WorldWideScience

Sample records for male drosophila nervous

  1. Hox gene regulation in the central nervous system of Drosophila

    Directory of Open Access Journals (Sweden)

    Maheshwar eGummalla

    2014-04-01

    Full Text Available Hox genes specify the structures that form along the anteroposterior (AP axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called posterior dominance, states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS. While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92kb long non-coding RNA (lncRNA encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA. Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The 1st mechanism is mediated by a microRNA (mir-iab-8 encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila hox complexes

  2. Sensory integration regulating male courtship behavior in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dimitrije Krstic

    Full Text Available The courtship behavior of Drosophila melanogaster serves as an excellent model system to study how complex innate behaviors are controlled by the nervous system. To understand how the underlying neural network controls this behavior, it is not sufficient to unravel its architecture, but also crucial to decipher its logic. By systematic analysis of how variations in sensory inputs alter the courtship behavior of a naïve male in the single-choice courtship paradigm, we derive a model describing the logic of the network that integrates the various sensory stimuli and elicits this complex innate behavior. This approach and the model derived from it distinguish (i between initiation and maintenance of courtship, (ii between courtship in daylight and in the dark, where the male uses a scanning strategy to retrieve the decamping female, and (iii between courtship towards receptive virgin females and mature males. The last distinction demonstrates that sexual orientation of the courting male, in the absence of discriminatory visual cues, depends on the integration of gustatory and behavioral feedback inputs, but not on olfactory signals from the courted animal. The model will complement studies on the connectivity and intrinsic properties of the neurons forming the circuitry that regulates male courtship behavior.

  3. Characterization of Drosophila fruitless-gal4 transgenes reveals expression in male-specific fruitless neurons and innervation of male reproductive structures

    NARCIS (Netherlands)

    Billeter, Jean-Christophe; Goodwin, Stephen F

    2004-01-01

    The fruitless (fru) gene acts in the central nervous system (CNS) of Drosophila melanogaster to establish male sexual behavior. Genetic dissection of the locus has shown that one of the fru gene's promoter, P1, controls the spatial and temporal expression of male-specific FruM proteins critical to

  4. Mutability of germ cells of descedants of irradiated drosophila males

    International Nuclear Information System (INIS)

    Fokina, T.L.; Vorobtsova, I.E.

    1987-01-01

    The increased frequency of random and radiation-induced mutation was registered in germ cells of drosophila irradiated male descendants of the first generation. The effect observed depended on of radiation dose delivered to parent males, test dose to posterity, type of mutation registered, and sex of the descendants under study

  5. Reduction of dopamine level enhances the attractiveness of male Drosophila to other males.

    Science.gov (United States)

    Liu, Tong; Dartevelle, Laurence; Yuan, Chunyan; Wei, Hongping; Wang, Ying; Ferveur, Jean-François; Guo, Aike

    2009-01-01

    Dopamine is an important neuromodulator in animals and its roles in mammalian sexual behavior are extensively studied. Drosophila as a useful model system is widely used in many fields of biological studies. It has been reported that dopamine reduction can affect female receptivity in Drosophila and leave male-female courtship behavior unaffected. Here, we used genetic and pharmacological approaches to decrease the dopamine level in dopaminergic cells in Drosophila, and investigated the consequence of this manipulation on male homosexual courtship behavior. We find that reduction of dopamine level can induce Drosophila male-male courtship behavior, and that this behavior is mainly due to the increased male attractiveness or decreased aversiveness towards other males, but not to their enhanced propensity to court other males. Chemical signal input probably plays a crucial role in the male-male courtship induced by the courtees with reduction of dopamine. Our finding provides insight into the relationship between the dopamine reduction and male-male courtship behavior, and hints dopamine level is important for controlling Drosophila courtship behavior.

  6. Male recombination in Brazilian populations of Drosophila ananassae.

    Science.gov (United States)

    Goñi, Beatriz; Matsuda, Muneo; Tobari, Yoshiko N

    2016-07-01

    With few exceptions, spontaneous crossing over does not normally occur in male Drosophila. Drosophila ananassae males show considerable amounts of crossing over. In wild males of D. ananassae from Asian (2008) and Brazilian populations (1986 and 2007) variable frequencies of meiotic crossing over, estimated from chiasmata counts, suggested the existence of factors controlling male crossing over in these populations. To corroborate for such prediction, we present data on spontaneous recombination in F1 males of D. ananassae heterozygous for chromosomes of the same Brazilian populations (1986) and marker chromosomes using three testers stocks. Mean recombination value was low, although high variability existed between individual frequencies. Recombination frequencies between lines in each tester stock were not significantly different, excepting when the 3ple-px and 3ple-cy testers were compared (p recombination in chromosomes 2 and 3 in F1 males tested with e(65) se; bri ru was not related, suggesting they are under independent genetic control. Our data are consistent with proposed genetic factors controlling male crossing over in the tester stocks and to the presence of enhancers and suppressors of male crossing over segregating in the Brazilian populations (1986).

  7. Genetic complexity underlying hybrid male sterility in Drosophila.

    OpenAIRE

    Sawamura, Kyoichi; Roote, John; Wu, Chung-I; Yamamoto, Masa-Toshi

    2004-01-01

    Recent genetic analyses of closely related species of Drosophila have indicated that hybrid male sterility is the consequence of highly complex synergistic effects among multiple genes, both conspecific and heterospecific. On the contrary, much evidence suggests the presence of major genes causing hybrid female sterility and inviability in the less-related species, D. melanogaster and D. simulans. Does this contrast reflect the genetic distance between species? Or, generally, is the genetic b...

  8. Molecular Regulation of Alternative Polyadenylation (APA) within the Drosophila Nervous System.

    Science.gov (United States)

    Vallejos Baier, Raul; Picao-Osorio, Joao; Alonso, Claudio R

    2017-10-27

    Alternative polyadenylation (APA) is a widespread gene regulatory mechanism that generates mRNAs with different 3'-ends, allowing them to interact with different sets of RNA regulators such as microRNAs and RNA-binding proteins. Recent studies have shown that during development, neural tissues produce mRNAs with particularly long 3'UTRs, suggesting that such extensions might be important for neural development and function. Despite this, the mechanisms underlying neural APA are not well understood. Here, we investigate this problem within the Drosophila nervous system, focusing on the roles played by general cleavage and polyadenylation factors (CPA factors). In particular, we examine the model that modulations in CPA factor concentration may affect APA during development. For this, we first analyse the expression of the Drosophila orthologues of all mammalian CPA factors and note that their expression decreases during embryogenesis. In contrast to this global developmental decrease in CPA factor expression, we see that cleavage factor I (CFI) expression is actually elevated in the late embryonic central nervous system, suggesting that CFI might play a special role in neural tissues. To test this, we use the UAS/Gal4 system to deplete CFI proteins from neural tissue and observe that in this condition, multiple genes switch their APA patterns, demonstrating a role of CFI in APA control during Drosophila neural development. Furthermore, analysis of genes with 3'UTR extensions of different length leads us to suggest a novel relation between 3'UTR length and sensitivity to CPA factor expression. Our work thus contributes to the understanding of the mechanisms of APA control within the developing central nervous system. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Age-dependent male mating investment in Drosophila pseudoobscura.

    Directory of Open Access Journals (Sweden)

    Sumit Dhole

    Full Text Available Male mating investment can strongly influence fitness gained from a mating. Yet, male mating investment often changes with age. Life history theory predicts that mating investment should increase with age, and males should become less discriminatory about their mate as they age. Understanding age-dependent changes in male behavior and their effects on fitness is important for understanding how selection acts in age-structured populations. Although the independent effects of male or female age have been studied in many species, how these interact to influence male mating investment and fitness is less well understood. We mated Drosophila pseudoobscura males of five different age classes (4-, 8-, 11-, 15-, 19-day old to either young (4-day or old (11-day females, and measured copulation duration and early post-mating fecundity. Along with their independent effects, we found a strong interaction between the effects of male and female ages on male mating investment and fitness from individual matings. Male mating investment increased with male age, but this increase was more prominent in matings with young females. Male D. pseudoobscura made smaller investments when mating with old females. The level of such discrimination based on female age, however, also changed with male age. Intermediate aged males were most discriminatory, while the youngest and the oldest males did not discriminate between females of different ages. We also found that larger male mating investments resulted in higher fitness payoffs. Our results show that male and female ages interact to form a complex pattern of age-specific male mating investment and fitness.

  10. Variation in male mate choice in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Dominic A Edward

    Full Text Available Male mate choice has been reported in the fruit fly, Drosophila melanogaster, even though males of this species were previously thought to maximise their fitness by mating with all available females. To understand the evolution of male mate choice it is important to understand variation in male mating preferences. Two studies, using different stock populations and different methods, have reported contrasting patterns of variation in male mate choice in D. melanogaster. Two possible explanations are that there are evolved differences in each stock population or that the methods used to measure choice could have biased the results. We investigated these hypotheses here by repeating the methods used in one study in which variable male mate choice was found, using the stock population from the other study in which choice was not variable. The results showed a significant resource-independent male preference for less fecund, smaller females, which contrasts with previous observations of male mate choice. This indicates that different selection pressures between populations have resulted in evolved differences in the expression of male mate choice. It also reveals phenotypic plasticity in male mate choice in response to cues encountered in each choice environment. The results highlight the importance of variation in male mate choice, and of identifying mechanisms in order to understand the evolution of mate choice under varying ecological conditions.

  11. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps

    Science.gov (United States)

    Xie, J; Butler, S; Sanchez, G; Mateos, M

    2014-01-01

    Maternally transmitted associations between endosymbiotic bacteria and insects are diverse and widespread in nature. Owing to imperfect vertical transmission, many heritable microbes have evolved compensational mechanisms to enhance their persistence in host lineages, such as manipulating host reproduction and conferring fitness benefits to host. Symbiont-mediated defense against natural enemies of hosts is increasingly recognized as an important mechanism by which endosymbionts enhance host fitness. Members of the genus Spiroplasma associated with distantly related Drosophila hosts are known to engage in either reproductive parasitism (i.e., male killing) or defense against natural enemies (the parasitic wasp Leptopilina heterotoma and a nematode). A male-killing strain of Spiroplasma (strain Melanogaster Sex Ratio Organism (MSRO)) co-occurs with Wolbachia (strain wMel) in certain wild populations of the model organism Drosophila melanogaster. We examined the effects of Spiroplasma MSRO and Wolbachia wMel on Drosophila survival against parasitism by two common wasps, Leptopilina heterotoma and Leptopilina boulardi, that differ in their host ranges and host evasion strategies. The results indicate that Spiroplasma MSRO prevents successful development of both wasps, and confers a small, albeit significant, increase in larva-to-adult survival of flies subjected to wasp attacks. We modeled the conditions under which defense can contribute to Spiroplasma persistence. Wolbachia also confers a weak, but significant, survival advantage to flies attacked by L. heterotoma. The host protective effects exhibited by Spiroplasma and Wolbachia are additive and may provide the conditions for such cotransmitted symbionts to become mutualists. Occurrence of Spiroplasma-mediated protection against distinct parasitoids in divergent Drosophila hosts suggests a general protection mechanism. PMID:24281548

  12. An Injury Paradigm to Investigate Central Nervous System Repair in Drosophila

    Science.gov (United States)

    Kato, Kentaro; Hidalgo, Alicia

    2013-01-01

    An experimental method has been developed to investigate the cellular responses to central nervous system (CNS) injury using the fruit-fly Drosophila. Understanding repair and regeneration in animals is a key question in biology. The damaged human CNS does not regenerate, and understanding how to promote the regeneration is one of main goals of medical neuroscience. The powerful genetic toolkit of Drosophila can be used to tackle the problem of CNS regeneration. A lesion to the CNS ventral nerve cord (VNC, equivalent to the vertebrate spinal cord) is applied manually with a tungsten needle. The VNC can subsequently be filmed in time-lapse using laser scanning confocal microscopy for up to 24 hr to follow the development of the lesion over time. Alternatively, it can be cultured, then fixed and stained using immunofluorescence to visualize neuron and glial cells with confocal microscopy. Using appropriate markers, changes in cell morphology and cell state as a result of injury can be visualized. With ImageJ and purposely developed plug-ins, quantitative and statistical analyses can be carried out to measure changes in wound size over time and the effects of injury in cell proliferation and cell death. These methods allow the analysis of large sample sizes. They can be combined with the powerful genetics of Drosophila to investigate the molecular mechanisms underlying CNS regeneration and repair. PMID:23567253

  13. A role for the adult fat body in Drosophila male courtship behavior.

    Directory of Open Access Journals (Sweden)

    Anna A Lazareva

    2007-01-01

    Full Text Available Mating behavior in Drosophila depends critically on the sexual identity of specific regions in the brain, but several studies have identified courtship genes that express products only outside the nervous system. Although these genes are each active in a variety of non-neuronal cell types, they are all prominently expressed in the adult fat body, suggesting an important role for this tissue in behavior. To test its role in male courtship, fat body was feminized using the highly specific Larval serum protein promoter. We report here that the specific feminization of this tissue strongly reduces the competence of males to perform courtship. This effect is limited to the fat body of sexually mature adults as the feminization of larval fat body that normally persists in young adults does not affect mating. We propose that feminization of fat body affects the synthesis of male-specific secreted circulating proteins that influence the central nervous system. In support of this idea, we demonstrate that Takeout, a protein known to influence mating, is present in the hemolymph of adult males but not females and acts as a secreted protein.

  14. Tropics accelerate the evolution of hybrid male sterility in Drosophila.

    Science.gov (United States)

    Yukilevich, Roman

    2013-06-01

    Understanding the evolutionary mechanisms that facilitate speciation and explain global patterns of species diversity has remained a challenge for decades. The most general pattern of species biodiversity is the latitudinal gradient, whereby species richness increases toward the tropics. Although such a global pattern probably has a multitude of causes, recent attention has focused on the hypothesis that speciation and the evolution of reproductive isolation occur faster in the tropics. Here, I tested this prediction using a dataset on premating and postzygotic isolation between recently diverged Drosophila species. Results showed that while the evolution of premating isolation was not greater between tropical Drosophila relative to nontropical species, postzygotic isolation evolved faster in the tropics. In particular, hybrid male sterility was much greater among tropical Drosophila compared to nontropical species pairs of similar genetic age. Several testable explanations for the novel pattern are discussed, including greater role for sterility-inducing bacterial endosymbionts in the tropics and more intense sperm-sperm competition or sperm-egg sexual conflict in the tropics. The results imply that processes of speciation in the tropics may evolve at different rates or may even be somewhat different from those at higher latitudes. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  15. Genetic complexity underlying hybrid male sterility in Drosophila.

    Science.gov (United States)

    Sawamura, Kyoichi; Roote, John; Wu, Chung-I; Yamamoto, Masa-Toshi

    2004-02-01

    Recent genetic analyses of closely related species of Drosophila have indicated that hybrid male sterility is the consequence of highly complex synergistic effects among multiple genes, both conspecific and heterospecific. On the contrary, much evidence suggests the presence of major genes causing hybrid female sterility and inviability in the less-related species, D. melanogaster and D. simulans. Does this contrast reflect the genetic distance between species? Or, generally, is the genetic basis of hybrid male sterility more complex than that of hybrid female sterility and inviability? To clarify this point, the D. simulans introgression of the cytological region 34D-36A to the D. melanogaster genome, which causes recessive male sterility, was dissected by recombination, deficiency, and complementation mapping. The 450-kb region between two genes, Suppressor of Hairless and snail, exhibited a strong effect on the sterility. Males are (semi-)sterile if this region of the introgression is made homozygous or hemizygous. But no genes in the region singly cause the sterility; this region has at least two genes, which in combination result in male sterility. Further, the males are less fertile when heterozygous with a larger introgression, which suggests that dominant modifiers enhance the effects of recessive genes of male sterility. Such an epistatic view, even in the less-related species, suggests that the genetic complexity is special to hybrid male sterility.

  16. Sexual Experience Enhances Drosophila melanogaster Male Mating Behavior and Success

    Science.gov (United States)

    Saleem, Sehresh; Ruggles, Patrick H.; Abbott, Wiley K.; Carney, Ginger E.

    2014-01-01

    Competition for mates is a wide-spread phenomenon affecting individual reproductive success. The ability of animals to adjust their behaviors in response to changing social environment is important and well documented. Drosophila melanogaster males compete with one another for matings with females and modify their reproductive behaviors based on prior social interactions. However, it remains to be determined how male social experience that culminates in mating with a female impacts subsequent male reproductive behaviors and mating success. Here we show that sexual experience enhances future mating success. Previously mated D. melanogaster males adjust their courtship behaviors and out-compete sexually inexperienced males for copulations. Interestingly, courtship experience alone is not sufficient in providing this competitive advantage, indicating that copulation plays a role in reinforcing this social learning. We also show that females use their sense of hearing to preferentially mate with experienced males when given a choice. Our results demonstrate the ability of previously mated males to learn from their positive sexual experiences and adjust their behaviors to gain a mating advantage. These experienced-based changes in behavior reveal strategies that animals likely use to increase their fecundity in natural competitive environments. PMID:24805129

  17. Sexual experience enhances Drosophila melanogaster male mating behavior and success.

    Directory of Open Access Journals (Sweden)

    Sehresh Saleem

    Full Text Available Competition for mates is a wide-spread phenomenon affecting individual reproductive success. The ability of animals to adjust their behaviors in response to changing social environment is important and well documented. Drosophila melanogaster males compete with one another for matings with females and modify their reproductive behaviors based on prior social interactions. However, it remains to be determined how male social experience that culminates in mating with a female impacts subsequent male reproductive behaviors and mating success. Here we show that sexual experience enhances future mating success. Previously mated D. melanogaster males adjust their courtship behaviors and out-compete sexually inexperienced males for copulations. Interestingly, courtship experience alone is not sufficient in providing this competitive advantage, indicating that copulation plays a role in reinforcing this social learning. We also show that females use their sense of hearing to preferentially mate with experienced males when given a choice. Our results demonstrate the ability of previously mated males to learn from their positive sexual experiences and adjust their behaviors to gain a mating advantage. These experienced-based changes in behavior reveal strategies that animals likely use to increase their fecundity in natural competitive environments.

  18. Dietary glucose regulates yeast consumption in adult Drosophila males

    Directory of Open Access Journals (Sweden)

    Sebastien eLebreton

    2014-12-01

    Full Text Available The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  19. Dietary glucose regulates yeast consumption in adult Drosophila males.

    Science.gov (United States)

    Lebreton, Sébastien; Witzgall, Peter; Olsson, Marie; Becher, Paul G

    2014-01-01

    The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor (InR) did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  20. PICK1 expression in the Drosophila central nervous system primarily occurs in the neuroendocrine system

    DEFF Research Database (Denmark)

    Jansen, Anna M; Nässel, Dick R; Madsen, Kenneth L

    2009-01-01

    in the adult and larval Drosophila central nervous system. PICK1 was found in cell bodies in the subesophageal ganglion, the antennal lobe, the protocerebrum, and the neuroendocrine center pars intercerebralis. The cell types that express PICK1 were identified using GAL4 enhancer trap lines. The PICK1...... (AMPA) receptor subunit GluR2 and the dopamine transporter. PICK1 is strongly implicated in GluR2 trafficking and synaptic plasticity. In mammals, PICK1 has been characterized extensively in cell culture studies. To study PICK1 in an intact system, we characterized PICK1 expression immunohistochemically...... neurons in the neuroendocrine system, which express the transcription factor DIMM and the amidating enzyme peptidylglycine-alpha-hydroxylating monooxygenase (PHM). The PICK1-positive cells include neurosecretory cells that produce the insulin-like peptide dILP2. PICK1 expression in insulin-producing cells...

  1. Mutation of Drosophila dopamine receptor DopR leads to male-male courtship behavior.

    Science.gov (United States)

    Chen, Bin; Liu, He; Ren, Jing; Guo, Aike

    2012-07-06

    In Drosophila, dopamine plays important roles in many biological processes as a neuromodulator. Previous studies showed that dopamine level could affect fly courtship behaviors. Disturbed dopamine level leads to abnormal courtship behavior in two different ways. Dopamine up-regulation induces male-male courtship behavior, while down-regulation of dopamine level results in increased sexual attractiveness of males towards other male flies. Until now, the identity of the dopamine receptor involved in this abnormal male-male courtship behavior remains unknown. Here we used genetic approaches to investigate the role of dopamine receptors in fly courtship behavior. We found that a dopamine D1-like receptor, DopR, was involved in fly courtship behavior. DopR mutant male flies display male-male courtship behavior. This behavior is mainly due to the male's increased propensity to court other males. Expression of functional DopR successfully rescued this mutant phenotype. Knock-down of D2-like receptor D2R and another D1-like receptor, DAMB, did not induce male-male courtship behavior, indicating the receptor-type specificity of this phenomenon. Our findings provide insight into a possible link between dopamine level disturbance and the induced male-male courtship behavior. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Developmental environment mediates male seminal protein investment in Drosophila melanogaster.

    Science.gov (United States)

    Wigby, Stuart; Perry, Jennifer C; Kim, Yon-Hee; Sirot, Laura K

    2016-03-01

    Males of many species fine-tune their ejaculates in response to sperm competition risk. Resource availability and the number of competitors during development can also strongly influence sperm production. However, despite the key role of seminal proteins in mediating reproductive processes, it is unclear whether seminal protein investment is dependent on the developmental environment.We manipulated the developmental environment of Drosophila melanogaster by rearing flies at low and high density. As expected, this resulted in large and small (i.e. high and low condition) adult phenotypes, respectively.As predicted, large males produced more of two key seminal proteins, sex peptide (SP) and ovulin, and were more successful at obtaining matings with both virgin and previously mated females. However, there was only a weak and non-significant trend for large males to transfer more absolute quantities of SP at mating, and thus, small males ejaculated proportionally more of their stored accessory gland SP resources.Males transferred more receptivity-inhibiting SP to large females. Despite this, large females remated more quickly than small females and thus responded to their developmental environment over and above the quantity of SP they received.The results are consistent with two non-mutually exclusive hypotheses. First, flies might respond to condition-dependent reproductive opportunities, with (i) small males investing heavily in ejaculates when mating opportunities arise and large males strategically partitioning SP resources and (ii) small females remating at reduced rates because they have higher mating costs or need to replenish sperm less often.Second, flies may be primed by their larval environment to deal with similar adult population densities, with (i) males perceiving high density as signalling increased competition, leading small males to invest proportionally more SP resources at mating and (ii) females perceiving high density as signalling abundant

  3. The serotonergic central nervous system of the Drosophila larva: anatomy and behavioral function.

    Directory of Open Access Journals (Sweden)

    Annina Huser

    Full Text Available The Drosophila larva has turned into a particularly simple model system for studying the neuronal basis of innate behaviors and higher brain functions. Neuronal networks involved in olfaction, gustation, vision and learning and memory have been described during the last decade, often up to the single-cell level. Thus, most of these sensory networks are substantially defined, from the sensory level up to third-order neurons. This is especially true for the olfactory system of the larva. Given the wealth of genetic tools in Drosophila it is now possible to address the question how modulatory systems interfere with sensory systems and affect learning and memory. Here we focus on the serotonergic system that was shown to be involved in mammalian and insect sensory perception as well as learning and memory. Larval studies suggested that the serotonergic system is involved in the modulation of olfaction, feeding, vision and heart rate regulation. In a dual anatomical and behavioral approach we describe the basic anatomy of the larval serotonergic system, down to the single-cell level. In parallel, by expressing apoptosis-inducing genes during embryonic and larval development, we ablate most of the serotonergic neurons within the larval central nervous system. When testing these animals for naïve odor, sugar, salt and light perception, no profound phenotype was detectable; even appetitive and aversive learning was normal. Our results provide the first comprehensive description of the neuronal network of the larval serotonergic system. Moreover, they suggest that serotonin per se is not necessary for any of the behaviors tested. However, our data do not exclude that this system may modulate or fine-tune a wide set of behaviors, similar to its reported function in other insect species or in mammals. Based on our observations and the availability of a wide variety of genetic tools, this issue can now be addressed.

  4. Early events in speciation: Polymorphism for hybrid male sterility in Drosophila

    OpenAIRE

    Reed, Laura K.; Markow, Therese A.

    2004-01-01

    Capturing the process of speciation early enough to determine the initial genetic causes of reproductive isolation remains a major challenge in evolutionary biology. We have found, to our knowledge, the first example of substantial intraspecific polymorphism for genetic factors contributing to hybrid male sterility. Specifically, we show that the occurrence of hybrid male sterility in crosses between Drosophila mojavensis and its sister species, Drosophila arizonae, is controlled by factors p...

  5. An Autosomal Factor from Drosophila Arizonae Restores Normal Spermatogenesis in Drosophila Mojavensis Males Carrying the D. Arizonae Y Chromosome

    Science.gov (United States)

    Pantazidis, A. C.; Galanopoulos, V. K.; Zouros, E.

    1993-01-01

    Males of Drosophila mojavensis whose Y chromosome is replaced by the Y chromosome of the sibling species Drosophila arizonae are sterile. It is shown that genetic material from the fourth chromosome of D. arizonae is necessary and sufficient, in single dose, to restore fertility in these males. In introgression and mapping experiments this material segregates as a single Mendelian factor (sperm motility factor, SMF). Light and electron microscopy studies of spermatogenesis in D. mojavensis males whose Y chromosome is replaced by introgression with the Y chromosome of D. arizonae (these males are symbolized as mojY(a)) revealed postmeiotic abnormalities all of which are restored when the SMF of D. arizonae is co-introgressed (these males are symbolized as mojY(a)SMF(a)). The number of mature sperm per bundle in mojY(a)SMF(a) is slightly less than in pure D. mojavensis and is even smaller in males whose fertility is rescued by introgression of the entire fourth chromosome of D. arizonae. These observations establish an interspecific incompatibility between the Y chromosome and an autosomal factor (or more than one tightly linked factors) that can be useful for the study of the evolution of male hybrid sterility in Drosophila and the genetic control of spermatogenesis. PMID:8514139

  6. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo

    Science.gov (United States)

    Sung, Hyun; Tandarich, Lauren C.; Nguyen, Kenny

    2016-01-01

    In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. SIGNIFICANCE STATEMENT Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo. Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell

  7. PPL2ab neurons restore sexual responses in aged Drosophila males through dopamine.

    Science.gov (United States)

    Kuo, Shu-Yun; Wu, Chia-Lin; Hsieh, Min-Yen; Lin, Chen-Ta; Wen, Rong-Kun; Chen, Lien-Cheng; Chen, Yu-Hui; Yu, Yhu-Wei; Wang, Horng-Dar; Su, Yi-Ju; Lin, Chun-Ju; Yang, Cian-Yi; Guan, Hsien-Yu; Wang, Pei-Yu; Lan, Tsuo-Hung; Fu, Tsai-Feng

    2015-06-30

    Male sexual desire typically declines with ageing. However, our understanding of the neurobiological basis for this phenomenon is limited by our knowledge of the brain circuitry and neuronal pathways controlling male sexual desire. A number of studies across species suggest that dopamine (DA) affects sexual desire. Here we use genetic tools and behavioural assays to identify a novel subset of DA neurons that regulate age-associated male courtship activity in Drosophila. We find that increasing DA levels in a subset of cells in the PPL2ab neuronal cluster is necessary and sufficient for increased sustained courtship in both young and aged male flies. Our results indicate that preventing the age-related decline in DA levels in PPL2ab neurons alleviates diminished courtship behaviours in male Drosophila. These results may provide the foundation for deciphering the circuitry involved in sexual motivation in the male Drosophila brain.

  8. The fruitless gene is required for the proper formation of axonal tracts in the embryonic central nervous system of Drosophila

    NARCIS (Netherlands)

    Song, Ho-Juhn; Billeter, Jean-Christophe; Reynaud, Enrique; Carlo, Troy; Spana, Eric P; Perrimon, Norbert; Goodwin, Stephen F; Baker, Bruce S; Taylor, Barbara J

    2002-01-01

    The fruitless (fru) gene in Drosophila melanogaster is a multifunctional gene that has sex-specific functions in the regulation of male sexual behavior and sex-nonspecific functions affecting adult viability and external morphology. While much attention has focused on fru's sex-specific roles, less

  9. Short and long-lasting behavioral consequences of agonistic encounters between male Drosophila melanogaster.

    Science.gov (United States)

    Trannoy, Séverine; Penn, Jill; Lucey, Kenia; Popovic, David; Kravitz, Edward A

    2016-04-26

    In many animal species, learning and memory have been found to play important roles in regulating intra- and interspecific behavioral interactions in varying environments. In such contexts, aggression is commonly used to obtain desired resources. Previous defeats or victories during aggressive interactions have been shown to influence the outcome of later contests, revealing loser and winner effects. In this study, we asked whether short- and/or long-term behavioral consequences accompany victories and defeats in dyadic pairings between male Drosophila melanogaster and how long those effects remain. The results demonstrated that single fights induced important behavioral changes in both combatants and resulted in the formation of short-term loser and winner effects. These decayed over several hours, with the duration depending on the level of familiarity of the opponents. Repeated defeats induced a long-lasting loser effect that was dependent on de novo protein synthesis, whereas repeated victories had no long-term behavioral consequences. This suggests that separate mechanisms govern the formation of loser and winner effects. These studies aim to lay a foundation for future investigations exploring the molecular mechanisms and circuitry underlying the nervous system changes induced by winning and losing bouts during agonistic encounters.

  10. Assessing Basal and Acute Autophagic Responses in the Adult Drosophila Nervous System: The Impact of Gender, Genetics and Diet on Endogenous Pathway Profiles.

    Directory of Open Access Journals (Sweden)

    Eric P Ratliff

    Full Text Available The autophagy pathway is critical for the long-term homeostasis of cells and adult organisms and is often activated during periods of stress. Reduced pathway efficacy plays a central role in several progressive neurological disorders that are associated with the accumulation of cytotoxic peptides and protein aggregates. Previous studies have shown that genetic and transgenic alterations to the autophagy pathway impacts longevity and neural aggregate profiles of adult Drosophila. In this study, we have identified methods to measure the acute in vivo induction of the autophagy pathway in the adult fly CNS. Our findings indicate that the genotype, age, and gender of adult flies can influence pathway responses. Further, we demonstrate that middle-aged male flies exposed to intermittent fasting (IF had improved neuronal autophagic profiles. IF-treated flies also had lower neural aggregate profiles, maintained more youthful behaviors and longer lifespans, when compared to ad libitum controls. In summary, we present methodology to detect dynamic in vivo changes that occur to the autophagic profiles in the adult Drosophila CNS and that a novel IF-treatment protocol improves pathway response in the aging nervous system.

  11. The genetic basis of Haldane's rule and the nature of asymmetric hybrid male sterility among Drosophila simulans, Drosophila mauritiana and Drosophila sechellia.

    Science.gov (United States)

    Zeng, L W; Singh, R S

    1993-05-01

    Haldane's rule (i.e., the preferential hybrid sterility and inviability of heterogametic sex) has been known for 70 years, but its genetic basis, which is crucial to the understanding of the process of species formation, remains unclear. In the present study, we have investigated the genetic basis of hybrid male sterility using Drosophila simulans, Drosophila mauritiana and Drosophila sechellia. An introgression of D. sechellia Y chromosome into a fairly homogenous background of D. simulans did not show any effect of the introgressed Y on male sterility. The substitution of D. simulans Y chromosome into D. sechellia, and both reciprocal Y chromosome substitutions between D. simulans and D. mauritiana were unsuccessful. Introgressions of cytoplasm between D. simulans and D. mauritiana (or D. sechellia) also did not have any effect on hybrid male sterility. These results rule out the X-Y interaction hypothesis as a general explanation of Haldane's rule in this species group and indicate an involvement of an X-autosome interaction. Models of symmetrical and asymmetrical X-autosome interaction have been developed which explain the Y chromosome substitution results and suggest that evolution of interactions between different genetic elements in the early stages of speciation is more likely to be of an asymmetrical nature. The model of asymmetrical X-autosome interaction also predicts that different sets of interacting genes may be involved in different pairs of related species and can account for the observation that hybrid male sterility in many partially isolated species is often nonreciprocal or unidirectional.

  12. Characterization of reproductive dormancy in male Drosophila melanogaster

    Czech Academy of Sciences Publication Activity Database

    Kubrak, O. I.; Kučerová, Lucie; Theopold, U.; Nylin, S.; Nässel, D. R.

    2016-01-01

    Roč. 7, NOV 24 (2016), č. článku 572. ISSN 1664-042X Institutional support: RVO:60077344 Keywords : Drosophila melanogaster * diapause * reproduction Subject RIV: ED - Physiology Impact factor: 4.134, year: 2016 http://journal.frontiersin.org/article/10.3389/fphys.2016.00572/full

  13. An X chromosome effect responsible for asymmetric reproductive isolation between male Drosophila virilis and heterospecific females.

    Science.gov (United States)

    Nickel, Desirée; Civetta, Alberto

    2009-01-01

    Reproductive isolation between closely related species is expressed through uncoordinated courtship, failed fertilization, and (or) postzygotic barriers. Behavioural components of mating often form an initial barrier to hybridization between species. In many animals, females are responsible for mating discrimination in both intra- and interspecific crosses; males of Drosophila virilis group represent an exception to this trend. Using overall productivity tests, we show that a lower proportion of D. virilis males sire progeny when paired with a heterospecific female (Drosophila novamexicana or Drosophila americana texana) for 2 weeks. This suggests male mate discrimination or some other kind of asymmetrical incompatibility in courtship and mating or early zygote mortality. We used males from D. virilis-D. novamexicana and from D. virilis-D. a. texana backcross populations to map chromosome effects responsible for male reproductive isolation. Results from the analysis of both backcross male populations indicate a major X chromosome effect. Further, we conduct a male behavioural analysis to show that D. virilis males significantly fail to continue courtship after the first step of courtship, when they tap heterospecific females. The combined results of a major X chromosome effect and the observation that D. virilis males walk away from females after tapping suggest that future studies should concentrate on the identification of X-linked genes affecting the ability of males to recognize conspecific females.

  14. Early events in speciation: polymorphism for hybrid male sterility in Drosophila.

    Science.gov (United States)

    Reed, Laura K; Markow, Therese A

    2004-06-15

    Capturing the process of speciation early enough to determine the initial genetic causes of reproductive isolation remains a major challenge in evolutionary biology. We have found, to our knowledge, the first example of substantial intraspecific polymorphism for genetic factors contributing to hybrid male sterility. Specifically, we show that the occurrence of hybrid male sterility in crosses between Drosophila mojavensis and its sister species, Drosophila arizonae, is controlled by factors present at different frequencies in different populations of D. mojavensis. In addition, we show that hybrid male sterility is a complex phenotype; some hybrid males with motile sperm still cannot sire offspring. Because male sterility factors in hybrids between these species are not yet fixed within D. mojavensis, this system provides an invaluable opportunity to characterize the genetics of reproductive isolation at an early stage.

  15. Hybrid male sterility between Drosophila willistoni species is caused by male failure to transfer sperm during copulation.

    Science.gov (United States)

    Civetta, Alberto; Gaudreau, Chelsea

    2015-05-01

    The biological concept of species stresses the importance of understanding what mechanisms maintain species reproductively isolated from each other. Often such mechanisms are divided into premating and postmating, with the latest being the result of either prezygotic or postzygotic isolation barriers. Drosophila willistoni quechua and Drosophila willistoni willistoni are two subspecies that experience reproductive isolation. When a D. w. quechua female is crossed with a D. w. willistoni male, the hybrid males (F1QW) are unable to father progeny; however, the reciprocal cross produces fertile hybrids. Thus, the mechanism of isolation is unidirectional hybrid male sterility. However, the sterile F1QW males contain large amounts of motile sperm. Here we explore whether pre-copulatory or post-copulatory pre-zygotic mechanisms serve as major deterrents in the ability of F1QW males to father progeny. Comparisons of parental and hybrid males copulation durations showed no significant reduction in copulation duration of F1QW males. Interrupted copulations of the parental species confirmed that sperm transfer occurs before the minimum copulation duration registered for F1QW males. However, we found that when females mate with F1QW males, sperm is not present inside the female storage organs and that the lack of sperm in storage is due to failure to transfer sperm rather than spillage or active sperm dumping by females. Sterility of F1QW hybrid males is primarily driven by their inability to transfer sperm during copulation.

  16. Simple Y-Autosomal Incompatibilities Cause Hybrid Male Sterility in Reciprocal Crosses Between Drosophila virilis and D. americana

    OpenAIRE

    Sweigart, Andrea L.

    2010-01-01

    Postzygotic reproductive isolation evolves when hybrid incompatibilities accumulate between diverging populations. Here, I examine the genetic basis of hybrid male sterility between two species of Drosophila, Drosophila virilis and D. americana. From these analyses, I reach several conclusions. First, neither species carries any autosomal dominant hybrid male sterility alleles: reciprocal F1 hybrid males are perfectly fertile. Second, later generation (backcross and F2) hybrid male sterility ...

  17. The effects of inbreeding and heat stress on male sterility in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Pedersen, Louise Dybdahl; Pedersen, Asger Roer; Bijlsma, Kuke

    2011-01-01

    in benign and stressful environments using Drosophila melanogaster as a model organism. Male sterility was compared in 21 inbred lines and five non-inbred control lines at 25.0 and 29.0 °C. The effect of inbreeding on sterility was significant only at 29.0 °C. This stress-induced increase in sterility...

  18. Assessment of rival males through the use of multiple sensory cues in the fruitfly Drosophila pseudoobscura.

    Directory of Open Access Journals (Sweden)

    Chris P Maguire

    Full Text Available Environments vary stochastically, and animals need to behave in ways that best fit the conditions in which they find themselves. The social environment is particularly variable, and responding appropriately to it can be vital for an animal's success. However, cues of social environment are not always reliable, and animals may need to balance accuracy against the risk of failing to respond if local conditions or interfering signals prevent them detecting a cue. Recent work has shown that many male Drosophila fruit flies respond to the presence of rival males, and that these responses increase their success in acquiring mates and fathering offspring. In Drosophila melanogaster males detect rivals using auditory, tactile and olfactory cues. However, males fail to respond to rivals if any two of these senses are not functioning: a single cue is not enough to produce a response. Here we examined cue use in the detection of rival males in a distantly related Drosophila species, D. pseudoobscura, where auditory, olfactory, tactile and visual cues were manipulated to assess the importance of each sensory cue singly and in combination. In contrast to D. melanogaster, male D. pseudoobscura require intact olfactory and tactile cues to respond to rivals. Visual cues were not important for detecting rival D. pseudoobscura, while results on auditory cues appeared puzzling. This difference in cue use in two species in the same genus suggests that cue use is evolutionarily labile, and may evolve in response to ecological or life history differences between species.

  19. Drosophila melanogaster seminal fluid can protect the sperm of other males

    DEFF Research Database (Denmark)

    Holman, Luke

    2009-01-01

    a different male. This study therefore provides strong evidence that seminal fluid does not kill rival sperm, and instead can actually protect them. This study also tested whether chemicals in the female reproductive tract harm sperm as in another Drosophila species, but found no evidence of this. # 3...... physiology. # 2. Seminal fluid is well-studied in Drosophila melanogaster, a species in which it has been suggested to 'incapacitate' the sperm of rival males (e.g. by killing them) and thereby provide an advantage in sperm competition. This hypothesis has been tested several times over many years......, but different studies have yielded conflicting conclusions. Here, I use fluorescent staining to directly measure the effects of D. melanogaster seminal fluid on the survival of sperm from the same male or from a rival. The results suggest that seminal fluid improves sperm survival, even if the sperm are from...

  20. Male Drosophila melanogaster learn to prefer an arbitrary trait associated with female mating status

    DEFF Research Database (Denmark)

    Verzijden, Machteld Nicolette; Abbott, Jessica K.; Philipsborn, Anne von

    2015-01-01

    Although males are generally less discriminating than females when it comes to choosing a mate, they still benefit from distinguishing between mates that are receptive to courtship and those that are not, in order to avoid wasting time and energy. It is known that males of Drosophila melanogaster...... color, but that males which were trained with sexually receptive females of a given eye color showed a preference for that color during a standard binary choice experiment. The learned cue was indeed likely to be truly visual, since the preference disappeared when the binary choice phase...

  1. Age dynamics of radiosensitivity of offsprings of irradiated and nonirradiated Drosophila males

    International Nuclear Information System (INIS)

    Gol'zberg, K.L.; Vorobtsova, I.E.

    1978-01-01

    The average life span of the first generation of descendants of irradiated (F 1 I) and nonirradiated (F 1 C) Drosophila males has been investigated after a single and fractionated exposures at early age. The data obtained are in agreement with the assumption that an aggregate amount of radiation-induced mutations obtained from the exposed parent is responsible for the premature ageing of F 1 I descendants

  2. Effect of gamma irradiation on lifespan and offspring physiology of male drosophila melanogaster

    International Nuclear Information System (INIS)

    Hou Jiangyu; Gu Wei; Jiang Fangping; Han Hetong

    2010-01-01

    This study aimed to investigate the effects of γ-rays irradiation on adult longevity and physiological changes in F 1 generation.Male Drosophila melanogaster at 1 ∼ 2 days old were irradiated by γ-rays with doses of 5, 10, 15 and 30 Gy. In all experimental groups, mean lifespan, maximum lifespan and 90% of lethaldeath irradiated flies were reduced(at P 1 generation of irradiated group, body weight increased, but the capacity of physiological stress declined. (authors)

  3. Wolbachia-induced cytoplasmic incompatibility is associated with decreased Hira expression in male Drosophila.

    Directory of Open Access Journals (Sweden)

    Ya Zheng

    Full Text Available BACKGROUND: Wolbachia are obligate endosymbiotic bacteria that infect numerous species of arthropods and nematodes. Wolbachia can induce several reproductive phenotypes in their insect hosts including feminization, male-killing, parthenogenesis and cytoplasmic incompatibility (CI. CI is the most common phenotype and occurs when Wolbachia-infected males mate with uninfected females resulting in no or very low numbers of viable offspring. However, matings between males and females infected with the same strain of Wolbachia result in viable progeny. Despite substantial scientific effort, the molecular mechanisms underlying CI are currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression studies were undertaken in Drosophila melanogaster and D. simulans which display differential levels of CI using quantitative RT-PCR. We show that Hira expression is correlated with the induction of CI and occurs in a sex-specific manner. Hira expression is significantly lower in males which induce strong CI when compared to males inducing no CI or Wolbachia-uninfected males. A reduction in Hira expression is also observed in 1-day-old males that induce stronger CI compared to 5-day-old males that induce weak or no CI. In addition, Hira mutated D. melanogaster males mated to uninfected females result in significantly decreased hatch rates comparing with uninfected crosses. Interestingly, wMel-infected females may rescue the hatch rates. An obvious CI phenotype with chromatin bridges are observed in the early embryo resulting from Hira mutant fertilization, which strongly mimics the defects associated with CI. CONCLUSIONS/SIGNIFICANCE: Our results suggest Wolbachia-induced CI in Drosophila occurs due to a reduction in Hira expression in Wolbachia-infected males leading to detrimental effects on sperm fertility resulting in embryo lethality. These results may help determine the underlying mechanism of CI and provide further insight in to the important role

  4. Klp10A modulates the localization of centriole-associated proteins during Drosophila male gametogenesis.

    Science.gov (United States)

    Gottardo, Marco; Callaini, Giuliano; Riparbelli, Maria Giovanna

    2016-12-16

    Mutations in Klp10A, a microtubule-depolymerising Kinesin-13, lead to overly long centrioles in Drosophila male germ cells. We demonstrated that the loss of Klp10A modifies the distribution of typical proteins involved in centriole assembly and function. In the absence of Klp10A the distribution of Drosophila pericentrin-like protein (Dplp), Sas-4 and Sak/Plk4 that are restricted in control testes to the proximal end of the centriole increase along the centriole length. Remarkably, the cartwheel is lacking or it appears abnormal in mutant centrioles, suggesting that this structure may spatially delimit protein localization. Moreover, the parent centrioles that in control cells have the same dimensions grow at different rates in mutant testes with the mother centrioles longer than the daughters. Daughter centrioles have often an ectopic position with respect to the proximal end of the mothers and failed to recruit Dplp.

  5. Transcription factor expression uniquely identifies most postembryonic neuronal lineages in the Drosophila thoracic central nervous system.

    Science.gov (United States)

    Lacin, Haluk; Zhu, Yi; Wilson, Beth A; Skeath, James B

    2014-03-01

    Most neurons of the adult Drosophila ventral nerve cord arise from a burst of neurogenesis during the third larval instar stage. Most of this growth occurs in thoracic neuromeres, which contain 25 individually identifiable postembryonic neuronal lineages. Initially, each lineage consists of two hemilineages--'A' (Notch(On)) and 'B' (Notch(Off))--that exhibit distinct axonal trajectories or fates. No reliable method presently exists to identify these lineages or hemilineages unambiguously other than labor-intensive lineage-tracing methods. By combining mosaic analysis with a repressible cell marker (MARCM) analysis with gene expression studies, we constructed a gene expression map that enables the rapid, unambiguous identification of 23 of the 25 postembryonic lineages based on the expression of 15 transcription factors. Pilot genetic studies reveal that these transcription factors regulate the specification and differentiation of postembryonic neurons: for example, Nkx6 is necessary and sufficient to direct axonal pathway selection in lineage 3. The gene expression map thus provides a descriptive foundation for the genetic and molecular dissection of adult-specific neurogenesis and identifies many transcription factors that are likely to regulate the development and differentiation of discrete subsets of postembryonic neurons.

  6. Genetics of reproductive isolation in the Drosophila simulans clade: complex epistasis underlying hybrid male sterility.

    Science.gov (United States)

    Cabot, E L; Davis, A W; Johnson, N A; Wu, C I

    1994-05-01

    We have analyzed the sterility associated with introgressions of the distal one-fourth of the X chromosome from either Drosophila mauritiana or Drosophila sechellia into the genome of Drosophila simulans using a series of visible and DNA markers. Because in Drosophila hybrids, male sterility is usually complete and is often tightly linked with each of several markers used in crosses, a simple genetic basis has generally been assumed. In our low resolution mapping experiment, we were not able to reject the null hypothesis that a single gene, introgressed from either D. mauritiana or D. sechellia, is the cause of male sterility. High resolution mapping, however, reveals a much more complex picture. At least three distinct factors from D. mauritiana, or two from D. sechellia, were identified that need to be jointly present to confer full sterility. Each individual factor by itself is relatively ineffective in causing sterility, or even a partial spermatogenic defect. Moreover, there appear to be more sterility factors on comparable introgressions from D. mauritiana than from D. sechellia. On the basis of these observations, we propose a model which suggests that multilocus weak allele interactions are a very common cause of reproductive incompatibility between closely related species. We also present theoretical argument and empirical evidence against extrapolating the results of within-species analysis to interpret the genetic basis of species differences. The implications of this model on the theories of evolution of species differences and the attempt to understand the mechanisms of hybrid sterility/inviability at the molecular level are discussed.

  7. New genes often acquire male-specific functions but rarely become essential in Drosophila.

    Science.gov (United States)

    Kondo, Shu; Vedanayagam, Jeffrey; Mohammed, Jaaved; Eizadshenass, Sogol; Kan, Lijuan; Pang, Nan; Aradhya, Rajaguru; Siepel, Adam; Steinhauer, Josefa; Lai, Eric C

    2017-09-15

    Relatively little is known about the in vivo functions of newly emerging genes, especially in metazoans. Although prior RNAi studies reported prevalent lethality among young gene knockdowns, our phylogenomic analyses reveal that young Drosophila genes are frequently restricted to the nonessential male reproductive system. We performed large-scale CRISPR/Cas9 mutagenesis of "conserved, essential" and "young, RNAi-lethal" genes and broadly confirmed the lethality of the former but the viability of the latter. Nevertheless, certain young gene mutants exhibit defective spermatogenesis and/or male sterility. Moreover, we detected widespread signatures of positive selection on young male-biased genes. Thus, young genes have a preferential impact on male reproductive system function. © 2017 Kondo et al.; Published by Cold Spring Harbor Laboratory Press.

  8. Peripheral, central and behavioral responses to the cuticular pheromone bouquet in Drosophila melanogaster males.

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Inoshita

    Full Text Available Pheromonal communication is crucial with regard to mate choice in many animals including insects. Drosophila melanogaster flies produce a pheromonal bouquet with many cuticular hydrocarbons some of which diverge between the sexes and differently affect male courtship behavior. Cuticular pheromones have a relatively high weight and are thought to be -- mostly but not only -- detected by gustatory contact. However, the response of the peripheral and central gustatory systems to these substances remains poorly explored. We measured the effect induced by pheromonal cuticular mixtures on (i the electrophysiological response of peripheral gustatory receptor neurons, (ii the calcium variation in brain centers receiving these gustatory inputs and (iii the behavioral reaction induced in control males and in mutant desat1 males, which show abnormal pheromone production and perception. While male and female pheromones induced inhibitory-like effects on taste receptor neurons, the contact of male pheromones on male fore-tarsi elicits a long-lasting response of higher intensity in the dedicated gustatory brain center. We found that the behavior of control males was more strongly inhibited by male pheromones than by female pheromones, but this difference disappeared in anosmic males. Mutant desat1 males showed an increased sensitivity of their peripheral gustatory neurons to contact pheromones and a behavioral incapacity to discriminate sex pheromones. Together our data indicate that cuticular hydrocarbons induce long-lasting inhibitory effects on the relevant taste pathway which may interact with the olfactory pathway to modulate pheromonal perception.

  9. Neighboring genes for DNA-binding proteins rescue male sterility in Drosophila hybrids.

    Science.gov (United States)

    Liénard, Marjorie A; Araripe, Luciana O; Hartl, Daniel L

    2016-07-19

    Crosses between closely related animal species often result in male hybrids that are sterile, and the molecular and functional basis of genetic factors for hybrid male sterility is of great interest. Here, we report a molecular and functional analysis of HMS1, a region of 9.2 kb in chromosome 3 of Drosophila mauritiana, which results in virtually complete hybrid male sterility when homozygous in the genetic background of sibling species Drosophila simulans. The HMS1 region contains two strong candidate genes for the genetic incompatibility, agt and Taf1 Both encode unrelated DNA-binding proteins, agt for an alkyl-cysteine-S-alkyltransferase and Taf1 for a subunit of transcription factor TFIID that serves as a multifunctional transcriptional regulator. The contribution of each gene to hybrid male sterility was assessed by means of germ-line transformation, with constructs containing complete agt and Taf1 genomic sequences as well as various chimeric constructs. Both agt and Taf1 contribute about equally to HMS1 hybrid male sterility. Transgenes containing either locus rescue sterility in about one-half of the males, and among fertile males the number of offspring is in the normal range. This finding suggests compensatory proliferation of the rescued, nondysfunctional germ cells. Results with chimeric transgenes imply that the hybrid incompatibilities result from interactions among nucleotide differences residing along both agt and Taf1 Our results challenge a number of preliminary generalizations about the molecular and functional basis of hybrid male sterility, and strongly reinforce the role of DNA-binding proteins as a class of genes contributing to the maintenance of postzygotic reproductive isolation.

  10. Ctr9, a Key Component of the Paf1 Complex, Affects Proliferation and Terminal Differentiation in the Developing Drosophila Nervous System

    Directory of Open Access Journals (Sweden)

    Shahrzad Bahrampour

    2016-10-01

    Full Text Available The Paf1 protein complex (Paf1C is increasingly recognized as a highly conserved and broadly utilized regulator of a variety of transcriptional processes. These include the promotion of H3K4 and H3K36 trimethylation, H2BK123 ubiquitination, RNA Pol II transcriptional termination, and also RNA-mediated gene silencing. Paf1C contains five canonical protein components, including Paf1 and Ctr9, which are critical for overall complex integrity, as well as Rtf1, Leo1, and Cdc73/Parafibromin(Hrpt2/Hyrax. In spite of a growing appreciation for the importance of Paf1C from yeast and mammalian studies, there has only been limited work in Drosophila. Here, we provide the first detailed phenotypic study of Ctr9 function in Drosophila. We found that Ctr9 mutants die at late embryogenesis or early larval life, but can be partly rescued by nervous system reexpression of Ctr9. We observed a number of phenotypes in Ctr9 mutants, including increased neuroblast numbers, increased nervous system proliferation, as well as downregulation of many neuropeptide genes. Analysis of cell cycle and regulatory gene expression revealed upregulation of the E2f1 cell cycle factor, as well as changes in Antennapedia and Grainy head expression. We also found reduction of H3K4me3 modification in the embryonic nervous system. Genome-wide transcriptome analysis points to additional downstream genes that may underlie these Ctr9 phenotypes, revealing gene expression changes in Notch pathway target genes, cell cycle genes, and neuropeptide genes. In addition, we find significant effects on the gene expression of metabolic genes. These findings reveal that Ctr9 is an essential gene that is necessary at multiple stages of nervous system development, and provides a starting point for future studies of the Paf1C in Drosophila.

  11. Sex chromosome-specific regulation in the Drosophila male germline but little evidence for chromosomal dosage compensation or meiotic inactivation.

    Directory of Open Access Journals (Sweden)

    Colin D Meiklejohn

    2011-08-01

    Full Text Available The evolution of heteromorphic sex chromosomes (e.g., XY in males or ZW in females has repeatedly elicited the evolution of two kinds of chromosome-specific regulation: dosage compensation--the equalization of X chromosome gene expression in males and females--and meiotic sex chromosome inactivation (MSCI--the transcriptional silencing and heterochromatinization of the X during meiosis in the male (or Z in the female germline. How the X chromosome is regulated in the Drosophila melanogaster male germline is unclear. Here we report three new findings concerning gene expression from the X in Drosophila testes. First, X chromosome-wide dosage compensation appears to be absent from most of the Drosophila male germline. Second, microarray analysis provides no evidence for X chromosome-specific inactivation during meiosis. Third, we confirm the previous discovery that the expression of transgene reporters driven by autosomal spermatogenesis-specific promoters is strongly reduced when inserted on the X chromosome versus the autosomes; but we show that this chromosomal difference in expression is established in premeiotic cells and persists in meiotic cells. The magnitude of the X-autosome difference in transgene expression cannot be explained by the absence of dosage compensation, suggesting that a previously unrecognized mechanism limits expression from the X during spermatogenesis in Drosophila. These findings help to resolve several previously conflicting reports and have implications for patterns of genome evolution and speciation in Drosophila.

  12. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    Science.gov (United States)

    Rideout, Elizabeth J; Narsaiya, Marcus S; Grewal, Savraj S

    2015-12-01

    Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra) in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  13. The Sex Determination Gene transformer Regulates Male-Female Differences in Drosophila Body Size.

    Directory of Open Access Journals (Sweden)

    Elizabeth J Rideout

    2015-12-01

    Full Text Available Almost all animals show sex differences in body size. For example, in Drosophila, females are larger than males. Although Drosophila is widely used as a model to study growth, the mechanisms underlying this male-female difference in size remain unclear. Here, we describe a novel role for the sex determination gene transformer (tra in promoting female body growth. Normally, Tra is expressed only in females. We find that loss of Tra in female larvae decreases body size, while ectopic Tra expression in males increases body size. Although we find that Tra exerts autonomous effects on cell size, we also discovered that Tra expression in the fat body augments female body size in a non cell-autonomous manner. These effects of Tra do not require its only known targets doublesex and fruitless. Instead, Tra expression in the female fat body promotes growth by stimulating the secretion of insulin-like peptides from insulin producing cells in the brain. Our data suggest a model of sex-specific growth in which body size is regulated by a previously unrecognized branch of the sex determination pathway, and identify Tra as a novel link between sex and the conserved insulin signaling pathway.

  14. Modification of Male Courtship Motivation by Olfactory Habituation via the GABAA Receptor in Drosophila melanogaster

    Science.gov (United States)

    Tachibana, Shin-Ichiro; Touhara, Kazushige; Ejima, Aki

    2015-01-01

    A male-specific component, 11-cis-vaccenyl acetate (cVA) works as an anti-aphrodisiac pheromone in Drosophila melanogaster. The presence of cVA on a male suppresses the courtship motivation of other males and contributes to suppression of male-male homosexual courtship, while the absence of cVA on a female stimulates the sexual motivation of nearby males and enhances the male-female interaction. However, little is known how a male distinguishes the presence or absence of cVA on a target fly from either self-produced cVA or secondhand cVA from other males in the vicinity. In this study, we demonstrate that male flies have keen sensitivity to cVA; therefore, the presence of another male in the area reduces courtship toward a female. This reduced level of sexual motivation, however, could be overcome by pretest odor exposure via olfactory habituation to cVA. Real-time imaging of cVA-responsive sensory neurons using the neural activity sensor revealed that prolonged exposure to cVA decreased the levels of cVA responses in the primary olfactory center. Pharmacological and genetic screening revealed that signal transduction via GABAA receptors contributed to this olfactory habituation. We also found that the habituation experience increased the copulation success of wild-type males in a group. In contrast, transgenic males, in which GABA input in a small subset of local neurons was blocked by RNAi, failed to acquire the sexual advantage conferred by habituation. Thus, we illustrate a novel phenomenon in which olfactory habituation positively affects sexual capability in a competitive environment. PMID:26252206

  15. Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy.

