)hexan e] (TMA-Gly:CPH) and poly[pyromellitylimidoalanine-co-1,6-bis(carboxyphenoxy)hexa ne] (PMA-Ala:CPH) in molar ratios of 30:70 were investigated for osteocompatibility, with effects on the healing of unicortical 3-mm defects in rat tibias examined over a 30-day period. Defects were made with surgical drill bits (3-mm diameter) and sites were filled with poly(anhydride-co-imide) matrices and compared to the control poly(lactic acid-glycolic acid) (PLAGA) (50:50), a well-characterized matrix frequently used in bone regeneration studies, and defects without polymeric implants. At predetermined time intervals (3, 6, 9, 12, 20, and 30 days), animals were sacrificed and tissue histology was examined for bone formation, polymer-tissue interaction, and local tissue response by light microscopy. The studies revealed that matrices of TMA-Gly:CPH and PMA-Ala:CPH produced responses similar to the control PLAGA with tissue compatibility characterized by a mild response involving neutrophils, macrophages, and giant cells throughout the experiment for all matrices studied. Matrices of PLAGA were nearly completely degraded by 21 days in contrast to matrices of TMA-Gly:CPH and PMA-Ala:CPH that displayed slow erosion characteristics and maintenance of shape. Defects in control rats without polymer healed by day 12, defects containing PLAGA healed after 20 days, and defects containing poly(anhydride-co-imide) matrices produced endosteal bone growth as early as day 3 and formed bridges of cortical bone around matrices by 30 days. In addition, there was marrow reconstitution at the defect site for all matrices studied along with matured bone-forming cells. This study suggests that novel poly(anhydride

  18. Synthesis and characterization of Trichloroisocyanouric acid ...

    Abstract. Trichloroisocyanouric acid (TCCA)-functionalized mesoporous silica nanocomposites (SBA/ .... 1 mmol of acetic anhydride and a suitable solvent were taken in a ..... washed with methanol, water and finally with acetone. The dried ...

  19. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid-PLA, Poly(ε-caprolactone-PCL and Poly(3-hydroxybutyrate-PHB

    María Jesús Garcia-Campo

    2017-11-01

    Full Text Available Ternary blends of poly(lactic acid (PLA, poly(3-hydroxybutyrate (PHB and poly(ε-caprolactone (PCL with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO, maleinized soybean oil (MSO and acrylated epoxidized soybean oil (AESO. The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM. All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy’s impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives.

  20. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(lactic acid)-PLA, Poly(ε-caprolactone)-PCL and Poly(3-hydroxybutyrate)-PHB.

    Garcia-Campo, María Jesús; Quiles-Carrillo, Luis; Masia, Jaime; Reig-Pérez, Miguel Jorge; Montanes, Nestor; Balart, Rafael

    2017-11-22

    Ternary blends of poly(lactic acid) (PLA), poly(3-hydroxybutyrate) (PHB) and poly(ε-caprolactone) (PCL) with a constant weight percentage of 60%, 10% and 30% respectively were compatibilized with soybean oil derivatives epoxidized soybean oil (ESO), maleinized soybean oil (MSO) and acrylated epoxidized soybean oil (AESO). The potential compatibilization effects of the soybean oil-derivatives was characterized in terms of mechanical, thermal and thermomechanical properties. The effects on morphology were studied by field emission scanning electron microscopy (FESEM). All three soybean oil-based compatibilizers led to a noticeable increase in toughness with a remarkable improvement in elongation at break. On the other hand, both the tensile modulus and strength decreased, but in a lower extent to a typical plasticization effect. Although phase separation occurred, all three soybean oil derivatives led somewhat to compatibilization through reaction between terminal hydroxyl groups in all three biopolyesters (PLA, PHB and PCL) and the readily reactive groups in the soybean oil derivatives, that is, epoxy, maleic anhydride and acrylic/epoxy functionalities. In particular, the addition of 5 parts per hundred parts of the blend (phr) of ESO gave the maximum elongation at break while the same amount of MSO and AESO gave the maximum toughness, measured through Charpy's impact tests. In general, the herein-developed materials widen the potential of ternary PLA formulations by a cost effective blending method with PHB and PCL and compatibilization with vegetable oil-based additives.

  1. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    Shen, Yongjun; Lei, Lecheng; Zhang, Xingwang; Ding, Jiandong

    2014-11-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10-9 mol/L and 0.61 × 10-9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10-2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation pathways were

  2. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    Shen Yongjun; Ding Jiandong; Lei Lecheng; Zhang Xingwang

    2014-01-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants, two hybrid plasma discharge reactors were designed and optimized. The reactors were compared via the discharge characteristics, energy transfer efficiency, the yields of the active species and the energy utilization in dye wastewater degradation. The results showed that under the same AC input power, the characteristics of the discharge waveform of the point-to-plate reactor were better. Under the same AC input power, the two reactors both had almost the same peak voltage of 22 kV. The peak current of the point-to-plate reactor was 146 A, while that of the wire-to-cylinder reactor was only 48.8 A. The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW, respectively. The energy per pulse of the point-to-plate reactor was 0.2221 J, which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J). To remove 50% Acid Orange 7 (AO7), the energy utilizations of the point-to-plate reactor and the wire-to-cylinder reactor were 1.02 × 10 −9 mol/L and 0.61 × 10 −9 mol/L, respectively. In the point-to-plate reactor, the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge, which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L). The concentration of liquid phase ozone in the point-to-plate reactor (5.7 × 10 −2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5 × 10 −2 mmol/L). The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone. The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid, maleic anhydride, p-benzoquinone, phenol, benzoic acid, phthalic anhydride, coumarin and 2-naphthol. Proposed degradation

  3. An efficient acetylation of dextran using in situ activated acetic anhydride with iodine

    MUHAMMAD A. HUSSAIN

    2010-02-01

    Full Text Available A facile, efficient, cost-effective and solvent-free acetylation method has been developed for the acetylation of dextran. Dextran acetates were successfully synthesized using different molar ratios of acetic anhydride in the presence of iodine as a catalyst without the use of any solvent. The reactions were realized at 50 °C for 3 h under stirring and nitrogen. This efficient method yielded highly pure and organosoluble dextran esters. The reaction appears highly effective for obtaining higher degrees of substitution (DS with great efficiency. Under solvent-free conditions, dextran triacetates were efficiently synthesized. It was also observed that the molar ratio can easily control the DS of pendant groups onto the polymer backbone. Hence, a range of products with varying DS were successfully designed, purified and characterized. Covalent attachment of the pendant groups onto the polymer backbone was verified by spectroscopic techniques. Thermogravimetric analysis indicated that the obtained dextran esters were thermally as stable as dextran. The DS of the pendant groups onto the polymer backbone was calculated using standard acid base titration after saponification. Furthermore, all products were thoroughly characterized by thermal analysis (TG and DTG, and FTIR and 1H-NMR spectroscopic analysis.

  4. Structural properties of pepsin-solubilized collagen acylated by lauroyl chloride along with succinic anhydride

    Li, Conghu; Tian, Zhenhua; Liu, Wentao; Li, Guoying

    2015-01-01

    The structural properties of pepsin-solubilized calf skin collagen acylated by lauroyl chloride along with succinic anhydride were investigated in this paper. Compared with native collagen, acylated collagen retained the unique triple helix conformation, as determined by amino acid analysis, circular dichroism and X-ray diffraction. Meanwhile, the thermostability of acylated collagen using thermogravimetric measurements was enhanced as the residual weight increased by 5%. With the temperature increased from 25 to 115 °C, the secondary structure of native and acylated collagens using Fourier transform infrared spectroscopy measurements was destroyed since the intensity of the major amide bands decreased and the positions of the major amide bands shifted to lower wavenumber, respectively. Meanwhile, two-dimensional correlation spectroscopy revealed that the most sensitive bands for acylated and native collagens were amide I and II bands, respectively. Additionally, the corresponding order of the groups between native and acylated collagens was different and the correlation degree for acylated collagen was weaker than that of native collagen, suggesting that temperature played a small influence on the conformation of acylated collagen, which might be concluded that the hydrophobic interaction improved the thermostability of collagen. - Highlights: • Acylated collagen retained the unique triple helix conformation. • Acylated collagen had stronger thermostability than native collagen. • Amide I was the most sensitive band to the temperature for acylated collagen. • Amide II was the most sensitive band to the temperature for native collagen. • Auto-peak at 1680 cm −1 for acylated collagen disappeared at higher temperature

  5. In vivo conjugation of nasal lavage proteins by hexahydrophthalic anhydride

    Johannesson, Gunvor; Lindh, Christian; Nielsen, Joern; Bjoerk, Birgitta; Rosqvist, Seema; Joensson, Bo A.G.

    2004-01-01

    Hexahydrophthalic anhydride (HHPA), an industrially important chemical, is a highly allergenic compound. The aim of this work was to identify proteins in nasal lavage fluid (NLF) that form adducts with HHPA. Such bindings may induce production of specific immunoglobulin E (IgE) or affect physiological mechanisms of the proteins. NLF was obtained from HHPA-exposed volunteers, workers and exposed guinea pigs. HHPA-binding proteins were visualized with immunoblotting using a polyclonal antiserum against HHPA. The proteins were excised from sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) gels, digested with trypsin and identified by tandem mass spectrometry (MS/MS) and database searches. The antiserum was found to be specific for HHPA-bound proteins. In vivo formed HHPA-binding proteins in humans were identified as antileukoproteinase, immunoglobulin G (IgG), immunoglobulin A (IgA), serum albumin and lactoferrin. In addition, several proteins binding to HHPA were found in NLFs from guinea pigs but these could not be identified from database searches. Hypotheses for development of airways diseases by adduction of this allergenic compound to the NLF proteins in humans were established

  6. Biophysical properties of phenyl succinic acid derivatised hyaluronic acid

    Neves-Petersen, Maria Teresa; Klitgaard, Søren; Skovsen, Esben

    2010-01-01

    Modification of hyaluronic acid (HA) with aryl succinic anhydrides results in new biomedical properties of HA as compared to non-modified HA, such as more efficient skin penetration, stronger binding to the skin, and the ability to blend with hydrophobic materials. In the present study, hyaluronic...... acid has been derivatised with the anhydride form of phenyl succinic acid (PheSA). The fluorescence of PheSA was efficiently quenched by the HA matrix. HA also acted as a singlet oxygen scavenger. Fluorescence lifetime(s) of PheSA in solution and when attached to the HA matrix has been monitored...

  7. C-11 Acid and the Stereochemistry of Abietic Acid

    IAS Admin

    While many features, like the phenanthrene-type of fusion of the three ... thought to contain the original ring A of abietic acid, retaining the. 'nuclear methyl .... Thinking that the anhydride he had obtained by the action of heat on the C-11 acid ...

  8. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system

    Fan, Mengjin; Liu, Jialin; Li, Xiangyuan; Cheng, Jue; Zhang, Junying

    2013-01-01

    Highlights: ► Two curing systems (ETRS and ITRS) with similar chemical composite were prepared. ► The curing kinetics of the ETRS and the novel ITRS were comparatively studied. ► Crosslinking density can affect the kinetic schemes of the two curing systems. ► Their mechanical properties and thermal stabilities were also comparatively studied. ► Crosslinking density may play an influential role in mechanical properties. - Abstract: The curing kinetics of an extrinsic toughened epoxy (mixture of diglycidyl ether of bisphenol-A and 1,4-butanediol epoxy resin, DGEBA/DGEBD) and an intrinsic toughened epoxy (ethoxylated bisphenol-A epoxy resin with two oxyethylene units, DGEBAEO-2) using hexahydrophthalic anhydride (HHPA) as curing agent and tris-(dimethylaminomethyl) phenol (DMP-30) as accelerator were comparatively studied by non-isothermal DSC with a model-fitting Málek approach and a model-free advanced isoconversional method of Vyazovkin. The dynamic mechanical properties and thermal stabilities of the cured materials were investigated by DMTA and TGA, respectively. The results showed that Šesták–Berggren model can generally simulate well the reaction rates of these two systems. The activation energy of DGEBA/DGEBD/HHPA/DMP-30 at high fractional conversion changed much higher than that of DGEBAEO-2/HHPA/DMP-30, indicating the increased steric hindrance mainly affected the reaction kinetic scheme of DGEBA/DGEBD/HHPA/DMP-30. The T g and storage moduli of cured DGEBAEO-2/HHPA/DMP-30 were lower than those of cured DGEBA/DGEBD/HHPA/DMP-30 according to DMTA while TGA showed that the thermal stabilities of these two cured systems were similar

  9. Curing behaviors and properties of an extrinsic toughened epoxy/anhydride system and an intrinsic toughened epoxy/anhydride system

    Fan, Mengjin; Liu, Jialin; Li, Xiangyuan [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Cheng, Jue, E-mail: chengjue@mail.buct.edu.cn [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Zhang, Junying, E-mail: zjybuct@gmail.com [Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2013-02-20

    Highlights: ► Two curing systems (ETRS and ITRS) with similar chemical composite were prepared. ► The curing kinetics of the ETRS and the novel ITRS were comparatively studied. ► Crosslinking density can affect the kinetic schemes of the two curing systems. ► Their mechanical properties and thermal stabilities were also comparatively studied. ► Crosslinking density may play an influential role in mechanical properties. - Abstract: The curing kinetics of an extrinsic toughened epoxy (mixture of diglycidyl ether of bisphenol-A and 1,4-butanediol epoxy resin, DGEBA/DGEBD) and an intrinsic toughened epoxy (ethoxylated bisphenol-A epoxy resin with two oxyethylene units, DGEBAEO-2) using hexahydrophthalic anhydride (HHPA) as curing agent and tris-(dimethylaminomethyl) phenol (DMP-30) as accelerator were comparatively studied by non-isothermal DSC with a model-fitting Málek approach and a model-free advanced isoconversional method of Vyazovkin. The dynamic mechanical properties and thermal stabilities of the cured materials were investigated by DMTA and TGA, respectively. The results showed that Šesták–Berggren model can generally simulate well the reaction rates of these two systems. The activation energy of DGEBA/DGEBD/HHPA/DMP-30 at high fractional conversion changed much higher than that of DGEBAEO-2/HHPA/DMP-30, indicating the increased steric hindrance mainly affected the reaction kinetic scheme of DGEBA/DGEBD/HHPA/DMP-30. The T{sub g} and storage moduli of cured DGEBAEO-2/HHPA/DMP-30 were lower than those of cured DGEBA/DGEBD/HHPA/DMP-30 according to DMTA while TGA showed that the thermal stabilities of these two cured systems were similar.

  10. Syntheses of {gamma}-aminobutyric-1-{sup 14}C and of {alpha}-aminoadipic-6-{sup 14}C acid from methoxy-3 chloropropyl-magnesium and marked carbon dioxide; Syntheses de l'acide {gamma}-aminobutyrique{sup 14}C-1 et de l'acide {alpha}-aminoadipique {sup 14}C-6 a partir de methoxy-3 chloropropylmagnesium et d'anhydride carbonique marque

    Liem, Phung Nhu [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires, Departement des radioelements, Service des molecules marquees

    1967-04-01

    Carbonation of {gamma}-methoxypropyl-magnesium chloride by CO{sub 2} gives {gamma}-methoxy-butyric carboxylic-{sup 14}C acid with a yield of about 95 per cent. When the latter is treated successively with anhydrous HBr and with diazomethane, methyl carboxylic {gamma}-bromobutyrate-{sup 14}C is formed. This in turn gives {gamma}-amino-butyric carboxylic-{sup 14}C acid with an overall yield of 66 per cent with respect to Ba{sup 14}CO{sub 3}, when it is condensed with potassium phthalimide and hydrolyzed by acid. By reacting methyl-{gamma}-bromobutyrate-{sup 14}C with the sodium derivative of ethyl cyanacetamido-acetate in ethanol, followed by an acid hydrolysis, {alpha}-aminoadipic-6-{sup 14}C acid is obtained with an overall yield of 46 per cent with respect to Ba{sup 14}CO{sub 3}. (author) [French] La carbonatation du chlorure de {gamma}-methoxypropylmagnesium par {sup 14}CO{sub 2} donne l'acide {gamma}-methoxybutyrique carboxyle {sup 14}C avec un rendement d'environ 95 pour cent. Ce dernier traite successivement par HBr anhydre et par le diazomethane conduit au {gamma}-bromobutyrate de methyle carboxyle {sup 14}C. Celui-ci condense avec le phtalimide de potassium suivi d'une hydrolyse acide fournit l'acide {gamma}-aminobutyrique carboxyle {sup 14}C avec un rendement global de 66 pour cent par rapport a Ba{sup 14}CO{sub 3}. L'action du {gamma}-bromobutyrate de methyle {sup 14}C sur le derive sode du cyanacetamidoacetate d'ethyle dans l'ethanol suivie d'hydrolyse acide donne l'acide {alpha}-aminoadipique {sup 14}C-6 avec un rendement global de 46 pour cent par rapport a Ba{sup 14}CO{sub 3}. (auteur)

  11. Trifluoromethanesulfonic Anhydride as a Low-Cost and Versatile Trifluoromethylation Reagent.

    Ouyang, Yao; Xu, Xiu-Hua; Qing, Feng-Ling

    2018-04-19

    A large number of reagents have been developed for the synthesis of trifluoromethylated compounds. However, an ongoing challenge in trifluoromethylation reaction is the use of less expensive and practical trifluoromethyl sources. We report herein the unprecedented direct trifluoromethylation of (hetero)arenes using trifluoromethanesulfonic anhydride as a radical trifluoromethylation reagent by merging photoredox catalysis and pyridine activation. Furthermore, introduction of both the CF 3 and OTf groups of the trifluoromethanesulfonic anhydride into internal alkynes to access tetrasubstituted trifluoromethylated alkenes was achieved. Since trifluoromethanesulfonic anhydride is a low-cost and abundant chemical, this method provides a cost-efficient and practical route to trifluoromethylated compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluation of the effect of the acetic anhydride concentration, temperature and time in the acetylation reaction for chemical modification of Calophyllum brasiliense and Enterolobium cyclocarpum

    Blanco Arias, Ernesto

    2013-01-01

    A treatment is performed to increase the life of wood in Costa Rica. The effect of acetic anhydride concentration, temperature and time have been studied in the reaction of acetylation for the chemical modification of tropical species Calophyllum brasiliense (Cedar Maria) and Enterolobium cyclocarpum (Guanacaste). Species have been characterized for quantifying the amount of OH groups available for the acetylation reaction. An important aspect is that the temperature conditions, the ratio of acetic anhydride with has dry wood mass and initial acetic acid concentration were assessed using a factorial design and have determined the conditions with which has obtained greater weight gain in the acetylation reaction. Furthermore, the acetylation reaction was conducted for times of 2 hours, 4,5 hours and 7 hours. The ATR infrared spectroscopy was used to verify the replacement of the OH group by acetyl groups and the increase in the different reaction time. The characteristics obtained from the OH groups have been 13,23 mmol and 13,85 mmol of OH per gram of wood of the Guanacaste species and Cedar Maria respectively. The temperature has been 90 degrees Celsius, one relationship acetic anhydride/dry wood 1,75 mL/g without the initial presence of acetic acid in the reaction medium. Also, percentages of profit of weight (WPG) have been obtained; maximums of 12,20% and 12,44% for Guanacaste for Cedar Maria in reaction time of 7 hours, 4,5 hours respectively. A decrease in the band has performed in the 3300 cm -1 characteristic of the OH group and the presence of bands at 1700 cm -1 characteristic of C=O. One of the main conclusions is that the acetylated wood has been an increase in resistance to biological degradation by white rot fungus Trametes versicolor of about 87% efficiency for both species [es

  13. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    Homogeneous modification of cellulose with succinic anhydride was performed in tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU) and TBAA dosage were investigated as paramete...

  14. Modification of cellulose with succinic anhydride in TBAA/DMSO mixed solvent under catalyst-free conditions

    Ping-Ping Xin; Yao-Bing Huang; Chung-Yun Hse; Huai N. Cheng; Chaobo Huang; Hui. Pan

    2017-01-01

    Homogeneous modification of cellulose with succinic anhydride was performed using tetrabutylammonium acetate (TBAA)/dimethyl sulfoxide (DMSO) mixed solvent. The molar ratio of succinic anhydride (SA) to free hydroxyl groups in the anhydroglucose units (AGU), TBAA dosage, reaction temperature, and reaction time were investigated. The highest degree of substitution (DS)...

  15. Modeling of the selective pertraction of carboxylic acids obtained by citric fermentation

    Cascaval Dan

    2004-01-01

    Full Text Available Facilitated pertraction was applied for the selective separation of citric, maleic and succinic acids from a mixture obtained by citric fermentation. The pertraction equipment included a U-shaped cell containing 1,2-dichloro-ethane as the liquid membrane and Amberlite LA-2 as the carrier. The experimental data indicated that maleic and succinic acids can be initially selectively separated from citric acid, followed by the selectively separation of maleic acid from succinic acid. Using statistical analysis and a second order factorial experiment, two mathematical correlations describing the influence of the main process variables on pertraction selectivity were established. For both extraction systems, the considered variables controlled the extraction process to an extent of 92.9-99.9%, the carrier concentration inside the liquid membrane exhibiting the most important influence.

  16. A new approach to quantification of DTPA incorporation into monoclonal antibodies (MoAbs) labeled by the cyclic anhydride DTPA method

    Wang, T.S.T.; Ng, A.K.; Fawwaz, R.A.; Alsedairy, S.; Alderson, P.O.

    1985-01-01

    A method for determining the ratio of DTPA molecules attached per molecule of Ab was developed and used to examine the immunoreactivity of different Abs as a function of the amount of incorporated DTPA. The bicyclic anhydride of DTPA[2-C-14]acetic acid (BADTPA-C-14) was synthesized by reacting DTPA[2-C-14]acetic acid (1mCi/mmo1) and acetic anhydride. BADTPA-C-14 then was reacted with a MoAb to a melanoma associated antigen (MA) and to a MoAb to human HLA class II antigen (HLA) at 2mg/m1 of MoAb concentration, at MoAb to BADTPA-C-14 ratios (mmo1/mmo1) of l:1, 1:10, 1:00, l:200. The conjugate was dialyzed exhaustively against HEPES at pH 7.0. The MoAb concentration was measured at 280mm of uv; the DTPA/MoAb ratio was calculated based on the specific activity of BADTPA-C-14, and the immunoreactivity was assessed by direct cell-binding to melanoma, the HLA antigen and control (lymphoma) cells. Percent binding to the lymphoid cell line was less than 3%. The authors' results demonstrated a method for directly determining the number of DTPA molecules attached to a MOAb, and demonstrated variations in immunoreactivity as the number of DTPA groups per MoAb is altered

  17. Meiotic changes in Vicia faba L. subsequent to treatments of hydrazine hydrate and maleic hydrazide

    Shaheen Husain

    2013-01-01

    Full Text Available Assessing the impact of mutagens for creating variations in crops like faba bean (Vicia faba L. is an important criterion in the contemporary world where food insecurity and malnutrition is alarming at the doors of various nations. Impact of two chemical mutagens viz. hydrazine hydrate (HZ and maleic hydrazide (MH on the two varieties (NDF-1 and HB-405 of Vicia faba were analysed in terms of meiotic behavior and pollen sterility. Since there are not enough data about the effect of these mutagens on the chromosomal behaviors of Vicia faba, this study presents the role of hydrazine hydrate and maleic hydrazide as well as various types of chromosomal aberrations in crop improvement. The lower concentration of mutagens showed less pollen sterility compared to the higher concentrations. Manipulation of plant structural component to induce desirable alternations provides valuable material for the breeders and could be used favorably for increasing mutation rate and obtaining a desirable spectrum of mutation in faba beans based on preliminary studies of cell division.

  18. Respiratory Allergy to Trimellitic Anhydride in Rats: Concentration-Response Relationships during Elicitation

    Arts, J.H.E.; Koning, M.W. de; Bloksma, N.; Kuper, C.F.

    2004-01-01

    The present study investigated whether airway responses of sensitized rats to trimellitic anhydride (TMA) were concentration dependent and whether these were related to irritation by TMA. Groups of BN and Wistar rats were sensitized by two dermal applications of TMA (50% w/v, followed by 25% w/v in

  19. Formation and stability of Vitamin E enriched nanoemulsions stabilized by Octenyl Succinic Anhydride modified starch

    Vitamin E (VE) is highly susceptible to autoxidation; therefore, it requires systems to encapsulate and protect it from autoxidation.In this study,we developed VE delivery systems, which were stabilized by Capsul® (MS), a starch modified with octenyl succinic anhydride. Influences of interfacial ten...

  20. Synthesized cellulose/succinic anhydride as an ion exchanger. Calorimetry of divalent cations in aqueous suspension

    Melo, Julio C.P. [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Silva Filho, Edson C. [LIMAV, Federal University of Piaui, 64049-550 Teresina, Piaui (Brazil); Santana, Sirlane A.A. [Departamento de Quimica/CCET, Universidade Federal do Maranhao, Av. dos Portugueses S/N, Campus do Bacanga, 65080-540 Sao Luiz, MA (Brazil); Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2011-09-20

    Highlights: {yields} Synthetic route based on anhydride melting point. {yields} Cellulosic biopolymer/anhydride as ion exchanger. {yields} Calorimetry of cation exchange at solid/liquid interface. {yields} Favorable thermodynamic data of exchanging process. - Abstract: A synthetic route to a biopolymer/anhydride ion exchanger adds cellulose directly to molten succinic anhydride in a quasi solvent-free procedure. An amount of 3.07 {+-} 0.05 mmol of pendant groups incorporated onto the polymeric structure, which was characterized by elemental analysis, solid state carbon NMR, infrared, X-ray and thermogravimetry. The new polysaccharide is able to exchange cations from aqueous solution through a batchwise methodology, to obtain 2.46 {+-} 0.09 mmol g{sup -1} for divalent cobalt and nickel cations. The net thermal effects obtained from calorimetric titrations gave endothermic values of 3.81 {+-} 0.02 and 2.35 {+-} 0.01 kJ mol{sup -1}. The spontaneity of this ion-exchange process reflected in negative Gibbs energies and also a positive entropic contribution. These thermodynamic data at the solid/liquid interface suggests a favorable ion exchange process for this anchored biopolymer, for cation removal from the environment.

  1. Controlled release from aspirin based linear biodegradable poly(anhydride esters) for anti-inflammatory activity.

    Dasgupta, Queeny; Movva, Sahitya; Chatterjee, Kaushik; Madras, Giridhar

    2017-08-07

    This work reports the synthesis of a novel, aspirin-loaded, linear poly (anhydride ester) and provides mechanistic insights into the release of aspirin from this polymer for anti-inflammatory activity. As compared to conventional drug delivery systems that rely on diffusion based release, incorporation of bioactives in the polymer backbone is challenging and high loading is difficult to achieve. In the present study, we exploit the pentafunctional sugar alcohol (xylitol) to provide sites for drug (aspirin) attachment at its non-terminal OH groups. The terminal OH groups are polymerized with a diacid anhydride. The hydrolysis of the anhydride and ester bonds under physiological conditions release aspirin from the matrix. The resulting poly(anhydride ester) has high drug loading (53%) and displays controlled release kinetics of aspirin. The polymer releases 8.5 % and 20%, of the loaded drug in one and four weeks, respectively and has a release rate constant of 0.0035h -0.61 . The release rate is suitable for its use as an anti-inflammatory agent without being cytotoxic. The polymer exhibits good cytocompatibility and anti-inflammatory properties and may find applications as injectable or as an implantable bioactive material. The physical insights into the release mechanism can provide development of other drug loaded polymers. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Catalytic ring-​opening copolymerization of limonene oxide and phthalic anhydride : toward partially renewable polyesters

    Hosseini Nejad, E.; Pionasari, A; Melis, van C.G.W.; Koning, C.E.; Duchateau, R.

    2013-01-01

    Catalytic ring-¿opening copolymn. of limonene oxide with phthalic anhydride was performed applying metal t-¿Bu-¿salophen complexes (t-¿Bu-¿salophen)¿MX; M = Cr, X = Cl (1)¿, M = Al, X = Cl (2)¿, M = Co, X = OAc (3)¿, M = Mn, X = Cl (4)¿, t-¿Bu-¿salophen =

  3. Modified Julia Olefination on Anhydrides: Extension and Limitations. Application to the Synthesis of Maculalactone B.

    Dussart, Nicolas; Trinh, Huu Vinh; Gueyrard, David

    2016-10-07

    The preparation of exo-enol esters from cyclic anhydrides is reported using a modified Julia olefination. The reaction is highly stereoselective. The Smiles rearrangement can be performed in a one-pot process, giving a straightforward access to exo-enol lactones. Furthermore, the reaction was extended to semistabilized sulfones, and this methodology was applied to the synthesis of maculalactone B.

  4. Structural studies of 4-aminoantipyrine derivatives

    Cunha, Silvio; Oliveira, Shana M.; Rodrigues, Manoel T.; Bastos, Rodrigo M.; Ferrari, Jailton; de Oliveira, Cecília M. A.; Kato, Lucília; Napolitano, Hamilton B.; Vencato, Ivo; Lariucci, Carlito

    2005-10-01

    Reaction of 4-aminoantipyrine with acetylacetone, ethyl acetoacetate, benzoyl isothiocyanate, phenyl isothiocyanate, maleic anhydride and methoxymethylene Meldrum's acid afforded a series of new antipyrine derivatives. The antibacterial activity of the synthesized compounds against Micrococcus luteus ATCC 9341, Staphilococcus aureus ATCC 29737, and Escherichia coli ATCC 8739 was evaluated and the minimal inhibitory concentration determined. Modest activity was found only to the maleamic acid obtained from the reaction of 4-aminoantipyrine and maleic anhydride. 1H NMR investigation of this maleamic acid showed that it is slowly converted to the corresponding toxic maleimide. The structures of three derivatives were determined by X-ray diffraction analysis.

  5. Triflic Anhydride-Mediated Beckmann Rearrangement Reaction of β ...

    aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China. bKey Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, ... which meanwhile releases quite a lot of acidic wastes.1,3.

  6. Wet Oxidation of Maleic Acid by a Pumice Supported Copper (II ...

    Pumice supported Cu (II) Schiff base catalysts were prepared by surface chemical modification followed by complexation with Cu (II) acetate. The resulting materials were characterised by Diffuse Reflectance Fourier Transform Spectroscopy (DRIFTS) to confirm the modification. The materials were tested in a wet oxidation ...

  7. Effect of temperature and ph on the drug release rate from a polymer conjugate system

    Kenawy, E.; Abdel-Hay, F.I.; El-Newehy, M.H.; Ottenbrite, R.M.

    2005-01-01

    Hydroximide and A-methylhydroxamic acid of poly(ethylene-altmaleic anhydride) (average MW 100-500 k) were used as a carrier for a new drug delivery system. The synthesis of the hydroximide and N methylhydroxamic acid of poly(ethylene-alt-maleic anhydride) were carried out by chemical modification of poly(ethylene-alt-maleic anhydride) with hydroxylamine and N-methyl hydroxylamine, respectively, in N,N- dimethylformamide at room temperature to yield water soluble copolymer. Ketoprofen was reacted with hydroximide and N-methylhydroxamic acid derivatives of poly(ethylene-alt-maleic anhydride) using dicyclohexylcarbodiimide as condensation agent at -5 degree C to yield water insoluble ketoprofen conjugates. All products were characterized by elemental analysis, FTIR and 1HNMR spectra. The in-vitro ketoprofen release was carried out by UV spectrophotometer at max =260 nm. The results demonstrated the effectiveness of hydroximide and N-methylhydroxamic acid of polyethylene-alt-maleic anhydride) as a drug delivery system. The release rates were studied at various ph and temperatures. The copolymer-drug adducts released the drug very slowly at the low ph found in the stomach thus protecting the drug from the action of high concentrations of digestive acids. These results showed the usefulness of hydroxamic acid polymer-drug conjugates as a new drug delivery system for drugs to be targeted to sites in the GI system

  8. Modified Method for Detection of Benzoylecgonine in Human Urine by GC-MS: Derivatization Using Pentafluoropropanol/Acetic Anhydride.

