WorldWideScience

Sample records for malaria transmission patterns

  1. The impact of endemic and epidemic malaria on the risk of stillbirth in two areas of Tanzania with different malaria transmission patterns

    NARCIS (Netherlands)

    Wort, Ulrika Uddenfeldt; Hastings, Ian; Mutabingwa, T. K.; Brabin, Bernard J.

    2006-01-01

    BACKGROUND: The impact of malaria on the risk of stillbirth is still under debate. The aim of the present analysis was to determine comparative changes in stillbirth prevalence between two areas of Tanzania with different malaria transmission patterns in order to estimate the malaria attributable

  2. The impact of endemic and epidemic malaria on the risk of stillbirth in two areas of Tanzania with different malaria transmission patterns

    Directory of Open Access Journals (Sweden)

    Mutabingwa TK

    2006-10-01

    Full Text Available Abstract Background The impact of malaria on the risk of stillbirth is still under debate. The aim of the present analysis was to determine comparative changes in stillbirth prevalence between two areas of Tanzania with different malaria transmission patterns in order to estimate the malaria attributable component. Methods A retrospective analysis was completed of stillbirth differences between primigravidae and multigravidae in relation to malaria cases and transmission patterns for two different areas of Tanzania with a focus on the effects of the El Niño southern climatic oscillation (ENSO. One area, Kagera, experiences outbreaks of malaria, and the other area, Morogoro, is holoendemic. Delivery and malaria data were collected over a six year period from records of the two district hospitals in these locations. Results There was a significantly higher prevalence of low birthweight in primigravidae compared to multigravidae for both data sets. Low birthweight and stillbirth prevalence (17.5% and 4.8% were significantly higher in Kilosa compared to Ndolage (11.9% and 2.4%. There was a significant difference in stillbirth prevalence between Ndolage and Kilosa between malaria seasons (2.4% and 5.6% respectively, p Conclusion Malaria exposure during pregnancy has a delayed effect on birthweight outcomes, but a more acute effect on stillbirth risk.

  3. Age-patterns of malaria vary with severity, transmission intensity and seasonality in sub-Saharan Africa: a systematic review and pooled analysis.

    Directory of Open Access Journals (Sweden)

    Ilona Carneiro

    Full Text Available BACKGROUND: There is evidence that the age-pattern of Plasmodium falciparum malaria varies with transmission intensity. A better understanding of how this varies with the severity of outcome and across a range of transmission settings could enable locally appropriate targeting of interventions to those most at risk. We have, therefore, undertaken a pooled analysis of existing data from multiple sites to enable a comprehensive overview of the age-patterns of malaria outcomes under different epidemiological conditions in sub-Saharan Africa. METHODOLOGY/PRINCIPAL FINDINGS: A systematic review using PubMed and CAB Abstracts (1980-2005, contacts with experts and searching bibliographies identified epidemiological studies with data on the age distribution of children with P. falciparum clinical malaria, hospital admissions with malaria and malaria-diagnosed mortality. Studies were allocated to a 3x2 matrix of intensity and seasonality of malaria transmission. Maximum likelihood methods were used to fit five continuous probability distributions to the percentage of each outcome by age for each of the six transmission scenarios. The best-fitting distributions are presented graphically, together with the estimated median age for each outcome. Clinical malaria incidence was relatively evenly distributed across the first 10 years of life for all transmission scenarios. Hospital admissions with malaria were more concentrated in younger children, with this effect being even more pronounced for malaria-diagnosed deaths. For all outcomes, the burden of malaria shifted towards younger ages with increasing transmission intensity, although marked seasonality moderated this effect. CONCLUSIONS: The most severe consequences of P. falciparum malaria were concentrated in the youngest age groups across all settings. Despite recently observed declines in malaria transmission in several countries, which will shift the burden of malaria cases towards older children, it

  4. Vulnerability to changes in malaria transmission due to climate change in West Africa

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A.

    2012-12-01

    Malaria transmission in West Africa is strongly tied to climate; temperature affects the development rate of the malaria parasite, as well as the survival of the mosquitoes that transmit the disease, and rainfall is tied to mosquito abundance, as the vector lays its eggs in rain-fed water pools. As a result, the environmental suitability for malaria transmission in this region is expected to change as temperatures rise and rainfall patterns are altered. The vulnerability to changes in transmission varies throughout West Africa. Areas where malaria prevalence is already very high will be less sensitive to changes in transmission. Increases in environmental suitability for malaria transmission in the most arid regions may still be insufficient to allow sustained transmission. However, areas were malaria transmission currently occurs at low levels are expected to be the most sensitive to changes in environmental suitability for transmission. Here, we use data on current environment and malaria transmission rates to highlight areas in West Africa that we expect to be most vulnerable to an increase in malaria under certain climate conditions. We then analyze climate predictions from global climate models in vulnerable areas, and make predictions for the expected change in environmental suitability for malaria transmission using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a mechanistic model developed to simulate village-scale response of malaria transmission to environmental variables in West Africa.

  5. Hysteresis in simulations of malaria transmission

    Science.gov (United States)

    Yamana, Teresa K.; Qiu, Xin; Eltahir, Elfatih A. B.

    2017-10-01

    Malaria transmission is a complex system and in many parts of the world is closely related to climate conditions. However, studies on environmental determinants of malaria generally consider only concurrent climate conditions and ignore the historical or initial conditions of the system. Here, we demonstrate the concept of hysteresis in malaria transmission, defined as non-uniqueness of the relationship between malaria prevalence and concurrent climate conditions. We show the dependence of simulated malaria transmission on initial prevalence and the initial level of human immunity in the population. Using realistic time series of environmental variables, we quantify the effect of hysteresis in a modeled population. In a set of numerical experiments using HYDREMATS, a field-tested mechanistic model of malaria transmission, the simulated maximum malaria prevalence depends on both the initial prevalence and the initial level of human immunity in the population. We found the effects of initial conditions to be of comparable magnitude to the effects of interannual variability in environmental conditions in determining malaria prevalence. The memory associated with this hysteresis effect is longer in high transmission settings than in low transmission settings. Our results show that efforts to simulate and forecast malaria transmission must consider the exposure history of a location as well as the concurrent environmental drivers.