    Science.gov (United States)

    Lüer, Karin; Technau, Gerhard M

    2009-08-03

    The Drosophila embryonic central nervous system (CNS) develops from two sets of progenitor cells, neuroblasts and ventral midline progenitors, which behave differently in many respects. Neuroblasts derive from the neurogenic region of the ectoderm and form the lateral parts of the CNS. Ventral midline precursors are formed by two rows of mesectodermal cells and build the CNS midline. There is plenty of evidence that individual identities are conferred to precursor cells by positional information in the ectoderm. It is unclear, however, how far the precursors can maintain their identities and developmental properties in the absence of normal external signals. To separate the respective contributions of autonomous properties versus extrinsic signals during their further development, we isolated individual midline precursors and neuroectodermal precursors at the pre-mitotic gastrula stage, traced their development in vitro, and analyzed the characteristics of their lineages in comparison with those described for the embryo. Although individually cultured mesectodermal cells exhibit basic characteristics of CNS midline progenitors, the clones produced by these progenitors differ from their in situ counterparts with regard to cell numbers, expression of molecular markers, and the separation of neuronal and glial fate. In contrast, clones derived from individually cultured precursors taken from specific dorsoventral zones of the neuroectoderm develop striking similarities to the lineages of neuroblasts that normally delaminate from these zones and develop in situ. This in vitro analysis allows for the first time a comparison of the developmental capacities in situ and in vitro of individual neural precursors of defined spatial and temporal origin. The data reveal that cells isolated at the pre-mitotic and pre-delamination stage express characteristics of the progenitor type appropriate to their site of origin in the embryo. However, presumptive neuroblasts, once

  16. Single cell cultures of Drosophila neuroectodermal and mesectodermal central nervous system progenitors reveal different degrees of developmental autonomy

    Directory of Open Access Journals (Sweden)

    Technau Gerhard M

    2009-08-01

    Full Text Available Abstract Background The Drosophila embryonic central nervous system (CNS develops from two sets of progenitor cells, neuroblasts and ventral midline progenitors, which behave differently in many respects. Neuroblasts derive from the neurogenic region of the ectoderm and form the lateral parts of the CNS. Ventral midline precursors are formed by two rows of mesectodermal cells and build the CNS midline. There is plenty of evidence that individual identities are conferred to precursor cells by positional information in the ectoderm. It is unclear, however, how far the precursors can maintain their identities and developmental properties in the absence of normal external signals. Results To separate the respective contributions of autonomous properties versus extrinsic signals during their further development, we isolated individual midline precursors and neuroectodermal precursors at the pre-mitotic gastrula stage, traced their development in vitro, and analyzed the characteristics of their lineages in comparison with those described for the embryo. Although individually cultured mesectodermal cells exhibit basic characteristics of CNS midline progenitors, the clones produced by these progenitors differ from their in situ counterparts with regard to cell numbers, expression of molecular markers, and the separation of neuronal and glial fate. In contrast, clones derived from individually cultured precursors taken from specific dorsoventral zones of the neuroectoderm develop striking similarities to the lineages of neuroblasts that normally delaminate from these zones and develop in situ. Conclusion This in vitro analysis allows for the first time a comparison of the developmental capacities in situ and in vitro of individual neural precursors of defined spatial and temporal origin. The data reveal that cells isolated at the pre-mitotic and pre-delamination stage express characteristics of the progenitor type appropriate to their site of origin in

  17. Methylmercury Exposure Induces Sexual Dysfunction in Male and Female Drosophila Melanogaster.

    Science.gov (United States)

    Chauhan, Ved; Srikumar, Syian; Aamer, Sarah; Pandareesh, Mirazkar D; Chauhan, Abha

    2017-09-24

    Mercury, an environmental health hazard, is a neurotoxic heavy metal. In this study, the effect of methylmercury (MeHg) exposure was analyzed on sexual behavior in Drosophila melanogaster (fruit fly), because neurons play a vital role in sexual functions. The virgin male and female flies were fed a diet mixed with different concentrations of MeHg (28.25, 56.5, 113, 226, and 339 µM) for four days, and the effect of MeHg on copulation of these flies was studied. While male and female control flies (no MeHg) and flies fed with lower concentrations of MeHg (28.25, 56.5 µM) copulated in a normal manner, male and female flies exposed to higher concentrations of MeHg (113, 226, and 339 µM) did not copulate. When male flies exposed to higher concentrations of MeHg were allowed to copulate with control female flies, only male flies fed with 113 µM MeHg were able to copulate. On the other hand, when female flies exposed to higher concentrations of MeHg were allowed to copulate with control male flies, none of the flies could copulate. After introduction of male and female flies in the copulation chamber, duration of wing flapping by male flies decreased in a MeHg-concentration-dependent manner from 101 ± 24 seconds (control) to 100.7 ± 18, 96 ±12, 59 ± 44, 31 ± 15, and 3.7 ± 2.7 seconds at 28.25, 56.5, 113, 226, and 339 µM MeHg, respectively. On the other hand, grooming in male and female flies increased in a MeHg-concentration-dependent manner. These findings suggest that MeHg exposure causes sexual dysfunction in male and female Drosophila melanogaster . Further studies showed that MeHg exposure increased oxidative stress and decreased triglyceride levels in a concentration-dependent manner in both male and female flies, suggesting that MeHg-induced oxidative stress and decreased triglyceride levels may partly contribute to sexual dysfunction in fruit flies.

  18. Genetic basis of hybrid male sterility among three closely related species of Drosophila.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, B N

    2005-05-01

    The genetic basis of hybrid male sterility among three closely related species, Drosophila bipectinata, D. parabipectinata and D. malerkotliana has been investigated by using backcross analysis methods. The role of Y chromosome, major hybrid sterility (MHS) genes (genetic factors) and cytoplasm (non-genetic factor) have been studied in the hybrids of these three species. In the species pair, bipectinata--parabipectinata, Y chromosome introgression of parabipectinata in the genomic background of bipectinata and the reciprocal Y chromosome introgression were unsuccessful as all males in second backcross generation were sterile. Neither MHS genes nor cytoplasm was found important for sterility. This suggests the involvement of X-Y, X-autosomes or polygenic interactions in hybrid male sterility. In bipectinata--malerkotliana and parabipectinata--malerkotliana species pairs, Y chromosome substitution in reciprocal crosses did not affect male fertility. Backcross analyses also show no involvement of MHS genes or cytoplasm in hybrid male sterility in these two species pairs. Therefore, X- autosome interaction or polygenic interaction is supposed to be involved in hybrid male sterility in these two species pairs. These findings also provide evidence that even in closely related species, genetic interactions underlying hybrid male sterility may vary.

  19. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    Science.gov (United States)

    Chen, Ying; Dai, Hongzheng; Chen, Sidi; Zhang, Luoying; Long, Manyuan

    2011-04-26

    Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta). Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  20. Highly tissue specific expression of Sphinx supports its male courtship related role in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2011-04-01

    Full Text Available Sphinx is a lineage-specific non-coding RNA gene involved in regulating courtship behavior in Drosophila melanogaster. The 5' flanking region of the gene is conserved across Drosophila species, with the proximal 300 bp being conserved out to D. virilis and a further 600 bp region being conserved amongst the melanogaster subgroup (D. melanogaster, D. simulans, D. sechellia, D. yakuba, and D. erecta. Using a green fluorescence protein transformation system, we demonstrated that a 253 bp region of the highly conserved segment was sufficient to drive sphinx expression in male accessory gland. GFP signals were also observed in brain, wing hairs and leg bristles. An additional ∼800 bp upstream region was able to enhance expression specifically in proboscis, suggesting the existence of enhancer elements. Using anti-GFP staining, we identified putative sphinx expression signal in the brain antennal lobe and inner antennocerebral tract, suggesting that sphinx might be involved in olfactory neuron mediated regulation of male courtship behavior. Whole genome expression profiling of the sphinx knockout mutation identified significant up-regulated gene categories related to accessory gland protein function and odor perception, suggesting sphinx might be a negative regulator of its target genes.

  1. Activated Cdc42 kinase regulates Dock localization in male germ cells during Drosophila spermatogenesis.

    Science.gov (United States)

    Abdallah, Abbas M; Zhou, Xin; Kim, Christine; Shah, Kushani K; Hogden, Christopher; Schoenherr, Jessica A; Clemens, James C; Chang, Henry C

    2013-06-15

    Deregulation of the non-receptor tyrosine kinase ACK1 (Activated Cdc42-associated kinase) correlates with poor prognosis in cancers and has been implicated in promoting metastasis. To further understand its in vivo function, we have characterized the developmental defects of a null mutation in Drosophila Ack, which bears a high degree of sequence similarity to mammalian ACK1 but lacks a CRIB domain. We show that Ack, while not essential for viability, is critical for sperm formation. This function depends on Ack tyrosine kinase activity and is required cell autonomously in differentiating male germ cells at or after the spermatocyte stage. Ack associates predominantly with endocytic clathrin sites in spermatocytes, but disruption of Ack function has no apparent effect on clathrin localization and receptor-mediated internalization of Boss (Bride of sevenless) protein in eye discs. Instead, Ack is required for the subcellular distribution of Dock (dreadlocks), the Drosophila homolog of the SH2- and SH3-containing adaptor protein Nck. Moreover, Dock forms a complex with Ack, and the localization of Dock in male germ cells depends on its SH2 domain. Together, our results suggest that Ack-dependent tyrosine phosphorylation recruits Dock to promote sperm differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Genetic interactions underlying hybrid male sterility in the Drosophila bipectinata species complex.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2006-06-01

    Understanding genetic mechanisms underlying hybrid male sterility is one of the most challenging problems in evolutionary biology especially speciation. By using the interspecific hybridization method roles of Y chromosome, Major Hybrid Sterility (MHS) genes and cytoplasm in sterility of hybrid males have been investigated in a promising group, the Drosophila bipectinata species complex that consists of four closely related species: D. pseudoananassae, D. bipectinata, D. parabipectinata and D. malerkotliana. The interspecific introgression analyses show that neither cytoplasm nor MHS genes are involved but X-Y interactions may be playing major role in hybrid male sterility between D. pseudoananassae and the other three species. The results of interspecific introgression analyses also show considerable decrease in the number of males in the backcross offspring and all males have atrophied testes. There is a significant positive correlation between sex - ratio distortion and severity of sterility in backcross males. These findings provide evidence that D. pseudoananassae is remotely related with other three species of the D. bipectinata species complex.

  3. Ancient Male Recombination Shaped Genetic Diversity of Neo-Y Chromosome in Drosophila albomicans.

    Science.gov (United States)

    Satomura, Kazuhiro; Tamura, Koichiro

    2016-02-01

    Researchers studying Y chromosome evolution have drawn attention to neo-Y chromosomes in Drosophila species due to their resembling the initial stage of Y chromosome evolution. In the studies of neo-Y chromosome of Drosophila miranda, the extremely low genetic diversity observed suggested various modes of natural selection acting on the nonrecombining genome. However, alternative possibility may come from its peculiar origin from a single chromosomal fusion event with male achiasmy, which potentially caused and maintained the low genetic diversity of the neo-Y chromosome. Here, we report a real case where a neo-Y chromosome is in transition from an autosome to a typical Y chromosome. The neo-Y chromosome of Drosophila albomicans harbored a rich genetic diversity comparable to its gametologous neo-X chromosome and an autosome in the same genome. Analyzing sequence variations in 53 genes and measuring recombination rates between pairs of loci by cross experiments, we elucidated the evolutionary scenario of the neo-Y chromosome of D. albomicans having high genetic diversity without assuming selective force, i.e., it originated from a single chromosomal fusion event, experienced meiotic recombination during the initial stage of evolution and diverged from neo-X chromosome by the suppression of recombination tens or a few hundreds of thousand years ago. Consequently, the observed high genetic diversity on the neo-Y chromosome suggested a strong effect of meiotic recombination to introduce genetic variations into the newly arisen sex chromosome. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Experience of mating rivals causes males to modulate sperm transfer in the fly Drosophila pseudoobscura.

    Science.gov (United States)

    Price, Tom A R; Lizé, Anne; Marcello, Marco; Bretman, Amanda

    2012-12-01

    Male responses to risk of sperm competition play an important role in sexual selection, sexual conflict, and the evolution of mating systems. Such responses can combine behavioural and physiological processes, and can be mediated through different components of the ejaculate such as sperm numbers and seminal proteins. An additional level of ejaculate complexity is sperm heteromorphism, with the inclusion of non-fertilising parasperm in the ejaculate. We now test the response to rivals in a sperm heteromorphic species, Drosophila pseudoobscura, measuring the behavioural response and sperm transfer and, crucially, relating these to short-term fitness. Males respond to exposure to conspecific rivals by increasing mating duration, but do not respond to heterospecific rivals. In addition, after exposure to a conspecific rival, males increased the transfer of fertilising eusperm, but not non-fertilising parasperm. Males exposed to a conspecific rival also achieve higher offspring production. This suggests that the evolution of parasperm in flies was not driven by sperm competition and adds to the increasing evidence that males can make extremely sophisticated responses to mating competition. Copyright © 2012. Published by Elsevier Ltd.

  5. Rapid male-specific regulatory divergence and down regulation of spermatogenesis genes in Drosophila species hybrids.

    Directory of Open Access Journals (Sweden)

    Jennifer Ferguson

    Full Text Available In most crosses between closely related species of Drosophila, the male hybrids are sterile and show postmeiotic abnormalities. A series of gene expression studies using genomic approaches have found significant down regulation of postmeiotic spermatogenesis genes in sterile male hybrids. These results have led some to suggest a direct relationship between down regulation in gene expression and hybrid sterility. An alternative explanation to a cause-and-effect relationship between misregulation of gene expression and male sterility is rapid divergence of male sex regulatory elements leading to incompatible interactions in an interspecies hybrid genome. To test the effect of regulatory divergence in spermatogenesis gene expression, we isolated 35 fertile D. simulans strains with D. mauritiana introgressions in either the X, second or third chromosome. We analyzed gene expression in these fertile hybrid strains for a subset of spermatogenesis genes previously reported as significantly under expressed in sterile hybrids relative to D. simulans. We found that fertile autosomal introgressions can cause levels of gene down regulation similar to that of sterile hybrids. We also found that X chromosome heterospecific introgressions cause significantly less gene down regulation than autosomal introgressions. Our results provide evidence that rapid male sex gene regulatory divergence can explain misexpression of spermatogenesis genes in hybrids.

  6. Direct and trans-generational effects of male and female gut microbiota in Drosophila melanogaster.

    Science.gov (United States)

    Morimoto, Juliano; Simpson, Stephen J; Ponton, Fleur

    2017-07-01

    There is increasing evidence of the far-reaching effects of gut bacteria on physiological and behavioural traits, yet the fitness-related consequences of changes in the gut bacteria composition of sexually interacting individuals remain unknown. To address this question, we manipulated the gut microbiota of fruit flies, Drosophila melanogaster , by monoinfecting flies with either Acetobacter pomorum ( AP ) or Lactobacillus plantarum ( LP ) . Re-inoculated individuals were paired in all treatment combinations. LP- infected males had longer mating duration and induced higher short-term offspring production in females compared with AP -infected males. Furthermore, females of either re-inoculation state mated with AP- infected males were more likely to have zero offspring after mating, suggesting a negative effect of AP on male fertility . Finally, we found that the effects of male and female gut bacteria interacted to modulate their daughters', but not sons' body mass, revealing a new trans-generational effect of parental gut microbiota. In conclusion, this study shows direct and trans-generational effects of the gut microbiota on mating and reproduction. © 2017 The Authors.

  7. Neurotransmitter Transporter-Like: a male germline-specific SLC6 transporter required for Drosophila spermiogenesis.

    Directory of Open Access Journals (Sweden)

    Nabanita Chatterjee

    2011-01-01

    Full Text Available The SLC6 class of membrane transporters, known primarily as neurotransmitter transporters, is increasingly appreciated for its roles in nutritional uptake of amino acids and other developmentally specific functions. A Drosophila SLC6 gene, Neurotransmitter transporter-like (Ntl, is expressed only in the male germline. Mobilization of a transposon inserted near the 3' end of the Ntl coding region yields male-sterile mutants defining a single complementation group. Germline transformation with Ntl cDNAs under control of male germline-specific control elements restores Ntl/Ntl homozygotes to normal fertility, indicating that Ntl is required only in the germ cells. In mutant males, sperm morphogenesis appears normal, with elongated, individualized and coiled spermiogenic cysts accumulating at the base of the testes. However, no sperm are transferred to the seminal vesicle. The level of polyglycylation of Ntl mutant sperm tubulin appears to be significantly lower than that of wild type controls. Glycine transporters are the most closely related SLC6 transporters to Ntl, suggesting that Ntl functions as a glycine transporter in developing sperm, where augmentation of the cytosolic pool of glycine may be required for the polyglycylation of the massive amounts of tubulin in the fly's giant sperm. The male-sterile phenotype of Ntl mutants may provide a powerful genetic system for studying the function of an SLC6 transporter family in a model organism.

  8. Quantifying the life-history response to increased male exposure in female Drosophila melanogaster.

    Science.gov (United States)

    Edward, Dominic A; Fricke, Claudia; Gerrard, Dave T; Chapman, Tracey

    2011-02-01

    Precise estimates of costs and benefits, the fitness economics, of mating are of key importance in understanding how selection shapes the coevolution of male and female mating traits. However, fitness is difficult to define and quantify. Here, we used a novel application of an established analytical technique to calculate individual- and population-based estimates of fitness-including those sensitive to the timing of reproduction-to measure the effects on females of increased exposure to males. Drosophila melanogaster females were exposed to high and low frequencies of contact with males, and life-history traits for each individual female were recorded. We then compared different fitness estimates to determine which of them best described the changes in life histories. We predicted that rate-sensitive estimates would be more accurate, as mating influences the rate of offspring production in this species. The results supported this prediction. Increased exposure to males led to significantly decreased fitness within declining but not stable or increasing populations. There was a net benefit of increased male exposure in expanding populations, despite a significant decrease in lifespan. The study shows how a more accurate description of fitness, and new insights can be achieved by considering individual life-history strategies within the context of population growth. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  9. Are larger and/or more symmetrical Drosophila melanogaster (Diptera, Drosophilidae males more successful in matings in nature?

    Directory of Open Access Journals (Sweden)

    Sofija Pavković-Lučić

    Full Text Available Are larger and/or more symmetrical Drosophila melanogaster (Diptera, Drosophilidae males more successful in matings in nature? Sexual selection in Drosophila melanogaster, related to body size and fluctuating asymmetry in wing length and number of sex comb teeth in males, was tested in natural conditions. Males collected in copula were significantly larger than those collected as a single, while no difference in mean number of sex comb teeth between copulating and single males was observed. On the other hand, single males had greater asymmetry both for wing length and number of sex comb teeth than their mating counterparts. It looks like that symmetry of these bilateral traits also may play a role in sexual selection in this dipteran species in nature.

  10. Genetic architecture of autosome-mediated hybrid male sterility in Drosophila.

    Science.gov (United States)

    Marín, I

    1996-04-01

    Several estimators have been developed for assessing the number of sterility factors in a chromosome based on the sizes of fertile and sterile introgressed fragments. Assuming that two factors are required for producing sterility, simulations show that one of these, twice the inverse of the relative size of the largest fertile fragment, provides good average approximations when as few as five fertile fragments are analyzed. The estimators have been used for deducing the number of factors from previous data on several pairs of species. A particular result contrasts with the authors' interpretations: instead of the high number of sterility factors suggested, only a few per autosome are estimated in both reciprocal crosses involving Drosophila buzzatii and D. koepferae. It has been possible to map these factors, between three and six per chromosome, in the autosomes 3 and 4 of these species. Out of 203 introgressions of different fragments or combinations of fragments, the outcome of at least 192 is explained by the mapped zones. These results suggest that autosome-mediated sterility in the male hybrids of these species is mediated by a few epistatic factors, similarly to X-mediated sterility in the hybrids of other Drosophila species.

  11. Azadirachtin impact on mate choice, female sexual receptivity and male activity in Drosophila melanogaster (Diptera: Drosophilidae).

    Science.gov (United States)

    Aribi, N; Oulhaci, M C; Kilani-Morakchi, S; Sandoz, J C; Kaiser, L; Denis, B; Joly, D

    2017-11-01

    Azadirachtin, a neem compound (Azadirachta indica) with medical and anti-insect properties, is one the most successful botanical pesticides in agricultural use. However, its controversial impact on non-targeted species and its mechanism of action need to be clarified. In addition, Azadirachtin impact on pre- and post-mating traits remains largely undocumented. The current study examined the effects of Azadirachtin on Drosophila melanogaster as a non-target and model species. Azadirachtin was applied topically at its LD 50 (0.63μg) on the day of adult emergence and its effect was evaluated on several traits of reproductive behavior: mate choice, male activity, female sexual receptivity, sperm storage and female sterility. In choice and no choice conditions, only male treatment reduced mating probability. Female treatment impaired mating probability only when males had the choice. Males' mating ability may have been impaired by an effect of the treatment on their mobility. Such an effect was observed in the actimeter, which revealed that treated males were less active than untreated ones, and this effect persisted over 8days. Azadirachtin treatment had, however, no effect on the nycthemeral rhythm of those males. Even when mating occurred, Azadirachtin treatment impaired post-mating responses especially when females or both sexes were treated: remating probability increases and female fertility (presence of larvae) decreases. No impairment was observed on the efficiency of mating, evaluated by the presence of sperm in the spermatheca or the ventral receptacle. Male treatment only had no significant effect on these post-mating responses. These findings provide clear evidence that Azadirachtin alters the reproductive behavior of both sexes in D. melanogaster via mating and post-mating processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Roles of Female and Male Genotype in Post-Mating Responses in Drosophila melanogaster.

    Science.gov (United States)

    Delbare, Sofie Y N; Chow, Clement Y; Wolfner, Mariana F; Clark, Andrew G

    2017-10-30

    Mating induces a multitude of changes in female behavior, physiology, and gene expression. Interactions between female and male genotype lead to variation in post-mating phenotypes and reproductive success. So far, few female molecules responsible for these interactions have been identified. Here, we used Drosophila melanogaster from 5 geographically dispersed populations to investigate such female × male genotypic interactions at the female transcriptomic and phenotypic levels. Females from each line were singly-mated to males from the same 5 lines, for a total of 25 combinations. Reproductive output and refractoriness to re-mating were assayed in females from the 25 mating combinations. Female × male genotypic interactions resulted in significant differences in these post-mating phenotypes. To assess whether female × male genotypic interactions affect the female post-mating transcriptome, next-generation RNA sequencing was performed on virgin and mated females at 5 to 6 h post-mating. Seventy-seven genes showed strong variation in mating-induced expression changes in a female × male genotype-dependent manner. These genes were enriched for immune response and odorant-binding functions, and for expression exclusively in the head. Strikingly, variation in post-mating transcript levels of a gene encoding a spermathecal endopeptidase was correlated with short-term egg production. The transcriptional variation found in specific functional classes of genes might be a read-out of female × male compatibility at a molecular level. Understanding the roles these genes play in the female post-mating response will be crucial to better understand the evolution of post-mating responses and related conflicts between the sexes. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. A general method for identifying major hybrid male sterility genes in Drosophila.

    Science.gov (United States)

    Zeng, L W; Singh, R S

    1995-10-01

    The genes responsible for hybrid male sterility in species crosses are usually identified by introgressing chromosome segments, monitored by visible markers, between closely related species by continuous backcrosses. This commonly used method, however, suffers from two problems. First, it relies on the availability of markers to monitor the introgressed regions and so the portion of the genome examined is limited to the marked regions. Secondly, the introgressed regions are usually large and it is impossible to tell if the effects of the introgressed regions are the result of single (or few) major genes or many minor genes (polygenes). Here we introduce a simple and general method for identifying putative major hybrid male sterility genes which is free of these problems. In this method, the actual hybrid male sterility genes (rather than markers), or tightly linked gene complexes with large effects, are selectively introgressed from one species into the background of another species by repeated backcrosses. This is performed by selectively backcrossing heterozygous (for hybrid male sterility gene or genes) females producing fertile and sterile sons in roughly equal proportions to males of either parental species. As no marker gene is required for this procedure, this method can be used with any species pairs that produce unisexual sterility. With the application of this method, a small X chromosome region of Drosophila mauritiana which produces complete hybrid male sterility (aspermic testes) in the background of D. simulans was identified. Recombination analysis reveals that this region contains a second major hybrid male sterility gene linked to the forked locus located at either 62.7 +/- 0.66 map units or at the centromere region of the X chromosome of D. mauritiana.

  14. Simple Y-autosomal incompatibilities cause hybrid male sterility in reciprocal crosses between Drosophila virilis and D. americana.

    Science.gov (United States)

    Sweigart, Andrea L

    2010-03-01

    Postzygotic reproductive isolation evolves when hybrid incompatibilities accumulate between diverging populations. Here, I examine the genetic basis of hybrid male sterility between two species of Drosophila, Drosophila virilis and D. americana. From these analyses, I reach several conclusions. First, neither species carries any autosomal dominant hybrid male sterility alleles: reciprocal F(1) hybrid males are perfectly fertile. Second, later generation (backcross and F(2)) hybrid male sterility between D. virilis and D. americana is not polygenic. In fact, I identified only three genetically independent incompatibilities that cause hybrid male sterility. Remarkably, each of these incompatibilities involves the Y chromosome. In one direction of the cross, the D. americana Y is incompatible with recessive D. virilis alleles at loci on chromosomes 2 and 5. In the other direction, the D. virilis Y chromosome causes hybrid male sterility in combination with recessive D. americana alleles at a single QTL on chromosome 5. Finally, in contrast with findings from other Drosophila species pairs, the X chromosome has only a modest effect on hybrid male sterility between D. virilis and D. americana.

  15. Neurons That Underlie Drosophila melanogaster Reproductive Behaviors: Detection of a Large Male-Bias in Gene Expression in fruitless-Expressing Neurons

    Directory of Open Access Journals (Sweden)

    Nicole R. Newell

    2016-08-01

    Full Text Available Male and female reproductive behaviors in Drosophila melanogaster are vastly different, but neurons that express sex-specifically spliced fruitless transcripts (fru P1 underlie these behaviors in both sexes. How this set of neurons can generate such different behaviors between the two sexes is an unresolved question. A particular challenge is that fru P1-expressing neurons comprise only 2–5% of the adult nervous system, and so studies of adult head tissue or whole brain may not reveal crucial differences. Translating Ribosome Affinity Purification (TRAP identifies the actively translated pool of mRNAs from fru P1-expressing neurons, allowing a sensitive, cell-type-specific assay. We find four times more male-biased than female-biased genes in TRAP mRNAs from fru P1-expressing neurons. This suggests a potential mechanism to generate dimorphism in behavior. The male-biased genes may direct male behaviors by establishing cell fate in a similar context of gene expression observed in females. These results suggest a possible global mechanism for how distinct behaviors can arise from a shared set of neurons.

  16. The acylphosphatase (Acyp) alleles associate with male hybrid sterility in Drosophila.

    Science.gov (United States)

    Michalak, Pawel; Ma, Daina

    2008-06-15

    Hybrid defects are believed to result from genetic incompatibilities between genes that have evolved in separate parental lineages. These genetic dysfunctions on the hybrid genomic background, also known as Dobzhansky-Muller incompatibilities, can be an incipient signature of speciation, and as such - a subject of active research. Here we present evidence that Acyp locus (CG16870) that encodes acylphosphatase, a small enzyme that catalyzes the hydrolysis of acylphosphates and participates in ion transport across biological membranes, is involved in genetic incompatibilities leading to male sterility in hybrids between Drosophila simulans and D. mauritiana. There is a strong association between Acyp alleles (genotype) and the sterility/fertility pattern (phenotype), as well as between the phenotype, the genotype and its transcriptional activity. Allele-specific expression in hybrids heterozygous for Acyp suggests a cis-type regulation of this gene, where an allele from one of the parental species (D. simulans) is consistently overexpressed.

  17. Ejaculation Induced by the Activation of Crz Neurons Is Rewarding to Drosophila Males.

    Science.gov (United States)

    Zer-Krispil, Shir; Zak, Hila; Shao, Lisha; Ben-Shaanan, Shir; Tordjman, Lea; Bentzur, Assa; Shmueli, Anat; Shohat-Ophir, Galit

    2018-05-07

    The reward system is a collection of circuits that reinforce behaviors necessary for survival [1, 2]. Given the importance of reproduction for survival, actions that promote successful mating induce pleasurable feeling and are positively reinforced [3, 4]. This principle is conserved in Drosophila, where successful copulation is naturally rewarding to male flies, induces long-term appetitive memories [5], increases brain levels of neuropeptide F (NPF, the fly homolog of neuropeptide Y), and prevents ethanol, known otherwise as rewarding to flies [6, 7], from being rewarding [5]. It is not clear which of the multiple sensory and motor responses performed during mating induces perception of reward. Sexual interactions with female flies that do not reach copulation are not sufficient to reduce ethanol consumption [5], suggesting that only successful mating encounters are rewarding. Here, we uncoupled the initial steps of mating from its final steps and tested the ability of ejaculation to mimic the rewarding value of full copulation. We induced ejaculation by activating neurons that express the neuropeptide corazonin (CRZ) [8] and subsequently measured different aspects of reward. We show that activating Crz-expressing neurons is rewarding to male flies, as they choose to reside in a zone that triggers optogenetic stimulation of Crz neurons and display conditioned preference for an odor paired with the activation. Reminiscent of successful mating, repeated activation of Crz neurons increases npf levels and reduces ethanol consumption. Our results demonstrate that ejaculation stimulated by Crz/Crz-receptor signaling serves as an essential part of the mating reward mechanism in Drosophila. VIDEO ABSTRACT. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Hybrid sterility and evolution in Hawaiian Drosophila: differential gene and allele-specific expression analysis of backcross males.

    Science.gov (United States)

    Brill, E; Kang, L; Michalak, K; Michalak, P; Price, D K

    2016-08-01

    The Hawaiian Drosophila are an iconic example of sequential colonization, adaptive radiation and speciation on islands. Genetic and phenotypic analysis of closely related species pairs that exhibit incomplete reproductive isolation can provide insights into the mechanisms of speciation. Drosophila silvestris from Hawai'i Island and Drosophila planitibia from Maui are two closely related allopatric Hawaiian picture-winged Drosophila that produce sterile F1 males but fertile F1 females, a pattern consistent with Haldane's rule. Backcrossing F1 hybrid females between these two species to parental species gives rise to recombinant males with three distinct sperm phenotypes despite a similar genomic background: motile sperm, no sperm (sterile), and immotile sperm. We found that these three reproductive morphologies of backcross hybrid males produce divergent gene expression profiles in testes, as measured with RNA sequencing. There were a total of 71 genes significantly differentially expressed between backcross males with no sperm compared with those backcross males with motile sperm and immotile sperm, but no significant differential gene expression between backcross males with motile sperm and backcross males with immotile sperm. All of these genes were underexpressed in males with no sperm, including a number of genes with previously known activities in adult testis. An allele-specific expression analysis showed overwhelmingly more cis-divergent than trans-divergent genes, with no significant difference in the ratio of cis- and trans-divergent genes among the sperm phenotypes. Overall, the results indicate that the regulation of gene expression involved in sperm production likely diverged relatively rapidly between these two closely related species.

  19. Detection of transgenerational spermatogenic inheritance of adult male acquired CNS gene expression characteristics using a Drosophila systems model.

    Directory of Open Access Journals (Sweden)

    Abhay Sharma

    Full Text Available Available instances of inheritance of epigenetic transgenerational phenotype are limited to environmental exposures during embryonic and adult gonadal development. Adult exposures can also affect gametogenesis and thereby potentially result in reprogramming of the germline. Although examples of epigenetic effects on gametogenesis exist, it is notable that transgenerational inheritance of environment-induced adult phenotype has not yet been reported. Epigenetic codes are considered to be critical in neural plasticity. A Drosophila systems model of pentylenetetrazole (PTZ induced long-term brain plasticity has recently been described. In this model, chronic PTZ treatment of adult males causes alterations in CNS transcriptome. Here, we describe our search for transgenerational spermatogenic inheritance of PTZ induced gene expression phenotype acquired by adult Drosophila males. We generated CNS transcriptomic profiles of F(1 adults after treating F(0 adult males with PTZ and of F(2 adults resulting from a cross between F(1 males and normal females. Surprisingly, microarray clustering showed F(1 male profile as closest to F(1 female and F(0 male profile closest to F(2 male. Differentially expressed genes in F(1 males, F(1 females and F(2 males showed significant overlap with those caused by PTZ. Interestingly, microarray evidence also led to the identification of upregulated rRNA in F(2 males. Next, we generated microarray expression profiles of adult testis from F(0 and F(1 males. Further surprising, clustering of CNS and testis profiles and matching of differentially expressed genes in them provided evidence of a spermatogenic mechanism in the transgenerational effect observed. To our knowledge, we report for the first time detection of transgenerational spermatogenic inheritance of adult acquired somatic gene expression characteristic. The Drosophila systems model offers an excellent opportunity to understand the epigenetic mechanisms underlying

  20. Detection of transgenerational spermatogenic inheritance of adult male acquired CNS gene expression characteristics using a Drosophila systems model.

    Science.gov (United States)

    Sharma, Abhay; Singh, Priyanka

    2009-06-02

    Available instances of inheritance of epigenetic transgenerational phenotype are limited to environmental exposures during embryonic and adult gonadal development. Adult exposures can also affect gametogenesis and thereby potentially result in reprogramming of the germline. Although examples of epigenetic effects on gametogenesis exist, it is notable that transgenerational inheritance of environment-induced adult phenotype has not yet been reported. Epigenetic codes are considered to be critical in neural plasticity. A Drosophila systems model of pentylenetetrazole (PTZ) induced long-term brain plasticity has recently been described. In this model, chronic PTZ treatment of adult males causes alterations in CNS transcriptome. Here, we describe our search for transgenerational spermatogenic inheritance of PTZ induced gene expression phenotype acquired by adult Drosophila males. We generated CNS transcriptomic profiles of F(1) adults after treating F(0) adult males with PTZ and of F(2) adults resulting from a cross between F(1) males and normal females. Surprisingly, microarray clustering showed F(1) male profile as closest to F(1) female and F(0) male profile closest to F(2) male. Differentially expressed genes in F(1) males, F(1) females and F(2) males showed significant overlap with those caused by PTZ. Interestingly, microarray evidence also led to the identification of upregulated rRNA in F(2) males. Next, we generated microarray expression profiles of adult testis from F(0) and F(1) males. Further surprising, clustering of CNS and testis profiles and matching of differentially expressed genes in them provided evidence of a spermatogenic mechanism in the transgenerational effect observed. To our knowledge, we report for the first time detection of transgenerational spermatogenic inheritance of adult acquired somatic gene expression characteristic. The Drosophila systems model offers an excellent opportunity to understand the epigenetic mechanisms underlying the

  1. Genome-Wide Association Study on Male Genital Shape and Size in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Baku Takahara

    Full Text Available Male genital morphology of animals with internal fertilization and promiscuous mating systems have been one of the most diverse and rapidly evolving morphological traits. The male genital morphology in general is known to have low phenotypic and genetic variations, but the genetic basis of the male genital variation remains unclear. Drosophila melanogaster and its closely related species are morphologically very similar, but the shapes of the posterior lobe, a cuticular projection on the male genital arch are distinct from each other, representing a model system for studying the genetic basis of male genital morphology. In this study, we used highly inbred whole genome sequenced strains of D. melanogaster to perform genome wide association analysis on posterior lobe morphology. We quantified the outline shape of posterior lobes with Fourier coefficients obtained from elliptic Fourier analysis and performed principal component analysis, and posterior lobe size. The first and second principal components (PC1 and PC2 explained approximately 88% of the total variation of the posterior lobe shape. We then examined the association between the principal component scores and posterior lobe size and 1902142 single nucleotide polymorphisms (SNPs. As a result, we obtained 15, 14 and 15 SNPs for PC1, PC2 and posterior lobe size with P-values smaller than 10(-5. Based on the location of the SNPs, 13, 13 and six protein coding genes were identified as potential candidates for PC1, PC2 and posterior lobe size, respectively. In addition to the previous findings showing that the intraspecific posterior shape variation are regulated by multiple QTL with strong effects, the present study suggests that the intraspecific variation may be under polygenic regulation with a number of loci with small effects. Further studies are required for investigating whether these candidate genes are responsible for the intraspecific posterior lobe shape variation.

  2. Effects of polygamy on the activity/rest rhythm of male fruit flies Drosophila melanogaster

    Science.gov (United States)

    Vartak, Vivek Rohidas; Varma, Vishwanath; Sharma, Vijay Kumar

    2015-02-01

    Although polygamy is common in insects, its extent varies enormously among natural populations. Mating systems influence the evolution of reproductive traits and the difference in extent of polygamy between males and females may be a key factor in determining traits which come under the influence of sexual selection. Fruit flies Drosophila melanogaster are promiscuous as both males and females mate with multiple partners. Mating has severe consequences on the physiology and behaviour of flies, and it affects their activity/rest rhythm in a sex-specific manner. In this study, we attempted to discern the effects of mating with multiple partners as opposed to a single partner, or of remaining unmated, on the activity/rest rhythm of flies under cyclic semi-natural (SN) and constant dark (DD) conditions. The results revealed that while evening activity of mated flies was significantly reduced compared to virgins, polygamous males showed a more severe reduction compared to monogamous males. In contrast, though mated females showed reduction in evening activity compared to virgins, activity levels were not different between polygamous and monogamous females. Although there was no detectable effect of mating on clock period, power of the activity/rest rhythm was significantly reduced in mated females with no difference seen between polygamous and monogamous individuals. These results suggest that courtship motivation, represented by evening activity, is successively reduced in males due to mating with one or more partners, while in females, it does not depend on the number of mating partners. Based on these results we conclude that polygamy affects the activity/rest rhythm of fruit flies D. melanogaster in a sex-dependent manner.

  3. Male sex interspecies divergence and down regulation of expression of spermatogenesis genes in Drosophila sterile hybrids.

    Science.gov (United States)

    Sundararajan, Vignesh; Civetta, Alberto

    2011-01-01

    Male sex genes have shown a pattern of rapid interspecies divergence at both the coding and gene expression level. A common outcome from crosses between closely-related species is hybrid male sterility. Phenotypic and genetic studies in Drosophila sterile hybrid males have shown that spermatogenesis arrest is postmeiotic with few exceptions, and that most misregulated genes are involved in late stages of spermatogenesis. Comparative studies of gene regulation in sterile hybrids and parental species have mainly used microarrays providing a whole genome representation of regulatory problems in sterile hybrids. Real-time PCR studies can reject or reveal differences not observed in microarray assays. Moreover, differences in gene expression between samples can be dependant on the source of RNA (e.g., whole body vs. tissue). Here we survey expression in D. simulans, D. mauritiana and both intra and interspecies hybrids using a real-time PCR approach for eight genes expressed at the four main stages of sperm development. We find that all genes show a trend toward under expression in the testes of sterile hybrids relative to parental species with only the two proliferation genes (bam and bgcn) and the two meiotic class genes (can and sa) showing significant down regulation. The observed pattern of down regulation for the genes tested can not fully explain hybrid male sterility. We discuss the down regulation of spermatogenesis genes in hybrids between closely-related species within the contest of rapid divergence experienced by the male genome, hybrid sterility and possible allometric changes due to subtle testes-specific developmental abnormalities.

  4. Epistasis among Drosophila persimilis factors conferring hybrid male sterility with D. pseudoobscura bogotana.

    Directory of Open Access Journals (Sweden)

    Audrey S Chang

    2010-10-01

    Full Text Available The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid male sterility when homozygous, dubbed "mule-like", to roughly 250 kilobases.

  5. P1 interneurons promote a persistent internal state that enhances inter-male aggression in Drosophila

    Science.gov (United States)

    Hoopfer, Eric D; Jung, Yonil; Inagaki, Hidehiko K; Rubin, Gerald M; Anderson, David J

    2015-01-01

    How brains are hardwired to produce aggressive behavior, and how aggression circuits are related to those that mediate courtship, is not well understood. A large-scale screen for aggression-promoting neurons in Drosophila identified several independent hits that enhanced both inter-male aggression and courtship. Genetic intersections revealed that 8-10 P1 interneurons, previously thought to exclusively control male courtship, were sufficient to promote fighting. Optogenetic experiments indicated that P1 activation could promote aggression at a threshold below that required for wing extension. P1 activation in the absence of wing extension triggered persistent aggression via an internal state that could endure for minutes. High-frequency P1 activation promoted wing extension and suppressed aggression during photostimulation, whereas aggression resumed and wing extension was inhibited following photostimulation offset. Thus, P1 neuron activation promotes a latent, internal state that facilitates aggression and courtship, and controls the overt expression of these social behaviors in a threshold-dependent, inverse manner. DOI: http://dx.doi.org/10.7554/eLife.11346.001 PMID:26714106

  6. Genetic architecture of male sterility and segregation distortion in Drosophila pseudoobscura Bogota-USA hybrids.

    Science.gov (United States)

    Phadnis, Nitin

    2011-11-01

    Understanding the genetic basis of reproductive isolation between recently diverged species is a central problem in evolutionary genetics. Here, I present analyses of the genetic architecture underlying hybrid male sterility and segregation distortion between the Bogota and USA subspecies of Drosophila pseudoobscura. Previously, a single gene, Overdrive (Ovd), was shown to be necessary but not sufficient for both male sterility and segregation distortion in F(1) hybrids between these subspecies, requiring several interacting partner loci for full manifestation of hybrid phenomena. I map these partner loci separately on the Bogota X chromosome and USA autosomes using a combination of different mapping strategies. I find that hybrid sterility involves a single hybrid incompatibility of at least seven interacting partner genes that includes three large-effect loci. Segregation distortion involves three loci on the Bogota X chromosome and one locus on the autosomes. The genetic bases of hybrid sterility and segregation distortion are at least partially--but not completely--overlapping. My results lay the foundation for fine-mapping experiments to identify the complete set of genes that interact with Overdrive. While individual genes that cause hybrid sterility or inviability have been identified in a few cases, my analysis provides a comprehensive look at the genetic architecture of all components of a hybrid incompatibility underlying F(1) hybrid sterility. Such an analysis would likely be unfeasible for most species pairs due to their divergence time and emphasizes the importance of young species pairs such as the D. pseudoobscura subspecies studied here.

  7. Epistasis among Drosophila persimilis factors conferring hybrid male sterility with D. pseudoobscura bogotana.

    Science.gov (United States)

    Chang, Audrey S; Bennett, Sarah M; Noor, Mohamed A F

    2010-10-27

    The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid male sterility when homozygous, dubbed "mule-like", to roughly 250 kilobases.

  8. Genetic Architecture of Male Sterility and Segregation Distortion in Drosophila pseudoobscura Bogota–USA Hybrids

    Science.gov (United States)

    Phadnis, Nitin

    2011-01-01

    Understanding the genetic basis of reproductive isolation between recently diverged species is a central problem in evolutionary genetics. Here, I present analyses of the genetic architecture underlying hybrid male sterility and segregation distortion between the Bogota and USA subspecies of Drosophila pseudoobscura. Previously, a single gene, Overdrive (Ovd), was shown to be necessary but not sufficient for both male sterility and segregation distortion in F1 hybrids between these subspecies, requiring several interacting partner loci for full manifestation of hybrid phenomena. I map these partner loci separately on the Bogota X chromosome and USA autosomes using a combination of different mapping strategies. I find that hybrid sterility involves a single hybrid incompatibility of at least seven interacting partner genes that includes three large-effect loci. Segregation distortion involves three loci on the Bogota X chromosome and one locus on the autosomes. The genetic bases of hybrid sterility and segregation distortion are at least partially—but not completely—overlapping. My results lay the foundation for fine-mapping experiments to identify the complete set of genes that interact with Overdrive. While individual genes that cause hybrid sterility or inviability have been identified in a few cases, my analysis provides a comprehensive look at the genetic architecture of all components of a hybrid incompatibility underlying F1 hybrid sterility. Such an analysis would likely be unfeasible for most species pairs due to their divergence time and emphasizes the importance of young species pairs such as the D. pseudoobscura subspecies studied here. PMID:21900263

  9. Sex-specific signaling in the blood-brain barrier is required for male courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    Valbona Hoxha

    Full Text Available Soluble circulating proteins play an important role in the regulation of mating behavior in Drosophila melanogaster. However, how these factors signal through the blood-brain barrier (bbb to interact with the sex-specific brain circuits that control courtship is unknown. Here we show that male identity of the blood-brain barrier is necessary and that male-specific factors in the bbb are physiologically required for normal male courtship behavior. Feminization of the bbb of adult males significantly reduces male courtship. We show that the bbb-specific G-protein coupled receptor moody and bbb-specific Go signaling in adult males are necessary for normal courtship. These data identify sex-specific factors and signaling processes in the bbb as important regulators of male mating behavior.

  10. Drosophila pheromone-sensing neurons expressing the ppk25 ion channel subunit stimulate male courtship and female receptivity.

    Science.gov (United States)

    Vijayan, Vinoy; Thistle, Rob; Liu, Tong; Starostina, Elena; Pikielny, Claudio W

    2014-03-01

    As in many species, gustatory pheromones regulate the mating behavior of Drosophila. Recently, several ppk genes, encoding ion channel subunits of the DEG/ENaC family, have been implicated in this process, leading to the identification of gustatory neurons that detect specific pheromones. In a subset of taste hairs on the legs of Drosophila, there are two ppk23-expressing, pheromone-sensing neurons with complementary response profiles; one neuron detects female pheromones that stimulate male courtship, the other detects male pheromones that inhibit male-male courtship. In contrast to ppk23, ppk25, is only expressed in a single gustatory neuron per taste hair, and males with impaired ppk25 function court females at reduced rates but do not display abnormal courtship of other males. These findings raised the possibility that ppk25 expression defines a subset of pheromone-sensing neurons. Here we show that ppk25 is expressed and functions in neurons that detect female-specific pheromones and mediates their stimulatory effect on male courtship. Furthermore, the role of ppk25 and ppk25-expressing neurons is not restricted to responses to female-specific pheromones. ppk25 is also required in the same subset of neurons for stimulation of male courtship by young males, males of the Tai2 strain, and by synthetic 7-pentacosene (7-P), a hydrocarbon normally found at low levels in both males and females. Finally, we unexpectedly find that, in females, ppk25 and ppk25-expressing cells regulate receptivity to mating. In the absence of the third antennal segment, which has both olfactory and auditory functions, mutations in ppk25 or silencing of ppk25-expressing neurons block female receptivity to males. Together these results indicate that ppk25 identifies a functionally specialized subset of pheromone-sensing neurons. While ppk25 neurons are required for the responses to multiple pheromones, in both males and females these neurons are specifically involved in stimulating

  11. Genetics of hybrid male sterility between drosophila sibling species: a complex web of epistasis is revealed in interspecific studies.

    Science.gov (United States)

    Palopoli, M F; Wu, C I

    1994-10-01

    To study the genetic differences responsible for the sterility of their male hybrids, we introgressed small segments of an X chromosome from Drosophila simulans into a pure Drosophila mauritiana genetic background, then assessed the fertility of males carrying heterospecific introgressions of varying size. Although this analysis examined less than 20% of the X chromosome (roughly 5% of the euchromatic portion of the D. simulans genome), and the segments were introgressed in only one direction, a minimum of four factors that contribute to hybrid male sterility were revealed. At least two of the factors exhibited strong epistasis: males carrying either factor alone were consistently fertile, whereas males carrying both factors together were always sterile. Distinct spermatogenic phenotypes were observed for sterile introgressions of different lengths, and it appeared that an interaction between introgressed segments also influenced the stage of spermatogenic defect. Males with one category of introgression often produced large quantities of motile sperm and were observed copulating, but never inseminated females. Evidently these two species have diverged at a large number of loci which have varied effects on hybrid male fertility. By extrapolation, we estimate that there are at least 40 such loci on the X chromosome alone. Because these species exhibit little DNA-sequence divergence at arbitrarily chosen loci, it seems unlikely that the extensive functional divergence observed could be due mainly to random genetic drift. Significant epistasis between conspecific genes appears to be a common component of hybrid sterility between recently diverged species of Drosophila. The linkage relationships of interacting factors could shed light on the role played by epistatic selection in the dynamics of the allele substitutions responsible for reproductive barriers between species.

  12. E-cadherin is required for centrosome and spindle orientation in Drosophila male germline stem cells.

    Directory of Open Access Journals (Sweden)

    Mayu Inaba

    2010-08-01

    Full Text Available Many adult stem cells reside in a special microenvironment known as the niche, where they receive essential signals that specify stem cell identity. Cell-cell adhesion mediated by cadherin and integrin plays a crucial role in maintaining stem cells within the niche. In Drosophila melanogaster, male germline stem cells (GSCs are attached to niche component cells (i.e., the hub via adherens junctions. The GSC centrosomes and spindle are oriented toward the hub-GSC junction, where E-cadherin-based adherens junctions are highly concentrated. For this reason, adherens junctions are thought to provide a polarity cue for GSCs to enable proper orientation of centrosomes and spindles, a critical step toward asymmetric stem cell division. However, understanding the role of E-cadherin in GSC polarity has been challenging, since GSCs carrying E-cadherin mutations are not maintained in the niche. Here, we tested whether E-cadherin is required for GSC polarity by expressing a dominant-negative form of E-cadherin. We found that E-cadherin is indeed required for polarizing GSCs toward the hub cells, an effect that may be mediated by Apc2. We also demonstrated that E-cadherin is required for the GSC centrosome orientation checkpoint, which prevents mitosis when centrosomes are not correctly oriented. We propose that E-cadherin orchestrates multiple aspects of stem cell behavior, including polarization of stem cells toward the stem cell-niche interface and adhesion of stem cells to the niche supporting cells.

  13. Reproductive hacking. A male seminal protein acts through intact reproductive pathways in female Drosophila.

    Science.gov (United States)

    Rubinstein, C Dustin; Wolfner, Mariana F

    2014-01-01

    Seminal proteins are critical for reproductive success in all animals that have been studied. Although seminal proteins have been identified in many taxa, and female reproductive responses to receipt of these proteins have been documented in several, little is understood about the mechanisms by which seminal proteins affect female reproductive physiology. To explore this topic, we investigated how a Drosophila seminal protein, ovulin, increases ovulation rate in mated females. Ovulation is a relatively simple physiological process, with known female regulators: previous studies have shown that ovulation rate is promoted by the neuromodulator octopamine (OA) in D. melanogaster and other insects. We found that ovulin stimulates ovulation by increasing OA signaling in the female. This finding supports a model in which a male seminal protein acts through "hacking" a well-conserved, regulatory system females use to adjust reproductive output, rather than acting downstream of female mechanisms of control or in parallel pathways altogether. We also discuss similarities between 2 forms of intersexual control of behavior through chemical communication: seminal proteins and pheromones.

  14. Transcription of Gypsy Elements in a Y-Chromosome Male Fertility Gene of Drosophila Hydei

    Science.gov (United States)

    Hochstenbach, R.; Harhangi, H.; Schouren, K.; Bindels, P.; Suijkerbuijk, R.; Hennig, W.

    1996-01-01

    We have found that defective gypsy retrotransposons are a major constituent of the lampbrush loop pair Nooses in the short arm of the Y chromosome of Drosophila hydei. The loop pair is formed by male fertility gene Q during the primary spermatocyte stage of spermatogenesis, each loop being a single transcription unit with an estimated length of 260 kb. Using fluorescent in situ hybridization, we show that throughout the loop transcripts gypsy elements are interspersed with blocks of a tandemly repetitive Y-specific DNA sequence, ay1. Nooses transcripts containing both sequence types show a wide size range on Northern blots, do not migrate to the cytoplasm, and are degraded just before the first meiotic division. Only one strand of ay1 and only the coding strand of gypsy can be detected in the loop transcripts. However, as cloned genomic DNA fragments also display opposite orientations of ay1 and gypsy, such DNA sections cannot be part of the Nooses. Hence, they are most likely derived from the flanking heterochromatin. The direction of transcription of ay1 and gypsy thus appears to be of a functional significance. PMID:8852843

  15. Genetics of hybrid male sterility among strains and species in the Drosophila pseudoobscura species group.

    Science.gov (United States)

    McDermott, Shannon R; Noor, Mohamed A F

    2011-07-01

    Taxa in the early stages of speciation may bear intraspecific allelic variation at loci conferring barrier traits in hybrids such as hybrid sterility. Additionally, hybridization may spread alleles that confer barrier traits to other taxa. Historically, few studies examine within- and between-species variation at loci conferring reproductive isolation. Here, we test for allelic variation within Drosophila persimilis and within the Bogota subspecies of D. pseudoobscura at regions previously shown to contribute to hybrid male sterility. We also test whether D. persimilis and the USA subspecies of D. pseudoobscura share an allele conferring hybrid sterility in a D. pseudoobscura bogotana genetic background. All loci conferred similar hybrid sterility effects across all strains studied, although we detected some statistically significant quantitative effect variation among D. persimilis alleles of some hybrid incompatibility QTLs. We also detected allelism between D. persimilis and D. pseudoobscura USA at a second chromosome hybrid sterility QTL. We hypothesize that either the QTL is ancestral in D. persimilis and D. pseudoobscura USA and lost in D. pseudoobscura bogotana, or gene flow transferred the QTL from D. persimilis to D. pseudoobscura USA. We discuss our findings in the context of population features that may contribute to variation in hybrid incompatibilities. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  16. Epistasis modifies the dominance of loci causing hybrid male sterility in the Drosophila pseudoobscura species group.

    Science.gov (United States)

    Chang, Audrey S; Noor, Mohamed A F

    2010-01-01

    Speciation, the evolution of reproductive isolation between populations, serves as the driving force for generating biodiversity. Postzygotic barriers to gene flow, such as F(1) hybrid sterility and inviability, play important roles in the establishment and maintenance of biological species. F(1) hybrid incompatibilities in taxa that obey Haldane's rule, the observation that the heterogametic sex suffers greater hybrid fitness problems than the homogametic sex, are thought to often result from interactions between recessive-acting X-linked loci and dominant-acting autosomal loci. Because they play such prominent roles in producing hybrid incompatibilities, we examine the dominance and nature of epistasis between alleles derived from Drosophila persimilis that confer hybrid male sterility in the genetic background of its sister species, D. pseudoobscura bogotana. We show that epistasis elevates the apparent dominance of individually recessive-acting QTL such that they can contribute to F(1) hybrid sterility. These results have important implications for assumptions underlying theoretical models of hybrid incompatibilities and may offer a possible explanation for why, to date, identification of dominant-acting autosomal "speciation genes" has been challenging.

  17. Gene expression changes in male accessory glands during ageing are accompanied by reproductive decline in Drosophila melanogaster.

    Science.gov (United States)

    Koppik, Mareike; Fricke, Claudia

    2017-12-01

    Senescence is accompanied by loss of reproductive functions. Here, we studied reproductive ageing in Drosophila melanogaster males and asked whether the expected decline in male reproductive success is due to diminished functionality of the male accessory gland (AG). The male AG produces the majority of seminal fluid proteins (SFPs) transferred to the female at mating. SFPs induce female postmating changes and are key to male reproductive success. We measured age-dependent gene expression changes for five representative SFP genes in males from four different age groups ranging from 1 to 6 weeks after eclosion. Simultaneously, we also measured male reproductive success in postmating traits mediated by transfer of these five SFPs. We found a decreased in male SFP gene expression with advancing age and an accompanying decline in male postmating success. Hence, male reproductive senescence is associated with a decline in functionality of the male AG. While overall individual SFP genes decreased in expression, our results point towards the idea that the composition of an ejaculate might change with male age as the rate of change was variable for those five genes. © 2017 John Wiley & Sons Ltd.

  18. Evaluation of the courtship and of the hybrid male sterility among Drosophila buzzatii cluster species (Diptera, Drosophilidae

    Directory of Open Access Journals (Sweden)

    MACHADO L. P. de B.

    2002-01-01

    Full Text Available In the Drosophila repleta group the establishment of subgroups and complexes made on the basis of morphological and cytological evidences is supported by tests of reproductive isolation. Among species in the repleta group, the buzzatii cluster, due to its polymorphism and polytipism, is an excellent material for ecological and speciation studies. Some interspecific crosses involving Drosophila seriema, Drosophila sp. B, D. koepferae and D. buzzatii strains were completely sterile while others involving strains from these species produced F1 hybrids that did not yield F2. In the present work, data on courtship duration and copula occurrence obtained in the analysis of flies from parental sterile crosses and on spermatozoon mobility observed in F1 hybrids that did not yield F2 are presented. Copula did not occur during one hour of observation and the spermatozoon also did not show mobility at any of the analyzed stages (3, 7, 9 and 10 days old. There was a high variation in courtship average duration and in the percentage of males that courted the females. The reproductive isolation mechanisms indicated by these observations were pre and post-zygotic, as supported by the absence of copula and male sterility. Data obtained also showed the occurrence of different degrees of reproductive compatibility among the strains classified as the same species but from distinct geographic localities.

  19. Evaluation of the courtship and of the hybrid male sterility among Drosophila buzzatii cluster species (Diptera, Drosophilidae).

    Science.gov (United States)

    Machado, L P; Castro, J P; Madi-Ravazzi, L

    2002-11-01

    In the Drosophila repleta group the establishment of subgroups and complexes made on the basis of morphological and cytological evidences is supported by tests of reproductive isolation. Among species in the repleta group, the buzzatii cluster, due to its polymorphism and polytipism, is an excellent material for ecological and speciation studies. Some interspecific crosses involving Drosophila seriema, Drosophila sp. B, D. koepferae and D. buzzatii strains were completely sterile while others involving strains from these species produced F1 hybrids that did not yield F2. In the present work, data on courtship duration and copula occurrence obtained in the analysis of flies from parental sterile crosses and on spermatozoon mobility observed in F1 hybrids that did not yield F2 are presented. Copula did not occur during one hour of observation and the spermatozoon also did not show mobility at any of the analyzed stages (3, 7, 9 and 10 days old). There was a high variation in courtship average duration and in the percentage of males that courted the females. The reproductive isolation mechanisms indicated by these observations were pre and post-zygotic, as supported by the absence of copula and male sterility. Data obtained also showed the occurrence of different degrees of reproductive compatibility among the strains classified as the same species but from distinct geographic localities.

  20. A Model-Based Analysis of Chemical and Temporal Patterns of Cuticular Hydrocarbons in Male Drosophila melanogaster

    Science.gov (United States)

    Kent, Clement; Azanchi, Reza; Smith, Ben; Chu, Adrienne; Levine, Joel

    2007-01-01

    Drosophila Cuticular Hydrocarbons (CH) influence courtship behaviour, mating, aggregation, oviposition, and resistance to desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of environmental (LD/DD) conditions. Using a model-based analysis of CH variation, we developed an improved normalization method for CH data, and show that CH compounds have reproducible cyclic within-day temporal patterns of expression which differ between LD and DD conditions. Multivariate clustering of expression patterns identified 5 clusters of co-expressed compounds with common chemical characteristics. Turnover rate estimates suggest CH production may be a significant metabolic cost. Male cuticular hydrocarbon expression is a dynamic trait influenced by light and time of day; since abundant hydrocarbons affect male sexual behavior, males may present different pheromonal profiles at different times and under different conditions. PMID:17896002

  1. A model-based analysis of chemical and temporal patterns of cuticular hydrocarbons in male Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Clement Kent

    Full Text Available Drosophila Cuticular Hydrocarbons (CH influence courtship behaviour, mating, aggregation, oviposition, and resistance to desiccation. We measured levels of 24 different CH compounds of individual male D. melanogaster hourly under a variety of environmental (LD/DD conditions. Using a model-based analysis of CH variation, we developed an improved normalization method for CH data, and show that CH compounds have reproducible cyclic within-day temporal patterns of expression which differ between LD and DD conditions. Multivariate clustering of expression patterns identified 5 clusters of co-expressed compounds with common chemical characteristics. Turnover rate estimates suggest CH production may be a significant metabolic cost. Male cuticular hydrocarbon expression is a dynamic trait influenced by light and time of day; since abundant hydrocarbons affect male sexual behavior, males may present different pheromonal profiles at different times and under different conditions.

  2. Two distinct genomic regions, harbouring the period and fruitless genes, affect male courtship song in Drosophila montana.