    Serafin, Michelle C; Paulemon, Kasandra M; Fuller, Zachary J; Bronner, William E

    2017-05-01

    An existing GC-MS method for detecting benzoylecgonine (BZE) in urine was modified by changing derivatizing reagents. This method modification presents a cost-effective alternative derivatization procedure for the detection of BZE in urine by GC-MS. The combination of pentafluoropropanol and acetic anhydride was found to produce the same reaction product for BZE as pentafluoropropanol with pentafluoropropionic anhydride, while reducing reagent cost. With no anhydride present, derivatization of BZE by pentafluoropropanol did not occur. Published by Oxford University Press 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  9. Synthesis and characterization of Cis-5-Norbornene-2, 3-dicarboxylic anhydride-chitosan

    Ku Marshilla Ku Ishak; Zulkifli Ahmad; Hazizan Mohd Akil

    2009-01-01

    Chitosan was chemically modified with bulky structure, cis-5-norbornene-2, 3-dicarboxylic anhydride and the characteristic of this modified chitosan was studied. The resulting material was analyzed by FTIR, TGA, DSC, XRD and SEM to study the effect of N-acylation to the polysaccharide structure. FTIR results show that the anhydride monomer was successfully bound to amine group of chitosan. Thermal analysis of the modified structure provides the chitosan fibers with thermal stability while XRD and SEM show the lost of crystallinity of modified chitosan. XRD of modified chitosan shows broader peak pattern and a considerable increase in a dimension while SEM of chitosan presented the single particle morphology while norbornene-chitosan shows aggromolarate behaviour due to the hydrophobic nature of norbornene pendant group which induced aggromolaration of the particles in modified structure.(author)

  10. Compatibility of anhydride cured epoxies with hexanitroazobenzene (HNAB) and hexanitrostilbene (HNS)

    Massis, T.M.; Wischmann, K.B.

    1985-01-01

    The explosives HNAB (hexanitroazobenzene) and HNS (hexanitrostilbene) have compatibility problems with amine-cured epoxy systems. A program was instituted to find compatible polymeric substitutes for use with these explosives. These polymeric materials must have rigid structures after curing for both adhesive and encapsulant applications. A promising class of epoxy materials using anhydride curing agents with various catalysts to trigger the cure reaction were developed. These polymeric systems have very good compatibility with HNS. Of those tested with HNAB, the anhydride epoxy system that used uranyl nitrate as the catalyst was found to be marginally compatible while the others were incompatible. These results indicated further studies are needed. The CRT (chemical reactivity test) was used to evaluate the compatibility of these materials. 6 references, 2 figures, 5 tables

  11. Application of the photo-fenton process to the mineralization of phthalic anhydride in aqueous medium

    Trabelsi Souissi, Souhaila; Oturan, N.; Oturan, M. A; Bellakhal, N.

    2009-01-01

    A photochemical method for the oxidation of persistent organic pollutants (POPs) present in liquid effluents of plastic industry is described. This method, called p hoto-Fenton , involves the generation of hydroxyl radicals by coupling the Fenton reaction and photochemistry, .OH radicals thus formed react rapidly with organic pollutants leading to their oxidation until their total mineralization. In this study, we applied the photo-Fenton process for the removal of phthalic anhydride (plasticizer). In this way, an optimization of experimental parameters (namely the ratio R = [H 2 O 2 ]/[Fe 3+ ] and Fe 3+ initial concentration) was performed. Under optimal conditions, the kinetic of mineralization of phthalic anhydride by .OH has been studied. All results confirm the efficiency of photo-Fenton process for the decontamination of liquid effluents loaded with plasticizers.

  12. Perylene anhydride fused porphyrins as near-infrared sensitizers for dye-sensitized solar cells

    Jiao, Chongjun

    2011-07-15

    Two perylene anhydride fused porphyrins 1 and 2 have been synthesized and employed successfully in dye-sensitized solar cells (DSCs). Both compounds showed broad incident monochromatic photon-to-current conversion efficiency spectra covering the entire visible spectral region and even extending into the near-infrared (NIR) region up to 1000 nm, which is impressive for ruthenium-free dyes in DSCs. © 2011 American Chemical Society.

  13. Unsaturated fatty acids show clear elicitation responses in a modified local lymph node assay with an elicitation phase, and test positive in the direct peptide reactivity assay.

    Yamashita, Kunihiko; Shinoda, Shinsuke; Hagiwara, Saori; Miyazaki, Hiroshi; Itagaki, Hiroshi

    2015-12-01

    The Organisation for Economic Co-operation and Development (OECD) Test Guidelines (TG) adopted the murine local lymph node assay (LLNA) and guinea pig maximization test (GPMT) as stand-alone skin sensitization test methods. However, unsaturated carbon-carbon double-bond and/or lipid acids afforded false-positive results more frequently in the LLNA compared to those in the GPMT and/or in human subjects. In the current study, oleic, linoleic, linolenic, undecylenic, fumaric, maleic, and succinic acid and squalene were tested in a modified LLNA with an elicitation phase (LLNA:DAE), and in a direct peptide reactivity assay (DPRA) to evaluate their skin-sensitizing potential. Oleic, linoleic, linolenic, undecylenic and maleic acid were positive in the LLNA:DAE, of which three, linoleic, linolenic, and maleic acid were positive in the DPRA. Furthermore, the results of the cross-sensitizing tests using four LLNA:DAE-positive chemicals were negative, indicating a chemical-specific elicitation response. In a previous report, the estimated concentration needed to produce a stimulation index of 3 (EC3) of linolenic acid, squalene, and maleic acid in the LLNA was LLNA. However, the skin-sensitizing potential of all LLNA:DAE-positive chemicals was estimated as weak. These results suggested that oleic, linoleic, linolenic, undecylenic, and maleic acid had skin-sensitizing potential, and that the LLNA overestimated the skin-sensitizing potential compared to that estimated by the LLNA:DAE.

  14. Novel Synthesis of Phytosterol Ester from Soybean Sterol and Acetic Anhydride.

    Yang, Fuming; Oyeyinka, Samson A; Ma, Ying

    2016-07-01

    Phytosterols are important bioactive compounds which have several health benefits including reduction of serum cholesterol and preventing cardiovascular diseases. The most widely used method in the synthesis of its ester analogous form is the use of catalysts and solvents. These methods have been found to present some safety and health concern. In this paper, an alternative method of synthesizing phytosterol ester from soybean sterol and acetic anhydride was investigated. Process parameters such as mole ratio, temperature and time were optimized. The structure and physicochemical properties of phytosterol acetic ester were analyzed. By the use of gas chromatography, the mole ratio of soybean sterol and acetic anhydride needed for optimum esterification rate of 99.4% was 1:1 at 135 °C for 1.5 h. FTIR spectra confirmed the formation of phytosterol ester with strong absorption peaks at 1732 and 1250 cm(-1) , which corresponds to the stretching vibration of C=O and C-O-C, respectively. These peaks could be attributed to the formation of ester links which resulted from the reaction between the hydroxyl group of soybean sterol and the carbonyl group of acetic anhydride. This paper provides a better alternative to the synthesis of phytosterol ester without catalyst and solvent residues, which may have potential application in the food, health-care food, and pharmaceutical industries. © 2016 Institute of Food Technologists®

  15. Controlled sulfonation of poly(ether sulfone using phthalic anhydride as catalyst and its membrane performance for fuel cell application

    Seikh Jiyaur Rahaman

    2016-09-01

    Full Text Available Proton exchange membrane (PEM fuel cells are one of the most emerging alternative energy technologies under development. A novel proton exchange membrane sulfonated polyethersulfone (SPES was developed by homogeneous method using phthalic anhydride as catalyst and chlorosulfonic acid as sulfonating agent to control the sulfonation reaction. The method of sulfonation was optimized by varying the reaction time and concentration of the catalyst. The structure of the SPES was studied by 1H-Nuclear Magnetic Resonance, Fourier Transform Infra Red Spectroscopy and X-ray diffraction. The extent of sulfonation was determined by ion exchange capacity studies. The thermal and mechanical stabilities were studied using thermogravimetric analysis (TGA and Dynamic Mechanical Analysis (DMA respectively. DMA results show that the storage modulus increased with increase in degree of sulfonation (DS and water uptake of SPES increased with DS. The proton conductivity of SPES (34% DS measured by impedance spectroscopy was found to be 0.03S/cm at 80%RH and 100°C. Also, current-voltage polarization characteristics of SPES membranes offer a favourable alternative PEM due to the thermal stability and cost effective than perfluorinated ionomers.

  16. Development of polylactic acid-based materials through reactive modification

    Fowlks, Alison Camille

    2009-12-01

    Polylactic acid (PLA)-based systems have shown to be of great potential for the development of materials requiring biobased content, biodegradation, and sufficient properties. The efforts in this study are directed toward addressing the current research need to overcome some of the inherent drawbacks of PLA. To meet this need, reactive extrusion was employed to develop new materials based on PLA by grafting, compounding, and polymer blending. In the first part of this work, maleic anhydride (MA) was grafted onto PLA by reactive extrusion. Two structurally different peroxides were used to initiate grafting and results were reported on the basis of grafting, molecular weight, and thermal behavior. An inverse relationship between degree of grafting and molecular weight was established. It was also found that, regardless of peroxide type, there is an optimum peroxid-to-MA ratio of 0.5:2 that promotes maximum grafting, beyond which degradation reactions become predominant. Overall, it was found that the maleated copolymer (MAPLA) could be used as an interfacial modifier in PLA-based composites. Therefore, MAPLA was incorporated into PLA-talc composites in varying concentrations. The influence of the MAPLA addition on the mechanical and thermal behavior was investigated. When added in an optimum concentration, MAPLA improved the tensile strength and crystallization of the composite. Furthermore, microscopic observation confirmed the compatibilization effect of MAPLA in PLA-talc composites. Vinyltrimethoxysilane was free-radically grafted onto the backbone of PLA and subsequently moisture crosslinked. The effects of monomer, initiator, and catalyst concentration on the degree of crosslinking and the mechanical and thermal properties were investigated. The presence of a small amount of catalyst showed to be a major contributor to the crosslinking formation in the time frame investigated, shown by an increase in gel content and decrease in crystallinity. Furthermore

  17. Nickel/zinc-catalyzed decarbonylative addition of anhydrides to alkynes: a DFT study.

    Meng, Qingxi; Li, Ming

    2013-10-01

    Density functional theory (DFT) was used to investigate the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. All intermediates and transition states were optimized completely at the B3LYP/6-31+G(d,p) level. Calculated results indicated that the decarbonylative addition of phthalic anhydrides to alkynes was exergonic, and the total free energy released was -87.6 kJ mol(-1). In the five-coordinated complexes M4a and M4b, the insertion reaction of alkynes into the Ni-C bond occurred prior to that into the Ni-O bond. The nickel(0)/zinc-catalyzed decarbonylative addition was much more dominant than the nickel-catalyzed one in whole catalytic decarbonylative addition. The reaction channel CA→M1'→T1'→M2'→T2'→M3a'→M4a'→T3a1'→M5a1' →T4a1'→M6a'→P was the most favorable among all reaction pathways of the nickel- or nickel(0)/zinc- catalyzed decarbonylative addition of phthalic anhydrides to alkynes. And the alkyne insertion reaction was the rate-determining step for this channel. The additive ZnCl2 had a significant effect, and it might change greatly the electron and geometry structures of those intermediates and transition states. On the whole, the solvent effect decreased the free energy barriers.

  18. A sulfonic anhydride derivative from dibenzyl trisulphide with agro-chemical activities.

    Williams, L A D; Vasquez, E; Klaiber, I; Kraus, W; Rosner, H

    2003-06-01

    In the present study, the biologically active natural product dibenzyl trisulphide (DTS) which was previously isolated from the sub-tropical shrub Petiveria alliacea was transformed to methyl benzyl sulphonic anhydride (MBSA) using a "one pot" transformation method. The anhydride was evaluated for anti-microbial activities on the bacteria, Bacillus subtilis and Pseudomonas fluorescens and found to be 2.5 fold more effective than the commercial agents isoniazid and ampicillin in inhibiting the growth of B. subtilis, while on P. fluorescens it was 2.5, 5.0 and 10.0 fold more inhibitory than isoniazid, ampicillin and dibenzyl trisulphide, respectively. DTS was inactive on B. subtillis. The MIC value (microgram/spot) found for DTS on the plant pathogenic fungus, Cladosporium cucumerinum was 5.0 microgram/spot, while MBSA gave a value of 0.1 microgram/spot, compared with 1.25 and 0.16 microgram/spot for the commercial agents ketoconazole and nystatin, respectively. On the larval nematode (Meloidogyne incognita) MBSA inflicted 97.72% and 57.47% Abbotts nematicidal activities at 125.0 and 62.5 ppm, respectively, while DTS had no effect at 125.0 ppm. Nematodes which were immobilized by the low concentrations of MBSA were unable to re-activate when exposed to 10.0 ppm picrotoxin, thus suggesting that the anhydride nematicidal activity is independent of the GABA-ergic neurophysiological pathway.MBSA demonstrated a strong dose dependent radicular suppression effect (r=0.984), on the radicles of Latuca sativa germinating seeds. DTS was weakly active.

  19. Purifying, concentrating and anhydriding bio-ethanol: Alternative process schemes and innovative separation methods

    Guerreri, G.; Lovati, A.

    1992-01-01

    Starting with the conventional process scheme for bio-ethanol production, this paper illustrates how the anhydriding section, which incorporates an azeotropic distillation process, can be conveniently substituted with a plate and frame pervaporation process which makes use of optimum heat exchange with the stripping section. This technical feasibility study, which proves the superior energy efficiency of the pervaporation scheme as compared with the conventional scheme, is followed by a cost benefit analysis which evidences the economic benefits also to be had with pervaporation

  20. Study on the Hydrolysis Kinetics of Xylan on Different Acid Catalysts

    Na, Byeong-Il; Lee, Jae-Won [Chonnam National University, Gwangju (Korea, Republic of)

    2014-04-15

    In this study, we investigated kinetic model for the acid-catalyzed xylan hydrolysis at temperature 120-150 .deg. C. Also, we analyzed the kinetic parameters for xylose production and furfural decomposition. The hydrolysis of xylan and the degradation of xylose were promoted by high reaction temperature and acid concentration. The optimal hydrolysis condition for the highest reaction rate constants (k{sub 1}) was different depending on the acid catalysts. Among sulfuric, oxalic and maleic acid, the xylan reaction rate constants (k{sub 1}) to xylose had the highest value of 0.0241 min{sup -1} when 100 mM sulfuric acid was used at 120 .deg. C. However, sulfuric acid induced more xylose degradation compared to oxalic and maleic acid hydrolysis. The activation energy for xylan degradation was the highest when sulfuric acid was used.

  1. Chemical constituents of the essential oil and organic acids from longkong (Aglaia dookkoo Griff. fruits

    Abdulhakim Hamad

    2006-03-01

    Full Text Available The pulp of longkong fruits (Aglaia dookkoo Griff., collected from Narathiwat province, was dried and extracted by steam distillation to obtain the essential oil in 0.48% yield. The GC-MS data showed oleic acid (14.80%, α-copaene (11.15%, germacrene-D (9.16%, δ- cadinene (6.74%, τ -muurolol (6.34%, (+ spathulenol (5.72% and palmitic acid (5.49% as the major constituents. Organic acids were also extracted from dried pulp with methanol using a Soxhlet apparatus to give the crude extract in 36.26% yield. Four organic acids: glycolic, maleic, malic and citric acids were determined by HPLC. Maleic acid (1.23% was the major acid and the others were citric (0.22%, malic (0.15% and glycolic acids (0.14%.

  2. Effect of acid additives on graft copolymerization and water absorption of graft copolymers of cassava starch and acrylamide/acrylic acid

    Kiatkamjornwong, Suda; Mongkolsawat, Kanlaya; Sonsuk, Manit

    2003-01-01

    Gelatinized cassava starch was radiation graft copolymerized with acrylamide or acrylic acid in the presence of sulfuric acid, nitric acid or maleic acid at a specific dose rate to a fixed total dose. Homopolymer or free copolymer was extracted by water to obtain the pure graft copolymer, which was subsequently saponified with 5% potassium hydroxide solution at room temperature for 90 min. The saponified graft copolymer was investigated for the effect of acid additives and water absorption. The addition of 2% maleic acid into the grafting reaction containing acrylamide-to-starch ratio of 2.5:1 can produce the superabsorbent copolymer having water absorption as high as 2,256 ± 25 g g -1 . The effect of acid additive was explained. (author)

  3. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light emitting diodes

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-01-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90%). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize products yields and to identify side products. The use of UV-LED arrays offers many advantages over conventional Hg lamp setups, including greater light output over a narrower wavelength range, lower power consumption, and minimal generation of heat.

  4. Efficient photochemical generation of peroxycarboxylic nitric anhydrides with ultraviolet light-emitting diodes

    Rider, N. D.; Taha, Y. M.; Odame-Ankrah, C. A.; Huo, J. A.; Tokarek, T. W.; Cairns, E.; Moussa, S. G.; Liggio, J.; Osthoff, H. D.

    2015-07-01

    Photochemical sources of peroxycarboxylic nitric anhydrides (PANs) are utilized in many atmospheric measurement techniques for calibration or to deliver an internal standard. Conventionally, such sources rely on phosphor-coated low-pressure mercury (Hg) lamps to generate the UV light necessary to photo-dissociate a dialkyl ketone (usually acetone) in the presence of a calibrated amount of nitric oxide (NO) and oxygen (O2). In this manuscript, a photochemical PAN source in which the Hg lamp has been replaced by arrays of ultraviolet light-emitting diodes (UV-LEDs) is described. The output of the UV-LED source was analyzed by gas chromatography (PAN-GC) and thermal dissociation cavity ring-down spectroscopy (TD-CRDS). Using acetone, diethyl ketone (DIEK), diisopropyl ketone (DIPK), or di-n-propyl ketone (DNPK), respectively, the source produces peroxyacetic (PAN), peroxypropionic (PPN), peroxyisobutanoic (PiBN), or peroxy-n-butanoic nitric anhydride (PnBN) from NO in high yield (> 90 %). Box model simulations with a subset of the Master Chemical Mechanism (MCM) were carried out to rationalize product yields and to identify side products. The present work demonstrates that UV-LED arrays are a viable alternative to current Hg lamp setups.

  5. Anhydrides-Cured Bimodal Rubber-Like Epoxy Asphalt Composites: From Thermosetting to Quasi-Thermosetting

    Yang Kang

    2016-03-01

    Full Text Available The present engineering practices show the potential that epoxy asphalt composites (EACs would be a better choice to obtain long life for busy roads. To understand the service performance–related thermorheological properties of prepared bimodal anhydrides-cured rubber-like EACs (REACs, a direct tensile tester, dynamic shear rheometer and mathematical model were used. Tensile tests demonstrate that all the REACs reported here are more flexible than previously reported anhydrides-cured REACs at both 20 and 0 °C. The better flexibility is attributed to the change of bimodal networks, in which cross-linked short chains decreased and cross-linked long chains increased, relatively. Strain sweeps show that all the REACs have linear viscoelastic (LVE properties when their strains are smaller than 1.0% from −35 to 120 °C. Temperature sweeps illustrate that the thermorheological properties of REACs evolve from thermosetting to quasi-thermosetting with asphalt content, and all the REACs retain solid state and show elastic properties in the experimental temperature range. A Cole–Cole plot and Black diagram indicate that all the REACs are thermorheologically simple materials, and the master curves were constructed and well-fitted by the Generalized Logistic Sigmoidal models. This research provides a facile approach to tune the thermorheological properties of the REACs, and the cheaper quasi-thermosetting REAC facilitates their advanced applications.

  6. Highly Efficient Fumed Silica Nanoparticles for Peptide Bond Formation: Converting Alanine to Alanine Anhydride.

    Guo, Chengchen; Jordan, Jacob S; Yarger, Jeffery L; Holland, Gregory P

    2017-05-24

    In this work, thermal condensation of alanine adsorbed on fumed silica nanoparticles is investigated using thermal analysis and multiple spectroscopic techniques, including infrared (IR), Raman, and nuclear magnetic resonance (NMR) spectroscopies. Thermal analysis shows that adsorbed alanine can undergo thermal condensation, forming peptide bonds within a short time period and at a lower temperature (∼170 °C) on fumed silica nanoparticle surfaces than that in bulk (∼210 °C). Spectroscopic results further show that alanine is converted to alanine anhydride with a yield of 98.8% during thermal condensation. After comparing peptide formation on solution-derived colloidal silica nanoparticles, it is found that fumed silica nanoparticles show much better efficiency and selectivity than solution-derived colloidal silica nanoparticles for synthesizing alanine anhydride. Furthermore, Raman spectroscopy provides evidence that the high efficiency for fumed silica nanoparticles is likely related to their unique surface features: the intrinsic high population of strained ring structures present at the surface. This work indicates the great potential of fumed silica nanoparticles in synthesizing peptides with high efficiency and selectivity.

  7. Synthesis and characterization of acrylated Parkia biglobosa ...

    The results revealed that acid functional acrylic copolymers containing maleic anhydride as a functional co-monomer can successfully be used to modify alkyd resins yielding acrylated resins with better drying, flexibility, scratch hardness, impact resistance and chemical resistance properties. However there exist optimum ...

  8. SHORT COMMUNICATION SOLVENT FREE PREPARATION OF N ...

    Preferred Customer

    KEYWORDS: Solvent free, Maleanilic acids, Maleic anhydride, Aniline derivatives ... associated with the carboxylic group between 3275-2877 cm-1, the weak –NH .... Chemical shifts (σ/ppm) relative to TMS*. O-H N-H Ha. Hb. Hc. Hd. He. Hf.

  9. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood-polypropylene composites

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Umit Buyuksari; Zeki Candan; Erkan Avci

    2012-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites incorporated with different contents of boron compounds; borax/boric acid and zinc borate, and phosphate compounds; mono and diammonium phosphates were investigated. The effect of the coupling agent content, maleic anhydride-grafted polypropylene, on the properties of...

  10. Amine modified polyethylenes, prepared in near critical propane, as adhesion promoting agents in multilayered HDPE/PET films

    Gooijer, de J.M.; Scheltus, M.; Koning, C.E.

    2001-01-01

    High d. polyethylene (HDPE) grafted with 0.13, 0.40 and 1.04 wt% maleic anhydride (abbreviation PEMA) was modified with an excess of a variety of diamines in near crit. propane. The resulting amic acid groups were quant. imidized to the corresponding imide (PEMI) in the melt. Increasing the

  11. Ultrasound-assisted catalytic synthesis of acyclic imides in the presence of p-toluenesulfonic acid under solvent free conditions

    Nasr-Esfahani Masoud

    2012-01-01

    Full Text Available A rapid and convenient preparation of acyclic imides by the reaction of aliphatic and aromatic nitriles with acyclic carboxylic anhydride in the presence of catalytic amounts of p-toluenesulfonic acid under thermal or ultrasonic conditions is reported. The advantages of this procedure are moderate reaction times, good to excellent yields, use of inexpensive and ecofriendly catalyst. The reaction of nitriles with aliphatic anhydrides proceeds in thermal conditions, while by the use of ultrasound irradiations these reactions get accelerated.

  12. An additive for a petroleum coke and water suspension

    Khiguti, K.; Igarasi, T.; Isimura, Y.; Kharaguti, S.; Tsudzina, T.

    1983-03-04

    The patent covers an additive for a petroleum coke and watersuspension which contains soap of an aliphatic acid (AM) and or a salt of a maleic acid copolymer (SMK). The aliphatic acid soap is a salt of an alkaline earth metal of C6 to C22 aliphatic acid, an ammonium salt or a salt of a lower amine. The maleic acid copolymer is a salt (sodium, NH4) of a lower amine of a maleic anhydride copolymer with a copolymerizing vinyl additive. Capric acid, lauric acid, palmatic acid, aleic and other acids may be used as the aliphatic acid, while methylamine, trimethylamine, diethanolamine, morpholine and so on may be used as the lower amine salt. Ethylene, vinylchloride, methyl(meta)acrylate and so on are used as the polymerizing vinyl compound. The molar ratio of the maleic anhydride to the polymerizing vinyl compound is in a range from 1 to 1 to 1 to 10 (preferably 1 to 1 to 1 to 3). The maleic acid copolymer has a mean molecular mass within 1,000 to 5,000. The additive with the optimal composition contains a solvent, a thickener, an anticorrosion substance, anticoagulants, surfacants (PAV) and so on. A highly concentrated suspension of oil coke and water with a 50 to 75 percent concentration of powder form petroleum coke may be produced using the patented additive. Such a suspension is characterized by low viscosity, high stability and forms no foam during processing.

  13. Evaluation of genotoxic activity of maleic hydrazide, ethyl methane sulfonate, and N-nitroso diethylamine in Tradescantia

    Alvarez-Moya Carlos; Santerre-Lucas Anne; Zúñiga-González Guillermo; Torres-Bugarín Olivia; Padilla-Camberos Eduardo; Feria-Velasco Alfredo

    2001-01-01

    Objective. To assess the genotoxic activity of N-nitroso diethylamine (NDEA), maleic hydrazide (MH), and ethyl methane sulfonate (EMS) using two systems: the comet assay on nuclei from Tradescantia, and the pink mutation test on Tradescantia staminal hairs (clone 4430). Material and Methods. Tradescantia cups was obtained from Laboratorio de Citogenética y Mutagénesis del Centro de Ciencias de la Atmósfera de la Universidad Nacional Autónoma de México and treated with: N-nitroso diethylamine ...

  14. Theoretical problems associated with the use of acetic anhydride as a co-solvent for the non-aqueous titration of hydrohalides of organic bases and quaternary ammonium salts.

    Völgyi, Gergely; Béni, Szabolcs; Takács-Novák, Krisztina; Görög, Sándor

    2010-01-05

    A potentiometric titration study of organic base hydrohalides and quaternary ammonium salts using perchloric acid as the titrant and a mixture of acetic anhydride and acetic acid as the solvent was carried out and the titration mixture was analysed by NMR in order to clarify the chemistry of the reactions involved. It was found that in contrast to the general belief the formation of acetyl halides and titratable free acetate ion does not take place prior to the titration but NMR spectra proved the formation of acetyl halides in the course of the titration. This observation and the fact that the shape of the titration curves depends on the nature of the hydrohaloic acid bound to the base or of the anion in the quaternary ammonium salts led to the conclusion that the titrating agent is acetyl perchlorate formed in situ during the titration. Equations of the reactions involved in the titration process are shown in the paper.

  15. Kinetics of Hydrolysis of Acetic Anhydride by In-Situ FTIR Spectroscopy: An Experiment for the Undergraduate Laboratory

    Haji, Shaker; Erkey, Can

    2005-01-01

    A reaction kinetics experiment for the chemical engineering undergraduate laboratory course was developed in which in-situ Fourier Transfer Infrared spectroscopy was used to measure reactant and product concentrations. The kinetics of the hydrolysis of acetic anhydride was determined by experiments carried out in a batch reactor. The results…

  16. Characterization of derivates of carbo-anhydride by NMR; Caracterizacao de derivados do anidrido carbico por RMN

    Campos, Marcos Pery Amaral [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Bergter, Lothar [Cia. Souza Cruz, Rio de Janeiro, RJ (Brazil); Seidl, Peter Rudolf [Centro de Tecnologia Mineral, Rio de Janeiro, RJ (Brazil)

    1994-12-31

    The term molecular recognition may be applied to several phenomena of different complexities. The compounds which work as blockers or acceptors in this process are generally complexes with functional groups positioned in specific positions. This work presents the NMR characterization of carbo-anhydride derivates which are important in the preparation of synthetic acceptors 2 figs.

  17. RAFT copolymerization of itaconic anhydride and 2-methoxyethyl acrylate: a multifunctional scaffold for preparation of “clickable” gold nanoparticles

    Javakhishvili, Irakli; Kasama, Takeshi; Jankova, Katja Atanasova

    2013-01-01

    RAFT copolymerization of 2-methoxyethyl acrylate and itaconic anhydride – a monomer derived from renewable resources – is carried out in a controlled fashion. The copolymer allows preparation of gold nanoparticles with abundant surficial carboxyl and alkyne functional groups that are dendronized...

  18. Seasonal variations of monosaccharide anhydrides in PM1 and PM2.5 aerosol in urban areas

    Křůmal, Kamil; Mikuška, Pavel; Vojtěšek, Martin; Večeřa, Zbyněk

    2010-01-01

    Roč. 44, č. 39 (2010), s. 5148-5155 ISSN 1352-2310 R&D Projects: GA MŽP SP/1A3/148/08 Institutional research plan: CEZ:AV0Z40310501 Keywords : monosaccharide anhydrides * biomass burning * levoglucosan Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.226, year: 2010

  19. The Influence of the Plant Growth Regulator Maleic Hydrazide on Egyptian Broomrape Early Developmental Stages and Its Control Efficacy in Tomato under Greenhouse and Field Conditions

    Ariel Venezian

    2017-05-01

    Full Text Available Broomrapes (Phelipanche spp. and Orobanche spp. are holoparasitic plants that cause tremendous losses of agricultural crops worldwide. Broomrape control is extremely difficult and only amino acid biosynthesis-inhibiting herbicides present an acceptable control level. It is expected that broomrape resistance to these herbicides is not long in coming. Our objective was to develop a broomrape control system in tomato (Solanum lycopersicum L. based on the plant growth regulator maleic hydrazide (MH. Petri-dish and polyethylene-bag system experiments revealed that MH has a slight inhibitory effect on Phelipanche aegyptiaca seed germination but is a potent inhibitor of the first stages of parasitism, namely attachment and the tubercle stage. MH phytotoxicity toward tomato and its P. aegyptiaca-control efficacy were tested in greenhouse experiments. MH was applied at 25, 50, 75, 150, 300, and 600 g a.i. ha-1 to tomato foliage grown in P. aegyptiaca-infested soil at 200 growing degree days (GDD and again at 400 GDD. The treatments had no influence on tomato foliage or root dry weight. The total number of P. aegyptiaca attachments counted on the roots of the treated plants was significantly lower at 75 g a.i. ha-1 and also at higher MH rates. Phelipanche aegyptiaca biomass was close to zero at rates of 150, 300, and 600 g a.i. ha-1 MH. Field experiments were conducted to optimize the rate, timing and number of MH applications. Two application sequences gave superior results, both with five split applications applied at 100, 200, 400, 700, and 1000 GDD: (a constant rate of 400 g a.i. ha-1; (b first two applications at 270 g a.i. ha-1 and the next three applications at 540 g a.i. ha-1. Based on the results of this study, MH was registered for use in Israel in 2013 with the specified protocol and today, it is widely used by most Israeli tomato growers.

  20. Surface Functionalization of WO3 Thin Films with (3-Aminopropyl)triethoxysilane and Succinic Anhydride

    Ta, Thi Kieu Hanh; Tran, Thi Nhu Hoa; Tran, Quang Minh Nhat; Pham, Duy Phong; Pham, Kim Ngoc; Cao, Thi Thanh; Kim, Yong Soo; Tran, Dai Lam; Ju, Heongkyu; Phan, Bach Thang

    2017-06-01

    We report effects of oxygen plasma treatment on the surface functionalization of WO3 thin films with (3-aminopropyl)triethoxysilane (APTES) and succinic anhydride (SA). X-ray diffraction and x-ray photoelectron spectroscopy results indicate the existence of the WO3 phase. Fourier transform infrared spectroscopy measurement shows clear bands at 1040 cm-1 (Si-O-Si), 1556 cm-1 (N-H), 1655 cm-1 (C=O), 2937 cm-1 (C-H) and 3298 cm-1 (N-H), confirming the surface functionalization efficiency enhanced by prior treatment of oxygen plasma. It thus follows that the prior oxygen plasma treatment activates hydroxylation with more -OH groups on the WO3 surface, which can pave a highly efficient way to the surface functionalization by APTES and SA.

  1. Pulmonary hemorrhage and edema due to inhalation of resins containing tri-mellitic anhydride.

    Herbert, F A; Orford, R

    1979-11-01

    Seven young men developed acute pulmonary hemorrhage and edema from the inhalation of powder or fumes of a bisphenol epoxy resin containing tri-mellitic anhydride (TMA) while working in a steel pipe-coating plant. The illness was characterized by cough, hemoptysis, dyspnea, fever, weakness and nausea or vomiting. Chest roentgenograms showed either a bilateral or unilateral pulmonary infiltrate. All patients had a normochromic type of anemia. Pulmonary function studies demonstrated a restrictive defect, hypoxemia, and increased A-a DO2 gradients. Light and electron microscopic studies of lung tissue revealed extensive bleeding into alveoli but no basement membrane deposits were seen and no antiglomerular basement membrane antibodies were detected. The patients improved quickly without treatment. Follow-up studies of six patients three weeks to one year after their illness revealed apparent recovery. A detailed medical survey carried out on all 29 workers currently employed in the plant revealed five additional men had experienced severe recurrent pulmonary problems.