  6. Comparison of all-cause and malaria-specific mortality from two West African countries with different malaria transmission patterns

    Directory of Open Access Journals (Sweden)

    Kouyaté Bocar

    2008-01-01

    Full Text Available Abstract Background Malaria is a leading cause of death in children below five years of age in sub-Saharan Africa. All-cause and malaria-specific mortality rates for children under-five years old in a mesoendemic malaria area (The Gambia were compared with those from a hyper/holoendemic area (Burkina Faso. Methods Information on observed person-years (PY, deaths and cause of death was extracted from online search, using key words: "Africa, The Gambia, Burkina Faso, malaria, Plasmodium falciparum, mortality, child survival, morbidity". Missing person-years were estimated and all-cause and malaria-specific mortality were calculated as rates per 1,000 PY. Studies were classified as longitudinal/clinical studies or surveys/censuses. Linear regression was used to investigate mortality trends. Results Overall, 39 and 18 longitudinal/clinical studies plus 10 and 15 surveys and censuses were identified for The Gambia and Burkina Faso respectively (1960–2004. Model-based estimates for under-five all-cause mortality rates show a decline from 1960 to 2000 in both countries (Burkina Faso: from 71.8 to 39.0, but more markedly in The Gambia (from 104.5 to 28.4. The weighted-average malaria-specific mortality rate per 1000 person-years for Burkina Faso (15.4, 95% CI: 13.0–18.3 was higher than that in The Gambia (9.5, 95% CI: 9.1–10.1. Malaria mortality rates did not decline over time in either country. Conclusion Child mortality in both countries declined significantly in the period 1960 to 2004, possibly due to socio-economic development, improved health services and specific intervention projects. However, there was little decline in malaria mortality suggesting that there had been no major impact of malaria control programmes during this period. The difference in malaria mortality rates across countries points to significant differences in national disease control policies and/or disease transmission patterns.

  7. Clinical pattern of severe Plasmodium falciparum malaria in Sudan in an area characterized by seasonal and unstable malaria transmission

    DEFF Research Database (Denmark)

    Giha, H A; Elghazali, G; A-Elgadir, T M E

    2005-01-01

    A hospital-based study was carried out in Gedarif town, eastern Sudan, an area of markedly unstable malaria transmission. Among the 2488 diagnosed malaria patients, 4.4% fulfilled the WHO criteria for severe malaria, and seven died of cerebral malaria. The predominant complication was severe mala...

  8. Malaria infection has spatial, temporal, and spatiotemporal heterogeneity in unstable malaria transmission areas in northwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Kassahun Alemu

    Full Text Available BACKGROUND: Malaria elimination requires successful nationwide control efforts. Detecting the spatiotemporal distribution and mapping high-risk areas are useful to effectively target pockets of malaria endemic regions for interventions. OBJECTIVE: The aim of the study was to identify patterns of malaria distribution by space and time in unstable malaria transmission areas in northwest Ethiopia. METHODS: Data were retrieved from the monthly reports stored in the district malaria offices for the period between 2003 and 2012. Eighteen districts in the highland and fringe malaria areas were included and geo-coded for the purpose of this study. The spatial data were created in ArcGIS10 for each district. The Poisson model was used by applying Kulldorff methods using the SaTScan™ software to analyze the purely temporal, spatial and space-time clusters of malaria at a district levels. RESULTS: The study revealed that malaria case distribution has spatial, temporal, and spatiotemporal heterogeneity in unstable transmission areas. Most likely spatial malaria clusters were detected at Dera, Fogera, Farta, Libokemkem and Misrak Este districts (LLR =197764.1, p<0.001. Significant spatiotemporal malaria clusters were detected at Dera, Fogera, Farta, Libokemkem and Misrak Este districts (LLR=197764.1, p<0.001 between 2003/1/1 and 2012/12/31. A temporal scan statistics identified two high risk periods from 2009/1/1 to 2010/12/31 (LLR=72490.5, p<0.001 and from 2003/1/1 to 2005/12/31 (LLR=26988.7, p<0.001. CONCLUSION: In unstable malaria transmission areas, detecting and considering the spatiotemporal heterogeneity would be useful to strengthen malaria control efforts and ultimately achieve elimination.

  9. Malaria infection during pregnancy in area of stable transmission ...

    African Journals Online (AJOL)

    Malaria infection during pregnancy in area of stable transmission. ... (LBW), a leading cause of neonatal death in areas of stable malaria transmission. ... areas of stable malaria transmission and the effective strategies for prevention and control. Keywords: malaria, pregnancy, semi-immune women, anaemia, low birthweight

  10. Quantifying Transmission Investment in Malaria Parasites.

    Directory of Open Access Journals (Sweden)

    Megan A Greischar

    2016-02-01

    Full Text Available Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment.

  11. Can slide positivity rates predict malaria transmission?

    Directory of Open Access Journals (Sweden)

    Bi Yan

    2012-04-01

    Full Text Available Abstract Background Malaria is a significant threat to population health in the border areas of Yunnan Province, China. How to accurately measure malaria transmission is an important issue. This study aimed to examine the role of slide positivity rates (SPR in malaria transmission in Mengla County, Yunnan Province, China. Methods Data on annual malaria cases, SPR and socio-economic factors for the period of 1993 to 2008 were obtained from the Center for Disease Control and Prevention (CDC and the Bureau of Statistics, Mengla, China. Multiple linear regression models were conducted to evaluate the relationship between socio-ecologic factors and malaria incidence. Results The results show that SPR was significantly positively associated with the malaria incidence rates. The SPR (β = 1.244, p = 0.000 alone and combination (SPR, β = 1.326, p  Conclusion SPR is a strong predictor of malaria transmission, and can be used to improve the planning and implementation of malaria elimination programmes in Mengla and other similar locations. SPR might also be a useful indicator of malaria early warning systems in China.