    Science.gov (United States)

    Lagisz, M; Wen, S-Y; Routtu, J; Klappert, K; Mazzi, D; Morales-Hojas, R; Schäfer, M A; Vieira, J; Hoikkala, A; Ritchie, M G; Butlin, R K

    2012-06-01

    Acoustic signals often have a significant role in pair formation and in species recognition. Determining the genetic basis of signal divergence will help to understand signal evolution by sexual selection and its role in the speciation process. An earlier study investigated quantitative trait locus for male courtship song carrier frequency (FRE) in Drosophila montana using microsatellite markers. We refined this study by adding to the linkage map markers for 10 candidate genes known to affect song production in Drosophila melanogaster. We also extended the analyses to additional song characters (pulse train length (PTL), pulse number (PN), interpulse interval, pulse length (PL) and cycle number (CN)). Our results indicate that loci in two different regions of the genome control distinct features of the courtship song. Pulse train traits (PTL and PN) mapped to the X chromosome, showing significant linkage with the period gene. In contrast, characters related to song pulse properties (PL, CN and carrier FRE) mapped to the region of chromosome 2 near the candidate gene fruitless, identifying these genes as suitable loci for further investigations. In previous studies, the pulse train traits have been found to vary substantially between Drosophila species, and so are potential species recognition signals, while the pulse traits may be more important in intra-specific mate choice.

  3. Epigenetics and sex-specific fitness: an experimental test using male-limited evolution in Drosophila melanogaster.

    Science.gov (United States)

    Abbott, Jessica K; Innocenti, Paolo; Chippindale, Adam K; Morrow, Edward H

    2013-01-01

    When males and females have different fitness optima for the same trait but share loci, intralocus sexual conflict is likely to occur. Epigenetic mechanisms such as genomic imprinting (in which expression is altered according to parent-of-origin) and sex-specific maternal effects have been suggested as ways by which this conflict can be resolved. However these ideas have not yet been empirically tested. We designed an experimental evolution protocol in Drosophila melanogaster that enabled us to look for epigenetic effects on the X-chromosome-a hotspot for sexually antagonistic loci. We used special compound-X females to enforce father-to-son transmission of the X-chromosome for many generations, and compared fitness and gene expression levels between Control males, males with a Control X-chromosome that had undergone one generation of father-son transmission, and males with an X-chromosome that had undergone many generations of father-son transmission. Fitness differences were dramatic, with experimentally-evolved males approximately 20% greater than controls, and with males inheriting a non-evolved X from their father about 20% lower than controls. These data are consistent with both strong intralocus sexual conflict and misimprinting of the X-chromosome under paternal inheritance. However, expression differences suggested that reduced fitness under paternal X inheritance was largely due to deleterious maternal effects. Our data confirm the sexually-antagonistic nature of Drosophila's X-chromosome and suggest that the response to male-limited X-chromosome evolution entails compensatory evolution for maternal effects, and perhaps modification of other epigenetic effects via coevolution of the sex chromosomes.

  4. The impact of Wolbachia, male age and mating history on cytoplasmic incompatibility and sperm transfer in Drosophila simulans.

    Science.gov (United States)

    Awrahman, Z A; Champion de Crespigny, F; Wedell, N

    2014-01-01

    Most insects harbour a variety of maternally inherited endosymbionts, the most widespread being Wolbachia pipientis that commonly induce cytoplasmic incompatibility (CI) and reduced hatching success in crosses between infected males and uninfected females. High temperature and increasing male age are known to reduce the level of CI in a variety of insects. In Drosophila simulans, infected males have been shown to mate at a higher rate than uninfected males. By examining the impact of mating rate independent of age, this study investigates whether a high mating rate confers an advantage to infected males through restoring their compatibility with uninfected females over and above the effect of age. The impact of Wolbachia infection, male mating rate and age on the number of sperm transferred to females during copulation and how it relates to CI expression was also assessed. As predicted, we found that reproductive compatibility was restored faster in males that mate at higher rate than that of low mating and virgin males, and that the effect of mating history was over and above the effect of male age. Nonvirgin infected males transferred fewer sperm than uninfected males during copulation, and mating at a high rate resulted in the transfer of fewer sperm per mating irrespective of infection status. These results indicate that the advantage to infected males of mating at a high rate is through restoration of reproductive compatibility with uninfected females, whereas uninfected males appear to trade off the number of sperm transferred per mating with female encounter rate and success in sperm competition. This study highlights the importance Wolbachia may play in sexual selection by affecting male reproductive strategies. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  5. Genetic architecture and functional characterization of genes underlying the rapid diversification of male external genitalia between Drosophila simulans and Drosophila mauritiana.

    Science.gov (United States)

    Tanaka, Kentaro M; Hopfen, Corinna; Herbert, Matthew R; Schlötterer, Christian; Stern, David L; Masly, John P; McGregor, Alistair P; Nunes, Maria D S

    2015-05-01

    Male sexual characters are often among the first traits to diverge between closely related species and identifying the genetic basis of such changes can contribute to our understanding of their evolutionary history. However, little is known about the genetic architecture or the specific genes underlying the evolution of male genitalia. The morphology of the claspers, posterior lobes, and anal plates exhibit striking differences between Drosophila mauritiana and D. simulans. Using QTL and introgression-based high-resolution mapping, we identified several small regions on chromosome arms 3L and 3R that contribute to differences in these traits. However, we found that the loci underlying the evolution of clasper differences between these two species are independent from those that contribute to posterior lobe and anal plate divergence. Furthermore, while most of the loci affect each trait in the same direction and act additively, we also found evidence for epistasis between loci for clasper bristle number. In addition, we conducted an RNAi screen in D. melanogaster to investigate if positional and expression candidate genes located on chromosome 3L, are also involved in genital development. We found that six of these genes, including components of Wnt signaling and male-specific lethal 3 (msl3), regulate the development of genital traits consistent with the effects of the introgressed regions where they are located and that thus represent promising candidate genes for the evolution these traits. Copyright © 2015 by the Genetics Society of America.

  6. Neural cell fate in rca1 and cycA mutants: the roles of intrinsic and extrinsic factors in asymmetric division in the Drosophila central nervous system.

    Science.gov (United States)

    Lear, B C; Skeath, J B; Patel, N H

    1999-11-01

    In the central nervous system (CNS) of Drosophila embryos lacking regulator of cyclin A (rca1) or cyclin A, we observe that several ganglion mother cells (GMCs) fail to divide. Whereas GMCs normally produce two sibling neurons that acquire different fates ('A/B'), non-dividing GMCs differentiate exclusively in the manner of one of their progeny ('B'). In zygotic numb mutants, sibling neuron fate alterations ('A/B' to 'A/A') occur infrequently or do not occur in some sibling pairs; we have determined that depletion of both maternal and zygotic numb causes sibling neurons to acquire equalized fates ('A/A') with near-complete expressivity. In rca1, numb mutant embryos, we observe binary cell fate changes ('B' to 'A') in several GMCs as well. Finally, we have demonstrated that expression of Delta in the mesoderm is sufficient to attain both sibling fates. Our results indicate that the intrinsic determinant Numb is absolutely required to attain differential sibling neuron fates. While the extrinsic factors Notch and Delta are also required to attain both fates, our results indicate that Delta signal can be received from outside the sibling pair.

  7. Homeotic function of Drosophila Bithorax-Complex miRNAs mediates fertility by restricting multiple Hox genes and TALE cofactors in the central nervous system

    Science.gov (United States)

    Garaulet, Daniel L.; Castellanos, Monica; Bejarano, Fernando; Sanfilippo, Piero; Tyler, David M.; Allan, Douglas W.; Sánchez-Herrero, Ernesto; Lai, Eric C.

    2014-01-01

    The Drosophila Bithorax-Complex (BX-C) Hox cluster contains a bidirectionally-transcribed miRNA locus, and a deletion mutant (∆mir) lays no eggs and is completely sterile. We show these miRNAs are expressed and active in distinct spatial registers along the anterior-posterior axis in the central nervous system. ∆mir larvae derepress a network of direct homeobox gene targets in the posterior ventral nerve cord (VNC), including BX-C genes and their TALE cofactors. These are phenotypically critical targets, since sterility of ∆mir mutants was substantially rescued by heterozygosity of these genes. The posterior VNC contains Ilp7+ oviduct motoneurons, whose innervation and morphology are defective in ∆mir females, and substantially rescued by heterozygosity of ∆mir targets, especially within the BX-C. Collectively, we reveal (1) critical roles for Hox miRNAs that determine segment-specific expression of homeotic genes, which are not masked by transcriptional regulation, and (2) that BX-C miRNAs are essential for neural patterning and reproductive behavior. PMID:24909902

  8. Control of male sexual behavior in Drosophila by the sex determination pathway

    NARCIS (Netherlands)

    Billeter, Jean-Christophe; Rideout, Elizabeth J; Dornan, Anthony J; Goodwin, Stephen F

    2006-01-01

    Understanding how genes influence behavior, including sexuality, is one of biology's greatest challenges. Much of the recent progress in understanding how single genes can influence behavior has come from the study of innate behaviors in the fruit fly Drosophila melanogaster. In particular, the

  9. Condition dependence and the nature of genetic variation for male sex comb bristle number in Drosophila melanogaster.

    Science.gov (United States)

    Ahuja, Abha; De Vito, Scott; Singh, Rama S

    2011-04-01

    Genetic architecture of variation underlying male sex comb bristle number, a rapidly evolving secondary sexual character of Drosophila, was examined. First, in order to test for condition dependence, diet was manipulated in a set of ten Drosophila melanogaster full-sib families. We confirmed heightened condition dependent expression of sex comb bristle number and its female homologue (distal transverse row bristles) as compared to non-sex sternopleural bristles. Significant genotype by environment effects were detected for the sex traits indicating a genetic basis for condition dependence. Next we measured sex comb bristle number and sternopleural bristle number, as well as residual mass, a commonly used condition index, in a set of thirty half-sib families. Sire effect was not significant for sex comb and sternopleural bristle number, and we detected a strong dominance and/or maternal effect or X chromosome effect for both traits. A strong sire effect was detected for condition and its heritability was the highest as compared to sex comb and sternopleural bristles. We discuss our results in light of the rapid response to divergent artificial selection for sex comb bristle number reported previously. The nature of genetic variation for male sex traits continues to be an important unresolved issue in evolutionary biology.

  10. Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila.

    Science.gov (United States)

    Qiao, Jingda; Zou, Xiaolu; Lai, Duo; Yan, Ying; Wang, Qi; Li, Weicong; Deng, Shengwen; Xu, Hanhong; Gu, Huaiyu

    2014-07-01

    Azadirachtin is a botanical pesticide, which possesses conspicuous biological actions such as insecticidal, anthelmintic, antifeedancy, antimalarial effects as well as insect growth regulation. Deterrent for chemoreceptor functions appears to be the main mechanism involved in the potent biological actions of Azadirachtin, although the cytotoxicity and subtle changes to skeletal muscle physiology may also contribute to its insecticide responses. In order to discover the effects of Azadirachtin on the central nervous system (CNS), patch-clamp recording was applied to Drosophila melanogaster, which has been widely used in neurological research. Here, we describe the electrophysiological properties of a local neuron located in the suboesophageal ganglion region of D. melanogaster using the whole brain. The patch-clamp recordings suggested that Azadirachtin modulates the properties of cholinergic miniature excitatory postsynaptic current (mEPSC) and calcium currents, which play important roles in neural activity of the CNS. The frequency of mEPSC and the peak amplitude of the calcium currents significantly decreased after application of Azadirachtin. Our study indicates that Azadirachtin can interfere with the insect's CNS via inhibition of excitatory cholinergic transmission and partly blocking the calcium channel. © 2013 Society of Chemical Industry.

  11. The Nature and Extent of Mutational Pleiotropy in Gene Expression of Male Drosophila serrata

    OpenAIRE

    McGuigan, Katrina; Collet, Julie M.; McGraw, Elizabeth A.; Ye, Yixin H.; Allen, Scott L.; Chenoweth, Stephen F.; Blows, Mark W.

    2014-01-01

    The nature and extent of mutational pleiotropy remain largely unknown, despite the central role that pleiotropy plays in many areas of biology, including human disease, agricultural production, and evolution. Here, we investigate the variation in 11,604 gene expression traits among 41 mutation accumulation (MA) lines of Drosophila serrata. We first confirmed that these expression phenotypes were heritable, detecting genetic variation in 96% of them in an outbred, natural population of D. serr...

  12. Genetic composition of social groups influences male aggressive behaviour and fitness in natural genotypes of Drosophila melanogaster.

    Science.gov (United States)

    Saltz, Julia B

    2013-11-22

    Indirect genetic effects (IGEs) describe how an individual's behaviour-which is influenced by his or her genotype-can affect the behaviours of interacting individuals. IGE research has focused on dyads. However, insights from social networks research, and other studies of group behaviour, suggest that dyadic interactions are affected by the behaviour of other individuals in the group. To extend IGE inferences to groups of three or more, IGEs must be considered from a group perspective. Here, I introduce the 'focal interaction' approach to study IGEs in groups. I illustrate the utility of this approach by studying aggression among natural genotypes of Drosophila melanogaster. I chose two natural genotypes as 'focal interactants': the behavioural interaction between them was the 'focal interaction'. One male from each focal interactant genotype was present in every group, and I varied the genotype of the third male-the 'treatment male'. Genetic variation in the treatment male's aggressive behaviour influenced the focal interaction, demonstrating that IGEs in groups are not a straightforward extension of IGEs measured in dyads. Further, the focal interaction influenced male mating success, illustrating the role of IGEs in behavioural evolution. These results represent the first manipulative evidence for IGEs at the group level.

  13. No evidence for heritability of male mating latency or copulation duration across social environments in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Michelle L Taylor

    Full Text Available A key assumption underpinning major models of sexual selection is the expectation that male sexual attractiveness is heritable. Surprisingly, however, empirical tests of this assumption are relatively scarce. Here we use a paternal full-sib/half-sib breeding design to examine genetic and environmental variation in male mating latency (a proxy for sexual attractiveness and copulation duration in a natural population of Drosophila melanogaster. As our experimental design also involved the manipulation of the social environment within each full-sibling family, we were able to further test for the presence of genotype-by-environment interactions (GEIs in these traits, which have the potential to compromise mate choice for genetic benefits. Our experimental manipulation of the social environment revealed plastic expression of both traits; males exposed to a rival male during the sensitive period of adult sexual maturation exhibited shorter mating latencies and longer copulation durations than those who matured in isolation. However, we found no evidence for GEIs, and no significant additive genetic variation underlying these traits in either environment. These results undermine the notion that the evolution of female choice rests on covariance between female preference and male displays, an expectation that underpins indirect benefit models such as the good genes and sexy sons hypotheses. However, our results may also indicate depletion of genetic variance in these traits in the natural population studied, thus supporting the expectation that traits closely aligned with reproductive fitness can exhibit low levels of additive genetic variance.

  14. Depletion of a Drosophila homolog of yeast Sup35p disrupts spindle assembly, chromosome segregation, and cytokinesis during male meiosis.

    Science.gov (United States)

    Basu, J; Williams, B C; Li, Z; Williams, E V; Goldberg, M L

    1998-01-01

    In the course of a genetic screen for male-sterile mutations in Drosophila affecting chromosome segregation during the meiotic divisions in spermatocytes, we identified the mutation dsup35(63D). Examination of mutant testes showed that chromosome misbehavior was a consequence of major disruptions in meiotic spindle assembly. These perturbations included problems in aster formation, separation, and migration around the nuclear envelope; aberrations in spindle organization and integrity; and disappearance of the ana/telophase central spindle, which in turn disrupts cytokinesis. The dsup35(63D) mutation is caused by a P element insertion that affects, specifically in the testis, the expression of a gene (dsup35) encoding the Drosophila homolog of the yeast Sup35p and Xenopus eRF3 proteins. These proteins are involved in the termination of polypeptide synthesis on ribosomes, but previous studies have suggested that Sup35p and closely related proteins of the same family also interact directly with microtubules. An affinity-purified antibody directed against the product of the dsup35 gene was prepared; interestingly, this antibody specifically labels primary spermatocytes in one or two discrete foci of unknown structure within the nucleoplasm. We discuss how depletion of the dsup35 gene product in spermatocytes might lead to the global disruptions in meiotic spindle assembly seen in mutant spermatocytes.

  15. Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female.

    Science.gov (United States)

    Isaac, R Elwyn; Li, Chenxi; Leedale, Amy E; Shirras, Alan D

    2010-01-07

    Quiescence, or a sleep-like state, is a common and important feature of the daily lives of animals from both invertebrate and vertebrate taxa, suggesting that sleep appeared early in animal evolution. Recently, Drosophila melanogaster has been shown to be a relevant and powerful model for the genetic analysis of sleep behaviour. The sleep architecture of D. melanogaster is sexually dimorphic, with females sleeping much less than males during day-time, presumably because reproductive success requires greater foraging activity by the female as well as the search for egg-laying sites. However, this loss of sleep and increase in locomotor activity will heighten the risk for the female from environmental and predator hazards. In this study, we show that virgin females can minimize this risk by behaving like males, with an extended afternoon 'siesta'. Copulation results in the female losing 70 per cent of day-time sleep and becoming more active. This behaviour lasts for at least 8 days after copulation and is abolished if the mating males lack sex peptide (SP), normally present in the seminal fluid. Our results suggest that SP is the molecular switch that promotes wakefulness in the post-mated female, a change of behaviour compatible with increased foraging and egg-laying activity. The stress resulting from SP-dependent sleep deprivation might be an important contribution to the toxic side-effects of male accessory gland products that are known to reduce lifespan in post-mated females.

  16. Motor Control of Drosophila Courtship Song

    Directory of Open Access Journals (Sweden)

    Troy R. Shirangi

    2013-11-01

    Full Text Available Many animals utilize acoustic signals—or songs—to attract mates. During courtship, Drosophila melanogaster males vibrate a wing to produce trains of pulses and extended tone, called pulse and sine song, respectively. Courtship songs in the genus Drosophila are exceedingly diverse, and different song features appear to have evolved independently of each other. How the nervous system allows such diversity to evolve is not understood. Here, we identify a wing muscle in D. melanogaster (hg1 that is uniquely male-enlarged. The hg1 motoneuron and the sexually dimorphic development of the hg1 muscle are required specifically for the sine component of the male song. In contrast, the motoneuron innervating a sexually monomorphic wing muscle, ps1, is required specifically for a feature of pulse song. Thus, individual wing motor pathways can control separate aspects of courtship song and may provide a “modular” anatomical substrate for the evolution of diverse songs.

  17. Isoform-specific functions of Mud/NuMA mediate binucleation of Drosophila male accessory gland cells.

    Science.gov (United States)

    Taniguchi, Kiichiro; Kokuryo, Akihiko; Imano, Takao; Minami, Ryunosuke; Nakagoshi, Hideki; Adachi-Yamada, Takashi

    2014-12-20

    In standard cell division, the cells undergo karyokinesis and then cytokinesis. Some cells, however, such as cardiomyocytes and hepatocytes, can produce binucleate cells by going through mitosis without cytokinesis. This cytokinesis skipping is thought to be due to the inhibition of cytokinesis machinery such as the central spindle or the contractile ring, but the mechanisms regulating it are unclear. We investigated them by characterizing the binucleation event during development of the Drosophila male accessory gland, in which all cells are binucleate. The accessory gland cells arrested the cell cycle at 50 hours after puparium formation (APF) and in the middle of the pupal stage stopped proliferating for 5 hours. They then restarted the cell cycle and at 55 hours APF entered the M-phase synchronously. At this stage, accessory gland cells binucleated by mitosis without cytokinesis. Binucleating cells displayed the standard karyokinesis progression but also showed unusual features such as a non-round shape, spindle orientation along the apico-basal axis, and poor assembly of the central spindle. Mud, a Drosophila homolog of NuMA, regulated the processes responsible for these three features, the classical isoform Mud(PBD) and the two newly characterized isoforms Mud(L) and Mud(S) regulated them differently: Mud(L) repressed cell rounding, Mud(PBD) and Mud(S) oriented the spindle along the apico-basal axis, and Mud(S) and Mud(L) repressed central spindle assembly. Importantly, overexpression of Mud(S) induced binucleation even in standard proliferating cells such as those in imaginal discs. We characterized the binucleation in the Drosophila male accessory gland and examined mechanisms that regulated unusual morphologies of binucleating cells. We demonstrated that Mud, a microtubule binding protein regulating spindle orientation, was involved in this binucleation. We suggest that atypical functions exerted by three structurally different isoforms of Mud regulate

  18. Confocal Analysis of Nuclear Lamina Behavior during Male Meiosis and Spermatogenesis in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Fabiana Fabbretti

    Full Text Available Lamin family proteins are structural components of a filamentous framework, the nuclear lamina (NL, underlying the inner membrane of nuclear envelope. The NL not only plays a role in nucleus mechanical support and nuclear shaping, but is also involved in many cellular processes including DNA replication, gene expression and chromatin positioning. Spermatogenesis is a very complex differentiation process in which each stage is characterized by nuclear architecture dramatic changes, from the early mitotic stage to the sperm differentiation final stage. Nevertheless, very few data are present in the literature on the NL behavior during this process. Here we show the first and complete description of NL behavior during meiosis and spermatogenesis in Drosophila melanogaster. By confocal imaging, we characterized the NL modifications from mitotic stages, through meiotic divisions to sperm differentiation with an anti-laminDm0 antibody against the major component of the Drosophila NL. We observed that continuous changes in the NL structure occurred in parallel with chromatin reorganization throughout the whole process and that meiotic divisions occurred in a closed context. Finally, we analyzed NL in solofuso meiotic mutant, where chromatin segregation is severely affected, and found the strict correlation between the presence of chromatin and that of NL.

  19. Correlated evolution of male and female reproductive traits drive a cascading effect of reinforcement in Drosophila yakuba

    Science.gov (United States)

    Comeault, Aaron A.; Venkat, Aarti; Matute, Daniel R.

    2016-01-01

    Selection against maladaptive hybridization can drive the evolution of reproductive isolation in a process called reinforcement. While the importance of reinforcement in evolution has been historically debated, many examples now exist. Despite these examples, we typically lack a detailed understanding of the mechanisms limiting the spread of reinforced phenotypes throughout a species' range. Here we address this issue in the fruit fly Drosophila yakuba, a species that hybridizes with its sister species D. santomea and is undergoing reinforcement in a well-defined hybrid zone on the island of São Tomé. Within this region, female D. yakuba show increased postmating-prezygotic (gametic) isolation towards D. santomea when compared with females from allopatric populations. We use a combination of natural collections, fertility assays, and experimental evolution to understand why reinforced gametic isolation in D. yakuba is confined to this hybrid zone. We show that, among other traits, D. yakuba males from sympatric populations sire fewer progeny than allopatric males when mated to allopatric D. yakuba females. Our results provide a novel example of reinforcement acting on a postmating-prezygotic trait in males, resulting in a cascade of reproductive isolation among conspecific populations. PMID:27440664

  20. Evolution of multiple additive loci caused divergence between Drosophila yakuba and D. santomea in wing rowing during male courtship.

    Directory of Open Access Journals (Sweden)

    Jessica Cande

    Full Text Available In Drosophila, male flies perform innate, stereotyped courtship behavior. This innate behavior evolves rapidly between fly species, and is likely to have contributed to reproductive isolation and species divergence. We currently understand little about the neurobiological and genetic mechanisms that contributed to the evolution of courtship behavior. Here we describe a novel behavioral difference between the two closely related species D. yakuba and D. santomea: the frequency of wing rowing during courtship. During courtship, D. santomea males repeatedly rotate their wing blades to face forward and then back (rowing, while D. yakuba males rarely row their wings. We found little intraspecific variation in the frequency of wing rowing for both species. We exploited multiplexed shotgun genotyping (MSG to genotype two backcross populations with a single lane of Illumina sequencing. We performed quantitative trait locus (QTL mapping using the ancestry information estimated by MSG and found that the species difference in wing rowing mapped to four or five genetically separable regions. We found no evidence that these loci display epistasis. The identified loci all act in the same direction and can account for most of the species difference.

  1. Effects of work stress and home stress on autonomic nervous function in Japanese male workers.

    Science.gov (United States)

    Maeda, Eri; Iwata, Toyoto; Murata, Katsuyuki

    2015-01-01

    Autonomic imbalance is one of the important pathways through which psychological stress contributes to cardiovascular diseases/sudden death. Although previous studies have focused mainly on stress at work (work stress), the association between autonomic function and stress at home (home stress) is still poorly understood. The purpose was to clarify the effect of work/home stress on autonomic function in 1,809 Japanese male workers. We measured corrected QT (QTc) interval and QT index on the electrocardiogram along with blood pressure and heart rate. Participants provided self-reported information about the presence/absence of work/home stress and the possible confounders affecting QT indicators. Home stress was related positively to QT index (p=0.040) after adjusting for the possible confounders, though work stress did not show a significant relation to QTc interval or QT index. The odds ratio of home stress to elevated QT index (≥105) was 2.677 (95% CI, 1.050 to 6.822). Work/home stress showed no significant relation to blood pressure or heart rate. These findings suggest that autonomic imbalance, readily assessed by QT indicators, can be induced by home stress in Japanese workers. Additional research is needed to identify different types of home stress that are strongly associated with autonomic imbalance.

  2. Evaluation of the mutagenic potential of Cochlospermum regium in Drosophila melanogaster male germ cells

    Directory of Open Access Journals (Sweden)

    Nunes Wanderlene Blanco

    2003-01-01

    Full Text Available During the last few decades the search for medical treatments based on alternative medicine has increased significantly, making knowledge of the plants commonly used as folk medicines extremely important. The plant Cochlospermum regium, a member of the Cochlospermaceae found in the Brazilian cerrado (a type of savanna, is known to have high depurative activity and to be effective not only in treating skin problems such as pimples, boils and blotches but also in curing gastritis and ulcers. We prepared aqueous extracts using 13, 19 and 25 gL-1 of dried C. regium root and investigated these extracts for possible mutagenic effects on Drosophila melanogaster germ cells. Mutagenesis was assessed using the ring-X loss (RXL test which can detect chromosome mosaicism, partial loss of the ring X chromosome and chromosome non-disjunction. Our results showed that at the concentrations tested C. regium extracts did not induce ring-X loss in D. melanogaster.

  3. On the difficulties of discriminating between major and minor hybrid male sterility factors in Drosophila by examining the segregation ratio of sterile and fertile sons in backcrossing experiments.

    Science.gov (United States)

    Maside, X R; Naveira, H F

    1996-10-01

    The observation of segregation ratios of sterile and fertile males in offspring samples from backcrossed hybrid females is, in principle, a valid method to unveil the genetic basis of hybrid male sterility in Drosophila. When the female parent is heterozygous (hybrid) for a sterility factor with major effects, equal proportions of fertile and sterile sons are expected in her offspring. However, intact (not recombined) chromosome segments of considerable length are expected to give segregation ratios that can not be easily differentiated from the 1:1 ratio expected from a single factor. When the phenotypic character under analysis can be determined by combinations of minor factors from the donor species spanning a certain chromosome length, very large offspring samples may be needed to test this alternative hypothesis against the null hypothesis of a single major factor. This is particularly the case of hybrid male sterility determinants in Drosophila.

  4. Mating success of males with and without wing patch in Drosophila biarmipes.

    Science.gov (United States)

    Hegde, S N; Chethan, B K; Krishna, M S

    2005-10-01

    Some males of D. biarmipes--synonym of D. rajasekari and D. raychaudhuri have a black patch on the wing. The patch extends from the apical margin of wing to the third longitudinal vein. Field and laboratory studies have been carried out in D. biarmipes to study role of male's wing patch in mating success. The field study shows that nature favors D. biarmipes males with patch. Although males without patch mated, males with patch have higher mating success suggesting the role of wing patch during courtship. Further, among mating males, males with patch had longer wings than males without patch. During courtship, males with patch oriented and mated faster; performed courtship acts such as tapping, scissoring, vibration, licking and twist dance more times than males without patch in both competitive and non-competitive situations. The results indicate that there is a casual relationship between the presence of wing patch, mating speed and success. Also there is a correlation between presence of wing patch, size of the flies and mating success.

  5. Scanning electron microscopy of male terminalia and its application to species recognition and phylogenetic reconstruction in the Drosophila saltans group.

    Science.gov (United States)

    Souza, Tiago Alves Jorge; Noll, Fernando Barbosa; Bicudo, Hermione Elly Melara de Campos; Madi-Ravazzi, Lilian

    2014-01-01

    The Drosophila saltans group consists of five subgroups and 21 species, most of which have been identified only by morphological aspects of the male terminalia revealed by drawings using a camera lucida and a bright-field microscope. However, several species in the group, mainly those included in the saltans subgroup, are difficult to differentiate using only these characteristics. In this study, we used scanning electron microscopy (SEM) to analyze 19 structures of the male terminalia in 10 species from the five saltans subgroups. Among these structures, nine could be identified only through SEM analysis. We aimed to find other characteristics useful for morphological recognition of these species and to use these characteristics for phylogenetic reconstruction. These morphological differences enabled us to effectively distinguish among sibling species. These findings confirmed the monophyly of this group as previously determined in evolutionary studies based on other markers. The single most parsimonious tree (CI = 87 and RI = 90) indicated that the cordata subgroup is the most basal lineage and the saltans subgroup is the most apical lineage, as shown in earlier studies based on morphological data. However, our findings differed somewhat from these studies with respect to the phylogenetic relationships of species in the saltans group indicating that this group is still a puzzle that remains to be deciphered.

  6. A combined classical genetic and high resolution two-dimensional electrophoretic approach to the assessment of the number of genes affecting hybrid male sterility in Drosophila simulans and Drosophila sechellia.

    Science.gov (United States)

    Zeng, L W; Singh, R S

    1993-09-01

    We have attempted to estimate the number of genes involved in postzygotic reproductive isolation between two closely related species, Drosophila simulans and Drosophila sechellia, by a novel approach that involves the use of high resolution two-dimensional gel electrophoresis (2DE) to examine testis proteins in parents, hybrids and fertile and sterile backcross progenies. The important results that have emerged from this study are as follows: (1) about 8% of about 1000 proteins examined showed divergence (presence/absence) between the two species; (2) by tracing individual proteins in parental, hybrid and backcross males, we were able to associate the divergent proteins with different chromosomes and found that most divergent proteins are associated with autosomes and very few with X chromosome, Y chromosome and cytoplasm; (3) when proteins showing both quantitative and qualitative differences between the two species were examined in F1 hybrid males, most (97.4%) proteins were expressed at levels between the two parents and no sign of large scale changes in spot density was observed. All the proteins observed in the two parental species were present in F1 hybrid males except two species-specific proteins that may be encoded (or regulated) by sex chromosomes; (4) when different fertile and sterile backcross male testes were compared, a few D. sechellia-specific proteins were identified to be consistently associated with male sterility. These results along with the observation that a large proportion (23.6%) of first generation backcross males were fertile show that hybrid male sterility between D. simulans and D. sechellia involves a relatively small number of genes. Role of large scale genetic changes due to general genome incompatibility is not supported. The results also suggest that the large effect of X chromosome on hybrid male sterility is not due to higher divergence of X chromosome than autosomes.

  7. Reduced genetic variance among high fitness individuals: inferring stabilizing selection on male sexual displays in Drosophila serrata.

    Science.gov (United States)

    Sztepanacz, Jacqueline L; Rundle, Howard D

    2012-10-01

    Directional selection is prevalent in nature, yet phenotypes tend to remain relatively constant, suggesting a limit to trait evolution. However, the genetic basis of this limit is unresolved. Given widespread pleiotropy, opposing selection on a trait may arise from the effects of the underlying alleles on other traits under selection, generating net stabilizing selection on trait genetic variance. These pleiotropic costs of trait exaggeration may arise through any number of other traits, making them hard to detect in phenotypic analyses. Stabilizing selection can be inferred, however, if genetic variance is greater among low- compared to high-fitness individuals. We extend a recently suggested approach to provide a direct test of a difference in genetic variance for a suite of cuticular hydrocarbons (CHCs) in Drosophila serrata. Despite strong directional sexual selection on these traits, genetic variance differed between high- and low-fitness individuals and was greater among the low-fitness males for seven of eight CHCs, significantly more than expected by chance. Univariate tests of a difference in genetic variance were nonsignificant but likely have low power. Our results suggest that further CHC exaggeration in D. serrata in response to sexual selection is limited by pleiotropic costs mediated through other traits. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  8. Separase Is Required for Homolog and Sister Disjunction during Drosophila melanogaster Male Meiosis, but Not for Biorientation of Sister Centromeres.

    Science.gov (United States)

    Blattner, Ariane C; Chaurasia, Soumya; McKee, Bruce D; Lehner, Christian F

    2016-04-01

    Spatially controlled release of sister chromatid cohesion during progression through the meiotic divisions is of paramount importance for error-free chromosome segregation during meiosis. Cohesion is mediated by the cohesin protein complex and cleavage of one of its subunits by the endoprotease separase removes cohesin first from chromosome arms during exit from meiosis I and later from the pericentromeric region during exit from meiosis II. At the onset of the meiotic divisions, cohesin has also been proposed to be present within the centromeric region for the unification of sister centromeres into a single functional entity, allowing bipolar orientation of paired homologs within the meiosis I spindle. Separase-mediated removal of centromeric cohesin during exit from meiosis I might explain sister centromere individualization which is essential for subsequent biorientation of sister centromeres during meiosis II. To characterize a potential involvement of separase in sister centromere individualization before meiosis II, we have studied meiosis in Drosophila melanogaster males where homologs are not paired in the canonical manner. Meiosis does not include meiotic recombination and synaptonemal complex formation in these males. Instead, an alternative homolog conjunction system keeps homologous chromosomes in pairs. Using independent strategies for spermatocyte-specific depletion of separase complex subunits in combination with time-lapse imaging, we demonstrate that separase is required for the inactivation of this alternative conjunction at anaphase I onset. Mutations that abolish alternative homolog conjunction therefore result in random segregation of univalents during meiosis I also after separase depletion. Interestingly, these univalents become bioriented during meiosis II, suggesting that sister centromere individualization before meiosis II does not require separase.

  9. CYTOLOGICAL CHARACTERIZATION OF PREMEIOTIC VERSUS POSTMEIOTIC DEFECTS PRODUCING HYBRID MALE STERILITY AMONG SIBLING SPECIES OF THE DROSOPHILA MELANOGASTER COMPLEX.

    Science.gov (United States)

    Kulathinal, Rob; Singh, Rama S

    1998-08-01

    In accordance with Haldane's rule, hybridizations between species of the Drosophila simulans clade produce fertile females but sterile males. In this study, a comprehensive characterization was undertaken on the six types of F 1 males that were the result of the crosses between D. simulans, D. sechellia, and D. mauritiana. With the use of light and electron microscopy, it was shown that while each particular hybrid genotype exhibited a specific sterility phenotype, these phenotypes fell into two distinct classes. The two hybrid genotypes that possessed D. mauritiana X-chromosomes contained spermatogenic defects that caused arrests in premeiotic spermatogenic stages. The other four F 1 hybrids possessed postmeiotic spermatogenic defects. Nonsynchronous cell divisions, underdeveloped mitochondrial derivative-axonemal associations, and microtubule abnormalities were common to all of these hybrids. Each particular postmeiotically defective hybrid genotype demonstrated characteristically distinct profiles in sperm bundle number in addition to characteristic spermiogenic arrests in the furthest developed spermatids. These results in species hybrids contrast with the absence of significant differences in spermatogenic characters between species of this clade. In addition, by utilizing an attached-X cross, we investigated the influence of maternal effects and cytoplasmic factors on the sterility of D. simulans F 1 hybrids and found none. However, we discovered a strain of D. simulans (2119) that caused a large shift in sterility from postmeiotic to premeiotic when crossed to D. sechellia. This suggests that D. simulans is polymorphic for genes involving premeiotic and postmeiotic sterility and that the two types of sterilities between species may have a simple genetic basis. © 1998 The Society for the Study of Evolution.

  10. Females with a mutation in a nuclear-encoded mitochondrial protein pay a higher cost of survival than do males in Drosophila.

    Science.gov (United States)

    Melvin, Richard G; Ballard, J William O

    2011-07-01

    Males and females age at different rates in a variety of species, but the mechanisms underlying the difference is not understood. In this study, we investigated sex-specific costs of a naturally occurring mildly deleterious deletion (DTrp85, DVal86) in cytochrome c oxidase subunit 7A (cox7A) in Drosophila simulans. We observed that females and males homozygous for the mutation had 30% and 26% reduced Cox activity, respectively, compared with wild type. Furthermore, 4-day-old females had 34%-42% greater physical activity than males. Greater physical activity in mutant females was correlated with a 19% lower 50% survival compared with wild-type females. Mutant and wild-type males had equal survival. These data suggest that females paid a higher cost of the mutation than did males. The data demonstrate linking population genetics and structural modeling to experimental manipulations that lead to functional predictions of mitochondrial bioenergetics and organism aging.

  11. Assessing the putative roles of X-autosome and X-Y interactions in hybrid male sterility of the Drosophila bipectinata species complex.

    Science.gov (United States)

    Mishra, Paras Kumar; Singh, Bashisth Narayan

    2007-07-01

    Interspecific F1 hybrid males of the Drosophila bipectinata species complex are sterile, while females are fertile, following Haldane's rule. A backcross scheme involving a single recessive visible marker on the X chromosome has been used to assess the putative roles of X-autosome and X-Y interactions in hybrid male sterility in the D. bipectinata species complex. The results suggest that X-Y interactions are playing the major role in hybrid male sterility in the crosses D. bipectinata x D. parabipectinata and D. bipectinata x D. pseudoananassae, while X-autosome interactions are largely involved in hybrid male sterility in the crosses D. malerkotliana x D. bipectinata and D. malerkotliana x D. parabipectinata. However, by using this single marker it is not possible to rule out the involvement of autosome-autosome interactions in hybrid male sterility. These findings also lend further support to the phylogenetic relationships among 4 species of the D. bipectinata complex.

  12. Females With a Mutation in a Nuclear-Encoded Mitochondrial Protein Pay a Higher Cost of Survival Than Do Males in Drosophila

    OpenAIRE

    Melvin, Richard G.; Ballard, J. William O.

    2011-01-01

    Males and females age at different rates in a variety of species, but the mechanisms underlying the difference is not understood. In this study, we investigated sex-specific costs of a naturally occurring mildly deleterious deletion (DTrp85, DVal86) in cytochrome c oxidase subunit 7A (cox7A) in Drosophila simulans. We observed that females and males homozygous for the mutation had 30% and 26% reduced Cox activity, respectively, compared with wild type. Furthermore, 4-day-old females had 34%–4...

  13. Genetic architecture of hybrid male sterility in Drosophila: analysis of intraspecies variation for interspecies isolation.

    Directory of Open Access Journals (Sweden)

    Laura K Reed

    Full Text Available BACKGROUND: The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. METHODOLOGY/PRINCIPAL FINDINGS: Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1 sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL mapping analyses directly on F(1 hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS in the F(1 is complex, involving multiple QTL, epistasis, and cytoplasmic effects. CONCLUSIONS/SIGNIFICANCE: The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.

  14. Ecdysone signaling regulates specification of neurons with a male-specific neurite in Drosophila

    Directory of Open Access Journals (Sweden)

    Binglong Zhang

    2018-02-01

    Full Text Available Some mAL neurons in the male brain form the ipsilateral neurite (ILN[+] in a manner dependent on FruBM, a male-specific transcription factor. FruBM represses robo1 transcription, allowing the ILN to form. We found that the proportion of ILN[+]-mALs in all observed single cell clones dropped from ∼90% to ∼30% by changing the heat-shock timing for clone induction from 4-5 days after egg laying (AEL to 6-7 days AEL, suggesting that the ILN[+]-mALs are produced predominantly by young neuroblasts. Upon EcR-A knockdown, ILN[+]-mALs were produced at a high rate (∼60%, even when heat shocked at 6-7 days AEL, yet EcR-B1 knockdown reduced the proportion of ILN[+]-mALs to ∼30%. Immunoprecipitation assays in S2 cells demonstrated that EcR-A and EcR-B1 form a complex with FruBM. robo1 reporter transcription was repressed by FruBM and ecdysone counteracted FruBM. We suggest that ecdysone signaling modulates the FruBM action to produce an appropriate number of male-type neurons.

  15. Genetic architecture of hybrid male sterility in Drosophila: analysis of intraspecies variation for interspecies isolation.

    Science.gov (United States)

    Reed, Laura K; LaFlamme, Brooke A; Markow, Therese A

    2008-08-27

    The genetic basis of postzygotic isolation is a central puzzle in evolutionary biology. Evolutionary forces causing hybrid sterility or inviability act on the responsible genes while they still are polymorphic, thus we have to study these traits as they arise, before isolation is complete. Isofemale strains of D. mojavensis vary significantly in their production of sterile F(1) sons when females are crossed to D. arizonae males. We took advantage of the intraspecific polymorphism, in a novel design, to perform quantitative trait locus (QTL) mapping analyses directly on F(1) hybrid male sterility itself. We found that the genetic architecture of the polymorphism for hybrid male sterility (HMS) in the F(1) is complex, involving multiple QTL, epistasis, and cytoplasmic effects. The role of extensive intraspecific polymorphism, multiple QTL, and epistatic interactions in HMS in this young species pair shows that HMS is arising as a complex trait in this system. Directional selection alone would be unlikely to maintain polymorphism at multiple loci, thus we hypothesize that directional selection is unlikely to be the only evolutionary force influencing postzygotic isolation.

  16. Differential effects of male nutrient balance on pre- and post-copulatory traits, and consequences for female reproduction in Drosophila melanogaster

    Science.gov (United States)

    Morimoto, Juliano; Wigby, Stuart

    2016-01-01

    Male fitness depends on the expression of costly traits involved in obtaining mates (pre-copulatory) and fertilization (post-copulatory). However, very little is known about the nutrient requirements for these traits and whether males compromise their diet to maximize one trait at the expense of another. Here we used Nutritional Geometry to investigate macronutrient requirements for pre- and post-copulatory traits in Drosophila, when males were the first or second to mate with females. We found no significant effects of male diet on sperm competitiveness. However, although males self-regulate their macronutrient intake at a protein-to-carbohydrate ratio (“P:C ratio”) of 1:1.5, this ratio does not coincide with their optima for several key reproductive traits: both the short-term (~24 hr) rate of offspring production after a female’s first mating, as well as the total offspring number sired when males were second to mate were maximized at a P:C ratio of 1:9, whereas male attractiveness (latency to mate), were maximised at a P:C ratio of 1:1. These results suggest a compromised optimum diet, and no single diet that simultaneously maximizes all male reproductive traits. The protein intake of first males also negatively affected female offspring production following remating, suggesting a long-term intersexual effect of male nutrition. PMID:27270223

  17. Misregulation of spermatogenesis genes in Drosophila hybrids is lineage-specific and driven by the combined effects of sterility and fast male regulatory divergence.

    Science.gov (United States)

    Gomes, S; Civetta, A

    2014-09-01

    Hybrid male sterility is a common outcome of crosses between different species. Gene expression studies have found that a number of spermatogenesis genes are differentially expressed in sterile hybrid males, compared with parental species. Late-stage sperm development genes are particularly likely to be misexpressed, with fewer early-stage genes affected. Thus, a link has been posited between misexpression and sterility. A more recent alternative explanation for hybrid gene misexpression has been that it is independent of sterility and driven by divergent evolution of male-specific regulatory elements between species (faster male hypothesis). The faster male hypothesis predicts that misregulation of spermatogenesis genes should be independent of sterility and approximately the same in both hybrids, whereas sterility should only affect gene expression in sterile hybrids. To test the faster male hypothesis vs. the effect of sterility on gene misexpression, we analyse spermatogenesis gene expression in different species pairs of the Drosophila phylogeny, where hybrid male sterility occurs in only one direction of the interspecies cross (i.e. unidirectional sterility). We find significant differences among genes in misexpression with effects that are lineage-specific and caused by sterility or fast male regulatory divergence. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  18. Yolk proteins in the male reproductive system of the fruit fly Drosophila melanogaster: spatial and temporal patterns of expression.

    Science.gov (United States)

    Majewska, Magdalena M; Suszczynska, Agnieszka; Kotwica-Rolinska, Joanna; Czerwik, Tomasz; Paterczyk, Bohdan; Polanska, Marta A; Bernatowicz, Piotr; Bebas, Piotr

    2014-04-01

    In insects, spermatozoa develop in the testes as clones of single spermatogonia covered by specialized somatic cyst cells (cc). Upon completion of spermatogenesis, spermatozoa are released to the vas deferens, while the cc remain in the testes and die. In the fruit fly Drosophila melanogaster, the released spermatozoa first reach the seminal vesicles (SV), the organ where post-testicular maturation begins. Here, we demonstrate the temporal (restricted to the evening and early night hours) accumulation of membranous vesicles containing proteins in the SV lumen of D. melanogaster. When SV vesicles were isolated from the semen and co-incubated with testis-derived spermatozoa in vitro, their contents bound to the spermatozoa along their tails. The proteins of the SV vesicles were then characterized using 2-D electrophoresis. We identified a prominent protein spot of around 45-47 kDa, which disappears from the SV vesicles in the night, i.e. shortly after they appear in the SV lumen. Sequencing of peptides derived from this spot by mass spectrometry revealed identity with three yolk proteins (YP1-3). This unexpected result was confirmed by western blotting, which demonstrated that SV vesicles contain proteins that are immunoreactive with an antibody against D. melanogaster YP1-3. The expression of all yp genes was shown to be a unique feature of testis tissues. Using RNA probes we found that their transcripts localize exclusively to the cc that cover fully developed spermatozoa in the distal part of each testis. Temporally, the expression of yp genes was found to be restricted to a short period during the day and is followed by the evening accumulation of YP proteins in the cc. Immunohistochemical staining confirmed that cc are the source of SV vesicles containing YPs that are released into the SV lumen. These vesicles interact with spermatozoa and as a result, YPs become extrinsic proteins of the sperm membrane. Thus, we describe for the first time the expression of

  19. Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble γ-glutamyl transpeptidase

    Directory of Open Access Journals (Sweden)

    Sajid Mohammed

    2006-05-01

    Full Text Available Background In Drosophila melanogaster, the male seminal fluid contains proteins that are important for reproductive success. Many of these proteins are synthesised by the male accessory glands and are secreted into the accessory gland lumen, where they are stored until required. Previous studies on the identification of Drosophila accessory gland products have largely focused on characterisation of male-specific accessory gland cDNAs from D. melanogaster and, more recently, Drosophila simulans. In the present study, we have used a proteomics approach without any sex bias to identify proteins in D. melanogaster accessory gland secretions. Results Thirteen secreted accessory gland proteins, including seven new accessory gland proteins, were identified by 2D-gel electrophoresis combined with mass spectrometry of tryptic fragments. They included protein-folding and stress-response proteins, a hormone, a lipase, a serpin, a cysteine-rich protein and two peptidases, a pro-enzyme form of a cathepsin K-like cysteine peptidase and a γ-glutamyl transpeptidase. Enzymatic studies established that accessory gland secretions contain a cysteine peptidase zymogen that can be activated at low pH. This peptidase may have a role in the processing of female and other male-derived proteins, but is unlikely to be involved in the processing of the sex peptide. γ-Glutamyl transpeptidases are type II integral membrane proteins; however, the identified AG γ-glutamyl transpeptidase (GGT-1 is unusual in that it is predicted to be a soluble secreted protein, a prediction that is supported by biochemical evidence. GGT-1 is possibly involved in maintaining a protective redox environment for sperm. The strong γ-glutamyl transpeptidase activity found in the secretions provides an explanation for the observation that glutamic acid is the most abundant free amino acid in accessory gland secretions of D. melanogaster. Conclusion We have applied biochemical approaches, not used

  20. Proteomic identification of Drosophila melanogaster male accessory gland proteins, including a pro-cathepsin and a soluble gamma-glutamyl transpeptidase.

    Science.gov (United States)

    Walker, Michael J; Rylett, Caroline M; Keen, Jeff N; Audsley, Neil; Sajid, Mohammed; Shirras, Alan D; Isaac, R Elwyn

    2006-05-02

    In Drosophila melanogaster, the male seminal fluid contains proteins that are important for reproductive success. Many of these proteins are synthesised by the male accessory glands and are secreted into the accessory gland lumen, where they are stored until required. Previous studies on the identification of Drosophila accessory gland products have largely focused on characterisation of male-specific accessory gland cDNAs from D. melanogaster and, more recently, Drosophila simulans. In the present study, we have used a proteomics approach without any sex bias to identify proteins in D. melanogaster accessory gland secretions. Thirteen secreted accessory gland proteins, including seven new accessory gland proteins, were identified by 2D-gel electrophoresis combined with mass spectrometry of tryptic fragments. They included protein-folding and stress-response proteins, a hormone, a lipase, a serpin, a cysteine-rich protein and two peptidases, a pro-enzyme form of a cathepsin K-like cysteine peptidase and a gamma-glutamyl transpeptidase. Enzymatic studies established that accessory gland secretions contain a cysteine peptidase zymogen that can be activated at low pH. This peptidase may have a role in the processing of female and other male-derived proteins, but is unlikely to be involved in the processing of the sex peptide. gamma-Glutamyl transpeptidases are type II integral membrane proteins; however, the identified AG gamma-glutamyl transpeptidase (GGT-1) is unusual in that it is predicted to be a soluble secreted protein, a prediction that is supported by biochemical evidence. GGT-1 is possibly involved in maintaining a protective redox environment for sperm. The strong gamma-glutamyl transpeptidase activity found in the secretions provides an explanation for the observation that glutamic acid is the most abundant free amino acid in accessory gland secretions of D. melanogaster. We have applied biochemical approaches, not used previously, to characterise

  1. The Trojan Female Technique for pest control: a candidate mitochondrial mutation confers low male fertility across diverse nuclear backgrounds in Drosophila melanogaster.

    Science.gov (United States)

    Dowling, Damian K; Tompkins, Daniel M; Gemmell, Neil J

    2015-10-01

    Pest species represent a major ongoing threat to global biodiversity. Effective management approaches are required that regulate pest numbers, while minimizing collateral damage to nontarget species. The Trojan Female Technique (TFT) was recently proposed as a prospective approach to biological pest control. The TFT draws on the evolutionary hypothesis that maternally inherited mitochondrial genomes are prone to the accumulation of male, but not female, harming mutations. These mutations could be harnessed to provide trans-generational fertility-based control of pest species. A candidate TFT mutation was recently described in the fruit fly, Drosophila melanogaster, which confers male-only sterility in the specific isogenic nuclear background in which it is maintained. However, applicability of the TFT relies on mitochondrial mutations whose male-sterilizing effects are general across nuclear genomic contexts. We test this assumption, expressing the candidate TFT-mutation bearing haplotype alongside a range of nuclear backgrounds and comparing its fertility in males, relative to that of control haplotypes. We document consistently lower fertility for males harbouring the TFT mutation, in both competitive and noncompetitive mating contexts, across all nuclear backgrounds screened. This indicates that TFT mutations conferring reduced male fertility can segregate within populations and could be harnessed to facilitate this novel form of pest control.

  2. Effects of chemical and physical agents on recombination events in cells of the germ line of male and female Drosophila melanogaster.

    Science.gov (United States)

    Würgler, F E

    1991-01-01

    Genotoxic agents can induce mutations as well as recombination in the genetic material. The fruit fly Drosophila melanogaster was one of the first assay systems to test physical and chemical agents for recombinogenic effects. Such effects can be observed in cells of the germ line as well as in somatic cells. At present information is available on 54 agents, among them 48 chemicals that have been tested in cells of the germ line of males and/or females. Effects on meiotic recombination in female germ cells cannot simply be classified as positive or negative since for a number of agents, depending on the chromosome region studied, recombination frequencies may be increased, unaffected or decreased. The male germ line of D. melanogaster represents a unique situation because meiotic recombination does not occur. Among 25 agents tested in male germ cells 24 did induce male recombination, among them alkylating, intercalating and cross-linking agents, direct-acting ones as well as compounds needing metabolic activation. With several compounds the frequency of induced recombination is highest in the heterochromatic regions near the centromeres. In brood pattern analyses, e.g., after exposure of adult males to ionizing radiation, the first appearance of crossover progeny is indicative of the sampling of exposed spermatocytes. In premeiotic cells of the male and the female germ line mitotic recombination can occur. Upon clonal expansion of the recombinant cells, clusters of identical crossovers can be observed.

  3. Sexy sons from re-mating do not recoup the direct costs of harmful male interactions in the Drosophila melanogaster laboratory model system.

    Science.gov (United States)

    Orteiza, N; Linder, J E; Rice, W R

    2005-09-01

    The empirical foundation for sexual conflict theory is the data from many different taxa demonstrating that females are harmed while interacting with males. However, the interpretation of this keystone evidence has been challenged because females may more than counterbalance the direct costs of interacting with males by the indirect benefits of obtaining higher quality genes for their offspring. A quantification of this trade-off is critical to resolve the controversy and is presented here. A multi-generation fitness assay in the Drosophila melanogaster laboratory model system was used to quantify both the direct costs to females due to interactions with males and indirect benefits via sexy sons. We specifically focus on the interactions that occur between males and nonvirgin females. In the laboratory environment of our base population, females mate soon after eclosion and store sufficient sperm for their entire lifetime, yet males persistently court these nonvirgin females and frequently succeed in re-mating them. Females may benefit from these interactions despite direct costs to their lifetime fecundity if re-mating allows them to trade-up to mates of higher genetic quality and thereby secure indirect benefits for their offspring. We found that direct costs of interactions between males and nonvirgin females substantially exceeded indirect benefits through sexy sons. These data, in combination with past studies of the good genes route of indirect benefits, demonstrate that inter-sexual interactions drive sexually antagonistic co-evolution in this model system.

  4. The Drosophila nerfin-1 mRNA requires multiple microRNAs to regulate its spatial and temporal translation dynamics in the developing nervous system.

    Science.gov (United States)

    Kuzin, Alexander; Kundu, Mukta; Brody, Thomas; Odenwald, Ward F

    2007-10-01

    The mRNA encoding the Drosophila Zn-finger transcription factor Nerfin-1, required for CNS axon pathfinding events, is subject to post-transcriptional silencing. Although nerfin-1 mRNA is expressed in many neural precursor cells including all early delaminating CNS neuroblasts, the encoded Nerfin-1 protein is detected only in the nuclei of neural precursors that divide just once to generate neurons and then only transiently in nascent neurons. Using a nerfin-1 promoter-controlled reporter transgene, replacement of the nerfin-1 3' UTR with the viral SV-40 3' UTR releases the neuroblast translational block and prolongs reporter protein expression in neurons. Comparative genomics analysis reveals that the nerfin-1 mRNA 3' UTR contains multiple highly conserved sequence blocks that either harbor and/or overlap 21 predicted binding sites for 18 different microRNAs. To determine the functional significance of these microRNA-binding sites and less conserved microRNA target sites, we have studied their ability to block or limit the expression of reporter protein in nerfin-1-expressing cells during embryonic development. Our results indicate that no single microRNA is sufficient to fully inhibit protein expression but rather multiple microRNAs that target different binding sites are required to block ectopic protein expression in neural precursor cells and temporally restrict expression in neurons. Taken together, these results suggest that multiple microRNAs play a cooperative role in the post-transcriptional regulation of nerfin-1 mRNA, and the high degree of microRNA-binding site evolutionary conservation indicates that all members of the Drosophila genus employ a similar strategy to regulate the onset and extinction dynamics of Nerfin-1 expression.

  5. Adult sex ratio effects on male survivorship of Drosophila melanogaster Meigen (Diptera, Drosophilidae Efeito da razão sexual de adultos na curva de sobrevivência de machos de Drosophila melanogaster Meigen (Diptera, Drosophilidae

    Directory of Open Access Journals (Sweden)

    Marcelo Costa

    2010-01-01

    Full Text Available The behavioral biology has a central role in evolutionary biology mainly because the antagonistic relations that occur in the sexual reproduction. One involves the effect of reproduction on the future life expectation. In this scenario, changes in male operational sex ratio could lead to an increase in mortality due to costs associated with excessive courtship and mating displays. Thus, this work experimentally altered the male sex ratio of Drosophila melanogaster Meigen, 1830, to determine its impact on mortality. The results indicated that mortality increases as the sex ratio changes, including modifications in the survivorship curve type and in the curve concavity, measured by entropy.A biologia comportamental tem um papel central na biologia evolutiva principalmente pelas relações antagônicas que ocorrem na reprodução sexuada. Uma destas relações envolve o efeito da reprodução sobre a expectativa de vida futura. Neste cenário, alterações na razão sexual operacional de machos podem levar a um aumento na mortalidade por causa dos custos associados com o excesso de displays de corte e cópulas. Neste sentido este trabalho alterou experimentalmente a razão sexual em machos de Drosophila melanogaster Meigen, 1830, para determinar os efeitos em termos de mortalidade. Os resultados indicam que a mortalidade aumenta a medida que a razão sexual se enviesa incluindo alterações no tipo de curva de sobrevivência e da concavidade da curva, medida pela entropia.

  6. The genetics of hybrid male sterility between the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana: dominant sterility alleles in collinear autosomal regions.

    Science.gov (United States)

    Chang, Audrey S; Noor, Mohamed A F

    2007-05-01

    F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.

  7. Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila.

    Science.gov (United States)

    Sakakibara, Yasufumi; Sekiya, Michiko; Fujisaki, Naoki; Quan, Xiuming; Iijima, Koichi M

    2018-01-01

    Wolfram syndrome (WS), caused by loss-of-function mutations in the Wolfram syndrome 1 gene (WFS1), is characterized by juvenile-onset diabetes mellitus, bilateral optic atrophy, and a wide spectrum of neurological and psychiatric manifestations. WFS1 encodes an endoplasmic reticulum (ER)-resident transmembrane protein, and mutations in this gene lead to pancreatic β-cell death induced by high levels of ER stress. However, the mechanisms underlying neurodegeneration caused by WFS1 deficiency remain elusive. Here, we investigated the role of WFS1 in the maintenance of neuronal integrity in vivo by knocking down the expression of wfs1, the Drosophila homolog of WFS1, in the central nervous system. Neuronal knockdown of wfs1 caused age-dependent behavioral deficits and neurodegeneration in the fly brain. Knockdown of wfs1 in neurons and glial cells resulted in premature death and significantly exacerbated behavioral deficits in flies, suggesting that wfs1 has important functions in both cell types. Although wfs1 knockdown alone did not promote ER stress, it increased the susceptibility to oxidative stress-, excitotoxicity- or tauopathy-induced behavioral deficits, and neurodegeneration. The glutamate release inhibitor riluzole significantly suppressed premature death phenotypes induced by neuronal and glial knockdown of wfs1. This study highlights the protective role of wfs1 against age-associated neurodegeneration and furthers our understanding of potential disease-modifying factors that determine susceptibility and resilience to age-associated neurodegenerative diseases.