  2. Vibrational, electronic and quantum chemical studies of 1,2,4-benzenetricarboxylic-1,2-anhydride.

    Arjunan, V; Raj, Arushma; Subramanian, S; Mohan, S

    2013-06-01

    The FTIR and FT-Raman spectra of 1,2,4-benzenetricarboxylic-1,2-anhydride (BTCA) have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. The complete vibrational assignments and analysis of BTCA have been performed. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP, MP2, B3PW91) method using 6-311++G(**), 6-31G(**) and cc-pVTZ basis sets. The structural parameters, energies, thermodynamic parameters, vibrational frequencies and the NBO charges of BTCA were determined by the DFT method. The (1)H and (13)C isotropic chemical shifts (δ ppm) of BTCA with respect to TMS were also calculated using the gauge independent atomic orbital (GIAO) method and compared with the experimental data. The delocalization energies of different types of interactions were determined. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Determination of Glyphosate, Maleic Hydrazide, Fosetyl Aluminum, and Ethephon in Grapes by Liquid Chromatography/Tandem Mass Spectrometry.

    Chamkasem, Narong

    2017-08-30

    A simple high-throughput liquid chromatography/tandem mass spectrometry (LC-MS-MS) method was developed for the determination of maleic hydrazide, glyphosate, fosetyl aluminum, and ethephon in grapes using a reversed-phase column with weak anion-exchange and cation-exchange mixed mode. A 5 g test portion was shaken with 50 mM HOAc and 10 mM Na 2 EDTA in 1/3 (v/v) MeOH/H 2 O for 10 min. After centrifugation, the extract was passed through an Oasis HLB cartridge to retain suspended particulates and nonpolar interferences. The final solution was injected and directly analyzed in 17 min by LC-MS-MS. Two MS-MS transitions were monitored in the method for each target compound to achieve true positive identification. Four isotopically labeled internal standards corresponding to each analyte were used to correct for matrix suppression effects and/or instrument signal drift. The linearity of the detector response was demonstrated in the range from 10 to 1000 ng/mL for each analyte with a coefficient of determination (R 2 ) of ≥0.995. The average recovery for all analytes at 100, 500, and 2000 ng/g (n = 5) ranged from 87 to 111%, with a relative standard deviation of less than 17%. The estimated LOQs for maleic hydrazide, glyphosate, fosetyl-Al, and ethephon were 38, 19, 29, and 34 ng/g, respectively.

  4. The Causes of Blistering in Boat Building Materials

    1986-08-01

    acrylate units (MET) Ethylene glycol (MET) Propylene glycol (MET) Neopentyl glycol (NET) Maleic acid or anhydride (unsaturated) (NET) lumaric acid...PROPYLENE GLYCOL OPA ORTHOPHTHALIC ACID VINYL - URETHANE BASED POLYESTER IqPG NEOPENTYL GLYCOL RESIN EG - ETHYLENE GLYCOL TMPD - 22,, - TRiMETHY...IPA Isophthalic acid WSN Low molecular weight water soluble material NPG Neopentyl glycol OPA Orthophthalio acid PG Propylene glycol MEKP Hethyl

  5. Facile and Efficient Acetylation of Primary Alcohols and Phenols with Acetic Anhydride Catalyzed by Dried Sodium Bicarbonate

    Fulgentius Nelson Lugemwa

    2013-12-01

    Full Text Available A variety of primary alcohols and phenols were reacted with acetic anhydride at room temperature in the presence of sodium bicarbonate to produce corresponding esters in good to excellent yields. The acetylation of 4-nitrobenzyl alcohol was also carried out using other bicarbonates and carbonates. The reaction in the presence of cesium bicarbonate and lithium carbonate gave 4-nitrobenzyl acetate in excellent yield, while in the presence of Na2CO3, K2CO3, Cs2CO3, or KHCO3 the yield was in the range of 80%–95%. Calcium carbonate and cobaltous carbonate did not promote the acetylation of 4-ntirobenzyl alcohol using acetic anhydride. The acetylation of 4-nitrobenzyl alcohol was carried out using ethyl acetate, THF, toluene, diethyl ether, dichloromethane and acetonitrile, and gave good yields ranging from 75%–99%. Toluene was the best solvent for the reaction, while diethyl ether was the poorest.

  6. RESEARCH OF THE ADSORPTION OF ORGANIC ACIDS IN SUGARCANE BAGASSE ASH

    Julio Omar Prieto García

    2017-07-01

    Full Text Available In this research a study of the adsorption of acetic, benzoic, butanoic, fumaric, maleic and succinic acids on sugarcane baggase ash is made. The adsorber material is characterized through physical criteria such as apparent and pictometric density, compressibility, porosity, superficial area and tortuosity. The sample has been examined by X-rays Diffraction, thermal analysis, IR-quality analysis. The isotherm for the sorption process is determined, where it is shown that the Freundlich model is adjusted to benzoic acid, the Langmuir and Toth model to acetic acid, Bunauer- Emmett- Teller (BET model to succinic acid and the butiric, maleic and fumaric acids are adjusted to Langmoir model. It is established that the first-order model is adjusted to the adsorption kinetics of the acetic and benzoic acids; while the rest of the acids are adjusted to a second-order model, in the case of the butanoic, succinic and maleic acids it is possible the occurrence of chemisorption processes.

  7. Microwave measurements of the spectra and molecular structure for phthalic anhydride

    Pejlovas, Aaron M.; Sun, Ming; Kukolich, Stephen G.

    2014-05-01

    The microwave rotational spectrum for phthalic anhydride (PhA) has been measured in the 4-14 GHz microwave region using a pulsed-beam Fourier transform (PBFT) Flygare-Balle type microwave spectrometer. Initially, the molecular structure was calculated using Gaussian 09 suite with mp2/6-311++G** basis and the calculations were used in predicting spectra for the measured isotopologues. The experimental rotational transition frequencies were measured and used to calculate the rotational and centrifugal distortion constants. The rotational constants for the normal isotopologue, four unique 13C substituted isotopologues and two 18O isotologues, were used in a least squares fit to determine nearly all structural parameters for this molecule. Since no substitutions were made at hydrogen sites, the calculated positions of the hydrogen atoms relative to the bonded carbon atoms were used in the structure determination. The rotational constants for the parent isotopologue were determined to be A = 1801.7622(9) MHz, B = 1191.71816(26) MHz, C = 717.44614(28) MHz. Small values for the centrifugal distortion constants were obtained; DJ = 0.0127 kHz, DJK = 0.0652 kHz, and DK = -0.099 kHz, indicating a fairly rigid structure. The structure of PhA is planar with a negative inertial defect of Δ = -0.154 amu Å2. Structural parameters from the mp2 and DFT calculations are in quite good agreement with measured parameters.

  8. The use of chemical modified chitosan with succinic anhydride in the methylene blue adsorption

    Lima, Ilauro S.; Ribeiro, Emerson S.; Airoldi, Claudio

    2006-01-01

    The adsorption capacity of a-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methylene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable. (author)

  9. Preparation And Physicochemical Properties of Octenyl Succinic Anhydride (OSA) Modified Sago Starch

    Nur Farhana Zainal Abiddin; Anida Yusoff; Noorlaila Ahmad

    2016-01-01

    Starch from sago (Metroxylon sagu) was esterified with octenyl succinic anhydride (OSA) in order to regulate its shortcoming by adding amphiphilic properties. The objective of this work is to determine the physicochemical properties of native sago and OSA sago starches. The OSA sago starch was produced according to the optimum condition generated via response surface methodology (RSM) with 5.00 % OSA at pH 7.20 and a reaction time of 9.65 hours. The esterified sago starch gives a degree of substitution (DS) value of 0.012. The physicochemical properties of OSA sago starch was determined by measuring the amylose content, laser diffraction particle size analyzer, scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR). The amylose content for OSA sago starch was found to be reduced after esterification reaction. The particle size of OSA sago starch was found to increase significantly (p<0.05) compared to their native starches. Scanning electron microscopy (SEM) revealed that OSA starch developed slightly rough surface and their edges lost some definition. FT-IR spectroscopy shows that there was appearance of new absorption correspond to ester carbonyl group (1717 cm -1 ) and carboxylate RCOO- (1569 cm -1 ). This study showed that the physicochemical properties of modified starches were influenced not only by DS but also on the botanical origin of the starches. (author)

  10. Four-year evaluation of workers exposed to trimellitic anhydride. A brief report

    McGrath, K.G.; Roach, D.; Zeiss, C.R.; Patterson, R.

    1984-01-01

    In a four-year clinical, immunologic, and environmental study of trimellitic anhydride (TMA) exposure in a single plant, 20 workers exposed to TMA powder were evaluated in 1979 and a total of 32 workers were evaluated from 1979 to 1983. Two distinct groups emerged before and after workplace control improvements were made in 1979. Seventeen of the original 20 workers were available for longitudinal study through 1983. Annual clinical evaluations and serum radioimmunoassays for total antibody binding and specific IgE binding to 125I TM-HSA (human serum albumin) were performed on all 32 workers. In 1979, six workers had antibody against TM-HSA, three had the late respiratory systemic syndrome, and two had TMA-induced allergic rhinitis or allergic rhinitis and asthma. One worker had antibody against TM-HSA without illness. Fifteen additional workers were evaluated longitudinally after institution of several workplace control measures. Four of these 15 workers had TMA exposure prior to environmental improvement and joined the study in 1982. The remaining 11 workers joined the study in 1982 and had at least two years of TMA exposure in the modified workplace. None of these 11 workers developed a TMA-induced immunologic syndrome or significant total or specific IgE antibody binding to 125I TM-HSA

  11. The application of hydrogen-palladium electrode for potentiometric acid-base determinations in tetrahydrofuran

    Jokić Anja B.

    2013-01-01

    Full Text Available The application of the hydrogen-palladium electrode (H2/Pd as the indicator electrode for the determination of relative acidity scale (Es, mV of tetrahydrofuran (THF and the potentiometric titrations of acids in this solvent was investigated. The relative acidity scale tetrahydrofuran was determined from the difference half-neutralization potentials of perchloric acid and tetrabutylammonium hydroxide (TBAH, which were measured by using both H2/Pd-SCE and glass-SCE electrode pairs. The experimentally obtained value of Es scale THF with a H2/Pd-SCE electrode pair was 1155 mV, and those obtained with glass-SCE electrode pair 880 mV. By using a H2/Pd indicator electrode, the individual acids (benzoic acid, palmitic acid, maleic acid, acetyl acetone, α-naphthol and two component acid mixtures (benzoic acid + α-naphthol, palmitic acid + α-naphthol, maleic acid + α-naphthol and maleic acid + ftalic acid were titrated with a standard solution of TBAH. In addition, sodium methylate and potassium hydroxide proved to be very suitable titrating agents for titrating of the individual acids and the acids in mixtures, respectively. The relative error of the determination of acids in mixture was less than 3%. The results are in agreement with those obtained by a conventional glass electrode. The advantages of H2/Pd electrode over a glass electrode in potentiometric acid-base determinations in tetrahydrofuran lie in the following: this electrode gives wider relative acidity scale THF, higher the potential jumps at the titration end-point and relatively fast response time; furthermore, it is very durable, simple to prepare and can be used in the titrations of small volumes. [Projekat Ministarstva nauke Republike Srbije, br.172051

  12. Potentiometric studies on mixed-ligand chelates of uranyl ion with carboxylic acid phenolic acids

    Bandiwadekar, S.P.; Chavar, A.M.

    1988-01-01

    Mixed ligand complexes of UO 2 2+ with bidentate carboxylic and phenolic acids have been studied potentiometrically at 30 ± 0.1degC and μ=0.2M (NaClO 4 ). 1:1 and 1:2 complexes of UO 2 2+ with phthalic acid (PTHA), maleic acid (MAE), malonic acid (MAL), quinolinic acid (QA), 5-sulphosalicylic acid (5-SSA), salicylic acid (SA), and only 1:1 complexes in the case of mandelic acid (MAD) have been detected. The formation of 1:1:1 mixed ligand complexes has been inferred from simultaneous equilibria in the present study. The values of ΔlogK, Ksub(DAL), Ksub(2LA) or Ksub(2AL) for the ternary complexes have been calculated. The stabilities of mixed ligand complexes depend on the size of the chelate ring and the stabilities of the binary complexes. (author). 15 refs

  13. Tuning the conformation of synthetic co-polypeptides of serine and glutamic acid through control over polymer composition

    Canning, A.; Pasquazi, A.; Fijten, M.; Rajput, S.; Buttery, L.; Aylott, J.W.; Zelzer, M.

    2016-01-01

    Ring opening polymerization (ROP) of N-carboxy anhydride (NCA) amino acids presents a rapid way to synthesize high molecular weight polypeptides with different amino acid compositions. The compositional and functional versatility of polypeptides make these materials an attractive choice for

  14. Elucidation of substituted ester group position in octenylsuccinic anhydride modified sugary maize soluble starch.

    Ye, Fan; Miao, Ming; Huang, Chao; Lu, Keyu; Jiang, Bo; Zhang, Tao

    2014-12-03

    The octenylsuccinic groups in esterification-modified sugary maize soluble starches with a low (0.0191) or high (0.0504) degree of substitution (DS) were investigated by amyloglucosidase hydrolysis followed by a combination of chemical and physical analysis. The results showed the zeta-potential remained at approximately the same value regardless of excessive hydrolysis. The weight-average molecular weight decreased rapidly and reached 1.22 × 10(7) and 1.60 × 10(7) g/mol after 120 min for low-DS and high-DS octenylsuccinic anhydride (OSA) modified starch, respectively. The pattern of z-average radius of gyration as well as particle size change was similar to that of Mw, and z-average radius of gyration decreased much more slowly, especially for high-DS OSA starch. Compared to native starch, two characteristic absorption peaks at 1726.76 and 1571.83 cm(-1) were observed in FT-IR spectra, and the intensity of absorption peaks increased with increasing DS. The NMR results showed that OSA starch had several additional peaks at 0.8-3.0 ppm and a shoulder at 5.56 ppm for OSA substituents, which were grafted at O-2 and O-3 positions in soluble starch. The even distribution of OSA groups in the center area of soluble starch particle has been directly shown under CLSM. Most substitutions were located near branching points of soluble starch particles for a low-DS modified starch, whereas the substituted ester groups were located near branching points as well as at the nonreducing ends in OSA starch with a high DS.

  15. Emulsion stabilizing capacity of intact starch granules modified by heat treatment or octenyl succinic anhydride.

    Timgren, Anna; Rayner, Marilyn; Dejmek, Petr; Marku, Diana; Sjöö, Malin

    2013-03-01

    Starch granules are an interesting stabilizer candidate for food-grade Pickering emulsions. The stabilizing capacity of seven different intact starch granules for making oil-in-water emulsions has been the topic of this screening study. The starches were from quinoa; rice; maize; waxy varieties of rice, maize, and barley; and high-amylose maize. The starches were studied in their native state, heat treated, and modified by octenyl succinic anhydride (OSA). The effect of varying the continuous phase, both with and without salt in a phosphate buffer, was also studied. Quinoa, which had the smallest granule size, had the best capacity to stabilize oil drops, especially when the granules had been hydrophobically modified by heat treatment or by OSA. The average drop diameter (d 32) in these emulsions varied from 270 to 50 μm, where decreasing drop size and less aggregation was promoted by high starch concentration and absence of salt in the system. Of all the starch varieties studied, quinoa had the best overall emulsifying capacity, and OSA modified quinoa starch in particular. Although the size of the drops was relatively large, the drops themselves were in many instances extremely stable. In the cases where the system could stabilize droplets, even when they were so large that they were visible to the naked eye, they remained stable and the measured droplet sizes after 2 years of storage were essentially unchanged from the initial droplet size. This somewhat surprising result has been attributed to the thickness of the adsorbed starch layer providing steric stabilization. The starch particle-stabilized Pickering emulsion systems studied in this work has potential practical application such as being suitable for encapsulation of ingredients in food and pharmaceutical products.

  16. Production and characterization of thermoplastic cassava starch, functionalized poly(lactic acid), and their reactive compatibilized blends

    Detyothin, Sukeewan

    Cassava starch was blended with glycerol using a co-rotating twin-screw extruder (TSE). Thermoplastic cassava starch (TPCS) at a ratio of 70/30 by weight of cassava/glycerol was selected and further blended with other polymers. TPCS sheets made from compression molding had low tensile strength (0.45 +/- 0.05 MPa) and Young's modulus (1.24 +/- 0.58 MPa), but moderate elongation at break (83.0 +/- 0.18.6%), medium level of oxygen permeability, and high water vapor permeability with a very high rate of water absorption. TPCS was blended with poly(lactic acid) (PLA) at various ratios by using a TSE. The blend resins exhibited good properties such as increased thermal stability (Tmax) and crystallinity of PLA, and improved water sensitivity and processability of TPCS. PLA and TPCS exhibited a high interfacial tension between the two phases of 7.9 mJ·m -2, indicating the formation of an incompatible, immiscible blend. SEM micrographs showed a non-homogeneous distribution of TPCS droplets in the PLA continuous phase. TEM micrographs of the blend films made by cast-film extrusion showed coalescence of the TPCS droplets in the PLA continuous phase of the blend, indicating that the compatibility between the polymer pair needs to be improved. A response surface methodology (RSM) design was used to analyze the effects of maleic anhydride (MA) and 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox or L101) contents, and TSE screw speed on the degree of grafted MA and number average molecular weight (Mn) of functionalized PLA (PLA-g-MA), a reactive compatibilizer. PLA-g- MA made by reactive extrusion had an array of colors depending on the content of L101 and MA used. New FTIR peaks suggested that MA was grafted onto the PLA backbone and oligomeric MA may occur. Increasing L101 increased the degree of grafting and decreased Mn, but the Mn of the PLA-g-MA's produced with a high amount of L101 was stable during storage. MA exhibited an optimum concentration for maximizing the

  17. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp

    Auta, Helen Shnada; Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced...

  18. Evaluation of genotoxic activity of maleic hydrazide, ethyl methane sulfonate, and N-nitroso diethylamine in Tradescantia.

    Alvarez-Moya, C; Santerre-Lucas, A; Zúñiga-González, G; Torres-Bugarín, O; Padilla-Camberos, E; Feria-Velasco, A

    2001-01-01

    To assess the genotoxic activity of N-nitroso diethylamine (NDEA), maleic hydrazide (MH), and ethyl methane sulfonate (EMS) using two systems: the comet assay on nuclei from Tradescantia, and the pink mutation test on Tradescantia staminal hairs (clone 4430). Tradescantia cups was obtained from Laboratorio de Citogenética y Mutagénesis del Centro de Ciencias de la Atmósfera de la Universidad Nacional Autónoma de México and treated with: N-nitroso diethylamine (NDEA) at 1, 5, 10 mM, maleic hydrazide (MH) at 1, 5, 10 mM and ethyl methane sulfonate (EMS) at 15, 30 and 45 mM; and used in both pink mutation assay and comet assay using cellular nuclei from Tradescantia staminal hairs. The observation of staminal hair was realized along eight days (6-14) after treatment), flowers produced day 14 after treatment were utilized done according to Underbrink. In previous reports on plants, were comet assay was used, breaking cellular wall and separating by centrifugation gradient are necessary. Here, nuclei from staminal hairs were obtained by squashing the cells (is not necessary to utilize to break special procedure cellular wall), collected using a nylon mesh of 80 Mm and next the comet assay was applied. Student's T test was the statistical test used for analyzing the comet assay data. Both assays showed a great sensitivity to the studied mutagens. A relationship between the dose-pink event and the dose-tail length was evident. Even though the Tradescantia mutation assay is a sensitive test with MH and EMS, low doses of NDEA were not able to induce a significant increase in the pink event frequencies; however, the comet assay was able to detect the mutagenic effect of NDEA at the same dose. Thus, it is clear that the comet assay is highly sensitive to the lowest dose of chemical mutagens. The comet assay on nuclei from Tradescantia staminal hairs is a useful tool to monitor genotoxic agents; it is simple, highly sensitive, and faster than the pink mutation test.

  19. Evaluation of genotoxic activity of maleic hydrazide, ethyl methane sulfonate, and N-nitroso diethylamine in Tradescantia

    Alvarez-Moya Carlos

    2001-01-01

    Full Text Available Objective. To assess the genotoxic activity of N-nitroso diethylamine (NDEA, maleic hydrazide (MH, and ethyl methane sulfonate (EMS using two systems: the comet assay on nuclei from Tradescantia, and the pink mutation test on Tradescantia staminal hairs (clone 4430. Material and Methods. Tradescantia cups was obtained from Laboratorio de Citogenética y Mutagénesis del Centro de Ciencias de la Atmósfera de la Universidad Nacional Autónoma de México and treated with: N-nitroso diethylamine (NDEA at 1, 5, 10 mM, maleic hidrazide (MH at 1, 5, 10 mM and ethyl methane sulfonate (EMS at 15, 30 and 45 mM; and used in both pink mutation assay and comet assay using cellular nuclei from Tradescantia staminal hairs. The observation of staminal hair was realized along eight days (6-14 after treatment, flowers produced day 14 after treatment were utilized done according to Underbrink. In previous reports on plants, were comet assay was used, breaking cellular wall and separating by centrifugation gradient are necessary. Here, nuclei from staminal hairs were obtained by squashing the cells (is not necessary to utilize to break special procedure cellular wall, collected using a nylon mesh of 80Mm and next the comet assay was applied. Student's T test was the statistical test used for analyzing the comet assay data. Results. Both assays showed a great sensitivity to the studied mutagens. A relationship between the dose-pink event and the dose-tail length was evident. Even though the Tradescantia mutation assay is a sensitive test with MH and EMS, low doses of NDEA were not able to induce a significant increase in the pink event frequencies; however, the comet assay was able to detect the mutagenic effect of NDEA at the same dose. Thus, it is clear that the comet assay is highly sensitive to the lowest dose of chemical mutagens. Conclusions. The comet assay on nuclei from Tradescantia staminal hairs is a useful tool to monitor genotoxic agents; it is simple

  20. An Examination of the Chemistry of Peroxycarboxylic Nitric Anhydrides and Related Volatile Organic Compounds During Texas Air Quality Study 2000 Using Ground-Based Measurements

    Roberts, James M.; Jobson, B Tom T.; Kuster, W. C.; Goldan, P. D.; Murphy, Paul; Williams, Eric; Frost, G. J.; Riemer, D.; Apel, Eric; Stroud, C.; Wiedinmyer, Christine; Fehsenfeld, Fred C.

    2003-08-19

    Measurements of peroxycarboxylic nitric anhydrides (PANs) along with related volatile organic compounds (VOCs) were made at the La Porte super site during the TexAQS 2000 Houston study. The PAN mixing ratios ranged up to 6.5 ppbv and were broadly correlated with O3, characteristic of a highly polluted urban environment. The anthropogenic PAN homologue concentrations were generally consistent with those found in other urban environments; peroxypropionic nitric anhydride (PPN) averaged 15%, and peroxyisobutyric nitric anhydride (PiBN) averaged 3% of PAN,. Some periods were noted where local petrochemical sources resulted in anomalous PANs chemistry. This effect was especially noticeable in the case of peroxyacrylic nitric anhydride (APAN) where local sources of 1,3-butadiene and acrolein resulted in APAN as high as 30% of PAN. Peroxymethacrylic nitric anhydride (MPAN) was a fairly minor constituent of the PANs except for two periods on 4 and 5 September when air masses from high biogenic hydrocarbons (BHC) areas were observed. BHC chemistry was not a factor in the highest ozone pollution episodes in Houston but may have an impact on daily average ozone levels in some circumstances.

  1. Mutagenic interactions between maleic hydrazide and X rays in the stamen hairs of Tradescantia clone BNL 4430

    Xiao, Ling-Zhi; Ichikawa, Sadao

    1995-01-01

    Mutagenic interactions between maleic hydrazide (MH; a promutagen known to be activated into a mutagen in plant cells) and X rays were studied in the stamen hairs of Tradescantia clone BNL 4430, a blue/pink heterozygote. The young inflorescence-bearing shoots with roots cultivated in the nutrient solution circulating growth chamber were used as tester plants. After determining dose-response curves for X rays and for MH, nine combined treatments with MH (0.5 and 1 mM) and X rays (292 to 1,240 mGy) were conducted, exposing to X rays either 20 or 44 h before, at the midpoint of, or 2 or 44 h after the MH treatments for 4h. Clear synergistic effects in inducing somatic pink mutations were detected when X rays were given before the MH treatments. On the contrary, however, antagonistic effects were often observed when X-ray treatments were carried out during or after the MH treatments. The synergistic effects detected were thought to be the results of interactions between DNA strand breaks (and the resultant chromosomal breaks) induced by X rays and those by MH, whereas the antagonistic effects observed were presumed to have resulted from X-ray-caused inhibition of the activation of MH in the stamen-hair cells. (author)

  2. High performance maleated lignocellulose epicarp fibers for copper ion removal

    Vieira,A. P.; Santana,S. A. A.; Bezerra,C. W. B.; Silva,H. A. S.; Santos,K. C. A.; Melo,J. C. P.; Silva Filho,E. C.; Airoldi,C.

    2014-01-01

    Natural lignocellulosic fiber epicarp extracted from the babassu coconut (Orbignya speciosa) was chemically modified through reaction with molten maleic anhydride without solvent, with incorporation of 189.34 mg g(-1) of carboxylic acid groups into the biopolymer structure. The success of this reaction was also confirmed by the presence of carboxylic acid bands at 1741 and 1164 cm(-1) in the infrared spectrum. Identically, the same group is observed through C-13 NMR CP/MAS in the solid state,...

  3. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    Formation of sulfonic anhydride S-O-S (from the condensation of sulfonic acids) was known one of the important degradation mechanisms [i] for Nafion membrane under hydrothermal aging condition, which is especially critical for hydrogen fuel cells. Similar mechanism would also have be desirable...... to the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead...

  4. Novel self-associative and multiphase nanostructured soft carriers based on amphiphilic hyaluronic acid derivatives

    Eenschooten, Corinne; Vaccaro, Andrea; Delie, Florence

    2012-01-01

    The purpose of the present study was to investigate the physicochemical properties in aqueous media of amphiphilic hyaluronic acid (HA) derivatives obtained by reaction of HA’s hydroxyl groups with octenyl succinic anhydride (OSA). The self-associative properties of the resulting octenyl succinic...

  5. Light-Induced C-H Arylation of (Hetero)arenes by In Situ Generated Diazo Anhydrides.

    Cantillo, David; Mateos, Carlos; Rincon, Juan A; de Frutos, Oscar; Kappe, C Oliver

    2015-09-07

    Diazo anhydrides (Ar-N=N-O-N=N-Ar) have been known since 1896 but have rarely been used in synthesis. This communication describes the development of a photochemical catalyst-free C-H arylation methodology for the preparation of bi(hetero)aryls by the one-pot reaction of anilines with tert-butyl nitrite and (hetero)arenes under neutral conditions. The key step in this procedure is the in situ formation and subsequent photochemical (>300 nm) homolytic cleavage of a transient diazo anhydride intermediate. The generated aryl radical then efficiently reacts with a (hetero)arene to form the desired bi(hetero)aryls producing only nitrogen, water, and tert-butanol as byproducts. The scope of the reaction for several substituted anilines and (hetero)arenes was investigated. A continuous-flow protocol increasing selectivity and safety has been developed enabling the experimentally straightforward preparation of a variety of substituted bi(hetero)aryls within 45 min of reaction time. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Kerogen chemistry 5. Anhydride formation in, solvent swelling of, and loss of organics on demineralization of Kimmeridge shales

    Larsen, John W.; Flores, Carlos Islas

    2008-01-01

    The results of three short and related, but experimentally independent, studies of 4 Kimmeridge shales and their kerogens are reported. Differential scanning calorimeter (DSC) studies of the kerogens reveal that three of the four show evidence of anhydride formation when heated at 20 C/min between 50 C and 180 C. There is no regular rank dependence of anhydride formation. After solvent swelling in tetrahydrofuran (THF), extracted organics were isolated from the THF and the recovered kerogens were swollen a second time in fresh THF. The second solvent swelling ratios were slightly larger than the first because the presence of the extracts in the original THF lowers solvent activity thus reducing swelling. The shales were demineralized in the usual way except that methylene chloride was added to dissolve any organics that were liberated from the rock as a consequence of mineral dissolution. Small amounts of organics were found in the methylene chloride supporting Price and Clayton's conclusion that organics are expelled from the kerogen and are present in lacunae in the minerals. (author)

  7. Seasonal variability of monosaccharide anhydrides, resin acids, methoxyphenols and saccharides in PM2.5 in Brno, the Czech Republic

    Mikuška, Pavel; Kubátková, Nela; Křůmal, Kamil; Večeřa, Zbyněk

    2017-01-01

    Roč. 8, č. 3 (2017), s. 576-586 ISSN 1309-1042 R&D Projects: GA ČR(CZ) GA14-25558S; GA ČR(CZ) GBP503/12/G147 Institutional support: RVO:68081715 Keywords : atmospheric aerosols * PM2.5 * organic compounds Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 1.637, year: 2016

  8. Chemical states of p-boronophenylalanine in aqueous carboxylic acids and polyols

    Kobayashi, Mitsue; Kitaoka, Yoshinori

    1995-01-01

    Chemical states of p-boronophenylalanine were studied by infrared (IR) spectroscopy in aqueous carboxylic acids and in aqueous fructose. For BPA in water, the absorption band due to the B-O stretching of trigonal boron was observed, while that of tetrahedral boron was observed for BPA in aqueous oxalic acid. This means BPA forms a complex of tetrahedral boron with oxalate. It was proved that BPA also formed complexes of tetrahedral boron with citric acid as well as with fructose. No appreciable interaction was detected between BPA and maleic acid. (author)

  9. Greener Friedel-Crafts Acylation using Microwave-enhanced reactivity of Bismuth Triflate in the Friedel-Crafts Benzoylation of Aromatic Compounds with Benzoic Anhydride

    Tran, Phuong Hoang; Nguyen, Hai Truong; Hansen, Poul Erik

    2017-01-01

    An efficient and facile bismuth trifluoromethanesulfonate-catalyzed benzoylation of aromatic compounds using benzoic anhydride under solvent-free microwave irradiation has been developed. The microwave-assisted Friedel-Crafts benzoylation results in good yields within short reaction times. Bismuth...

  10. Copper(II) sulfate pentahydrate (CuSO4.5H2O): a green catalyst for solventless acetylation of alcohols and phenols with acetic anhydride

    Heravi,Majid M.; Behbahani,Farahnaz K.; Zadsirjan,Vahideh; Oskooie,Hossien A.

    2006-01-01

    Alcohols and phenols were efficiently acetylated with acetic anhydride in the presence of copper (II) sulfate at room temperature in high yields. Álcoois e fenóis foram acetilados eficientemente com anidrido acético na presença de sulfato de cobre (II) em temperatura ambiente, com altos rendimentos.

  11. Fire and heat resistant laminating resins based on maleimido substituted aromatic cyclotriphosphazene polymer

    Kumar, Devendra (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)

    1987-01-01

    4-Aminophenoxy cyclotriphosphazenes are reacted with maleic anhydride to produce maleamic acids which are converted to the maleimides. The maleimides are polymerized. By selection of starting materials (e.g., hexakis amino or trisaminophenoxy trisphenoxy cyclotriphosphazenes), selection of molar proportions of reactants, use of mixtures of anhydrides and use of dianhydrides as bridging groups a variety of maleimides and polymers are produced. The polymers have high limiting oxygen indices, high char yields and other useful heat and fire resistant properties making them useful as, for example, impregnants of fabrics.

  12. Synthesis and 1,3-Dipolar Cycloaddition Reactions of Chiral Maleimides

    Lubor Fisera

    1997-02-01

    Full Text Available New routes to the synthesis of various novel chiral maleimides are described. The oxabicyclic anhydride 2 readily available exo-Diels-Alder adduct of furan and maleic anhydride was used as a vehicle, which in turn reacted with hydrochlorides of amino acids 3a-f in the presence of Et3N with release of furan to give the requisite novel chiral imides 4a-f in good to moderate yields. The stereoselectivity of 1,3-dipolar cycloaddition of nitrile oxides with prepared chiral imides 4a-f is investigated.

  13. Study of the free and proteic amino acids content in potato tubers by four different methods of preservation, and stored during five months

    Fernandez Gonzalez, J.; Aguirre Alfaro, A.