  12. A review of malaria transmission dynamics in forest ecosystems

    Science.gov (United States)

    2014-01-01

    Malaria continues to be a major health problem in more than 100 endemic countries located primarily in tropical and sub-tropical regions around the world. Malaria transmission is a dynamic process and involves many interlinked factors, from uncontrollable natural environmental conditions to man-made disturbances to nature. Almost half of the population at risk of malaria lives in forest areas. Forests are hot beds of malaria transmission as they provide conditions such as vegetation cover, temperature, rainfall and humidity conditions that are conducive to distribution and survival of malaria vectors. Forests often lack infrastructure and harbor tribes with distinct genetic traits, socio-cultural beliefs and practices that greatly influence malaria transmission dynamics. Here we summarize the various topographical, entomological, parasitological, human ecological and socio-economic factors, which are crucial and shape malaria transmission in forested areas. An in-depth understanding and synthesis of the intricate relationship of these parameters in achieving better malaria control in various types of forest ecosystems is emphasized. PMID:24912923

  13. Helminth-infected patients with malaria: a low profile transmission hub?

    Science.gov (United States)

    Nacher, Mathieu

    2012-11-15

    Eclipsed by the debates about malaria incidence and severity in individual patients, malaria transmission in helminth-infected persons has so far received very little attention. Studies in humans have shown increased malaria incidence and prevalence, and a trend for a reduction of symptoms in patients with malaria. This suggests that such patients could possibly be less likely to seek treatment thus carrying malaria parasites and their gametocytes for longer durations, therefore, being a greater potential source of transmission. In addition, in humans, a study showed increased gametocyte carriage, and in an animal model of helminth-malaria co-infection, there was increased malaria transmission. These elements converge towards the hypothesis that patients co-infected with worms and malaria may represent a hub of malaria transmission. The test of this hypothesis requires verifying, in different epidemiological settings, that helminth-infected patients have more gametocytes, that they have less symptomatic malaria and longer-lasting infections, and that they are more attractive for the vectors. The negative outcome in one setting of one of the above aspects does not necessarily mean that the other two aspects may suffice to increase transmission. If it is verified that patients co-infected by worms and malaria could be a transmission hub, this would be an interesting piece of strategic information in the context of the spread of anti-malarial resistance and the malaria eradication attempts.

  14. Epidemic and Endemic Malaria Transmission Related to Fish Farming Ponds in the Amazon Frontier.

    Directory of Open Access Journals (Sweden)

    Izabel Cristina Dos Reis

    Full Text Available Fish farming in the Amazon has been stimulated as a solution to increase economic development. However, poorly managed fish ponds have been sometimes associated with the presence of Anopheles spp. and consequently, with malaria transmission. In this study, we analyzed the spatial and temporal dynamics of malaria in the state of Acre (and more closely within a single county to investigate the potential links between aquaculture and malaria transmission in this region. At the state level, we classified the 22 counties into three malaria endemicity patterns, based on the correlation between notification time series. Furthermore, the study period (2003-2013 was divided into two phases (epidemic and post-epidemic. Higher fish pond construction coincided both spatially and temporally with increased rate of malaria notification. Within one malaria endemic county, we investigated the relationship between the geolocation of malaria cases (2011-2012 and their distance to fish ponds. Entomological surveys carried out in these ponds provided measurements of anopheline abundance that were significantly associated with the abundance of malaria cases within 100 m of the ponds (P < 0.005; r = 0.39. These results taken together suggest that fish farming contributes to the maintenance of high transmission levels of malaria in this region.

  15. Assessment of the quality and quantity of naturally induced antibody responses to EBA175RIII-V in Ghanaian children living in two communities with varying malaria transmission patterns

    DEFF Research Database (Denmark)

    Abagna, Hamza B; Acquah, Festus K; Okonu, Ruth

    2018-01-01

    of malaria parasites, which can enhance immune responses against parasite antigens. This study determined the prevalence and relative avidities of naturally induced antibodies to EBA175RIII-VLl in asymptomatic children living in two communities with varying malaria transmission patterns. METHODS: An asexual...... each study site however, children living in Obom had significantly higher EBA175RIII-VLl antibody concentrations than children living in Abura (P 0.05, Mann-Whitney test). Over the course of the study, the relative antibody avidities of EBA175RIII-VLl IgG antibodies were similar within and between......BACKGROUND: Recent global reports on malaria suggest significant decrease in disease severity and an increase in control interventions in many malaria endemic countries, including Ghana. However, a major driving force sustaining malaria transmission in recent times is the asymptomatic carriage...