  8. Knockdown of wfs1, a fly homolog of Wolfram syndrome 1, in the nervous system increases susceptibility to age- and stress-induced neuronal dysfunction and degeneration in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yasufumi Sakakibara

    2018-01-01

    Full Text Available Wolfram syndrome (WS, caused by loss-of-function mutations in the Wolfram syndrome 1 gene (WFS1, is characterized by juvenile-onset diabetes mellitus, bilateral optic atrophy, and a wide spectrum of neurological and psychiatric manifestations. WFS1 encodes an endoplasmic reticulum (ER-resident transmembrane protein, and mutations in this gene lead to pancreatic β-cell death induced by high levels of ER stress. However, the mechanisms underlying neurodegeneration caused by WFS1 deficiency remain elusive. Here, we investigated the role of WFS1 in the maintenance of neuronal integrity in vivo by knocking down the expression of wfs1, the Drosophila homolog of WFS1, in the central nervous system. Neuronal knockdown of wfs1 caused age-dependent behavioral deficits and neurodegeneration in the fly brain. Knockdown of wfs1 in neurons and glial cells resulted in premature death and significantly exacerbated behavioral deficits in flies, suggesting that wfs1 has important functions in both cell types. Although wfs1 knockdown alone did not promote ER stress, it increased the susceptibility to oxidative stress-, excitotoxicity- or tauopathy-induced behavioral deficits, and neurodegeneration. The glutamate release inhibitor riluzole significantly suppressed premature death phenotypes induced by neuronal and glial knockdown of wfs1. This study highlights the protective role of wfs1 against age-associated neurodegeneration and furthers our understanding of potential disease-modifying factors that determine susceptibility and resilience to age-associated neurodegenerative diseases.

  9. Essential role of grim-led programmed cell death for the establishment of corazonin-producing peptidergic nervous system during embryogenesis and metamorphosis in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Gyunghee Lee

    2013-01-01

    In Drosophila melanogaster, combinatorial activities of four death genes, head involution defective (hid, reaper (rpr, grim, and sickle (skl, have been known to play crucial roles in the developmentally regulated programmed cell death (PCD of various tissues. However, different expression patterns of the death genes also suggest distinct functions played by each. During early metamorphosis, a great number of larval neurons unfit for adult life style are removed by PCD. Among them are eight pairs of corazonin-expressing larval peptidergic neurons in the ventral nerve cord (vCrz. To reveal death genes responsible for the PCD of vCrz neurons, we examined extant and recently available mutations as well as RNA interference that disrupt functions of single or multiple death genes. We found grim as a chief proapoptotic gene and skl and rpr as minor ones. The function of grim is also required for PCD of the mitotic sibling cells of the vCrz neuronal precursors (EW3-sib during embryonic neurogenesis. An intergenic region between grim and rpr, which, it has been suggested, may enhance expression of three death genes in embryonic neuroblasts, appears to play a role for the vCrz PCD, but not for the EW3-sib cell death. The death of vCrz neurons and EW3-sib is triggered by ecdysone and the Notch signaling pathway, respectively, suggesting distinct regulatory mechanisms of grim expression in a cell- and developmental stage-specific manner.

  10. Genetic dissection of hybrid incompatibilities between Drosophila simulans and D. mauritiana. II. Mapping hybrid male sterility loci on the third chromosome.

    Science.gov (United States)

    Tao, Yun; Zeng, Zhao-Bang; Li, Jian; Hartl, Daniel L; Laurie, Cathy C

    2003-08-01

    Hybrid male sterility (HMS) is a rapidly evolving mechanism of reproductive isolation in Drosophila. Here we report a genetic analysis of HMS in third-chromosome segments of Drosophila mauritiana that were introgressed into a D. simulans background. Qualitative genetic mapping was used to localize 10 loci on 3R and a quantitative trait locus (QTL) procedure (multiple-interval mapping) was used to identify 19 loci on the entire chromosome. These genetic incompatibilities often show dominance and complex patterns of epistasis. Most of the HMS loci have relatively small effects and generally at least two or three of them are required to produce complete sterility. Only one small region of the third chromosome of D. mauritiana by itself causes a high level of infertility when introgressed into D. simulans. By comparison with previous studies of the X chromosome, we infer that HMS loci are only approximately 40% as dense on this autosome as they are on the X chromosome. These results are consistent with the gradual evolution of hybrid incompatibilities as a by-product of genetic divergence in allopatric populations.

  11. Evidence for cell-replacement repair of X-ray-induced teratogenic damage in male genital imaginal discs of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Fukunaga, Akihiro; Kondo, Sohei

    1985-01-01

    Male genital imaginal discs from old (late-third-instar) larvae of Drosophila that had been X-irradiated with appropriate doses developed into severely damaged adult genitalia when implanted into old larvae, but they developed into completely normal adult genitalia when transplanted into 2-day-younger larvae. Complete repair of X-ray-induced teratogenic damage in the genital discs on transplantation into young host larvae was similar in the wild-type and mei-9sup(a) strains. The results are discussed in relation to the hypothesis that repair of X-ray-induced teratogenic damage depends not on DNA repair but on replacement of damage-bearing primordial cells by healthy ones after suicidal elimination of the former. (Auth.)

  12. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids.

    Science.gov (United States)

    Llopart, Ana

    2012-12-01

    The X chromosome has a large effect on hybrid dysfunction, particularly on hybrid male sterility. Although the evidence for this so-called large-X effect is clear, its molecular causes are not yet fully understood. One possibility is that, under certain conditions, evolution proceeds faster in X-linked than in autosomal loci (i.e., faster-X effect) due to both natural selection and their hemizygosity in males, an effect that is expected to be greatest in genes with male-biased expression. Here, I study genome-wide variation in transcript abundance between Drosophila yakuba and D. santomea, within these species and in their hybrid males to evaluate both the faster-X and large-X effects at the level of expression. I find that in X-linked male-biased genes (MBGs) expression evolves faster than in their autosomal counterparts, an effect that is accompanied by a unique reduction in expression polymorphism. This suggests that Darwinian selection is driving expression differences between species, likely enhanced by the hemizygosity of the X chromosome in males. Despite the recent split of the two sister species under study, abundant changes in both cis- and trans-regulatory elements underlie expression divergence in the majority of the genes analyzed, with significant differences in allelic ratios of transcript abundance between the two reciprocal F(1) hybrid males. Cis-trans coevolution at molecular level, evolved shortly after populations become isolated, may therefore contribute to explain the breakdown of the regulation of gene expression in hybrid males. Additionally, the X chromosome plays a large role in this hybrid male misexpression, which affects not only MBG but also, to a lesser degree, nonsex-biased genes. Interestingly, hybrid male misexpression is concentrated mostly in autosomal genes, likely facilitated by the rapid evolution of sex-linked trans-acting factors. I suggest that the faster evolution of X-linked MBGs, at both protein and expression levels

  13. A screen for F1 hybrid male rescue reveals no major-effect hybrid lethality loci in the Drosophila melanogaster autosomal genome.

    Science.gov (United States)

    Cuykendall, Tawny N; Satyaki, P; Ji, Shuqing; Clay, Derek M; Edelman, Nathaniel B; Kimchy, Alexandra; Li, Ling-Hei; Nuzzo, Erin A; Parekh, Neil; Park, Suna; Barbash, Daniel A

    2014-10-27

    Hybrid sons between Drosophila melanogaster females and D. simulans males die as 3rd instar larvae. Two genes, D. melanogaster Hybrid male rescue (Hmr) on the X chromosome, and D. simulans Lethal hybrid rescue (Lhr) on chromosome II, interact to cause this lethality. Loss-of-function mutations in either gene suppress lethality, but several pieces of evidence suggest that additional factors are required for hybrid lethality. Here we screen the D. melanogaster autosomal genome by using the Bloomington Stock Center Deficiency kit to search for additional regions that can rescue hybrid male lethality. Our screen is designed to identify putative hybrid incompatibility (HI) genes similar to Hmr and Lhr which, when removed, are dominant suppressors of lethality. After screening 89% of the autosomal genome, we found no regions that rescue males to the adult stage. We did, however, identify several regions that rescue up to 13% of males to the pharate adult stage. This weak rescue suggests the presence of multiple minor-effect HI loci, but we were unable to map these loci to high resolution, presumably because weak rescue can be masked by genetic background effects. We attempted to test one candidate, the dosage compensation gene male specific lethal-3 (msl-3), by using RNA interference with short hairpin microRNA constructs targeted specifically against D. simulans msl-3 but failed to achieve knockdown, in part due to off-target effects. We conclude that the D. melanogaster autosomal genome likely does not contain additional major-effect HI loci. We also show that Hmr is insufficient to fully account for the lethality associated with the D. melanogaster X chromosome, suggesting that additional X-linked genes contribute to hybrid lethality. Copyright © 2014 Cuykendall et al.

  14. Genetic dissection of hybrid incompatibilities between Drosophila simulans and D. mauritiana. I. Differential accumulation of hybrid male sterility effects on the X and autosomes.

    Science.gov (United States)

    Tao, Yun; Chen, Sining; Hartl, Daniel L; Laurie, Cathy C

    2003-08-01

    The genetic basis of hybrid incompatibility in crosses between Drosophila mauritiana and D. simulans was investigated to gain insight into the evolutionary mechanisms of speciation. In this study, segments of the D. mauritiana third chromosome were introgressed into a D. simulans genetic background and tested as homozygotes for viability, male fertility, and female fertility. The entire third chromosome was covered with partially overlapping segments. Many segments were male sterile, while none were female sterile or lethal, confirming previous reports of the rapid evolution of hybrid male sterility (HMS). A statistical model was developed to quantify the HMS accumulation. In comparison with previous work on the X chromosome, we estimate that the X has approximately 2.5 times the density of HMS factors as the autosomes. We also estimate that the whole genome contains approximately 15 HMS "equivalents"-i.e., 15 times the minimum number of incompatibility factors necessary to cause complete sterility. Although some caveats for the quantitative estimate of a 2.5-fold density difference are described, this study supports the notion that the X chromosome plays a special role in the evolution of reproductive isolation. Possible mechanisms of a "large X" effect include selective fixation of new mutations that are recessive or partially recessive and the evolution of sex-ratio distortion systems.

  15. Active and passive sexual roles that arise in Drosophila male-male courtship are modulated by dopamine levels in PPL2ab neurons

    OpenAIRE

    Shiu-Ling Chen; Yu-Hui Chen; Chuan-Chan Wang; Yhu-Wei Yu; Yu-Chen Tsai; Hsiao-Wen Hsu; Chia-Lin Wu; Pei-Yu Wang; Lien-Cheng Chen; Tsuo-Hung Lan; Tsai-Feng Fu

    2017-01-01

    The neurology of male sexuality has been poorly studied owing to difficulties in studying brain circuitry in humans. Dopamine (DA) is essential for both physiological and behavioural responses, including the regulation of sexuality. Previous studies have revealed that alterations in DA synthesis in dopaminergic neurons can induce male-male courtship behaviour, while increasing DA levels in the protocerebral posteriolateral dopaminergic cluster neuron 2ab (PPL2ab) may enhance the intensity of ...

  16. Histological and immunohistochemical characterization of the inflammatory and glial cells in the central nervous system of goat fetuses and adult male goats naturally infected with Neospora caninum.

    Science.gov (United States)

    Costa, Rafael Carneiro; Orlando, Débora Ribeiro; Abreu, Camila Costa; Nakagaki, Karen Yumi Ribeiro; Mesquita, Leonardo Pereira; Nascimento, Lismara Castro; Silva, Aline Costa; Maiorka, Paulo César; Peconick, Ana Paula; Raymundo, Djeison Lutier; Varaschin, Mary Suzan

    2014-12-14

    Neospora caninum is an apicomplexan protozoan that is considered one of the main agents responsible for abortion in ruminants. The lesions found in the central nervous system (CNS) of aborted fetuses show multifocal necrosis, gliosis, and perivascular cuffs of mononuclear cells, but the inflammatory and glial cells have not been immunophenotypically characterized. The lesions in the CNS of infected adult animals have rarely been described. Therefore, in this study, we characterized the lesions, the immunophenotypes of the inflammatory and glial cells and the expression of MHC-II and PCNA in the CNS of goats infected with N. caninum. The CNS of eight aborted fetuses and six adult male goats naturally infected with N. caninum were analyzed with lectin histochemistry (RCA1) and immunohistochemistry (with anti-CD3, -CD79α, -GFAP, -MHC-II, and -PCNA antibodies). All animals were the offspring of dams naturally infected with N. caninum. The microscopic lesions in the CNS of the aborted fetuses consisted of perivascular cuffs composed mainly of macrophages (RCA1(+)), rare T lymphocytes (CD3(+)), and rare B lymphocytes (CD79α(+)). Multifocal necrosis surrounded by astrocytes (GFAP(+)), gliosis composed predominantly of monocytic-lineage cells (macrophages and microglia, RCA1(+)), and the cysts of N. caninum, related (or not) to the lesions were present. Similar lesions were found in four of the six male goats, and multinucleate giant cells related to focal gliosis were also found in three adult goats. Anti-GFAP immunostaining showed astrocytes characterizing areas of glial scarring. Cysts of N. caninum were found in three adult male goats. The presence of N. caninum was evaluated with histopathology, immunohistochemistry, and PCR. Immunohistochemistry demonstrated anti-PCNA labeling of macrophages and microglia in the perivascular cuffs and the expression of MHC-II by microglia and endothelial cells in the CNS of the aborted fetuses and adult male goats. Macrophages and

  17. Case report of a 28-year-old male with the rapid progression of steroid-resistant central nervous system vasculitis diagnosed by a brain biopsy.

    Science.gov (United States)

    Takahashi, Keigo; Sato, Hideki; Hattori, Hidenori; Takao, Masaki; Takahashi, Shinichi; Suzuki, Norihiro

    2017-09-30

    A 28-year-old Japanese male without a significant past medical history presented with new-onset generalized clonic seizure and headache. A brain MRI revealed multiple enhanced lesions on both cerebral hemispheres. Laboratory exams showed no evidence of systemic inflammation or auto-immune antibodies such as ANCAs. Despite four courses of high-dose methylprednisolone pulse therapy and five treatments with plasmapheresis, his symptoms worsened and the MRI lesions progressed rapidly. During these treatments, we performed a targeted brain biopsy, that revealed histological findings consistent with a predominant angiitis of parenchymal and subdural small vessels. He was provided with diagnosis of central nervous system vasculitis (CNSV). Subsequent cyclophosphamide pulse therapy enabled a progressive successful improvement of his symptoms. While diagnostic methods for CNSV remain controversial, histological findings are thought to be more useful in obtaining a more definitive diagnosis than findings in image studies, such as MRI and angiography. We suggest that a brain biopsy should be considered during the early period of cases with suspected CNSV and rapid clinical deterioration. We also detected human herpesvirus 7 (HHV-7) using PCR technology in brain biopsy specimens, however the relationship between CNSV and HHV-7 infection is unknow.

  18. Dumpy-30 family members as determinants of male fertility and interaction partners of metal-responsive transcription factor 1 (MTF-1 in Drosophila

    Directory of Open Access Journals (Sweden)

    Renkawitz-Pohl Renate

    2008-06-01

    Full Text Available Abstract Background Metal-responsive transcription factor 1 (MTF-1, which binds to metal response elements (MREs, plays a central role in transition metal detoxification and homeostasis. A Drosophila interactome analysis revealed two candidate dMTF-1 interactors, both of which are related to the small regulatory protein Dumpy-30 (Dpy-30 of the worm C. elegans. Dpy-30 is the founding member of a protein family involved in chromatin modifications, notably histone methylation. Mutants affect mating type in yeast and male mating in C. elegans. Results Constitutive expression of the stronger interactor, Dpy-30L1 (CG6444, in transgenic flies inhibits MTF-1 activity and results in elevated sensitivity to Cd(II and Zn(II, an effect that could be rescued by co-overexpression of dMTF-1. Electrophoretic mobility shift assays (EMSA suggest that Dpy-30L1 interferes with the binding of MTF-1 to its cognate MRE binding site. Dpy-30L1 is expressed in the larval brain, gonads, imaginal discs, salivary glands and in the brain, testes, ovaries and salivary glands of adult flies. Expression of the second interactor, Dpy-30L2 (CG11591, is restricted to larval male gonads, and to the testes of adult males. Consistent with these findings, dpy-30-like transcripts are also prominently expressed in mouse testes. Targeted gene disruption by homologous recombination revealed that dpy-30L1 knockout flies are viable and show no overt disruption of metal homeostasis. In contrast, the knockout of the male-specific dpy-30L2 gene results in male sterility, as does the double knockout of dpy-30L1 and dpy-30L2. A closer inspection showed that Dpy-30L2 is expressed in elongated spermatids but not in early or mature sperm. Mutant sperm had impaired motility and failed to accumulate in sperm storage organs of females. Conclusion Our studies help to elucidate the physiological roles of the Dumpy-30 proteins, which are conserved from yeast to humans and typically act in concert with

  19. The PTK7-related transmembrane proteins off-track and off-track 2 are co-receptors for Drosophila Wnt2 required for male fertility.

    Science.gov (United States)

    Linnemannstöns, Karen; Ripp, Caroline; Honemann-Capito, Mona; Brechtel-Curth, Katja; Hedderich, Marie; Wodarz, Andreas

    2014-07-01

    Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7) was identified as a Wnt co-receptor required for control of planar cell polarity (PCP) in frogs and mice. We found that flies homozygous for a complete knock-out of the Drosophila PTK7 homolog off track (otk) are viable and fertile and do not show PCP phenotypes. We discovered an otk paralog (otk2, CG8964), which is co-expressed with otk throughout embryonic and larval development. Otk and Otk2 bind to each other and form complexes with Frizzled, Frizzled2 and Wnt2, pointing to a function as Wnt co-receptors. Flies lacking both otk and otk2 are viable but male sterile due to defective morphogenesis of the ejaculatory duct. Overexpression of Otk causes female sterility due to malformation of the oviduct, indicating that Otk and Otk2 are specifically involved in the sexually dimorphic development of the genital tract.

  20. The PTK7-related transmembrane proteins off-track and off-track 2 are co-receptors for Drosophila Wnt2 required for male fertility.

    Directory of Open Access Journals (Sweden)

    Karen Linnemannstöns

    2014-07-01

    Full Text Available Wnt proteins regulate many developmental processes and are required for tissue homeostasis in adult animals. The cellular responses to Wnts are manifold and are determined by the respective Wnt ligand and its specific receptor complex in the plasma membrane. Wnt receptor complexes contain a member of the Frizzled family of serpentine receptors and a co-receptor, which commonly is a single-pass transmembrane protein. Vertebrate protein tyrosine kinase 7 (PTK7 was identified as a Wnt co-receptor required for control of planar cell polarity (PCP in frogs and mice. We found that flies homozygous for a complete knock-out of the Drosophila PTK7 homolog off track (otk are viable and fertile and do not show PCP phenotypes. We discovered an otk paralog (otk2, CG8964, which is co-expressed with otk throughout embryonic and larval development. Otk and Otk2 bind to each other and form complexes with Frizzled, Frizzled2 and Wnt2, pointing to a function as Wnt co-receptors. Flies lacking both otk and otk2 are viable but male sterile due to defective morphogenesis of the ejaculatory duct. Overexpression of Otk causes female sterility due to malformation of the oviduct, indicating that Otk and Otk2 are specifically involved in the sexually dimorphic development of the genital tract.

  1. The genetic basis of postzygotic reproductive isolation between Drosophila santomea and D. yakuba due to hybrid male sterility.

    Science.gov (United States)

    Moehring, Amanda J; Llopart, Ana; Elwyn, Susannah; Coyne, Jerry A; Mackay, Trudy F C

    2006-05-01

    A major unresolved challenge of evolutionary biology is to determine the nature of the allelic variants of "speciation genes": those alleles whose interaction produces inviable or infertile interspecific hybrids but does not reduce fitness in pure species. Here we map quantitative trait loci (QTL) affecting fertility of male hybrids between D. yakuba and its recently discovered sibling species, D. santomea. We mapped three to four X chromosome QTL and two autosomal QTL with large effects on the reduced fertility of D. yakuba and D. santomea backcross males. We observed epistasis between the X-linked QTL and also between the X and autosomal QTL. The X chromosome had a disproportionately large effect on hybrid sterility in both reciprocal backcross hybrids. However, the genetics of hybrid sterility differ between D. yakuba and D. santomea backcross males, both in terms of the magnitude of main effects and in the epistatic interactions. The QTL affecting hybrid fertility did not colocalize with QTL affecting sexual isolation in this species pair, but did colocalize with QTL affecting the marked difference in pigmentation between D. yakuba and D. santomea. These results provide the basis for future high-resolution mapping and ultimately, molecular cloning, of the interacting genes that contribute to hybrid sterility.

  2. Role of the ATPase/helicase maleless (MLE in the assembly, targeting, spreading and function of the male-specific lethal (MSL complex of Drosophila

    Directory of Open Access Journals (Sweden)

    Morra Rosa

    2011-04-01

    Full Text Available Abstract Background The male-specific lethal (MSL complex of Drosophila remodels the chromatin of the X chromosome in males to enhance the level of transcription of most X-linked genes, and thereby achieve dosage compensation. The core complex consists of five proteins and one of two non-coding RNAs. One of the proteins, MOF (males absent on the first, is a histone acetyltransferase that specifically acetylates histone H4 at lysine 16. Another protein, maleless (MLE, is an ATP-dependent helicase with the ability to unwind DNA/RNA or RNA/RNA substrates in vitro. Recently, we showed that the ATPase activity of MLE is sufficient for the hypertranscription of genes adjacent to a high-affinity site by MSL complexes located at that site. The helicase activity is required for the spreading of the complex to the hundreds of positions along the X chromosome, where it is normally found. In this study, to further understand the role of MLE in the function of the MSL complex, we analyzed its relationship to the other complex components by creating a series of deletions or mutations in its putative functional domains, and testing their effect on the distribution and function of the complex in vivo. Results The presence of the RB2 RNA-binding domain is necessary for the association of the MSL3 protein with the other complex subunits. In its absence, the activity of the MOF subunit was compromised, and the complex failed to acetylate histone H4 at lysine 16. Deletion of the RB1 RNA-binding domain resulted in complexes that maintained substantial acetylation activity but failed to spread beyond the high-affinity sites. Flies bearing this mutation exhibited low levels of roX RNAs, indicating that these RNAs failed to associate with the proteins of the complex and were degraded, or that MLE contributes to their synthesis. Deletion of the glycine-rich C-terminal region, which contains a nuclear localization sequence, caused a substantial level of retention of the

  3. The influence of large deletions on the mutation frequency induced by tritiated water and X-radiation in male Drosophila melanogaster post-meiotic germ cells

    International Nuclear Information System (INIS)

    Fossett, N.G.; Byrne, B.J.; Kelley, S.J.; Tucker, A.B.; Arbour-Reily, P.; Lee, W.R.

    1994-01-01

    Tritium beta radiation ( 3 H β-radiation) in the form of tritiated water was used to induce mutations at the alcohol dehydrogenase (Adh) locus in male Drosophila melanogaster post-meiotic germ cells. All 23 Adh null mutations were large deletions (>20 kb), determined by genetic complementation and Southern blot analyses. 27 Adh null mutations have been induced by 100-kVp X-rays and have been genetically and molecularly characterized. In contrast to 3 H β-radiation, 100-kVp X-rays induced a bimodal distribution of Adh null mutations, intragenic mutations, ≤250 bp, and large deletions, >100 kb. A statistically significant difference was observed between the frequency of large deletions (23/23 or 1.0) induced by 3 H β-radiation and the frequency of large deletions (19/27 or 0.7) induced by 100-kVp X-rays. However, a statistical difference was not observed between the size distribution of the large deletions induced by 3 H β-radiation and X-rays. The relative deletion frequency (RDF) induced by 3 H β-radiation and 100-kVp X-rays was (1.0/0.7=1.4). The relative biological effectiveness (RBE) of these two radiation sources was 1.4, determined from the ratio of the regression coefficients of the respective 3 H β-radiation and X-ray sex-linked recessive lethal (SLRL) dose-response data. The large difference in size between the two classes of X-ray-induced Adh null mutations and the increase in mutation frequency and deletion frequency for 3 H β-radiation with respect to X-rays may indicate that the relative deletion frequency (RDF) is the molecular biological basis for the increase in the RBE for radiation sources with a mean LET value ≤10 keV/μm

  4. Olfactory memory traces in Drosophila

    OpenAIRE

    Berry, Jacob; Krause, William C.; Davis, Ronald L.

    2008-01-01

    In Drosophila the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons’ response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed...

  5. Analysis of Neurotransmitter Tissue Content of Drosophila melanogaster in Different Life Stages

    Science.gov (United States)

    2015-01-01

    Drosophila melanogaster is a widely used model organism for studying neurological diseases with similar neurotransmission to mammals. While both larva and adult Drosophila have central nervous systems, not much is known about how neurotransmitter tissue content changes through development. In this study, we quantified tyramine, serotonin, octopamine, and dopamine in larval, pupal, and adult fly brains using capillary electrophoresis coupled to fast-scan cyclic voltammetry. Tyramine and octopamine content varied between life stages, with almost no octopamine being present in the pupa, while tyramine levels in the pupa were very high. Adult females had significantly higher dopamine content than males, but no other neurotransmitters were dependent on sex in the adult. Understanding the tissue content of different life stages will be beneficial for future work comparing the effects of diseases on tissue content throughout development. PMID:25437353

  6. Drosophila Melanogaster as an Experimental Organism.

    Science.gov (United States)

    Rubin, Gerald M.

    1988-01-01

    Discusses the role of the fruit fly in genetics research requiring a multidisciplinary approach. Describes embryological and genetic methods used in the experimental analysis of this organism. Outlines the use of Drosophila in the study of the development and function of the nervous system. (RT)

  7. Divergent expression of 11beta-hydroxysteroid dehydrogenase and 11beta-hydroxylase genes between male morphs in the central nervous system, sonic muscle and testis of a vocal fish.

    Science.gov (United States)

    Arterbery, Adam S; Deitcher, David L; Bass, Andrew H

    2010-05-15

    The vocalizing midshipman fish, Porichthys notatus, has two male morphs that exhibit alternative mating tactics. Only territorial males acoustically court females with long duration (minutes to >1h) calls, whereas sneaker males attempt to steal fertilizations. During the breeding season, morph-specific tactics are paralleled by a divergence in relative testis and vocal muscle size, plasma levels of the androgen 11-ketotestosterone (11KT) and the glucocorticoid cortisol, and mRNA expression levels in the central nervous system (CNS) of the steroid-synthesizing enzyme aromatase (estrogen synthase). Here, we tested the hypothesis that the midshipman's two male morphs would further differ in the CNS, as well as in the testis and vocal muscle, in mRNA abundance for the enzymes 11beta-hydroxylase (11betaH) and 11beta-hydroxysteroid dehydrogenase (11betaHSD) that directly regulate both 11KT and cortisol synthesis. Quantitative real-time PCR demonstrated male morph-specific profiles for both enzymes. Territorial males had higher 11betaH and 11betaHSD mRNA levels in testis and vocal muscle. By contrast, sneaker males had the higher CNS expression, especially for 11betaHSD, in the region containing an expansive vocal pacemaker circuit that directly determines the temporal attributes of natural calls. We propose for territorial males that higher enzyme expression in testis underlies its greater plasma 11KT levels, which in vocal muscle provides both gluconeogenic and androgenic support for its long duration calling. We further propose for sneaker males that higher enzyme expression in the vocal CNS contributes to known cortisol-specific effects on its vocal physiology. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Plasticity in the Drosophila larval visual System

    Directory of Open Access Journals (Sweden)

    Abud J Farca-Luna

    2013-07-01

    Full Text Available The remarkable ability of the nervous system to modify its structure and function is mostly experience and activity modulated. The molecular basis of neuronal plasticity has been studied in higher behavioral processes, such as learning and memory formation. However, neuronal plasticity is not restricted to higher brain functions, but may provide a basic feature of adaptation of all neural circuits. The fruit fly Drosophila melanogaster provides a powerful genetic model to gain insight into the molecular basis of nervous system development and function. The nervous system of the larvae is again a magnitude simpler than its adult counter part, allowing the genetic assessment of a number of individual genetically identifiable neurons. We review here recent progress on the genetic basis of neuronal plasticity in developing and functioning neural circuits focusing on the simple visual system of the Drosophila larva.

  9. Studies on Drosophila radiosensitive strains

    International Nuclear Information System (INIS)

    Varentsova, E.P.; Zakharov, I.A.

    1976-01-01

    45 of radiosensitive strains of Drosophila melanogaster were isolated by Curly/Lobe technique after EMS treatment of Livadia population males. The lethality of non-Curly late larvae after gamma-irradiation (4000r) characterized radiosensitivity strains. Most of them exhibited higher frequency of the spontaneous dominant lethals (up to 69%). The males of 6 strains were semi-sterile. 5 of these strains exhibited higher frequency of X-chromosome non-disjunction

  10. Autonomic Nervous System Disorders

    Science.gov (United States)

    Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...

  11. Central Nervous System Vasculitis

    Science.gov (United States)

    ... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...

  12. Drosophila female-specific Ilp7 motoneurons are generated by Fruitless-dependent cell death in males and by a double-assurance survival role for Transformer in females.

    Science.gov (United States)

    Garner, Sarah Rose C; Castellanos, Monica C; Baillie, Katherine E; Lian, Tianshun; Allan, Douglas W

    2018-01-08

    Female-specific Ilp7 neuropeptide-expressing motoneurons (FS-Ilp7 motoneurons) are required in Drosophila for oviduct function in egg laying. Here, we uncover cellular and genetic mechanisms underlying their female-specific generation. We demonstrate that programmed cell death (PCD) eliminates FS-Ilp7 motoneurons in males, and that this requires male-specific splicing of the sex-determination gene fruitless ( fru ) into the Fru MC isoform. However, in females, fru alleles that only generate Fru M isoforms failed to kill FS-Ilp7 motoneurons. This blockade of Fru M -dependent PCD was not attributable to doublesex gene function but to a non-canonical role for transformer ( tra ), a gene encoding the RNA splicing activator that regulates female-specific splicing of fru and dsx transcripts. In both sexes, we show that Tra prevents PCD even when the Fru M isoform is expressed. In addition, we found that Fru MC eliminated FS-Ilp7 motoneurons in both sexes, but only when Tra was absent. Thus, Fru MC -dependent PCD eliminates female-specific neurons in males, and Tra plays a double-assurance function in females to establish and reinforce the decision to generate female-specific neurons. © 2018. Published by The Company of Biologists Ltd.

  13. The Genetics of Hybrid Male Sterility Between the Allopatric Species Pair Drosophila persimilis and D. pseudoobscura bogotana: Dominant Sterility Alleles in Collinear Autosomal Regions

    OpenAIRE

    Chang, Audrey S.; Noor, Mohamed A. F.

    2007-01-01

    F1 hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male st...

  14. Functional neuroanatomy of Drosophila olfactory memory formation

    OpenAIRE

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry exten...

  15. Neurophysiology of Drosophila Models of Parkinson's Disease

    OpenAIRE

    West, Ryan J. H.; Furmston, Rebecca; Williams, Charles A. C.; Elliott, Christopher J. H.

    2015-01-01

    We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's ...

  16. A Drosophila gene encoding a protein resembling the human β-amyloid protein precursor

    International Nuclear Information System (INIS)

    Rosen, D.R.; Martin-Morris, L.; Luo, L.; White, K.

    1989-01-01

    The authors have isolated genomic and cDNA clones for a Drosophila gene resembling the human β-amyloid precursor protein (APP). This gene produces a nervous system-enriched 6.5-kilobase transcript. Sequencing of cDNAs derived from the 6.5-kilobase transcript predicts an 886-amino acid polypeptide. This polypeptide contains a putative transmembrane domain and exhibits strong sequence similarity to cytoplasmic and extracellular regions of the human β-amyloid precursor protein. There is a high probability that this Drosophila gene corresponds to the essential Drosophila locus vnd, a gene required for embryonic nervous system development

  17. The sex of specific neurons controls female body growth in Drosophila.

    Science.gov (United States)

    Sawala, Annick; Gould, Alex P

    2017-10-01

    Sexual dimorphisms in body size are widespread throughout the animal kingdom but their underlying mechanisms are not well characterized. Most models for how sex chromosome genes specify size dimorphism have emphasized the importance of gonadal hormones and cell-autonomous influences in mammals versus strictly cell-autonomous mechanisms in Drosophila melanogaster. Here, we use tissue-specific genetics to investigate how sexual size dimorphism (SSD) is established in Drosophila. We find that the larger body size characteristic of Drosophila females is established very early in larval development via an increase in the growth rate per unit of body mass. We demonstrate that the female sex determination gene, Sex-lethal (Sxl), functions in central nervous system (CNS) neurons as part of a relay that specifies the early sex-specific growth trajectories of larval but not imaginal tissues. Neuronal Sxl acts additively in 2 neuronal subpopulations, one of which corresponds to 7 median neurosecretory cells: the insulin-producing cells (IPCs). Surprisingly, however, male-female differences in the production of insulin-like peptides (Ilps) from the IPCs do not appear to be involved in establishing SSD in early larvae, although they may play a later role. These findings support a relay model in which Sxl in neurons and Sxl in local tissues act together to specify the female-specific growth of the larval body. They also reveal that, even though the sex determination pathways in Drosophila and mammals are different, they both modulate body growth via a combination of tissue-autonomous and nonautonomous inputs.

  18. Evidence for a hierarchical transcriptional circuit in Drosophila male germline involving testis-specific TAF and two gene-specific transcription factors, Mod and Acj6.

    Science.gov (United States)

    Jiang, Mei; Gao, Zhengliang; Wang, Jian; Nurminsky, Dmitry I

    2018-01-01

    To analyze transcription factors involved in gene regulation by testis-specific TAF (tTAF), tTAF-dependent promoters were mapped and analyzed in silico. Core promoters show decreased AT content, paucity of classical promoter motifs, and enrichment with translation control element CAAAATTY. Scanning of putative regulatory regions for known position frequency matrices identified 19 transcription regulators possibly contributing to tTAF-driven gene expression. Decreased male fertility associated with mutation in one of the regulators, Acj6, indicates its involvement in male reproduction. Transcriptome study of testes from male mutants for tTAF, Acj6, and previously characterized tTAF-interacting factor Modulo implies the existence of a regulatory hierarchy of tTAF, Modulo and Acj6, in which Modulo and/or Acj6 regulate one-third of tTAF-dependent genes. © 2017 Federation of European Biochemical Societies.

  19. Presence of gonadotropin-releasing hormone-like peptide in the central nervous system and reproductive organs of the male blue swimming crab, Portunus pelagicus, and its effect on spermatogenesis.

    Science.gov (United States)

    Senarai, Thanyaporn; Saetan, Jirawat; Tamtin, Montakan; Weerachatyanukul, Wattana; Sobhon, Prasert; Sretarugsa, Prepee

    2016-08-01

    Our previous studies have demonstrated that lamprey gonadotropin-releasing hormone-III (lGnRH-III)-like peptide occurs in the central nervous system (CNS) of decapod crustaceans (Macrobrachium rosenbergii, Penaeus monodon, Portunus pelagicus), and that lGnRH-III is the most potent in stimulating ovarian maturation compared with other GnRH isoforms. In this study, we examined the localization of lGnRH-III-like peptide in the CNS and male reproductive organs of the blue swimming crab by using anti-lGnRH-III as a probe. In the brain, lGnRH-III immunoreactivity (-ir) was detected in neurons of clusters 6, 10, 11, 14/15, 16, and 17 and in many neuropils. In the subesophageal ganglion, lGnRH-III-ir was present in neurons of the dorso-lateral and ventro-medial clusters. In the thoracic ganglia, lGnRH-III-ir was observed in the large-sized neurons between the thoracic neuropils and in the ventromedial cluster of the abdominal ganglia. In the testis, lGnRH-III-ir was detected in nurse cells, hemocytes, spermatids 2, and the outer and inner zones of the acrosomes of spermatozoa. Bioassay showed that lGnRH-III significantly increased the testis-somatic index, the percentage of late stages of seminiferous tubules (stages VII-IX), the diameter of the seminiferous tubules, and the number of BrdU-labeled early germ cells compared with the control groups. Thus, lGnRH-III-like peptide exists in the male crab and possibly enhances germ cell proliferation and maturation in the testes, leading to increased sperm production.

  20. Central nervous system

    Science.gov (United States)

    The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.

  1. Thermal adaptation in Drosophila serrata under conditions linked to ...

    Indian Academy of Sciences (India)

    Unknown

    Centre for Environmental Stress and Adaptation Research, La Trobe .... appear to exhibit quiescence, where reproduction is imme- ..... an effect on the wing length of either sex. ..... perature and male territorial success in Drosophila melano-.

  2. Aging and Autophagic Function Influences the Progressive Decline of Adult Drosophila Behaviors.

    Directory of Open Access Journals (Sweden)

    Eric P Ratliff

    Full Text Available Multiple neurological disorders are characterized by the abnormal accumulation of protein aggregates and the progressive impairment of complex behaviors. Our Drosophila studies demonstrate that middle-aged wild-type flies (WT, ~4-weeks exhibit a marked accumulation of neural aggregates that is commensurate with the decline of the autophagy pathway. However, enhancing autophagy via neuronal over-expression of Atg8a (Atg8a-OE reduces the age-dependent accumulation of aggregates. Here we assess basal locomotor activity profiles for single- and group-housed male and female WT flies and observed that only modest behavioral changes occurred by 4-weeks of age, with the noted exception of group-housed male flies. Male flies in same-sex social groups exhibit a progressive increase in nighttime activity. Infrared videos show aged group-housed males (4-weeks are engaged in extensive bouts of courtship during periods of darkness, which is partly repressed during lighted conditions. Together, these nighttime courtship behaviors were nearly absent in young WT flies and aged Atg8a-OE flies. Previous studies have indicated a regulatory role for olfaction in male courtship partner choice. Coincidently, the mRNA expression profiles of several olfactory genes decline with age in WT flies; however, they are maintained in age-matched Atg8a-OE flies. Together, these results suggest that middle-aged male flies develop impairments in olfaction, which could contribute to the dysregulation of courtship behaviors during dark time periods. Combined, our results demonstrate that as Drosophila age, they develop early behavior defects that are coordinate with protein aggregate accumulation in the nervous system. In addition, the nighttime activity behavior is preserved when neuronal autophagy is maintained (Atg8a-OE flies. Thus, environmental or genetic factors that modify autophagic capacity could have a positive impact on neuronal aging and complex behaviors.

  3. Extracellular matrix and its receptors in Drosophila neural development

    Science.gov (United States)

    Broadie, Kendal; Baumgartner, Stefan; Prokop, Andreas

    2011-01-01

    Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: 1) neural progenitor proliferation, 2) axonal growth and pathfinding and 3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions. PMID:21688401

  4. Neurophysiology of Drosophila models of Parkinson's disease.

    Science.gov (United States)

    West, Ryan J H; Furmston, Rebecca; Williams, Charles A C; Elliott, Christopher J H

    2015-01-01

    We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson's disease- (PD-) related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson's disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic) neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak's scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing.

  5. Drosophila melanogaster as a Model for Lead Neurotoxicology and Toxicogenomics Research

    Directory of Open Access Journals (Sweden)

    Douglas Mark Ruden

    2012-05-01

    Full Text Available Drosophila melanogaster is an excellent model animal for studying the neurotoxicology of lead. It has been known since ancient Roman times that long-term exposure to low levels of lead results in behavioral abnormalities, such as what is now known as attention deficit hyperactivity disorder (ADHD. Because lead alters mechanisms that underlie developmental neuronal plasticity, chronic exposure of children, even at blood lead levels below the current CDC community action level (10 µg/dl, can result in reduced cognitive ability, increased likelihood of delinquency, behaviors associated with ADHD, changes in activity level, altered sensory function, delayed onset of sexual maturity in girls, and changes in immune function. In order to better understand how lead affects neuronal plasticity, we will describe recent findings from a Drosophila behavioral genetics laboratory, a Drosophila neurophysiology laboratory, and a Drosophila quantitative genetics laboratory who have joined forces to study the effects of lead on the Drosophila nervous system. Studying the effects of lead on Drosophila nervous system development will give us a better understanding of the mechanisms of Pb neurotoxicity in the developing human nervous system.

  6. Drosophila Vps13 Is Required for Protein Homeostasis in the Brain.

    Directory of Open Access Journals (Sweden)

    Jan J Vonk

    Full Text Available Chorea-Acanthocytosis is a rare, neurodegenerative disorder characterized by progressive loss of locomotor and cognitive function. It is caused by loss of function mutations in the Vacuolar Protein Sorting 13A (VPS13A gene, which is conserved from yeast to human. The consequences of VPS13A dysfunction in the nervous system are still largely unspecified. In order to study the consequences of VPS13A protein dysfunction in the ageing central nervous system we characterized a Drosophila melanogaster Vps13 mutant line. The Drosophila Vps13 gene encoded a protein of similar size as human VPS13A. Our data suggest that Vps13 is a peripheral membrane protein located to endosomal membranes and enriched in the fly head. Vps13 mutant flies showed a shortened life span and age associated neurodegeneration. Vps13 mutant flies were sensitive to proteotoxic stress and accumulated ubiquitylated proteins. Levels of Ref(2P, the Drosophila orthologue of p62, were increased and protein aggregates accumulated in the central nervous system. Overexpression of the human Vps13A protein in the mutant flies partly rescued apparent phenotypes. This suggests a functional conservation of human VPS13A and Drosophila Vps13. Our results demonstrate that Vps13 is essential to maintain protein homeostasis in the larval and adult Drosophila brain. Drosophila Vps13 mutants are suitable to investigate the function of Vps13 in the brain, to identify genetic enhancers and suppressors and to screen for potential therapeutic targets for Chorea-Acanthocytosis.

  7. Brain and Nervous System

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Brain and Nervous System KidsHealth / For Parents / Brain and ... healthy, and remove waste products. All About the Brain The brain is made up of three main ...

  8. Central nervous system resuscitation

    DEFF Research Database (Denmark)

    McIntosh, T K; Garde, E; Saatman, K E

    1997-01-01

    Traumatic injury to the central nervous system induces delayed neuronal death, which may be mediated by acute and chronic neurochemical changes. Experimental identification of these injury mechanisms and elucidation of the neurochemical cascade following trauma may provide enhanced opportunities...

  9. Dosage compensation and demasculinization of X chromosomes in Drosophila.

    Science.gov (United States)

    Bachtrog, Doris; Toda, Nicholas R T; Lockton, Steven

    2010-08-24

    The X chromosome of Drosophila shows a deficiency of genes with male-biased expression, whereas mammalian X chromosomes are enriched for spermatogenesis genes expressed premeiosis and multicopy testis genes. Meiotic X-inactivation and sexual antagonism can only partly account for these patterns. Here, we show that dosage compensation (DC) in Drosophila may contribute substantially to the depletion of male genes on the X. To equalize expression between X-linked and autosomal genes in the two sexes, male Drosophila hypertranscribe their single X, whereas female mammals silence one of their two X chromosomes. We combine fine-scale mapping data of dosage compensated regions with genome-wide expression profiles and show that most male-biased genes on the D. melanogaster X are located outside dosage compensated regions. Additionally, X-linked genes that have newly acquired male-biased expression in D. melanogaster are less likely to be dosage compensated, and parental X-linked genes that gave rise to an autosomal male-biased retrocopy are more likely located within compensated regions. This suggests that DC contributes to the observed demasculinization of X chromosomes in Drosophila, both by limiting the emergence of male-biased expression patterns of existing X genes, and by contributing to gene trafficking of male genes off the X. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Drosophila melanogaster: a fly through its history and current use.

    Science.gov (United States)

    Stephenson, R; Metcalfe, N H

    2013-01-01

    Drosophila melanogaster, the common fruit fly, has been used as a model organism in both medical and scientific research for over a century. Work by Thomas Hunt Morgan (1866-1945) and his students at Columbia University at the beginning of the twentieth century led to great discoveries such as sex-linked inheritance and that ionising radiation causes mutations in genes. However, the use of Drosophila was not limited to genetic research. Experimentation with this model organism has also led to discoveries in neuroscience and neurodevelopment, including the basis of circadian rhythms. Its complex nervous system, conserved neurological function, and human disease-related loci allow Drosophila to be an ideal model organism for the study of neurodegenerative disease, for which it is used today, aiding research into diseases such as Alzheimer's and Parkinson's, which are becoming more prevalent in today's ageing population.

  11. RNA editing in Drosophila melanogaster: new targets and functionalconsequences

    Energy Technology Data Exchange (ETDEWEB)

    Stapleton, Mark; Carlson, Joseph W.; Celniker, Susan E.

    2006-09-05

    Adenosine deaminases that act on RNA (ADARs) catalyze the site-specific conversion of adenosine to inosine in primary mRNA transcripts. These re-coding events affect coding potential, splice-sites, and stability of mature mRNAs. ADAR is an essential gene and studies in mouse, C. elegans, and Drosophila suggest its primary function is to modify adult behavior by altering signaling components in the nervous system. By comparing the sequence of isogenic cDNAs to genomic DNA, we have identified and experimentally verified 27 new targets of Drosophila ADAR. Our analyses lead us to identify new classes of genes whose transcripts are targets of ADAR including components of the actin cytoskeleton, and genes involved in ion homeostasis and signal transduction. Our results indicate that editing in Drosophila increases the diversity of the proteome, and does so in a manner that has direct functional consequences on protein function.

  12. Olfactory memory formation in Drosophila: from molecular to systems neuroscience.

    Science.gov (United States)

    Davis, Ronald L

    2005-01-01

    The olfactory nervous system of insects and mammals exhibits many similarities, which suggests that the mechanisms for olfactory learning may be shared. Molecular genetic investigations of Drosophila learning have uncovered numerous genes whose gene products are essential for olfactory memory formation. Recent studies of the products of these genes have continued to expand the range of molecular processes known to underlie memory formation. Recent research has also broadened the neuroanatomical areas thought to mediate olfactory learning to include the antennal lobes in addition to a previously accepted and central role for the mushroom bodies. The roles for neurons extrinsic to the mushroom body neurons are becoming better defined. Finally, the genes identified to participate in Drosophila olfactory learning have conserved roles in mammalian organisms, highlighting the value of Drosophila for gene discovery.

  13. Paternal social experience affects male reproductive behaviour in ...

    Indian Academy of Sciences (India)

    [Dasgupta P., Halder S. and Nandy B. 2016 Paternal social experience affects male reproductive behaviour in Drosophila .... allowed to the competitor male to interact with the female. Following ... conditions including maternal environment.

  14. Male gametogenesis without centrioles.

    Science.gov (United States)

    Riparbelli, Maria Giovanna; Callaini, Giuliano

    2011-01-15

    The orientation of the mitotic spindle plays a central role in specifying stem cell-renewal by enabling interaction of the daughter cells with external cues: the daughter cell closest to the hub region is instructed to self-renew, whereas the distal one starts to differentiate. Here, we have analyzed male gametogenesis in DSas-4 Drosophila mutants and we have reported that spindle alignment and asymmetric divisions are properly executed in male germline stem cells that lack centrioles. Spermatogonial divisions also correctly proceed in the absence of centrioles, giving rise to cysts of 16 primary spermatocytes. By contrast, abnormal meiotic spindles assemble in primary spermatocytes. These results point to different requirements for centrioles during male gametogenesis of Drosophila. Spindle formation during germ cell mitosis may be successfully supported by an acentrosomal pathway that is inadequate to warrant the proper execution of meiosis. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Reduced Neuronal Transcription of Escargot, the Drosophila Gene Encoding a Snail-Type Transcription Factor, Promotes Longevity

    Science.gov (United States)

    Symonenko, Alexander V.; Roshina, Natalia V.; Krementsova, Anna V.; Pasyukova, Elena G.

    2018-01-01

    In recent years, several genes involved in complex neuron specification networks have been shown to control life span. However, information on these genes is scattered, and studies to discover new neuronal genes and gene cascades contributing to life span control are needed, especially because of the recognized role of the nervous system in governing homeostasis, aging, and longevity. Previously, we demonstrated that several genes that encode RNA polymerase II transcription factors and that are involved in the development of the nervous system affect life span in Drosophila melanogaster. Among other genes, escargot (esg) was demonstrated to be causally associated with an increase in the life span of male flies. Here, we present new data on the role of esg in life span control. We show that esg affects the life spans of both mated and unmated males and females to varying degrees. By analyzing the survival and locomotion of the esg mutants, we demonstrate that esg is involved in the control of aging. We show that increased longevity is caused by decreased esg transcription. In particular, we demonstrate that esg knockdown in the nervous system increased life span, directly establishing the involvement of the neuronal esg function in life span control. Our data invite attention to the mechanisms regulating the esg transcription rate, which is changed by insertions of DNA fragments of different sizes downstream of the structural part of the gene, indicating the direction of further research. Our data agree with the previously made suggestion that alterations in gene expression during development might affect adult lifespan, due to epigenetic patterns inherited in cell lineages or predetermined during the development of the structural and functional properties of the nervous system. PMID:29760717

  16. Metabolomic Studies in Drosophila.

    Science.gov (United States)

    Cox, James E; Thummel, Carl S; Tennessen, Jason M

    2017-07-01

    Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila , often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research. Copyright © 2017 by the Genetics Society of America.

  17. A new Amazonian species from the Drosophila annulimana species group (Diptera, Drosophilidae

    Directory of Open Access Journals (Sweden)

    Marco S. Gottschalk

    2012-12-01

    Full Text Available Drosophila caxiuana sp. nov., Drosophila subgenus, is described and illustrated. This new species was collected in the Amazonian Biome (Caquajó river, Portel, Pará, Brazil and is an atypical species to the group due the unusual morphology of the male terminalia.

  18. Sexual Communication in the Drosophila Genus

    OpenAIRE

    Gwénaëlle Bontonou; Claude Wicker-Thomas

    2014-01-01

    In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular...

  19. Studies on maternal repair in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Mendelson, D.

    1976-01-01

    The work reported in this thesis is mainly concerned with studies on the nature of the repair mechanism(s) operating in Drosophila oocytes, and which act on chromosome damage induced by X-irradiation of post-meiotic male germ-cells. Caffeine treatment of the females has been used as an analytical tool to gain an insight into the nature of this repair mechanism and its genetic basis

  20. Drosophila's contribution to stem cell research [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Gyanesh Singh

    2016-08-01

    Full Text Available The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. Recent developments in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub. Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  1. The central nervous system

    International Nuclear Information System (INIS)

    Holmes, R.A.

    1984-01-01

    The first section presents a comprehensive evaluation of radionuclide imaging of the central nervous system and provides a comparison of the detection accuracies of radionuclide imaging (RNI) and XCT in certain lesions, realizing that the XCT results may vary when radiocontrast or newer generation XCT scanners are used. Although conventional radionuclide imaging of the central nervous system has experienced no significant changes over the last 7 years except for mild refinements, a new section has been added on positron emission tomography (PET). Most positron radiopharmaceuticals passively cross the intact blood-brain barrier, and their localization has catalyzed renewed interest in our ability to metabolically study and obtain images of the central nervous system. The section on radionuclide cisternography has been rewritten to reflect present day practice and the wider application of XCT in describing conditions affecting the ventricular system

  2. Radiation effects on the drosophila melanogaster genoma

    International Nuclear Information System (INIS)

    Arceo-Maldonado, C.

    1989-01-01

    When DNA of living beings has been damaged, the cells show different responses depending on their physiological state. Repair mechanisms can be classified into two groups: constitutive which are always present in the cells and inductible, which must be stimulated to show themselves. It is suggested that a repair mechanism exists in the drosophila ovules which act upon the damage present in mature spermatozoids. Our aim is to verify whether or not a radiation dosis applied to the female drosophila will modify the frequency of individuals which have lost the paternal sex chromosomes. YW/YW virgin females and XEZ males and fbb-/bS Y y + y were mated for two days in order to collect radiation treated spermatozoids. The results were consistent as to the parameters being evaluated and lead one to suppose that the radiation applied to the female drosophila produced some changes in the ovule metabolism which reduced the frequency of individuals with lost chromosomes. It is believed that ionizing radiation interferes with the repair mechanisms that are existent and constitutive, retarding and hindering the restoration of chromosome fragments and this brings about death of the zygote or death of the eggs which lessens the frequencies of individuals carriers of chromosomic aberrations. Ionizing radiations applied to the female drosophila modifies the frequency of loss of patternal chromosomes and comes about when the radiation dose to the female is 700 rad. (Author)

  3. Central nervous system tumors

    International Nuclear Information System (INIS)

    Curran, W.J. Jr.

    1991-01-01

    Intrinsic tumors of the central nervous system (CNS) pose a particularly challenging problem to practicing oncologists. These tumors rarely metastasize outside the CNS, yet even histologically benign tumors can be life-threatening due to their local invasiveness and strategic location. The surrounding normal tissues of the nervous system is often incapable of full functional regeneration, therefore prohibiting aggressive attempts to use either complete surgical resection or high doses of irradiation. Despite these limitations, notable achievements have recently been recorded in the management of these tumors

  4. Larval nervous systems

    DEFF Research Database (Denmark)

    Nielsen, Claus

    2015-01-01

    as the adult central nervous system (CNS). Two structures can be recognized, viz. a pair of cerebral ganglia, which form the major part of the adult brain, and a blastoporal (circumblastoporal) nerve cord, which becomes differentiated into a perioral loop, paired or secondarily fused ventral nerve cords......, and the nervous systems of echinoderms and enteropneusts appear completely enigmatic. The ontogeny of the chordate CNS can perhaps be interpreted as a variation of the ontogeny of the blastoporal nerve cord of the protostomes, and this is strongly supported by patterns of gene expression. The presence...

  5. The Nervous System Game

    Science.gov (United States)

    Corbitt, Cynthia; Carpenter, Molly

    2006-01-01

    For many children, especially those with reading difficulties, a motor-kinesthetic learning activity may be an effective tool to teach complex concepts. With this in mind, the authors developed and tested a game designed to teach fourth- to sixth-grade children some basic principles of nervous system function by allowing the children themselves to…

  6. EGFR Signaling in the Brain Is Necessary for Olfactory Learning in "Drosophila" Larvae

    Science.gov (United States)

    Rahn, Tasja; Leippe, Matthias; Roeder, Thomas; Fedders, Henning

    2013-01-01

    Signaling via the epidermal growth factor receptor (EGFR) pathway has emerged as one of the key mechanisms in the development of the central nervous system in "Drosophila melanogaster." By contrast, little is known about the functions of EGFR signaling in the differentiated larval brain. Here, promoter-reporter lines of EGFR and its most prominent…

  7. Neurofibromatosis-like phenotype in Drosophila caused by lack of glucosylceramide extension

    DEFF Research Database (Denmark)

    Dahlgaard, Katja; Jung, Anita; Qvortrup, Klaus

    2012-01-01

    Glycosphingolipids (GSLs) are of fundamental importance in the nervous system. However, the molecular details associated with GSL function are largely unknown, in part because of the complexity of GSL biosynthesis in vertebrates. In Drosophila, only one major GSL biosynthetic pathway exists...

  8. Drosophila increase exploration after visually detecting predators.

    Directory of Open Access Journals (Sweden)

    Miguel de la Flor

    Full Text Available Novel stimuli elicit behaviors that are collectively known as specific exploration. These behaviors allow the animal to become more familiar with the novel objects within its environment. Specific exploration is frequently suppressed by defensive reactions to predator cues. Herein, we examine if this suppression occurs in Drosophila melanogaster by measuring the response of these flies to wild harvested predators. The flies used in our experiments have been cultured and had not lived under predator threat for multiple decades. In a circular arena with centrally-caged predators, wild type Drosophila actively avoided the pantropical jumping spider, Plexippus paykulli, and the Texas unicorn mantis, Phyllovates chlorophaena, indicating an innate defensive reaction to these predators. Interestingly, wild type Drosophila males also avoided a centrally-caged mock spider, and the avoidance of the mock spider became exaggerated when it was made to move within the cage. Visually impaired Drosophila failed to detect and avoid the Plexippus paykulli and the moving mock spider, while the broadly anosmic orco2 mutants were fully capable of detecting and avoiding Plexippus paykulli, indicating that these flies principally relied upon vison to perceive the predator stimuli. During early exploration of the arena, exploratory activity increased in the presence of Plexippus paykulli and the moving mock spider. The elevated activity induced by Plexippus paykulli disappeared after the fly had finished exploring, suggesting the flies were capable of habituating the predator cues. Taken together, these results indicate that despite being isolated from predators for decades Drosophila will visually detect these predators, retain innate defensive behaviors, respond by increasing exploratory activity in the arena rather than suppressing activity, and may habituate to normal predator cues.

  9. Olfactory memory traces in Drosophila.

    Science.gov (United States)

    Berry, Jacob; Krause, William C; Davis, Ronald L

    2008-01-01

    In Drosophila, the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological, or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons' response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed researchers to observe cellular memory traces in intact animals. These investigations have revealed interesting temporal and spatial dynamics of cellular memory traces. First, a short-term cellular memory trace was discovered that exists in the antennal lobe, an early site of olfactory processing. This trace represents the recruitment of new synaptic activity into the odor representation and forms for only a short period of time just after training. Second, an intermediate-term cellular memory trace was found in the dorsal paired medial neuron, a neuron thought to play a role in stabilizing olfactory memories. Finally, a long-term protein synthesis-dependent cellular memory trace was discovered in the mushroom bodies, a structure long implicated in olfactory learning and memory. Therefore, it appears that aversive olfactory associations are encoded by multiple cellular memory traces that occur in different regions of the brain with different temporal domains.

  10. Adaptive Evolution of Gene Expression in Drosophila

    Directory of Open Access Journals (Sweden)

    Armita Nourmohammad

    2017-08-01

    Full Text Available Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis.

  11. Hearing regulates Drosophila aggression.

    Science.gov (United States)

    Versteven, Marijke; Vanden Broeck, Lies; Geurten, Bart; Zwarts, Liesbeth; Decraecker, Lisse; Beelen, Melissa; Göpfert, Martin C; Heinrich, Ralf; Callaerts, Patrick

    2017-02-21

    Aggression is a universal social behavior important for the acquisition of food, mates, territory, and social status. Aggression in Drosophila is context-dependent and can thus be expected to involve inputs from multiple sensory modalities. Here, we use mechanical disruption and genetic approaches in Drosophila melanogaster to identify hearing as an important sensory modality in the context of intermale aggressive behavior. We demonstrate that neuronal silencing and targeted knockdown of hearing genes in the fly's auditory organ elicit abnormal aggression. Further, we show that exposure to courtship or aggression song has opposite effects on aggression. Our data define the importance of hearing in the control of Drosophila intermale aggression and open perspectives to decipher how hearing and other sensory modalities are integrated at the neural circuit level.

  12. The metabolic profile of long-lived Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sarup, Pernille Merete; Pedersen, Simon Metz; Nielsen, Niels Christian

    2012-01-01

    We investigated the age-related changes in the metabolic profile of male Drosophila melanogaster and compared the metabolic profile of flies selected for increased longevity to that of control flies of equal age. We found clear differences in metabolite composition between selection regimes...