    1976-01-01

    The qualitative and quantitative content in free and proteic amino acids of the potato tubers stored during five months are studied. The results obtained in tubers treated with maleic hydrazide, isopropyl carbanilate (IPC), refrigeration and gamma irradiation, are compared with those from control tubers without treatment. There are no significant differences in the relative proportion of the amino acids from the tubers treated by different methods, but significant differences do exist when compared with the untreated controls

  14. Chitosan: poly(N-vinylpyrrolidone-alt-itaconic anhydride) nanocapsules—a promising alternative for the lung cancer treatment

    Raţă, Delia Mihaela, E-mail: iureadeliamihaela@yahoo.com [„Apollonia” University of Iasi, Faculty of Medical Dentistry, „Academician Ioan Haulică” Research Institute (Romania); Chailan, Jean-François, E-mail: chailan@univ-tln.fr [University of Sud Toulon-Var, « Matériaux-Polymères-Interfaces-Environnement Marin (MAPIEM) Laboratory (France); Peptu, Cătălina Anişoara, E-mail: catipeptu@yahoo.co.uk [“Gheorghe Asachi” Technical University of Iasi, Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection (Romania); Costuleanu, Marcel, E-mail: mcostuleanu@yahoo.com [University of Medicine and Pharmacy “Grigore T. Popa”- Iaşi, Department of General Pathology, Faculty of Dental Medicine (Romania); Popa, Marcel, E-mail: marpopa2001@yahoo.fr [“Gheorghe Asachi” Technical University of Iasi, Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Environmental Protection (Romania)

    2015-07-15

    This study reports the preparation of novel polymeric nanocapsules based on a natural polymer, chitosan and a synthetic one, poly(N-vinylpyrrolidone-alt-itaconic anhydride) [(poly(NVPAI)] using an interfacial condensation technique. The infrared spectroscopy studies confirmed the crosslinking through the presence of amide bonds, formed between the two polymers chains. The diameter of nanocapsules was found in the range of 126–214 nm and it was determined by dynamic light scattering method. Morphological characterization demonstrated their nano size, the spherical shape of the nanocapsules and the formation of hollow particles. The nanocapsules presented good swelling capacity in aqueous solutions. 5-Fluorouracil (5-FU) loading and release capacity was studied, the processes being controlled by the drug diffusion through the polymeric membrane. The obtained results were encouraging, showing that 5-FU-loaded nanocapsules had 70 % higher apoptotic effect on A549 tumour cells than the drug in free state or mixed with the nanocapsules.

  15. Novel protocol for highly efficient gas-phase chemical derivatization of surface amine groups using trifluoroacetic anhydride

    Duchoslav, Jiri; Kehrer, Matthias; Hinterreiter, Andreas; Duchoslav, Vojtech; Unterweger, Christoph; Fürst, Christian; Steinberger, Roland; Stifter, David

    2018-06-01

    In the current work, chemical derivatization of amine (NH2) groups with trifluoroacetic anhydride (TFAA) as an analytical method to improve the information scope of X-ray photoelectron spectroscopy (XPS) is investigated. TFAA is known to successfully label hydroxyl (OH) groups. With the introduction of a newly developed gas-phase derivatization protocol conducted at ambient pressure and using a catalyst also NH2 groups can now efficiently be labelled with a high yield and without the formation of unwanted by-products. By establishing a comprehensive and self-consistent database of reference binding energies for XPS a promising approach for distinguishing hydroxyl from amine groups is presented. The protocol was verified on different polymers, including poly(allylamine), poly(ethyleneimine), poly(vinylalcohol) and chitosan, the latter one containing both types of addressed chemical groups.

  16. Chitosan: poly( N-vinylpyrrolidone- alt-itaconic anhydride) nanocapsules—a promising alternative for the lung cancer treatment

    Raţă, Delia Mihaela; Chailan, Jean-François; Peptu, Cătălina Anişoara; Costuleanu, Marcel; Popa, Marcel

    2015-07-01

    This study reports the preparation of novel polymeric nanocapsules based on a natural polymer, chitosan and a synthetic one, poly( N-vinylpyrrolidone- alt-itaconic anhydride) [(poly(NVPAI)] using an interfacial condensation technique. The infrared spectroscopy studies confirmed the crosslinking through the presence of amide bonds, formed between the two polymers chains. The diameter of nanocapsules was found in the range of 126-214 nm and it was determined by dynamic light scattering method. Morphological characterization demonstrated their nano size, the spherical shape of the nanocapsules and the formation of hollow particles. The nanocapsules presented good swelling capacity in aqueous solutions. 5-Fluorouracil (5-FU) loading and release capacity was studied, the processes being controlled by the drug diffusion through the polymeric membrane. The obtained results were encouraging, showing that 5-FU-loaded nanocapsules had 70 % higher apoptotic effect on A549 tumour cells than the drug in free state or mixed with the nanocapsules.

  17. Chitosan: poly(N-vinylpyrrolidone-alt-itaconic anhydride) nanocapsules—a promising alternative for the lung cancer treatment

    Raţă, Delia Mihaela; Chailan, Jean-François; Peptu, Cătălina Anişoara; Costuleanu, Marcel; Popa, Marcel

    2015-01-01

    This study reports the preparation of novel polymeric nanocapsules based on a natural polymer, chitosan and a synthetic one, poly(N-vinylpyrrolidone-alt-itaconic anhydride) [(poly(NVPAI)] using an interfacial condensation technique. The infrared spectroscopy studies confirmed the crosslinking through the presence of amide bonds, formed between the two polymers chains. The diameter of nanocapsules was found in the range of 126–214 nm and it was determined by dynamic light scattering method. Morphological characterization demonstrated their nano size, the spherical shape of the nanocapsules and the formation of hollow particles. The nanocapsules presented good swelling capacity in aqueous solutions. 5-Fluorouracil (5-FU) loading and release capacity was studied, the processes being controlled by the drug diffusion through the polymeric membrane. The obtained results were encouraging, showing that 5-FU-loaded nanocapsules had 70 % higher apoptotic effect on A549 tumour cells than the drug in free state or mixed with the nanocapsules

  18. Acylation Modification of Antheraea pernyi Silk Fibroin Using Succinic Anhydride and Its Effects on Enzymatic Degradation Behavior

    Xiufang Li

    2013-01-01

    Full Text Available The degradation rate of tissue engineering scaffolds should match the regeneration rate of new tissues. Controlling the degradation behavior of silk fibroin is an important subject for silk-based tissue engineering scaffolds. In this study, Antheraea pernyi silk fibroin was successfully modified with succinic anhydride and then characterized by zeta potential, ninhydrin method, and FTIR. In vitro, three-dimensional scaffolds prepared with modified silk fibroin were incubated in collagenase IA solution for 18 days to evaluate the impact of acylation on the degradation behavior. The results demonstrated that the degradation rate of modified silk fibroin scaffolds was more rapid than unmodified ones. The content of the β-sheet structure in silk fibroin obviously decreased after acylation, resulting in a high degradation rate. Above all, the degradation behavior of silk fibroin scaffolds could be regulated by acylation to match the requirements of various tissues regeneration.

  19. Polyamic Acid Nanofibers Produced by Needleless Electrospinning

    Oldrich Jirsak

    2010-01-01

    Full Text Available The polyimide precursor (polyamic acid produced of 4,4′-oxydiphthalic anhydride and 4,4′-oxydianiline was electrospun using needleless electrospinning method. Nonwoven layers consisting of submicron fibers with diameters in the range about 143–470 nm on the polypropylene spunbond supporting web were produced. Filtration properties of these nanofiber layers on the highly permeable polypropylene support—namely filtration effectivity and pressure drop—were evaluated. Consequently, these polyamic acid fibers were heated to receive polyimide nanofibers. The imidization process has been studied using IR spectroscopy. Some comparisons with the chemically identical polyimide prepared as the film were made.

  20. 40 CFR 180.1121 - Boric acid and its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate...

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Boric acid and its salts, borax... salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric anhydride... its salts, borax (sodium borate decahydrate), disodium octaborate tetrahydrate, boric oxide (boric...

  1. IgG binding of mugwort pollen allergens and allergoids exposed to simulated gastrointestinal conditions measured by a self-developed ELISA test

    RATKO M. JANKOV; OLGA VUCKOVIC; DANICA DJERGOVIC-PETROVIC; LIDIJA BURAZER; TANJA D. CIRKOVICVELICKOVIC; MARIJA DJ. GAVROVIC-JANKULOVIC; NATALIJA DJ. POLOVIC

    2004-01-01

    This study considers the influence of exposure to simulated gastrointestinal conditions (saliva, gut, intestine and acidic conditions of the gut) on IgG binding of unmodified allergens and three types of LMW allergoids of Artemisia vulgaris pollen extract obtained by means of potassium cyanate, succinic and maleic anhydride. It also concerns the optimization of a self-developed ELISA assay for comparison of the specific IgG binding of mugwort pollen extract and modified mugwort pollen derivat...

  2. Effect of boron compounds on physical, mechanical, and fire properties of injection molded wood plastic composites

    Nadir Ayrilmis; Turgay Akbulut; Turker Dundar; Robert H. White; Fatih Mengeloglu; Zeki Candan; Umit Buyuksari; Erkan Avci

    2011-01-01

    Physical, mechanical, and fire properties of the injection-molded wood flour/polypropylene composites (WPCs) incorporated with different levels of boron compounds, borax/boric acid (BX/BA) (0.5:0.5 wt %) and zinc borate (ZB) (4, 8, or 12 wt %) were investigated. The effect of the coupling agent loading (2, 4, or 6 wt %), maleic anhydride-grafted PP (MAPP), on the...

  3. Bis(PheOH) maleic acid amide-fumaric acid amide photoizomerization induces microsphere-to-gel fiber morphological transition: the photoinduced gelation system.

    Frkanec, Leo; Jokić, Milan; Makarević, Janja; Wolsperger, Kristina; Zinić, Mladen

    2002-08-21

    The photoinduced gelation system based on 1 (non-gelling) to 2 (gelling) molecular photoisomerization in water results by microspheres (1) to gel fibers (2) transformation at the supramolecular level.

  4. Fatty Acid Biosynthesis IX

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  5. Radiolytic degradation of sorbic acid in isolated systems

    Thakur, B.R.; Trehan, I.R.; Arya, S.S.

    1990-01-01

    Effect of Co(60) gamma-irradiation on stability of sorbic acid (SA) in solutions, dough and chapaties has been investigated. SA was highly susceptible to radiolytic degradation in aqueous systems. Rate of degradation decreased with rise in pH. Sugars, hydrocolloids except pectin, citric acid, lactic acid, malic acid, arginine and threonine, catalyzed degradation while oxalic acid, maleic acid, Cu2+, nitrite, nitrate and phthalate had protective effects. SA was more stable in alcohols and vegetable oils than in aqueous solutions. In wheat flour radiolytic degradation of SA was less at lower moisture. Relatively SA was more stable in chapaties than in dough. Gelatinization and addition of oil in dough reduced degradation of SA

  6. synthesis, antimicrobial and phytotoxic activity of amide derivatives of L-(+)-2,3-diacetoxy-4-methoxy-4-oxo-butanoic acid

    Malik, M.; Khan, S.W.; Zaidi, J.H.; Khan, K.M.; Hussain, S.

    2014-01-01

    A short, versatile, an efficient asymmetric synthesis of substituted aromatic amides is described. L-Tartaric acid conveniently converted into diacetyl-L-tartaric anhydride. Diacetyl-L-tartaric anhydride was then transformed into half ester which was then reacted with substituted anilines to yield respective chiral amides 3-8. These chiral amides were characterized by spectroscopic techniques i.e. 1H-NMR, 13C-NMR, IR and mass spectrometry. Amides 3-8 were tested for their antimicrobial as well as phytotoxic activities. (author)

  7. Epoxy/anhydride thermosets modified with end-capped star polymers with poly(ethyleneimine cores of different molecular weight and poly(ε–caprolactone arms

    C. Acebo

    2015-09-01

    Full Text Available Multiarm star polymers, with a hyperbranched poly(ethyleneimine (PEI core and poly(ε-caprolactone (PCL arms end-capped with acetyl groups were synthesized by ring-opening polymerization of ε-caprolactone from PEI cores of different molecular weight. These star polymers were used as toughening agents for epoxy/anhydride thermosets. The curing process was studied by calorimetry, thermomechanical analysis and infrared spectroscopy. The final properties of the resulting materials were determined by thermal and mechanical tests. The addition of the star polymers led to an improvement up to 130% on impact strength and a reduction in the thermal stresses up to 55%. The structure and molecular weight of the modifier used affected the morphology of the resulting materials. Electron microscopy showed phase-separated morphologies with nano-sized fine particles well adhered to the epoxy/anhydride matrix when the higher molecular weight modifier was used.

  8. Effects of single and double bonds in linkers on colorimetric and fluorescent sensing properties of polyving akohol grafting rhodamine hydrazides.

    Geng, Tong-Mou; Wang, Xie; Wang, Zhu-Qing; Chen, Tai-Jie; Zhu, Hai; Wang, Yu

    2015-03-01

    Two rhodamine derivatives, N-mono-maleic acid amide-N'-rhodamine B hydrazide (MRBH) and N-mono-succinic acid amide-N'-rhodamine 6G hydrazide (SR6GH), were synthesized by amidation with maleic anhydride (MAH), succinic anhydride (SAH) and rhodamine B hydrazide, rhodamine 6G hydrazide, which were identified by FTIR, (1)H NMR and elemental analysis. Two water-soluble fluorescent materials (PVA-MRBH and PVA-SR6GH) were prepared via esterification reaction with N-mono-maleic acyl chloride amide-N'-rhodamine B hydrazide (MRBHCl) or N-mono-maleic acyl chloride amide-N'-rhodamine 6G hydrazide (SR6GHCl) and poly(vinyl alcohol) (PVA) in DMSO solution. The sensing behaviors of PVA-MRBH and PVA-SR6GH were explored by recording the fluorescence spectra in completely aqueous solution. Upon the addition of Cu(2+) and Fe(3+) ions to the aqueous solution of PVA-MRBH, visual color change from rose pink to amaranth and orange for Cu(2+) and Fe(3+) ions, respectively, and fluorescence quenching were observed. Titration of Cu(2+), Fe(3+), Cr(3+) or Hg(2+) into the aqueous solution of PVA-SR6GH, although they induced fluorescence enhancement, only Fe(3+) made the color changing from colorless to yellow. Moreover, other metal ions did not induce obvious changes to color and the fluorescence spectra.

  9. The role of different nonspecific interactions and halogen contacts in the crystal structure organization of 5-chloroisatoic anhydride.

    Pogoda, Dorota; Matera-Witkiewicz, Agnieszka; Listowski, Marcin; Janczak, Jan; Videnova-Adrabinska, Veneta

    2018-03-01

    The crystal structure of 6-chloro-2,4-dihydro-1H-3,1-benzoxazine-2,4-dione (5-chloroisatoic anhydride), C 8 H 4 ClNO 3 , has been determined and analysed in terms of connectivity and packing patterns. The compound crystallizes in the noncentrosymmetric space group Pna2 1 with one molecule in the asymmetric unit. The role of different weak interactions is discussed with respect to three-dimensional network organization. Molecules are extended into one-dimensional helical arrangements, making use of N-H...O hydrogen bonds and π-π interactions. The helices are further organized into monolayers via weak C-H...O and lone pair-π interactions, and the monolayers are packed into a noncentrosymmetric three-dimensional architecture by C-Cl...π interactions and C-H...Cl and Cl...Cl contacts. A Hirshfeld surface (HS) analysis was carried out and two-dimensional (2D) fingerprint plots were generated to visualize the intermolecular interactions and to provide quantitative data for their relative contributions. In addition, tests of the antimicrobial activity and in vitro cytotoxity effects against fitoblast L929 were performed and are discussed.

  10. Using monosaccharide anhydrides to estimate the impact of wood combustion on fine particles in the Helsinki Metropolitan Area

    Saarnio, K.; Saarikoski, S. [Finnish Meteorological Institute, Helsinki (Finland); Niemi, J.V. [HSY Helsinki Region Environmental Services Authority, Helsinki (Finland)

    2012-11-01

    The spatiotemporal variation of ambient particles under the influence of biomass burning emissions was studied in the Helsinki Metropolitan Area (HMA) in selected periods during 2005-2009. Monosaccharide anhydrides (MAs; levoglucosan, mannosan and galactosan), commonly known biomass burning tracers, were used to estimate the wood combustion contribution to local particulate matter (PM) concentration levels at three urban background sites close to the city centre, and at three suburban sites influenced by local small-scale wood combustion. In the cold season (October-March), the mean MAs concentrations were 115-225 ng m{sup -3} and 83-98 ng m{sup -} {sup 3}at the suburban and urban sites, respectively. In the warm season, the mean MAs concentrations were low (19-78 ng m{sup -3}), excluding open land fire smoke episodes (222-378 ng m{sup -}3{sup )}. Regionally distributed wood combustion particles raised the levels over the whole HMA while particles from local wood combustion sources raised the level at suburban sites only. The estimated average contribution of wood combustion to fine particles (PM{sub 2.5}) ranged from 18% to 29% at the urban sites and from 31% to 66% at the suburban sites in the cold season. The PM measurements from ambient air and combustion experiments showed that the proportions of the three MAs can be utilised to separate the wildfire particles from residential wood combustion particles. (orig.)

  11. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  12. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M.; Gil, Francisco J.

    2016-01-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  13. Micelles Formed by Polypeptide Containing Polymers Synthesized Via N-Carboxy Anhydrides and Their Application for Cancer Treatment

    Dimitrios Skoulas

    2017-06-01

    Full Text Available The development of multifunctional polymeric materials for biological applications is mainly guided by the goal of achieving the encapsulation of pharmaceutical compounds through a self-assembly process to form nanoconstructs that control the biodistribution of the active compounds, and therefore minimize systemic side effects. Micelles are formed from amphiphilic polymers in a selective solvent. In biological applications, micelles are formed in water, and their cores are loaded with hydrophobic pharmaceutics, where they are solubilized and are usually delivered through the blood compartment. Even though a large number of polymeric materials that form nanocarrier delivery systems has been investigated, a surprisingly small subset of these technologies has demonstrated potentially curative preclinical results, and fewer have progressed towards commercialization. One of the most promising classes of polymeric materials for drug delivery applications is polypeptides, which combine the properties of the conventional polymers with the 3D structure of natural proteins, i.e., α-helices and β-sheets. In this article, the synthetic pathways followed to develop well-defined polymeric micelles based on polypeptides prepared through ring-opening polymerization (ROP of N-carboxy anhydrides are reviewed. Among these works, we focus on studies performed on micellar delivery systems to treat cancer. The review is limited to systems presented from 2000–2017.

  14. Synthesis and characterization of poly(vinylphosphonic acid) for proton exchange membranes in fuel cells

    Bingoel, Bahar

    2007-07-01

    Vinylphosphonic acid (VPA) was polymerized at 80 C by free radical polymerization to give polymers (PVPA) of different molecular weight depending on the initiator concentration. The highest molecular weight, Mw, achieved was 6.2 x 10{sup 4} g/mol as determined by static light scattering. High resolution nuclear magnetic resonance (NMR) spectroscopy was used to gain microstructure information about the polymer chain. Information based on tetrad probabilities was utilized to deduce an almost atactic configuration. In addition, {sup 13}CNMR gave evidence for the presence of head-head and tail-tail links. Refined analysis of the {sup 1}H NMR spectra allowed for the quantitative determination of the fraction of these links (23.5 percent of all links). Experimental evidence suggested that the polymerization proceeded via cyclopolymerization of the vinylphosphonic acid anhydride as an intermediate. Titration curves indicated that high molecular weight poly(vinylphosphonic acid) PVPA behaved as a monoprotic acid. Proton conductors with phosphonic acid moieties as protogenic groups are promising due to their high charge carrier concentration, thermal stability, and oxidation resistivity. Blends and copolymers of PVPA have already been reported, but PVPA has not been characterized sufficiently with respect to its polymer properties. Therefore, we also studied the proton conductivity behaviour of a well-characterized PVPA. PVPA is a conductor; however, the conductivity depends strongly on the water content of the material. The phosphonic acid functionality in the resulting polymer, PVPA, undergoes condensation leading to the formation of phosphonic anhydride groups at elevated temperature. Anhydride formation was found to be temperature dependent by solid state NMR. Anhydride formation affects the proton conductivity to a large extent because not only the number of charge carriers but also the mobility of the charge carriers seems to change. (orig.)

  15. [Respiratory manifestations after exposure to sulfurous anhydride in wine-cellar workers: 6 case reports].

    Testud, F; Matray, D; Lambert, R; Hillion, B; Blanchet, C; Teisseire, C; Thibaudier, J M; Raoux, C; Pacheco, Y

    2000-02-01

    Sulfite treatment of wine [a process exploiting the biocidal and anti-oxidant properties of sulfur dioxide (SO2)] involves the use of liquified gas, aqueous solutions or bisulfites, i.e. the salts of sulfurous acid which slowly release SO2. This procedure can result in repeated exposures of operators to significant amounts of SO2. However, risks associated with the use of SO2 are greatly under-estimated by wine producers and wine-cellar workers. We report on 6 cases of respiratory symptoms attributable to SO2 identified during a survey of wine-cellars in the French Beaujolais district. Their pathogenesis is discussed after an overview of the occupational toxicology of SO2.

  16. Effect of propylene-graft-maleic anhydride and the co-intercalant cis-13- docosenamide on the structure and mechanical properties of PP/organoclay clay systems; Efeito do polipropileno enxertado com anidrido maleico e do co-intercalante cis-13-docosenamida na estrutura e propriedades mecanicas de sistemas PP/argila organofilica

    Silva Neto, J.E. da; Almeida, T.G.; Leite, R.C.N.; Carvalho, L.H., E-mail: joaoemidio2@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil); Alves, T.S. [Universidade Federal do Piaui, PI (Brazil)

    2014-07-01

    In this work, PP/organoclay hybrids were prepared by melt intercalation and the effect of adding different amounts of a compatibilizer (PP-G-MA) and a co-intercalating agent (cis-13-docosenamide) to maximize the compatibility between filler and the polymeric matrix were investigated. The systems were processed under a single condition on a co-rotating twin screw extruder. The morphology and mechanical properties of the nanocomposites were investigated. The hybrids were characterized by x-ray diffraction, tensile (ASTM D638) and impact properties (ASTM D256). The results indicated an approximately 45% increase of the basal interplanar distance d{sub (001)} of the clay on hybrid systems, containing both compatibilizing and co-intercalating agents, forming intercalated structures. The tensile strength of the systems was not affected significantly by compatibilizer and/or co-intercalant addition, however, increases of up to 30% in elastic modulus and 48% in impact strength were obtained. (author)

  17. Evaluation of methods for measuring relative permeability of anhydride from the Salado Formation: Sensitivity analysis and data reduction

    Christiansen, R.L.; Kalbus, J.S.

    1997-05-01

    This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relative permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties

  18. Preparation and characterization of new succinic anhydride grafted Posidonia for the removal of organic and inorganic pollutants

    Chadlia, Aguir; Mohamed, Khalfaoui; Najah, Laribi; Farouk, M'henni Mohamed

    2009-01-01

    The present work describes the preparation of new chelating materials derived from Posidonia for adsorption of heavy metal ions and dye in aqueous solution. The first part of this report deals with the chemical modification of Posidonia with succinic anhydride. Thus, we have obtained materials with various succinyl groups contents (from 29.8 to 39.2%). The obtained materials were characterized by infrared and CP/MAS 13 C-RMN spectroscopy. The rate of succinyl content of the modified Posidonia was determined by saponification. The second part is devoted to the evaluation of the adsorption capacity of metal ions such as Pb 2+ and dye such as direct red 75 (DR75) for raw and modified Posidonia materials. Two possible ways for the adsorption of these pollutants are studied: adsorption of each pollutant alone onto these supports, and cumulative adsorption of both metal ions and dye on the same supports. In the last case, the pollutant is adsorbed successively from two different solutions. The effects of pollutants concentration, support dose, pH, contact time and temperature on adsorption of each pollutant were evaluated. The results showed that the raw and modified Posidonia show a high capacity for Pb 2+ adsorption. The capacity of modified Posidonia saturated with Pb 2+ to adsorb DR75 was found 147.12 mg g -1 . While the adsorption capacity of the nonsaturated modified Posidonia was equal to 81.63 mg g -1 . The pseudo-second-order model was the best to represent adsorption kinetics of DR75. The pseudo-first-order model would be better for fitting the adsorption kinetic process of Pb 2+ onto raw and modified Posidonia. The adsorption isotherms of Pb 2+ could be described by the Jossens equation model. Any of the tested models can describe the adsorption of DR75 onto the studied materials. These results confirm that the adsorption of DR75 from aqueous solution was multilayer.

  19. Alveolar macrophages have a dual role in a rat model for trimellitic anhydride-induced occupational asthma

    Valstar, Dingena L.; Schijf, Marcel A.; Nijkamp, Frans P.; Storm, Gert; Arts, Josje H.E.; Kuper, C. Frieke; Bloksma, Nanne; Henricks, Paul A.J.

    2006-01-01

    Occupational exposure to low molecular weight chemicals, like trimellitic anhydride (TMA), can result in occupational asthma. Alveolar macrophages (AMs) are among the first cells to encounter inhaled compounds. These cells can produce many different mediators that have a putative role in asthma. In this study, we examined the role of AMs in lung function and airway inflammation of rats exposed to TMA. Female Brown Norway rats were sensitized by dermal application of TMA or received vehicle alone on days 0 and 7. One day before challenge, rats received intratracheally either empty or clodronate-containing liposomes to deplete the lungs of AMs. On day 21, all rats were challenged by inhalation of TMA in air. Lung function parameters were measured before, during, within 1 h after, and 24 h after challenge. IgE levels and parameters of inflammation and tissue damage were assessed 24 h after challenge. Sensitization with TMA led to decreased lung function parameters during and within 1 h after challenge as compared to non-sensitized rats. AM depletion alleviated the TMA-induced drop in lung function parameters and induced a faster recovery compared to sham-depleted TMA-sensitized rats. It also decreased the levels of serum IgE 24 h after challenge, but did not affect the sensitization-dependent increase in lung lavage fluid IL-6 and tissue TNF-α levels. In contrast, AM depletion augmented the TMA-induced tissue damage and inflammation 24 h after challenge. AMs seem to have a dual role in this model for TMA-induced occupational asthma since they potentiate the immediate TMA-induced decrease in lung function but tended to dampen the TMA-induced inflammatory reaction 24 h later

  20. Chemical modification with phthalic anhydride and chitosan: Viable options for the stabilization of raw starch digesting amylase from Aspergillus carbonarius.

    Nwagu, Tochukwu Nwamaka; Okolo, Bartholomew; Aoyagi, Hideki; Yoshida, Shigeki

    2017-06-01

    The raw starch digesting type of amylase (RSDA) presents greater opportunities for process efficiency at cheaper cost and shorter time compared to regular amylases. Chemical modification is a simple and rapid method toward their stabilization for a wider application. RSDA from Aspergillus carbonarius was modified with either phthalic anhydride (PA) or chitosan. Activity retention was 87.3% for PA-modified and 80.9% for chitosan-modified RSDA. Optimum pH shifted from 5 to 7 after PA-modification. Optimum temperature changed from 30°C (native) to 30-40°C and 60°C for PA-modified and chitosan-modified, respectively. Activation energy (kJmol -1 ) for hydrolysis was 13.5, 12.7, and 10.2 while the activation energy for thermal denaturation was 32.8, 80.3, 81.9 for free, PA-modified and chitosan-modified, respectively. The specificity constants (V max /K m ) were 73.2 for PA-modified, 63.1 for chitosan-modified and 77.1 for native RSDA. The half-life (h) of the RSDA at 80°C was increased from 6.1 to 25.7 for the PA-modified and 138.6 for the chitosan derivative. Modification also led to increase in D value, activation enthalpy and Gibbs free energy of enzyme deactivation. Fluorescence spectra showed that center of spectral mass decreased for the PA-modified RSDA but increased for chitosan modified RSDA. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Polyamic Acid Nanofibers Produced by Needleless Electro spinning

    Jirsak, O.; Sanetrnik, F.; Hruza, J.; Chaloupek, J.; Sysel, P.

    2010-01-01

    The polyimide precursor (polyamic acid) produced of 4,4'-oxydiphthalic anhydride and 4,4'-oxydianiline was electrospun using needleless electrospinning method. Nonwoven layers consisting of submicron fibers with diameters in the range about 143-470 nm on the polypropylene spunbond supporting web were produced. Filtration properties of these nanofiber layers on the highly permeable polypropylene support namely filtration effectivity and pressure drop were evaluated. Consequently, these polyamic acid fibers were heated to receive polyimide nanofibers. The imidization process has been studied using IR spectroscopy. Some comparisons with the chemically identical polyimide prepared as the film were made.

  2. Cocrystals of the antimalarial drug 11-azaartemisinin with three alkenoic acids of 1:1 or 2:1 stoichiometry.

    Nisar, Madiha; Wong, Lawrence W Y; Sung, Herman H Y; Haynes, Richard K; Williams, Ian D

    2018-06-01

    The stoichiometry, X-ray structures and stability of four pharmaceutical cocrystals previously identified from liquid-assisted grinding (LAG) of 11-azaartemisinin (11-Aza; systematic name: 1,5,9-trimethyl-14,15,16-trioxa-11-azatetracyclo[10.3.1.0 4,13 .0 8,13 ]hexadecan-10-one) with trans-cinnamic (Cin), maleic (Mal) and fumaric (Fum) acids are herein reported. trans-Cinnamic acid, a mono acid, forms 1:1 cocrystal 11-Aza:Cin (1, C 15 H 23 NO 4 ·C 9 H 8 O 2 ). Maleic acid forms both 1:1 cocrystal 11-Aza:Mal (2, C 15 H 23 NO 4 ·C 4 H 4 O 4 ), in which one COOH group is involved in self-catenation, and 2:1 cocrystal 11-Aza 2 :Mal (3, 2C 15 H 23 NO 4 ·C 4 H 4 O 4 ). Its isomer, fumaric acid, only affords 2:1 cocrystal 11-Aza 2 :Fum (4). All cocrystal formation appears driven by acid-lactam R 2 2 (8) heterosynthons with short O-H...O=C hydrogen bonds [O...O = 2.56 (2) Å], augmented by weaker C=O...H-N contacts. Despite a better packing efficiency, cocrystal 3 is metastable with respect to 2, probably due to a higher conformational energy for the maleic acid molecule in its structure. In each case, the microcrystalline powders from LAG were useful in providing seeding for the single-crystal growth.

  3. Synthesis of 2-(6-Acetamidobenzothiazolethioacetic Acid Esters as Photosynthesis Inhibitors

    Dusan Loos

    1998-04-01

    Full Text Available The synthesis and photosynthesis-inhibiting activity of 13 new 2-(6-acetamidobenzothiazolethioacetic acid esters are reported. The new compounds were prepared by acetylation of 2-(alkoxycarbonylmethylthio-6-aminobenzothiazoles with acetic anhydride. The structure of the compounds was verified by 1H NMR spectra. The compounds inhibit photosynthetic electron transfer in spinach chloroplasts. The structure - activity relation was studied. Lipophilicity was found to influence substantially photosynthetic electron transfer.

  4. Preparation and characterization of new succinic anhydride grafted Posidonia for the removal of organic and inorganic pollutants

    Chadlia, Aguir, E-mail: aguirc@yahoo.ca [Unite de Recherche de Chimie Appliquee et Environnement, Faculte des Sciences de Monastir, 5000 (Tunisia); Mohamed, Khalfaoui [Unite de Recherche de Physique Quantique, Faculte des Sciences de Monastir, 5000 (Tunisia); Najah, Laribi; Farouk, M' henni Mohamed [Unite de Recherche de Chimie Appliquee et Environnement, Faculte des Sciences de Monastir, 5000 (Tunisia)

    2009-12-30

    The present work describes the preparation of new chelating materials derived from Posidonia for adsorption of heavy metal ions and dye in aqueous solution. The first part of this report deals with the chemical modification of Posidonia with succinic anhydride. Thus, we have obtained materials with various succinyl groups contents (from 29.8 to 39.2%). The obtained materials were characterized by infrared and CP/MAS {sup 13}C-RMN spectroscopy. The rate of succinyl content of the modified Posidonia was determined by saponification. The second part is devoted to the evaluation of the adsorption capacity of metal ions such as Pb{sup 2+} and dye such as direct red 75 (DR75) for raw and modified Posidonia materials. Two possible ways for the adsorption of these pollutants are studied: adsorption of each pollutant alone onto these supports, and cumulative adsorption of both metal ions and dye on the same supports. In the last case, the pollutant is adsorbed successively from two different solutions. The effects of pollutants concentration, support dose, pH, contact time and temperature on adsorption of each pollutant were evaluated. The results showed that the raw and modified Posidonia show a high capacity for Pb{sup 2+} adsorption. The capacity of modified Posidonia saturated with Pb{sup 2+} to adsorb DR75 was found 147.12 mg g{sup -1}. While the adsorption capacity of the nonsaturated modified Posidonia was equal to 81.63 mg g{sup -1}. The pseudo-second-order model was the best to represent adsorption kinetics of DR75. The pseudo-first-order model would be better for fitting the adsorption kinetic process of Pb{sup 2+} onto raw and modified Posidonia. The adsorption isotherms of Pb{sup 2+} could be described by the Jossens equation model. Any of the tested models can describe the adsorption of DR75 onto the studied materials. These results confirm that the adsorption of DR75 from aqueous solution was multilayer.