  16. The demographics of human and malaria movement and migration patterns in East Africa.

    Science.gov (United States)

    Pindolia, Deepa K; Garcia, Andres J; Huang, Zhuojie; Smith, David L; Alegana, Victor A; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2013-11-05

    The quantification of parasite movements can provide valuable information for control strategy planning across all transmission intensities. Mobile parasite carrying individuals can instigate transmission in receptive areas, spread drug resistant strains and reduce the effectiveness of control strategies. The identification of mobile demographic groups, their routes of travel and how these movements connect differing transmission zones, potentially enables limited resources for interventions to be efficiently targeted over space, time and populations. National population censuses and household surveys provide individual-level migration, travel, and other data relevant for understanding malaria movement patterns. Together with existing spatially referenced malaria data and mathematical models, network analysis techniques were used to quantify the demographics of human and malaria movement patterns in Kenya, Uganda and Tanzania. Movement networks were developed based on connectivity and magnitudes of flow within each country and compared to assess relative differences between regions and demographic groups. Additional malaria-relevant characteristics, such as short-term travel and bed net use, were also examined. Patterns of human and malaria movements varied between demographic groups, within country regions and between countries. Migration rates were highest in 20-30 year olds in all three countries, but when accounting for malaria prevalence, movements in the 10-20 year age group became more important. Different age and sex groups also exhibited substantial variations in terms of the most likely sources, sinks and routes of migration and malaria movement, as well as risk factors for infection, such as short-term travel and bed net use. Census and survey data, together with spatially referenced malaria data, GIS and network analysis tools, can be valuable for identifying, mapping and quantifying regional connectivities and the mobility of different demographic

  17. Helminth-infected patients with malaria: a low profile transmission hub?

    Directory of Open Access Journals (Sweden)

    Nacher Mathieu

    2012-11-01

    Full Text Available Abstract Eclipsed by the debates about malaria incidence and severity in individual patients, malaria transmission in helminth-infected persons has so far received very little attention. Studies in humans have shown increased malaria incidence and prevalence, and a trend for a reduction of symptoms in patients with malaria. This suggests that such patients could possibly be less likely to seek treatment thus carrying malaria parasites and their gametocytes for longer durations, therefore, being a greater potential source of transmission. In addition, in humans, a study showed increased gametocyte carriage, and in an animal model of helminth-malaria co-infection, there was increased malaria transmission. These elements converge towards the hypothesis that patients co-infected with worms and malaria may represent a hub of malaria transmission. The test of this hypothesis requires verifying, in different epidemiological settings, that helminth-infected patients have more gametocytes, that they have less symptomatic malaria and longer-lasting infections, and that they are more attractive for the vectors. The negative outcome in one setting of one of the above aspects does not necessarily mean that the other two aspects may suffice to increase transmission. If it is verified that patients co-infected by worms and malaria could be a transmission hub, this would be an interesting piece of strategic information in the context of the spread of anti-malarial resistance and the malaria eradication attempts.

  18. Clinical Malaria Transmission Trends and Its Association with Climatic Variables in Tubu Village, Botswana: A Retrospective Analysis.

    Science.gov (United States)

    Chirebvu, Elijah; Chimbari, Moses John; Ngwenya, Barbara Ntombi; Sartorius, Benn

    2016-01-01

    Good knowledge on the interactions between climatic variables and malaria can be very useful for predicting outbreaks and preparedness interventions. We investigated clinical malaria transmission patterns and its temporal relationship with climatic variables in Tubu village, Botswana. A 5-year retrospective time series data analysis was conducted to determine the transmission patterns of clinical malaria cases at Tubu Health Post and its relationship with rainfall, flood discharge, flood extent, mean minimum, maximum and average temperatures. Data was obtained from clinical records and respective institutions for the period July 2005 to June 2010, presented graphically and analysed using the Univariate ANOVA and Pearson cross-correlation coefficient tests. Peak malaria season occurred between October and May with the highest cumulative incidence of clinical malaria cases being recorded in February. Most of the cases were individuals aged >5 years. Associations between the incidence of clinical malaria cases and several factors were strong at lag periods of 1 month; rainfall (r = 0.417), mean minimum temperature (r = 0.537), mean average temperature (r = 0.493); and at lag period of 6 months for flood extent (r = 0.467) and zero month for flood discharge (r = 0.497). The effect of mean maximum temperature was strongest at 2-month lag period (r = 0.328). Although malaria transmission patterns varied from year to year the trends were similar to those observed in sub-Saharan Africa. Age group >5 years experienced the greatest burden of clinical malaria probably due to the effects of the national malaria elimination programme. Rainfall, flood discharge and extent, mean minimum and mean average temperatures showed some correlation with the incidence of clinical malaria cases.

  19. Malaria transmission dynamics at a site in northern Ghana proposed for testing malaria vaccines.

    Science.gov (United States)

    Appawu, Maxwell; Owusu-Agyei, Seth; Dadzie, Samuel; Asoala, Victor; Anto, Francis; Koram, Kwadwo; Rogers, William; Nkrumah, Francis; Hoffman, Stephen L; Fryauff, David J

    2004-01-01

    We studied the malaria transmission dynamics in Kassena Nankana district (KND), a site in northern Ghana proposed for testing malaria vaccines. Intensive mosquito sampling for 1 year using human landing catches in three micro-ecological sites (irrigated, lowland and rocky highland) yielded 18 228 mosquitoes. Anopheles gambiae s.l. and Anopheles funestus constituted 94.3% of the total collection with 76.8% captured from the irrigated communities. Other species collected but in relatively few numbers were Anopheles pharoensis (5.4%) and Anopheles rufipes (0.3%). Molecular analysis of 728 An. gambiae.s.l. identified Anopheles gambiae s.s. as the most dominant sibling species (97.7%) of the An. gambiae complex from the three ecological sites. Biting rates of the vectors (36.7 bites per man per night) were significantly higher (P<0.05) in the irrigated area than in the non-irrigated lowland (5.2) and rocky highlands (5.9). Plasmodium falciparum sporozoite rates of 7.2% (295/4075) and 7.1% (269/3773) were estimated for An. gambiae s.s. and An. funestus, respectively. Transmission was highly seasonal, and the heaviest transmission occurred from June to October. The intensity of transmission was higher for people in the irrigated communities than the non-irrigated ones. An overall annual entomological inoculation rate (EIR) of 418 infective bites was estimated in KND. There were micro-ecological variations in the EIRs, with values of 228 infective bites in the rocky highlands, 360 in the lowlands and 630 in the irrigated area. Approximately 60% of malaria transmission in KND occurred indoors during the second half of the night, peaking at daybreak between 04.00 and 06.00 hours. Vaccine trials could be conducted in this district, with timing dependent on the seasonal patterns and intensity of transmission taking into consideration the micro-geographical differences and vaccine trial objectives.