  13. Neurophysiology of Drosophila Models of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Ryan J. H. West

    2015-01-01

    Full Text Available We provide an insight into the role Drosophila has played in elucidating neurophysiological perturbations associated with Parkinson’s disease- (PD- related genes. Synaptic signalling deficits are observed in motor, central, and sensory systems. Given the neurological impact of disease causing mutations within these same genes in humans the phenotypes observed in fly are of significant interest. As such we observe four unique opportunities provided by fly nervous system models of Parkinson’s disease. Firstly, Drosophila models are instrumental in exploring the mechanisms of neurodegeneration, with several PD-related mutations eliciting related phenotypes including sensitivity to energy supply and vesicular deformities. These are leading to the identification of plausible cellular mechanisms, which may be specific to (dopaminergic neurons and synapses rather than general cellular phenotypes. Secondly, models show noncell autonomous signalling within the nervous system, offering the opportunity to develop our understanding of the way pathogenic signalling propagates, resembling Braak’s scheme of spreading pathology in PD. Thirdly, the models link physiological deficits to changes in synaptic structure. While the structure-function relationship is complex, the genetic tractability of Drosophila offers the chance to separate fundamental changes from downstream consequences. Finally, the strong neuronal phenotypes permit relevant first in vivo drug testing.

  14. BMAA neurotoxicity in Drosophila.

    Science.gov (United States)

    Zhou, Xianchong; Escala, Wilfredo; Papapetropoulos, Spyridon; Bradley, Walter G; Zhai, R Grace

    2009-01-01

    We report the establishment of an in vivo model using the fruit fly Drosophila melanogaster to investigate the toxic effects of L-BMAA. We found that dietary intake of BMAA reduced the lifespan as well as the neurological functions of flies. Furthermore, we have developed an HPLC method to reliably detect both free and protein-bound BMAA in fly tissue extracts.

  15. Cancer in Drosophila

    DEFF Research Database (Denmark)

    Herranz, Héctor; Eichenlaub, Teresa; Cohen, Stephen M

    2016-01-01

    Cancer genomics has greatly increased our understanding of the complexity of the genetic and epigenetic changes found in human tumors. Understanding the functional relationships among these elements calls for the use of flexible genetic models. We discuss the use of Drosophila models to study...

  16. MicroRNA function in Drosophila melanogaster.

    Science.gov (United States)

    Carthew, Richard W; Agbu, Pamela; Giri, Ritika

    2017-05-01

    Over the last decade, microRNAs have emerged as critical regulators in the expression and function of animal genomes. This review article discusses the relationship between microRNA-mediated regulation and the biology of the fruit fly Drosophila melanogaster. We focus on the roles that microRNAs play in tissue growth, germ cell development, hormone action, and the development and activity of the central nervous system. We also discuss the ways in which microRNAs affect robustness. Many gene regulatory networks are robust; they are relatively insensitive to the precise values of reaction constants and concentrations of molecules acting within the networks. MicroRNAs involved in robustness appear to be nonessential under uniform conditions used in conventional laboratory experiments. However, the robust functions of microRNAs can be revealed when environmental or genetic variation otherwise has an impact on developmental outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Overview of the Autonomic Nervous System

    Science.gov (United States)

    ... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...

  18. Identification of synaptic targets of Drosophila pumilio.

    Directory of Open Access Journals (Sweden)

    Gengxin Chen

    2008-02-01

    Full Text Available Drosophila Pumilio (Pum protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via translational repression of eIF-4E. Aside from these, the biologically relevant targets of Pum in the nervous system remain largely unknown. We hypothesized that Pum might play a role in regulating the local translation underlying synapse-specific modifications during memory formation. To identify relevant translational targets, we used an informatics approach to predict Pum targets among mRNAs whose products have synaptic localization. We then used both in vitro binding and two in vivo assays to functionally confirm the fidelity of this informatics screening method. We find that Pum strongly and specifically binds to RNA sequences in the 3'UTR of four of the predicted target genes, demonstrating the validity of our method. We then demonstrate that one of these predicted target sequences, in the 3'UTR of discs large (dlg1, the Drosophila PSD95 ortholog, can functionally substitute for a canonical NRE (Nanos response element in vivo in a heterologous functional assay. Finally, we show that the endogenous dlg1 mRNA can be regulated by Pumilio in a neuronal context, the adult mushroom bodies (MB, which is an anatomical site of memory storage.

  19. Mutagenic effects of irradiated glucose in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Varma, M.B.; Rao, K.P.; Nandan, S.D.; Rao, M.S.

    1982-01-01

    The mutagenic effects of irradiated glucose were studied using the sex-linked recessive lethal test in Drosophila melanogaster. Oregon K males of D. melanogaster reared on a medium containing 20 or 40% glucose irradiated with a dose of 0.02, 0.10, 0.20, 2 or 5 Mrad #betta#-rays were scored for the induction of sex-linked recessive lethals. The results showed no significant increase in the frequency of X-lethals in Drosophila at any of the dose levels. (author)

  20. Calcium and Egg Activation in Drosophila

    Science.gov (United States)

    Sartain, Caroline V.; Wolfner, Mariana F.

    2012-01-01

    Summary In many animals, a rise in intracellular calcium levels is the trigger for egg activation, the process by which an arrested mature oocyte transitions to prepare for embryogenesis. In nearly all animals studied to date, this calcium rise, and thus egg activation, is triggered by the fertilizing sperm. However in the insects that have been examined, fertilization is not necessary to activate their oocytes. Rather, these insects’ eggs activate as they transit through the female’s reproductive tract, regardless of male contribution. Recent studies in Drosophila have shown that egg activation nevertheless requires calcium and that the downstream events and molecules of egg activation are also conserved, despite the difference in initial trigger. Genetic studies have uncovered essential roles for the calcium-dependent enzyme calcineurin and its regulator calcipressin, and have hinted at roles for calmodulin, in Drosophila egg activation. Physiological and in vitro studies have led to a model in which mechanical forces that impact the Drosophila oocyte as it moves through the reproductive tract triggers the influx of calcium from the external environment, thereby initiating egg activation. Future research will aim to test this model, as well as to determine the spatiotemporal dynamics of cytoplasmic calcium flux and mode of signal propagation in this unique system. PMID:23218670

  1. Modeling Human Cancers in Drosophila.

    Science.gov (United States)

    Sonoshita, M; Cagan, R L

    2017-01-01

    Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.

  2. Microwave effects in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Dardalhon, M.; Averbeck, D.; Berteaud, A.J.

    1979-01-01

    Experiments were set up to investigate the effects of open space microwave irradiation of the millimeter (73 GHz) and the centimeter (17 GHz) range in Drosophila melanogaster. We used the wild type strain Paris and the strain delta carrying melanitic tumors in the 3rd larval stage, in the pupae and the adults. The power densities were up to 100mW.cm -2 for 73 GHz and about 60 mW.cm -2 for microwaves at 17 GHz. After 2h exposure to microwaves of 17 GHz or 73 GHz the hatching of the irradiated eggs and their development were normal. In a few cases there was a tendency towards a diminution of the survival of eggs treated at different stages, of larvae treated in the stages 1, 2 and 3 and of treated pupae. However, this was not always statistically significant. The microwave treatment did not induce teratological changes in the adults. A statistical analysis brought about slight diminutions in the incidence and multiplicity of tumors in adult flies. When wild type females were exposed to microwaves of 17 GHz for 16 or 21 h and crossed with untreated males we observed a marked increase in fertility as compared to untreated samples. The viability and tumor incidence in the offspring was not affected. Similar results were obtained when microwaves treated males were crossed with untreated females

  3. A comparison of Frost expression among species and life stages of Drosophila.

    Science.gov (United States)

    Bing, X; Zhang, J; Sinclair, Brent J

    2012-02-01

    Frost (Fst) is a gene associated with cold exposure in Drosophila melanogaster. We used real-time PCR to assess whether cold exposure induces expression of Fst in 10 different life stages of D. melanogaster, and adults of seven other Drosophila species. We exposed groups of individuals to 0 °C (2 h), followed by 1 h recovery (22 °C). Frost was significantly upregulated in response to cold in eggs, third instar larvae, and 2- and 5-day-old male and female adults in D. melanogaster. Life stages in which cold did not upregulate Fst had high constitutive expression. Frost is located on the opposite strand of an intron of Diuretic hormone (DH), but cold exposure did not upregulate DH. Frost orthologues were identified in six other species within the Melanogaster group (Drosophila sechellia, Drosophila simulans, Drosophila yakuba, Drosophila erecta, Drosophila ananassae and Drosophila mauritiana). Frost orthologues were upregulated in response to cold exposure in both sexes in adults of all of these species. The predicted structure of a putative Frost consensus protein shows highly conserved tandem repeats of motifs involved in cell signalling (PEST and TRAF2), suggesting that Fst might encode an adaptor protein involved in acute stress or apoptosis signalling in vivo. © 2011 The Authors. Insect Molecular Biology © 2011 The Royal Entomological Society.

  4. Effect of the gene transformer of Anastrepha on the somatic sexual development of Drosophila.

    Science.gov (United States)

    Ruiz, María-Fernanda; Sánchez, Lucas

    2010-01-01

    The gene transformer (tra) is the key regulatory memory device for sex determination in tephritid insects. The present manuscript addressed the question about the functional conservation of the tephritid Anastrepha Transformer protein to direct somatic sexual development in Drosophila (Drosophilidae). The transformer cDNA of Anastrepha encoding the putative full-length Tra protein was cloned in pUAST and introduced into Drosophila melanogaster. To express this protein, the GAL4-UAS system was used. The Anastrepha Tra protein induced the female-specific splicing of both dsx and fru pre-mRNAs in Drosophila XY male flies, so that these became transformed into females, though this transformation was incomplete (the sexually dimorphic foreleg basitarsus and the external terminalia were monitored). It was found that the degree of female transformation directly depended on the dose of Anastrepha tra and Drosophila transformer-2 (tra-2) genes, and that the Anastrepha Tra-Drosophila Tra2 complex is not as efficient as the Drosophila Tra-Tra2 complex at inducing the female-specific splicing of Drosophila dsx pre-mRNA. This can explain why the Anastrepha Tra protein cannot fully substitute for the endogenous Drosophila Tra protein.

  5. Sexual Communication in the Drosophila Genus.

    Science.gov (United States)

    Bontonou, Gwénaëlle; Wicker-Thomas, Claude

    2014-06-18

    In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular non-hydrocarbon pheromones that act after mating: cis-vaccenyl acetate, developing on its controversial role in courtship behavior and long-chain acetyldienylacetates and triacylglycerides, which act as anti-aphrodisiacs in mated females.

  6. Adult central nervous system

    International Nuclear Information System (INIS)

    Sutton, M.L.

    1985-01-01

    Historically, the adult central nervous system (CNS) was regarded as relatively immune to the effects of ionising radiation, and the recognition of the CNS as a radio-vulnerable structure occurred later than was the case for many other tissues. Increasingly precise knowledge of the time-dose-volume relationships for CNS tolerance has had two important consequences: (1) it has permitted the avoidance of catastrophic and usually lethal late effects in the brain and spinal cord when these tissues are unavoidably irradiated during the treatment of adjacent non-CNS tumours, and (2) it has encouraged referral for irradiation of certain technically benign lesions which, although compatible with prolonged survival, represent a continuing threat to the patient - for example arteriovenous malformations, pituitary adenomas, and some meningiomas. Many of these can now be controlled for very long periods following radiation doses consistent with the long-term functional integrity of the CNS

  7. Maneuvering in Nervous Times

    DEFF Research Database (Denmark)

    Veel, Kristin

    2012-01-01

    is a strong example of how hyperlinks can work in a printed literary environment as a vehicle for a discussion of reading practices, linearity, and narrative structures. The novel engages with the theoretical debates about digital hyperlinks from the 1990s onwards, and it elegantly uses the link structure...... to challenge the format of the traditional, printed book. However, this article also shows how the novel is very much a part of a generation of literary interest in digital information structures, which not only uses the hyperlinks as a way of subverting the physical medium of the book, but also uses the links...... as an enhancement of the plot and the story it wants to tell. The hyperlinks are thus not merely a formal feature, but an integrated part of the novel's depiction of contemporary conditions of life in the “nervous times” it portrays....

  8. Effects of the Autonomic Nervous System, Central Nervous System ...

    African Journals Online (AJOL)

    The gastrointestinal tract is chiefly involved in the digestion of ingested food, facilitation of absorption process and expulsion of the undigested food material through motility process. Motility is influenced by neurohormonal system which is associated with the enteric nervous system , autonomic nervous system and the ...

  9. Tolerance in Drosophila

    OpenAIRE

    Atkinson, Nigel S.

    2009-01-01

    The set of genes that underlie ethanol tolerance (inducible resistance) are likely to overlap with the set of genes responsible for ethanol addiction. Whereas addiction is difficult to recognize in simple model systems, behavioral tolerance is readily identifiable and can be induced in large populations of animals. Thus, tolerance lends itself to analysis in model systems with powerful genetics. Drosophila melanogaster has been used by a variety of laboratories for the identification of genes...

  10. Functional neuroanatomy of Drosophila olfactory memory formation.

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L

    2014-10-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying Drosophila learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive and aversive reinforcers: (1) Which neurons within the olfactory nervous system mediate the acquisition of memory? (2) What is the complete neural circuitry extending from the site(s) of acquisition to the site(s) controlling memory expression? (3) How is information processed across this circuit to consolidate early-forming, disruptable memories to stable, late memories? Much progress has been made and a few strong conclusions have emerged: (1) Acquisition occurs at multiple sites within the olfactory nervous system but is mediated predominantly by the γ mushroom body neurons. (2) The expression of long-term memory is completely dependent on the synaptic output of α/β mushroom body neurons. (3) Consolidation occurs, in part, through circuit interactions between mushroom body and dorsal paired medial neurons. Despite this progress, a complete and unified model that details the pathway from acquisition to memory expression remains elusive. © 2014 Guven-Ozkan and Davis; Published by Cold Spring Harbor Laboratory Press.

  11. Your Brain and Nervous System

    Science.gov (United States)

    ... Safe Videos for Educators Search English Español Your Brain & Nervous System KidsHealth / For Kids / Your Brain & Nervous ... The coolest wetsuit? Nope — he needs his cerebellum! Brain Stem Keeps You Breathing — and More Another brain ...

  12. Behavioral Teratogenesis in Drosophila melanogaster.

    Science.gov (United States)

    Mishra, Monalisa; Barik, Bedanta Kumar

    2018-01-01

    Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.

  13. The nervous systems of cnidarians

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Westfall, J A

    1995-01-01

    specialized neurons that we find in higher animals today. The primitive nervous system of cnidarians is strongly peptidergic: from a single sea anemone species Anthopleura elegantissima, we have now isolated 16 different novel neuropeptides. These peptides are biologically active and cause inhibitions......Cnidarians have simple nervous systems and it was probably within this group or a closely-related ancestor that nervous systems first evolved. The basic plan of the cnidarian nervous system is that of a nerve net which, at some locations, has condensed to form nerve plexuses, or circular...... that the peptides are located in neuronal dense-cored vesicles associated with both synaptic and non-synaptic release sites. All these data indicate that evolutionarily "old" nervous systems use peptides as transmitters. We have also investigated the biosynthesis of the cnidarian neuropeptides. These neuropeptides...

  14. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  15. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin

    2012-02-01

    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  16. The Drosophila melanogaster host model.

    Science.gov (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  17. What use is an infertile sperm? A comparative study of sperm-heteromorphic Drosophila

    DEFF Research Database (Denmark)

    Holman, Luke; Freckleton, Robert P; Snook, Rhonda R

    2007-01-01

    Sperm size and number are important determinants of male reproductive success. The genus Drosophila exhibits a remarkable diversity of sperm production strategies, including the production of multiple sperm morphs by individual males, a phenomenon called sperm heteromorphism. Sperm-heteromorphic ......Sperm size and number are important determinants of male reproductive success. The genus Drosophila exhibits a remarkable diversity of sperm production strategies, including the production of multiple sperm morphs by individual males, a phenomenon called sperm heteromorphism. Sperm......-heteromorphic Drosophila species in the obscura group produce large numbers of infertile "parasperm" in addition to fertile eusperm. Parasperm have been hypothesized to perform a number of roles in place of fertilization, predominantly focused on their potential function in postcopulatory sexual selection. However...

  18. Female Drosophila melanogaster gene expression and mate choice: the X chromosome harbours candidate genes underlying sexual isolation.

    Directory of Open Access Journals (Sweden)

    Richard I Bailey

    2011-02-01

    Full Text Available The evolution of female choice mechanisms favouring males of their own kind is considered a crucial step during the early stages of speciation. However, although the genomics of mate choice may influence both the likelihood and speed of speciation, the identity and location of genes underlying assortative mating remain largely unknown.We used mate choice experiments and gene expression analysis of female Drosophila melanogaster to examine three key components influencing speciation. We show that the 1,498 genes in Zimbabwean female D. melanogaster whose expression levels differ when mating with more (Zimbabwean versus less (Cosmopolitan strain preferred males include many with high expression in the central nervous system and ovaries, are disproportionately X-linked and form a number of clusters with low recombination distance. Significant involvement of the brain and ovaries is consistent with the action of a combination of pre- and postcopulatory female choice mechanisms, while sex linkage and clustering of genes lead to high potential evolutionary rate and sheltering against the homogenizing effects of gene exchange between populations.Taken together our results imply favourable genomic conditions for the evolution of reproductive isolation through mate choice in Zimbabwean D. melanogaster and suggest that mate choice may, in general, act as an even more important engine of speciation than previously realized.

  19. Central nervous system tumors

    International Nuclear Information System (INIS)

    Gavin, P.R.; Fike, J.R.; Hoopes, P.J.

    1995-01-01

    Central nervous system (CNS) tumors are relatively common in veterinary medicine, with most diagnoses occurring in the canine and feline species. Numerous tumor types from various cells or origins have been identified with the most common tumors being meningiomas and glial cell tumors. Radiation therapy is often used as an aid to control the clinical signs associated with these neoplasms. In general, these tumors have a very low metastatic potential, such that local control offers substantial benefit. Experience in veterinary radiation oncology would indicate that many patients benefit from radiation treatment. Current practice indicates the need for computed tomography or magnetic resonance imaging studies. These highly beneficial studies are used for diagnosis, treatment planning, and to monitor treatment response. Improvements in treatment planning and radiation delivered to the tumor, while sparing the normal tissues, should improve local control and decrease potential radiation related problems to the CNS. When possible, multiple fractions of 3 Gy or less should be used. The tolerance dose to the normal tissue with this fractionation schedule is 50 to 55 Gy. The most common and serious complications of radiation for CNS tumors is delayed radiation myelopathy and necrosis. Medical management of the patient during radiation therapy requires careful attention to anesthetic protocols, and medications to reduce intracranial pressure that is often elevated in these patients. Canine brain tumors have served as an experimental model to test numerous new treatments. Increased availability of advanced imaging modalities has spawned increased detection of these neoplasms. Early detection of these tumors with appropriate aggressive therapy should prove beneficial to many patients

  20. Cell proliferation in the Drosophila adult brain revealed by clonal analysis and bromodeoxyuridine labelling

    Directory of Open Access Journals (Sweden)

    Brand Andrea H

    2009-03-01

    Full Text Available Abstract Background The production of new neurons during adulthood and their subsequent integration into a mature central nervous system have been shown to occur in all vertebrate species examined to date. However, the situation in insects is less clear and, in particular, it has been reported that there is no proliferation in the Drosophila adult brain. Results We report here, using clonal analysis and 5'-bromo-2'-deoxyuridine (BrdU labelling, that cell proliferation does occur in the Drosophila adult brain. The majority of clones cluster on the ventrolateral side of the antennal lobes, as do the BrdU-positive cells. Of the BrdU-labelled cells, 86% express the glial gene reversed polarity (repo, and 14% are repo negative. Conclusion We have observed cell proliferation in the Drosophila adult brain. The dividing cells may be adult stem cells, generating glial and/or non-glial cell types.

  1. Sex chromosomes and speciation in Drosophila

    Science.gov (United States)

    Presgraves, Daven C.

    2010-01-01

    Two empirical rules suggest that sex chromosomes play a special role in speciation. The first is Haldane's rule— the preferential sterility and inviability of species hybrids of the heterogametic (XY) sex. The second is the disproportionately large effect of the X chromosome in genetic analyses of hybrid sterility. Whereas the causes of Haldane's rule are well established, the causes of the ‘large X-effect’ have remained controversial. New genetic analyses in Drosophila confirm that the X is a hotspot for hybrid male sterility factors, providing a proximate explanation for the large X-effect. Several other new findings— on faster X evolution, X chromosome meiotic drive, and the regulation of the X chromosome in the male-germline— provide plausible evolutionary explanations for the large X-effect. PMID:18514967

  2. The developmental transcriptome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    . Whereas, 20% of Drosophila genes are annotated as encoding alternatively spliced premRNAs, splice-junction microarray experiments indicate that this number is at least 40% (ref. 7). Determining the diversity of mRNAs generated by alternative promoters, alternative splicing and RNA editing will substantially increase the inferred protein repertoire. Non-coding RNA genes (ncRNAs) including short interfering RNAs (siRNAs) and microRNAS (miRNAs) (reviewed in ref. 10), and longer ncRNAs such as bxd (ref. 11) and rox (ref. 12), have important roles in gene regulation, whereas others such as small nucleolar RNAs (snoRNAs)and small nuclear RNAs (snRNAs) are important components of macromolecular machines such as the ribosome and spliceosome. The transcription and processing of these ncRNAs must also be fully documented and mapped. As part of the modENCODE project to annotate the functional elements of the D. melanogaster and Caenorhabditis elegans genomes, we used RNA-Seq and tiling microarrays to sample the Drosophila transcriptome at unprecedented depth throughout development from early embryo to ageing male and female adults. We report on a high-resolution view of the discovery, structure and dynamic expression of the D. melanogaster transcriptome.

  3. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    Science.gov (United States)

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  4. The evolution of the serotonergic nervous system

    DEFF Research Database (Denmark)

    Hay-Schmidt, Anders

    2000-01-01

    Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion......Anatomy, serotonergic nervous system, neurons, invertebrates, phylogeny, development, apical ganglion...

  5. Substrate vibrations during courtship in three Drosophila species.

    Directory of Open Access Journals (Sweden)

    Valerio Mazzoni

    Full Text Available While a plethora of studies have focused on the role of visual, chemical and near-field airborne signals in courtship of Drosophila fruit flies, the existence of substrate-borne vibrational signals has been almost completely overlooked. Here we describe substrate vibrations generated during courtship in three species of the D. melanogaster group, from the allegedly mute species D. suzukii, its sister species D. biarmipes, and from D. melanogaster. In all species, we recorded several types of substrate vibrations which were generated by locomotion, abdominal vibrations and most likely through the activity of thoracic wing muscles. In D. melanogaster and D. suzukii, all substrate vibrations described in intact males were also recorded in males with amputated wings. Evidence suggests that vibrational signalling may be widespread among Drosophila species, and fruit flies may provide an ideal model to study various aspects of this widespread form of animal communication.

  6. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster

    OpenAIRE

    Hoff, Max; Balfanz, Sabine; Ehling, Petra; Gensch, Thomas; Baumann, Arnd

    2011-01-01

    Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca2+ oscillations. Here, we have unraveled the molecu...

  7. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    DEFF Research Database (Denmark)

    Halberg, Kenneth Agerlin; Rainey, Stephanie M.; Veland, Iben Rønn

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most...... role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border....

  8. Myoblast fusion in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Haralalka, Shruti [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Abmayr, Susan M., E-mail: sma@stowers.org [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160 (United States)

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  9. Myoblast fusion in Drosophila

    International Nuclear Information System (INIS)

    Haralalka, Shruti; Abmayr, Susan M.

    2010-01-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  10. SUMOylation in Drosophila Development

    Directory of Open Access Journals (Sweden)

    Albert J. Courey

    2012-07-01

    Full Text Available Small ubiquitin-related modifier (SUMO, an ~90 amino acid ubiquitin-like protein, is highly conserved throughout the eukaryotic domain. Like ubiquitin, SUMO is covalently attached to lysine side chains in a large number of target proteins. In contrast to ubiquitin, SUMO does not have a direct role in targeting proteins for proteasomal degradation. However, like ubiquitin, SUMO does modulate protein function in a variety of other ways. This includes effects on protein conformation, subcellular localization, and protein–protein interactions. Significant insight into the in vivo role of SUMOylation has been provided by studies in Drosophila that combine genetic manipulation, proteomic, and biochemical analysis. Such studies have revealed that the SUMO conjugation pathway regulates a wide variety of critical cellular and developmental processes, including chromatin/chromosome function, eggshell patterning, embryonic pattern formation, metamorphosis, larval and pupal development, neurogenesis, development of the innate immune system, and apoptosis. This review discusses our current understanding of the diverse roles for SUMO in Drosophila development.

  11. Acute irradiation injury and autonomic nervous system. 2

    International Nuclear Information System (INIS)

    Matsuu, Mutsumi; Sekine, Ichiro; Shichijo, Kazuko; Ito, Masahiro; Ikeda, Yuzi; Matsuzaki, Sumihiro; Zea-Iriate, W.-L.; Kondo, Takahito

    1996-01-01

    In order to elucidate the mechanism of occurrence of radiation sickness, whole body irradiation of various doses of X-ray was done on male spontaneously hypertensive rats (SHR) whose sympathetic nervous system is functionally activated and on their original male Wistar Kyoto rats (WKY) and the change of their body weights was examined. Further, changes of blood pressure in rats irradiated at 7.5 Gy, of norepinephrine contents in their gut as a parameter of sympathetic nervous function and of acetylcholine contents as that of parasympathetic nervous function were measured. Histopathological examinations were also performed. SHR died at smaller dose than WKY. The blood pressure as a parameter of systemic sympathetic nervous system varied greatly in SHR. Norepinephrine contents elevated rapidly and greatly in SHR after irradiation and acetylcholine contents rapidly elevated in WKY. Apoptosis was more frequently observed in the intestinal crypt of SHR. Participation of autonomic nervous system was thus shown in the appearance of acute radiation injury and sickness in SHR, which was thought to be a useful model for the investigation. (K.H.)

  12. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    DEFF Research Database (Denmark)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.

    2005-01-01

    years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences......We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each...... between the species-but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence...

  13. The Drosophila DmGluRA is required for social interaction and memory

    Directory of Open Access Journals (Sweden)

    Brian P. Schoenfeld

    2013-05-01

    Full Text Available Metabotropic glutamate receptors (mGluRs have well established roles in cognition andsocial behavior in mammals. Whether or not these roles have been conserved throughoutevolution from invertebrate species is less clear. Mammals have 8 mGluRs whereasDrosophila have a single DmGluRA, which has both Gi and Gq coupled signalingactivity. We have utilized Drosophila to examine the role of DmGluRA in social behaviorand various phases of memory. We have found that flies that are homozygous orheterozygous for loss of function mutations of DmGluRA have impaired social behaviorin male Drosophila. Futhermore, flies that are homozygous or heterozygous for loss offunction mutations of DmGluRA have impaired learning during training, immediate recallmemory, short-term memory and long-term memory as young adults. This workdemonstrates a role for metabotropic glutamate receptor activity in both social behaviorand memory in Drosophila.

  14. Drosophila's contribution to stem cell research [v1; ref status: indexed, http://f1000r.es/5h7

    Directory of Open Access Journals (Sweden)

    Gyanesh Singh

    2015-06-01

    Full Text Available The discovery of Drosophila stem cells with striking similarities to mammalian stem cells has brought new hope for stem cell research. A recent development in Drosophila stem cell research is bringing wider opportunities for contemporary stem cell biologists. In this regard, Drosophila germ cells are becoming a popular model of stem cell research. In several cases, genes that controlled Drosophila stem cells were later discovered to have functional homologs in mammalian stem cells. Like mammals, Drosophila germline stem cells (GSCs are controlled by both intrinsic as well as external signals. Inside the Drosophila testes, germline and somatic stem cells form a cluster of cells (the hub. Hub cells depend on JAK-STAT signaling, and, in absence of this signal, they do not self-renew. In Drosophila, significant changes occur within the stem cell niche that contributes to a decline in stem cell number over time. In case of aging Drosophila, somatic niche cells show reduced DE-cadherin and unpaired (Upd proteins. Unpaired proteins are known to directly decrease stem cell number within the niches, and, overexpression of upd within niche cells restored GSCs in older males also . Stem cells in the midgut of Drosophila are also very promising. Reduced Notch signaling was found to increase the number of midgut progenitor cells. On the other hand, activation of the Notch pathway decreased proliferation of these cells. Further research in this area should lead to the discovery of additional factors that regulate stem and progenitor cells in Drosophila.

  15. Evolutionary genetics: the Drosophila model

    Indian Academy of Sciences (India)

    Unknown

    Evolutionary genetics straddles the two fundamental processes of life, ... of the genus Drosophila have been used extensively as model systems in experimental ... issue will prove interesting, informative and thought-provoking for both estab-.

  16. Last mated male sperm precedence in doubly mated females is not ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 92; Issue 2. Last mated male sperm precedence in doubly mated females is not ubiquitous: evidence from sperm competition in laboratory populations of Drosophila nasuta nasuta and Drosophila nasuta albomicans. B. Shruthi S. R. Ramesh. Research Note Volume 92 Issue 2 ...

  17. The route of infection determines Wolbachia antibacterial protection in Drosophila.

    Science.gov (United States)

    Gupta, Vanika; Vasanthakrishnan, Radhakrishnan B; Siva-Jothy, Jonathon; Monteith, Katy M; Brown, Sam P; Vale, Pedro F

    2017-06-14

    Bacterial symbionts are widespread among metazoans and provide a range of beneficial functions. Wolbachia -mediated protection against viral infection has been extensively demonstrated in Drosophila. In mosquitoes that are artificially transinfected with Drosophila melanogaster Wolbachia (wMel), protection from both viral and bacterial infections has been demonstrated. However, no evidence for Wolbachia -mediated antibacterial protection has been demonstrated in Drosophila to date. Here, we show that the route of infection is key for Wolbachia -mediated antibacterial protection. Drosophila melanogaster carrying Wolbachia showed reduced mortality during enteric-but not systemic-infection with the opportunist pathogen Pseudomonas aeruginosa Wolbachia -mediated protection was more pronounced in male flies and is associated with increased early expression of the antimicrobial peptide Attacin A , and also increased expression of a reactive oxygen species detoxification gene ( Gst D8 ). These results highlight that the route of infection is important for symbiont-mediated protection from infection, that Wolbachia can protect hosts by eliciting a combination of resistance and disease tolerance mechanisms, and that these effects are sexually dimorphic. We discuss the importance of using ecologically relevant routes of infection to gain a better understanding of symbiont-mediated protection. © 2017 The Authors.

  18. Distinct types of glial cells populate the Drosophila antenna

    Directory of Open Access Journals (Sweden)

    Jhaveri Dhanisha

    2005-11-01

    Full Text Available Abstract Background The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix-loop-helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. Results We have used different P(Gal4 lines to drive Green Fluorescent Protein (GFP in distinct populations of cells within the Drosophila antenna. Mz317::GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional ~30 glial cells detected by GH146::GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317-glia and GH146-glia respectively. In the adult, processes of GH146-glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317-glia form a peripheral layer. Ablation of GH146-glia does not result in any significant effects on the patterning of the olfactory receptor axons. Conclusion We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146-glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting

  19. Sigma virus and mutation in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Paquin, S.L.A.

    1977-01-01

    - The objectives of these experiments have been (1) to verify and evidence more fully the action of sigma in causing recessive lethal mutation on the X chromosome of Drosophila, both in the male and the female germ line; (2) to extend the study of sigma-induced recessive lethal mutation to the Drosophila autosomes; (3) to explore the possibility that this mutagenesis is site-directed; (4) to study the effects of sigma virus in conjunction with radiation in increasing non-disjunction and dominant lethality. The virus increases the rate of radiation-induced nondisjunction by altering meiotic chromosomal behavior. Percentage of non-disjunction with 500 rads of x-rays in the virus-free flies was 0.176, while in sigma-containing lines it was 0.333. With high doses of either x or neutron radiation, the presence of the virus enhances the frequency of dominant lethality. The difference is especially significant with the fast neutrons. The results indicate that sigma, and presumably other viruses, are indeed environmental mutagens and are, therefore, factors in the rate of background or spontaneous mutation

  20. Adaptive Evolution of Gene Expression in Drosophila.

    Science.gov (United States)

    Nourmohammad, Armita; Rambeau, Joachim; Held, Torsten; Kovacova, Viera; Berg, Johannes; Lässig, Michael

    2017-08-08

    Gene expression levels are important quantitative traits that link genotypes to molecular functions and fitness. In Drosophila, population-genetic studies have revealed substantial adaptive evolution at the genomic level, but the evolutionary modes of gene expression remain controversial. Here, we present evidence that adaptation dominates the evolution of gene expression levels in flies. We show that 64% of the observed expression divergence across seven Drosophila species are adaptive changes driven by directional selection. Our results are derived from time-resolved data of gene expression divergence across a family of related species, using a probabilistic inference method for gene-specific selection. Adaptive gene expression is stronger in specific functional classes, including regulation, sensory perception, sexual behavior, and morphology. Moreover, we identify a large group of genes with sex-specific adaptation of expression, which predominantly occurs in males. Our analysis opens an avenue to map system-wide selection on molecular quantitative traits independently of their genetic basis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Traces of Drosophila Memory

    Science.gov (United States)

    Davis, Ronald L.

    2012-01-01

    Summary Studies using functional cellullar imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at, or near acquisition and co-exist with short-term behavioral memory. One trace forms with a delay after learning and co-exists with intermediate-term behavioral memory. Two traces form many hours after acquisition and co-exist with long-term behavioral memory. The transient memory traces may support behavior across the time-windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for dissecting the logic by which the nervous system organizes and stores different temporal forms of memory. PMID:21482352

  3. How Food Controls Aggression in Drosophila

    Science.gov (United States)

    Lim, Rod S.; Eyjólfsdóttir, Eyrún; Shin, Euncheol; Perona, Pietro; Anderson, David J.

    2014-01-01

    How animals use sensory information to weigh the risks vs. benefits of behavioral decisions remains poorly understood. Inter-male aggression is triggered when animals perceive both the presence of an appetitive resource, such as food or females, and of competing conspecific males. How such signals are detected and integrated to control the decision to fight is not clear. For instance, it is unclear whether food increases aggression directly, or as a secondary consequence of increased social interactions caused by attraction to food. Here we use the vinegar fly, Drosophila melanogaster, to investigate the manner by which food influences aggression. We show that food promotes aggression in flies, and that it does so independently of any effect on frequency of contact between males, increase in locomotor activity or general enhancement of social interactions. Importantly, the level of aggression depends on the absolute amount of food, rather than on its surface area or concentration. When food resources exceed a certain level, aggression is diminished, suggestive of reduced competition. Finally, we show that detection of sugar via Gr5a+ gustatory receptor neurons (GRNs) is necessary for food-promoted aggression. These data demonstrate that food exerts a specific effect to promote aggression in male flies, and that this effect is mediated, at least in part, by sweet-sensing GRNs. PMID:25162609

  4. Temperature-dependent sex-reversal by a transformer-2 gene-edited mutation in the spotted wing drosophila, Drosophila suzukii

    Science.gov (United States)

    Female to male sex reversal was achieved in an emerging agricultural insect pest, Drosophila suzukii, by creating a temperature-sensitive point mutation in the sex-determination gene, transformer-2 (tra-2) using CRISPR/Cas9 (clustered regularly interspaced palindromic repeats/ CRISPR-associated) hom...

  5. Protein O-Mannosyltransferases Affect Sensory Axon Wiring and Dynamic Chirality of Body Posture in the Drosophila Embryo.

    Science.gov (United States)

    Baker, Ryan; Nakamura, Naosuke; Chandel, Ishita; Howell, Brooke; Lyalin, Dmitry; Panin, Vladislav M

    2018-02-14

    Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila , both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies. SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT -dependent

  6. Nutrition quality, body size and two components of mating behavior in Drosophila melanogaster.

    Science.gov (United States)

    Pavković-Lucić, Sofija; Kekić, Vladimir

    2010-01-01

    Two components of mating behavior, mating latency and duration of copulation, were investigated in Drosophila melanogaster males from three different "nutritional" strains, reared for more than 35 generations on banana, tomato and cornmeal-agar-yeast substrates. Males from different strains did not differ according to mating latency and duration of copulation. Also, the sizes of males from different strains did not contribute to these behavioral traits.

  7. Chapter 1. Central nervous system

    International Nuclear Information System (INIS)

    Planiol, T.; Veyre, A.; Plagne, R.

    1975-01-01

    The present situation with regard to explorations of the central nervous system by radioactive compounds is reviewed. For the sake of clarity the brain and cerebrospinal fluid examinations are described separately, with emphasis nevertheless on their complementarity. The tracers used in each of these examinations are listed, together with the criteria governing their choice. The different techniques employed are described. Scintigraphy is presented apart from gamma-angio-encephalography since it is not possible with rectilinear scintigraphs to observe the circulatory phase. The results are interpreted by an analysis of normal and pathological aspects of the different stages of the central nervous system [fr

  8. Hermann Muller and Mutations in Drosophila

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Hermann Muller and Mutations in Drosophila Resources with University of Texas. In Austin his experiments on fruit flies (Drosophila) first showed that exposure to September to spend a year at the only Drosophila laboratory in Europe which was doing parallel work

  9. Use of Drosophila to study DNA repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Harris, P.V.; Sakaguchi, K.

    1988-01-01

    This paper discusses Drosophila, the premier metazoan organism for analyzing many fundamental features of eukaryotic gene regulation. The authors present adaptations of several approaches for studying DNA repair to an analysis of repair-defective mutants in Drosophila. A current understanding of Drosophila DNA repair is described

  10. Lethals induced by γ-radiation in drosophila somatic cells

    International Nuclear Information System (INIS)

    Ivanov, A.I.

    1989-01-01

    Exposure of 3-hour drosophila male embryos to γ-radiation during the topographic segregation of the germ anlage nuclei caused recessive sex-linked lethals in somatic cells only. The selectivity of the screening was determined by the ratio of mutation frequencies induced in embryos and adult males. Analysis of lethal mutations shows that a minimal rate of the divergence between germinal and somatic patterns of the cell development is observed in the embryogenesis, the 3d instar larva and prepupa, and maximal in the 1st and 2nd larva and pupa

  11. What Are the Parts of the Nervous System?

    Science.gov (United States)

    ... Email Print What are the parts of the nervous system? The nervous system consists of two main parts: the central nervous system and the peripheral nervous system: The central nervous system is made up of the brain and ...

  12. Effects of hypo-O-GlcNAcylation on Drosophila development.

    Science.gov (United States)

    Mariappa, Daniel; Ferenbach, Andrew T; van Aalten, Daan M F

    2018-05-11

    Post-translational modification of serine/threonine residues in nucleocytoplasmic proteins with GlcNAc ( O -GlcNAcylation) is an essential regulatory mechanism in many cellular processes. In Drosophila , null mutants of the Polycomb gene O -GlcNAc transferase ( OGT ; also known as super sex combs ( sxc )) display homeotic phenotypes. To dissect the requirement for O -GlcNAc signaling in Drosophila development, we used CRISPR/Cas9 gene editing to generate rationally designed sxc catalytically hypomorphic or null point mutants. Of the fertile males derived from embryos injected with the CRISPR/Cas9 reagents, 25% produced progeny carrying precise point mutations with no detectable off-target effects. One of these mutants, the catalytically inactive sxc K872M , was recessive lethal, whereas a second mutant, the hypomorphic sxc H537A , was homozygous viable. We observed that reduced total protein O -GlcNAcylation in the sxc H537A mutant is associated with a wing vein phenotype and temperature-dependent lethality. Genetic interaction between sxc H537A and a null allele of Drosophila host cell factor ( dHcf ), encoding an extensively O -GlcNAcylated transcriptional coactivator, resulted in abnormal scutellar bristle numbers. A similar phenotype was also observed in sxc H537A flies lacking a copy of skuld ( skd ), a Mediator complex gene known to affect scutellar bristle formation. Interestingly, this phenotype was independent of OGT Polycomb function or dHcf downstream targets. In conclusion, the generation of the endogenous OGT hypomorphic mutant sxc H537A enabled us to identify pleiotropic effects of globally reduced protein O -GlcNAc during Drosophila development. The mutants generated and phenotypes observed in this study provide a platform for discovery of OGT substrates that are critical for Drosophila development. © 2018 Mariappa et al.

  13. Caffeine taste signaling in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Anthi A Apostolopoulou

    2016-08-01

    Full Text Available The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal and ventral organ. However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative coreceptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s. This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviours.

  14. Cerebral Innate Immunity in Drosophila Melanogaster

    Directory of Open Access Journals (Sweden)

    Brian P. Leung

    2015-03-01

    Full Text Available Modeling innate immunity in Drosophila melanogaster has a rich history that includes ground-breaking discoveries in pathogen detection and signaling. These studies revealed the evolutionary conservation of innate immune pathways and mechanisms of pathogen detection, resulting in an explosion of findings in the innate immunity field. In D. melanogaster, studies have focused primarily on responses driven by the larval fat body and hemocytes, analogs to vertebrate liver and macrophages, respectively. Aside from pathogen detection, many recent mammalian studies associate innate immune pathways with development and disease pathogenesis. Importantly, these studies stress that the innate immune response is integral to maintain central nervous system (CNS health. Microglia, which are the vertebrate CNS mononuclear phagocytes, drive vertebrate cerebral innate immunity. The invertebrate CNS contains microglial-like cells-ensheathing glia and reticular glia-that could be used to answer basic questions regarding the evolutionarily conserved innate immune processes in CNS development and health. A deeper understanding of the relationship between D. melanogaster phagocytic microglial-like cells and vertebrate microglia will be key to answering basic and translational questions related to cerebral innate immunity.

  15. Transcriptional regulation of Drosophila gonad formation.

    Science.gov (United States)

    Tripathy, Ratna; Kunwar, Prabhat S; Sano, Hiroko; Renault, Andrew D

    2014-08-15

    The formation of the Drosophila embryonic gonad, involving the fusion of clusters of somatic gonadal precursor cells (SGPs) and their ensheathment of germ cells, provides a simple and genetically tractable model for the interplay between cells during organ formation. In a screen for mutants affecting gonad formation we identified a SGP cell autonomous role for Midline (Mid) and Longitudinals lacking (Lola). These transcriptional factors are required for multiple aspects of SGP behaviour including SGP cluster fusion, germ cell ensheathment and gonad compaction. The lola locus encodes more than 25 differentially spliced isoforms and we have identified an isoform specific requirement for lola in the gonad which is distinct from that in nervous system development. Mid and Lola work in parallel in gonad formation and surprisingly Mid overexpression in a lola background leads to additional SGPs at the expense of fat body cells. Our findings support the idea that although the transcription factors required by SGPs can ostensibly be assigned to those being required for either SGP specification or behaviour, they can also interact to impinge on both processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Rosa Duque de la, M.E.

    1984-01-01

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y 2 wsup(a)/y 2 wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  17. High rate of translocation-based gene birth on the Drosophila Y chromosome.

    Science.gov (United States)

    Tobler, Ray; Nolte, Viola; Schlötterer, Christian

    2017-10-31

    The Y chromosome is a unique genetic environment defined by a lack of recombination and male-limited inheritance. The Drosophila Y chromosome has been gradually acquiring genes from the rest of the genome, with only seven Y-linked genes being gained over the past 63 million years (0.12 gene gains per million years). Using a next-generation sequencing (NGS)-powered genomic scan, we show that gene transfers to the Y chromosome are much more common than previously suspected: at least 25 have arisen across three Drosophila species over the past 5.4 million years (1.67 per million years for each lineage). The gene transfer rate is significantly lower in Drosophila melanogaster than in the Drosophila simulans clade, primarily due to Y-linked retrotranspositions being significantly more common in the latter. Despite all Y-linked gene transfers being evolutionarily recent (Drosophila Y chromosome to be more dynamic than previously appreciated. Our analytical method provides a powerful means to identify Y-linked gene transfers and will help illuminate the evolutionary dynamics of the Y chromosome in Drosophila and other species. Copyright © 2017 the Author(s). Published by PNAS.

  18. A map of octopaminergic neurons in the Drosophila brain.

    Science.gov (United States)

    Busch, Sebastian; Selcho, Mareike; Ito, Kei; Tanimoto, Hiromu

    2009-04-20

    The biogenic amine octopamine modulates diverse behaviors in invertebrates. At the single neuron level, the mode of action is well understood in the peripheral nervous system owing to its simple structure and accessibility. For elucidating the role of individual octopaminergic neurons in the modulation of complex behaviors, a detailed analysis of the connectivity in the central nervous system is required. Here we present a comprehensive anatomical map of candidate octopaminergic neurons in the adult Drosophila brain: including the supra- and subesophageal ganglia. Application of the Flp-out technique enabled visualization of 27 types of individual octopaminergic neurons. Based on their morphology and distribution of genetic markers, we found that most octopaminergic neurons project to multiple brain structures with a clear separation of dendritic and presynaptic regions. Whereas their major dendrites are confined to specific brain regions, each cell type targets different, yet defined, neuropils distributed throughout the central nervous system. This would allow them to constitute combinatorial modules assigned to the modulation of distinct neuronal processes. The map may provide an anatomical framework for the functional constitution of the octopaminergic system. It also serves as a model for the single-cell organization of a particular neurotransmitter in the brain. 2009 Wiley-Liss, Inc.

  19. Phylogeny of the Genus Drosophila

    Science.gov (United States)

    O’Grady, Patrick M.; DeSalle, Rob

    2018-01-01

    Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies. PMID:29716983

  20. Modelling Cooperative Tumorigenesis in Drosophila

    Science.gov (United States)

    2018-01-01

    The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression. PMID:29693007

  1. Modelling Cooperative Tumorigenesis in Drosophila

    Directory of Open Access Journals (Sweden)

    Helena E. Richardson

    2018-01-01

    Full Text Available The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.

  2. Chaski, a novel Drosophila lactate/pyruvate transporter required in glia cells for survival under nutritional stress.

    Science.gov (United States)

    Delgado, María Graciela; Oliva, Carlos; López, Estefanía; Ibacache, Andrés; Galaz, Alex; Delgado, Ricardo; Barros, L Felipe; Sierralta, Jimena

    2018-01-19

    The intercellular transport of lactate is crucial for the astrocyte-to-neuron lactate shuttle (ANLS), a model of brain energetics according to which neurons are fueled by astrocytic lactate. In this study we show that the Drosophila chaski gene encodes a monocarboxylate transporter protein (MCT/SLC16A) which functions as a lactate/pyruvate transporter, as demonstrated by heterologous expression in mammalian cell culture using a genetically encoded FRET nanosensor. chaski expression is prominent in the Drosophila central nervous system and it is particularly enriched in glia over neurons. chaski mutants exhibit defects in a high energy demanding process such as synaptic transmission, as well as in locomotion and survival under nutritional stress. Remarkably, locomotion and survival under nutritional stress defects are restored by chaski expression in glia cells. Our findings are consistent with a major role for intercellular lactate shuttling in the brain metabolism of Drosophila.

  3. Aging changes in the nervous system

    Science.gov (United States)

    ... ency/article/004023.htm Aging changes in the nervous system To use the sharing features on this page, please enable JavaScript. The brain and nervous system are your body's central control center. They control ...

  4. Nanomedicine and the nervous system

    CERN Document Server

    Martin, Colin R; Hunter, Ross J

    2012-01-01

    The nanosciences encompass a variety of technologies ranging from particles to networks and nanostructures. Nanoparticles can be suitable carriers of therapeutic agents, and nanostructures provide suitable platforms and scaffolds for sub-micro bioengineering. This book focuses on nanomedicine and nanotechnology as applied to the nervous system and the brain. It covers nanoparticle-based immunoassays, nanofiber microbrush arrays, nanoelectrodes, protein nanoassemblies, nanoparticles-assisted imaging, nanomaterials, and ion channels. Additional topics include stem cell imaging, neuronal performa

  5. Metabolic and functional phenotypic profiling of Drosophila melanogaster reveals reduced sex differentiation under stressful environmental conditions

    DEFF Research Database (Denmark)

    Orsted, Michael; Malmendal, Anders; Munoz, Joaquin

    2018-01-01

    Drosophila melanogaster (Diptera: Drosophilidae), and how this impacts the magnitude of sexual dimorphism. Experimental stressors that we exposed flies to during development were heat stress, poor nutrition, high acidity, high levels of ammonia and ethanol. Emerged male and female flies from the different...

  6. Effect of low-level intensity EHF radiation on endurance and reproductivity of Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Shakhbazov, V.G.; Chepel', L.M.; Bulgakov, B.M.; Sirenko, S.P.; Belous, O.I.; Fisun, A.I.

    1999-01-01

    The effect of the low-intensity microwaves on three gene-radiations of the imago Drosophila Melanogaster has been investigated out. The radiation source was tuned from 37 to 53 GHz. The thermoimmunity and reproductivity of the first generation of females and males of imago after processing by radiation. The obtained effect can be considered as physiological heterosis

  7. Effects of arsenic upon the no-disyuntion and X chromosome loss mechanisms in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Gomez C, M.T.

    1994-01-01

    In the present investigation we make the analysis of the effect of the sodium arsenite chemistry in concentration 0.2 m M over the events of no-disyuntion and chromosome loss X in germinal cells of Drosophila melanogaster. The Drosophila lineages used for this assay were: females (y 2 w a / y 2 w a ; e/e) and males (X C2 yf bb- / B s Y y+). Those lineages were propagated and isolated for to be used after in the assays. Subsequently these, we make some links types with these individuals with the object to observed the effects of the oral administration of sodium arsenite in the adult individuals, in each one, we induce a damage in the sperm of the male with gamma radiation (25 Gy) and was observed immediately the results of the different assay applied in the first generation (F 1 ). Finally, we analyze and compare the results in contrast with and other investigation we find that the chemistry cause a significant increment in the chromosome loss X either the No-disyuntion was not significative. Also, the arsenite sodium increment the male descendant productivity, so, we deduced that the sodium arsenite do not cause an inhibition of the reparation mechanisms present in the Drosophila melanogaster female ovocites, but the chemistry operated like a modulator of this mechanisms, and prevent an increment of the damage provoked for the gamma radiation over the Drosophila melanogaster male sperm. (Author)

  8. Somatic mutation and recombination induced by fast neutrons in the wing spot test of Drosophila Melanogaster

    International Nuclear Information System (INIS)

    Guzman R, J.; Varela, A.; Policroniades, R.; Delfin, A.; Graf, U.

    1994-01-01

    In the last decades, a large number of studies have been undertaken to evaluate the biological effects of gamma and X rays in Drosophila melanogaster. The majority of these investigations were performed on female and male germ cells. However, comparatively little is known in relation to the biological effects of fast neutrons, and especially in relation to their effects in somatic cells. (Author)

  9. Central nervous system mesenchymal chondrosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Salvati, M.; Frati, A.; Piccirilli, M.; Agrillo, A.; Brogna, C.; Occhiogrosso, G.; Giangaspero, F. [INM Neuromed IRCCS, Pozzilli (Italy). Dept. of Neurosurgery; Caroli, E. [Policlinico S. Andrea, Rome (Italy). Dept. of Neurological Sciences, Neurosurgery

    2005-06-15

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival.

  10. Central nervous system mesenchymal chondrosarcoma

    International Nuclear Information System (INIS)

    Salvati, M.; Frati, A.; Piccirilli, M.; Agrillo, A.; Brogna, C.; Occhiogrosso, G.; Giangaspero, F.; Caroli, E.

    2005-01-01

    Central nervous system mesenchymal chondrosarcomas are rare malignant tumors that constitute a separate entity from the classical chondrosarcoma and myxoid variant. Clinical behaviour of central nervous system chondrosarcomas is still unknown. We describe two rare examples of intracranial mesenchymal chondrosarcoma with a review of the literature, in an attempt to clarify the clinical characteristics, prognosis and treatment of choice of these unusual tumors. Among the 55 reported cases, 23 had postoperative radiotherapy. Although there is no statistical significance according to the Log-Rank test (p=0.7), the patients treated with radiation therapy seem to have a better chance of survival. Patients who had adjuvant chemotherapy (only 5) showed survival times similar to those patients who had none. Although clinical behaviour of central nervous system chondrosarcomas remains to be defined, data from our series as well as literature show that radical removal is the best therapeutic choice. In addition, patients treated with postoperative radiotherapy seem to show a trend toward increased survival

  11. Drosophila Courtship Conditioning As a Measure of Learning and Memory.

    Science.gov (United States)

    Koemans, Tom S; Oppitz, Cornelia; Donders, Rogier A T; van Bokhoven, Hans; Schenck, Annette; Keleman, Krystyna; Kramer, Jamie M

    2017-06-05

    Many insights into the molecular mechanisms underlying learning and memory have been elucidated through the use of simple behavioral assays in model organisms such as the fruit fly, Drosophila melanogaster. Drosophila is useful for understanding the basic neurobiology underlying cognitive deficits resulting from mutations in genes associated with human cognitive disorders, such as intellectual disability (ID) and autism. This work describes a methodology for testing learning and memory using a classic paradigm in Drosophila known as courtship conditioning. Male flies court females using a distinct pattern of easily recognizable behaviors. Premated females are not receptive to mating and will reject the male's copulation attempts. In response to this rejection, male flies reduce their courtship behavior. This learned reduction in courtship behavior is measured over time, serving as an indicator of learning and memory. The basic numerical output of this assay is the courtship index (CI), which is defined as the percentage of time that a male spends courting during a 10 min interval. The learning index (LI) is the relative reduction of CI in flies that have been exposed to a premated female compared to naïve flies with no previous social encounters. For the statistical comparison of LIs between genotypes, a randomization test with bootstrapping is used. To illustrate how the assay can be used to address the role of a gene relating to learning and memory, the pan-neuronal knockdown of Dihydroxyacetone phosphate acyltransferase (Dhap-at) was characterized here. The human ortholog of Dhap-at, glyceronephosphate O-acyltransferase (GNPT), is involved in rhizomelic chondrodysplasia punctata type 2, an autosomal-recessive syndrome characterized by severe ID. Using the courtship conditioning assay, it was determined that Dhap-at is required for long-term memory, but not for short-term memory. This result serves as a basis for further investigation of the underlying molecular

  12. Identification and characterization of novel natural pathogen of Drosophila melanogaster isolated from wild captured Drosophila spp.

    Science.gov (United States)

    Singh, Karan; Zulkifli, Mohammad; Prasad, N G

    2016-12-01

    Drosophila melanogaster is an emerging model system for the study of evolutionary ecology of immunity. However, a large number of studies have used non natural pathogens as very few natural pathogens have been isolated and identified. Our aim was to isolate and characterize natural pathogen/s of D. melanogaster. A bacterial pathogen was isolated from wild caught Drosophila spp., identified as a new strain of Staphylococcus succinus subsp. succinus and named PK-1. This strain induced substantial mortality (36-62%) in adults of several laboratory populations of D. melanogaster. PK-1 grew rapidly within the body of the flies post infection and both males and females had roughly same number of colony forming units. Mortality was affected by mode of infection and dosage of the pathogen. However mating status of the host had no effect on mortality post infection. Given that there are very few known natural bacterial pathogens of D. melanogaster and that PK-1 can establish a sustained infection across various outbred and inbred populations of D. melanogaster this new isolate is a potential resource for future studies on immunity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. A spontaneous body color mutation in Drosophila nappae (Diptera, Drosophilidae

    Directory of Open Access Journals (Sweden)

    Augusto Santos Rampasso

    2017-04-01

    Full Text Available A yellow-bodied male appeared spontaneously in an isofemale line of Drosophila nappae established from a wild-caught female collected at the Forest Reserve of the Instituto de Biociências da Universidade de São Paulo, Cidade Universitária “Armando de Salles Oliveira”, São Paulo city, state of São Paulo, Brazil. This is the first mutation found in D. nappae, a species belonging to the tripunctata group. The yellow male was isolated and individually crossed to two wild-type (brown-colored virgin females from the same generation, yielding numerous offspring. All F1 individuals were wild-type, but the phenotypes yielded in the F2 generation were wild-type females, and both wild-type and yellow-bodied males. The latter yellow male mutants backcrossed with virgin wild-type F1 females yielded four phenotypes (brown-colored and yellow-colored flies of both sexes, indicating an inheritance pattern of X-linked recessive. Chi-square goodness of fit tests (α = 5% detected no significant differences among the number of flies per phenotype. The new mutation is hereby named yellow, due to its probable homology to a similar mutation with an identical inheritance pattern found in Drosophila melanogaster. Keywords: Recessive, São Paulo, Tripunctata group, X-linked, Yellow

  14. CHROMOSOMAL DIFFERENTIATIONS OF THE LAMPBRUSH TYPE FORMED BY THE Y CHROMOSOME IN DROSOPHILA HYDEI AND DROSOPHILA NEOHYDEI

    Science.gov (United States)

    Hess, Oswald; Meyer, Günther F.

    1963-01-01

    The nuclei of growing spermatocytes in Drosophila hydei and D. neohydei are characterized by the appearance of phase-specific, paired, loop-shaped structures thought to be similar to the loops in lampbrush chromosomes of amphibian oocytes. In X/O-males of D. hydei spermatogenesis is completely blocked before the first maturation division. No spermatozoa are formed in such testes. In the nuclei of X/O-spermatocytes, paired loop formations are absent. This shows the dependence of these chromosomal functional structures upon the Y chromosome. The basis of this dependence could be shown through an investigation of males with two Y chromosomes. All loop pairs are present in duplicate in XYY males. This proves that the intranuclear formations are structural modifications of the Y chromosome itself. These functional structures are species-specific and characteristically different in Drosophila hydei and D. neohydei. Reciprocal species crosses and a backcross showed that the spermatocyte nuclei of all hybrid males possess the functional structures corresponding to the species which donated the Y chromosome. This shows that the morphological character of the functional structures is also determined by the Y chromosome. PMID:13954225

  15. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  16. Drosophila tools and assays for the study of human diseases

    Directory of Open Access Journals (Sweden)

    Berrak Ugur

    2016-03-01

    Full Text Available Many of the internal organ systems of Drosophila melanogaster are functionally analogous to those in vertebrates, including humans. Although humans and flies differ greatly in terms of their gross morphological and cellular features, many of the molecular mechanisms that govern development and drive cellular and physiological processes are conserved between both organisms. The morphological differences are deceiving and have led researchers to undervalue the study of invertebrate organs in unraveling pathogenic mechanisms of diseases. In this review and accompanying poster, we highlight the physiological and molecular parallels between fly and human organs that validate the use of Drosophila to study the molecular pathogenesis underlying human diseases. We discuss assays that have been developed in flies to study the function of specific genes in the central nervous system, heart, liver and kidney, and provide examples of the use of these assays to address questions related to human diseases. These assays provide us with simple yet powerful tools to study the pathogenic mechanisms associated with human disease-causing genes.