  5. Energy filtering transmission electron microscopy immunocytochemistry and antigen retrieval of surface layer proteins from Tannerella forsythensis using microwave or autoclave heating with citraconic anhydride

    2012-01-01

    Tannerella forsythensis (Bacteroides forsythus), an anaerobic Gram-negative species of bacteria that plays a role in the progression of periodontal disease, has a unique bacterial protein profile. It is characterized by two unique protein bands with molecular weights of more than 200 kDa. It also is known to have a typical surface layer (S-layer) consisting of regularly arrayed subunits outside the outer membrane. We examined the relationship between high molecular weight proteins and the S-layer using electron microscopic immunolabeling with chemical fixation and an antigen retrieval procedure consisting of heating in a microwave oven or autoclave with citraconic anhydride. Immunogold particles were localized clearly at the outermost cell surface. We also used energy-filtering transmission electron microscopy (EFTEM) to visualize 3, 3′-diaminobenzidine tetrahydrochloride (DAB) reaction products after microwave antigen retrieval with 1% citraconic anhydride. The three-window method for electron spectroscopic images (ESI) of nitrogen by the EFTEM reflected the presence of moieties demonstrated by the DAB reaction with horseradish peroxidase (HRP)-conjugated secondary antibodies instead of immunogold particles. The mapping patterns of net nitrogen were restricted to the outermost cell surface. PMID:22984898

  6. Synthesis and characterization of acrylated Parkia biglobosa medium oil alkyds

    E.T. Akintayo

    2004-12-01

    Full Text Available Acrylated Parkia biglobosa medium oil alkyd prepared by the reaction between an acid containing acrylic copolymer and a monoglyceride followed by the addition of polyol and dibasic acid has been investigated for improved properties. The results revealed that acid functional acrylic copolymers containing maleic anhydride as a functional co-monomer can successfully be used to modify alkyd resins yielding acrylated resins with better drying, flexibility, scratch hardness, impact resistance and chemical resistance properties. However there exist optimum levels for modification of alkyds with such copolymers beyond which certain film properties are adversely affected.

  7. Optimization of dilute acid hydrolysis of Enteromorpha

    Feng, Dawei; Liu, Haiyan; Li, Fuchao; Jiang, Peng; Qin, Song

    2011-11-01

    Acid hydrolysis is a simple and direct way to hydrolyze polysaccharides in biomass into fermentable sugars. To produce fermentable sugars effectively and economically for fuel ethanol, we have investigated the hydrolysis of Enteromorpha using acids that are typically used to hydrolyze biomass: H2SO4, HCl, H3PO4 and C4H4O4 (maleic acid). 5%(w/w) Enteromorpha biomass was treated for different times (30, 60, and 90 min) and with different acid concentrations (0.6, 1.0, 1.4, 1.8, and 2.2%, w/w) at 121°C. H2SO4 was the most effective acid in this experiment. We then analyzed the hydrolysis process in H2SO4 in detail using high performance liquid chromatography. At a sulfuric acid concentration of 1.8% and treatment time of 60 min, the yield of ethanol fermentable sugars (glucose and xylose) was high, (230.5 mg/g dry biomass, comprising 175.2 mg/g glucose and 55.3 mg/g xylose), with 48.6% of total reducing sugars being ethanol fermentable. Therefore, Enteromorpha could be a good candidate for production of fuel ethanol. In future work, the effects of temperature and biomass concentration on hydrolysis, and also the fermentation of the hydrolysates to ethanol fuel should be focused on.

  8. Synthesis and characterization of polyesters derived from glycerol and phthalic acid

    Danilo Hansen Guimarães

    2007-09-01

    Full Text Available The production of polyester via polycondensation between glycerol and phthalic acid using dibutyltin dilaurate is reported. Three glycerol:phthalic acid molar ratio used for the bulk polymerization were: 2:2; 2:3 and 2:4. FTIR confirmed the esterification of glycerol by the acid for all the polymers. DSC indicated no crystallinity, although the XRD plots indicate a very incipient crystallinity for the polymers containing higher amounts of phthalic anhydride. Scanning electron microscopy results indicates high homogeneity for all the polymers prepared.

  9. Metabolic Engineering of Saccharomyces cerevisiae Microbial Cell Factories for Succinic Acid Production

    Otero, José Manuel; Nielsen, Jens; Olsson, Lisbeth

    2007-01-01

    anhydride. There are several biomass platforms, all prokaryotic, for succinic acid production; however, overproduction of succinic acid in S. cerevisiae offers distinct process advantages. For example, S. cerevisiae has been awarded GRAS status for use in human consumables, grows well at low p......H significantly minimizing purification and acidification costs associated with organic acid production, and can utilize diverse carbon substrates in chemically defined medium. S. cerevisiae offers the unique advantage of being the most well characterized eukaryotic expression system. Here we describe the use...

  10. Radiation curable coatings containing hydroxy functional polyethers and polyesters of monoethylenic acids or hydroxy esters thereof

    Kaufman, M.L.

    1978-01-01

    Relatively water insoluble hydroxy functional monoethylenic polyethers or polyesters of monoethylenic carboxylic acids or hydroxy alkyl esters thereof are formed by adducting the monoethylenic acid or its hydroxy ester with an anhydride selected from monoepoxides, lactones, or mixtures thereof in the presence of a Lewis acid catalyst, such as BF 3 etherate, at a temperature below that at which the unsaturation is consumed, typically about 30 to 70 0 C. These adducts are of low volatility and of low toxicity and can be radiation cured in admixture with polyacrylates to form coatings having improved resistance to elevated temperature exposure

  11. Isotope derivative assay of human serum bile acids

    Pageaux, J.F.; Duperray, B.; Dubois, M.; Pacheco, H.

    1981-01-01

    A new method for the selective determination of the main serum bile acids has been developed. Serum samples with added 14 C-labeled bile acid were submitted to deproteinization, alkaline hydrolysis, methylation, and were then chromatographed on alumina before acetylation with 2 microliters of [ 3 H]acetic anhydride. Excess reagent was eliminated by evaporation; elimination of residual tritiated contaminants and separation of the doubly labeled bile acid derivatives were obtained by thin-layer chromatography, column chromatography on Lipidex 5000, and crystallization. The sensitivity of the method is about 10 pmol of each bile acid. Analyses of seven sera with normal or elevated concentration of bile acids by the proposed method and gas-liquid chromatography showed a close correlation

  12. Green acetylation of solketal and glycerol formal by heterogeneous acid catalysts to form a biodiesel fuel additive.

    Dodson, Jennifer R; Leite, Thays d C M; Pontes, Nathália S; Peres Pinto, Bianca; Mota, Claudio J A

    2014-09-01

    A glut of glycerol has formed from the increased production of biodiesel, with the potential to integrate the supply chain by using glycerol additives to improve biodiesel properties. Acetylated acetals show interesting cold flow and viscosity effects. Herein, a solventless heterogeneously catalyzed process for the acetylation of both solketal and glycerol formal to new products is demonstrated. The process is optimized by studying the effect of acetylating reagent (acetic acid and acetic anhydride), reagent molar ratios, and a variety of commercial solid acid catalysts (Amberlyst-15, zeolite Beta, K-10 Montmorillonite, and niobium phosphate) on the conversion and selectivities. High conversions (72-95%) and selectivities (86-99%) to the desired products results from using acetic anhydride as the acetylation reagent and a 1:1 molar ratio with all catalysts. Overall, there is a complex interplay between the solid catalyst, reagent ratio, and acetylating agent on the conversion, selectivities, and byproducts formed. The variations are discussed and explained in terms of reactivity, thermodynamics, and reaction mechanisms. An alternative and efficient approach to the formation of 100% triacetin involves the ring-opening, acid-catalyzed acetylation from solketal or glycerol formal with excesses of acetic anhydride. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Substantial rate enhancements of the esterification reaction of phthalic anhydride with methanol at high pressure and using supercritical CO2 as a co-solvent in a glass microreactor

    Benito-Lopez, F.; Tiggelaar, Roald M.; Salblut, K.; Huskens, Jurriaan; Egberink, Richard J.M.; Reinhoudt, David; Gardeniers, Johannes G.E.; Verboom, Willem

    2007-01-01

    The esterification reaction of phthalic anhydride with methanol was performed at different temperatures in a continuous flow glass microreactor at pressures up to 110 bar and using supercritical CO2 as a co-solvent. The design is such that supercritical CO2 can be generated inside the microreactor.

  14. Anodic incineration of phthalic anhydride using RuO2–IrO2–SnO2–TiO2 coated on Ti anode

    S. Chellammal

    2016-11-01

    Full Text Available Phthalic anhydride is a toxic and non-biodegradable organic compound and is widely used for the production of dyes. This paper has investigated the electrochemical oxidation of phthalic anhydride in an undivided cell at different experimental parameters such as pH, current density and supporting electrolytes on the anode of titanium substrate coated with mixed metal oxides of RuO2, IrO2, SnO2 and TiO2 prepared by thermal decomposition method. The surface morphology and the structure of the above anode were characterized by scanning electron microscopy, electron dispersion microscopy and X-ray diffraction. The study shows that the electrode exhibits good electro catalytic activity together with chemical stability during the treatment of the phthalic anhydride. At pH 3, the maximum removal of COD of 88% with energy consumption of 30.5 kW h kg−1 was achieved by the addition of 10 g l−1 NaCl in 0.2 mol dm−3 Na2SO4 at 5 Adm−2. This electrolytic investigation offers an attractive alternative method for the destruction of industrial effluents contaminated with phthalic anhydride.

  15. [Clarification on publications concerning the synthesis of acetylsalicylic acid].

    Lafont, O

    1996-01-01

    Charles Frédéric Gerhardt (1816-1856) mentioned in his Traité de chimie Organique (1854) a publication, in French (realized in 1852 but published in 1853) entitled "Researches on anhydrous organic acids" in which, was reported the reaction of sodium salicylate with acetyl chloride. He thought that the reaction product was an acid anhydride, but obtained really crude acetylsalicylic acid. Later on, but also in 1853, a publication in german, by the same author related the same experiments. Surprisingly only the second publication has been mentioned in most of the historical studies on the subject. Acetyl salicylic acid was identified and synthesised in 1859 by von Gilm by another method and the product obtained by Gerhardt was identified to it in 1869.

  16. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  17. Mineralization of herbicide 3,6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton

    Brillas, Enric; Banos, Miguel Angel; Garrido, Jose Antonio

    2003-01-01

    The mineralization of acidic aqueous solutions with 230 and 115 ppm of herbicide 3,6-dichloro-2-methoxybenzoic acid (dicamba) in 0.05 M Na 2 SO 4 of pH 3.0 has been studied by electro-Fenton and photoelectro-Fenton using a Pt anode and an O 2 -diffusion cathode, where oxidizing hydroxyl radicals are produced from Fenton's reaction between added Fe 2+ and H 2 O 2 generated by the cathode. While electro-Fenton only yields 60-70% mineralization, photoelectro-Fenton allows a fast and complete depollution of herbicide solutions, even at low currents, by the action of UV irradiation. In both treatments, the initial chlorine is rapidly released to the medium as chloride ion. Comparative electrolyses by anodic oxidation in the absence and presence of electrogenerated H 2 O 2 give very poor degradation. The dicamba decay follows a pseudo-first-order reaction, as determined by reverse-phase chromatography. Formic, maleic and oxalic acids have been detected in the electrolyzed solutions by ion-exclusion chromatography. In electro-Fenton, all formic acid is transformed into CO 2 , and maleic acid is completely converted into oxalic acid, remaining stable Fe 3+ -oxalato complexes in the solution. The fast mineralization of such complexes by UV light explains the highest oxidative ability of photoelectro-Fenton

  18. Acid dissociation constant and apparent nucleophilicity of lysine-501 of the alpha-polypeptide of sodium and potassium ion activated adenosinetriphosphatase

    Xu, K.Y.

    1989-01-01

    A combination of competitive labeling with [ 3 H]acetic anhydride and immunoaffinity chromatography is described that permits the assignment of the acid dissociation constant and the absolute nucleophilicity of individual lysines in a native enzyme. The acid dissociation constant of lysine-501 of the alpha-polypeptide in native (Na+ + K+)-ATPase was determined. This lysine had a normal pKa of 10.4. The rate constant for the reaction of the free base of lysine-501 with acetic anhydride at 10 degrees C is 400 M-1 s-1. This value is only 30% that for a fully accessible lysine in a protein. The lower than normal apparent nucleophilicity suggests that lysine-501 is hindered from reacting with its intrinsic nucleophilicity by the tertiary structure of the enzyme and is consistent with its location within a pocket that forms the active site upon the surface of the native protein

  19. pH-metric studies on the mixed ligand-chelates of oxovanadium(IV) with 2,2'-bipyridyl and dicarboxylic or hydroxy acids

    Jain, A K; Kumari, V; Chaturvedi, G K [Agra Coll. (India)

    1978-12-01

    The interaction of vanadyl ion with 2,2'-bipyridyl and some dicarboxylic or hydroxy acids (where dicarboxylic acid = oxalic (OX), malonic (MALN), phthalic (PHA), maleic (MAL) acids; hydroxy acids salicylic (SA), 5-sulfosalicylic (5-SSA), mandelic (MAND) and glycollic (HG) acids was studied potentiometrically. pH-titrations of the reaction mixtures containing vanadyl sulphate, 2,2'-bipyridyl and one of the dicarboxylic or hydroxy acids (OX, MALN, PHA, MAL, SA, 5-SSA, MAND and HG acids) in equimolar ratio exhibited the formation of 1:1:1 mixed ligand chelates. The formation constants of the resulting biligand chelates were calculated, at 35/sup +/-1/sup 0/ and 45/sup +/-1/sup 0/ and also the thermodynamic functions viz. ..delta..F, ..delta..H and ..delta..S (..mu..=0.1M KNO/sub 3/) (auth.).

  20. pH-metric studies on the mixed ligand-chelates of oxovanadium(IV) with 2,2'-bipyridyl and dicarboxylic or hydroxy acids

    Jain, A.K.; Kumari, V.; Chaturvedi, G.K.

    1978-01-01

    The interaction of vanadyl ion with 2,2'-bipyridyl and some dicarboxylic or hydroxy acids (where dicarboxylic acid = oxalic (OX), malonic (MALN), phthalic (PHA), maleic (MAL) acids; hydroxy acids salicylic (SA), 5-sulfosalicylic (5-SSA), mandelic (MAND) and glycollic (HG) acids was studied potentiometrically. pH-titrations of the reaction mixtures containing vanadyl sulphate, 2,2'-bipyridyl and one of the dicarboxylic or hydroxy acids (OX, MALN, PHA, MAL, SA, 5-SSA, MAND and HG acids) in equimolar ratio exhibited the formation of 1:1:1 mixed ligand chelates. The formation constants of the resulting biligand chelates were calculated, at 35 + -1 0 and 45 + -1 0 and also the thermodynamic functions viz. ΔF, ΔH and ΔS (μ=0.1M KNO 3 ) (auth.)

  1. Design of amine modified polymer dispersants for liquid-phase exfoliation of transition metal dichalcogenide nanosheets and their photodetective nanocomposites

    Lee, Jinseong; Hahnkee Kim, Richard; Yu, Seunggun; Babu Velusamy, Dhinesh; Lee, Hyeokjung; Park, Chanho; Cho, Suk Man; Jeong, Beomjin; Sol Kang, Han; Park, Cheolmin

    2017-12-01

    Liquid-phase exfoliation (LPE) of transition metal dichalcogenide (TMD) nanosheets is a facile, cost-effective approach to large-area photoelectric devices including photodetectors and non-volatile memories. Non-destructive exfoliation of nanosheets using macromolecular dispersing agents is beneficial in rendering the TMD nanocomposite films suitable for mechanically flexible devices. Here, an efficient LPE of molybdenum disulfide (MoS2) with an amine modified poly(styrene-co-maleic anhydride) co-polymer (AM-PSMA) is demonstrated, wherein the maleic anhydrides were converted into maleic imides with primary amines using N-Boc-(CH2) n -NH2. The exfoliation of nanosheets was facilitated through Lewis acid-base interaction between the primary amine and transition metal. The results demonstrate that the exfoliation depends upon both the fraction of primary amines in the polymer chain and their distance from the polymer backbone. Under optimized conditions of primary amine content and its distance from the backbone, AM-PSMA gave rise to a highly concentrated MoS2 nanosheet suspension that was stable for over 10 d. Exfoliation of several other TMDs was also achieved using the optimized AM-PSMA, indicating the scope of AM-PSMA applications. Furthermore, a flexible composite film of AM-PSMA and MoS2 nanosheets fabricated by vacuum-assisted filtration showed excellent photoconductive performances including a high I on/I off ratio of 102 and a fast photocurrent switching of 300 ms.

  2. Mathematical modeling of the formation of sedimentary acid precipitation in the atmosphere in view of the evaporation of moisture from their surface

    Gvozdyakov Dmitry

    2017-01-01

    Full Text Available The article presents the results of numeric simulation of the formation of sedimentary acid precipitation in the atmosphere taking into account the evaporation of moisture from their surfaces. It is established that the joint condensation of vapors of sulfuric anhydride and water vapor, given the flow of solar energy and the evaporation process significantly slows the growth of drops. The possibility of achieving the underlying surface by the formed sediments is analyzed.

  3. Synthesis and characterization of functional copolymer/organo-silicate nanoarchitectures through interlamellar complex-radical (coterpolymerization

    2008-09-01

    Full Text Available The functional copolymers, having a combination of rigid/flexible linkages and an ability of complex-formation with interlayered surface of organo-silicate, and their nanocomposites have been synthesized by interlamellar complex-radical (coterpolymerization of intercalated monomer complexes of maleic anhydride (MA and itaconic acid (IA with dimethyl dodecylamine surface modified montmorillonite (organo-MMT (MA…DMDA-MMT and IA…DMDA-MMT n-butyl methacrylate (BMA and/or BMA/styrene monomer mixtures. The results of nanocomposite structure–composition– property relationship studies indicate that interlamellar complex-formation between anhydride/acid units and surface alkyl amine and rigid/flexible linkage balance in polymer chains are important factors providing the effective intercalation/ exfoliation of the polymer chains into the silicate galleries, the formation of nanostructural hybrids with higher thermal stability, dynamic mechanical behaviour and well dispersed morphology.

  4. Properties and quality verification of biodiesel produced from tobacco seed oil

    Usta, N., E-mail: n_usta@pau.edu.t [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Aydogan, B. [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Con, A.H. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey); Uguzdogan, E. [Pamukkale University, Chemical Engineering Department, 20070 Denizli (Turkey); Ozkal, S.G. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey)

    2011-05-15

    Research highlights: {yields} High quality biodiesel fuel can be produced from tobacco seed oil. {yields} Pyrogallol was found to be effective antioxidant improving the oxidation stability. {yields} The iodine number was reduced with a biodiesel including more saturated fatty acids. {yields} Octadecene-1-maleic anhydride copolymer was an effective cold flow improver. {yields} The appropriate amounts of the additives do not affect the properties negatively. -- Abstract: Tobacco seed oil has been evaluated as a feedstock for biodiesel production. In this study, all properties of the biodiesel that was produced from tobacco seed oil were examined and some solutions were derived to bring all properties of the biodiesel within European Biodiesel Standard EN14214 to verify biodiesel quality. Among the properties, only oxidation stability and iodine number of the biodiesel, which mainly depend on fatty acid composition of the oil, were not within the limits of the standard. Six different antioxidants that are tert-butylhydroquinone, butylated hydroxytoluene, propyl gallate, pyrogallol, {alpha}-tocopherol and butylated hydroxyanisole were used to improve the oxidation stability. Among them, pyrogallol was found to be the most effective antioxidant. The iodine number was improved with blending the biodiesel produced from tobacco seed oil with a biodiesel that contains more saturated fatty acids. However, the blending caused increasing the cold filter plugging point. Therefore, four different cold flow improvers, which are ethylene-vinyl acetate copolymer, octadecene-1-maleic anhydride copolymer and two commercial cold flow improvers, were used to decrease cold filter plugging point of the biodiesel and the blends. Among the improvers, the best improver is said to be octadecene-1-maleic anhydride copolymer. In addition, effects of temperature on the density and the viscosity of the biodiesel were investigated.

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    ) andMn(II) complexes of poly(methyl vinyl ether-alt-maleic anhydride). Synthesis, characterization and thermodynamic parameters. Hidayet Mazi Ali Gulpinar. Volume 126 Issue 1 January 2014 pp 239-245 ...

  6. Fatigue mechanisms in unidirectional glass-fibre-reinforced polypropylene

    Gamstedt, E.K.; Berglund, L.A.; Peijs, T.

    1999-01-01

    Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects of interfac......Polypropylene (PP) and polypropylene modified with maleic anhydride (MA-PP) reinforced by continuous longitudinal glass fibres have been investigated. The most prominent effect of the modification with maleic anhydride in the composite is a stronger fibre/matrix interface. The effects...... of interfacial strength on fatigue performance and on the underlying micromechanisms have been studied for these composite systems. Tension-tension fatigue tests (R = 0.1) were carried out on 0 degrees glass-fibre/PP and glass-fibre/ MA-PP coupons. The macroscopic fatigue behaviour was characterized in terms...

  7. Stability study on an anti-cancer drug 4-(3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl-4-oxo-2-butenoic acid (CLEFMA using a stability-indicating HPLC method

    Dhawal Raghuvanshi

    2017-02-01

    Full Text Available CLEFMA, 4-(3,5-bis(2-chlorobenzylidene-4-oxo-piperidine-1-yl-4-oxo-2-butenoic acid, is a new chemical entity with anti-cancer and anti-inflammatory activities. Here, we report its stability in solution against stress conditions of exposure to acid/base, light, oxidant, high temperature, and plasma. The identity of the degradation products was ascertained by mass and proton nuclear magnetic resonance spectroscopy. To facilitate this study, we developed and validated a reverse phase high performance liquid chromatography method for detection of CLEFMA and its degradation. The method was linear over a range of 1–100 µg/mL; the accuracy and precision were within acceptable limits; it was stability-indicating as it successfully separated cis-/trans-isomers of CLEFMA as well as its degradation product. The major degradation product was produced from amide hydrolysis at maleic acid functionality caused by an acidic buffer, oxidant (3% hydrogen peroxide, or temperature stress (40–60 °C. The log k-pH profile showed that CLEFMA was most stable at neutral pH. In accelerated stability study we found that the shelf-life (T90% of CLEFMA at 25 °C and 4 °C was 45 days and 220 days, respectively. Upon exposure to UV-light (365 nm, the normally prevalent trans-CLEFMA attained cis-configuration. This isomerization also involved the maleic acid moiety. CLEFMA was stable in plasma from which it could be efficiently extracted by an acetonitrile precipitation method. These results indicate that CLEFMA is sensitive to hydrolytic cleavage at its maleic acid moiety, and it is recommended that its samples should be stored under refrigerated and light-free conditions, and under inert environment.

  8. Polymers with complexing properties. Simple poly(amino acids)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  9. Low-molecular-weight organic acids correlate with cultivar variation in ciprofloxacin accumulation in Brassica parachinensis L.

    Zhao, Hai-Ming; Xiang, Lei; Wu, Xiao-Lian; Jiang, Yuan-Neng; Li, Hui; Li, Yan-Wen; Cai, Quan-Ying; Mo, Ce-Hui; Liu, Jie-Sheng; Wong, Ming-Hung

    2017-08-31

    To understand the mechanism controlling cultivar differences in the accumulation of ciprofloxacin (CIP) in Chinese flowering cabbage (Brassica parachinensis L.), low-molecular-weight organic acids (LMWOAs) secreted from the roots of high- and low-CIP cultivars (Sijiu and Cutai, respectively) and their effects on the bioavailability of CIP in soil were investigated. Significant differences in the content of LMWOAs (especially maleic acid) between the two cultivars played a key role in the variation in CIP accumulation. Based on the Freundlich sorption coefficient (K f ) and distribution coefficient (K d ), the presence of LMWOAs reduced the CIP sorption onto soil particles, and higher concentrations of LMWOAs led to less CIP sorption onto soil. On the other hand, LMWOAs enhanced CIP desorption by lowering the solution pH, which changed the surface charge of soil particles and the degree of CIP ionization. LMWOAs promoted CIP desorption from soil by breaking cation bridges and dissolving metal cations, particularly Cu 2+ . These results implied that the LMWOAs (mainly maleic acid) secreted from Sijiu inhibited CIP sorption onto soil and improved CIP desorption from soil to a greater extent than those secreted from Cutai, resulting in higher bioavailability of CIP and more uptake and accumulation of CIP in the former.

  10. Antimocrobial Polymer

    McDonald, William F.; Huang, Zhi-Heng; Wright, Stacy C.

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  11. Radiation-induced trioxane postpolymerization in the liquid phase

    Kapustina, I.B.; Starchenko, T.V.

    1979-01-01

    Radiation-induced trioxane postpolymerization in the presence of maleic anhydride and different solvents in the liquid phase has been studied. It has been found that addition of small quantities of different solvents inhibits the trioxane polymerization process both in the presence of maleic anhydride and in the absence of it. Trioxane postpolymerization in a solvent-nonsolvent mixture gives fibrous polyoxymethylene with high molecular mass and high yield

  12. The effects of reactive diluents on the mechanical behaviour of an anhydride-cured epoxy resin system

    Stevens, G.T.; Lupton, A.W.

    1976-10-01

    A study was made of the tensile behaviour at room temperature, 75 0 C and 100 0 C, of diglycidyl ether of bisphenol A resin systems modified by the introduction of (i) a linear mono-epoxide aliphatic glycidyl ether, (ii) a highly branched mono-epoxide glycidyl ester of a saturated tertiary mono-carboxylic acid, (iii) a mixture of the linear mono-glycidyl and diglycidyl ethers of butanediol and (iv) a low viscosity diepoxide and also an elastomer (Hycar CTBN). Resin systems showing relatively high elongation to failure without severe degradation of strength or stiffness at elevated temperatures were obtained. (author)

  13. Composition of amino acid using carbon monoxide. Amide carbonylation reaction

    Izawa, Kunisuke (Ajinomoto Co., Inc., Tokyo (Japan))

    1989-02-01

    Amide carbonylation reaction is a method to compose N-acyl-{alpha}-amino acid from aldehyde, carboxylic acid amide, and carbon monoxide in a phase and with high yield. Unlike the conventional Strecker reaction, this method does not use HCN which is in question on public pollution and does not require hydrolysis. This amide carbonylation reaction was discovered by Wakamatsu and others of Ajinomoto Co.,Ltd. Present application examples of this method are the composition of N-acetyl amino acid from the aldehyde class, the composition of N-Acyl amino acid from olefin, the composition of N-acyl or acetyl amino acid from the raw material of alcohol and the halide class, the composition of N-acyl or acetyl amino acid via the isomerization of epoxide and allyl alcohol, the composition of amino dicarboxylic acid, applying deoxidation of ring acid anhydride, the composition of N-acyl amino acid from the raw material of the amine class, the stereoselective composition of -substitution ring-{alpha}-amino acid, and the composition of amino aldehyde. 24 refs., 2 figs., 2 tabs.

  14. ZnAl2O4@SiO2 nanocomposite catalyst for the acetylation of alcohols, phenols and amines with acetic anhydride under solvent-free conditions

    Saeed Farhadi; Kosar Jahanara

    2014-01-01

    A ZnAl2O4@SiO2 nanocomposite was prepared from metal nitrates and tetraethyl orthosilicate by the sol-gel process, and characterized by X-ray diffraction, Fourier transform infrared, transmission electron microscopy, and N2 adsorption-desorption measurements. The nanocomposite was tested as a heterogeneous catalyst for the acetylation of alcohols, phenols, and amines under solvent-free conditions. Under optimized conditions, efficient acetylation of these substrates with acetic anhy-dride over the ZnAl2O4@SiO2 nanocomposite was obtained. Acetylation of anilines and primary aliphatic amines proceeded rapidly at room temperature, while the reaction time was longer for the acetylation of alcohols and phenols, showing that an amine NH2 group can be selectively acetylated in the presence of alcoholic or phenolic OH groups. The catalyst can be reused without obvious loss of catalytic activity. The catalytic activity of the ZnAl2O4@SiO2 nanocomposite was higher than that of pure ZnAl2O4. The method gives high yields, and is clean, cost effective, compatible with sub-strates having other functional groups and it is suitable for practical organic synthesis.

  15. Uptake and phytotoxicity of the herbicide metsulfuron methyl in corn root tissue in the presence of the safener 1,8-naphthalic anhydride

    Milhomme, H.; Bastide, J.

    1990-01-01

    Growth of Zea mays L. cv Potro roots was inhibited by the herbicide metsulfuron methyl (MSM) at the lowest concentration tested: 5 nanomoles per liter. Pretreatment of corn seeds with commercial 1,8-naphthalic anhydride (NA) at 1% (w/w) partially reversed MSM-induced root growth inhibition. MSM at a concentration of 52 nanomoles per liter was taken up rapidly by roots and accumulated in the corn tissue to concentrations three times those in the external medium; the safener NA increased MSM uptake up to 48 hours. The protective effect of NA was related to the ability of the safener to increase the metabolism of MSM; ten-fold increases in the metabolic rates of MSM were observed in NA-pretreated corn seedlings grown for 48 hours on 52 nanomolar [ 14 C]MSM solution. DNA synthesis determined by measurement of [ 3 H]thymidine incorporation into DNA was inhibited by root MSM applications; after a 6-hour application period, 13 nanomolar MSM solution reduced DNA synthesis by 64%, and the same reduction was also observed with NA-treated seedlings. Pretreatment of corn seeds with safener NA did not increase the acetolactate synthase activity in the roots and did not change, up to 13 micromoles per liter, the in vitro sensitivity of roots to MSM

  16. Copolymerization and terpolymerization of carbon dioxide/propylene oxide/phthalic anhydride using a (salenCo(III complex tethering four quaternary ammonium salts

    Jong Yeob Jeon

    2014-08-01

    Full Text Available The (salenCo(III complex 1 tethering four quaternary ammonium salts, which is a highly active catalyst in CO2/epoxide copolymerizations, shows high activity for propylene oxide/phthalic anhydride (PO/PA copolymerizations and PO/CO2/PA terpolymerizations. In the PO/PA copolymerizations, full conversion of PA was achieved within 5 h, and strictly alternating copolymers of poly(1,2-propylene phthalates were afforded without any formation of ether linkages. In the PO/CO2/PA terpolymerizations, full conversion of PA was also achieved within 4 h. The resulting polymers were gradient poly(1,2-propylene carbonate-co-phthalates because of the drift in the PA concentration during the terpolymerization. Both polymerizations showed immortal polymerization character; therefore, the molecular weights were determined by the activity (g/mol-1 and the number of chain-growing sites per 1 [anions in 1 (5 + water (present as impurity + ethanol (deliberately fed], and the molecular weight distributions were narrow (Mw/Mn, 1.05–1.5. Because of the extremely high activity of 1, high-molecular-weight polymers were generated (Mn up to 170,000 and 350,000 for the PO/PA copolymerization and PO/CO2/PA terpolymerization, respectively. The terpolymers bearing a substantial number of PA units (fPA, 0.23 showed a higher glass-transition temperature (48 °C than the CO2/PO alternating copolymer (40 °C.

  17. Extractionless GC/MS analysis of gamma-hydroxybutyrate and gamma-butyrolactone with trifluoroacetic anhydride and heptafluoro-1-butanol from aqueous samples.