  20. Impacts of Climate Change on Malaria Transmission in Africa

    Science.gov (United States)

    Eltahir, E. A. B.; Endo, N.; Yamana, T. K.

    2017-12-01

    Malaria is a major vector-borne parasitic disease transmitted to humans by Anopheles spp mosquitoes. Africa is the hotspot for malaria transmission where more than 90% of malaria deaths occur every year. Malaria transmission is an intricate function of climatic factors, which non-linearly affect the development of vectors and parasites. We project that the risk of malaria will increase towards the end of the 21st century in east Africa, but decrease in west Africa. We combine a novel malaria transmission simulator, HYDREMATS, that has been developed based on comprehensive multi-year field surveys both in East Africa and West Africa, and the most reliable climate projections through regional dynamical downscaling and rigorous selection of GCMs from among CMIP5 models. We define a bell-shaped relation between malaria intensity and temperature, centered around a temperature of 30°C. Future risks of malaria are projected for two highly populated regions in Africa: the highlands in East Africa and the fringes of the desert in West Africa. In the highlands of East Africa, temperature is substantially colder than this optimal temperature; warmer future climate exacerbate malaria conditions. In the Sahel fringes in West Africa, temperature is around this optimal temperature; warming is not likely to exacerbate and might even reduce malaria burden. Unlike the highlands of East Africa, which receive significant amounts of annual rainfall, dry conditions also limit malaria transmission in the Sahel fringes in West Africa. This disproportionate risk of malaria due to climate change should guide strategies for climate adaptation over Africa.

  1. Community perceptions on outdoor malaria transmission in Kilombero Valley, Southern Tanzania.

    Science.gov (United States)

    Moshi, Irene R; Ngowo, Halfan; Dillip, Angel; Msellemu, Daniel; Madumla, Edith P; Okumu, Fredros O; Coetzee, Maureen; Mnyone, Ladslaus L; Manderson, Lenore

    2017-07-04

    The extensive use of indoor residual spraying (IRS) and insecticide-treated nets (ITNs) in Africa has contributed to a significant reduction in malaria transmission. Even so, residual malaria transmission persists in many regions, partly driven by mosquitoes that bite people outdoors. In areas where Anopheles gambiae s.s. is a dominant vector, most interventions target the reduction of indoor transmission. The increased use of ITNs/LLINs and IRS has led to the decline of this species. As a result, less dominant vectors such as Anopheles funestus and Anopheles arabiensis, both also originally indoor vectors but are increasingly biting outdoors, contribute more to residual malaria transmission. The study reports the investigated community perceptions on malaria and their implications of this for ongoing outdoor malaria transmission and malaria control efforts. This was a qualitative study conducted in two rural villages and two peri-urban areas located in Kilombero Valley in south-eastern Tanzania. 40 semi-structured in-depth interviews and 8 focus group discussions were conducted with men and women who had children under the age of five. The Interviews and discussions focused on (1) community knowledge of malaria transmission, and (2) the role of such knowledge on outdoor malaria transmission as a contributing factor to residual malaria transmission. The use of bed nets for malaria prevention has been stressed in a number of campaigns and malaria prevention programmes. Most people interviewed believe that there is outdoor malaria transmission since they use interventions while indoors, but they are unaware of changing mosquito host-seeking behaviour. Participants pointed out that they were frequently bitten by mosquitoes during the evening when outdoors, compared to when they were indoors. Most participants stay outdoors in the early evening to undertake domestic tasks that cannot be conducted indoors. House structure, poor ventilation and warm weather conditions

  2. Early warnings of the potential for malaria transmission in Rural Africa using the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS)

    Science.gov (United States)

    Yamana, T. K.; Eltahir, E. A.

    2010-12-01

    Early warnings of malaria transmission allow health officials to better prepare for future epidemics. Monitoring rainfall is recognized as an important part of malaria early warning systems, as outlined by the Roll Back Malaria Initiative. The Hydrology, Entomology and Malaria Simulator (HYDREMATS) is a mechanistic model that relates rainfall to malaria transmission, and could be used to provide early warnings of malaria epidemics. HYDREMATS is used to make predictions of mosquito populations and vectorial capacity for 2005, 2006, and 2007 in Banizoumbou village in western Niger. HYDREMATS is forced by observed rainfall, followed by a rainfall prediction based on the seasonal mean rainfall for a period two or four weeks into the future. Predictions made using this method provided reasonable estimates of mosquito populations and vectorial capacity, two to four weeks in advance. The predictions were significantly improved compared to those made when HYDREMATS was forced with seasonal mean rainfall alone.

  3. Remotely-sensed, nocturnal, dew point correlates with malaria transmission in Southern Province, Zambia: a time-series study.

    Science.gov (United States)

    Nygren, David; Stoyanov, Cristina; Lewold, Clemens; Månsson, Fredrik; Miller, John; Kamanga, Aniset; Shiff, Clive J