  17. Irradiated cocoa tested in the wing spot assay in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Zimmering, S.; Olvera, O.; Cruces, M.P.; Pimentel, E.; Arceo, C.; Rosa, M.E. de la; Guzman, J.

    1992-01-01

    The result of treatment of Drosophila melanogaster with irradiated cocoa as scored in the somatic wing spot test is described. The test has been used previously in the evaluation of irradiated food and has registrated a significantly greater number of positives among chemicals tested than germ line counterparts. Irradiated cocoa has thus far been reported negative in other mutagenicity assays including those employing salmonella and Drosophila germ cells and mammalian cells. The wing spot test as described in Graf et al. was employed. Females of the genotype mwh were mated with flr 3 /TM3; Ser males. (author). 9 refs.; 1 tab

  18. Transcriptomic Response of Drosophila Melanogaster Pupae Developed in Hypergravity

    Science.gov (United States)

    Hosamani, Ravikumar; Hateley, Shannon; Bhardwaj, Shilpa R.; Pachter, Lior; Bhattacharya, Sharmila

    2016-01-01

    The metamorphosis of Drosophila is evolutionarily adapted to Earth's gravity, and is a tightly regulated process. Deviation from 1g to microgravity or hypergravity can influence metamorphosis, and alter associated gene expression. Understanding the relationship between an altered gravity environment and developmental processes is important for NASA's space travel goals. In the present study, 20 female and 20 male synchronized (Canton S, 2 to 3day old) flies were allowed to lay eggs while being maintained in a hypergravity environment (3g). Centrifugation was briefly stopped to discard the parent flies after 24hrs of egg laying, and then immediately continued until the eggs developed into P6-staged pupae (25 - 43 hours after pupation initiation). Post hypergravity exposure, P6-staged pupae were collected, total RNA was extracted using Qiagen RNeasy mini kits. We used RNA-Seq and qRT-PCR techniques to profile global transcriptomic changes in early pupae exposed to chronic hypergravity. During the pupal stage, Drosophila relies upon gravitational cues for proper development. Assessing gene expression changes in the pupa under altered gravity conditions helps highlight gravity dependent genetic pathways. A robust transcriptional response was observed in hypergravity-exposed pupae compared to controls, with 1,513 genes showing a significant (q Drosophila pupae in response to hypergravity.

  19. Occurence of translocations between irradiated and intact chromosomes of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Myasnyankina, E.N.; Abeleva, Eh.A.; Generalova, M.V.

    1980-01-01

    Two translocations between irradiated father and intact mother autosomes are obtained in Drosophila melanogaster. Five out of 283 regular translocations (between the second and the third chromosomes of an irradiated male) are accompanied by a recombination over the second or the third chromosomes. Nine flies out of twenty considered to be recombinants, could originate due to mutations. The data obtained prove that intact female autosomes can take part in the exchange with homologic (recombinations) and heterologic (translocations) irradiated male autosomes

  20. Building genetic tools in Drosophila research: an interview with Gerald Rubin

    Directory of Open Access Journals (Sweden)

    2016-04-01

    Full Text Available Gerald (Gerry Rubin, pioneer in Drosophila genetics, is Founding Director of the HHMI-funded Janelia Research Campus. In this interview, Gerry recounts key events and collaborations that have shaped his unique approach to scientific exploration, decision-making, management and mentorship – an approach that forms the cornerstone of the model adopted at Janelia to tackle problems in interdisciplinary biomedical research. Gerry describes his remarkable journey from newcomer to internationally renowned leader in the fly field, highlighting his contributions to the tools and resources that have helped establish Drosophila as an important model in translational research. Describing himself as a ‘tool builder’, his current focus is on developing approaches for in-depth study of the fly nervous system, in order to understand key principles in neurobiology. Gerry was interviewed by Ross Cagan, Senior Editor of Disease Models & Mechanisms.

  1. Three-dimensional reconstruction and segmentation of intact Drosophila by ultramicroscopy

    Directory of Open Access Journals (Sweden)

    Nina Jährling

    2010-02-01

    Full Text Available Genetic mutants are invaluable for understanding the development, physiology and behaviour of Drosophila. Modern molecular genetic techniques enable the rapid generation of large numbers of different mutants. To phenotype these mutants sophisticated microscopy techniques are required, ideally allowing the 3D-reconstruction of the anatomy of an adult fly from a single scan. Ultramicroscopy enables up to cm fields of view, whilst providing micron resolution. In this paper, we present ultramicroscopy reconstructions of the flight musculature, the nervous system, and the digestive tract of entire, chemically cleared, drosophila in autofluorescent light. The 3D-reconstructions thus obtained verify that the anatomy of a whole fly, including the filigree spatial organisation of the direct flight muscles, can be analyzed from a single ultramicroscopy reconstruction. The recording procedure, including 3D-reconstruction using standard software, takes no longer than 30 minutes. Additionally, image segmentation, which would allow for further quantitative analysis, was performed.

  2. A sleep state in Drosophila larvae required for neural stem cell proliferation

    Science.gov (United States)

    Szuperak, Milan; Churgin, Matthew A; Borja, Austin J; Raizen, David M; Fang-Yen, Christopher

    2018-01-01

    Sleep during development is involved in refining brain circuitry, but a role for sleep in the earliest periods of nervous system elaboration, when neurons are first being born, has not been explored. Here we identify a sleep state in Drosophila larvae that coincides with a major wave of neurogenesis. Mechanisms controlling larval sleep are partially distinct from adult sleep: octopamine, the Drosophila analog of mammalian norepinephrine, is the major arousal neuromodulator in larvae, but dopamine is not required. Using real-time behavioral monitoring in a closed-loop sleep deprivation system, we find that sleep loss in larvae impairs cell division of neural progenitors. This work establishes a system uniquely suited for studying sleep during nascent periods, and demonstrates that sleep in early life regulates neural stem cell proliferation. PMID:29424688

  3. The Drosophila blood-brain barrier: Development and function of a glial endothelium

    Directory of Open Access Journals (Sweden)

    Stefanie eLimmer

    2014-11-01

    Full Text Available The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  4. The Drosophila blood-brain barrier: development and function of a glial endothelium.

    Science.gov (United States)

    Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian

    2014-01-01

    The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.

  5. Dopamine and Mushroom Bodies in Drosophila: Experience-Dependent and -Independent Aspects of Sexual Behavior

    Science.gov (United States)

    Neckameyer, Wendi S.

    1998-01-01

    Depletion of dopamine in Drosophila melanogaster adult males, accomplished through systemic introduction of the tyrosine hydroxylase inhibitor 3-iodo-tyrosine, severely impaired the ability of these flies to modify their courtship responses to immature males. Mature males, when first exposed to immature males, will perform courtship rituals; the intensity and duration of this behavior rapidly diminshes with time. Dopamine is also required for normal female sexual receptivity; dopamine-depleted females show increased latency to copulation. One kilobase of 5′ upstream information from the Drosophila tyrosine hydroxylase (DTH) gene, when fused to the Escherichia coli β-galactosidase reporter and transduced into the genome of Drosophila melanogaster, is capable of directing expression of the reporter gene in the mushroom bodies, which are believed to mediate learning acquisition and memory retention in flies. Ablation of mushroom bodies by treatment of newly hatched larva with hydroxyurea resulted in the inability of treated mature adult males to cease courtship when placed with untreated immature males. However, functional mushroom bodies were not required for the dopaminergic modulation of an innate behavior, female sexual receptivity. These data suggest that dopamine acts as a signaling molecule within the mushroom bodies to mediate a simple form of learning. PMID:10454380

  6. Identification of chromatin-associated regulators of MSL complex targeting in Drosophila dosage compensation.

    Directory of Open Access Journals (Sweden)

    Erica Larschan

    Full Text Available Sex chromosome dosage compensation in Drosophila provides a model for understanding how chromatin organization can modulate coordinate gene regulation. Male Drosophila increase the transcript levels of genes on the single male X approximately two-fold to equal the gene expression in females, which have two X-chromosomes. Dosage compensation is mediated by the Male-Specific Lethal (MSL histone acetyltransferase complex. Five core components of the MSL complex were identified by genetic screens for genes that are specifically required for male viability and are dispensable for females. However, because dosage compensation must interface with the general transcriptional machinery, it is likely that identifying additional regulators that are not strictly male-specific will be key to understanding the process at a mechanistic level. Such regulators would not have been recovered from previous male-specific lethal screening strategies. Therefore, we have performed a cell culture-based, genome-wide RNAi screen to search for factors required for MSL targeting or function. Here we focus on the discovery of proteins that function to promote MSL complex recruitment to "chromatin entry sites," which are proposed to be the initial sites of MSL targeting. We find that components of the NSL (Non-specific lethal complex, and a previously unstudied zinc-finger protein, facilitate MSL targeting and display a striking enrichment at MSL entry sites. Identification of these factors provides new insight into how MSL complex establishes the specialized hyperactive chromatin required for dosage compensation in Drosophila.

  7. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  8. Injuries can prolong lifespan in Drosophila melanogaster males

    DEFF Research Database (Denmark)

    Henten, Anne Marie Vestergaard; Loeschcke, Volker; Pedersen, Jørgen Granfeldt

    2016-01-01

    Previous studies have shown that a range of different stresses can increase mean lifespan. Here we investigated the effect of injuries and bacterial inoculation on mean lifespan in lines selected for increased longevity and their controls. The three lines from each selection regime were subjected...

  9. BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms.

    Science.gov (United States)

    Esteves, Francisco F; Springhorn, Alexander; Kague, Erika; Taylor, Erika; Pyrowolakis, George; Fisher, Shannon; Bier, Ethan

    2014-09-01

    In a broad variety of bilaterian species the trunk central nervous system (CNS) derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of "neural identity" gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs) act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs) that control localized expression of the Drosophila msh and zebrafish (Danio rerio) msxB in the dorsal central nervous system (CNS). Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages.

  10. BMPs regulate msx gene expression in the dorsal neuroectoderm of Drosophila and vertebrates by distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Francisco F Esteves

    2014-09-01

    Full Text Available In a broad variety of bilaterian species the trunk central nervous system (CNS derives from three primary rows of neuroblasts. The fates of these neural progenitor cells are determined in part by three conserved transcription factors: vnd/nkx2.2, ind/gsh and msh/msx in Drosophila melanogaster/vertebrates, which are expressed in corresponding non-overlapping patterns along the dorsal-ventral axis. While this conserved suite of "neural identity" gene expression strongly suggests a common ancestral origin for the patterning systems, it is unclear whether the original regulatory mechanisms establishing these patterns have been similarly conserved during evolution. In Drosophila, genetic evidence suggests that Bone Morphogenetic Proteins (BMPs act in a dosage-dependent fashion to repress expression of neural identity genes. BMPs also play a dose-dependent role in patterning the dorsal and lateral regions of the vertebrate CNS, however, the mechanism by which they achieve such patterning has not yet been clearly established. In this report, we examine the mechanisms by which BMPs act on cis-regulatory modules (CRMs that control localized expression of the Drosophila msh and zebrafish (Danio rerio msxB in the dorsal central nervous system (CNS. Our analysis suggests that BMPs act differently in these organisms to regulate similar patterns of gene expression in the neuroectoderm: repressing msh expression in Drosophila, while activating msxB expression in the zebrafish. These findings suggest that the mechanisms by which the BMP gradient patterns the dorsal neuroectoderm have reversed since the divergence of these two ancient lineages.

  11. Studies on mutagen-sensitive strains of Drosophila melanogaster. IV

    International Nuclear Information System (INIS)

    Ferro, W.

    1985-01-01

    The influence of defects in DNA repair processes on X-ray-induced genetic damage in post-meiotic male germ cell stages of Drosophila melanogaster was studied using the 'maternal effects approach'. Basc males were irradiated in N 2 , air or O 2 either as 48-h-old pupae (to sample spermatids) or as 3-4-day-old adults (to sample mature spermatozoa) and mated to females of 3 repair-deficient strains. Simultaneous controls involving mating of males to repair-proficient females (mei + ) were run. The frequencies of sex-linked recessive lethals and of autosomal translocations were determined following standard genetic procedures. The responses elicited in the different crosses with repair-deficient females were compared with those in mei + crosses. (Auth.)

  12. Spontaneous alternation: A potential gateway to spatial working memory in Drosophila.

    Science.gov (United States)

    Lewis, Sara A; Negelspach, David C; Kaladchibachi, Sevag; Cowen, Stephen L; Fernandez, Fabian

    2017-07-01

    Despite their ubiquity in biomedical research, Drosophila have yet to be widely employed as model organisms in psychology. Many complex human-like behaviors are observed in Drosophila, which exhibit elaborate displays of inter-male aggression and female courtship, self-medication with alcohol in response to stress, and even cultural transmission of social information. Here, we asked whether Drosophila can demonstrate behavioral indices of spatial working memory in a Y-maze, a classic test of memory function and novelty-seeking in rodents. Our data show that Drosophila, like rodents, alternate their visits among the three arms of a Y-maze and spontaneously favor entry into arms they have explored less recently versus ones they have just seen. These findings suggest that Drosophila possess some of the information-seeking and working memory facilities mammals depend on to navigate through space and might be relevant models for understanding human psychological phenomena such as curiosity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Genetic analysis of female mating recognition between Drosophila ananassae and Drosophila pallidosa: application of interspecific mosaic genome lines.

    Science.gov (United States)

    Sawamura, Kyoichi; Zhi, Hua; Setoguchi, Koji; Yamada, Hirokazu; Miyo, Takahiro; Matsuda, Muneo; Oguma, Yuzuru

    2008-06-01

    Drosophila ananassae and Drosophila pallidosa are closely related species that can produce viable and fertile hybrids of both sexes, although strong sexual isolation exists between the two species. Females are thought to discriminate conspecific from heterospecific males based on their courtship songs. The genetic basis of female discrimination behavior was analyzed using isogenic females from interspecific mosaic genome lines that carry homozygous recombinant chromosomes. Multiple regression analysis indicated a highly significant effect of the left arm of chromosome 2 (2L) on the willingness of females to mate with D. ananassae males. Not only 2L but also the left arm of chromosome X (XL) and the right arm of chromosome 3 (3R) had significant effects on the females' willingness to mate with D. pallidosa males. All regions with strong effects on mate choice have chromosome arrangements characterized by species-specific inversions. Heterospecific combinations of 2L and 3R have previously been suggested to cause postzygotic reproductive isolation. Thus, genes involved in premating as well as postmating isolation are located in or near chromosomal inversions. This conclusion is consistent with the recently proposed hypothesis that "speciation genes" accumulate at a higher rate in non-recombining genome regions when species divergence occurs in the presence of gene flow.

  14. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  15. Limited taste discrimination in Drosophila.

    Science.gov (United States)

    Masek, Pavel; Scott, Kristin

    2010-08-17

    In the gustatory systems of mammals and flies, different populations of sensory cells recognize different taste modalities, such that there are cells that respond selectively to sugars and others to bitter compounds. This organization readily allows animals to distinguish compounds of different modalities but may limit the ability to distinguish compounds within one taste modality. Here, we developed a behavioral paradigm in Drosophila melanogaster to evaluate directly the tastes that a fly distinguishes. These studies reveal that flies do not discriminate among different sugars, or among different bitter compounds, based on chemical identity. Instead, flies show a limited ability to distinguish compounds within a modality based on intensity or palatability. Taste associative learning, similar to olfactory learning, requires the mushroom bodies, suggesting fundamental similarities in brain mechanisms underlying behavioral plasticity. Overall, these studies provide insight into the discriminative capacity of the Drosophila gustatory system and the modulation of taste behavior.

  16. Sympathetic rhythms and nervous integration.

    Science.gov (United States)

    Gilbey, Michael P

    2007-04-01

    1. The present review focuses on some of the processes producing rhythms in sympathetic nerves influencing cardiovascular functions and considers their potential relevance to nervous integration. 2. Two mechanisms are considered that may account for rhythmic sympathetic discharges. First, neuronal elements of peripheral or central origin produce rhythmic activity by phasically exciting and/or inhibiting neurons within central sympathetic networks. Second, rhythms arise within central sympathetic networks. Evidence is considered that indicates the operation of both mechanisms; the first in muscle and the second in skin sympathetic vasoconstrictor networks. 3. Sympathetic activity to the rat tail, a model for the nervous control of skin circulation, is regulated by central networks involved in thermoregulation and those associated with fear and arousal. In an anaesthetized preparation, activity displays an apparently autonomous rhythm (T-rhythm; 0.4-1.2 Hz) and the level of activity can be manipulated by regulating core body temperature. This model has been used to study rhythm generation in central sympathetic networks and possible functional relevance. 4. A unique insight provided by the T rhythm, into possible physiological function(s) underlying rhythmic sympathetic discharges is that the activity of single sympathetic post-ganglionic neurons within a population innervating the same target can have different rhythm frequencies. Therefore, the graded and dynamic entrainment of the rhythms by inputs, such as central respiratory drive and/or lung inflation-related afferent activity, can produce graded and dynamic synchronization of sympathetic discharges. The degree of synchronization may influence the efficacy of transmission in a target chain of excitable cells. 5. The T-rhythm may be generated within the spinal cord because the intrathecal application of 5-hydroxytryptamine at the L1 level of the spinal cord of a rat spinalized at T10-T11 produces a T-like rhythm

  17. CK2(beta)tes gene encodes a testis-specific isoform of the regulatory subunit of casein kinase 2 in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Kalmykova, Alla I; Shevelyov, Yuri Y; Polesskaya, Oksana O

    2002-01-01

    An earlier described CK2(beta)tes gene of Drosophila melanogaster is shown to encode a male germline specific isoform of regulatory beta subunit of casein kinase 2. Western-analysis using anti-CK2(beta)tes Ig revealed CK2(beta)tes protein in Drosophila testes extract. Expression of a CK2(beta...... and coimmunoprecipitation analysis of protein extract from Drosophila testes, we demonstrated an association between CK2(beta)tes and CK2alpha. Northern-analysis has shown that another regulatory (beta') subunit found recently in D. melanogaster genome is also testis-specific. Thus, we describe the first example of two...

  18. Anatomy and behavioral function of serotonin receptors in Drosophila melanogaster larvae.

    Directory of Open Access Journals (Sweden)

    Annina Huser

    Full Text Available The biogenic amine serotonin (5-HT is an important neuroactive molecule in the central nervous system of the majority of animal phyla. 5-HT binds to specific G protein-coupled and ligand-gated ion receptors to regulate particular aspects of animal behavior. In Drosophila, as in many other insects this includes the regulation of locomotion and feeding. Due to its genetic amenability and neuronal simplicity the Drosophila larva has turned into a useful model for studying the anatomical and molecular basis of chemosensory behaviors. This is particularly true for the olfactory system, which is mostly described down to the synaptic level over the first three orders of neuronal information processing. Here we focus on the 5-HT receptor system of the Drosophila larva. In a bipartite approach consisting of anatomical and behavioral experiments we describe the distribution and the implications of individual 5-HT receptors on naïve and acquired chemosensory behaviors. Our data suggest that 5-HT1A, 5-HT1B, and 5-HT7 are dispensable for larval naïve olfactory and gustatory choice behaviors as well as for appetitive and aversive associative olfactory learning and memory. In contrast, we show that 5-HT/5-HT2A signaling throughout development, but not as an acute neuronal function, affects associative olfactory learning and memory using high salt concentration as a negative unconditioned stimulus. These findings describe for the first time an involvement of 5-HT signaling in learning and memory in Drosophila larvae. In the longer run these results may uncover developmental, 5-HT dependent principles related to reinforcement processing possibly shared with adult Drosophila and other insects.

  19. Drosophila: Retrotransposons Making up Telomeres.

    Science.gov (United States)

    Casacuberta, Elena

    2017-07-19

    Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.

  20. Optogenetic pacing in Drosophila melanogaster

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  1. 'Peer pressure' in larval Drosophila?

    Science.gov (United States)

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-06-06

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. © 2014. Published by The Company of Biologists Ltd.

  2. Quantification of Drosophila Grooming Behavior.

    Science.gov (United States)

    Barradale, Francesca; Sinha, Kairav; Lebestky, Tim

    2017-07-19

    Drosophila grooming behavior is a complex multi-step locomotor program that requires coordinated movement of both forelegs and hindlegs. Here we present a grooming assay protocol and novel chamber design that is cost-efficient and scalable for either small or large-scale studies of Drosophila grooming. Flies are dusted all over their body with Brilliant Yellow dye and given time to remove the dye from their bodies within the chamber. Flies are then deposited in a set volume of ethanol to solubilize the dye. The relative spectral absorbance of dye-ethanol samples for groomed versus ungroomed animals are measured and recorded. The protocol yields quantitative data of dye accumulation for individual flies, which can be easily averaged and compared across samples. This allows experimental designs to easily evaluate grooming ability for mutant animal studies or circuit manipulations. This efficient procedure is both versatile and scalable. We show work-flow of the protocol and comparative data between WT animals and mutant animals for the Drosophila type I Dopamine Receptor (DopR).

  3. Failure of irradiated beef and ham to induce genetic aberrations of Drosophila

    International Nuclear Information System (INIS)

    Mittler, S.

    1979-01-01

    Ham that had been irradiated by electrons and beef which had been exposed to gamma rays from 60 Co were fed to Drosophila melanogaster to determine whether meat sterilized by these methods would induce genetic aberrations. The results showed that for yB/sc 8 y + Y males, fed on irradiated ham or beef, thermally preserved beef or frozen beef for their entire larval life, there was no significant increase in the loss of X or Y chromosomes or non-disjunction of these chromosomes; there was also no significant increase in any of the broods. Similarly for the Oregon R males, there was no significant increase in yield of sex-linked recessive lethals. Thus feeding of irradiated ham and beef to Drosophila males did not induce significant increases in genetic aberrations. The present findings are discussed in relation to the conflicting results of previous studies. (U.K.)

  4. The Drosophila small GTPase Rac2 is required for normal feeding and mating behaviour.

    Science.gov (United States)

    Goergen, Philip; Kasagiannis, Anna; Schiöth, Helgi B; Williams, Michael J

    2014-03-01

    All multicellular organisms require the ability to regulate bodily processes in order to maintain a stable condition, which necessitates fluctuations in internal metabolics, as well as modifications of outward behaviour. Understanding the genetics behind this modulation is important as a general model for the metabolic modification of behaviour. This study demonstrates that the activity of the small GTPase Rac2 is required in Drosophila for the proper regulation of lipid storage and feeding behaviour, as well as aggression and mating behaviours. Rac2 mutant males and females are susceptible to starvation and contain considerably less lipids than controls. Furthermore, Rac2 mutants also have disrupted feeding behaviour, eating fewer but larger meals than controls. Intriguingly, Rac2 mutant males rarely initiate aggressive behaviour and display significantly increased levels of courtship behaviour towards other males and mated females. From these results we conclude that Rac2 has a central role in regulating the Drosophila homeostatic system.

  5. Central nervous system in leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Phair, J P; Anderson, R E; Namiki, Hideo

    1964-03-12

    The present report summarizes the pertinent clinical and pathologic findings in 165 cases of leukemia in atomic bomb exposed victims autopsied during the period 1949 to 1962 at ABCC in Hiroshima and Nagasaki, Japan. Significant parenchymal hemorrhage occurred most often in acute myelogenous leukemia and was markedly increased in patients dying with high terminal white blood cell counts. Possible mechanisms involved in the pathogenesis of cerebral hemorrhage in leukemia are discussed. Subarachnoid hemorrhage and subdural hematoma were not related to leukocytosis but appeared to be influenced by marked thrombocytopenia. Leukemic infiltrates of a diffuse nature involving the meninges were paradoxically increased in patients receiving adequate chemotherapy. Meningeal tumors did not show this peculiar relationship to therapy and were not found in association with lymphatic leukemia. Infections involving the central nervous system were confined to patients receiving chemotherapy including steroids. 39 references, 3 figures, 4 tables.

  6. Central Nervous System Infections in Denmark

    Science.gov (United States)

    2018-02-04

    Central Nervous System Infections; Bacterial Meningitis; Viral Meningitis; Aseptic Meningitis; Encephalitis; Brain Abscess; Neuroborreliosis; Neurosyphilis; Lyme Disease; Tertiary Syphilis; Cerebral Abscess; Meningitis

  7. human immunodeficiency virus and the nervous system

    African Journals Online (AJOL)

    drclement

    pathogenicity, drug resistance and predisposition to ... tropical countries, antiretroviral therapy is not available ... induced peripheral nervous system disorders ... ataxia and intractable vomiting. ... eligibility for chemotherapy and survival after.

  8. Recurring ethanol exposure induces disinhibited courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    Hyun-Gwan Lee

    Full Text Available Alcohol has a strong causal relationship with sexual arousal and disinhibited sexual behavior in humans; however, the physiological support for this notion is largely lacking and thus a suitable animal model to address this issue is instrumental. We investigated the effect of ethanol on sexual behavior in Drosophila. Wild-type males typically court females but not males; however, upon daily administration of ethanol, they exhibited active intermale courtship, which represents a novel type of behavioral disinhibition. The ethanol-treated males also developed behavioral sensitization, a form of plasticity associated with addiction, since their intermale courtship activity was progressively increased with additional ethanol experience. We identified three components crucial for the ethanol-induced courtship disinhibition: the transcription factor regulating male sex behavior Fruitless, the ABC guanine/tryptophan transporter White and the neuromodulator dopamine. fruitless mutant males normally display conspicuous intermale courtship; however, their courtship activity was not enhanced under ethanol. Likewise, white males showed negligible ethanol-induced intermale courtship, which was not only reinstated but also augmented by transgenic White expression. Moreover, inhibition of dopamine neurotransmission during ethanol exposure dramatically decreased ethanol-induced intermale courtship. Chronic ethanol exposure also affected a male's sexual behavior toward females: it enhanced sexual arousal but reduced sexual performance. These findings provide novel insights into the physiological effects of ethanol on sexual behavior and behavioral plasticity.

  9. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Reguly, M.L.

    1983-01-01

    Studying the mechanisms controlling radioresistant in Drosophila the sensibility of four strains of Drosophila melanogaster to sex-linked recessive lethal mutations induced by 5kR Cobalt-60 gamma radiation and 0,006 M EMS or 0,25% of caffeine was determined. (M.A.C.) [pt

  10. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Keywords. circadian rhythm; neuronal network; ion channel; behaviour; neurotransmitter; electrophysiology; Drosophila. Abstract. As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools ...

  11. Male-limited evolution suggests no extant intralocus sexual conflict ...

    Indian Academy of Sciences (India)

    Male-limited evolution suggests no extant intralocus sexual conflict over the sexually dimorphic cuticular hydrocarbons of Drosophila melanogaster ... Spain; Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140 306, India; Department of Biology and Centre for ...

  12. Drosophila TDP1 Ortholog Important for Longevity and Nervous System Maintenance | Center for Cancer Research

    Science.gov (United States)

    As the molecule responsible for encoding a cell’s hereditary information, DNA must maintain its integrity. However, nucleic acids are vulnerable to damage by a number of endogenous and exogenous insults, such as reactive oxygen species or enzymes that react with DNA. Thus, other enzymes are tasked with repairing damaged DNA, including tyrosyl-DNA phosphodiesterase 1 (TDP1),

  13. Asymmetrical reinforcement and Wolbachia infection in Drosophila.

    Directory of Open Access Journals (Sweden)

    John Jaenike

    2006-10-01

    Full Text Available Reinforcement refers to the evolution of increased mating discrimination against heterospecific individuals in zones of geographic overlap and can be considered a final stage in the speciation process. One the factors that may affect reinforcement is the degree to which hybrid matings result in the permanent loss of genes from a species' gene pool. Matings between females of Drosophila subquinaria and males of D. recens result in high levels of offspring mortality, due to interspecific cytoplasmic incompatibility caused by Wolbachia infection of D. recens. Such hybrid inviability is not manifested in matings between D. recens females and D. subquinaria males. Here we ask whether the asymmetrical hybrid inviability is associated with a corresponding asymmetry in the level of reinforcement. The geographic ranges of D. recens and D. subquinaria were found to overlap across a broad belt of boreal forest in central Canada. Females of D. subquinaria from the zone of sympatry exhibit much stronger levels of discrimination against males of D. recens than do females from allopatric populations. In contrast, such reproductive character displacement is not evident in D. recens, consistent with the expected effects of unidirectional cytoplasmic incompatibility. Furthermore, there is substantial behavioral isolation within D. subquinaria, because females from populations sympatric with D. recens discriminate against allopatric conspecific males, whereas females from populations allopatric with D. recens show no discrimination against any conspecific males. Patterns of general genetic differentiation among populations are not consistent with patterns of behavioral discrimination, which suggests that the behavioral isolation within D. subquinaria results from selection against mating with Wolbachia-infected D. recens. Interspecific cytoplasmic incompatibility may contribute not only to post-mating isolation, an effect already widely recognized, but also to

  14. Reproductive isolation among allopatric Drosophila montana populations.

    Science.gov (United States)

    Jennings, Jackson H; Snook, Rhonda R; Hoikkala, Anneli

    2014-11-01

    An outstanding goal in speciation research is to trace the mode and tempo of the evolution of barriers to gene flow. Such research benefits from studying incipient speciation, in which speciation between populations has not yet occurred, but where multiple potential mechanisms of reproductive isolation (RI: i.e., premating, postmating-prezygotic (PMPZ), and postzygotic barriers) may act. We used such a system to investigate these barriers among allopatric populations of Drosophila montana. In all heteropopulation crosses we found premating (sexual) isolation, which was either symmetric or asymmetric depending on the population pair compared. Postmating isolation was particularly strong in crosses involving males from one of the study populations, and while sperm were successfully transferred, stored, and motile, we experimentally demonstrated that the majority of eggs produced were unfertilized. Thus, we identified the nature of a PMPZ incompatibility. There was no evidence of intrinsic postzygotic effects. Measures of absolute and relative strengths of pre- and postmating barriers showed that populations differed in the mode and magnitude of RI barriers. Our results indicate that incipient RI among populations can be driven by different contributions of both premating and PMPZ barriers occurring between different population pairs and without the evolution of postzygotic barriers. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  15. Meiotic transmission of Drosophila pseudoobscura chromosomal arrangements.

    Directory of Open Access Journals (Sweden)

    Richard P Meisel

    Full Text Available Drosophila pseudoobscura harbors a rich gene arrangement polymorphism on the third chromosome generated by a series of overlapping paracentric inversions. The arrangements suppress recombination in heterokaryotypic individuals, which allows for the selective maintenance of coadapted gene complexes. Previous mapping experiments used to determine the degree to which recombination is suppressed in gene arrangement heterozygotes produced non-recombinant progeny in non-Mendelian ratios. The deviations from Mendelian expectations could be the result of viability differences between wild and mutant chromosomes, meiotic drive because of achiasmate pairing of homologues in heterokaryotypic females during meiosis, or a combination of both mechanisms. The possibility that the frequencies of the chromosomal arrangements in natural populations are affected by mechanisms other than adaptive selection led us to consider these hypotheses. We performed reciprocal crosses involving both heterozygous males and females to determine if the frequency of the non-recombinant progeny deviates significantly from Mendelian expectations and if the frequencies deviate between reciprocal crosses. We failed to observe non-Mendelian ratios in multiple crosses, and the frequency of the non-recombinant classes differed in only one of five pairs of reciprocal crosses despite sufficient power to detect these differences in all crosses. Our results indicate that deviations from Mendelian expectations in recombination experiments involving the D. pseudoobscura inversion system are most likely due to fitness differences of gene arrangement karyotypes in different environments.

  16. Obp56h Modulates Mating Behavior in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    John R. Shorter

    2016-10-01

    Full Text Available Social interactions in insects are driven by conspecific chemical signals that are detected via olfactory and gustatory neurons. Odorant binding proteins (Obps transport volatile odorants to chemosensory receptors, but their effects on behaviors remain poorly characterized. Here, we report that RNAi knockdown of Obp56h gene expression in Drosophila melanogaster enhances mating behavior by reducing courtship latency. The change in mating behavior that results from inhibition of Obp56h expression is accompanied by significant alterations in cuticular hydrocarbon (CHC composition, including reduction in 5-tricosene (5-T, an inhibitory sex pheromone produced by males that increases copulation latency during courtship. Whole genome RNA sequencing confirms that expression of Obp56h is virtually abolished in Drosophila heads. Inhibition of Obp56h expression also affects expression of other chemoreception genes, including upregulation of lush in both sexes and Obp83ef in females, and reduction in expression of Obp19b and Or19b in males. In addition, several genes associated with lipid metabolism, which underlies the production of cuticular hydrocarbons, show altered transcript abundances. Our data show that modulation of mating behavior through reduction of Obp56h is accompanied by altered cuticular hydrocarbon profiles and implicate 5-T as a possible ligand for Obp56h.

  17. Central nervous system depressant activityof Leonurus sibiricus ...

    African Journals Online (AJOL)

    The methanol extract of aerial parts of Leonurus sibiricus was shown to possess central nervous system depressant action by significantly decreased the time of onset of sleep and potentiated the pentobarbital induced sleeping time in mice. Keywords: Leonurus sibiricus, labiatae, central nervous depressant, sedation

  18. Understanding and controlling the enteric nervous system

    NARCIS (Netherlands)

    Boeckxstaens, G. E.

    2002-01-01

    The enteric nervous system or the `Little Brain' of the gut controls gastrointestinal motility and secretion, and is involved in visceral sensation. In this chapter, new developments in understanding the function of the enteric nervous system are described. In particular, the interaction of this

  19. Dietary Carotenoids and the Nervous System

    Directory of Open Access Journals (Sweden)

    Billy R. Hammond

    2015-12-01

    Full Text Available This issue of Foods is focused on the general topic of carotenoids within the nervous system. The focus is on the effects of the xanthophylls on the central nervous system (CNS, reflecting the majority of work in this area. [...

  20. The Central Nervous System of Box Jellyfish

    DEFF Research Database (Denmark)

    Garm, Anders Lydik; Ekström, Peter

    2008-01-01

    of behaviors in the box jellyfish such as obstacle avoidance and navigation. The need to process the visual information and turn it into the appropriate behavior puts strong demands on the nervous system of box jellyfish, which appears more elaborate than in other cnidarians. Here, the central part...... of this nervous system is described. Each rhopalium holds a separate part of the CNS with 1,000 nerve cells and a large amount of neuropil. The rhopalial nervous system has several subsystems defined by the anatomy, location, and immunocytochemistry of the cells. Most of the subsystems connect to one or more...... of the eye types, and it is likely that the rhopalial nervous system accounts for most of the visual processing. The major part of the CNS is made up of a ring nerve encircling the bell shaped body. The ring nerve holds around 10,000 cells and is directly connected to all four rhopalial nervous systems...

  1. ["Nervous breakdown": a diagnostic characterization study].

    Science.gov (United States)

    Salmán, E; Carrasco, J L; Liebowitz, M; Díaz Marsá, M; Prieto, R; Jusino, C; Cárdenas, D; Klein, D

    1997-01-01

    An evaluation was made of the influence of different psychiatric co-morbidities on the symptoms of the disorder popularly known as "ataque de nervios" (nervous breakdown) among the US Hispanic population. Using a self-completed instrument designed specially for both traditional nervous breakdown and for panic symptoms, and structured or semi-structured psychiatric interviews for Axis I disorders, and evaluation was made of Hispanic subjects who sought treatment for anxiety in a clinic (n = 156). This study centered on 102 subjects who presented symptoms of "nervous breakdown" and comorbidity with panic disorder, other anxiety disorders, or affective disorder. Variations in co-morbidity with "nervous breakdown" enabled the identification of different patterns of "nervous breakdown" presenting symptoms. Individuals with "nervous breakdown" and panic disorder characteristically expressed a greater sense of asphyxiation, fear of dying, and growing fear (panic-like) during their breakdowns. Subjects with "nervous breakdown" and affective disorder had a greater sensation of anger and more tendency toward screaming and aggressive behavior such as breaking things during the breakdown (emotional anger). Finally, subjects with "nervous breakdown" and co-morbidity with another anxiety disorder had fewer "paniclike" or "emotional anger" symptoms. These findings suggest that: a) the widely used term "nervous breakdown" is a popular label for different patterns of loss of emotional control; b) the type of loss of emotional control is influenced by the associated psychiatric disorder; and c) the symptoms characteristics of the "nervous breakdown" can be useful clinical markers for associated psychiatric disorders. Future research is needed to determine whether the known Hispanic entity "ataque de nervios" is simply a popular description for different aspects of well-known psychiatric disorders, or if it reflects specific demographic, environmental, personality and/or clinical

  2. Theoretical foundations for nervous networks

    International Nuclear Information System (INIS)

    Hasslacher, B.; Tilden, M.W.

    1997-01-01

    Following three years of study into experimental Nervous Net (Nv) control devices, various successes and several amusing failures have implied some general principles on the nature of capable control systems for autonomous machines and perhaps, we conjecture, even biological organisms. These systems are minimal, elegant, and, depending upon their implementation in a open-quotes creatureclose quotes structure, astonishingly robust. Their only problem seems to be that as they are collections of non-linear asynchronous elements, only complex analysis can adequately extract and explain the emergent competency of their operation. The implications are that so long as Nv non-linear topologies can retain some measure of sub-critically coupled planar stability, the Piexito theorem will guarantee a form of plastic mode-locking necessary for broad-behavior competency. Further experimental evidence also suggests that if Nv topologies are kept in sub-chaotically stable regimes, they can be implemented at any scale and still automatically fall into effective survival strategies in unstructured environments. An explanation for how this is be possible in such minimal structures is presented. copyright 1997 American Institute of Physics

  3. Central nervous system tuberculosis: MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kioumehr, F.; Dadsetan, M.R.; Rooholamini, S.A.; Au, A.

    1994-02-01

    The MRI findings of 18 proven cases of central nervous system (CNS) tuberculosis were reviewed; 10 patients were seropositive for HIV. All had medical, laboratory, or surgical proof of CNS tuberculosis. Eleven patients had meningitis, of whom two also had arachnoiditis. Five patients had focal intra-axial tuberculomas: four brain masses and one an intramedullary spinal lesion. Two patients had focal extra-axial tuberculomas: one in the pontine cistern, and one in the spine. In all 11 patients with meningitis MRI showed diffuse, thick, meningeal enhancement. All intraparenchymal tuberculomas showed low signal intensity on T2-weighted images and ring or nodular enhancement. The extra-axial tuberculomas had areas isointense or hypointense relative to normal brain and spinal cord on T2-weighted images. Although tuberculous meningitis cannot be differentiated from other meningitides on the basis of MR findings, intraparenchymal tuberculomas show characteristic T2 shortening, not found in most other space-occupying lesions. In the appropriate clinical setting, tuberculoma should be considered. (orig.)

  4. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan.

    Science.gov (United States)

    Deshpande, Sonali A; Yamada, Ryuichi; Mak, Christine M; Hunter, Brooke; Soto Obando, Alina; Hoxha, Sany; Ja, William W

    2015-12-01

    Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. An acidic diet increased Drosophila gustatory responses (40-230%) and food intake (5-50%) and extended survival (10-160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5-20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and survival. © 2015 American Society for Nutrition.

  5. The role of Drosophila Merlin in spermatogenesis

    Directory of Open Access Journals (Sweden)

    Omelyanchuk Leonid V

    2008-01-01

    Full Text Available Abstract Background Drosophila Merlin, the homolog of the human Neurofibromatosis 2 (NF2 gene, is important for the regulation of cell proliferation and receptor endocytosis. Male flies carrying a Mer3 allele, a missense mutation (Met177→Ile in the Merlin gene, are viable but sterile; however, the cause of sterility is unknown. Results Testis examination reveals that hemizygous Mer3 mutant males have small seminal vesicles that contain only a few immotile sperm. By cytological and electron microscopy analyses of the Mer3, Mer4 (Gln170→stop, and control testes at various stages of spermatogenesis, we show that Merlin mutations affect meiotic cytokinesis of spermatocytes, cyst polarization and nuclear shaping during spermatid elongation, and spermatid individualization. We also demonstrate that the lethality and sterility phenotype of the Mer4 mutant is rescued by the introduction of a wild-type Merlin gene. Immunostaining demonstrates that the Merlin protein is redistributed to the area associated with the microtubules of the central spindle in telophase and its staining is less in the region of the contractile ring during meiotic cytokinesis. At the onion stage, Merlin is concentrated in the Nebenkern of spermatids, and this mitochondrial localization is maintained throughout sperm formation. Also, Merlin exhibits punctate staining in the acrosomal region of mature sperm. Conclusion Merlin mutations affect spermatogenesis at multiple stages. The Merlin protein is dynamically redistributed during meiosis of spermatocytes and is concentrated in the Nebenkern of spermatids. Our results demonstrated for the first time the mitochondrial localization of Merlin and suggest that Merlin may play a role in mitochondria formation and function during spermatogenesis.

  6. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  7. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis

    Directory of Open Access Journals (Sweden)

    Pushpavalli Sreerangam NCVL

    2013-01-01

    Full Text Available Abstract Background In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Results Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. Conclusion mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using

  8. Mild heat treatments induce long-term changes in metabolites associated with energy metabolism in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Sarup, Pernille; Petersen, Simon Metz Mariendal; Nielsen, Niels Christian

    2016-01-01

    treatments on the metabolome of male Drosophila melanogaster. 10 days after the heat treatment, metabolic aging appears to be slowed down, and a treatment response with 40 % higher levels of alanine and lactate and lower levels of aspartate and glutamate were measured. All treatment effects had disappeared...

  9. The SCF ubiquitin ligase Slimb controls Nerfin-1 turnover in Drosophila.

    Science.gov (United States)

    Lin, Xiaohui; Wang, Feng; Li, Yuanpei; Zhai, Chaojun; Wang, Guiping; Zhang, Xiaoting; Gao, Yang; Yi, Tao; Sun, Dan; Wu, Shian

    2018-01-01

    The C2H2 type zinc-finger transcription factor Nerfin-1 expresses dominantly in Drosophila nervous system and plays an important role in early axon guidance decisions and preventing neurons dedifferentiation. Recently, increasing reports indicated that INSM1 (homologue to nerfin-1 in mammals) is a useful marker for prognosis of neuroendocrine tumors. The dynamic expression of Nerfin-1 is regulated post-transcriptionally by multiple microRNAs; however, its post-translational regulation is still unclear. Here we showed that the protein turnover of Nerfin-1 is regulated by Slimb, the substrate adaptor of SCF Slimb ubiquitin ligase complex. Mechanistically, Slimb associates with Nerfin-1 and promotes it ubiquitination and degradation in Drosophila S2R + cells. Furthermore, we determined that the C-terminal half of Nerfin-1 (Nerfin-1 CT ) is required for its binding to Slimb. Genetic epistasis assays showed that Slimb misexpression antagonizes, while knock-down enhances the activity of Nerfin-1 CT in Drosophila eyes. Our data revealed a new link to understand the underlying mechanism for Nerfin-1 turnover in post-translational level, and provided useful insights in animal development and disease treatment by manipulating the activity of Slimb and Nerfin-1. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.

    Science.gov (United States)

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Peters, Christina; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S

    2016-10-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.

  11. Fine-scale topography in sensory systems: insights from Drosophila and vertebrates.

    Science.gov (United States)

    Kaneko, Takuya; Ye, Bing

    2015-09-01

    To encode the positions of sensory stimuli, sensory circuits form topographic maps in the central nervous system through specific point-to-point connections between pre- and postsynaptic neurons. In vertebrate visual systems, the establishment of topographic maps involves the formation of a coarse topography followed by that of fine-scale topography that distinguishes the axon terminals of neighboring neurons. It is known that intrinsic differences in the form of broad gradients of guidance molecules instruct coarse topography while neuronal activity is required for fine-scale topography. On the other hand, studies in the Drosophila visual system have shown that intrinsic differences in cell adhesion among the axon terminals of neighboring neurons instruct the fine-scale topography. Recent studies on activity-dependent topography in the Drosophila somatosensory system have revealed a role of neuronal activity in creating molecular differences among sensory neurons for establishing fine-scale topography, implicating a conserved principle. Here we review the findings in both Drosophila and vertebrates and propose an integrated model for fine-scale topography.

  12. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae

    Science.gov (United States)

    Widmann, Annekathrin; Artinger, Marc; Biesinger, Lukas; Boepple, Kathrin; Schlechter, Jana; Selcho, Mareike; Thum, Andreas S.

    2016-01-01

    Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes—besides other forms—a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3’5’-monophosphate (cAMP) signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution. PMID:27768692

  13. Genetic Dissection of Aversive Associative Olfactory Learning and Memory in Drosophila Larvae.

    Directory of Open Access Journals (Sweden)

    Annekathrin Widmann

    2016-10-01

    Full Text Available Memory formation is a highly complex and dynamic process. It consists of different phases, which depend on various neuronal and molecular mechanisms. In adult Drosophila it was shown that memory formation after aversive Pavlovian conditioning includes-besides other forms-a labile short-term component that consolidates within hours to a longer-lasting memory. Accordingly, memory formation requires the timely controlled action of different neuronal circuits, neurotransmitters, neuromodulators and molecules that were initially identified by classical forward genetic approaches. Compared to adult Drosophila, memory formation was only sporadically analyzed at its larval stage. Here we deconstruct the larval mnemonic organization after aversive olfactory conditioning. We show that after odor-high salt conditioning larvae form two parallel memory phases; a short lasting component that depends on cyclic adenosine 3'5'-monophosphate (cAMP signaling and synapsin gene function. In addition, we show for the first time for Drosophila larvae an anesthesia resistant component, which relies on radish and bruchpilot gene function, protein kinase C activity, requires presynaptic output of mushroom body Kenyon cells and dopamine function. Given the numerical simplicity of the larval nervous system this work offers a unique prospect for studying memory formation of defined specifications, at full-brain scope with single-cell, and single-synapse resolution.

  14. Modeling glial contributions to seizures and epileptogenesis: cation-chloride cotransporters in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Zeid M Rusan

    Full Text Available Flies carrying a kcc loss-of-function mutation are more seizure-susceptible than wild-type flies. The kcc gene is the highly conserved Drosophila melanogaster ortholog of K+/Cl- cotransporter genes thought to be expressed in all animal cell types. Here, we examined the spatial and temporal requirements for kcc loss-of-function to modify seizure-susceptibility in flies. Targeted RNA interference (RNAi of kcc in various sets of neurons was sufficient to induce severe seizure-sensitivity. Interestingly, kcc RNAi in glia was particularly effective in causing seizure-sensitivity. Knockdown of kcc in glia or neurons during development caused a reduction in seizure induction threshold, cell swelling, and brain volume increase in 24-48 hour old adult flies. Third instar larval peripheral nerves were enlarged when kcc RNAi was expressed in neurons or glia. Results suggest that a threshold of K+/Cl- cotransport dysfunction in the nervous system during development is an important determinant of seizure-susceptibility in Drosophila. The findings presented are the first attributing a causative role for glial cation-chloride cotransporters in seizures and epileptogenesis. The importance of elucidating glial cell contributions to seizure disorders and the utility of Drosophila models is discussed.

  15. Adaptive genic evolution in the Drosophila genomes

    DEFF Research Database (Denmark)

    Shapiro, Joshua A; Huang, Wei; Zhang, Chenhui

    2007-01-01

    and stable population. In this study, we sequenced 419 genes from 24 lines of Drosophila melanogaster and its close relatives. Together with data from Drosophila simulans, these data reveal the following. (i) Approximately 10% of the loci in regions of normal recombination are much less polymorphic at silent...... sites than expected, hinting at the action of selective sweeps. (ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species...

  16. Boule-like genes regulate male and female gametogenesis in the flatworm Macrostomum lignano

    NARCIS (Netherlands)

    Kuales, G.; De Mulder, K.; Glashauser, J.; Salvenmoser, W.; Takashima, S.; Hartenstein, V.; Berezikov, E.; Salzburger, W.; Ladurner, P.

    2011-01-01

    Members of the DAZ (Deleted in AZoospermia) gene family are important players in the process of gametogenesis and their dysregulation accounts for 10% of human male infertility. Boule, the ancestor of the family, is mainly involved in male meiosis in most organisms. With the exception of Drosophila

  17. Functional conservation of the Drosophila gooseberry gene and its evolutionary alleles.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available The Drosophila Pax gene gooseberry (gsb is required for development of the larval cuticle and CNS, survival to adulthood, and male fertility. These functions can be rescued in gsb mutants by two gsb evolutionary alleles, gsb-Prd and gsb-Pax3, which express the Drosophila Paired and mouse Pax3 proteins under the control of gooseberry cis-regulatory region. Therefore, both Paired and Pax3 proteins have conserved all the Gsb functions that are required for survival of embryos to fertile adults, despite the divergent primary sequences in their C-terminal halves. As gsb-Prd and gsb-Pax3 uncover a gsb function involved in male fertility, construction of evolutionary alleles may provide a powerful strategy to dissect hitherto unknown gene functions. Our results provide further evidence for the essential role of cis-regulatory regions in the functional diversification of duplicated genes during evolution.

  18. Some results of the effect of space flight factors on Drosophila melanogaster

    International Nuclear Information System (INIS)

    Filatova, L.P.; Vaulina, E.N.

    1983-01-01

    Chromosomal effects of space flight factors were investigated in Drosophila melanogaster flown aboard the Salyut 6 orbital station. Drosophila males heterozygous for four linked traits were exposed to space flight conditions for periods of eight days, and the progeny when the males were mated with homozygous recessive females were compared with those from control flies exposed to the same vibration and acceleration environment, and the progeny of laboratory controls. Increases in recombination and nondisjunction frequencies were observed in the flies exposed to the space environment, with recombinant flies also found in the F1 generation of the vibration and acceleration controls. Results suggest that it is the action of heavy particles that accounts for the major portion of the genetic effects observed. 17 references

  19. Effects of high-LET particles (40A) on the brain of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Miquel, J.; Herman, M.M.; Benton, E.V.; Welch, G.

    1976-01-01

    To investigate the effects of galactic heavy particles on nervous tissue, Drosophila melanogaster flies were exposed to 40 A from the Super-HILAC accelerator at the Lawrence Berkeley Laboratory. The energy of the particles reaching the Drosophila neurons was 4.8 MeV/nucleon, and the fluence ranged from 6 x 10 4 to 8 x 10 7 particles/cm 2 . Thirty-five days after irradiation at the higher fluences, extensive tissue fragmentation and cysts were found. At fluences as low as one hit/two cell bodies (about 5 x 10 6 ) and one hit/90 cell bodies (about 9 x 10 4 particles/cm 2 or 21 rad average dose) swelling of neuronal cytoplasm and focally fragmented membranes were noted; at fluences ranging from one hit/six to one hit/135 cell bodies, there was frequently a marked increase in glial lamellae around nerve-cell processes, which often had degenerative features. These findings support the view that single hits by heavy particles may injure nervous tissue. (author)

  20. The Heat Shock Protein 26 Gene is Required for Ethanol Tolerance in Drosophila

    Directory of Open Access Journals (Sweden)

    Awoyemi A. Awofala

    2011-01-01

    Full Text Available Stress plays an important role in drug- and addiction-related behaviours. However, the mechanisms underlying these behavioural responses are still poorly understood. In the light of recent reports that show consistent regulation of many genes encoding stress proteins including heat shock proteins following ethanol exposure in Drosophila , it was hypothesised that transition to alcohol dependence may involve the dysregulation of the circuits that mediate behavioural responses to stressors. Thus, behavioural genetic methodologies were used to investigate the role of the Drosophila hsp26 gene, a small heat shock protein coding gene which is induced in response to various stresses, in the development of rapid tolerance to ethanol sedation. Rapid tolerance was quantified as the percentage difference in the mean sedation times between the second and first ethanol exposure. Two independently isolated P-element mutations near the hsp26 gene eliminated the capacity for tolerance. In addition, RNAi-mediated functional knockdown of hsp26 expression in the glial cells and the whole nervous system also caused a defect in tolerance development. The rapid tolerance phenotype of the hsp26 mutants was rescued by the expression of the wild-type hsp26 gene in the nervous system. None of these manipulations of the hsp26 gene caused changes in the rate of ethanol absorption. Hsp26 genes are evolutionary conserved, thus the role of hsp26 in ethanol tolerance may present a new direction for research into alcohol dependency.

  1. Orthodenticle is required for the development of olfactory projection neurons and local interneurons in Drosophila

    Directory of Open Access Journals (Sweden)

    Sonia Sen

    2014-07-01

    Full Text Available The accurate wiring of nervous systems involves precise control over cellular processes like cell division, cell fate specification, and targeting of neurons. The nervous system of Drosophila melanogaster is an excellent model to understand these processes. Drosophila neurons are generated by stem cell like precursors called neuroblasts that are formed and specified in a highly stereotypical manner along the neuroectoderm. This stereotypy has been attributed, in part, to the expression and function of transcription factors that act as intrinsic cell fate determinants in the neuroblasts and their progeny during embryogenesis. Here we focus on the lateral neuroblast lineage, ALl1, of the antennal lobe and show that the transcription factor-encoding cephalic gap gene orthodenticle is required in this lineage during postembryonic brain development. We use immunolabelling to demonstrate that Otd is expressed in the neuroblast of this lineage during postembryonic larval stages. Subsequently, we use MARCM clonal mutational methods to show that the majority of the postembryonic neuronal progeny in the ALl1 lineage undergoes apoptosis in the absence of orthodenticle. Moreover, we demonstrate that the neurons that survive in the orthodenticle loss-of-function condition display severe targeting defects in both the proximal (dendritic and distal (axonal neurites. These findings indicate that the cephalic gap gene orthodenticle acts as an important intrinsic determinant in the ALl1 neuroblast lineage and, hence, could be a member of a putative combinatorial code involved in specifying the fate and identity of cells in this lineage.

  2. Effects of high-LET particles /A-40/ on the brain of Drosophila melanogaster

    Science.gov (United States)

    Miquel, J.; Herman, M. M.; Benton, E. V.; Welch, G.

    1976-01-01

    To investigate the effects of galactic heavy particles on nervous tissue, Drosophila melanogaster flies were exposed to A-40 from the Super-HILAC accelerator at the Lawrence Berkeley Laboratory. The energy of the particles reaching the Drosophila neurons was 4.8 MeV/nucleon, and the fluence ranged from 60,000 to 80 million particles/sq cm. Thirty-five days after irradiation at the higher fluences, extensive tissue fragmentation and cysts were found. At fluences as low as one hit/two cell bodies (about 5 million) and one hit/90 cell bodies (about 90,000 particles/sq cm or 21 rad average dose) swelling of neuronal cytoplasm and focally fragmented membranes were noted; at fluences ranging from one hit/six to one hit/135 cell bodies, there was frequently a marked increase in glial lamellae around nerve-cell processes, which often had degenerative features. These findings support the view that single hits by heavy particles may injure nervous tissue.

  3. Radiation injury to the nervous system

    International Nuclear Information System (INIS)

    Gutin, P.H.; Leibel, S.A.; Sneline, G.E.

    1991-01-01

    This book is designed to describe to the radiation biologist, radiation oncologist, neurologist, neurosurgeon, medical oncologist, and neuro-oncologist, the current state of knowledge about the tolerance of the nervous system to various kinds of radiation, the mechanisms of radiation injury, and how nervous system tolerance and injury are related to the more general problem of radiation damage to normal tissue of all types. The information collected here should stimulate interest in and facilitate the growing research effort into radiation injury to the nervous system

  4. Nervous system examination on YouTube

    OpenAIRE

    Azer Samy A; AlEshaiwi Sarah M; AlGrain Hala A; AlKhelaif Rana A

    2012-01-01

    Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “...

  5. Studies on Drosophila radiosensitivity strains

    International Nuclear Information System (INIS)

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.U.

    1985-01-01

    Fertility of radiosensitive mutant drosophila female strain rad (2) 201 61 after irradiation and frequency of dominant lethal mutations (DLM), induced by γ-radiation for 0-5 h and 5-7 days, are investigated. It is shown, that oocytes of the mutant strain are more radiosensitive as compared with cells of mongrel flies as to criterion of DLM appearance over the period of maturing. Early oocytes of stages 2-7 are the most sensitive, i.e. at the stages, corresponding to the manifestation of previously established recombination-defective properties of mutations rad (2) 201 61 . It is also sown, that doses of γ-rays, exceeding 10 Gy produce a strong sterilizing effect on mutant females due to destruction and resorption of egg chambers, irradiated at the stages of previtellogenetic growth of oocytes. In females, carrying mutation of radiosensitivity there is no direct correlation betwen sensitivity of oocytes proper to DLM induction and sensitivity of egg folleicles to resorbing effect of γ-rays. The ways of possible involvement of mutant locus studied into genetic processes in various specialized cells of drosophila

  6. Strong dietary restrictions protect Drosophila against anoxia/reoxygenation injuries.

    Directory of Open Access Journals (Sweden)

    Paul Vigne

    Full Text Available Reoxygenation of ischemic tissues is a major factor that determines the severity of cardiovascular diseases. This paper describes the consequences of anoxia/reoxygenation (A/R stresses on Drosophila, a useful, anoxia tolerant, model organism.Newly emerged adult male flies were exposed to anoxic conditions (<1% O2 for 1 to 6 hours, reoxygenated and their survival was monitored.A/R stresses induced a transient increase in mortality which peaked at the time of reoxygenation. Then flies recovered low mortality rates similar to those of control flies. A/R induced mortality was strongly dependent on dietary conditions during the 48 h that preceded anoxia. Well fed flies were anoxia sensitive. Strong dietary restrictions and starvation conditions protected flies against A/R injuries. The tolerance to anoxia was associated to large decreases in glycogen, protein, and ATP contents. During anoxia, anoxia tolerant flies produced more lactate, less phosphate and they maintained more stable ATP levels than anoxia sensitive flies. Moderate dietary restrictions, which increased the longevity of normoxic flies, did not promote resistance to A/R stresses. Diet dependent A/R injuries were still observed in sigma loss of function mutants and they were insensitive to dietary rapamycin or resveratrol. AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribose-furanoside, an activator AMP kinase decreased A/R injuries. Mutants in the insulin signalling pathway were more anoxia tolerant in a fed state.Long A/R stresses induce a transient increase in mortality in Drosophila. This mortality is highly dependent on dietary conditions prior to the stress. Strong dietary restrictions and starvation conditions protect flies against A/R injuries, probably by inducing a major remodelling of energy metabolism. The results also indicate that mechanistically different responses develop in response to dietary restrictions of different strengths. AMP kinase and the insulin signalling

  7. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    Science.gov (United States)

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  8. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  9. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  10. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Alexandra Coelho

    Full Text Available Caffeine (1, 3, 7-trimethylxanthine, an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents. A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  11. A case of primary hypothyroidism causing central nervous system atherosclerosis in a dog.