    Sabucedo, Alberto J; Furton, Kenneth G

    2004-06-01

    gamma-Hydroxybutyrate (GHB) is a DEA Schedule I drug of abuse commonly spiked into beverages to incapacitate victims of sexual assault. GHB is a challenging drug for analysis by GC/MS because of its small size, charged nature, low volatility, and intramolecular esterification leading to gamma-butyrolactone (GBL). In this work an extractionless technique has been developed that allows for the use of an aqueous sample for direct derivatization. The technique uses a solution of trifluoroacetic anhydride (TFAA) and 2,2,3,3,4,4,4-heptafluoro-1-butanol (HFB) to derivatize the active hydrogens of GHB. The conversion of GBL into GHB can be forced under alkaline conditions by diluting the sample in 10 mM borate buffer, pH 12. GBL found in beverages intended for human consumption is treated as a Schedule I control substance analogue. Spikes of the two compounds into several beverage matrices gave quantitative recovery of GHB by GC/MS. The derivatization produces higher molecular mass products whose fragmentation pattern provides multiple peaks for confirmation and quantification. The concentration of GBL can also be indirectly determined by the method developed. Therefore, this extractionless technique is rapid, sensitive, and selective for the confirmation of the presence of GHB and GBL in commercial beverages.

  18. Deposition of antibacterial of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80/gentamicin sulfate composite coatings by MAPLE

    Cristescu, R.; Popescu, C.; Socol, G.; Visan, A.; Mihailescu, I.N.; Gittard, S.D.; Miller, P.R.; Martin, T.N.; Narayan, R.J.; Andronie, A.; Stamatin, I.; Chrisey, D.B.

    2011-01-01

    We report on thin film deposition of poly(1,3-bis-(p-carboxyphenoxy propane)-co-sebacic anhydride)) 20:80 thin films containing several gentamicin concentrations by matrix assisted pulsed laser evaporation (MAPLE). A pulsed KrF* excimer laser was used to deposit the polymer-drug composite thin films. Release of gentamicin from these MAPLE-deposited polymer conjugate structures was assessed. Fourier transform infrared spectroscopy was used to demonstrate that the functional groups of the MAPLE-transferred materials were not changed by the deposition process nor were new functional groups formed. Scanning electron microscopy confirmed that MAPLE may be used to fabricate thin films of good morphological quality. The activity of gentamicin-doped films against Escherichia coli and Staphylococcus aureus bacteria was demonstrated using disk diffusion and antibacterial drop test. Our studies indicate that deposition of polymer-drug composite thin films prepared by MAPLE is a suitable technique for performing controlled drug delivery. Antimicrobial thin film coatings have several medical applications, including use for indwelling catheters and implanted medical devices.

  19. Influence of Ca/Mg ratio on phytoextraction properties of Salix viminalis. II. Secretion of low molecular weight organic acids to the rhizosphere.

    Magdziak, Z; Kozlowska, M; Kaczmarek, Z; Mleczek, M; Chadzinikolau, T; Drzewiecka, K; Golinski, P

    2011-01-01

    A hydroponic experiment in a phytotron was performed to investigate the effect of two different Ca/Mg ratios (4:1 and 1:10) and trace element ions (Cd, Cu, Pb and Zn) in solution on the efficiency of low molecular weight organic acid (LMWOA) formation in Salix viminalis rhizosphere. Depending on the Ca/Mg ratio and presence of selected trace elements at 0.5mM concentration, the amount and kind of LMWOAs in the rhizosphere were significantly affected. In physiological 4:1 Ca/Mg ratio the following complex of acids was observed: malonic (Pb, Zn), citric, lactic, maleic and succinic (Zn) acids. Under 1:10 Ca/Mg ratio, citric (Cd, Zn), maleic and succinic (Cd, Cu, Pb, Zn) acids were seen. Additionally, high accumulation of zinc and copper in all systems was observed, with the exception of those where one of the metals was at higher concentration. Summing up, the results indicate a significant role of LMWOAs in Salix phytoremediation abilities. Both effects can be modulated depending on the mutual Ca/Mg ratio. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Trans-4 Hexadiene- 1-Alcohol Maleic Andydride D-A Reaction%反式4-己二烯-1-醇与马来酸酐的D-A反应

    谢永生; 郝斌华; 冯磊

    2012-01-01

    To overcome the shortcomings of the traditional D-A reaction experimenting, this article argues that the best way to carry out the college organic chemistry experimenting course is the counter-reaction of Trans-4 Hexadiene-l-Alcohol maleic andydride diel-alder, and proposes some measures and environment-friendly and size-reducing improvement: in a tube a simple mixing of 4- Hexadiene-l-ol, maleic andydride and a small amount of ethyl acetate can witness the completion of more than ten experiments by students in a water bath oscillator. After the experimenting, only a small amount of solvent recovery is left and the product categorical structure can be easily assessed with 1NMR experiments.%文章针对传统D-A反应教学实验的缺点,提出反式4-己二烯-1-醇与马来酸酐的Diels-Alder反应是适合大学有机化学教学实验的最佳选择,并对该实验进行绿色化和微型化改进:仅需在试管中简单的混合4-己二烯-1-醇、马来酸酐和少量乙酸乙酯即可在一台水浴振荡器上完成数十个学生实验;实验后处理简洁快速,仅有少量回收溶剂产生;产品绝对结构很容易地由氢核磁共振实验鉴定.

  1. Radiation-curable coatings containing reactive pigment dispersants

    Ansel, R.E.

    1985-01-01

    Liquid coating compositions adapted to be cured by exposure to penetrating radiation are disclosed in which a liquid vehicle of coating viscosity having an ethylenically unsaturated portion comprising one or more polyethylenically unsaturated materials adapted to cure on radiation exposure, pigment dispersed in the vehicle, and an ethylenically unsaturated radiation-curable dispersant containing a carboxyl group for wetting the pigment and assisting in the stable dipsersion of the pigment in the vehicle. This dispersant is a half amide or half ester of an ethylenically unsaturated polycarboxylic acid anhydride, such as maleic anhydride, with an organic compound having a molecular weight of from 100 to 4000 and which contains a single hydroxy group or a single amino group as the sole reactive group thereof

  2. The Preparation and Properties of Thermo-reversibly Cross-linked Rubber Via Diels-Alder Chemistry

    Polgar, Lorenzo Massimo; van Duin, Martin; Picchioni, Francesco

    2016-01-01

    A method for using Diels Alder thermo-reversible chemistry as cross-linking tool for rubber products is demonstrated. In this work, a commercial ethylene-propylene rubber, grafted with maleic anhydride, is thermo-reversibly cross-linked in two steps. The pending anhydride moieties are first modified

  3. Use of Diels-Alder Chemistry for Thermoreversible Cross-Linking of Rubbers : The Next Step toward Recycling of Rubber Products?

    Polgar, L. M.; van Duin, M.; Broekhuis, A. A.; Picchioni, F.

    2015-01-01

    A proof of principle for the use of Diels-Alder chemistry as a thermoreversible cross-linking tool for rubber products is demonstrated. A commercial ethylene-propylene rubber grafted with maleic anhydride has been thermoreversibly cross-linked in two steps. The pending anhydride rings were first

  4. A Novel and Highly Regioselective Synthesis of New Carbamoylcarboxylic Acids from Dianhydrides

    Adrián Ochoa-Terán

    2014-01-01

    Full Text Available A regioselective synthesis has been developed for the preparation of a series of N,N′-disubstituted 4,4′-carbonylbis(carbamoylbenzoic acids and N,N′-disubstituted bis(carbamoyl terephthalic acids by treatment of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (1 and 1,2,4,5-benzenetetracarboxylic dianhydride (2 with arylalkyl primary amines (A-N. The carbamoylcarboxylic acid derivatives were synthesized with good yield and high purity. The specific reaction conditions were established to obtain carbamoyl and carboxylic acid functionalities over the thermodynamically most favored imide group. Products derived from both anhydrides 1 and 2 were isolated as pure regioisomeric compounds under innovative experimental conditions. The chemo- and regioselectivity of products derived from dianhydrides were determined by NMR spectroscopy and confirmed by density functional theory (DFT. All products were characterized by NMR, FTIR, and MS.

  5. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  6. Isoquercitrin Esters with Mono- or Dicarboxylic Acids: Enzymatic Preparation and Properties.

    Vavříková, Eva; Langschwager, Fanny; Jezova-Kalachova, Lubica; Křenková, Alena; Mikulová, Barbora; Kuzma, Marek; Křen, Vladimír; Valentová, Kateřina

    2016-06-07

    A series of isoquercitrin (quercetin-3-O-β-d-glucopyranoside) esters with mono- or dicarboxylic acids was designed to modulate hydro- and lipophilicity and biological properties. Esterification of isoquercitrin was accomplished by direct chemoenzymatic reaction using Novozym 435 (lipase from Candida antarctica), which accepted C₅- to C12-dicarboxylic acids; the shorter ones, such as oxalic (C₂), malonic (C₃), succinic (C₄) and maleic (C₄) acids were not substrates of the lipase. Lipophilicity of monocarboxylic acid derivatives, measured as log P, increased with the chain length. Esters with glutaric and adipic acids exhibited hydrophilicity, and the dodecanedioic acid hemiester was more lipophilic. All derivatives were less able to reduce Folin-Ciocalteau reagent (FCR) and scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) than isoquercitrin; ABTS (2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) radical-scavenging activity was comparable. Dodecanoate and palmitate were the least active in FCR and ABTS scavenging; dodecanoate and hemiglutarate were the strongest DPPH scavengers. In contrast, most derivatives were much better inhibitors of microsomal lipoperoxidation than isoquercitrin; butyrate and hexanoate were the most efficient. Anti-lipoperoxidant activity of monocarboxylic derivatives, except acetates, decreased with increasing aliphatic chain. The opposite trend was noted for dicarboxylic acid hemiesters, isoquercitrin hemidodecanedioate being the most active. Overall, IQ butyrate, hexanoate and hemidodecanedioate are the most promising candidates for further studies.

  7. Kamal M. El-Gamal

    2016-12-01

    Full Text Available A series of 3-substituted 6-methoxy-1H-pyrazolo [3,4-b]quinoline derivatives was synthesized by treating 6-methoxy-1H-pyrazolo[3,4-b]quinolin-3-amine (6 with different acid anhydrides including succinic anhydride, maleic anhydride and phthalic anhydride. Also, a series of 3-heteroaryl-2-chloro-6-methoxyquinolines was prepared through 1,3-dipolar cycloaddition of different bi-nucleophiles including hydrazine hydrate, hydroxylamine hydrochloride, thiourea, guanidine hydrochloride, urea and metformin hydrochloride to the chalcone derivative 3-(2-chloro-6-methoxyquinolin-3-yl-1-(4-methoxyphenylprop-2-en-1-one. Structural identifications of all products were reported and the new compounds were screened for their in vitro antimicrobial activity against Streptococcus pneumonia and Bacillus subtilis as examples for Gram-positive bacteria, Pseudomonas aeruginosa and Escherichia coli as examples for Gram-negative bacteria, and Aspergillus fumigatus, Syncephalastrum racemosum, Geotriucum candidum and Candida albicans as representative examples of fungi. The majority of tested compounds showed moderate activities against a wide range of the selected organisms. Among the tested compounds, pyrimidine derivatives 16 and 17 showed the highest antimicrobial activity against gram-positive strains while the highest activity against E. coli as example for Gram-negative strains was observed in the case of 11 and 17. Compounds 14 and 17 were found to be extremely potent against three of the selected fungal strains.

  8. Oxidation of iron and steels by carbon dioxide under pressure (1962); Oxydation du fer et des aciers par l'anhydride carbonique sous pression (1962)

    Colombie, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    After having developed one of the first thermo-balances to operate under pressure, we have studied the influence of the pressure on the corrosion of iron and steels by carbon dioxide. The corrosion was followed by three different methods simultaneously: by the oxidation kinetics, by micrographs, and by radiocrystallography. We have been able to show that the influence of the pressure is not negligible and we have provided much experimental evidence: oxidation kinetics, micrographic aspects, surface precipitation of carbon, metal carburization, the texture of the magnetite layer. All these phenomena are certainly modified by changes in the carbon dioxide pressure. In order to interpret most of our results we have been led to believe that the phenomenon of corrosion by CO{sub 2} depends on secondary reactions localised at the oxide-gas interface. This would constitute a major difference between the oxidation by CO{sub 2} and that by oxygen. (author) [French] Apres avoir etudie et mis au point une des premieres thermobalances fonctionnant sous pression, nous avons etudie l'influence de la pression sur la corrosion du fer et des aciers par l'anhydride carbonique. Notre etude a ete conduite simultanement sur trois plans differents: etude des cinetiques d'oxydation, etude micrographique et etude radiocristallographique. Nous avons pu montrer que l'influence de la pression n'etait pas negligeable et nous en avons fourni un faisceau de preuves experimentales important: cinetiques d'oxydation, aspect micrographique, precipitation superficielle de carbone, carburation du metal, texture de la couche de magnetite. Tous ces phenomenes sont sans aucun doute modifies par une variation de pression du gaz carbonique. Pour interpreter la plupart de nos resultats, nous avons ete conduits a penser que le phenomene de corrosion par CO{sub 2} etait tributaire de reactions secondaires localisees a l'interface oxyde-gaz. Ce serait la une des differences fondamentales entre l'oxydation par

  9. Effect of modified polypropylene on the interfacial bonding of polymer–aluminum laminated films

    Liang, Chang-Sheng; Lv, Zhong-Fei; Bo, Yang; Cui, Jia-Yang; Xu, Shi-Ai

    2015-01-01

    Highlights: • Aluminium-polymer composite packing material with high T-peel strength was prepared. • Polypropylene was grafted by acrylic acid, glycidyl methacrylate, maleic anhydride. • Grafted polypropylene greatly improved the T-peel strength. • Chemical bonding plays an important role in improving the adhesion strength. - Abstract: The interfacial bonding between functionalized polymers and chromate–phosphate treated aluminum (Al) foil were investigated in this study. Glycidyl methacrylate (GMA), acrylic acid (AA) and maleic anhydride (MAH) were grafted onto polypropylene (PP) to improve its adhesion strength with the treated Al foil. The interfacial peel strength was evaluated by the T-peel test, and the results showed that modification of PP resulted in a significant improvement in the interfacial peel strength from 1 N/15 mm for pure PP to 10–14 N/15 mm for the modified PP. The surface chemistry, topography and surface energy of the modified PP and Al foil after peeling were characterized by time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM) and contact angle measurement. The treated Al foil could react with the functional groups of PP, resulting in the formation of new carboxylates. The new chemical bonding rather than the mechanical interlocking contributed to the improvement of adhesion strength

  10. The Antifungal Activity of Functionalized Chitin Nanocrystals in Poly (Lactid Acid Films

    Asier M. Salaberria

    2017-05-01

    Full Text Available As, in the market, poly (lactic acid (PLA is the most used polymer as an alternative to conventional plastics, and as functionalized chitin nanocrystals (CHNC can provide structural and bioactive properties, their combination sounds promising in the preparation of functional nanocomposite films for sustainable packaging. Chitin nanocrystals were successfully modified via acylation using anhydride acetic and dodecanoyl chloride acid to improve their compatibility with the matrix, PLA. The nanocomposite films were prepared by extrusion/compression approach using different concentrations of both sets of functionalized CHNC. This investigation brings forward that both sets of modified CHNC act as functional agents, i.e., they slightly improved the hydrophobic character of the PLA nanocomposite films, and, very importantly, they also enhanced their antifungal activity. Nonetheless, the nanocomposite films prepared with the CHNC modified with dodecanoyl chloride acid presented the best properties.

  11. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Sires, Ignasi; Cabot, Pere Lluis; Centellas, Francesc; Garrido, Jose Antonio; Rodriguez, Rosa Maria; Arias, Conchita; Brillas, Enric

    2006-01-01

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical (·OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl 2 . Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with ·OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO 2 with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed

  12. Therapeutic effects of glutamic acid in piglets challenged with deoxynivalenol.

    Wu, Miaomiao; Xiao, Hao; Ren, Wenkai; Yin, Jie; Tan, Bie; Liu, Gang; Li, Lili; Nyachoti, Charles Martin; Xiong, Xia; Wu, Guoyao

    2014-01-01

    The mycotoxin deoxynivalenol (DON), one of the most common food contaminants, primarily targets the gastrointestinal tract to affect animal and human health. This study was conducted to examine the protective function of glutamic acid on intestinal injury and oxidative stress caused by DON in piglets. Twenty-eight piglets were assigned randomly into 4 dietary treatments (7 pigs/treatment): 1) uncontaminated control diet (NC), 2) NC+DON at 4 mg/kg (DON), 3) NC+2% glutamic acid (GLU), and 4) NC+2% glutamic acid + DON at 4 mg/kg (DG). At day 15, 30 and 37, blood samples were collected to determine serum concentrations of CAT (catalase), T-AOC (total antioxidant capacity), H2O2 (hydrogen peroxide), NO (nitric oxide), MDA (maleic dialdehyde), DAO (diamine oxidase) and D-lactate. Intestinal morphology, and the activation of Akt/mTOR/4EBP1 signal pathway, as well as the concentrations of H2O2, MDA, and DAO in kidney, liver and small intestine, were analyzed at day 37. Results showed that DON significantly (Pglutamic acid supplementation according to the change of oxidative parameters in blood and tissues. Meanwhile, DON caused obvious intestinal injury from microscopic observations and permeability indicators, which was alleviated by glutamic acid supplementation. Moreover, the inhibition of DON on Akt/mTOR/4EBP1 signal pathway was reduced by glutamic acid supplementation. Collectively, these data suggest that glutamic acid may be a useful nutritional regulator for DON-induced damage manifested as oxidative stress, intestinal injury and signaling inhibition.

  13. Electrochemical degradation of clofibric acid in water by anodic oxidation

    Sires, Ignasi [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Cabot, Pere Lluis [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Centellas, Francesc [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Garrido, Jose Antonio [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Rodriguez, Rosa Maria [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Arias, Conchita [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain); Brillas, Enric [Laboratori de Ciencia i Tecnologia Electroquimica de Materials, Departament de Quimica Fisica, Facultat de Quimica, Universitat de Barcelona, Marti i Franques 1-11, 08028 Barcelona (Spain)]. E-mail: brillas@ub.edu

    2006-10-05

    Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0-12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical ({center_dot}OH). This procedure is then viable for the treatment of wastewaters containing this compound. The effect of pH, apparent current density, temperature and metabolite concentration on the degradation rate, consumed specific charge and mineralization current efficiency has been investigated. Comparative treatment with Pt yields poor decontamination with complete release of stable chloride ion. When BDD is used, this ion is oxidized to Cl{sub 2}. Clofibric acid is more rapidly destroyed on Pt than on BDD, indicating that it is more strongly adsorbed on the Pt surface enhancing its reaction with {center_dot}OH. Its decay kinetics always follows a pseudo-first-order reaction and the rate constant for each anode increases with increasing apparent current density, being practically independent of pH and metabolite concentration. Aromatic products such as 4-chlorophenol, 4-chlorocatechol, 4-chlororesorcinol, hydroquinone, p-benzoquinone and 1,2,4-benzenetriol are detected by gas chromatography-mass spectrometry (GC-MS) and reversed-phase chromatography. Tartronic, maleic, fumaric, formic, 2-hydroxyisobutyric, pyruvic and oxalic acids are identified as generated carboxylic acids by ion-exclusion chromatography. These acids remain stable in solution using Pt, but they are completely converted into CO{sub 2} with BDD. A reaction pathway for clofibric acid degradation involving all these intermediates is proposed.

  14. Aspartic acid

    ... we eat. Aspartic acid is also called asparaginic acid. Aspartic acid helps every cell in the body work. It ... release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of ...

  15. Synthesis, physicochemical and biological properties of poly-α-amino acids - the simplest of protein models

    Katchalski-Katzir, Ephraim

    1996-01-01

    During the 1950s, linear and multichain poly-α-amino acids were synthesized by polymerization of the corresponding N-carboxy-amino acid anhydrides in solution in the presence of suitable catalysts. The resulting homo- and heteropolymers have since been widely employed as simple protein models. Under appropriate conditions, poly-α-amino acids, in the solid state and in solution, were found to acquire conformations of an α-helix and β-parallel and antiparallel pleased sheets, or to exist as random coils. Their use in experimental and theoretical investigations of helix-coil transitions helped to shed new light on the mechanisms involved in protein denaturation. Poly-α-amino acids played an important role in the deciphering of the genetic code. In addition, analysis of the antigenicity of poly-α-amino acids led to the clucidation of the factors determining the antigenicity of proteins and peptides. Interest in the biological and physicochemical characteristics of poly-α-amino acids was recently renewed because of the reported novel finding that some copolymers of amino acids are effective as drugs in multiple sclerosis, and that glutamine repeats and reiteration of other amino acids occur in inherited neurodegenerative diseases. The presence of repeating sequences of amino acids in proteins, and of nucleotides in DNA, raises many interesting questions about their respective roles in determining protein structure and function, and gene performance and regulation. (author). 35 refs, 3 figs, 2 tabs

  16. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  17. Structural Elucidation of Z- and E- Isomers of 5-Alkyl-4-ethoxycarbonyl-5-(4`-chlorophenyl-3-oxa-4-pentenoic Acids

    H. M. F. Madkour

    2000-05-01

    Full Text Available Z- and E-isomers of 5-alkyl-4-ethoxycarbonyl-5-(4`-chlorophenyl-3-oxa-4-pentenoic acids were prepared via the condensation of p-chloroacetophenone and/or pchloropropiophenone with diethyl-2,2`-oxydiacetate in the presence of sodium hydride as a basic catalyst. The Z-isomers of 2a and 2b were found to be predominant. The behaviour of the corresponding anhydrides towards the action of hydrazine, phenylhydrazine, primary aromatic amines, hydrocarbons and ethanolysis has also been investigated. The structures and configurations of the products have been elucidated by chemical and spectroscopic means.

  18. Hyaluronic Acid-Based Nanogels Produced by Microfluidics-Facilitated Self-Assembly Improves the Safety Profile of the Cationic Host Defense Peptide Novicidin

    Water, Jorrit J; Kim, YongTae; Maltesen, Morten J

    2015-01-01

    have hampered their commercial development. To overcome these challenges a novel nanogel-based drug delivery system was designed. METHOD: The peptide novicidin was self-assembled with an octenyl succinic anhydride-modified analogue of hyaluronic acid, and this formulation was optimized using...... a microfluidics-based quality-by-design approach. RESULTS: By applying design-of-experiment it was demonstrated that the encapsulation efficiency of novicidin (15% to 71%) and the zeta potential (-24 to -57 mV) of the nanogels could be tailored by changing the preparation process parameters, with a maximum...

  19. "Click" synthesis of fatty acid derivatives as fast-degrading polyanhydride precursors.

    Lluch, Cristina; Lligadas, Gerard; Ronda, Joan C; Galià, Marina; Cadiz, Virginia

    2011-09-01

    Fast-degrading linear and branched polyanhydrides are obtained by melt-condensation of novel di- and tri-carboxylic acid monomers based on oleic and undecylenic acid synthesized using photoinitiated thiol-ene click chemistry. (1)H NMR spectroscopy, size exclusion chromatography, differential scanning calorimetry, thermogravimetric analysis, and FT-IR spectroscopy have been used to fully characterize these polymers. The hydrolytic degradation of these polymers was studied by means of weight loss, anhydride bond loss, and changes in molecular weight, showing fast degrading properties. Drug release studies from the synthesized polyanhydrides have also been conducted, using rhodamine B as a hydrophobic model drug, to evaluate the potential of these polymers in biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Preparation and reactivity of carboxylic acid-terminated boron-doped diamond electrodes

    Niedziolka-Joensson, Joanna; Boland, Susan; Leech, Donal; Boukherroub, Rabah; Szunerits, Sabine

    2010-01-01

    The paper reports on the formation of carboxy-terminated boron-doped diamond (BDD) electrodes. The carboxylic acid termination was prepared in a controlled way by reacting photochemically oxidized BDD with succinic anhydride. The resulting interface was readily employed for the linking of an amine-terminated ligand such as an osmium complex bearing an amine terminal group. The interfaces were characterized using X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV). Contact angle measurements were used to follow the changes in surface wetting properties due to surface functionalization. The chemical reactivity of the carboxyl-terminated BDD was investigated by covalent coupling of the acid groups to an amine-terminated osmium complex.

  1. Sulfation of metal-organic framework: Opportunities for acid catalysis and proton conductivity

    Goesten, M.G.; Stavitski, E.; Juan-Alcaniz, J.; Ramos-Fernandez, E.V.; Sai Sankar Gupta, K.B.; van Bekkum, H.; Gascon, J. and Kapteijn, F.

    2011-05-24

    A new post-functionalization method for metal-organic frameworks (MOFs) has been developed to introduce acidity for catalysis. Upon treatment with a mixture of triflic anhydride and sulfuric acid, chemically stable MOF structures MIL-101(Cr) and MIL-53(Al) can be sulfated, resulting in a Broensted sulfoxy acid group attached to up to 50% of the aromatic terephthalate linkers of the structure. The sulfated samples have been extensively characterized by solid-state NMR, XANES, and FTIR spectroscopy. The functionalized acidic frameworks show catalytic activity similar to that of acidic polymers like Nafion{reg_sign} display in the esterification of n-butanol with acetic acid (TOF {approx} 1 min{sup -1} {at} 343 K). Water adsorbs strongly up to 4 molecules per sulfoxy acid group, and an additional 2 molecules are taken up at lower temperatures in the 1-D pore channels of S-MIL-53(Al). The high water content and Broensted acidity provide the structure S-MIL-53(Al) a high proton conductivity up to moderate temperatures.

  2. Acid Rain

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  3. Anodic oxidation of salicylic acid on BDD electrode: Variable effects and mechanisms of degradation

    Rabaaoui, Nejmeddine, E-mail: chimie_tunisie@yahoo.fr [Faculte des Sciences de Sfax, Departement de Chimie, 3038 Sfax (Tunisia); Allagui, Mohamed Salah [Faculte des Sciences de Gafsa, Campus Universitaire Sidi Ahmed Zarrouk, 2112 Gafsa (Tunisia)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Oxidation with BDD is a powerful electrochemical method able to mineralize. Black-Right-Pointing-Pointer SA is oxidized to aromatic compounds then CO{sub 2} and H{sub 2}O. Black-Right-Pointing-Pointer Polymeric intermediate products were formed. - Abstract: The degradation of 100 mL of solution with salicylic acid (SA) in the pH range 3.0-10.0 has been studied by anodic oxidation in a cell with a boron-doped diamond (BDD) anode and a stainless steel cathode, both of 3 cm{sup 2} area, by applying a current of 100, 300 and 450 mA at 25 Degree-Sign C. Completed mineralization is always achieved due to the great concentration of hydroxyl radical ({center_dot}OH) generated at the BDD surface. The mineralization rate increases with increasing applied current, but decreases when drug concentration rises from 200 mg L{sup -1}. Nevertheless, the pH effect was not significant. During oxidation it was observed that catechol, 2,5-dihydroxylated benzoic acid, 2,3-dihydroxylated benzoic acid and hydroquinone were formed as aromatic intermediates. In addition, ion-exclusion chromatography allowed the detection of fumaric, maleic, oxalic and formic as the ultimate carboxylic acid.

  4. The synthesis of taurine-conjugated bile acids and bile acid sulfates labeled with {sup 14}C or {sup 3}H in the taurine moiety

    Jie Zhang; Griffiths, W.J.; Sjoevall, Jan [Karolinska Inst., Medical Biochemistry and Biophysics Dept., Stockholm (Sweden)

    1997-02-01

    Studies of bile acid transport systems require radio-labeled taurine-conjugated bile acids with high specific activity. An established procedure was optimized to provide mild, fast, and effective conjugation of radio-labeled taurine with different types of bile acids, including those with labile 7{alpha}-hydroxy-3-oxo-{Delta}{sup 4} or 3{beta}, 7{alpha}-dihydroxy-{Delta}{sup 5} structures. Taurine labeled with {sup 14}C or {sup 3}H was reacted with excess bile acid anhydride formed from the tributylamine salt and ethylchloroformate (2/1 M/M) in aqueous dioxane for 15 min at room temperature. The yields were higher than 95% and less than 2% side products were formed. Bile acid sulfates were conjugated with {sup 14}C- or {sup 3}H-labeled taurine by using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline as the coupling reagent. The products were effectively purified by chromatography of the sodium salts on Sephadex LH-20. The yields of taurine-conjugated bile acid sulfates were 65-70%. (author).

  5. The synthesis of taurine-conjugated bile acids and bile acid sulfates labeled with 14C or 3H in the taurine moiety

    Jie Zhang; Griffiths, W.J.; Sjoevall, Jan

    1997-01-01

    Studies of bile acid transport systems require radio-labeled taurine-conjugated bile acids with high specific activity. An established procedure was optimized to provide mild, fast, and effective conjugation of radio-labeled taurine with different types of bile acids, including those with labile 7α-hydroxy-3-oxo-Δ 4 or 3β, 7α-dihydroxy-Δ 5 structures. Taurine labeled with 14 C or 3 H was reacted with excess bile acid anhydride formed from the tributylamine salt and ethylchloroformate (2/1 M/M) in aqueous dioxane for 15 min at room temperature. The yields were higher than 95% and less than 2% side products were formed. Bile acid sulfates were conjugated with 14 C- or 3 H-labeled taurine by using N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline as the coupling reagent. The products were effectively purified by chromatography of the sodium salts on Sephadex LH-20. The yields of taurine-conjugated bile acid sulfates were 65-70%. (author)

  6. Carboxylic acid-functionalized SBA-15 nanorods for gemcitabine delivery

    Bahrami, Zohreh; Badiei, Alireza; Ziarani, Ghodsi Mohammadi

    2015-01-01

    The present study deals with the functionalization of mesoporous silica nanoparticles as drug delivery systems. Mono, di, and tri amino-functionalized SBA-15 nanorods were synthesized by post-grafting method using (3-aminopropyl) triethoxysilane, N-(2-aminoethyl-)3- aminopropyltrimethoxysilane, and 3-[2-(2-aminoethylamino) ethylamino] propyl trimethoxysilane, respectively. The carboxylic acid derivatives of the amino-functionalized samples were obtained using succinic anhydride. Tminopropyltrimethoxysilanehe obtained modified materials were investigated as matrixes for the anticancer drug (gemcitabine) delivery. The prepared samples were characterized by SAXS, N 2 adsorption/desorption, SEM, transmission electron microscopy, thermogravimetric analysis, and FTIR and UV spectroscopies. The adsorption and release properties of all samples were studied. It was revealed that the adsorption capacity and release behavior of gemcitabine were highly dependent on the type of the introduced functional groups. The carboxylic acid-modified samples have higher loading content, due to the strong interaction with gemcitabine. The maximum content of deposited drug in the modified SBA-15 nanorods is close to 40 wt%. It was found that the surface functionalization leads toward significant decrease of the drug release rate. The carboxylic acid-functionalized samples have slower release rate in contrast with the amino-functionalized samples

  7. Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance

    Chitralekha Khatri; Ashu Rani [Government P.G. College, Kota (India). Environmental Chemistry Laboratory

    2008-10-15

    The synthesis of nano-crystalline activated fly ash catalyst (AFAC) with crystallite size of 12 nm was carried out by chemical and thermal treatment of fly ash, a waste material generated from coal-burning power plants. Fly ash was chemically activated using sulfuric acid followed by thermal activation at 600{sup o}C. The variation of surface and physico-chemical properties of the fly ash by activation methods resulted in improved acidity and therefore, catalytic activity for acid catalyzed reactions. The AFAC was characterized by X-ray diffraction, FT-IR spectroscopy, N{sub 2}-adsorption-desorption isotherm, scanning electron microscopy, flame atomic absorption spectrophotometry and sulfur content by CHNS/O elemental analysis. It showed amorphous nature due to high silica content (81%) and possessed high BET surface area (120 m{sup 2}/g). The catalyst was found to be highly active solid acid catalyst for liquid phase esterification of salicylic acid with acetic anhydride and methanol giving acetylsalicylic acid and methyl salicylate respectively. A maximum yield of 97% with high purity of acetylsalicylic acid (aspirin) and a very high conversion 87% of salicylic acid to methyl salicylate (oil of wintergreen) was obtained with AFAC. The surface acidity and therefore, catalytic activity in AFAC was originated by increased silica content, hydroxyl content and higher surface area as compared to fly ash. The study shows that coal generated fly ash can be converted into potential solid acid catalyst for acid catalyzed reactions. Furthermore, this catalyst may replace conventional environmentally hazardous homogeneous liquid acids making an ecofriendly; solvent free, atom efficient, solid acid based catalytic process. 27 refs., 5 figs., 2 tabs.