    2014-06-13

    Plasmodium falciparum transmission has decreased significantly in Zambia in the last decade. The malaria transmission is influenced by environmental variables. Incorporation of environmental variables in models of malaria transmission likely improves model fit and predicts probable trends in malaria disease. This work is based on the hypothesis that remotely-sensed environmental factors, including nocturnal dew point, are associated with malaria transmission and sustain foci of transmission during the low transmission season in the Southern Province of Zambia. Thirty-eight rural health centres in Southern Province, Zambia were divided into three zones based on transmission patterns. Correlations between weekly malaria cases and remotely-sensed nocturnal dew point, nocturnal land surface temperature as well as vegetation indices and rainfall were evaluated in time-series analyses from 2012 week 19 to 2013 week 36. Zonal as well as clinic-based, multivariate, autoregressive, integrated, moving average (ARIMAX) models implementing environmental variables were developed to model transmission in 2011 week 19 to 2012 week 18 and forecast transmission in 2013 week 37 to week 41. During the dry, low transmission season significantly higher vegetation indices, nocturnal land surface temperature and nocturnal dew point were associated with the areas of higher transmission. Environmental variables improved ARIMAX models. Dew point and normalized differentiated vegetation index were significant predictors and improved all zonal transmission models. In the high-transmission zone, this was also seen for land surface temperature. Clinic models were improved by adding dew point and land surface temperature as well as normalized differentiated vegetation index. The mean average error of prediction for ARIMAX models ranged from 0.7 to 33.5%. Forecasts of malaria incidence were valid for three out of five rural health centres; however, with poor results at the zonal level. In this

  4. The Influence of Dams on Malaria Transmission in Sub-Saharan Africa.

    Science.gov (United States)

    Kibret, Solomon; Wilson, G Glenn; Ryder, Darren; Tekie, Habte; Petros, Beyene

    2017-06-01

    The construction of dams in sub-Saharan Africa is pivotal for food security and alleviating poverty in the region. However, the unintended adverse public health implications of extending the spatial distribution of water infrastructure are poorly documented and may minimize the intended benefits of securing water supplies. This paper reviews existing studies on the influence of dams on the spatial distribution of malaria parasites and vectors in sub-Saharan Africa. Common themes emerging from the literature were that dams intensified malaria transmission in semi-arid and highland areas with unstable malaria transmission but had little or no impact in areas with perennial transmission. Differences in the impacts of dams resulted from the types and characteristics of malaria vectors and their breeding habitats in different settings of sub-Saharan Africa. A higher abundance of a less anthropophilic Anopheles arabiensis than a highly efficient vector A. gambiae explains why dams did not increase malaria in stable areas. In unstable areas where transmission is limited by availability of water bodies for vector breeding, dams generally increase malaria by providing breeding habitats for prominent malaria vector species. Integrated vector control measures that include reservoir management, coupled with conventional malaria control strategies, could optimize a reduction of the risk of malaria transmission around dams in the region.

  5. Characterizing the malaria rural-to-urban transmission interface: The importance of reactive case detection.

    Directory of Open Access Journals (Sweden)

    Karen Molina Gómez

    2017-07-01

    Full Text Available Reported urban malaria cases are increasing in Latin America, however, evidence of such trend remains insufficient. Here, we propose an integrated approach that allows characterizing malaria transmission at the rural-to-urban interface by combining epidemiological, entomological, and parasite genotyping methods.A descriptive study that combines active (ACD, passive (PCD, and reactive (RCD case detection was performed in urban and peri-urban neighborhoods of Quibdó, Colombia. Heads of households were interviewed and epidemiological surveys were conducted to assess malaria prevalence and identify potential risk factors. Sixteen primary cases, eight by ACD and eight by PCD were recruited for RCD. Using the RCD strategy, prevalence of 1% by microscopy (6/604 and 9% by quantitative polymerase chain reaction (qPCR (52/604 were found. A total of 73 houses and 289 volunteers were screened leading to 41 secondary cases, all of them in peri-urban settings (14% prevalence. Most secondary cases were genetically distinct from primary cases indicating that there were independent occurrences. Plasmodium vivax was the predominant species (76.3%, 71/93, most of them being asymptomatic (46/71. Urban and peri-urban neighborhoods had significant sociodemographic differences. Twenty-four potential breeding sites were identified, all in peri-urban areas. The predominant vectors for 1,305 adults were Anopheles nuneztovari (56,2% and An. Darlingi (42,5%. One An. nuneztovari specimen was confirmed naturally infected with P. falciparum by ELISA.This study found no evidence supporting the existence of urban malaria transmission in Quibdó. RCD strategy was more efficient for identifying malaria cases than ACD alone in areas where malaria transmission is variable and unstable. Incorporating parasite genotyping allows discovering hidden patterns of malaria transmission that cannot be detected otherwise. We propose to use the term "focal case" for those primary cases that

  6. Comparative population structure of Plasmodium malariae and Plasmodium falciparum under different transmission settings in Malawi

    Directory of Open Access Journals (Sweden)

    Molyneux Malcolm E

    2011-02-01

    Full Text Available Abstract Background Described here is the first population genetic study of Plasmodium malariae, the causative agent of quartan malaria. Although not as deadly as Plasmodium falciparum, P. malariae is more common than previously thought, and is frequently in sympatry and co-infection with P. falciparum, making its study increasingly important. This study compares the population parameters of the two species in two districts of Malawi with different malaria transmission patterns - one seasonal, one perennial - to explore the effects of transmission on population structures. Methods Six species-specific microsatellite markers were used to analyse 257 P. malariae samples and 257 P. falciparum samples matched for age, gender and village of residence. Allele sizes were scored to within 2 bp for each locus and haplotypes were constructed from dominant alleles in multiple infections. Analysis of multiplicity of infection (MOI, population differentiation, clustering of haplotypes and linkage disequilibrium was performed for both species. Regression analyses were used to determine association of MOI measurements with clinical malaria parameters. Results Multiple-genotype infections within each species were common in both districts, accounting for 86.0% of P. falciparum and 73.2% of P. malariae infections and did not differ significantly with transmission setting. Mean MOI of P. falciparum was increased under perennial transmission compared with seasonal (3.14 vs 2.59, p = 0.008 and was greater in children compared with adults. In contrast, P. malariae mean MOI was similar between transmission settings (2.12 vs 2.11 and there was no difference between children and adults. Population differentiation showed no significant differences between villages or districts for either species. There was no evidence of geographical clustering of haplotypes. Linkage disequilibrium amongst loci was found only for P. falciparum samples from the seasonal transmission

  7. Seroprevalence of Antibodies against Plasmodium falciparum Sporozoite Antigens as Predictive Disease Transmission Markers in an Area of Ghana with Seasonal Malaria Transmission.