    Science.gov (United States)

    Blois, Shauna L; Poma, Roberto; Stalker, Margaret J; Allen, Dana G

    2008-08-01

    A 2-year-old, castrated male, Australian shepherd was presented with a history of chronic mild ataxia, obesity, and lethargy. The dog was treated with levothyroxine, but the ataxia worsened. Cranial nerve abnormalities developed and the dog was euthanized. Postmortem examination revealed marked thyroid gland atrophy and widespread, severe central nervous system atherosclerosis.

  12. Assessing sexual conflict in the Drosophila melanogaster laboratory model system

    Science.gov (United States)

    Rice, William R; Stewart, Andrew D; Morrow, Edward H; Linder, Jodell E; Orteiza, Nicole; Byrne, Phillip G

    2006-01-01

    We describe a graphical model of interlocus coevolution used to distinguish between the interlocus sexual conflict that leads to sexually antagonistic coevolution, and the intrinsic conflict over mating rate that is an integral part of traditional models of sexual selection. We next distinguish the ‘laboratory island’ approach from the study of both inbred lines and laboratory populations that are newly derived from nature, discuss why we consider it to be one of the most fitting forms of laboratory analysis to study interlocus sexual conflict, and then describe four experiments using this approach with Drosophila melanogaster. The first experiment evaluates the efficacy of the laboratory model system to study interlocus sexual conflict by comparing remating rates of females when they are, or are not, provided with a spatial refuge from persistent male courtship. The second experiment tests for a lag-load in males that is due to adaptations that have accumulated in females, which diminish male-induced harm while simultaneously interfering with a male's ability to compete in the context of sexual selection. The third and fourth experiments test for a lag-load in females owing to direct costs from their interactions with males, and for the capacity for indirect benefits to compensate for these direct costs. PMID:16612888

  13. Differential sexual survival of Drosophila melanogaster on copper sulfate.

    Science.gov (United States)

    Balinski, Michael A; Woodruff, Ronny C

    2017-04-01

    Based on studies of the influence of X-chromosomes on the viability of Drosophila melanogaster exposed to cadmium, and on the role of X-linked genes on copper homeostasis, we examined the effect of copper sulfate (CuSO 4 ) on offspring viability using three independent, inbred D. melanogaster crosses (ensuring identical autosomes for males and females within each cross). Each cross was performed with attached X-chromosome females and males with a single X-chromosome. As female D. melanogaster have less metallothionein RNA expression than males, we predicted fewer female offspring than male offspring in crosses exposed to CuSO 4 , even though females have two copies of X-chromosome genes, possibly resulting in overdominant heterozygosity. In two of three crosses, CuSO 4 caused significantly higher numbers of male offspring compared to female offspring. We hypothesized that these gender-based viability differences to copper exposure are caused by X-chromosome ploidy and X-linked genetic variation affecting metallothionein expression. Observed differential offspring viability responses among crosses to copper exposure also showed that different genetic backgrounds (autosomal and/or X-chromosome) can result in significant differences in heavy metal and metallothionein regulation. These results suggest that the effect of copper on offspring viability depends on both genetic background and gender, as both factors can affect the regulation of metallothionein proteins as well as homeostasis of biologically necessary heavy metals.

  14. A single social defeat reduces aggression in a highly aggressive strain of Drosophila

    OpenAIRE

    Penn, Jill K. M.; Zito, Michael F.; Kravitz, Edward A.

    2010-01-01

    Genes and prior experience both influence the behavior of animals, but the relative contribution of each to fighting behavior in Drosophila remains unclear. To address this issue, we bred hyperaggressive flies by selecting winners of fights over 34–37 generations. Males of this strain initiate fights sooner, retaliate more often, and regularly defeat opponents from the nonselected parent Canton-S strain. After a defeat, however, these highly aggressive flies lose their second fights against s...

  15. Variation in Sperm Displacement and Its Association with Accessory Gland Protein Loci in Drosophila Melanogaster

    OpenAIRE

    Clark, A. G.; Aguade, M.; Prout, T.; Harshman, L. G.; Langley, C. H.

    1995-01-01

    Genes that influence mating and/or fertilization success may be targets for strong natural selection. If females remate frequently relative to the duration of sperm storage and rate of sperm use, sperm displacement may be an important component of male reproductive success. Although it has long been known that mutant laboratory stocks of Drosophila differ in sperm displacement, the magnitude of the naturally occurring genetic variation in this character has not been systematically quantified....

  16. Characterizing Male–Female Interactions Using Natural Genetic Variation in Drosophila melanogaster

    Science.gov (United States)

    Reinhart, Michael; Carney, Tara; Clark, Andrew G.

    2015-01-01

    Drosophila melanogaster females commonly mate with multiple males establishing the opportunity for pre- and postcopulatory sexual selection. Traits impacting sexual selection can be affected by a complex interplay of the genotypes of the competing males, the genotype of the female, and compatibilities between the males and females. We scored males from 96 2nd and 94 3rd chromosome substitution lines for traits affecting reproductive success when mated with females from 3 different genetic backgrounds. The traits included male-induced female refractoriness, male remating ability, the proportion of offspring sired under competitive conditions and male-induced female fecundity. We observed significant effects of male line, female genetic background, and strong male by female interactions. Some males appeared to be “generalists” and performed consistently across the different females; other males appeared to be “specialists” and performed very well with a particular female and poorly with others. “Specialist” males did not, however, prefer to court those females with whom they had the highest reproductive fitness. Using 143 polymorphisms in male reproductive genes, we mapped several genes that had consistent effects across the different females including a derived, high fitness allele in Acp26Aa that may be the target of adaptive evolution. We also identified a polymorphism upstream of PebII that may interact with the female genetic background to affect male-induced refractoriness to remating. These results suggest that natural variation in PebII might contribute to the observed male–female interactions. PMID:25425680

  17. dyschronic, a Drosophila homolog of a deaf-blindness gene, regulates circadian output and Slowpoke channels.

    Directory of Open Access Journals (Sweden)

    James E C Jepson

    Full Text Available Many aspects of behavior and physiology are under circadian control. In Drosophila, the molecular clock that regulates rhythmic patterns of behavior has been extensively characterized. In contrast, genetic loci involved in linking the clock to alterations in motor activity have remained elusive. In a forward-genetic screen, we uncovered a new component of the circadian output pathway, which we have termed dyschronic (dysc. dysc mutants exhibit arrhythmic locomotor behavior, yet their eclosion rhythms are normal and clock protein cycling remains intact. Intriguingly, dysc is the closest Drosophila homolog of whirlin, a gene linked to type II Usher syndrome, the leading cause of deaf-blindness in humans. Whirlin and other Usher proteins are expressed in the mammalian central nervous system, yet their function in the CNS has not been investigated. We show that DYSC is expressed in major neuronal tracts and regulates expression of the calcium-activated potassium channel SLOWPOKE (SLO, an ion channel also required in the circadian output pathway. SLO and DYSC are co-localized in the brain and control each other's expression post-transcriptionally. Co-immunoprecipitation experiments demonstrate they form a complex, suggesting they regulate each other through protein-protein interaction. Furthermore, electrophysiological recordings of neurons in the adult brain show that SLO-dependent currents are greatly reduced in dysc mutants. Our work identifies a Drosophila homolog of a deaf-blindness gene as a new component of the circadian output pathway and an important regulator of ion channel expression, and suggests novel roles for Usher proteins in the mammalian nervous system.

  18. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Andrew D. Renault

    2012-08-01

    Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.

  19. vasa is expressed in somatic cells of the embryonic gonad in a sex-specific manner in Drosophila melanogaster.

    Science.gov (United States)

    Renault, Andrew D

    2012-10-15

    Vasa is a DEAD box helicase expressed in the Drosophila germline at all stages of development. vasa homologs are found widely in animals and vasa has become the gene of choice in identifying germ cells. I now show that Drosophila vasa expression is not restricted to the germline but is also expressed in a somatic lineage, the embryonic somatic gonadal precursor cells. This expression is sexually dimorphic, being maintained specifically in males, and is regulated post-transcriptionally. Although somatic Vasa expression is not required for gonad coalescence, these data support the notion that Vasa is not solely a germline factor.

  20. Functional Analysis of Drosophila NF1

    National Research Council Canada - National Science Library

    Bernards, Andre

    2005-01-01

    ...) for Ras, yet homozygous loss of a highly conserved Drosophila NF1 ortholog results in several phenotypes that are insensitive to manipulating Ras signal transduction, but rescued by increasing...

  1. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    PARUL BANERJEE

    c Indian Academy of Sciences. RESEARCH ARTICLE. The Drosophila bipectinata species complex: phylogenetic relationship among different members based on chromosomal variations. PARUL BANERJEE and BASHISTH N. SINGH. ∗. Genetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi ...

  2. Drosophila melanogaster gene expression changes after spaceflight.

    Data.gov (United States)

    National Aeronautics and Space Administration — Gene expression levels were determined in 3rd instar and adult Drosophila melanogaster reared during spaceflight to elucidate the genetic and molecular mechanisms...

  3. Ecdysteroid receptors in Drosophila melanogaster adult females

    Science.gov (United States)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  4. Genetic and evolutionary analysis of the Drosophila larval neuromuscular junction

    Science.gov (United States)

    Campbell, Megan

    Although evolution of brains and behaviors is of fundamental biological importance, we lack comprehensive understanding of the general principles governing these processes or the specific mechanisms and molecules through which the evolutionary changes are effected. Because synapses are the basic structural and functional units of nervous systems, one way to address these problems is to dissect the genetic and molecular pathways responsible for morphological evolution of a defined synapse. I have undertaken such an analysis by examining morphology of the larval neuromuscular junction (NMJ) in wild caught D. melanogaster as well as in over 20 other species of Drosophila. Whereas variation in NMJ morphology within a species is limited, I discovered a surprisingly extensive variation among different species. Compared with evolution of other morphological traits, NMJ morphology appears to be evolving very rapidly. Moreover, my data indicate that natural selection rather than genetic drift is primarily responsible for evolution of NMJ morphology. To dissect underlying molecular mechanisms that may govern NMJ growth and evolutionary divergence, I focused on a naturally occurring variant in D. melanogaster that causes NMJ overgrowth. I discovered that the variant mapped to Mob2, a gene encoding a kinase adapter protein originally described in yeast as a member of the Mitotic Exit Network (MEN). I have subsequently examined mutations in the Drosophila orthologs of all the core components of the yeast MEN and found that all of them function as part of a common pathway that acts presynaptically to negatively regulate NMJ growth. As in the regulation of yeast cytokinesis, these components of the MEN appear to act ultimately by regulating actin dynamics during the process of bouton growth and division. These studies have thus led to the discovery of an entirely new role for the MEN---regulation of synaptic growth---that is separate from its function in cell division. This work

  5. Male Infertility

    Science.gov (United States)

    ... hypothalamus, pituitary, thyroid and adrenal glands. Low testosterone (male hypogonadism) and other hormonal problems have a number of possible underlying causes. Defects of tubules that transport sperm. Many ... syndrome — in which a male is born with two X chromosomes and one ...

  6. Is Drosophila nasuta Lamb (Diptera, Drosophilidae currently reaching the status of a cosmopolitan species?

    Directory of Open Access Journals (Sweden)

    Carlos Ribeiro Vilela

    2015-12-01

    Full Text Available ABSTRACT In early March 2015, three males and two females of one unknown species of Drosophila were collected from a compost pile and some garbage cans in the west region of the city of São Paulo, state of São Paulo, Brazil. Morphologically it is easily identified by the presence of the following conspicuous features: a brownish dorsal stripe along pleura, an entirely iridescent silvery-whitish frons when seen directly from the front, and a row of cuneiform setae on anteroventral side of femur of foreleg; the former two traits being more evident in males. The species was easily reared in a modified banana-agar medium and two isofemale lines were established allowing to obtain mitotic cells showing a diploid chromosome number of 2n = 8. Based both on morphological and chromosomal features, in addition to the geographical distribution, we concluded that the unknown flies belong to Drosophila nasuta Lamb, 1914, a tropical species of the nasuta subgroup of the Drosophila immigrans species group. Photomicrographs of male imagines, terminalia, mitotic and meiotic metaphase plates, as well as of female mitotic metaphase, are included.

  7. Genome-wide dissection of hybrid sterility in Drosophila confirms a polygenic threshold architecture.

    Science.gov (United States)

    Morán, Tomás; Fontdevila, Antonio

    2014-01-01

    To date, different studies about the genetic basis of hybrid male sterility (HMS), a postzygotic reproductive barrier thoroughly investigated using Drosophila species, have demonstrated that no single major gene can produce hybrid sterility without the cooperation of several genetic factors. Early work using hybrids between Drosophila koepferae (Dk) and Drosophila buzzatii (Db) was consistent with the idea that HMS requires the cooperation of several genetic factors, supporting a polygenic threshold (PT) model. Here we present a genome-wide mapping strategy to test the PT model, analyzing serially backcrossed fertile and sterile males in which the Dk genome was introgressed into the Db background. We identified 32 Dk-specific markers significantly associated with hybrid sterility. Our results demonstrate 1) a strong correlation between the number of segregated sterility markers and males' degree of sterility, 2) the exchangeability among markers, 3) their tendency to cluster into low-recombining chromosomal regions, and 4) the requirement for a minimum number (threshold) of markers to elicit sterility. Although our findings do not contradict a role for occasional major hybrid-sterility genes, they conform more to the view that HMS primarily evolves by the cumulative action of many interacting genes of minor effect in a complex PT architecture.

  8. Mapping of gene mutations in drosophila melanogaster

    OpenAIRE

    Halvorsen, Charlotte Marie

    2004-01-01

    In this experiment, mutant genes of a given unknown mutant strain of Drosophila melanogaster were mapped to specific chromosomes. Drosophila melanogaster, commonly known as the fruit fly, was the appropriate choice for the organism to use in this specific experiment because of its relatively rapid life cycle of 10-14 days and because of the small amount of space and food neccessary for maintaining thousands of flies. The D. Melanogaster unknown strain specifically used in this experiment wa...

  9. Focal lesions in the central nervous system

    International Nuclear Information System (INIS)

    Fabrikant, J.I.; Budinger, T.F.; Tobias, C.A.; Born, J.L.

    1980-01-01

    This report reviews the animal and human studies currently in progress at LBL with heavy-ion beams to induce focal lesions in the central nervous system, and discusses the potential future prospects of fundamental and applied brain research with heavy-ion beams. Methods are being developed for producing discrete focal lesions in the central nervous system using the Bragg ionization peak to investigate nerve pathways and neuroendocrine responses, and for treating pathological disorders of the brain

  10. SOLO: a meiotic protein required for centromere cohesion, coorientation, and SMC1 localization in Drosophila melanogaster.

    Science.gov (United States)

    Yan, Rihui; Thomas, Sharon E; Tsai, Jui-He; Yamada, Yukihiro; McKee, Bruce D

    2010-02-08

    Sister chromatid cohesion is essential to maintain stable connections between homologues and sister chromatids during meiosis and to establish correct centromere orientation patterns on the meiosis I and II spindles. However, the meiotic cohesion apparatus in Drosophila melanogaster remains largely uncharacterized. We describe a novel protein, sisters on the loose (SOLO), which is essential for meiotic cohesion in Drosophila. In solo mutants, sister centromeres separate before prometaphase I, disrupting meiosis I centromere orientation and causing nondisjunction of both homologous and sister chromatids. Centromeric foci of the cohesin protein SMC1 are absent in solo mutants at all meiotic stages. SOLO and SMC1 colocalize to meiotic centromeres from early prophase I until anaphase II in wild-type males, but both proteins disappear prematurely at anaphase I in mutants for mei-S332, which encodes the Drosophila homologue of the cohesin protector protein shugoshin. The solo mutant phenotypes and the localization patterns of SOLO and SMC1 indicate that they function together to maintain sister chromatid cohesion in Drosophila meiosis.

  11. Recurrent Gene Duplication Leads to Diverse Repertoires of Centromeric Histones in Drosophila Species.

    Science.gov (United States)

    Kursel, Lisa E; Malik, Harmit S

    2017-06-01

    Despite their essential role in the process of chromosome segregation in most eukaryotes, centromeric histones show remarkable evolutionary lability. Not only have they been lost in multiple insect lineages, but they have also undergone gene duplication in multiple plant lineages. Based on detailed study of a handful of model organisms including Drosophila melanogaster, centromeric histone duplication is considered to be rare in animals. Using a detailed phylogenomic study, we find that Cid, the centromeric histone gene, has undergone at least four independent gene duplications during Drosophila evolution. We find duplicate Cid genes in D. eugracilis (Cid2), in the montium species subgroup (Cid3, Cid4) and in the entire Drosophila subgenus (Cid5). We show that Cid3, Cid4, and Cid5 all localize to centromeres in their respective species. Some Cid duplicates are primarily expressed in the male germline. With rare exceptions, Cid duplicates have been strictly retained after birth, suggesting that they perform nonredundant centromeric functions, independent from the ancestral Cid. Indeed, each duplicate encodes a distinct N-terminal tail, which may provide the basis for distinct protein-protein interactions. Finally, we show some Cid duplicates evolve under positive selection whereas others do not. Taken together, our results support the hypothesis that Drosophila Cid duplicates have subfunctionalized. Thus, these gene duplications provide an unprecedented opportunity to dissect the multiple roles of centromeric histones. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. A Test for Gene Flow among Sympatric and Allopatric Hawaiian Picture-Winged Drosophila.

    Science.gov (United States)

    Kang, Lin; Garner, Harold R; Price, Donald K; Michalak, Pawel

    2017-06-01

    The Hawaiian Drosophila are one of the most species-rich endemic groups in Hawaii and a spectacular example of adaptive radiation. Drosophila silvestris and D. heteroneura are two closely related picture-winged Drosophila species that occur sympatrically on Hawaii Island and are known to hybridize in nature, yet exhibit highly divergent behavioral and morphological traits driven largely through sexual selection. Their closest-related allopatric species, D. planitibia from Maui, exhibits hybrid male sterility and reduced behavioral reproductive isolation when crossed experimentally with D. silvestris or D. heteroneura. A modified four-taxon test for gene flow was applied to recently obtained genomes of the three Hawaiian Drosophila species. The analysis indicates recent gene flow in sympatry, but also, although less extensive, between allopatric species. This study underscores the prevalence of gene flow, even in taxonomic groups considered classic examples of allopatric speciation on islands. The potential confounding effects of gene flow in phylogenetic and population genetics inference are discussed, as well as the implications for conservation.

  13. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila

    Science.gov (United States)

    Duncan, Jason E.; Lytle, Nikki K.; Zuniga, Alfredo; Goldstein, Lawrence S. B.

    2013-01-01

    Axonal transport, a form of long-distance, bi-directional intracellular transport that occurs between the cell body and synaptic terminal, is critical in maintaining the function and viability of neurons. We have identified a requirement for the stathmin (stai) gene in the maintenance of axonal microtubules and regulation of axonal transport in Drosophila . The stai gene encodes a cytosolic phosphoprotein that regulates microtubule dynamics by partitioning tubulin dimers between pools of soluble tubulin and polymerized microtubules, and by directly binding to microtubules and promoting depolymerization. Analysis of stai function in Drosophila , which has a single stai gene, circumvents potential complications with studies performed in vertebrate systems in which mutant phenotypes may be compensated by genetic redundancy of other members of the stai gene family. This has allowed us to identify an essential function for stai in the maintenance of the integrity of axonal microtubules. In addition to the severe disruption in the abundance and architecture of microtubules in the axons of stai mutant Drosophila , we also observe additional neurological phenotypes associated with loss of stai function including a posterior paralysis and tail-flip phenotype in third instar larvae, aberrant accumulation of transported membranous organelles in stai deficient axons, a progressive bang-sensitive response to mechanical stimulation reminiscent of the class of Drosophila mutants used to model human epileptic seizures, and a reduced adult lifespan. Reductions in the levels of Kinesin-1, the primary anterograde motor in axonal transport, enhance these phenotypes. Collectively, our results indicate that stai has an important role in neuronal function, likely through the maintenance of microtubule integrity in the axons of nerves of the peripheral nervous system necessary to support and sustain long-distance axonal transport. PMID:23840848

  14. Synaptic and genomic responses to JNK and AP-1 signaling in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Bohmann Dirk

    2005-06-01

    Full Text Available Abstract Background The transcription factor AP-1 positively controls synaptic plasticity at the Drosophila neuromuscular junction. Although in motor neurons, JNK has been shown to activate AP-1, a positive regulator of growth and strength at the larval NMJ, the consequences of JNK activation are poorly studied. In addition, the downstream transcriptional targets of JNK and AP-1 signaling in the Drosophila nervous system have yet to be identified. Here, we further investigated the role of JNK signaling at this model synapse employing an activated form of JNK-kinase; and using Serial Analysis of Gene Expression and oligonucleotide microarrays, searched for candidate early targets of JNK or AP-1 dependent transcription in neurons. Results Temporally-controlled JNK induction in postembryonic motor neurons triggers synaptic growth at the NMJ indicating a role in developmental plasticity rather than synaptogenesis. An unexpected observation that JNK activation also causes a reduction in transmitter release is inconsistent with JNK functioning solely through AP-1 and suggests an additional, yet-unidentified pathway for JNK signaling in motor neurons. SAGE profiling of mRNA expression helps define the neural transcriptome in Drosophila. Though many putative AP-1 and JNK target genes arose from the genomic screens, few were confirmed in subsequent validation experiments. One potentially important neuronal AP-1 target discovered, CG6044, was previously implicated in olfactory associative memory. In addition, 5 mRNAs regulated by RU486, a steroid used to trigger conditional gene expression were identified. Conclusion This study demonstrates a novel role for JNK signaling at the larval neuromuscular junction and provides a quantitative profile of gene transcription in Drosophila neurons. While identifying potential JNK/AP-1 targets it reveals the limitations of genome-wide analyses using complex tissues like the whole brain.

  15. A dopamine receptor contributes to paraquat-induced neurotoxicity in Drosophila

    Science.gov (United States)

    Cassar, Marlène; Issa, Abdul-Raouf; Riemensperger, Thomas; Petitgas, Céline; Rival, Thomas; Coulom, Hélène; Iché-Torres, Magali; Han, Kyung-An; Birman, Serge

    2015-01-01

    Long-term exposure to environmental oxidative stressors, like the herbicide paraquat (PQ), has been linked to the development of Parkinson's disease (PD), the most frequent neurodegenerative movement disorder. Paraquat is thus frequently used in the fruit fly Drosophila melanogaster and other animal models to study PD and the degeneration of dopaminergic neurons (DNs) that characterizes this disease. Here, we show that a D1-like dopamine (DA) receptor, DAMB, actively contributes to the fast central nervous system (CNS) failure induced by PQ in the fly. First, we found that a long-term increase in neuronal DA synthesis reduced DAMB expression and protected against PQ neurotoxicity. Secondly, a striking age-related decrease in PQ resistance in young adult flies correlated with an augmentation of DAMB expression. This aging-associated increase in oxidative stress vulnerability was not observed in a DAMB-deficient mutant. Thirdly, targeted inactivation of this receptor in glutamatergic neurons (GNs) markedly enhanced the survival of Drosophila exposed to either PQ or neurotoxic levels of DA, whereas, conversely, DAMB overexpression in these cells made the flies more vulnerable to both compounds. Fourthly, a mutation in the Drosophila ryanodine receptor (RyR), which inhibits activity-induced increase in cytosolic Ca2+, also strongly enhanced PQ resistance. Finally, we found that DAMB overexpression in specific neuronal populations arrested development of the fly and that in vivo stimulation of either DNs or GNs increased PQ susceptibility. This suggests a model for DA receptor-mediated potentiation of PQ-induced neurotoxicity. Further studies of DAMB signaling in Drosophila could have implications for better understanding DA-related neurodegenerative disorders in humans. PMID:25158689

  16. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes.

    Directory of Open Access Journals (Sweden)

    Michael K DeSalvo

    2014-11-01

    Full Text Available AbstractCentral nervous system (CNS function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with FACS and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ABC and SLC transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.

  17. The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes.

    Science.gov (United States)

    DeSalvo, Michael K; Hindle, Samantha J; Rusan, Zeid M; Orng, Souvinh; Eddison, Mark; Halliwill, Kyle; Bainton, Roland J

    2014-01-01

    Central nervous system (CNS) function is dependent on the stringent regulation of metabolites, drugs, cells, and pathogens exposed to the CNS space. Cellular blood-brain barrier (BBB) structures are highly specific checkpoints governing entry and exit of all small molecules to and from the brain interstitial space, but the precise mechanisms that regulate the BBB are not well understood. In addition, the BBB has long been a challenging obstacle to the pharmacologic treatment of CNS diseases; thus model systems that can parse the functions of the BBB are highly desirable. In this study, we sought to define the transcriptome of the adult Drosophila melanogaster BBB by isolating the BBB surface glia with fluorescence activated cell sorting (FACS) and profiling their gene expression with microarrays. By comparing the transcriptome of these surface glia to that of all brain glia, brain neurons, and whole brains, we present a catalog of transcripts that are selectively enriched at the Drosophila BBB. We found that the fly surface glia show high expression of many ATP-binding cassette (ABC) and solute carrier (SLC) transporters, cell adhesion molecules, metabolic enzymes, signaling molecules, and components of xenobiotic metabolism pathways. Using gene sequence-based alignments, we compare the Drosophila and Murine BBB transcriptomes and discover many shared chemoprotective and small molecule control pathways, thus affirming the relevance of invertebrate models for studying evolutionary conserved BBB properties. The Drosophila BBB transcriptome is valuable to vertebrate and insect biologists alike as a resource for studying proteins underlying diffusion barrier development and maintenance, glial biology, and regulation of drug transport at tissue barriers.

  18. Courtship initiation is stimulated by acoustic signals in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Aki Ejima

    2008-09-01

    Full Text Available Finding a mating partner is a critical task for many organisms. It is in the interest of males to employ multiple sensory modalities to search for females. In Drosophila melanogaster, vision is thought to be the most important courtship stimulating cue at long distance, while chemosensory cues are used at relatively short distance. In this report, we show that when visual cues are not available, sounds produced by the female allow the male to detect her presence in a large arena. When the target female was artificially immobilized, the male spent a prolonged time searching before starting courtship. This delay in courtship initiation was completely rescued by playing either white noise or recorded fly movement sounds to the male, indicating that the acoustic and/or seismic stimulus produced by movement stimulates courtship initiation, most likely by increasing the general arousal state of the male. Mutant males expressing tetanus toxin (TNT under the control of Gr68a-GAL4 had a defect in finding active females and a delay in courtship initiation in a large arena, but not in a small arena. Gr68a-GAL4 was found to be expressed pleiotropically not only in putative gustatory pheromone receptor neurons but also in mechanosensory neurons, suggesting that Gr68a-positive mechanosensory neurons, not gustatory neurons, provide motion detection necessary for courtship initiation. TNT/Gr68a males were capable of discriminating the copulation status and age of target females in courtship conditioning, indicating that female discrimination and formation of olfactory courtship memory are independent of the Gr68a-expressing neurons that subserve gustation and mechanosensation. This study suggests for the first time that mechanical signals generated by a female fly have a prominent effect on males' courtship in the dark and leads the way to studying how multimodal sensory information and arousal are integrated in behavioral decision making.

  19. [Parasitic diseases of the central nervous system].

    Science.gov (United States)

    Schmutzhard, E

    2010-02-01

    Central nervous system infections and infestations by protozoa and helminths constitute a problem of increasing importance throughout all of central European and northern/western countries. This is partially due to the globalisation of our society, tourists and business people being more frequently exposed to parasitic infection/infestation in tropical countries than in moderate climate countries. On top of that, migrants may import chronic infestations and infections with parasitic pathogens, eventually also--sometimes exclusively--involving the nervous system. Knowledge of epidemiology, initial clinical signs and symptoms, diagnostic procedures as well as specific chemotherapeutic therapies and adjunctive therapeutic strategies is of utmost important in all of these infections and infestations of the nervous systems, be it by protozoa or helminths. This review lists, mainly in the form of tables, all possible infections and infestations of the nervous systems by protozoa and by helminths. Besides differentiating parasitic diseases of the nervous system seen in migrants, tourists etc., it is very important to have in mind that disease-related (e.g. HIV) or iatrogenic immunosuppression has led to the increased occurrence of a wide variety of parasitic infections and infestations of the nervous system (e. g. babesiosis, Chagas disease, Strongyloides stercoralis infestation, toxoplasmosis, etc.).

  20. Metabolome analysis of Drosophila melanogaster during embryogenesis.

    Science.gov (United States)

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos' metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.

  1. Characterization of Autophagic Responses in Drosophila melanogaster.

    Science.gov (United States)

    Xu, T; Kumar, S; Denton, D

    2017-01-01

    Drosophila is an excellent model system for studying autophagy during animal development due to the availability of genetic reagents and opportunity for in vivo cell biological analysis. The regulation and mechanism of autophagy are highly evolutionarily conserved and the role of autophagy has been characterized during various stages of Drosophila development as well as following starvation. Studies in Drosophila have revealed novel insights into the role of distinct components of the autophagy machinery. This chapter describes protocols for examining autophagy during Drosophila development. A crucial step in the induction of autophagy is the incorporation of Atg8a into the autophagosome. This can be measured as autophagic puncta using live fluorescent imaging, immunostaining, or immunoblot analysis of LC3/Atg8a processing. The level of autophagy can also be examined using other specific components of the autophagy pathway as markers detected by immunofluorescent imaging. Based on the distinct morphology of autophagy, it can also be examined by transmission electron microscopy. In addition, one of the advantages of using Drosophila as a model is the ability to undertake genetic analysis of individual components of the autophagy machinery. Current approaches that can be used to monitor autophagy, including the overall flux and individual steps in Drosophila melanogaster, will be discussed. © 2017 Elsevier Inc. All rights reserved.

  2. A pupal transcriptomic screen identifies Ral as a target of store-operated calcium entry in Drosophila neurons.

    Science.gov (United States)

    Richhariya, Shlesha; Jayakumar, Siddharth; Abruzzi, Katharine; Rosbash, Michael; Hasan, Gaiti

    2017-02-14

    Transcriptional regulation by Store-operated Calcium Entry (SOCE) is well studied in non-excitable cells. However, the role of SOCE has been poorly documented in neuronal cells with more complicated calcium dynamics. Previous reports demonstrated a requirement for SOCE in neurons that regulate Drosophila flight bouts. We refine this requirement temporally to the early pupal stage and use RNA-sequencing to identify SOCE mediated gene expression changes in the developing Drosophila pupal nervous system. Down regulation of dStim, the endoplasmic reticular calcium sensor and a principal component of SOCE in the nervous system, altered the expression of 131 genes including Ral, a small GTPase. Disruption of Ral function in neurons impaired flight, whereas ectopic expression of Ral in SOCE-compromised neurons restored flight. Through live imaging of calcium transients from cultured pupal neurons, we confirmed that Ral does not participate in SOCE, but acts downstream of it. These results identify neuronal SOCE as a mechanism that regulates expression of specific genes during development of the pupal nervous system and emphasizes the relevance of SOCE-regulated gene expression to flight circuit maturation.

  3. Axonal Elongation into Peripheral Nervous System ``Bridges'' after Central Nervous System Injury in Adult Rats

    Science.gov (United States)

    David, Samuel; Aguayo, Albert J.

    1981-11-01

    The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.

  4. Effect of non-nutritive sugars to decrease the survivorship of spotted wing drosophila, Drosophila suzukii

    Science.gov (United States)

    In this study, we investigated the effects of non-nutritive sugars and sugar alcohols on the survivorship of spotted wing drosophila, Drosophila suzukii, and found erythritol and erythrose as potentially toxic to the fly. In a dose-dependent study, erythritol and erythrose significantly reduced fly ...

  5. New record for the invasive Spotted Wing Drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Anillaco, Argentina

    Science.gov (United States)

    The invasive Spotted Wing Drosophila (SWD), Drosophila suzukii Matsumura, is reported for the first time in La Rioja, Argentina. This represents a major range expansion for this species. The natural enemies of SWD, Leptopilina clavipes and Ganaspis hookeri were also collected with the SWD at the s...

  6. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster.

    Science.gov (United States)

    Lattao, Ramona; Kovács, Levente; Glover, David M

    2017-05-01

    Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster , highlighting their contributions to different aspects of development and cell division. Copyright © 2017 Lattao et al.

  7. Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Hansen, G N

    2001-01-01

    The allatostatins are generally inhibitory insect neuropeptides. The Drosophila orphan receptor DAR-2 is a G-protein-coupled receptor, having 47% amino acid residue identity with another Drosophila receptor, DAR-1 (which is also called dros. GPCR, or DGR) that was previously shown...... to be the receptor for an intrinsic Drosophila A-type (cockroach-type) allatostatin. Here, we have permanently expressed DAR-2 in CHO cells and found that it is the cognate receptor for four Drosophila A-type allatostatins, the drostatins-A1 to -A4. Of all the drostatins, drostatin-A4 (Thr...... weakly in the brain. The Drosophila larval gut also contains about 20-30 endocrine cells, expressing the gene for the drostatins-A1 to -A4. We suggest, therefore, that DAR-2 mediates an allatostatin (drostatin)-induced inhibition of gut motility. This is the first report on the permanent and functional...

  8. Effect of Hawthorn on Drosophila Melanogaster Antioxidant-Related ...

    African Journals Online (AJOL)

    Results: The results indicate that hawthorn extract prolonged the life span of Drosophila, with 50 % survival time of 0.8 ... Drosophila's aging gene is highly similar to humans [4,5]. ..... reduces lipid peroxidation in senescence-accelerated mice .

  9. Gustatory Processing in Drosophila melanogaster.

    Science.gov (United States)

    Scott, Kristin

    2018-01-07

    The ability to identify nutrient-rich food and avoid toxic substances is essential for an animal's survival. Although olfaction and vision contribute to food detection, the gustatory system acts as a final checkpoint control for food acceptance or rejection. The vinegar fly Drosophila melanogaster tastes many of the same stimuli as mammals and provides an excellent model system for comparative studies of taste detection. The relative simplicity of the fly brain and behaviors, along with the molecular genetic and functional approaches available in this system, allow the examination of gustatory neural circuits from sensory input to motor output. This review discusses the molecules and cells that detect taste compounds in the periphery and the circuits that process taste information in the brain. These studies are providing insight into how the detection of taste compounds regulates feeding decisions.

  10. Myocardial ischaemia and the cardiac nervous system.

    Science.gov (United States)

    Armour, J A

    1999-01-01

    The intrinsic cardiac nervous system has been classically considered to contain only parasympathetic efferent postganglionic neurones which receive inputs from medullary parasympathetic efferent preganglionic neurones. In such a view, intrinsic cardiac ganglia act as simple relay stations of parasympathetic efferent neuronal input to the heart, the major autonomic control of the heart purported to reside solely in the brainstem and spinal cord. Data collected over the past two decades indicate that processing occurs within the mammalian intrinsic cardiac nervous system which involves afferent neurones, local circuit neurones (interconnecting neurones) as well as both sympathetic and parasympathetic efferent postganglionic neurones. As such, intrinsic cardiac ganglionic interactions represent the organ component of the hierarchy of intrathoracic nested feedback control loops which provide rapid and appropriate reflex coordination of efferent autonomic neuronal outflow to the heart. In such a concept, the intrinsic cardiac nervous system acts as a distributive processor, integrating parasympathetic and sympathetic efferent centrifugal information to the heart in addition to centripetal information arising from cardiac sensory neurites. A number of neurochemicals have been shown to influence the interneuronal interactions which occur within the intrathoracic cardiac nervous system. For instance, pharmacological interventions that modify beta-adrenergic or angiotensin II receptors affect cardiomyocyte function not only directly, but indirectly by influencing the capacity of intrathoracic neurones to regulate cardiomyocytes. Thus, current pharmacological management of heart disease may influence cardiomyocyte function directly as well as indirectly secondary to modifying the cardiac nervous system. This review presents a brief summary of developing concepts about the role of the cardiac nervous system in regulating the normal heart. In addition, it provides some

  11. Male Hypogonadism

    Science.gov (United States)

    ... the hormone that plays a key role in masculine growth and development during puberty — or has an ... Adulthood In adult males, hypogonadism may alter certain masculine physical characteristics and impair normal reproductive function. Signs ...

  12. Male Infertility

    Science.gov (United States)

    ... to have a baby? If treatment doesn’t work, what are our other options? Resources National Institute of Child Health and Human Development, What Causes Male Infertility? Last Updated: May 30, 2017 This ...

  13. Male contraception.

    Science.gov (United States)

    Amory, John K

    2016-11-01

    Although female contraceptives are very effective at preventing unintended pregnancy, some women can not use them because of health conditions or side-effects, leaving some couples without effective contraceptive options. In addition, many men wish to take active responsibility for family planning. Thus, there is a great need for male contraceptives to prevent unintended pregnancies, of which 80-90 million occur annually. At present, effective male contraceptive options are condoms and vasectomy, which are not ideal for all men. Therefore, efforts are under way to develop novel male contraceptives. This paper briefly reviews the advantages and disadvantages of condoms and vasectomies and then discusses the research directed toward development of novel methods of male contraception. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. Condoms - male

    Science.gov (United States)

    Prophylactics; Rubbers; Male condoms; Contraceptive - condom; Contraception - condom; Barrier method - condom ... your health care provider or pharmacy about emergency contraception ("morning-after pills"). PROBLEMS WITH CONDOM USE Some ...

  15. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    OpenAIRE

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that sp...

  16. Multilocus analysis of introgression between two sympatric sister species of Drosophila: Drosophila yakuba and D. santomea.

    Science.gov (United States)

    Llopart, Ana; Lachaise, Daniel; Coyne, Jerry A

    2005-09-01

    Drosophila yakuba is widely distributed in sub-Saharan Africa, while D. santomea is endemic to the volcanic island of São Tomé in the Atlantic Ocean, 280 km west of Gabon. On São Tomé, D. yakuba is found mainly in open lowland forests, and D. santomea is restricted to the wet misty forests at higher elevations. At intermediate elevations, the species form a hybrid zone where hybrids occur at a frequency of approximately 1%. To determine the extent of gene flow between these species we studied polymorphism and divergence patterns in 29 regions distributed throughout the genome, including mtDNA and three genes on the Y chromosome. This multilocus approach, together with the comparison to the two allopatric species D. mauritiana and D. sechellia, allowed us to distinguish between forces that should affect all genes and forces that should act on some genes (e.g., introgression). Our results show that D. yakuba mtDNA has replaced that of D. santomea and that there is also significant introgression for two nuclear genes, yellow and salr. The majority of genes, however, has remained distinct. These two species therefore do not form a "hybrid swarm" in which much of the genome shows substantial introgression while disruptive selection maintains distinctness for only a few traits (e.g., pigmentation and male genitalia).

  17. X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila.

    Science.gov (United States)

    Larschan, Erica; Bishop, Eric P; Kharchenko, Peter V; Core, Leighton J; Lis, John T; Park, Peter J; Kuroda, Mitzi I

    2011-03-03

    The evolution of sex chromosomes has resulted in numerous species in which females inherit two X chromosomes but males have a single X, thus requiring dosage compensation. MSL (Male-specific lethal) complex increases transcription on the single X chromosome of Drosophila males to equalize expression of X-linked genes between the sexes. The biochemical mechanisms used for dosage compensation must function over a wide dynamic range of transcription levels and differential expression patterns. It has been proposed that the MSL complex regulates transcriptional elongation to control dosage compensation, a model subsequently supported by mapping of the MSL complex and MSL-dependent histone 4 lysine 16 acetylation to the bodies of X-linked genes in males, with a bias towards 3' ends. However, experimental analysis of MSL function at the mechanistic level has been challenging owing to the small magnitude of the chromosome-wide effect and the lack of an in vitro system for biochemical analysis. Here we use global run-on sequencing (GRO-seq) to examine the specific effect of the MSL complex on RNA Polymerase II (RNAP II) on a genome-wide level. Results indicate that the MSL complex enhances transcription by facilitating the progression of RNAP II across the bodies of active X-linked genes. Improving transcriptional output downstream of typical gene-specific controls may explain how dosage compensation can be imposed on the diverse set of genes along an entire chromosome.

  18. Postmating Reproductive isolation between strains of Drosophila willistoni.

    Science.gov (United States)

    Mardiros, Xian B; Park, Ronni; Clifton, Bryan; Grewal, Gurman; Khizar, Amina K; Markow, Therese A; Ranz, José M; Civetta, Alberto

    2016-10-01

    Speciation can occur through the presence of reproductive isolation barriers that impede mating, restrict cross-fertilization, or render inviable/sterile hybrid progeny. The D. willistoni subgroup is ideally suited for studies of speciation, with examples of both allopatry and sympatry, a range of isolation barriers, and the availability of one species complete genome sequence to facilitate genetic studies of divergence. D. w. willistoni has the largest geographic distribution among members of the Drosophila willistoni subgroup, spanning from Argentina to the southern United States, including the Caribbean islands. A subspecies of D. w. willistoni, D. w. quechua, is geographically separated by the Andes mountain range and has evolved unidirectional sterility, in that only male offspring of D. w. quechua females × D. w. willistoni males are sterile. Whether D. w. willistoni flies residing east of the Andes belong to one or more D. willistoni subspecies remains unresolved. Here we perform fecundity assays and show that F1 hybrid males produced from crosses between different strains found in Central America, North America, and northern Caribbean islands are reproductively isolated from South American and southern Caribbean island strains as a result of unidirectional hybrid male sterility. Our results show the existence of a reproductive isolation barrier between the northern and southern strains and suggest a subdivision of the previously identified D. willistoni willistoni species into 2 new subspecies.

  19. The Obesity-Linked Gene Nudt3 Drosophila Homolog Aps Is Associated With Insulin Signaling.

    Science.gov (United States)

    Williams, Michael J; Eriksson, Anders; Shaik, Muksheed; Voisin, Sarah; Yamskova, Olga; Paulsson, Johan; Thombare, Ketan; Fredriksson, Robert; Schiöth, Helgi B

    2015-09-01

    Several genome-wide association studies have linked the Nudix hydrolase family member nucleoside diphosphate-linked moiety X motif 3 (NUDT3) to obesity. However, the manner of NUDT3 involvement in obesity is unknown, and NUDT3 expression, regulation, and signaling in the central nervous system has not been studied. We performed an extensive expression analysis in mice, as well as knocked down the Drosophila NUDT3 homolog Aps in the nervous system, to determine its effect on metabolism. Detailed in situ hybridization studies in the mouse brain revealed abundant Nudt3 mRNA and protein expression throughout the brain, including reward- and feeding-related regions of the hypothalamus and amygdala, whereas Nudt3 mRNA expression was significantly up-regulated in the hypothalamus and brainstem of food-deprived mice. Knocking down Aps in the Drosophila central nervous system, or a subset of median neurosecretory cells, known as the insulin-producing cells (IPCs), induces hyperinsulinemia-like phenotypes, including a decrease in circulating trehalose levels as well as significantly decreasing all carbohydrate levels under starvation conditions. Moreover, lowering Aps IPC expression leads to a decreased ability to recruit these lipids during starvation. Also, loss of neuronal Aps expression caused a starvation susceptibility phenotype while inducing hyperphagia. Finally, the loss of IPC Aps lowered the expression of Akh, Ilp6, and Ilp3, genes known to be inhibited by insulin signaling. These results point toward a role for this gene in the regulation of insulin signaling, which could explain the robust association with obesity in humans.

  20. Research of the low dose gamma-irradiation influence on life span and aging speed of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Moskalev, A.

    2003-01-01

    Full text: Researches of radioinduced life span alteration of Drosophila which is carried out in our laboratory in 1996-2003 years, have revealed interrelation between mutations of several genes of DNA repair and apoptosis pathways with low doses ionizing irradiation and speed of aging. It was used Drosophila individuals, developing in conditions of a chronic low dose irradiation or on nutrition medium with apoptosis inducer etoposide addition. The exposition doze was 0.17 sGy/h. The absorbed doze for one generation (from an embryo stage up to an imago start, 10-12 days) corresponded 60 sGy. Etoposide treatment carried out on preimago stages (5 mkM in a nutrient medium n concentration). We investigated the life span after irradiation and etoposide treatment of Drosophila melanogaster laboratory populations with defects of some genes of DNA repair machinery and apoptosis pathways in homozygous and heterozygous state, such as mei-41 (ATM homolog), two alleles of Dcp-1 (Drosophila caspase), dArk (Apaf-1 homolog), rpr, grim, hid, three alleles of th (IAP homolog), wg (Wnt family member). It is shown, that the irradiation and etoposide treatment of these strains results in life span change depending on a genotype of the investigated line. The results will be considering in the report. As well, the analysis of age-dependent change of nervous system activity (as the test of aging speed) of Drosophila melanogaster imago was carried out. It was shown, that the irradiation of strains with the increased apoptosis sensitivity results in elevated nervous - muscular activity of imago during all experiment periods. At th1 strain increase of activity in comparison with the control in the first week has made 41 %, and in two subsequent - about 80 %. Last week authentic increase did not observe. At th4 strain statistically significant increase of activity in comparison with the control observed in the first week of experiment (18 %), in the second (67 %) and the fourth (88 %). The

  1. Male contraception

    OpenAIRE

    Mathew, Vivek; Bantwal, Ganapathi

    2012-01-01

    Contraception is an accepted route for the control of population explosion in the world. Traditionally hormonal contraceptive methods have focused on women. Male contraception by means of hormonal and non hormonal methods is an attractive alternative. Hormonal methods of contraception using testosterone have shown good results. Non hormonal reversible methods of male contraception like reversible inhibition of sperm under guidanceare very promising. In this article we have reviewed the curren...

  2. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin.

    Science.gov (United States)

    Clark, Ira E; Dodson, Mark W; Jiang, Changan; Cao, Joseph H; Huh, Jun R; Seol, Jae Hong; Yoo, Soon Ji; Hay, Bruce A; Guo, Ming

    2006-06-29

    Parkinson's disease is the second most common neurodegenerative disorder and is characterized by the degeneration of dopaminergic neurons in the substantia nigra. Mitochondrial dysfunction has been implicated as an important trigger for Parkinson's disease-like pathogenesis because exposure to environmental mitochondrial toxins leads to Parkinson's disease-like pathology. Recently, multiple genes mediating familial forms of Parkinson's disease have been identified, including PTEN-induced kinase 1 (PINK1; PARK6) and parkin (PARK2), which are also associated with sporadic forms of Parkinson's disease. PINK1 encodes a putative serine/threonine kinase with a mitochondrial targeting sequence. So far, no in vivo studies have been reported for pink1 in any model system. Here we show that removal of Drosophila PINK1 homologue (CG4523; hereafter called pink1) function results in male sterility, apoptotic muscle degeneration, defects in mitochondrial morphology and increased sensitivity to multiple stresses including oxidative stress. Pink1 localizes to mitochondria, and mitochondrial cristae are fragmented in pink1 mutants. Expression of human PINK1 in the Drosophila testes restores male fertility and normal mitochondrial morphology in a portion of pink1 mutants, demonstrating functional conservation between human and Drosophila Pink1. Loss of Drosophila parkin shows phenotypes similar to loss of pink1 function. Notably, overexpression of parkin rescues the male sterility and mitochondrial morphology defects of pink1 mutants, whereas double mutants removing both pink1 and parkin function show muscle phenotypes identical to those observed in either mutant alone. These observations suggest that pink1 and parkin function, at least in part, in the same pathway, with pink1 functioning upstream of parkin. The role of the pink1-parkin pathway in regulating mitochondrial function underscores the importance of mitochondrial dysfunction as a central mechanism of Parkinson's disease

  3. Male sexuality.

    Science.gov (United States)

    Ginsberg, Terrie B

    2010-05-01

    It should be recognized that sexuality in the aging male is of such import that a complete sexual history must be performed. By taking a complete sexual history, facts can be obtained that will allow for appropriate focus relating to a holistic evaluation and will enable us to dispel antiquated sexual myths pertaining to the aging male. If initiated by the history taker, questions concerning sexuality may be discussed more comfortably by the patient. Erectile dysfunction, male sexual response cycle, testosterone, sexually transmitted diseases, human immunodeficiency virus, long-term illness, along with religion and culture are explored in this article with the aim of improving one's knowledge base, self reflection, and awareness of the importance of male sexuality. A complete understanding and appreciation of the aging male's medical history, surgical history, social history, and emotional history as well as his sexual, cultural, and religious concepts will allow the health care provider to better analyze information, and to recommend and provide appropriate advice and treatment to the aging male patient. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Gross anatomy of central nervous system in firefly, Pteroptyx tener (Coleoptera: Lampyridae)

    Science.gov (United States)

    Hudawiyah, Nur; Wahida, O. Nurul; Norela, S.

    2015-09-01

    This paper describes for the first time the organization and fine structure of the central nervous system (CNS) in the fireflies, Pteroptyx tener (Coleoptera: Lampyridae). The morphology of the CNS was examined by using Carl Zeiss AxioScope A1 photomicroscope with iSolution Lite software. Some specific structural features such as the localization of protocerebrum, deutocerebrum and tritocerebrum in the brain region were analyzed. Other than that, the nerve cord and its peripheral structure were also analyzed. This study suggests that, there is a very obvious difference between male and female central nervous system which illustrates that they may differ in function in controlling physiological and behavioral activities.

  5. Expression of human PQBP-1 in Drosophila impairs long-term memory and induces abnormal courtship.

    Science.gov (United States)

    Yoshimura, Natsue; Horiuchi, Daisuke; Shibata, Masao; Saitoe, Minoru; Qi, Mei-Ling; Okazawa, Hitoshi

    2006-04-17

    Frame shift mutations of the polyglutamine binding protein-1 (PQBP1) gene lead to total or partial truncation of the C-terminal domain (CTD) and cause mental retardation in human patients. Interestingly, normal Drosophila homologue of PQBP-1 lacks CTD. As a model to analyze the molecular network of PQBP-1 affecting intelligence, we generated transgenic flies expressing human PQBP-1 with CTD. Pavlovian olfactory conditioning revealed that the transgenic flies showed disturbance of long-term memory. In addition, they showed abnormal courtship that male flies follow male flies. Abnormal functions of PQBP-1 or its binding partner might be linked to these symptoms.

  6. Effects of caffeine or maternal repair systems in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Osgood, C.; Zimmering, S.

    1979-01-01

    Drosophila melanogaster females were treated with 1% caffeine, mated with X-rayed males and the frequencies of induced sex-chromosome loss, translocations between the major autosomes and between the Y-chromosome and the major autosomes determined. In a reversal of the results obtained previously with 0.2% caffeine by Mendelson and Sobels, treatment of females with 1% caffeine led to a decrease in sex-chromosome loss, confirming preliminary data of Zimmering and Osgood and in increase in autosome-autosome translocations. It is suggested that the higher concentration of caffeine inhibits replication permitting more time available for chromosome-type restitutions by means of caffeine-insensitive repair mechanisms. In contrast with results for autosome-autosome translocation, the fequency of Y-autosome translocations was depressed below controls suggesting an isolation (by any one of several means) of Y-chromosome breaks from those in the autosomes. (Auth.)

  7. Hydrocarbon Patterns and Mating Behaviour in Populations of Drosophila yakuba

    Directory of Open Access Journals (Sweden)

    Béatrice Denis

    2015-10-01

    Full Text Available Drosophila yakuba is widespread in Africa. Here we compare the cuticular hydrocarbon (CHC profiles and mating behavior of mainland (Kounden, Cameroon and island (Mayotte, Sao-Tome, Bioko populations. The strains each had different CHC profiles: Bioko and Kounden were the most similar, while Mayotte and Sao-Tome contained significant amounts of 7-heptacosene. The CHC profile of the Sao-Tome population differed the most, with half the 7-tricosene of the other populations and more 7-heptacosene and 7-nonacosene. We also studied the characteristics of the mating behavior of the four strains: copulation duration was similar but latency times were higher in Mayotte and Sao-Tome populations. We found partial reproductive isolation between populations, especially in male-choice experiments with Sao-Tome females.

  8. Neuropeptide Mapping of Dimmed Cells of Adult Drosophila Brain

    Science.gov (United States)

    Diesner, Max; Predel, Reinhard; Neupert, Susanne

    2018-05-01

    Neuropeptides are structurally highly diverse messenger molecules that act as regulators of many physiological processes such as development, metabolism, reproduction or behavior in general. Differentiation of neuropeptidergic cells often corresponds with the presence of the transcription factor DIMMED. In the central nervous system of the fruit fly Drosophila melanogaster, DIMMED commonly occurs in neuroendocrine neurons that release peptides as neurohormones but also in interneurons with complex branching patterns. Fly strains with green fluorescence protein (GFP)-expressing dimmed cells make it possible to systematically analyze the processed neuropeptides in these cells. In this study, we mapped individual GFP-expressing neurons of adult D. melanogaster from the dimmed ( c929)>GFP line. Using single cell mass spectrometry, we analyzed 10 types of dimmed neurons from the brain/gnathal ganglion. These cells included neuroendocrine cells with projection into the retrocerebral complex but also a number of large interneurons. Resulting mass spectra not only provided comprehensive data regarding mature products from 13 neuropeptide precursors but also evidence for the cellular co-localization of neuropeptides from different neuropeptide genes. The results can be implemented in a neuroanatomical map of the D. melanogaster brain. [Figure not available: see fulltext.

  9. Neuropeptide Mapping of Dimmed Cells of Adult Drosophila Brain

    Science.gov (United States)

    Diesner, Max; Predel, Reinhard; Neupert, Susanne

    2018-01-01

    Neuropeptides are structurally highly diverse messenger molecules that act as regulators of many physiological processes such as development, metabolism, reproduction or behavior in general. Differentiation of neuropeptidergic cells often corresponds with the presence of the transcription factor DIMMED. In the central nervous system of the fruit fly Drosophila melanogaster, DIMMED commonly occurs in neuroendocrine neurons that release peptides as neurohormones but also in interneurons with complex branching patterns. Fly strains with green fluorescence protein (GFP)-expressing dimmed cells make it possible to systematically analyze the processed neuropeptides in these cells. In this study, we mapped individual GFP-expressing neurons of adult D. melanogaster from the dimmed (c929)>GFP line. Using single cell mass spectrometry, we analyzed 10 types of dimmed neurons from the brain/gnathal ganglion. These cells included neuroendocrine cells with projection into the retrocerebral complex but also a number of large interneurons. Resulting mass spectra not only provided comprehensive data regarding mature products from 13 neuropeptide precursors but also evidence for the cellular co-localization of neuropeptides from different neuropeptide genes. The results can be implemented in a neuroanatomical map of the D. melanogaster brain. [Figure not available: see fulltext.

  10. The speed-curvature power law in Drosophila larval locomotion.

    Science.gov (United States)

    Zago, Myrka; Lacquaniti, Francesco; Gomez-Marin, Alex

    2016-10-01

    We report the discovery that the locomotor trajectories of Drosophila larvae follow the power-law relationship between speed and curvature previously found in the movements of human and non-human primates. Using high-resolution behavioural tracking in controlled but naturalistic sensory environments, we tested the law in maggots tracing different trajectory types, from reaching-like movements to scribbles. For most but not all flies, we found that the law holds robustly, with an exponent close to three-quarters rather than to the usual two-thirds found in almost all human situations, suggesting dynamic effects adding on purely kinematic constraints. There are different hypotheses for the origin of the law in primates, one invoking cortical computations, another viscoelastic muscle properties coupled with central pattern generators. Our findings are consistent with the latter view and demonstrate that the law is possible in animals with nervous systems orders of magnitude simpler than in primates. Scaling laws might exist because natural selection favours processes that remain behaviourally efficient across a wide range of neural and body architectures in distantly related species. © 2016 The Authors.

  11. A new Drosophila octopamine receptor responds to serotonin.

    Science.gov (United States)

    Qi, Yi-Xiang; Xu, Gang; Gu, Gui-Xiang; Mao, Fen; Ye, Gong-Yin; Liu, Weiwei; Huang, Jia

    2017-11-01

    As the counterparts of the vertebrate adrenergic transmitters, octopamine and tyramine are important physiological regulators in invertebrates. They control and modulate many physiological and behavioral functions in insects. In this study, we reported the pharmacological properties of a new α2-adrenergic-like octopamine receptor (CG18208) from Drosophila melanogaster, named DmOctα2R. This new receptor gene encodes two transcripts by alternative splicing. The long isoform DmOctα2R-L differs from the short isoform DmOctα2R-S by the presence of an additional 29 amino acids within the third intracellular loop. When heterologously expressed in mammalian cell lines, both receptors were activated by octopamine, tyramine, epinephrine and norepinephrine, resulting in the inhibition of cAMP production in a dose-dependent manner. The long form is more sensitive to the above ligands than the short form. The adrenergic agonists naphazoline, tolazoline and clonidine can stimulate DmOctα2R as full agonists. Surprisingly, serotonin and serotoninergic agonists can also activate DmOctα2R. Several tested adrenergic antagonists and serotonin antagonists blocked the action of octopamine or serotonin on DmOctα2R. The data presented here reported an adrenergic-like G protein-coupled receptor activated by serotonin, suggesting that the neurotransmission and neuromodulation in the nervous system could be more complex than previously thought. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Smart electromechanical systems the central nervous system

    CERN Document Server

    Kurbanov, Vugar

    2017-01-01

    This book describes approaches to solving the problems of developing the central nervous system of robots (CNSR) based on smart electromechanical systems (SEMS) modules, principles of construction of the various modules of the central nervous system and variants of mathematical software CNSR in control systems for intelligent robots. It presents the latest advances in theory and practice at the Russian Academy of Sciences. Developers of intelligent robots to solve modern problems in robotics are increasingly addressing the use of the bionic approach to create robots that mimic the complexity and adaptability of biological systems. These have smart electromechanical system (SEMS), which are used in various cyber-physical systems (CPhS), and allow the functions of calculation, control, communications, information storage, monitoring, measurement and control of parameters and environmental parameters to be integrated. The behavior of such systems is based on the information received from the central nervous syst...

  13. Laser puncture therapy of nervous system disorders

    Energy Technology Data Exchange (ETDEWEB)

    Anishchenko, G.; Kochetkov, V.

    1984-08-29

    The authors discuss experience with treatment of nervous system disorders by means of laser-puncture therapy. Commenting on the background of the selection of this type of treatment, they explain that once researchers determined the biological action of laser light on specific nerve receptors of the skin, development of laser apparatus capable of concentrating the beam in the millimeter band was undertaken. The devices that are being used for laser-puncture are said to operate in the red helium-neon band of light. The authors identify beam parameters that have been selected for different groups of acupuncture points of the skin, and the courses of treatment (in seconds of radiation) and their time intervals. They go on to discuss the results of treatment of over 800 patients categorized in a group with disorders of the peripheral nervous system and a second group with disorders of the central nervous system.