  8. Amino acids

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  9. Valproic Acid

    ... acid is in a class of medications called anticonvulsants. It works by increasing the amount of a ... older (about 1 in 500 people) who took anticonvulsants such as valproic acid to treat various conditions ...

  10. Ascorbic Acid

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  11. Aminocaproic Acid

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  12. Ethacrynic Acid

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  13. Discovery of a Chemical Modification by Citric Acid in a Recombinant Monoclonal Antibody

    2015-01-01

    Recombinant therapeutic monoclonal antibodies exhibit a high degree of heterogeneity that can arise from various post-translational modifications. The formulation for a protein product is to maintain a specific pH and to minimize further modifications. Generally Recognized as Safe (GRAS), citric acid is commonly used for formulation to maintain a pH at a range between 3 and 6 and is generally considered chemically inert. However, as we reported herein, citric acid covalently modified a recombinant monoclonal antibody (IgG1) in a phosphate/citrate-buffered formulation at pH 5.2 and led to the formation of so-called “acidic species” that showed mass increases of 174 and 156 Da, respectively. Peptide mapping revealed that the modification occurred at the N-terminus of the light chain. Three additional antibodies also showed the same modification but displayed different susceptibilities of the N-termini of the light chain, heavy chain, or both. Thus, ostensibly unreactive excipients under certain conditions may increase heterogeneity and acidic species in formulated recombinant monoclonal antibodies. By analogy, other molecules (e.g., succinic acid) with two or more carboxylic acid groups and capable of forming an anhydride may exhibit similar reactivities. Altogether, our findings again reminded us that it is prudent to consider formulations as a potential source for chemical modifications and product heterogeneity. PMID:25136741

  14. Enhancement of the Mechanical Properties of a Polylactic Acid/Flax Fiber Biocomposite by WPU, WPU/Starch, and TPS Polyurethanes Using Coupling Additives

    Miskolczi, N.; Sedlarik, V.; Kucharczyk, P.; Riegel, E.

    2018-01-01

    This work is addressed to the synthesis of bio-based polymers and investigation of their application in a flax-fiber-reinforced polylactic acid. Polyurethane polymers were synthesized from polyphenyl-methane-diisocyanate, poly (ethylene oxide) glycol, and ricinoleic acid, and their structure was examined by the Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. It was established that the introduction of flax fibers and different compatibilizers into the polymers improved their mechanical properties. A vinyl-trimetoxy-silane and polyalkenyl-polymaleic-anhydride derivative with a high acid number produced the best effect on the properties, but samples without additives had the highest water absorption capacity. SEM micrographs showed a good correlation between the morphology of fracture structure of the composites and the mechanical properties of flax fibers.

  15. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    Tor E. Kristensen

    2015-04-01

    Full Text Available Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA, many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  16. Chemoselective O-acylation of hydroxyamino acids and amino alcohols under acidic reaction conditions: History, scope and applications

    2015-01-01

    Summary Amino acids, whether natural, semisynthetic or synthetic, are among the most important and useful chiral building blocks available for organic chemical synthesis. In principle, they can function as inexpensive, chiral and densely functionalized starting materials. On the other hand, the use of amino acid starting materials routinely necessitates protective group chemistry, and in reality, large-scale preparations of even the simplest side-chain derivatives of many amino acids often become annoyingly strenuous due to the necessity of employing protecting groups, on one or more of the amino acid functionalities, during the synthetic sequence. However, in the case of hydroxyamino acids such as hydroxyproline, serine, threonine, tyrosine and 3,4-dihydroxyphenylalanine (DOPA), many O-acyl side-chain derivatives are directly accessible via a particularly expedient and scalable method not commonly applied until recently. Direct acylation of unprotected hydroxyamino acids with acyl halides or carboxylic anhydrides under appropriately acidic reaction conditions renders possible chemoselective O-acylation, furnishing the corresponding side-chain esters directly, on multigram-scale, in a single step, and without chromatographic purification. Assuming a certain degree of stability under acidic reaction conditions, the method is also applicable for a number of related compounds, such as various amino alcohols and the thiol-functional amino acid cysteine. While the basic methodology underlying this approach has been known for decades, it has evolved through recent developments connected to amino acid-derived chiral organocatalysts to become a more widely recognized procedure for large-scale preparation of many useful side-chain derivatives of hydroxyamino acids and related compounds. Such derivatives are useful in peptide chemistry and drug development, as amino acid amphiphiles for asymmetric catalysis, and as amino acid acrylic precursors for preparation of

  17. O emprego de quitosana quimicamente modificada com anidrido succínico na adsorção de azul de metileno The use of chemical modified chitosam with succinic anhydride in the methylene blue adsorption

    Ilauro S. Lima

    2006-06-01

    Full Text Available The adsorption capacity of alpha-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically in L class and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methyene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 ± 0.02 kJ mol-1 with an equilibrium constant of 7350 ± 10 and for the carbon/dye interaction this constant gave 5951 ± 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 ± 0.4 and -21.5 ± 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable.

  18. The use of chemical modified chitosan with succinic anhydride in the methylene blue adsorption; O emprego de quitosana quimicamente modificada com anidrido succinico na adsorcao de azul de metileno

    Lima, Ilauro S.; Ribeiro, Emerson S.; Airoldi, Claudio [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: airoldi@iqm.unicamp.br

    2006-05-15

    The adsorption capacity of a-chitosan and its modified form with succinic anhydride was compared with the traditional adsorbent active carbon by using the dye methylene blue, employed in the textile industry. The isotherms for both biopolymers were classified as SSA systems in the Giles model, more specifically iclass and subgroup 3. The dye concentration in the supernatant in the adsorption assay was determined through electronic spectroscopy. By calorimetric titration thermodynamic data of the interaction between methylene blue and the chemically modified chitosan at the solid/liquid interface were obtained. The enthalpy of the dye/chitosan interaction gave 2.47 {+-} 0.02 kJ mol-1 with an equilibrium constant of 7350 {+-} 10 and for the carbon/dye interaction this constant gave 5951 {+-} 8. The spontaneity of these adsorptions are reflected by the free Gibbs energies of -22.1 {+-} 0.4 and -21.5 {+-} 0.2 kJ mol-1, respectively, found for these systems. This new adsorbent derived from a natural polysaccharide is as efficient as activated carbon. However 97% of the bonded dye can be eluted by sodium chloride solution, while this same operation elutes only 42% from carbon. Chitosan is efficient in dye removal with the additional advantage of being cheap, non-toxic, biocompatible and biodegradable. (author)

  19. Feasibility study of various sulphonation methods for transforming carbon nanotubes into catalysts for the esterification of palm fatty acid distillate

    Shuit, Siew Hoong; Tan, Soon Huat

    2014-01-01

    Highlights: • First report on the production of biodiesel from low-value industrial by-product using sulphonated MWCNTs as catalyst. • Various sulphonation methods were used to transform MWCNTs into catalysts. • SO 3 H were successfully grafted on the surface of MWCNTs, which resulted in a high biodiesel yield and reuse capacity. • The maximum FAME yield by sulphonated MWCNTs was higher than for other popular solid acid catalysts. - Abstract: Sulphonated multi-walled carbon nanotubes were synthesised and utilised as catalysts to transform palm fatty acid distillate, the low-value by-product of palm oil refineries, into the more valuable product of biodiesel. The most common method to prepare carbon-based solid acid catalysts is thermal treatment with concentrated sulphuric acid, which is a time-consuming and energy-intensive process. Therefore, the feasibility of other sulphonation methods, such as the in situ polymerisation of acetic anhydride and sulphuric acid, the thermal decomposition of ammonium sulphate and the in situ polymerisation of poly(sodium4-styrenesulphonate), were examined in this study. The esterification reaction was performed at 170 °C for 3 h at a methanol to palm fatty acid distillate ratio of 20 and catalyst loading of 2 wt% in a pressurised reactor. The fatty acid methyl esters yields achieved by the sulphonated multi-walled carbon nanotubes prepared via thermal treatment with concentrated sulphuric acid, the in situ polymerisation of acetic anhydride and sulphuric acid, the thermal decomposition of ammonium sulphate and the in situ polymerisation of poly(sodium4-styrenesulphonate) were 78.1%, 85.8%, 88.0% and 93.4%, respectively. All catalysts could maintain a high catalytic activity even during the fifth cycle. Among the sulphonation methods, the in situ polymerisation of poly(sodium4-styrenesulphonate) produced the catalyst with the highest acid group density. In addition, the resonance structures of the benzenesulphonic acid

  20. Well acidizing

    Street, E H

    1980-01-23

    The apparatus relates in particular to a well-treating process in which an aqueous acid solution having a pH of < 2 is injected into a subterranean reservoir in a manner such that materials that contain ferric ions are present in the acid and, as the acid reacts within the reservoir and attains a pH exceeding 3, tend to be precipitated as ferric ion-containing solid materials that may plug the pores of the reservoir. Such a precipitation is prevented by dissolving in the acid solution an amount of 5-sulfosalicylic acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 0.5 to 3 but is less than enough to cause a significant salting-out of solid materials, and an amount of citric acid which is at least sufficient to sequester significant proportions of ferric ions when the pH of the acid is from 3 to 6 but is less than enough to precipitate a significant amount of calcium citrate. The amount of the 5-sulfosalicylic acid may be from 0.01 to 0.05 moles/l and the amount of citric acid is from 0.001 to 0.009 moles/l. 11 claims.

  1. A Contribution to the Study of the Oxidation of Uranium Monocarbide in Carbonic Anhydride at High Temperatures; Contribution a l'etude de l'oxydation du monocarbure d'uranium dans l'anhydride carbonique aux temperatures elevees; Vklad v izuchenie voprosa okisleniya monokarbida urana v ugol'nom angidride pri povyshennykh temperaturakh; Contribucion al estudio de la oxidacion del monocarburo de uranio en anhidrido carbonico a temperaturas elevadas

    Desrues, R; Paidassi, J.; Darras, R. [Centre d' Etudes Nucleaires, Saclay (France)

    1963-11-15

    Samples of uranium monocarbide, manufactured by two different techniques, and of a cermet composed of 96.7% U and 3.3% C (by weight) were submitted to the action of very carefully purified carbonic anhydride in oxygen and in water vapour in the temperature range 350 deg. C to 600 deg. C; oxidation was observed gravimetrically (Eyraud thermobalance) and micrographically. The following points were noted: (1) The curves representing the increase of weight as a function of time start by being more or less linear, but climb rapidly, mainly because of the progressive fragmentation of the samples. Incidentally the observed increases of weight are markedly less than those hitherto reported, very probably because of the greater purity of the carbonic anhydride used and the extremely low porosity of the uranium monocarbide. (2) The presence of uranium or dicarbide inclusions in the monocarbide decreases its resistance to oxidation; this must be attributed chiefly to the fact that they undergo very severe oxidation, namely because of the mechanical constraints which are introduced. (3) In all cases oxidation may be characterized by an activation energy of 29 000 cal/M - very close to the value for the oxidation of metallic uranium in the same gas and to the diffusion of oxygen in the oxide of uranium (UO{sub 2}) formed. (author) [French] Des echantillons de monocarbure d'uranium, fabrique suivant deux techniques differentes, et d'un cermet compose de 96,7% U- 3,37% C (en poids) ont ete soumis a l'action de l'anhydride carbonique tres soigneusement purifie en oxygene et en vapeur d'eau, dans l'intervalle 350-600 deg. C; leur oxydation a ete suivie a la fois par voie gravimetrique a l'aide d'une thermobalance Eyraud et par voie micrographique. Les points suivants ont pu etre degages: 1. Les courbes representant les augmentations de poids en fonction du temps sont au depart sensiblement lineaires, puis prennent ensuite une allure acceleree, ce qui s'explique surtout par la

  2. Ibotenic acid and thioibotenic acid

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte

    2004-01-01

    In this study, we have determined and compared the pharmacological profiles of ibotenic acid and its isothiazole analogue thioibotenic acid at native rat ionotropic glutamate (iGlu) receptors and at recombinant rat metabotropic glutamate (mGlu) receptors expressed in mammalian cell lines....... Thioibotenic acid has a distinct pharmacological profile at group III mGlu receptors compared with the closely structurally related ibotenic acid; the former is a potent (low microm) agonist, whereas the latter is inactive. By comparing the conformational energy profiles of ibotenic and thioibotenic acid...... with the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for thioibotenic acid...

  3. Increasing the electrical discharge endurance of acid anhydride cured DGEBA epoxy resin by dispersion of nanoparticle silica. High Perform. Polym. 11 (1999) pp 281-296 by IOP Publishing Ltd

    Henk, Peter O; Kortsen, T.W.; Kvarts, T.

    1999-01-01

    combinations were used: (a) fumed nanoparticle silicon dioxide referred to as Aerosil, (b) equal volumes of Aerosil and nanoparticle anatase, and (c) Aerosil plus anatase in combination with coarse-particle filler grade calcium-magnesium carbonate dolomite. A test for endurance using the CIGRE method II...... electrode arrangement was applied, the test comprising the establishment of partial discharges running perpendicularly onto one face of a plate specimen for a period measured until breakdown.Our results show that the endurance of the pure polymer is low. Increased loading with Aerosil increases...... the endurance by a factor of up to 20 as the Aerosil content goes from zero to 5.4 vol%. Aerosil mixed with anatase has a similar effect. The high level of endurance is maintained with an additional high-volume (35 vol.%) filling of coarse-particle dolomite to an epoxy system already containing Aerosil...

  4. Low-Cost and High-Impact Environmental Solutions for Military Composite Structures

    2005-12-15

    moduli of UPE polymers are considerably increased when neopentyl glycol is used as the polyol instead of ethylene glycol in the formulations [56...general purpose unsaturated polyester based on phthalic anhydride, ethylene glycol , and maleic anhydride. The VIAPAL 570G was a colorless solid in the...modulus. In this case, the neopentyl center of the Bisphenol A backbone of the VE 828 polymer may be responsible for increased modulus values. The

  5. Polyisobutenylsuccinimides as detergents and dispersants in fuel: infrared spectroscopy application

    Aleman-Vazquez, L.O.; Villagomez-Ibarra, J.R. [Instituto Mexicano del Petrole, San Bartolo Atepehuacan (Mexico). Gerencia de Productos Quimicos

    2001-05-01

    Polyalkenylsuccinimides were synthesized and their dispersancy properties evaluated in an internal combustion engine. The synthesis is based on the reaction of polyisobutene with maleic anhydride as the first step. The polyisobutenylsuccinic anhydride obtained reacts with primary amines in the last step to give polyalkenylsuccinimides. The results of the evaluations showed that some polyisobutenylsuccinimides reduce the deposit formation in the intake system with good efficiency. Infrared spectra of the prepared compounds allowed their identification. 16 refs., 2 tabs.

  6. Citric Acid Production by Aspergillus niger Cultivated on Parkia biglobosa Fruit Pulp

    Abidoye, Khadijat Toyin; Tahir, Hauwa; Ibrahim, Aliyu Dabai; Aransiola, Sesan Abiodun

    2014-01-01

    The study was conducted to investigate the potential of Parkia biglobosa fruit pulp as substrate for citric acid production by Aspergillus niger. Reducing sugar was estimated by 3,5-dinitrosalicylic acid and citric acid was estimated spectrophotometrically using pyridine-acetic anhydride methods. The studies revealed that production parameters (pH, inoculum size, substrate concentration, incubation temperature, and fermentation period) had profound effect on the amount of citric acid produced. The maximum yield was obtained at the pH of 2 with citric acid of 1.15 g/L and reducing sugar content of 0.541 mMol−1, 3% vegetative inoculum size with citric acid yield of 0.53 g/L and reducing sugar content of 8.87 mMol−1, 2% of the substrate concentration with citric acid yield of 0.83 g/L and reducing sugar content of 9.36 mMol−1, incubation temperature of 55°C with citric acid yield of 0.62 g/L and reducing sugar content of 8.37 mMol−1, and fermentation period of 5 days with citric acid yield of 0.61 g/L and reducing sugar content of 3.70 mMol−1. The results of this study are encouraging and suggest that Parkia biglobosa pulp can be harnessed at low concentration for large scale citric acid production. PMID:27433535

  7. [Determination a variety of acidic gas in air of workplace by Ion Chromatography].

    Li, Shiyong

    2014-10-01

    To establish a method for determination of a variety of acid gas in the workplace air by Ion Chromatography. (hydrofluoric acid, hydrogen chloride or hydrochloric acid, sulfur anhydride or sulfuric acid, phosphoric acid, oxalic acid). The sample in workplace air was collected by the porous glass plate absorption tube containing 5 ml leacheate. (Sulfuric acid fog, phosphoric acid aerosol microporous membrane after collection, eluted with 5 ml of eluent.) To separated by AS14+AG14 chromatography column, by carbonate (2.0+1.0) mmol/L (Na(2)CO(3)-NaHCO(3)) as eluent, flow rate of 1 ml/min, then analyzed by electrical conductivity detector. The retain time was used for qualitative and the peak area was used for quantitation. The each ion of a variety of acid gas in the air of workplace were excellent in carbonate eluent separation. The linear range of working curve of 0∼20 mg/L. The correlation coefficient r>0.999; lower detection limit of 3.6∼115 µg/L; quantitative limit of 0.012∼0.53 mg/L; acquisition of 15L air were measured, the minimum detection concentration is 0.004 0∼0.13 mg/m(3). The recovery rate is 99.7%∼101.1%. In the sample without mutual interference ions. Samples stored at room temperature for 7 days. The same analysis method, the detection of various acidic gases in the air of workplace, simple operation, good separation effect, high sensitivity, high detection efficiency, easy popularization and application.

  8. Formic acid

    Nielsen, H; Laing, B

    1921-12-03

    The production of formic acid by the oxidation of methane with a metallic oxide or by the interaction of carbon monoxide and water vapor in the presence of a catalyst, preferably a metallic oxide, is described along with the destructive distillation of carbonaceous material in the preesnce of formic acid vapor for the purpose of increasing the yield of condensible hydrocarbons.

  9. Comparison of the relative stability of pharmaceutical cocrystals consisting of paracetamol and dicarboxylic acids.

    Suzuki, Naoto; Kawahata, Masatoshi; Yamaguchi, Kentaro; Suzuki, Toyofumi; Tomono, Kazuo; Fukami, Toshiro

    2018-04-01

    The aim of this study is to evaluate the relative stability of pharmaceutical cocrystals consisting of paracetamol (APAP) and oxalic acid (OXA) or maleic acid (MLA). These observations of cocrystal stability under various conditions are useful coformer criteria when cocrystals are selected as the active pharmaceutical ingredient in drug development. The relative stability was determined from the preferentially formed cocrystals under various conditions. Cocrystal of APAP-OXA was more stable than that of APAP-MLA in a ternary cogrinding system and possessed thermodynamical stability. On the other hand, when grinding with moisture or maintaining at high temperatures and relative humidity conditions, APAP-MLA was more stable, and OXA converted to OXA dihydrate. In the slurry method, APAP-OXA was more stable in aprotic solvents because the APAP-OXA with low-solubility product precipitated. The relative stability order was affected by preparing conditions of presence of moisture. This order might attribute to the small difference of crystal structure in the extension of the hydrogen bond network.

  10. Chemical characteristics of dicarboxylic acids and related organic compounds in PM2.5 during biomass-burning and non-biomass-burning seasons at a rural site of Northeast China.

    Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Liu, Xiaoyan; Yang, Chi; Xu, Zufei; Fan, Meiyi; Zhang, Wenqi; Bao, Mengying; Chang, Yunhua; Song, Wenhuai; Liu, Shoudong; Lee, Xuhui; Li, Jun; Zhang, Gan; Zhang, Yan-Lin

    2017-12-01

    Fine particulate matter (PM2.5) samples were collected using a high-volume air sampler and pre-combusted quartz filters during May 2013 to January 2014 at a background rural site (47 ∘ 35 N, 133 ∘ 31 E) in Sanjiang Plain, Northeast China. A homologous series of dicarboxylic acids (C 2 -C 11 ) and related compounds (oxoacids, α-dicarbonyls and fatty acids) were analyzed by using a gas chromatography (GC) and GC-MS method employing a dibutyl ester derivatization technique. Intensively open biomass-burning (BB) episodes during the harvest season in fall were characterized by high mass concentrations of PM2.5, dicarboxylic acids and levoglucosan. During the BB period, mass concentrations of dicarboxylic acids and related compounds were increased by up to >20 times with different factors for different organic compounds (i.e., succinic (C 4 ) acid > oxalic (C 2 ) acid > malonic (C 3 ) acid). High concentrations were also found for their possible precursors such as glyoxylic acid (ωC 2 ), 4-oxobutanoic acid, pyruvic acid, glyoxal, and methylglyoxal as well as fatty acids. Levoglucosan showed strong correlations with carbonaceous aerosols (OC, EC, WSOC) and dicarboxylic acids although such good correlations were not observed during non-biomass-burning seasons. Our results clearly demonstrate biomass burning emissions are very important contributors to dicarboxylic acids and related compounds. The selected ratios (e.g., C 3 /C 4 , maleic acid/fumaric acid, C 2 /ωC 2 , and C 2 /levoglucosan) were used as tracers for secondary formation of organic aerosols and their aging process. Our results indicate that organic aerosols from biomass burning in this study are fresh without substantial aging or secondary production. The present chemical characteristics of organic compounds in biomass-burning emissions are very important for better understanding the impacts of biomass burning on the atmosphere aerosols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Retardation of the dewetting process due to the addition of functional copolymers at polymer-polymer interfaces

    Wunnicke, O; Lorenz-Haas, C; Leiner, V

    2002-01-01

    We studied the retardation of the dewetting process due to the addition of a functional copolymer in a polymer bilayer film. The model system consists of fully deuterated polystyrene (PS-d) on top of an amorphous polyamide (PA) sublayer on silicon substrates. Bilayer films were prepared with different content (0, 5, 10 and 30 vol. %) of a statistical copolymer (protonated styrene maleic anhydride acid (SMA2) containing 2% MA groups along the chain) being capable of forming hydrogen bonds with PA. The as-prepared as well as the annealed samples were investigated by neutron-reflectivity (NR) experiments, scanning force microscopy and optical microscopy. A significant retardation of dewetting is observed with the addition of SMA2. From model fits of NR curves the scattering length density profiles perpendicular to the sample surface were determined and an enrichment layer of SMA2 is detected. Retardation is explained by the intermixing of SMA2 and PS-d at the interface. (orig.)

  12. Synthesis and Characterization of Some New Thermal Stable Polymers - Polymerization of N-[4-N´ -(Benzylamino-carbonylphenyl]maleimide

    B. L. Hiran

    2007-01-01

    Full Text Available This article describes the synthesis and characterization of homopolymer (H-BCPM of N-[4-N'-(benzylamino-carbonyl phenyl] maleimide (N-BACPMI and copolymer (C-BCPM of N-BACPMI with n-butyl acrylate (BA. The new monomer was synthesized from p-aminobenzoic acid, maleic anhydride and benzylamine. The homopolymerization of N-BACPMI is initiated by free radical using AIBN in THF solvent at 65°C. Radical copolymerization of N-BACPMI with BA, initiated by AIBN, was performed in THF solvent using equimolar amount. Effect of the different free radical initiator AIBN, BPO and solvents p-Dioxane, THF, DMF and DMSO was studied. Homopolymer and Copolymer were characterized by intrinsic viscosity, solubility test, FT-IR, 1H-NMR spectral analysis and elemental analysis. Thermal behaviour was studied by Thermo gravimetric analysis.

  13. Formaldehyde-free and thermal resistant microcapsules containing n-octadecane

    Shan, X.L.; Wang, J.P.; Zhang, X.X.; Wang, X.C.

    2009-01-01

    Microcapsules containing n-octadecane were synthesized using methacrylic acid (MAA), methyl methacrylate (MMA) and 1,4-butylene glycol diacrylate (BDDA) as shell. The surface morphology, thermal physical properties, thermal stabilities and diameter distributions of the microcapsules were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and particle size distribution analysis, respectively. The experimental results show that, the core material is well encapsulated in the presence of emulsifier-sodium salt of styrene-maleic anhydride co-polymer. The average diameter of the microcapsules is 18 μm. The enthalpy of microencapsulated n-octadecane (MC 18 ) with MAA-MMA co-polymeric shell is 155 J g -1 which corresponds to 70 wt.% core content. The thermal resistant temperature of MC 18 is 238 o C, which is affected by n-octadecane/monomers mass ratios and the content of cross-linking agent-BDDA.

  14. Certain laws governing the influence of high molecular polymer additives on specific electrical conductivity and viscosity of zincate alkaline solution

    Dmitrenko, V.Ye.; Toropetsera, T.N.; Zubov, M.S.

    1983-01-01

    A study was made of the influence of polymer additives of different nature: polyelectrolyte, copolymer of ethylene with maleic anhydride, polymethacrylic acid and nonpolyectrolyte copolymer of vinyl alcohol with vinyleneglycol and polyvinyleneglycol on specific electrical conductance and viscosity of the zincate alkaline solution. It is indicated that with an increase in the content of additives, the specific conductance of the solution diminishes according to a linear law, while the viscosity rises. The additives of polyelectrolyte nature reduce more strongly the specific conductance and increase the viscosity than the nonpolyelectrolyte additives. From a comparison of the data on specific conductance and viscosity the following conclusion is drawn: the more the polymer ''structures'' the zincate alkaline solution, the more strongly it reduces its specific electrical conductance.

  15. The role of polymer dots on efficiency enhancement of organic solar cells: Improving charge transport property

    Li, Jinfeng; Zhang, Xinyuan; Liu, Chunyu; Li, Zhiqi; He, Yeyuan; Zhang, Zhihui; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2017-07-01

    In this work, poly(9,9-dioctylfluorene)-co-(4,7-di-2-thienyl-2,1,3-benzothiadiazole) (PF-5DTBT) and copolymer poly(styrene-co-maleic anhydride) (PSMA) dots were prepared as additive for active layer doping to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs), which based on poly[N-9″-hepta-decanyl-2,7-carbazole-alt-5,5-(4‧,7‧-di-2-thienyl-2‧,1‧,3‧-benzothiadiazole) (PCDTBT) and [6,6]-phenyl C71 butyric acid methyl-ester (PC71BM). A high efficiency of 7.40% was achieved due to increase of short-circuit current (Jsc) and fill factor (FF). The operation mechanism of OSCs doping with polymer dots was investigated, which demonstrated that the efficiency enhancement ascribes to improvement of electrical properties, such as exciton generation, exction dissociation, charge transport, and charge collection.

  16. Study of the compatibilizer effect in the properties of starch/polyester blends

    Juliana Bonametti Olivato

    2013-01-01

    Full Text Available The mechanical, viscoelastic and structural properties of starch/ poly (butylene adipate co-terephthalate (PBAT blown films produced by reactive extrusion were evaluated using citric acid (CA and maleic anhydride (MA as compatibilizers. Scanning electron microscopy images showed more homogeneous structure when CA and MA were included in the formulation. The tensile strength (MPa was improved with the inclusion of the highest proportion of both compatibilizers (1.5 %wt. A larger elastic component with values between 0.42-0.45 for the degree of solidity (1-c1 was observed for the intermediate concentration of compatibilizers. A high level of glycerol (10 %wt results in films with increased % elongation. Three partially miscible phases were observed in the blends. Biodegradable films of starch/PBAT with better properties could be produced by one-step reactive extrusion using CA and/or MA as compatibilizers.

  17. USSR Report, Chemistry

    1987-02-10

    acid anhydride with esters of phosphorous acid , which demonstrated that, in reactions of dialkyl phosphites with the anhydride, the... PHOSPHOROUS ACID ESTERS WITH HEPTAFLUOROBUTYRIC ACID ANHYDRIDE. PART 3. DONOR-ACCEPTOR INTERACTIONS Leningrad: ZHURNAL OBSHCHEY KHIMII in Russian Vol 56, No...Reaction of Thioesters and Amidothioesters of Phosphorous Acid With Poly Halogenated Methane Derivatives and Alkyl Halides (0. G. Sinyashin, Sh.

  18. Process for hardening an alkyd resin composition using ionizing radiation. [electron beams, gamma radiation

    Watanabe, T; Murata, K; Maruyama, T

    1969-11-27

    In an alkyd resin composition having free hydroxide radicals and containing a conjugated unsaturated fatty acid and/or oil as a component thereof, a process for hardening an alkyd resin composition comprises the steps of dissolving into a vinyl monomer, the product obtained by the semi-esterification reaction of said hydroxide radicals with acid anhydrides having polymerizable radicals and hardening by ionizing radiation to provide a coating with a high degree of cross-linking, with favorable properties such as toughness, hardness, chemical resistance and resistance to weather and with the feasibility of being applied as the ground and finish coat on metals, wood, paper, outdoor construction or the like. Any kind of ionization radiation, particularly accelerated electron beams, ..gamma.. radiation can be used at 50/sup 0/C to -5/sup 0/C for a few seconds or minutes, permitting continuous operation. In one example, 384 parts of phthalic anhydride, 115 parts of pentaerythritol, 233 parts of trimethylol ethane, 288 parts of tung fatty acid and 49 parts of para-tertiary-butyl benzoic acid are mixed and heated with 60 parts of xylene to an acid value of 12. In addition, 271 parts of maleic anhydride and 0.6 parts of hydroquinone are admixed with the content and heated to terminate the reaction. 100 parts of a 50% stylene solution of this alkyd resin are mixed with 1 part of a 60% toluene solution of cobalt naphthenate, and then coated on a glass plate and irradiated with high energy electron beams of 300 kV with a dose of 5 Mrad for 1 sec.

  19. Transparent lithiated polymer films for thermal neutron detection

    Mabe, Andrew N., E-mail: andrew.n.mabe@gmail.com [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Auxier, John D. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Urffer, Matthew J. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Penumadu, Dayakar [Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Schweitzer, George K. [Department of Chemistry, University of Tennessee, Knoxville, TN 37996 (United States); Miller, Laurence F. [Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996 (United States)

    2013-09-11

    Novel water-soluble {sup 6}Li loaded copolymer scintillation films have been designed and fabricated to detect thermal neutrons. Styrene and maleic anhydride were copolymerized to form an alternating copolymer, then the anhydride functionality was hydrolyzed using {sup 6}Li hydroxide. The resulting poly(styrene-co-lithium maleate) was mixed with salicylic acid as a fluor and cast as a thin film from water. The maximum {sup 6}Li loading obtained that resulted in a transparent film was 4.36% by mass ({sup 6}Li to polymer). The optimum fluorescence output was obtained for 11.7% salicylic acid by mass, presumably in the form of lithium salicylate, resulting in an optimum film containing 3.85% by mass of {sup 6}Li. A facile and robust synthesis method, film fabrication protocol, photoluminescence results, and scintillation responses are reported herein. -- Highlights: • A transparent polymer scintillator containing 3.85 wt% {sup 6}Li has been synthesized. • This class of polymeric thermal neutron scintillation detector is water-soluble. • Salicylic acid, presumably in the form of lithium salicylate, is used as a fluor. • The material emits 373 photons/α ({sup 241}Am) and an average of 139 photons/β ({sup 36}Cl). • The material emits 360 photons per thermal neutron capture event.

  20. Solar photoelectro-Fenton degradation of the herbicide 4-chloro-2-methylphenoxyacetic acid optimized by response surface methodology.