    Directory of Open Access Journals (Sweden)

    Kwadwo A Kusi

    Full Text Available As an increasing number of malaria-endemic countries approach the disease elimination phase, sustenance of control efforts and effective monitoring are necessary to ensure success. Mathematical models that estimate anti-parasite antibody seroconversion rates are gaining relevance as more sensitive transmission intensity estimation tools. Models however estimate yearly seroconversion and seroreversion rates and usually predict long term changes in transmission, occurring years before the time of sampling. Another challenge is the identification of appropriate antigen targets since specific antibody levels must directly reflect changes in transmission patterns. We therefore investigated the potential of antibodies to sporozoite and blood stage antigens for detecting short term differences in malaria transmission in two communities in Northern Ghana with marked, seasonal transmission.Cross-sectional surveys were conducted during the rainy and dry seasons in two communities, one in close proximity to an irrigation dam and the other at least 20 Km away from the dam. Antibodies against the sporozoite-specific antigens circumsporozoite protein (CSP and Cell traversal for ookinetes and sporozoites (CelTOS and the classical blood stage antigen apical membrane antigen 1 (AMA1 were measured by indirect ELISA. Antibody levels and seroprevalence were compared between surveys and between study communities. Antibody seroprevalence data were fitted to a modified reversible catalytic model to estimate the seroconversion and seroreversion rates.Changes in sporozoite-specific antibody levels and seroprevalence directly reflected differences in parasite prevalence between the rainy and dry seasons and hence the extent of malaria transmission. Seroconversion rate estimates from modelled seroprevalence data did not however support the above observation.The data confirms the potential utility of sporozoite-specific antigens as useful markers for monitoring short term

  8. New records of Anopheles arabiensis breeding on the Mount Kenya highlands indicate indigenous malaria transmission

    Directory of Open Access Journals (Sweden)

    Githure John I

    2006-03-01

    Full Text Available Abstract Background Malaria cases on the highlands west of Mount Kenya have been noticed since 10 – 20 years ago. It was not clear whether these cases were introduced from the nearby lowland or resulted from local transmission because of no record of vector mosquitoes on the highlands. Determination of presence and abundance of malaria vector is vital for effective control and epidemic risk assessment of malaria among both local residents and tourists. Methods A survey on 31 aquatic sites for the malaria-vector mosquitoes was carried out along the primary road on the highlands around Mount Kenya and the nearby Mwea lowland during April 13 to June 28, 2005. Anopheline larvae were collected and reared into adults for morphological and molecular species identification. In addition, 31 families at three locations of the highlands were surveyed using a questionnaire about their history of malaria cases during the past five to 20 years. Results Specimens of Anopheles arabiensis were molecularly identified in Karatina and Naro Moru on the highlands at elevations of 1,720 – 1,921 m above sea level. This species was also the only malaria vector found in the Mwea lowland. Malaria cases were recorded in the two highland locations in the past 10 years with a trend of increasing. Conclusion Local malaria transmission on the Mount Kenya highlands is possible due to the presence of An. arabiensis. Land use pattern and land cover might be the key factors affecting the vector population dynamics and the highland malaria transmission in the region.

  9. The antibody response to well-defined malaria antigens after acute malaria in individuals living under continuous malaria transmission

    DEFF Research Database (Denmark)

    Petersen, E; Høgh, B; Dziegiel, M

    1992-01-01

    , and a synthetic peptide (EENV)6 representing the C-terminal repeats from Pf155/RESA, were investigated longitudinally in 13 children and 7 adults living under conditions of continuous, intense malaria transmission. Some subjects did not recognize the antigens after malaria infection, and in subjects recognizing...... elicited by natural malaria infection in previously primed donors....

  10. A Stochastic Model for Malaria Transmission Dynamics

    Directory of Open Access Journals (Sweden)

    Rachel Waema Mbogo

    2018-01-01

    Full Text Available Malaria is one of the three most dangerous infectious diseases worldwide (along with HIV/AIDS and tuberculosis. In this paper we compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in malaria transmission dynamics. Relationships between the basic reproduction number for malaria transmission dynamics between humans and mosquitoes and the extinction thresholds of corresponding continuous-time Markov chain models are derived under certain assumptions. The stochastic model is formulated using the continuous-time discrete state Galton-Watson branching process (CTDSGWbp. The reproduction number of deterministic models is an essential quantity to predict whether an epidemic will spread or die out. Thresholds for disease extinction from stochastic models contribute crucial knowledge on disease control and elimination and mitigation of infectious diseases. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that malaria outbreak is more likely if the disease is introduced by infected mosquitoes as opposed to infected humans. These insights demonstrate the importance of a policy or intervention focusing on controlling the infected mosquito population if the control of malaria is to be realized.

  11. A sub-microscopic gametocyte reservoir can sustain malaria transmission.

    Directory of Open Access Journals (Sweden)

    Stephan Karl

    Full Text Available Novel diagnostic tools, including PCR and high field gradient magnetic fractionation (HFGMF, have improved detection of asexual Plasmodium falciparum parasites and especially infectious gametocytes in human blood. These techniques indicate a significant number of people carry gametocyte densities that fall below the conventional threshold of detection achieved by standard light microscopy (LM.To determine how low-level gametocytemia may affect transmission in present large-scale efforts for P. falciparum control in endemic areas, we developed a refinement of the classical Ross-Macdonald model of malaria transmission by introducing multiple infective compartments to model the potential impact of highly prevalent, low gametocytaemic reservoirs in the population. Models were calibrated using field-based data and several numerical experiments were conducted to assess the effect of high and low gametocytemia on P. falciparum transmission and control. Special consideration was given to the impact of long-lasting insecticide-treated bed nets (LLIN, presently considered the most efficient way to prevent transmission, and particularly LLIN coverage similar to goals targeted by the Roll Back Malaria and Global Fund malaria control campaigns. Our analyses indicate that models which include only moderate-to-high gametocytemia (detectable by LM predict finite eradication times after LLIN introduction. Models that include a low gametocytemia reservoir (requiring PCR or HFGMF detection predict much more stable, persistent transmission. Our modeled outcomes result in significantly different estimates for the level and duration of control needed to achieve malaria elimination if submicroscopic gametocytes are included.It will be very important to complement current methods of surveillance with enhanced diagnostic techniques to detect asexual parasites and gametocytes to more accurately plan, monitor and guide malaria control programs aimed at eliminating malaria.