  14. Hydrogels for central nervous system therapeutic strategies.

    Science.gov (United States)

    Russo, Teresa; Tunesi, Marta; Giordano, Carmen; Gloria, Antonio; Ambrosio, Luigi

    2015-12-01

    The central nervous system shows a limited regenerative capacity, and injuries or diseases, such as those in the spinal, brain and retina, are a great problem since current therapies seem to be unable to achieve good results in terms of significant functional recovery. Different promising therapies have been suggested, the aim being to restore at least some of the lost functions. The current review deals with the use of hydrogels in developing advanced devices for central nervous system therapeutic strategies. Several approaches, involving cell-based therapy, delivery of bioactive molecules and nanoparticle-based drug delivery, will be first reviewed. Finally, some examples of injectable hydrogels for the delivery of bioactive molecules in central nervous system will be reported, and the key features as well as the basic principles in designing multifunctional devices will be described. © IMechE 2015.

  15. Vitamin D and the central nervous system.

    Science.gov (United States)

    Wrzosek, Małgorzata; Łukaszkiewicz, Jacek; Wrzosek, Michał; Jakubczyk, Andrzej; Matsumoto, Halina; Piątkiewicz, Paweł; Radziwoń-Zaleska, Maria; Wojnar, Marcin; Nowicka, Grażyna

    2013-01-01

    Vitamin D is formed in human epithelial cells via photochemical synthesis and is also acquired from dietary sources. The so-called classical effect of this vitamin involves the regulation of calcium homeostasis and bone metabolism. Apart from this, non-classical effects of vitamin D have recently gained renewed attention. One important yet little known of the numerous functions of vitamin D is the regulation of nervous system development and function. The neuroprotective effect of vitamin D is associated with its influence on neurotrophin production and release, neuromediator synthesis, intracellular calcium homeostasis, and prevention of oxidative damage to nervous tissue. Clinical studies suggest that vitamin D deficiency may lead to an increased risk of disease of the central nervous system (CNS), particularly schizophrenia and multiple sclerosis. Adequate intake of vitamin D during pregnancy and the neonatal period seems to be crucial in terms of prevention of these diseases.

  16. The Drosophila agnostic Locus: Involvement in the Formation of Cognitive Defects in Williams Syndrome.

    Science.gov (United States)

    Nikitina, E A; Medvedeva, A V; Zakharov, G A; Savvateeva-Popova, E V

    2014-04-01

    The molecular basis of the pathological processes that lead to genome disorders is similar both in invertebrates and mammals. Since cognitive impairments in Williams syndrome are caused by LIMK1 hemizygosity, could the spontaneous and mutant variants of the Drosophila limk1 gene serve as a model for studying two diagnostic features from three distinct cognitive defects of the syndrome? These two symptoms are the disturbance of visuospatial orientation and an unusualy strong fixation on the faces of other people during pairwise interaction with a stranger. An experimental approach to the first cognitive manifestation might be an analysis of the locomotor behavior of Drosophila larvae involving visuospatial orientation during the exploration of the surrounding environment. An approach to tackle the second manifestation might be an analysis of the most natural ways of contact between a male and a female during courtship (the first stage of this ritual is the orientation of a male towards a female and following the female with constant fixation on the female's image). The present study of locomotor activity and cognitive repertoire in spontaneous and mutant variants of the Drosophila agnostic locus allows one to bridge alterations in the structure of the limk1 gene and behavior.

  17. Gut-associated microbes of Drosophila melanogaster

    Science.gov (United States)

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  18. Male baldness.

    Science.gov (United States)

    Clarke, Philip

    2016-04-01

    Male baldness is very common. Its effect on individuals is extremely variable, and in some people it will have a significant adverse effect on their quality of life. The objectives of this article are to help general practitioners (GPs) be aware of potential health problems related to male baldness, to have an approach to assessing hair loss and to be aware of treatment options. Male baldness is, most often, a normal occurrence, but it may have significant effects on a man's health. It may also be a pointer to other potential health issues. The GP is in the ideal position to conduct an initial evaluation, consider other health issues and advise on treatment options.

  19. Identification of a novel Drosophila gene, beltless, using injectable embryonic and adult RNA interference (RNAi

    Directory of Open Access Journals (Sweden)

    Manev Hari

    2003-08-01

    Full Text Available Abstract Background RNA interference (RNAi is a process triggered by a double-stranded RNA that leads to targeted down-regulation/silencing of gene expression and can be used for functional genomics; i.e. loss-of-function studies. Here we report on the use of RNAi in the identification of a developmentally important novel Drosophila (fruit fly gene (corresponding to a putative gene CG5652/GM06434, that we named beltless based on an embryonic loss-of-function phenotype. Results Beltless mRNA is expressed in all developmental stages except in 0–6 h embryos. In situ RT-PCR localized beltless mRNA in the ventral cord and brain of late stage embryos and in the nervous system, ovaries, and the accessory glands of adult flies. RNAi was induced by injection of short (22 bp beltless double-stranded RNAs into embryos or into adult flies. Embryonic RNAi altered cuticular phenotypes ranging from partially-formed to missing denticle belts (thus beltless of the abdominal segments A2–A4. Embryonic beltless RNAi was lethal. Adult RNAi resulted in the shrinkage of the ovaries by half and reduced the number of eggs laid. We also examined Df(1RK4 flies in which deletion removes 16 genes, including beltless. In some embryos, we observed cuticular abnormalities similar to our findings with beltless RNAi. After differentiating Df(1RK4 embryos into those with visible denticle belts and those missing denticle belts, we assayed the presence of beltless mRNA; no beltless mRNA was detectable in embryos with missing denticle belts. Conclusions We have identified a developmentally important novel Drosophila gene, beltless, which has been characterized in loss-of-function studies using RNA interference. The putative beltless protein shares homologies with the C. elegans nose resistant to fluoxetine (NRF NRF-6 gene, as well as with several uncharacterized C. elegans and Drosophila melanogaster genes, some with prominent acyltransferase domains. Future studies should

  20. Central nervous system tissue heterotopia of the nose: case report and review of the literature

    Science.gov (United States)

    Altissimi, G; Ascani, S; Falcetti, S; Cazzato, C; Bravi, I

    2009-01-01

    Summary The Authors present a case of heterotopic central nervous system tissue observed in an 81-year-old male in the form of an ethmoidal polyp. A review of the literature indicates that this is a rare condition characterised by a connective tissue lesion with astrocytic and oligodendrocytic glial cells, which may be located outside the nasal pyramid in some cases and inside the nasal cavity in others. The most important diagnostic aspect involves differentiating these from meningoencephalocele, which maintains an anatomical connection with central nervous system tissue. Contrast-enhanced imaging is essential for diagnosis, as in cases of heterotopic central nervous system tissue, it will demonstrate that there are no connections with intra-cranial tissue. Endoscopic excision is the treatment of choice. PMID:20161881

  1. A cellular and regulatory map of the cholinergic nervous system of C. elegans

    Science.gov (United States)

    Pereira, Laura; Kratsios, Paschalis; Serrano-Saiz, Esther; Sheftel, Hila; Mayo, Avi E; Hall, David H; White, John G; LeBoeuf, Brigitte; Garcia, L Rene; Alon, Uri; Hobert, Oliver

    2015-01-01

    Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.12432.001 PMID:26705699

  2. The Myriad Roles of Miro in the Nervous System: Axonal Transport of Mitochondria and Beyond

    Directory of Open Access Journals (Sweden)

    Bingwei eLu

    2014-10-01

    Full Text Available Mitochondrial rho GTPase (Miro is a mitochondrial outer membrane protein containing two GTPase domains and two helix-loop-helix Ca2+-binding domains called EF hands. Pioneering genetic studies in Drosophila first revealed a key function of Miro in regulating the axonal transport of mitochondria, during which Miro forms a multi-protein transport complex with Milton and Kinesin heavy chain (KHC to link trafficking mitochondria with the microtubule cytoskeleton. Recent studies showed that through binding to the EF hands of Miro and causing conformational changes of Miro and alteration of protein-protein interactions within the transport complex, Ca2+ can alter the engagement of mitochondria with the microtubule (MT/kinesin network, offering one mechanism to match mitochondrial distribution with neuronal activity. Despite the importance of the Miro/Milton/Kinesin complex in regulating mitochondrial transport in metazoans, not all components of the transport complex are conserved in lower organisms, and transport-independent functions of Miro are emerging. Here we review the diverse functions of the evolutionarily conserved Miro proteins that are relevant to the development, maintenance, and functioning of the nervous system and discuss the potential contribution of Miro dysfunction to the pathogenesis of diseases of the nervous system.

  3. Induction of lethal mutations in the x-chromosome of unirradiated Drosophila oocytes after fertilization by irradiated spermatozoa

    International Nuclear Information System (INIS)

    Shaposhnikov, M.V.; Zainullin, V.G.

    2003-01-01

    Full text: In primary study on Drosophila it was found that irradiated male X-chromosomes induce recessive lethals in unirradiated female homologues (Abeleva et al., 1961, Radiobiologya. 1:123-126). The same effects were obtained in Drosophila in some recent investigations. The mechanisms of these effects is unknown. However it may be responsible for low-dose radiation effects as it induce mutations in unirradiated DNA. We assume that this effect may be a result of activation of error prone repair in response to preliminary DNA lesions in irradiated chromosome. In this research we analyse the frequencies of the recessive lethal mutations in the X-chromosome of Drosophila females mated with irradiated Basc males. We used acute irradiation with a dose rate of 10 Gy. For testing our hypothesis we use the mus209 and mei-41 mutant females. Mus209 is a PCNA gene homologue and mei-41 is a homologue of ATM gene. These genes are involved in post-replication DNA repair which may be error prone repair in Drosophila. It was obtained the tendency to decreasing the mutation rate at the mei-41[D5] background and decreasing mutation rate in mus209[B1] background in comparison with wild type strains CS (p<0.05). The obtained results demonstrate the possible role of mus209[B1] and mei-41[D5] genes in the inducing of mutations in the unirradiated X-chromosome in the presence of irradiated homologue

  4. Toxic effect of visible light on Drosophila lifespan depending upon diet protein content.

    Science.gov (United States)

    Shen, Jie; Zhu, Xiang; Gu, Yitian; Zhang, Chiqian; Huang, Jiahong; Qing, Xiao

    2018-03-01

    We investigated the toxic effect of visible light on Drosophila lifespan in both sexes. The toxic effect of ultraviolet (UV) light on organisms is well known. However, the effects of illumination with visible light remain unclear. Here, we found that visible light could be toxic to Drosophila survival, depending on the protein content in diet. In addition, further analysis revealed significant interaction between light and sex, and showed that strong light shortened life span by causing opposite direction changes in mortality rate parameters in females versus males. Our findings suggest that photoageing may be a general phenomenon, and support the theory of sexual antagonistic pleiotropy in aging intervention. The results caution that exposure to visible light could be hazardous to life span and suggest that identification of the underlying mechanism would allow better understanding of aging intervention.

  5. Viruses and Antiviral Immunity in Drosophila

    Science.gov (United States)

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  6. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  7. Apoptosis in Drosophila: which role for mitochondria?

    Science.gov (United States)

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle

    2016-03-01

    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human.

  8. Reinforcement shapes clines in female mate discrimination in Drosophila subquinaria

    Science.gov (United States)

    Bewick, Emily R.; Dyer, Kelly A.

    2014-01-01

    Reinforcement of species boundaries may alter mate recognition in a way that also affects patterns of mate preference among conspecific populations. In the fly Drosophila subquinaria, females sympatric with the closely related species D. recens reject mating with heterospecific males as well as with conspecific males from allopatric populations. Here, we assess geographic variation in behavioral isolation within and among populations of D. subquinaria and use cline theory to understand patterns of selection on reinforced discrimination and its consequences for sexual isolation within species. We find that selection has fixed rejection of D. recens males in sympatry, while significant genetic variation in this behavior occurs within allopatric populations. In conspecific matings sexual isolation is also asymmetric and stronger in populations that are sympatric with D. recens. The clines in behavioral discrimination within and between species are similar in shape and are maintained by strong selection in the face of gene flow, and we show that some of their genetic basis may be either shared or linked. Thus, while reinforcement can drive extremely strong phenotypic divergence, the long-term consequences for incipient speciation depend on gene flow, genetic linkage of discrimination traits, and the cost of these behaviors in allopatry. PMID:25163510

  9. Structure and novel functional mechanism of Drosophila SNF in sex-lethal splicing.

    Directory of Open Access Journals (Sweden)

    Jicheng Hu

    Full Text Available Sans-fille (SNF is the Drosophila homologue of mammalian general splicing factors U1A and U2B'', and it is essential in Drosophila sex determination. We found that, besides its ability to bind U1 snRNA, SNF can also bind polyuridine RNA tracts flanking the male-specific exon of the master switch gene Sex-lethal (Sxl pre-mRNA specifically, similar to Sex-lethal protein (SXL. The polyuridine RNA binding enables SNF directly inhibit Sxl exon 3 splicing, as the dominant negative mutant SNF(1621 binds U1 snRNA but not polyuridine RNA. Unlike U1A, both RNA recognition motifs (RRMs of SNF can recognize polyuridine RNA tracts independently, even though SNF and U1A share very high sequence identity and overall structure similarity. As SNF RRM1 tends to self-associate on the opposite side of the RNA binding surface, it is possible for SNF to bridge the formation of super-complexes between two introns flanking Sxl exon 3 or between a intron and U1 snRNP, which serves the molecular basis for SNF to directly regulate Sxl splicing. Taken together, a new functional model for SNF in Drosophila sex determination is proposed. The key of the new model is that SXL and SNF function similarly in promoting Sxl male-specific exon skipping with SNF being an auxiliary or backup to SXL, and it is the combined dose of SXL and SNF governs Drosophila sex determination.

  10. Phenylketonuria: central nervous system and microbiome interaction

    Directory of Open Access Journals (Sweden)

    Demian Arturo Herrera Morban

    2017-06-01

    Full Text Available Phenylketonuria (PKU is an autosomal recessive inborn error of metabolism characterized by increased phenylalanine (Phe levels causing an inadequate neurodevelopment; the treatment of PKU is a Phe-restricting diet, and as such it can modulate the intestinal microbiome of the individual, generating central nervous system secondary disturbances that, added to the baseline disturbance, can influence the outcome of the disease.

  11. Central nervous system tuberculomata presenting as internuclear ...

    African Journals Online (AJOL)

    Central nervous system (CNS) tuberculoma can have variable presentation depending upon the site and number of tuberculomata. We are reporting a rare case of a 15 years old girl who presented to our hospital with binocular diplopia on right gaze. Clinical examination revealed left sided internuclear ophthalmoplegia ...

  12. Central nervous system tuberculosis | Cherian | African Health ...

    African Journals Online (AJOL)

    Central nervous system (CNS) involvement, one of the most devastating clinical manifestations of tuberculosis (TB) is noted in 5 to 10% of extrapulmonary TB cases, and accounts for approximately 1% of all TB cases. Definitive diagnosis of tuberculous meningitis (TBM) depends upon the detection of the tubercle bacilli in ...

  13. Imaging of the fetal central nervous system

    NARCIS (Netherlands)

    Pistorius, L.R.

    2008-01-01

    Introduction : Ultrasound and MR imaging of the fetal central nervous system (CNS) develop at an ever-increasing rate. Theoretically, the two modalities should be synergistic, but a literature review revealed the difficulties of determining the merit of either technique and revealed gaps in our

  14. Hypersensitivity Responses in the Central Nervous System

    DEFF Research Database (Denmark)

    Khorooshi, Reza; Asgari, Nasrin; Mørch, Marlene Thorsen

    2015-01-01

    of pathology in neuromyelitis optica (NMO), a central nervous system (CNS) demyelinating disease where activated neutrophils infiltrate, unlike in MS. The most widely used model for MS, experimental autoimmune encephalomyelitis, is an autoantigen-immunized disease that can be transferred to naive animals...

  15. Interferons in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Khorooshi, Reza M. H.; Wlodarczyk, Agnieszka

    2014-01-01

    Interferons (IFNs) are implicated as an important component of the innate immune system influencing viral infections, inflammation, and immune surveillance. We review here the complex biological activity of IFNs in the central nervous system (CNS) and associated glial–immune interactions...

  16. Nervous system examination on YouTube.

    Science.gov (United States)

    Azer, Samy A; Aleshaiwi, Sarah M; Algrain, Hala A; Alkhelaif, Rana A

    2012-12-22

    Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words "nervous system examination", "nervous system clinical examination", "cranial nerves examination", "CNS examination", "examination of cerebellum", "balance and coordination examination". Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Currently, YouTube provides an adequate resource for learning nervous system examination, which can be used by medical students

  17. Nervous system examination on YouTube

    Directory of Open Access Journals (Sweden)

    Azer Samy A

    2012-12-01

    Full Text Available Abstract Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47% of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2 and mainly covered examination of the whole nervous system (8 videos, 13%, cranial nerves (42 videos, 69%, upper limbs (6 videos, 10%, lower limbs (3 videos, 5%, balance and co-ordination (2 videos, 3%. The other 68 (53% videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0. The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers. The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD. Conclusions Currently, YouTube provides an adequate resource

  18. Nervous system examination on YouTube

    Science.gov (United States)

    2012-01-01

    Background Web 2.0 sites such as YouTube have become a useful resource for knowledge and are used by medical students as a learning resource. This study aimed at assessing videos covering the nervous system examination on YouTube. Methods A research of YouTube was conducted from 2 November to 2 December 2011 using the following key words “nervous system examination”, “nervous system clinical examination”, “cranial nerves examination”, “CNS examination”, “examination of cerebellum”, “balance and coordination examination”. Only relevant videos in the English language were identified and related URL recorded. For each video, the following information was collected: title, author/s, duration, number of viewers, number of posted comments, and total number of days on YouTube. Using criteria comprising content, technical authority and pedagogy parameters, videos were rated independently by three assessors and grouped into educationally useful and non-educationally useful. Results A total of 2240 videos were screened; 129 were found to have relevant information to nervous system examination. Analysis revealed that 61 (47%) of the videos provided useful information on the nervous system examination. These videos scored (mean ± SD, 14.9 ± 0.2) and mainly covered examination of the whole nervous system (8 videos, 13%), cranial nerves (42 videos, 69%), upper limbs (6 videos, 10%), lower limbs (3 videos, 5%), balance and co-ordination (2 videos, 3%). The other 68 (53%) videos were not useful educationally; scoring (mean ± SD, 11.1 ± 3.0). The total viewers of all videos was 2,189,434. Useful videos were viewed by 1,050,445 viewers (48% of total viewers). The total viewership per day for useful videos was 1,794.5 and for non-useful videos 1,132.0. The differences between the three assessors were insignificant (less than 0.5 for the mean and 0.3 for the SD). Conclusions Currently, YouTube provides an adequate resource for learning

  19. Influence of thyroid in nervous system growth.

    Science.gov (United States)

    Mussa, G C; Mussa, F; Bretto, R; Zambelli, M C; Silvestro, L

    2001-08-01

    Nervous system growth and differentiation are closely correlated with the presence of iodine and thyroid hormones in initial development stages. In the human species, encephalon maturation during the first quarter of pregnancy is affected according to recent studies by the transplacenta passage of maternal thyroid hormones while it depends on initial iodiothyronin secretion by the foetal gland after the 12th week of pregnancy. Thyroid hormone deficiency during nervous system development causes altered noble nervous cells, such as the pyramidal cortical and Purkinje cells, during glial cell proliferation and differentiation alike. Neurons present cell hypoplasia with reduced axon count, dendritic branching, synaptic spikes and interneuron connections. Oligodendrocytes decrease in number and average myelin content consequently drops. Biochemical studies on hypothyroid rats have demonstrated alterations to neuron intraplasmatic microtubule content and organisation, changed mitochondria number and arrangement and anomalies in T3 nuclear and citoplasmatic receptor maturation. Alterations to microtubules are probably responsible for involvement of the axon-dendrite system, and are the consequence of deficient thyroid hormone action on the mitochondria, the mitochondria enzymes and proteins associated with microtubules. Nuclear and citoplasmatic receptors have been identified and gene clonation studies have shown two families of nuclear receptors that include several sub-groups in their turn. A complex scheme of temporal and spatial expression of these receptors exists, so they probably contribute with one complementary function, although their physiological role differs. The action of thyroid hormones occurs by changing cell protein levels because of their regulation at the transcriptional or post-transcriptional level. Genes submitted to thyroid hormone control are either expressed by oligodendrytes, which are myelin protein coders or glial differentiation mediators, or

  20. Drosophila Studies on Autism Spectrum Disorders

    Institute of Scientific and Technical Information of China (English)

    Yao Tian; Zi Chao Zhang; Junhai Han

    2017-01-01

    In the past decade,numerous genes associated with autism spectrum disorders (ASDs) have been identified.These genes encode key regulators of synaptogenesis,synaptic function,and synaptic plasticity.Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis,synaptic function,synaptic plasticity,and neural circuit assembly and consolidation.Here,we review Drosophila studies on ASD genes that regulate synaptogenesis,synaptic function,and synaptic plasticity through modulating chromatin remodeling,transcription,protein synthesis and degradation,cytoskeleton dynamics,and synaptic scaffolding.

  1. REDfly: a Regulatory Element Database for Drosophila.

    Science.gov (United States)

    Gallo, Steven M; Li, Long; Hu, Zihua; Halfon, Marc S

    2006-02-01

    Bioinformatics studies of transcriptional regulation in the metazoa are significantly hindered by the absence of readily available data on large numbers of transcriptional cis-regulatory modules (CRMs). Even the richly annotated Drosophila melanogaster genome lacks extensive CRM information. We therefore present here a database of Drosophila CRMs curated from the literature complete with both DNA sequence and a searchable description of the gene expression pattern regulated by each CRM. This resource should greatly facilitate the development of computational approaches to CRM discovery as well as bioinformatics analyses of regulatory sequence properties and evolution.

  2. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...... research. Keywords: Ageing; Stress response; Hsp; Drosophila; Stress......The concept that lifespan is a function of the capacity to withstand extrinsic stress is very old. In concordance with this, long-lived individuals often have increased resistance against a variety of stresses throughout life. Genes underlying the stress response may therefore have the ability...

  3. Grasshopper Lazarillo, a GPI-anchored Lipocalin, increases Drosophila longevity and stress resistance, and functionally replaces its secreted homolog NLaz.

    Science.gov (United States)

    Ruiz, Mario; Wicker-Thomas, Claude; Sanchez, Diego; Ganfornina, Maria D

    2012-10-01

    Lazarillo (Laz) is a glycosyl-phosphatidylinositol (GPI)-linked glycoprotein first characterized in the developing nervous system of the grasshopper Schistocerca americana. It belongs to the Lipocalins, a functionally diverse family of mostly secreted proteins. In this work we test whether the protective capacity known for Laz homologs in flies and vertebrates (NLaz, GLaz and ApoD) is evolutionarily conserved in grasshopper Laz, and can be exerted from the plasma membrane in a cell-autonomous manner. First we demonstrate that extracellular forms of Laz have autocrine and paracrine protecting effects for oxidative stress-challenged Drosophila S2 cells. Then we assay the effects of overexpressing GPI-linked Laz in adult Drosophila and whether it rescues both known and novel phenotypes of NLaz null mutants. Local effects of GPI-linked Laz inside and outside the nervous system promote survival upon different stress forms, and extend lifespan and healthspan of the flies in a cell-type dependent manner. Outside the nervous system, expression in fat body cells but not in hemocytes results in protection. Within the nervous system, glial cell expression is more effective than neuronal expression. Laz actions are sexually dimorphic in some expression domains. Fat storage promotion and not modifications in hydrocarbon profiles or quantities explain the starvation-desiccation resistance caused by Laz overexpression. This effect is exerted when Laz is expressed ubiquitously or in dopaminergic cells, but not in hemocytes. Grasshopper Laz functionally restores the loss of NLaz, rescuing stress-sensitivity as well as premature accumulation of aging-related damage, monitored by advanced glycation end products (AGEs). However Laz does not rescue NLaz courtship behavioral defects. Finally, the presence of two new Lipocalins with predicted GPI-anchors in mosquitoes shows that the functional advantages of GPI-linkage have been commonly exploited by Lipocalins in the arthropodan lineage

  4. Genetics of sexual isolation based on courtship song between two sympatric species: Drosophila ananassae and D. pallidosa.

    Science.gov (United States)

    Yamada, Hirokazu; Matsuda, Muneo; Oguma, Yuzuru

    2002-11-01

    Sexual isolation has been considered one of the primary causes of speciation and its genetic study has the potential to reveal the genetics of speciation. In Drosophila, the importance of courtship songs in sexual isolation between closely related species has been well investigated, but studies analysing the genetic basis of the difference in the courtship songs associated with sexual isolation are less well documented. Drosophila ananassae and Drosophila pallidosa are useful for studies of sexual isolation, because of their sympatric distribution and absence of postmating isolation. Courtship songs are known to play a crucial role in sexual isolation between these two species, and the female discrimination behaviour against the courting male has been revealed to be controlled by a very narrow region on the second chromosome. In this study we investigated the genetic basis controlling the song differences associated with their sexual isolation, using intact and wingless males with chromosomes substituted between species. The results obtained from F1 hybrid males between these species indicate the dominance of the song characters favoured by D. pallidosa females. In addition, the results obtained from backcross F2 males indicate that chromosome 2 had a major effect on the control of the song characters associated with sexual isolation.

  5. Central nervous system complications after liver transplantation.

    Science.gov (United States)

    Kim, Jeong-Min; Jung, Keun-Hwa; Lee, Soon-Tae; Chu, Kon; Roh, Jae-Kyu

    2015-08-01

    We investigated the diversity of central nervous system complications after liver transplantation in terms of clinical manifestations and temporal course. Liver transplantation is a lifesaving option for end stage liver disease patients but post-transplantation neurologic complications can hamper recovery. Between 1 January 2001 and 31 December 2010, patients who had undergone liver transplantation at a single tertiary university hospital were included. We reviewed their medical records and brain imaging data and classified central nervous system complications into four categories including vascular, metabolic, infectious and neoplastic. The onset of central nervous system complications was grouped into five post-transplantation intervals including acute (within 1 month), early subacute (1-3 months), late subacute (3-12 months), chronic (1-3 years), and long-term (after 3 years). During follow-up, 65 of 791 patients (8.2%) experienced central nervous system complications, with 30 occurring within 1 month after transplantation. Vascular etiology was the most common (27 patients; 41.5%), followed by metabolic (23; 35.4%), infectious (nine patients; 13.8%), and neoplastic (six patients). Metabolic encephalopathy with altered consciousness was the most common etiology during the acute period, followed by vascular disorders. An initial focal neurologic deficit was detected in vascular and neoplastic complications, whereas metabolic and infectious etiologies presented with non-focal symptoms. Our study shows that the etiology of central nervous system complications after liver transplantation changes over time, and initial symptoms can help to predict etiology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effect of gamma irradiation on the life span of Drosophila melanogaster (Demonstration of threshold and sexual sensitivity differences)

    International Nuclear Information System (INIS)

    Giess, M.-C.; Planel, H.

    1977-01-01

    Drosophila melanogaster is irradiated by 5 to 75 krads of 60 Co gamma radiation at a dose rate of 1,000 rads/mn, on the fourth day of its imaginal life. As a result, the life span of the flies is reduced for both sexes. However, females are more radiosensitive than males. On the other hand, the radiosensitivity threshold in females is lower than in males: a life span decrease starts in males at a dose of 10 krads and at a dose of 25 krads in females [fr

  7. Mutagenic effect of radionuclides incorporated into DNA of Drosophila melanogaster. Progress report, May 1974--May 1975

    International Nuclear Information System (INIS)

    Lee, W.R.

    1975-01-01

    The mutagenic effect of 3 H incorporated into DNA of Drosophila melanogaster was studied in relation to age and radiation dose. The 3 H was incorporated into DNA in the germ line by feeding male larvae in late second instar a pulse of the radionuclide. Genetic stocks were used in a mating scheme to produce a cross that produces only male larvae for labeling with the radionuclide, and another cross was made that produces the parental females as virgins since no male progeny are produced. The F 1 generation was scored for losses of the X or Y chromosome because of dominant markers, Bar-Stone and yellow-plus, on the Y-chromosome. All the F 1 and F 2 males were sterile permitting out-crossing of females to nontreated stocks for sex-linked recessive lethal tests in the F 2 and F 3 . (U.S.)

  8. Social context-dependent modification of courtship behaviour in Drosophila prolongata.

    Science.gov (United States)

    Setoguchi, Shiori; Kudo, Ayumi; Takanashi, Takuma; Ishikawa, Yukio; Matsuo, Takashi

    2015-11-07

    Induction of alternative mating tactics by surrounding conditions, such as the presence of conspecific males, is observed in many animal species. Satellite behaviour is a remarkable example in which parasitic males exploit the reproductive investment by other males. Despite the abundance of parasitic mating tactics, however, few examples are known in which males alter courtship behaviour as a counter tactic against parasitic rivals. The fruit fly Drosophila prolongata shows prominent sexual dimorphism in the forelegs. When courting females, males of D. prolongata perform 'leg vibration', in which a male vibrates the female's body with his enlarged forelegs. In this study, we found that leg vibration increased female receptivity, but it also raised a risk of interception of the female by rival males. Consequently, in the presence of rivals, males of D. prolongata shifted their courtship behaviour from leg vibration to 'rubbing', which was less vulnerable to interference by rival males. These results demonstrated that the males of D. prolongata adjust their courtship behaviour to circumvent the social context-dependent risk of leg vibration. © 2015 The Author(s).

  9. Experimental evolution under hyper-promiscuity in Drosophila melanogaster.

    Science.gov (United States)

    Perry, Jennifer C; Joag, Richa; Hosken, David J; Wedell, Nina; Radwan, Jacek; Wigby, Stuart

    2016-06-16

    The number of partners that individuals mate with over their lifetime is a defining feature of mating systems, and variation in mate number is thought to be a major driver of sexual evolution. Although previous research has investigated the evolutionary consequences of reductions in the number of mates, we know little about the costs and benefits of increased numbers of mates. Here, we use a genetic manipulation of mating frequency in Drosophila melanogaster to create a novel, highly promiscuous mating system. We generated D. melanogaster populations in which flies were deficient for the sex peptide receptor (SPR) gene - resulting in SPR- females that mated more frequently - and genetically-matched control populations, and allowed them to evolve for 55 generations. At several time-points during this experimental evolution, we assayed behavioural, morphological and transcriptional reproductive phenotypes expected to evolve in response to increased population mating frequencies. We found that males from the high mating frequency SPR- populations evolved decreased ability to inhibit the receptivity of their mates and decreased copulation duration, in line with predictions of decreased per-mating investment with increased sperm competition. Unexpectedly, SPR- population males also evolved weakly increased sex peptide (SP) gene expression. Males from SPR- populations initially (i.e., before experimental evolution) exhibited more frequent courtship and faster time until mating relative to controls, but over evolutionary time these differences diminished or reversed. In response to experimentally increased mating frequency, SPR- males evolved behavioural responses consistent with decreased male post-copulatory investment at each mating and decreased overall pre-copulatory performance. The trend towards increased SP gene expression might plausibly relate to functional differences in the two domains of the SP protein. Our study highlights the utility of genetic

  10. Ubiquitylation of the acetyltransferase MOF in Drosophila melanogaster.

    Science.gov (United States)

    Schunter, Sarah; Villa, Raffaella; Flynn, Victoria; Heidelberger, Jan B; Classen, Anne-Kathrin; Beli, Petra; Becker, Peter B

    2017-01-01

    The nuclear acetyltransferase MOF (KAT8 in mammals) is a subunit of at least two multi-component complexes involved in transcription regulation. In the context of complexes of the 'Non-Specific-Lethal' (NSL) type it controls transcription initiation of many nuclear housekeeping genes and of mitochondrial genes. While this function is conserved in metazoans, MOF has an additional, specific function in Drosophila in the context of dosage compensation. As a subunit of the male-specific-lethal dosage compensation complex (MSL-DCC) it contributes to the doubling of transcription output from the single male X chromosome by acetylating histone H4. Proper dosage compensation requires finely tuned levels of MSL-DCC and an appropriate distribution of MOF between the regulatory complexes. The amounts of DCC formed depends directly on the levels of the male-specific MSL2, which orchestrates the assembly of the DCC, including MOF recruitment. We found earlier that MSL2 is an E3 ligase that ubiquitylates most MSL proteins, including MOF, suggesting that ubiquitylation may contribute to a quality control of MOF's overall levels and folding state as well as its partitioning between the complex entities. We now used mass spectrometry to map the lysines in MOF that are ubiquitylated by MSL2 in vitro and identified in vivo ubiquitylation sites of MOF in male and female cells. MSL2-specific ubiquitylation in vivo could not be traced due to the dominance of other, sex-independent ubiquitylation events and conceivably may be rare or transient. Expressing appropriately mutated MOF derivatives we assessed the importance of the ubiquitylated lysines for dosage compensation by monitoring DCC formation and X chromosome targeting in cultured cells, and by genetic complementation of the male-specific-lethal mof2 allele in flies. Our study provides a comprehensive analysis of MOF ubiquitylation as a reference for future studies.

  11. Ubiquitylation of the acetyltransferase MOF in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sarah Schunter

    Full Text Available The nuclear acetyltransferase MOF (KAT8 in mammals is a subunit of at least two multi-component complexes involved in transcription regulation. In the context of complexes of the 'Non-Specific-Lethal' (NSL type it controls transcription initiation of many nuclear housekeeping genes and of mitochondrial genes. While this function is conserved in metazoans, MOF has an additional, specific function in Drosophila in the context of dosage compensation. As a subunit of the male-specific-lethal dosage compensation complex (MSL-DCC it contributes to the doubling of transcription output from the single male X chromosome by acetylating histone H4. Proper dosage compensation requires finely tuned levels of MSL-DCC and an appropriate distribution of MOF between the regulatory complexes. The amounts of DCC formed depends directly on the levels of the male-specific MSL2, which orchestrates the assembly of the DCC, including MOF recruitment. We found earlier that MSL2 is an E3 ligase that ubiquitylates most MSL proteins, including MOF, suggesting that ubiquitylation may contribute to a quality control of MOF's overall levels and folding state as well as its partitioning between the complex entities. We now used mass spectrometry to map the lysines in MOF that are ubiquitylated by MSL2 in vitro and identified in vivo ubiquitylation sites of MOF in male and female cells. MSL2-specific ubiquitylation in vivo could not be traced due to the dominance of other, sex-independent ubiquitylation events and conceivably may be rare or transient. Expressing appropriately mutated MOF derivatives we assessed the importance of the ubiquitylated lysines for dosage compensation by monitoring DCC formation and X chromosome targeting in cultured cells, and by genetic complementation of the male-specific-lethal mof2 allele in flies. Our study provides a comprehensive analysis of MOF ubiquitylation as a reference for future studies.

  12. Knockout mutations of insulin-like peptide genes enhance sexual receptivity in Drosophila virgin females.

    Science.gov (United States)

    Watanabe, Kazuki; Sakai, Takaomi

    2016-01-01

    In the fruitfly Drosophila melanogaster, females take the initiative to mate successfully because they decide whether to mate or not. However, little is known about the molecular and neuronal mechanisms regulating sexual receptivity in virgin females. Genetic tools available in Drosophila are useful for identifying molecules and neural circuits involved in the regulation of sexual receptivity. We previously demonstrated that insulin-producing cells (IPCs) in the female brain are critical to the regulation of female sexual receptivity. Ablation and inactivation of IPCs enhance female sexual receptivity, suggesting that neurosecretion from IPCs inhibits female sexual receptivity. IPCs produce and release insulin-like peptides (Ilps) that modulate various biological processes such as metabolism, growth, lifespan and behaviors. Here, we report a novel role of the Ilps in sexual behavior in Drosophila virgin females. Compared with wild-type females, females with knockout mutations of Ilps showed a high mating success rate toward wild-type males, whereas wild-type males courted wild-type and Ilp-knockout females to the same extent. Wild-type receptive females retard their movement during male courtship and this reduced female mobility allows males to copulate. Thus, it was anticipated that knockout mutations of Ilps would reduce general locomotion. However, the locomotor activity in Ilp-knockout females was significantly higher than that in wild-type females. Thus, our findings indicate that the high mating success rate in Ilp-knockout females is caused by their enhanced sexual receptivity, but not by improvement of their sex appeal or by general sluggishness.

  13. Regulation of sleep by neuropeptide Y-like system in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Chunxia He

    Full Text Available Sleep is important for maintenance of normal physiology in animals. In mammals, neuropeptide Y (NPY, a homolog of Drosophila neuropeptide F (NPF, is involved in sleep regulation, with different effects in human and rat. However, the function of NPF on sleep in Drosophila melanogaster has not yet been described. In this study, we investigated the effects of NPF and its receptor-neuropeptide F receptor (NPFR1 on Drosophila sleep. Male flies over-expressing NPF or NPFR1 exhibited increased sleep during the nighttime. Further analysis demonstrated that sleep episode duration during nighttime was greatly increased and sleep latency was significantly reduced, indicating that NPF and NPFR1 promote sleep quality, and their action on sleep is not because of an impact of the NPF signal system on development. Moreover, the homeostatic regulation of flies after sleep deprivation was disrupted by altered NPF signaling, since sleep deprivation decreased transcription of NPF in control flies, and there were less sleep loss during sleep deprivation and less sleep gain after sleep deprivation in flies overexpressing NPF and NPFR1 than in control flies, suggesting that NPF system auto-regulation plays an important role in sleep homeostasis. However, these effects did not occur in females, suggesting a sex-dependent regulatory function in sleep for NPF and NPFR1. NPF in D1 brain neurons showed male-specific expression, providing the cellular locus for male-specific regulation of sleep by NPF and NPFR1. This study brings a new understanding into sleep studies of a sexually dimorphic regulatory mode in female and male flies.

  14. Brain development in the yellow fever mosquito Aedes aegypti: a comparative immunocytochemical analysis using cross-reacting antibodies from Drosophila melanogaster.

    Science.gov (United States)

    Mysore, Keshava; Flister, Susanne; Müller, Pie; Rodrigues, Veronica; Reichert, Heinrich

    2011-12-01

    Considerable effort has been directed towards understanding the organization and function of peripheral and central nervous system of disease vector mosquitoes such as Aedes aegypti. To date, all of these investigations have been carried out on adults but none of the studies addressed the development of the nervous system during the larval and pupal stages in mosquitoes. Here, we first screen a set of 30 antibodies, which have been used to study brain development in Drosophila, and identify 13 of them cross-reacting and labeling epitopes in the developing brain of Aedes. We then use the identified antibodies in immunolabeling studies to characterize general neuroanatomical features of the developing brain and compare them with the well-studied model system, Drosophila melanogaster, in larval, pupal, and adult stages. Furthermore, we use immunolabeling to document the development of specific components of the Aedes brain, namely the optic lobes, the subesophageal neuropil, and serotonergic system of the subesophageal neuropil in more detail. Our study reveals prominent differences in the developing brain in the larval stage as compared to the pupal (and adult) stage of Aedes. The results also uncover interesting similarities and marked differences in brain development of Aedes as compared to Drosophila. Taken together, this investigation forms the basis for future cellular and molecular investigations of brain development in this important disease vector. © Springer-Verlag 2011

  15. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Assia Hijazi

    Full Text Available BACKGROUND: Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. METHODOLOGY/PRINCIPAL FINDINGS: In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. CONCLUSION/SIGNIFICANCE: We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.

  16. The Ly6 protein coiled is required for septate junction and blood brain barrier organisation in Drosophila.

    Science.gov (United States)

    Hijazi, Assia; Haenlin, Marc; Waltzer, Lucas; Roch, Fernando

    2011-03-15

    Genetic analysis of the Drosophila septate junctions has greatly contributed to our understanding of the mechanisms controlling the assembly of these adhesion structures, which bear strong similarities with the vertebrate tight junctions and the paranodal septate junctions. These adhesion complexes share conserved molecular components and have a common function: the formation of paracellular barriers restraining the diffusion of solutes through epithelial and glial envelopes. In this work we characterise the function of the Drosophila cold gene, that codes for a protein belonging to the Ly6 superfamily of extracellular ligands. Analysis of cold mutants shows that this gene is specifically required for the organisation of the septate junctions in epithelial tissues and in the nervous system, where its contribution is essential for the maintenance of the blood-brain barrier. We show that cold acts in a cell autonomous way, and we present evidence indicating that this protein could act as a septate junction component. We discuss the specific roles of cold and three other Drosophila members of the Ly6 superfamily that have been shown to participate in a non-redundant way in the process of septate junction assembly. We propose that vertebrate Ly6 proteins could fulfill analogous roles in tight junctions and/or paranodal septate junctions.

  17. Inwardly Rectifying Potassium (Kir) Channels Represent a Critical Ion Conductance Pathway in the Nervous Systems of Insects.

    Science.gov (United States)

    Chen, Rui; Swale, Daniel R

    2018-01-25

    A complete understanding of the physiological pathways critical for proper function of the insect nervous system is still lacking. The recent development of potent and selective small-molecule modulators of insect inward rectifier potassium (Kir) channels has enabled the interrogation of the physiological role and toxicological potential of Kir channels within various insect tissue systems. Therefore, we aimed to highlight the physiological and functional role of neural Kir channels the central nervous system, muscular system, and neuromuscular system through pharmacological and genetic manipulations. Our data provide significant evidence that Drosophila neural systems rely on the inward conductance of K + ions for proper function since pharmacological inhibition and genetic ablation of neural Kir channels yielded dramatic alterations of the CNS spike discharge frequency and broadening and reduced amplitude of the evoked EPSP at the neuromuscular junction. Based on these data, we conclude that neural Kir channels in insects (1) are critical for proper function of the insect nervous system, (2) represents an unexplored physiological pathway that is likely to shape the understanding of neuronal signaling, maintenance of membrane potentials, and maintenance of the ionic balance of insects, and (3) are capable of inducing acute toxicity to insects through neurological poisoning.

  18. Genetic changeover in Drosophila populations

    International Nuclear Information System (INIS)

    Wallace, B.

    1986-01-01

    Three populations of Drosophila melanogaster that were daughter populations of two others with histories of high, continuous radiation exposure [population 5 (irradiated, small population size) gave rise to populations 17 (small) and 18 (large); population 6 (irradiated, large population size) gave rise to population 19 (large)] were maintained for 1 year with no radiation exposure. The frequency with which random combinations of second chromosomes taken from population 19 proved to be lethal changed abruptly after about 8 months, thus revealing the origin of a selectively favored element in that population. (This element may or may not have been the cause of the lethality.) A comparison of the loss of lethals in populations 17 and 18 with a loss that occurred concurrently in the still-irradiated population 5 suggests that a second, selectively favored element had arisen in that population just before populations 17 and 18 were split off. This element was on a nonlethal chromosome. The result in population 5 was the elimination of many lethals from that population, followed by a subsequent increase as mutations occurred in the favored nonlethal chromosome. Populations 17 and 18, with no radiation exposure, underwent a loss of lethals with no subsequent increase. The events described here, as well as others to be described elsewhere, suggest that populations may be subject to episodic periods of rapid gene frequency changes that occur under intense selection pressure. In the instances in which the changeover was revealed by the elimination of preexisting lethals, earlier lethal frequencies were reduced by approximately one-half; the selectively favored elements appear, then, to be favored in the heterozygous--not homozygous--condition

  19. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    DEFF Research Database (Denmark)

    Knecht, Wolfgang; Mikkelsen, N.E.; Clausen, A.R.

    2009-01-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 angstrom resolution...

  20. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  1. Second-Order Conditioning in "Drosophila"

    Science.gov (United States)

    Tabone, Christopher J.; de Belle, J. Steven

    2011-01-01

    Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…

  2. Behavioural reproductive isolation and speciation in Drosophila

    Indian Academy of Sciences (India)

    In the genus Drosophila, the phenomenon of behavioural reproductive isolation, which is an important type of premating (prezygotic) reproductive isolating mechanisms, has been extensively studied and interesting data have been documented. In many cases incomplete sexual isolation has been observed and the pattern ...

  3. Low-resolution structure of Drosophila translin

    Science.gov (United States)

    Kumar, Vinay; Gupta, Gagan D.

    2012-01-01

    Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to Rwork (Rfree) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin–TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers. PMID:23650579

  4. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-01

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  5. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Reguly, M.L.; Marques, E.K.

    1987-01-01

    The mechanisms of radioresistance in Drosophila are studied. The mutagenic effects of 5KR of 60 Cobalt gamma radiation and of 0,006M dose of ethyl methanesulfonate (EMS) on four D. Melanogaster strains (RC 1 , CO 3 , BUE and LEN) are investigated. (M.A.C.) [pt

  6. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    [Banerjee P. and Singh B. N. 2017 The Drosophila bipectinata species complex: phylogenetic relationship among different members based on chromosomal variations. J. Genet. 96, 97–107]. Introduction ..... loops touch the chromocenter and in our microphotograph. (depicting both the arms) too, the involvement of chromo-.

  7. Mass Spectrometry Imaging Shows Cocaine and Methylphenidate Have Opposite Effects on Major Lipids in Drosophila Brain.

    Science.gov (United States)

    Philipsen, Mai H; Phan, Nhu T N; Fletcher, John S; Malmberg, Per; Ewing, Andrew G

    2018-03-20

    Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to study the effects of cocaine versus methylphenidate administration on both the localization and abundance of lipids in Drosophila melanogaster brain. A J105 ToF-SIMS with a 40 keV gas cluster primary ion source enabled us to probe molecular ions of biomolecules on the fly with a spatial resolution of ∼3 μm, giving us unique insights into the effect of these drugs on molecular lipids in the nervous system. Significant changes in phospholipid composition were observed in the central brain for both. Principal components image analysis revealed that changes occurred mainly for phosphatidylcholines, phosphatidylethanolamines, and phosphatidylinositols. When the lipid changes caused by cocaine were compared with those induced by methylphenidate, it was shown that these drugs exert opposite effects on the brain lipid structure. We speculate that this might relate to the molecular mechanism of cognition and memory.

  8. Odor-evoked inhibition of olfactory sensory neurons drives olfactory perception in Drosophila.

    Science.gov (United States)

    Cao, Li-Hui; Yang, Dong; Wu, Wei; Zeng, Xiankun; Jing, Bi-Yang; Li, Meng-Tong; Qin, Shanshan; Tang, Chao; Tu, Yuhai; Luo, Dong-Gen

    2017-11-07

    Inhibitory response occurs throughout the nervous system, including the peripheral olfactory system. While odor-evoked excitation in peripheral olfactory cells is known to encode odor information, the molecular mechanism and functional roles of odor-evoked inhibition remain largely unknown. Here, we examined Drosophila olfactory sensory neurons and found that inhibitory odors triggered outward receptor currents by reducing the constitutive activities of odorant receptors, inhibiting the basal spike firing in olfactory sensory neurons. Remarkably, this odor-evoked inhibition of olfactory sensory neurons elicited by itself a full range of olfactory behaviors from attraction to avoidance, as did odor-evoked olfactory sensory neuron excitation. These results indicated that peripheral inhibition is comparable to excitation in encoding sensory signals rather than merely regulating excitation. Furthermore, we demonstrated that a bidirectional code with both odor-evoked inhibition and excitation in single olfactory sensory neurons increases the odor-coding capacity, providing a means of efficient sensory encoding.

  9. larvalign: Aligning Gene Expression Patterns from the Larval Brain of Drosophila melanogaster.

    Science.gov (United States)

    Muenzing, Sascha E A; Strauch, Martin; Truman, James W; Bühler, Katja; Thum, Andreas S; Merhof, Dorit

    2018-01-01

    The larval brain of the fruit fly Drosophila melanogaster is a small, tractable model system for neuroscience. Genes for fluorescent marker proteins can be expressed in defined, spatially restricted neuron populations. Here, we introduce the methods for 1) generating a standard template of the larval central nervous system (CNS), 2) spatial mapping of expression patterns from different larvae into a reference space defined by the standard template. We provide a manually annotated gold standard that serves for evaluation of the registration framework involved in template generation and mapping. A method for registration quality assessment enables the automatic detection of registration errors, and a semi-automatic registration method allows one to correct registrations, which is a prerequisite for a high-quality, curated database of expression patterns. All computational methods are available within the larvalign software package: https://github.com/larvalign/larvalign/releases/tag/v1.0.

  10. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila

    Directory of Open Access Journals (Sweden)

    Dick R. Nässel

    2018-03-01

    Full Text Available It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs. Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a

  11. Substrates for Neuronal Cotransmission With Neuropeptides and Small Molecule Neurotransmitters in Drosophila

    Science.gov (United States)

    Nässel, Dick R.

    2018-01-01

    It has been known for more than 40 years that individual neurons can produce more than one neurotransmitter and that neuropeptides often are colocalized with small molecule neurotransmitters (SMNs). Over the years much progress has been made in understanding the functional consequences of cotransmission in the nervous system of mammals. There are also some excellent invertebrate models that have revealed roles of coexpressed neuropeptides and SMNs in increasing complexity, flexibility, and dynamics in neuronal signaling. However, for the fly Drosophila there are surprisingly few functional studies on cotransmission, although there is ample evidence for colocalization of neuroactive compounds in neurons of the CNS, based both on traditional techniques and novel single cell transcriptome analysis. With the hope to trigger interest in initiating cotransmission studies, this review summarizes what is known about Drosophila neurons and neuronal circuits where different neuropeptides and SMNs are colocalized. Coexistence of neuroactive substances has been recorded in different neuron types such as neuroendocrine cells, interneurons, sensory cells and motor neurons. Some of the circuits highlighted here are well established in the analysis of learning and memory, circadian clock networks regulating rhythmic activity and sleep, as well as neurons and neuroendocrine cells regulating olfaction, nociception, feeding, metabolic homeostasis, diuretic functions, reproduction, and developmental processes. One emerging trait is the broad role of short neuropeptide F in cotransmission and presynaptic facilitation in a number of different neuronal circuits. This review also discusses the functional relevance of coexisting peptides in the intestine. Based on recent single cell transcriptomics data, it is likely that the neuronal systems discussed in this review are just a fraction of the total set of circuits where cotransmission occurs in Drosophila. Thus, a systematic search for

  12. Persistent short-term memory defects following sleep deprivation in a drosophila model of Parkinson disease.

    Science.gov (United States)

    Seugnet, Laurent; Galvin, James E; Suzuki, Yasuko; Gottschalk, Laura; Shaw, Paul J

    2009-08-01

    Parkinson disease (PD) is the second most common neurodegenerative disorder in the United States. It is associated with motor deficits, sleep disturbances, and cognitive impairment. The pathology associated with PD and the effects of sleep deprivation impinge, in part, upon common molecular pathways suggesting that sleep loss may be particularly deleterious to the degenerating brain. Thus we investigated the long-term consequences of sleep deprivation on shortterm memory using a Drosophila model of Parkinson disease. Transgenic strains of Drosophila melanogaster. Using the GAL4-UAS system, human alpha-synuclein was expressed throughout the nervous system of adult flies. Alpha-synuclein expressing flies (alpha S flies) and the corresponding genetic background controls were sleep deprived for 12 h at age 16 days and allowed to recover undisturbed for at least 3 days. Short-term memory was evaluated using aversive phototaxis suppression. Dopaminergic systems were assessed using mRNA profiling and immunohistochemistry. MEASURMENTS AND RESULTS: When sleep deprived at an intermediate stage of the pathology, alpha S flies showed persistent short-term memory deficits that lasted > or = 3 days. Cognitive deficits were not observed in younger alpha S flies nor in genetic background controls. Long-term impairments were not associated with accelerated loss of dopaminergic neurons. However mRNA expression of the dopamine receptors dDA1 and DAMB were significantly increased in sleep deprived alpha S flies. Blocking D1-like receptors during sleep deprivation prevented persistent shortterm memory deficits. Importantly, feeding flies the polyphenolic compound curcumin blocked long-term learning deficits. These data emphasize the importance of sleep in a degenerating/reorganizing brain and shows that pathological processes induced by sleep deprivation can be dissected at the molecular and cellular level using Drosophila genetics.

  13. The presumed central nervous system effects of rocuronium in a neonate and its reversal with sugammadex.

    Science.gov (United States)

    Langley, Ross J; McFadzean, Jillian; McCormack, Jon

    2016-01-01

    We describe a 2-day-old male infant who received rocuronium as part of general anesthesia for a tracheal esophageal fistula repair. Postoperatively, he had prolonged central and peripheral neuromuscular blockade despite cessation of the rocuronium infusion several hours previously. This case discusses the presumed central nervous system effects of rocuronium in a neonate and its effective reversal with sugammadex. © 2015 John Wiley & Sons Ltd.

  14. Aging and Intermittent Fasting Impact on Transcriptional Regulation and Physiological Responses of Adult Drosophila Neuronal and Muscle Tissues.

    Science.gov (United States)

    Zhang, Sharon; Ratliff, Eric P; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W; Achal, Madhulika; Mauntz, Ruth E; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A; Macias, Andrew M; Daugherty, Daniel; Harris, Greg L; Edwards, Robert A; Finley, Kim D

    2018-04-10

    The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.

  15. Aging and Intermittent Fasting Impact on Transcriptional Regulation and Physiological Responses of Adult Drosophila Neuronal and Muscle Tissues

    Directory of Open Access Journals (Sweden)

    Sharon Zhang

    2018-04-01

    Full Text Available The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD, which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.

  16. Ih current is necessary to maintain normal dopamine fluctuations and sleep consolidation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Alicia Gonzalo-Gomez

    Full Text Available HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep:activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest:activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels.

  17. Drosophila Atlastin in motor neurons is required for locomotion and presynaptic function.

    Science.gov (United States)

    De Gregorio, Cristian; Delgado, Ricardo; Ibacache, Andrés; Sierralta, Jimena; Couve, Andrés

    2017-10-15

    Hereditary spastic paraplegias (HSPs) are characterized by spasticity and weakness of the lower limbs, resulting from length-dependent axonopathy of the corticospinal tracts. In humans, the HSP-related atlastin genes ATL1 - ATL3 catalyze homotypic membrane fusion of endoplasmic reticulum (ER) tubules. How defects in neuronal Atlastin contribute to axonal degeneration has not been explained satisfactorily. Using Drosophila , we demonstrate that downregulation or overexpression of Atlastin in motor neurons results in decreased crawling speed and contraction frequency in larvae, while adult flies show progressive decline in climbing ability. Broad expression in the nervous system is required to rescue the atlastin -null Drosophila mutant ( atl 2 ) phenotype. Importantly, both spontaneous release and the reserve pool of synaptic vesicles are affected. Additionally, axonal secretory organelles are abnormally distributed, whereas presynaptic proteins diminish at terminals and accumulate in distal axons, possibly in lysosomes. Our findings suggest that trafficking defects produced by Atlastin dysfunction in motor neurons result in redistribution of presynaptic components and aberrant mobilization of synaptic vesicles, stressing the importance of ER-shaping proteins and the susceptibility of motor neurons to their mutations or depletion. © 2017. Published by The Company of Biologists Ltd.

  18. Neuroligins Nlg2 and Nlg4 Affect Social Behavior in Drosophila melanogaster.

    Science.gov (United States)

    Corthals, Kristina; Heukamp, Alina Sophia; Kossen, Robert; Großhennig, Isabel; Hahn, Nina; Gras, Heribert; Göpfert, Martin C; Heinrich, Ralf; Geurten, Bart R H

    2017-01-01

    The genome of Drosophila melanogaster includes homologs to approximately one-third of the currently known human disease genes. Flies and humans share many biological processes, including the principles of information processing by excitable neurons, synaptic transmission, and the chemical signals involved in intercellular communication. Studies on the molecular and behavioral impact of genetic risk factors of human neuro-developmental disorders [autism spectrum disorders (ASDs), schizophrenia, attention deficit hyperactivity disorders, and Tourette syndrome] increasingly use the well-studied social behavior of D. melanogaster , an organism that is amenable to a large variety of genetic manipulations. Neuroligins (Nlgs) are a family of phylogenetically conserved postsynaptic adhesion molecules present (among others) in nematodes, insects, and mammals. Impaired function of Nlgs (particularly of Nlg 3 and 4) has been associated with ASDs in humans and impaired social and communication behavior in mice. Making use of a set of behavioral and social assays, we, here, analyzed the impact of two Drosophila Nlgs, Dnlg2 and Dnlg4, which are differentially expressed at excitatory and inhibitory central nervous synapses, respectively. Both Nlgs seem to be associated with diurnal activity and social behavior. Even though deficiencies in Dnlg2 and Dnlg4 appeared to have no effects on sensory or motor systems, they differentially impacted on social interactions, suggesting that social behavior is distinctly regulated by these Nlgs.

  19. Insensible is a novel nuclear inhibitor of Notch activity in Drosophila.

    Directory of Open Access Journals (Sweden)

    Franck Coumailleau

    Full Text Available Notch signalling regulates a wide range of developmental processes. In the Drosophila peripheral nervous system, Notch regulates a series of binary fate decisions that lead to the formation of regularly spaced sensory organs. Each sensory organ is generated by single sensory organ precursor cell (SOP via a series of asymmetric cell divisions. Starting from a SOP-specific Cis-Regulatory Module (CRM, we identified insensible (insb, a.k.a CG6520, as a SOP/neuron-specific gene encoding a nuclear factor that inhibits Notch signalling activity. First, over-expression of Insb led to the transcriptional repression of a Notch reporter and to phenotypes associated with the inhibition of Notch. Second, while the complete loss of insb activity had no significant phenotype, it enhanced the bristle phenotype associated with reduced levels of Hairless, a nuclear protein acting as a co-repressor for Suppressor of Hairless. In conclusion, our work identified Insb as a novel SOP/neuron-specific nuclear inhibitor of Notch activity in Drosophila.

  20. Neuroligins Nlg2 and Nlg4 Affect Social Behavior in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Kristina Corthals

    2017-07-01

    Full Text Available The genome of Drosophila melanogaster includes homologs to approximately one-third of the currently known human disease genes. Flies and humans share many biological processes, including the principles of information processing by excitable neurons, synaptic transmission, and the chemical signals involved in intercellular communication. Studies on the molecular and behavioral impact of genetic risk factors of human neuro-developmental disorders [autism spectrum disorders (ASDs, schizophrenia, attention deficit hyperactivity disorders, and Tourette syndrome] increasingly use the well-studied social behavior of D. melanogaster, an organism that is amenable to a large variety of genetic manipulations. Neuroligins (Nlgs are a family of phylogenetically conserved postsynaptic adhesion molecules present (among others in nematodes, insects, and mammals. Impaired function of Nlgs (particularly of Nlg 3 and 4 has been associated with ASDs in humans and impaired social and communication behavior in mice. Making use of a set of behavioral and social assays, we, here, analyzed the impact of two Drosophila Nlgs, Dnlg2 and Dnlg4, which are differentially expressed at excitatory and inhibitory central nervous synapses, respectively. Both Nlgs seem to be associated with diurnal activity and social behavior. Even though deficiencies in Dnlg2 and Dnlg4 appeared to have no effects on sensory or motor systems, they differentially impacted on social interactions, suggesting that social behavior is distinctly regulated by these Nlgs.