    Garcia-Segura, Sergi; Almeida, Lucio Cesar; Bocchi, Nerilso; Brillas, Enric

    2011-10-30

    A central composite rotatable design and response surface methodology (RSM) were used to optimize the experimental variables of the solar photoelectro-Fenton (SPEF) treatment of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). The experiments were made with a flow plant containing a Pt/air-diffusion reactor coupled to a solar compound parabolic collector (CPC) under recirculation of 10 L of 186 mg L(-1) MCPA solutions in 0.05 M Na(2)SO(4) at a liquid flow rate of 180 L h(-1) with an average UV irradiation intensity of about 32 Wm(-2). The optimum variables found for the SPEF process were 5.0 A, 1.0mM Fe(2+) and pH 3.0 after 120 min of electrolysis. Under these conditions, 75% of mineralization with 71% of current efficiency and 87.7 k Wh kg(-1) TOC of energy consumption were obtained. MCPA decayed under the attack of generated hydroxyl radicals following a pseudo-first-order kinetics. Hydroxyl radicals also destroyed 4-chloro-2-methylphenol, methylhydroquinone and methyl-p-benzoquinone detected as aromatic by-products. Glycolic, maleic, fumaric, malic, succinic, tartronic, oxalic and formic acids were identified as generated carboxylic acids, which form Fe(III) complexes that are quickly photodecarboxylated by the UV irradiation of sunlight at the CPC photoreactor. A reaction sequence for the SPEF degradation of MCPA was proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Lipoic Acid

    Ramazan Tetikcok

    2015-09-01

    Full Text Available Lipoic acid, which is defined as a miralce antioxidan, is used by many departments. Eventhough clinical using data are very limited , it is used in treatment of diabetic neuropathy, physical therapy and rehabilitation clinic, dermatology clinic, geriatric clinics. It has usage area for cosmetic purposes. Although there are reports there are the direction of the effectiveness in these areas, the works done are not enough. Today lipoic acid , used in many areas ,is evaluated as universal antioxidant [J Contemp Med 2015; 5(3.000: 206-209

  2. Safe design and operation of fluidized-bed reactors: Choice between reactor models

    Westerink, E.J.; Westerterp, K.R.

    1990-01-01

    For three different catalytic fluidized bed reactor models, two models presented by Werther and a model presented by van Deemter, the region of safe and unique operation for a chosen reaction system was investigated. Three reaction systems were used: the oxidation of benzene to maleic anhydride, the

  3. Bridging adhesion and barrier properties with functional dispersions : towards waterborne anti-corrosion coatings

    Soer, W.J.

    2008-01-01

    The successful preparation of waterborne anti-corrosion coatings based on maleic anhydride containing copolymers is described in this thesis. To obtain good anticorrosion coatings, three different properties should be present in a coating system; they should display good mechanical properties, good

  4. Reactive compatibilization of ethylene-co-vinyl acetate/starch blends

    Ma, P.; Hristova - Bogaerds, D.G.; Schmit, P.; Goossens, J.G.P.; Lemstra, P.J.

    2012-01-01

    The dispersion of starch as a filler in hydrophobic ethylene-co-vinyl acetate (EVA) rubber is an issue. To obtain a fine dispersion of starch in EVA rubber, EVA/starch blends were prepared by reactive extrusion in the pres- ence of maleic anhydride (MA), benzoyl peroxide (BPO), and glycerol. MA,

  5. In situ Raman spectroscopy studies of bulk and surface metal

    Weckhuysen, B.M.; Wachs, I.E.; Jehng, J.M.; Deo, G.; Guliants, V.V.; Benziger, J.B.

    1996-01-01

    Bulk V-P-O and model supported vanadia catalysts were investigated with in situ Raman spectroscopy during n-butane oxidation to maleic anhydride in order to determine the fundamental molecular structure-reactivity/selectivity insights that can be obtained from such experiments. The in situ Raman

  6. Autophobicity and layering behavior of thin liquid-crystalline polymer films.

    Wielen, van der M.W.J.; Cohen Stuart, M.A.; Fleer, G.J.

    1998-01-01

    The stability against breaking-up of thin spin-coated films of liquid-crystalline polymers depends on the film thickness and annealing temperature. This study concerns side-chain liquid-crystalline polymers, based on alternating copolymers of maleic anhydride and mesogenic alkenes. The mesogenic

  7. Dynamic and Capillary Shear Rheology of Natural Fiber-Reinforced Composites

    Moigne, Le N.; Oever, van den M.J.A.; Budtova, T.

    2013-01-01

    An extended dynamic and capillary rheological study of molten flax and sisal polypropylene (PP) composites was performed. Fiber concentration varied from 20 to 50 wt% and shear rate from 0.1 rad s−1 to 10,000 s#142;−1. Maleic anhydride-grafted-PP was used as compatibilizer; it strongly reduces PP

  8. Switchgrass (Panicum virgatum L.) as a reinforcing fibre in polypropylene composites

    Oever, van den M.J.A.; Elbersen, H.W.; Keijsers, E.R.P.; Gosselink, R.J.A.; Klerk-Engels, de B.

    2003-01-01

    In this study the switchgrass (Panicum virgatum L.), a biomass crop being developed in North America and Europe, was tested as a stiffening and reinforcing agent in polypropylene (PP) composites with and without maleic anhydride grafted PP (MAPP) as a compatibiliser and to evaluate the effect of

  9. Coir fiber reinforced polypropylene composite panel for automotive interior applications

    Nadir Ayrilmis; Songklod Jarusombuti; Vallayuth Fueangvivat; Piyawade Bauchongkol; Robert H. White

    2011-01-01

    In this study, physical, mechanical, and flammability properties of coconut fiber reinforced polypropylene (PP) composite panels were evaluated. Four levels of the coir fiber content (40, 50, 60, and 70 % based on the composition by weight) were mixed with the PP powder and a coupling agent, 3 wt % maleic anhydride grafted PP (MAPP) powder. The water resistance and the...

  10. VOLUME 8 (2003) Sada and J. Guthrie ABSTRACT

    denise

    Conjugated dienes tend to form 1:1 Diels. Alder adducts instead of copolymerizing while non - conjugated dienes can react to form 1:1 or 1:2 copolymers with vinyl groups which are cyclic15. A more extensive description of the current knowledge on the kinetics of copolymerization of maleic anhydride with dienes is found in ...

  11. Influence of natural fibers on the phase transitions in high-density polyethylene composites using dynamic mechanical analysis

    Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton

    2003-01-01

    Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....

  12. Bulletin of Materials Science | Indian Academy of Sciences

    ... glass slides coated with polyvinyl alcohol (PVA) crosslinked with maleic anhydride (MA). FTIR and XRD studies of the coated film were also done. AFM studies further helped in the morphological study of the film deposited. Finally, conductivity and ammonia gas-sensing property of the polyaniline film were also studied.

  13. 76 FR 76259 - National Emissions Standards for Hazardous Air Pollutants: Primary Aluminum Reduction Plants

    2011-12-06

    ... Emissions From Maleic Anhydride Plants, Ethylbenzene/Styrene Plants, Benzene Storage Vessels, Benzene...). The rule is applicable to facilities with affected sources associated with the production of aluminum... are subject to the requirements of this NESHAP: 14 primary aluminum production plants and one carbon...

  14. Surface Polymerisation Methods for Optimised Adhesion

    Drews, Joanna Maria

    Arbejdet har fokuseret på muligheder for at forstærke kompositmaterialer til højteknologiske anvendelser fx til vindmøllevinger. Forskningen har derfor været centreret om plasma polymerisation af henholdsvis maleic anhydrid (MAH) og 1,2-methylenedioxybenzen til tynde film på modelkulstofsubstrate...

  15. C S Sanmathi

    Home; Journals; Bulletin of Materials Science. C S Sanmathi. Articles written in Bulletin of Materials Science. Volume 27 Issue 3 June 2004 pp 243-249 Polymers. Terpolymerization of 2-ethoxy ethylmethacrylate, styrene and maleic anhydride: determination of the reactivity ratios · C S Sanmathi S Prasannakumar B S ...

  16. Effects of fire retardants on physical, mechanical, and fire properties of flat-pressed WPCs

    Nadir Ayrilmis; Jan T. Benthien; Heiko Thoemen; Robert H. White

    2012-01-01

    Physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (10% by weight) at different levels of wood flour (WF) content, 40, 50, or 60 wt%, were investigated. The WPC panels were made from dry-blended WF, polypropylene (PP), and fire retardant (FR) powders with maleic anhydride-grafted PP (2...

  17. Properties of flat-pressed wood plastic composites containing fire retardants

    Nadir Ayrilmis; Jan. T. Benthien; Heiko Thoemen; Robert H. White

    2011-01-01

    This study investigated physical, mechanical, and fire properties of the flat-pressed wood plastic composites (WPCs) incorporated with various fire retardants (FRs) [5 or 15% by weight (wt)] at 50 wt % of the wood flour (WF). The WPC panels were made from dry-blended WF, polypropylene (PP) with maleic anhydride grafted PP (2 wt %), and FR powder formulations using a...

  18. Dynamic mechanical analysis of compatibilizer effect on the mechanical properties of wood flour/high-density polyethylene composites

    Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk

    2004-01-01

    In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...

  19. Preparation of polymer microspheres by radiation-induced polymerization

    Naka, Y.; Yamamoto, Y.; Yoshida, Y.; Tagawa, S.

    1995-01-01

    Cross-liking monomer, diethylene glycol dimethacrylate gives microspheres from organic solution by radiation-induced polymerization. /One of the remarkable result is that the number of the microspheres is not changing during the polymerization. Ethyl methacrylate, maleic anhydride, styrene and acrylamide are used as comonomers. These comonomers give the microspheres in the range of 0 to 0.4 as mol fractions. (author)

  20. THIOGLYCOLIC ACID ESTERIFIED IN TO RICE STRAW FOR REMOVING LEAD FROM AQUEOUS SOLUTION

    R. Gong

    2011-09-01

    Full Text Available Thiol rice straw (TRS was prepared by esterifying thioglycolic acid onto rice straw in the medium of acetic anhydride and acetic acid with sulfuric acid as catalyst. The sorption of lead (Pb on TRS from aqueous solution was subsequently investigated. The batch experiments showed that Pb removal was dependent on initial pH, sorbent dose, Pb concentration, contact time, and temperature. The maximum value of Pb removal appeared at pH 5. For 100 mg/L of Pb solution, a removal ratio of greater than 98% could be achieved with 2.0 g/L or more of TRS. The isothermal data of Pb sorption conformed well to the Langmuir model, and the maximum sorption capacity (Qm of TRS for Pb was 104.17 mg/g. The equilibrium of Pb removal was reached within 120 min. The Pb removal process could be described by the pseudo-first-order kinetic model. The thermodynamic study indicated that the Pb removal process was spontaneous and endothermic.

  1. Mefenamic Acid

    Mefenamic acid comes as a capsule to take by mouth. It is usually taken with food every 6 hours as needed for up to 1 week. Follow ... pain vomit that is bloody or looks like coffee grounds black, tarry, or bloody stools slowed breathing ...

  2. Acid rain. Les pluies acides

    Curren, T

    1979-11-28

    This report was produced for the use of Members of Parliament and House of Commons committees. The document describes the formation of acid rain, emissions of acidifying pollutants in North America, the growth of the problem and its environmental effects on aquatic and terrestrial ecosystems, human health and man-made structures. Areas of Canada which are most susceptible are identified. Actions taken by Parliament are given, including the formation of a sub-committee on acid rain and the passing of Bill C-51 in 1980 to amend the Clean Air Act, bringing it closer to a similar law in the U.S. A chronology of government responses to acid rain at the international, national and provincial level, is given. The most recent government actions included the passing of the US Clean Air Act by the Senate, the amending of the act into law, and commencement of negotiations to develop a Canada-US Air Quality Accord. 10 refs.

  3. Synthesis of Functional Materials by Radiation

    Noh, Y. C.; Kang, P. H.; Choi, J. H.

    2006-06-01

    The radiation crosslinking, grafting, curing and degradation can be easily adjusted and is easily reproducible by controlling the radiation dose. These studies aim to develop new biomaterials such as wound healing, tissue engineering and antiadhesion barrier. The effect of thermal treatment and irradiation on the physico-chemical properties of ultra-high molecular weight polyethylene (UHMWPE) used in orthopedic implants was investigated. If a large amount of polymer radicals remain trapped after the irradiation of ultra-high molecular weight polyethylene (UHMWPE), the radicals may significantly alter the physical properties of UHMWPE during long shelf storage and implantation for a long time period. UHMWPE irradiated in the molten state had a higher crosslinking extent and a lower wear rate than one irradiated in the room temperature. The radiation grafting technology can develop membrane of fuel cell and Li secondary battery and heavy metal absorbents. Proton exchange membranes were prepared by γ-irradiation-induced grafting of styrene into fluorinated polymer films and subsequent sulfonation. Results of the present work suggest that radiation induced-graft polymerization can be used as alternative method to blending to prepare polymer electrolyte membranes for lithium battery applications. The polypropylene-based compatibilizers, polypropylene-g-maleic anhydride (PP-MAH), polypropylene-g-maleic anhydride/styrene (PP-St/MAH), and polypropylene-g-acrylic acid (PP-AA), were prepared by a high energy irradiation method. The compatibilizing effect of newly prepared graft copolymers on immiscible PP/Nylon6 blends has been studied by means of UTM, SEM, and DSC techniques. The results indicate that PP-MAH and PP-St/MAH are more effective compatibilizers for PP/Nylon6 blends than PP-AA showing more than 30 % increase in impact strength, and the compatibilizing effect on PP/Nylon6 blends depends on molecular structure of the compatibilizers and the composition of the

  4. Quick analysis method of sulphuric anhydride

    Puig Montraveta, J.

    1974-09-01

    Full Text Available Not availableEl clinker de cemento portland molido sin adición alguna da un cemento que fragua inmediatamente, y la escoria de alto horno, molida asimismo sin adición, nos proporciona un producto que fragua muy lentamente. Ambos requieren la adición de un retardador o de un acelerante que les regule su fraguado. El sulfato calcico, ya sea en forma de sulfato cálcico dihidratado o yeso (CaS04.2H20 o como sulfato cálcico anhidro o anhidrita (CaSO4, actúa como regulador de fraguado en los dos casos, y por ello se añade en la molienda de los cementos portland, siderúrgicos, sobresulfatados, puzolánicos, etc.; todo lo cual obliga a que el sulfato cálcico deba considerarse como materia prima para la producción de todos los cementos, a excepción del cemento aluminoso fundido.

  5. A study of the barrier properties of polyethylene coated with a nanocellulose/magnetite composite film

    Đorđević Nenad

    2016-01-01

    Full Text Available The morphological, thermal and barrier properties of low-density polyethylene/polycaprolactone-modified nanocellulose hybrid materials were investigated in this paper. Nanonocelulose/magnetite (NC-Fe3O4 nanocomposite and maleic acid functionalized NC/magnetite (NCMA-Fe3O4 nanocomposite were prepared and used as filler at various concentrations (5, 10 and 15 wt. % in polycaprolactone (PCL layer. PE was coated with PCL/NC/magnetite layer. The addition of the filler did not unfavorably affect the inherent properties of the polymer, especially its barrier properties. Oxygen permeation measurements show that the oxygen barrier properties of magnetite enriched PCL film were improved due to chemical activity of added material. The highest level of barrier capacity was observed for PE samples coated with PCL based composite with NCMA-Fe3O4 micro/-nanofiller, which implies the significant contribution of nanocellulose surface modification with maleic anhydride residue to improved barrier properties. [Projekat Ministarstva nauke Republike Srbije, br. III45019 i br. OI172013

  6. Levulinic acid

    Barbara Hachuła

    2013-09-01

    Full Text Available The title compound (systematic name: 4-oxopentanoic acid, C5H8O3, is close to planar (r.m.s. deviation = 0.0762 Å. In the crystal, the molecules interact via O—H...O hydrogen bonds in which the hydroxy O atoms act as donors and the ketone O atoms in adjacent molecules as acceptors, forming C(7 chains along [20-1].

  7. Synthesis and curing of alkyd enamels based on ricinoleic acid

    Jovičić Mirjana C.

    2010-01-01

    Full Text Available A combination of an alkyd resin with a melamine-formaldehyde resin gives a cured enamel film with the flexibility of the alkyd constituent and the high chemical resistance and hardness of the melamine resin at the same time. The melamine resin is a minor constituent and plays the role of a crosslinking agent. In this paper, alkyd resins of high hydroxyl numbers based on trimethylolpropane, ricinoleic acid and phthalic anhydride were synthesized. Two alkyds having 30 and 40 wt% of ricinoleic acid were formulated by calculation on alkyd constant. Alkyds were characterized by FTIR and by the determination of acid and hydroxyl numbers. Then synthesized alkyds were made into baking enamels by mixing with melamine-formaldehyde resins (weight ratio of 70:30 based on dried mass. Two types of commercial melamine resins were used: threeisobutoxymethyl melamine-formaldehyde resin (TIMMF and hexamethoxymethyl melamine resin (HMMMF. Prepared alkyd/melamine resin mixtures were cured in a differential scanning calorimeter (DSC under non-isothermal mode. Apparent degree of curing as a function of temperature was calculated from the curing enthalpies. Kinetic parameters of curing were calculated using Freeman-Carroll method. TIMMF resin is more reactive with synthesized alkyds than HMMMF resin what was expected. Alkyd resin with 30 wt% of ricinoleic acid is slightly more reactive than alkyd with 40 wt% of ricinoleic acid, probably because it has the high contents of free hydroxyl and acid groups. The gel content, Tg, thermal stability, hardness, elasticity and impact resistance of coated films cured at 150°C for 60 min were measured. Cured films show good thermal stability since the onset of films thermal degradation determined by thermogravimetric analysis (TGA is observed at the temperatures from 281 to 329°C. Films based on alkyd 30 are more thermal stable than those from alkyd 40, with the same melamine resin. The type of alkyd resin has no significant

  8. Physicochemical Parameters Affecting the Electrospray Ionization Efficiency of Amino Acids after Acylation

    2017-01-01

    Electrospray ionization (ESI) is widely used in liquid chromatography coupled to mass spectrometry (LC–MS) for the analysis of biomolecules. However, the ESI process is still not completely understood, and it is often a matter of trial and error to enhance ESI efficiency and, hence, the response of a given set of compounds. In this work we performed a systematic study of the ESI response of 14 amino acids that were acylated with organic acid anhydrides of increasing chain length and with poly(ethylene glycol) (PEG) changing certain physicochemical properties in a predictable manner. By comparing the ESI response of 70 derivatives, we found that there was a strong correlation between the calculated molecular volume and the ESI response, while correlation with hydrophobicity (log P values), pKa, and the inverse calculated surface tension was significantly lower although still present, especially for individual derivatized amino acids with increasing acyl chain lengths. Acylation with PEG containing five ethylene glycol units led to the largest gain in ESI response. This response was maximal independent of the calculated physicochemical properties or the type of amino acid. Since no actual physicochemical data is available for most derivatized compounds, the responses were also used as input for a quantitative structure–property relationship (QSPR) model to find the best physicochemical descriptors relating to the ESI response from molecular structures using the amino acids and their derivatives as a reference set. A topological descriptor related to molecular size (SPAN) was isolated next to a descriptor related to the atomic composition and structural groups (BIC0). The validity of the model was checked with a test set of 43 additional compounds that were unrelated to amino acids. While prediction was generally good (R2 > 0.9), compounds containing halogen atoms or nitro groups gave a lower predicted ESI response. PMID:28737384

  9. Biotechnology for producing fuels and chemicals from biomass. Volume II. Fermentation chemicals from biomass

    Villet, R. (ed.)

    1981-02-01

    The technological and economic feasibility of producing some selected chemicals by fermentation is discussed: acetone, butanol, acetic acid, citric acid, 2,3-butanediol, and propionic acid. The demand for acetone and butanol has grown considerably. They have not been produced fermentatively for three decades, but instead by the oxo and aldol processes. Improved cost of fermentative production will hinge on improving yields and using cellulosic feedstocks. The market for acetic acid is likely to grow 5% to 7%/yr. A potential process for production is the fermentation of hydrolyzed cellulosic material to ethanol followed by chemical conversion to acetic acid. For about 50 years fermentation has been the chief process for citric acid production. The feedstock cost is 15% to 20% of the overall cost of production. The anticipated 5%/yr growth in demand for citric acid could be enhanced by using it to displace phosphates in detergent manufacture. A number of useful chemicals can be derived from 2,3-butanediol, which has not been produced commercially on a large scale. R and D are needed to establish a viable commercial process. The commercial fermentative production of propionic acid has not yet been developed. Recovery and purification of the product require considerable improvement. Other chemicals such as lactic acid, isopropanol, maleic anhydride, fumarate, and glycerol merit evaluation for commercial fermentative production in the near future.

  10. Comparative study of the oxidation of various qualities of uranium in carbon dioxide at high temperatures; Etude comparative de l'oxydation de diverses qualites d'uranium dans l'anhydride carbonique aux temperatures elevees

    Desrues, R; Paidassi, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Uranium samples of six different qualities were subjected, in the temperature range 400 - 1000 C, to the action of carbon dioxide carefully purified to eliminate oxygen and water vapour; the resulting oxidation was followed micro-graphically and also (but only in the range 400 - 700 C) gravimetrically using an Ugine-Eyraud microbalance. A comparison of the results leads to the following 3 observations. First, the oxidation of the six uraniums studied obeys a linear law, (followed at 700 C by an accelerating law). The rates of reaction differ by a maximum of 100 per cent, the higher purity grades being oxidized more slowly except at 700 C when the reverse is true. Secondly, simultaneously with the growth, of an approximately uniform film of uranium dioxide on the metal, there occurs a localized attack in the form of blisters in the immediate neighbourhood of the monocarbide inclusions in the uranium. The relative importance of this attack is greater for lower oxidation temperatures and for a larger size, number and inequality of distribution of the inclusions, that is to say for higher carbon concentrations in the uranium (which have values from 7 to 1000 ppm in our tests). Thirdly, for oxidation temperatures above 600 C blistering is much less pronounced, but at 700 C the beginning of a general deformation of the sample occurs, which, above 750 C, becomes much greater; this leads to an acceleration of the reaction rate with respect to the linear law. In view of the over-heating, the sample must already be in the {gamma}-phase which is particularly easily deformed; furthermore this expansion phenomenon is more pronounced when the sample is more plastic and therefore purer. (authors) [French] Des echantillons de six qualites d'uranium ont ete soumis, dans l'intervalle 400-1000 C, a l'action de l'anhydride carbonique tres soigneusement purifie en oxygene et en vapeur d'eau, et leur oxydation a ete suivie par voie micrographique et egalement (mais seulement entre 400

  11. Modification of (DGEBA epoxy resin with maleated depolymerised natural rubber

    2008-04-01

    Full Text Available In this work, diglycidyl ether of bisphenol A (DEGBA type epoxy resin has been modified with maleated depolymerised natural rubber (MDPR. MDPR was prepared by grafting maleic anhydride onto depolymerised natural rubber. MDPR has been characterized by Fourier transform infrared (FT-IR spectroscopy and nuclear magnetic resonance spectroscopy. MDPR was blended with epoxy resin at three different ratios (97/3, 98/2 and 99/1, by keeping the epoxy resin component as the major phase and maleated depolymerised natural rubber component as the minor phase. The reaction between the two blend components took place between the acid/anhydride group in the MDPR and the epoxide group of the epoxy resin. The proposed reaction schemes were supported by the FT-IR spectrum of the uncured Epoxy/MDPR blends. The neat epoxy resin and Epoxy/MDPR blends were cured by methylene dianiline (DDM at 100°C for three hours. Thermal, morphological and mechanical properties of the neat epoxy and the blends were investigated. Free volume studies of the cured, neat epoxy and Epoxy/MDPR blends were correlated with the morphological and mechanical properties of the same systems using Positron Annihilation Lifetime Studies.

  12. NIOSH Manual of Analytical Methods (third edition). Fourth supplement

    1990-08-15

    The NIOSH Manual of Analytical Methods, 3rd edition, was updated for the following chemicals: allyl-glycidyl-ether, 2-aminopyridine, aspartame, bromine, chlorine, n-butylamine, n-butyl-glycidyl-ether, carbon-dioxide, carbon-monoxide, chlorinated-camphene, chloroacetaldehyde, p-chlorophenol, crotonaldehyde, 1,1-dimethylhydrazine, dinitro-o-cresol, ethyl-acetate, ethyl-formate, ethylenimine, sodium-fluoride, hydrogen-fluoride, cryolite, sodium-hexafluoroaluminate, formic-acid, hexachlorobutadiene, hydrogen-cyanide, hydrogen-sulfide, isopropyl-acetate, isopropyl-ether, isopropyl-glycidyl-ether, lead, lead-oxide, maleic-anhydride, methyl-acetate, methyl-acrylate, methyl-tert-butyl ether, methyl-cellosolve-acetate, methylcyclohexanol, 4,4'-methylenedianiline, monomethylaniline, monomethylhydrazine, nitric-oxide, p-nitroaniline, phenyl-ether, phenyl-ether-biphenyl mixture, phenyl-glycidyl-ether, phenylhydrazine, phosphine, ronnel, sulfuryl-fluoride, talc, tributyl-phosphate, 1,1,2-trichloro-1,2,2-trifluoroethane, trimellitic-anhydride, triorthocresyl-phosphate, triphenyl-phosphate, and vinyl-acetate.

  13. Preparation and characterization of an aromatic polyester/polyaniline composite and its improved counterpart

    C. S. Wu

    2012-06-01

    Full Text Available Poly(butylene terephthalate (PBT composites containing polyaniline (PANI were prepared using a melt-blending process. Maleic anhydride-grafted PBT (PBT-g-MA and PANI were used to improve the compatibility of PANI within the PBT matrix. PBT-g-MA/PANI composites exhibited noticeably superior mechanical properties compared with those of PBT/PANI due to greater compatibility with the added PANI. The antibacterial and antistatic properties of the composites were also evaluated. Escherichia coli were chosen as the standard bacteria for determining the antibacterial properties of the composite materials. The PBT-g-MA/PANI composites showed markedly enhanced antibacterial and antistatic properties compared to PBT/PANI composites due to the formation of imide bonds from condensation of the anhydride carboxyl acid groups of PBT-g-MA with the amino groups of PANI. The optimal level of PANI in the composites was 9 wt%, as excess PANI led to separation of the two organic phases, lowering their compatibility.

  14. Functionalization and Chemical Modification of 2-Hydroxyethyl Methacrylate with Carboxylic Acid

    Mohammad Hossein Nasirtabrizi

    2012-01-01

    Full Text Available Free radical polymerization of the resulting monomers methyl methacrylate (MMA, ethyl methacrylate (EMA, methylacrylate (MA and ethylacrylate (EA with 2-hydroxyethyl methacrylate (HEMA (in 1:1 mole ratio were carried out using azobis(isoboutyronitrile (AIBN as initiator at the temperature ranges 60-70°C. The modification of polymers were carried out by 9-anthracenecarboxylic acid (9-ACA via the esterification reaction between —OH of poly(HEMA and —COOH of 9-ACA, in presence of N,N′-dicyclohexyl-carbodiimide (DCC, 4-(dimethylamino pyridine (DMAP and N,N-dimethyl formamid (DMF. It was found that the molar ratio acid/alcohol/catalysts= 0.02: 0.02: 0.02 and 0.002, optimal for preparation of the ester. As demonstrated by FT-IR, 1H-NMR and dynamic mechanical thermal analysis (DMTA. The Tg value of methacrylate and acrylate copolymers containing 9-ACA groups was found to increase with incorporation of 9-ACA groups in polymer structures. The presence of 9-ACA groups in the polymer side chains created new polymers with novel modified properties that find some applications in polymer industry. These anthracenic factors could take part in cyclo addition reaction with other factors such as anhydrides and kinons.

  15. Understanding Acid Rain

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  16. Studies in reactive extrusion processing of biodegradable polymeric materials

    Balakrishnan, Sunder

    were comparable to linear low density Polyethylene (LDPE). Ecoflex-Thermoplastic Starch (TPS) graft co-polymers were continuously manufactured in melt with maleic acid catalyst using a twin-screw co-rotating extruder. The graft co-polymer was completely extractable in Dichloromethane and formed transparent films on solvent casting. Regular corn-starch was maleated in a twin-screw extruder using maleic anhydride or maleic acid, glycerol plasticizer and optional radical initiator. Confirmation of reactivity of maleic acid onto the starch backbone was confirmed by Fourier Transformed Infra Red (FTIR) Spectroscopy. (Abstract shortened by UMI.)

  17. The acidic functional groups of humic acid

    Shanxiang, Li; Shuhe, Sun; Zhai Zongxi, Wu Qihu

    1983-09-01

    The acidic functional groups content, pK value, DELTAH and DELTAS of humic acid (HA) and nitro-humic acid (NHA) were determined by potentiometry, conductometry and calorimetric titration. The thermodynamic parameters of carboxylic groups and phenolic hydroxyl groups of humic acid are similar to that of simple hydroxy-benzoic acid. The configuration sites of acidic functional groups in humic acid from different coals are different. The carbonyl groups on aromatic rings are probably ortho to phenolic -OH for HA and NHA extracted from Huangxian's brown coal and Japanese lignite, while those from Lingshi's weathered coal are not. The weak -COOH groups of the latter possess higher chemical activity. The -COOH content in HA increases, phenolic -OH group decreases and the chemical acidity of acidic functional groups increases when HA is oxidized by nitric acid. (14 refs.)

  18. Okadaic acid

    Danielsen, E Michael; Hansen, Gert H; Severinsen, Mai C K

    2014-01-01

    are the hallmark of phospholipidosis, a pathological condition characterized by lysosomal phospholipid accumulation. Phospholipidosis is observed in acquired lysosomal storage diseases and is induced by a large number of cationic amphiphilic drugs. Unlike the latter, however, OA does not act by accumulating...... in acidic organelles, implying a different toxic mechanism of action. We propose that rapid induction of LBs, an indicator of phospholipidosis, should be included in the future toxicity profile of OA....... hyper protein phosphorylation, but no detectable loss of cell polarity or cytoskeletal integrity of the enterocytes. Using a fluorescent membrane marker, FM dye, endocytosis from the brush border was affected by the toxin. Although constitutive uptake into subapical terminal web-localized early...

  19. Acrylic composition

    Kimura, Tadashi; Ozeki, Takao; Kobayashi, Juichi; Nakamoto, Hideo; Meda, Yutaka.

    1969-01-01

    An acrylic composition and a process for the production of an easily hardenable coating material by irradiating with active energy, particularly electron beams and ultraviolet light, are provided using a mixture of 10%-100% by weight of an unsaturated compound and 90%-0% of a vinyl monomer. The composition has a high degree of polymerization, low volatility, low viscosity and other properties similar to thermosetting acrylic or amino alkyd resins. The aforesaid unsaturated compound is produced by primarily reacting saturated cyclocarboxylic anhydride and/or alpha-, beta-ethylene unsaturated carboxylic anhydride and by secondarily reacting an epoxy radical-containing vinyl monomer by addition reaction with polyhydric alcohols. Each reaction is conducted in the presence of a tertiary amino radical-containing vinyl monomer as a catalyst. The cross-linking is effected generally with an electron beam accelerator of 0.1-2.0 MeV or with a light beam in the 2,000-8,000A range in the presence of a photosensitive agent. In one example, 62 parts of ethylene glycol and 196 parts of maleic anhydride were dissolved in a mixture consisting of 100 parts of n-butyl methacrylate and 30 parts of styrene. To the mixture were added 5 parts of 2-methyl 5 vinyl piridine and 0.005 part of hydroquinone monomethyl ether. After the reaction at 90 0 C for 3 hours, a compound HOC:O-CH=CHC:OCH 2 CH 2 C:OOH was produced. To this solution were added 285 parts of glycidyl methacrylate. After the reaction at 90 0 C for 6 hours, 95% of the carboxylic acids reacted with epoxy radicals. Fourteen examples are given. (Iwakiri, K.)

  20. A comparative study of alumina-supported Ni catalysts prepared by photodeposition and impregnation methods on the catalytic ozonation of 2,4-dichlorophenoxyacetic acid

    Rodríguez, Julia L.; Valenzuela, Miguel A.; Tiznado, Hugo; Poznyak, Tatiana; Chairez, Isaac; Magallanes, Diana

    2017-01-01

    The heterogeneous catalytic ozonation on unsupported and supported oxides has been successfully tested for the removal of several refractory compounds in aqueous solution. In this work, alumina-supported nickel catalysts prepared by photodeposition and impregnation methods were compared in the catalytic ozonation of 2,4-dichlorophenoxyacetic acid (2,4-D). The catalysts were characterized by high-resolution electron microscopy and X-ray photoelectron spectroscopy. The photochemical decomposition of Ni acetylacetonate to produce Ni(OH) 2 , NiO, and traces of Ni° deposited on alumina was achieved in the presence of benzophenone as a sensitizer. A similar surface composition was found with the impregnated catalyst after its reduction with hydrogen at 500 °C and exposed to ambient air. Results indicated a higher initial activity and maleic acid (byproduct) concentration with the photodeposited catalyst (1 wt% Ni) compared to the impregnated catalyst (3 wt% Ni). These findings suggest the use of the photodeposition method as a simple and reliable procedure for the preparation of supported metal oxide/metal catalysts under mild operating conditions.