  12. Malaria transmission in Tripura: Disease distribution & determinants.

    Science.gov (United States)

    Dev, Vas; Adak, Tridibes; Singh, Om P; Nanda, Nutan; Baidya, Bimal K

    2015-12-01

    Malaria is a major public health problem in Tripura and focal disease outbreaks are of frequent occurrence. The state is co-endemic for both Plasmodium falciparum and P. vivax and transmission is perennial and persistent. The present study was aimed to review data on disease distribution to prioritize high-risk districts, and to study seasonal prevalence of disease vectors and their bionomical characteristics to help formulate vector species-specific interventions for malaria control. Data on malaria morbidity in the State were reviewed retrospectively (2008-2012) for understanding disease distribution and transmission dynamics. Cross-sectional mass blood surveys were conducted in malaria endemic villages of South Tripura district to ascertain the prevalence of malaria and proportions of parasite species. Mosquito collections were made in human dwellings of malaria endemic villages aiming at vector incrimination and to study relative abundance, resting and feeding preferences, and their present susceptibility status to DDT. The study showed that malaria was widely prevalent and P. falciparum was the predominant infection (>90%), the remaining were P. vivax cases. The disease distribution, however, was uneven with large concentration of cases in districts of South Tripura and Dhalai coinciding with vast forest cover and tribal populations. Both Anopheles minimus s.s. and An. baimaii were recorded to be prevalent and observed to be highly anthropophagic and susceptible to DDT. Of these, An. minimus was incriminated (sporozoite infection rate 4.92%), and its bionomical characteristics revealed this species to be largely indoor resting and endophagic. For effective control of malaria in the state, it is recommended that diseases surveillance should be robust, and vector control interventions including DDT spray coverage, mass distribution of insecticide-treated nets/ long-lasting insecticidal nets should be intensified prioritizing population groups most at risk to

  13. High entomological inoculation rate of malaria vectors in area of high coverage of interventions in southwest Ethiopia: Implication for residual malaria transmission

    Directory of Open Access Journals (Sweden)

    Misrak Abraham

    2017-05-01

    Finally, there was an indoor residual malaria transmission in a village of high coverage of bed nets and where the principal malaria vector is susceptibility to propoxur and bendiocarb; insecticides currently in use for indoor residual spraying. The continuing indoor transmission of malaria in such village implies the need for new tools to supplement the existing interventions and to reduce indoor malaria transmission.

  14. Application of molecular methods for monitoring transmission stages of malaria parasites

    International Nuclear Information System (INIS)

    Babiker, Hamza A; Schneider, Petra

    2008-01-01

    Recent technical advances in malaria research have allowed specific detection of mRNA of genes that are expressed exclusively in sexual stages (gametocytes) of malaria parasites. The specificity and sensitivity of these techniques were validated on cultured laboratory clones of both human malaria parasites (Plasmodium falciparum) and rodent parasites (P. chabaudi). More recently, quantitative molecular techniques have been developed to quantify these sexual stages and used to monitor gametocyte dynamics and their transmission to mosquitoes. Molecular techniques showed that the infectious reservoir for malaria is larger than expected from previous microscopic studies; individual parasite genotypes within an infection can simultaneously produce infectious gametocytes; gametocyte production can be sustained for several months, and is modulated by environmental factors. The above techniques have empowered approaches for in-depth analysis of the biology of the transmission stages of the parasite and epidemiology of malaria transmission

  15. Malaria hotspots defined by clinical malaria, asymptomatic carriage, PCR and vector numbers in a low transmission area on the Kenyan Coast.

    Science.gov (United States)

    Kangoye, David Tiga; Noor, Abdisalan; Midega, Janet; Mwongeli, Joyce; Mkabili, Dora; Mogeni, Polycarp; Kerubo, Christine; Akoo, Pauline; Mwangangi, Joseph; Drakeley, Chris; Marsh, Kevin; Bejon, Philip; Njuguna, Patricia

    2016-04-14

    Targeted malaria control interventions are expected to be cost-effective. Clinical, parasitological and serological markers of malaria transmission have been used to detect malaria transmission hotspots, but few studies have examined the relationship between the different potential markers in low transmission areas. The present study reports on the relationships between clinical, parasitological, serological and entomological markers of malaria transmission in an area of low transmission intensity in Coastal Kenya. Longitudinal data collected from 831 children aged 5-17 months, cross-sectional survey data from 800 older children and adults, and entomological survey data collected in Ganze on the Kenyan Coast were used in the present study. The spatial scan statistic test used to detect malaria transmission hotspots was based on incidence of clinical malaria episodes, prevalence of asymptomatic asexual parasites carriage detected by microscopy and polymerase chain reaction (PCR), seroprevalence of antibodies to two Plasmodium falciparum merozoite antigens (AMA1 and MSP1-19) and densities of Anopheles mosquitoes in CDC light-trap catches. There was considerable overlapping of hotspots by these different markers, but only weak to moderate correlation between parasitological and serological markers. PCR prevalence and seroprevalence of antibodies to AMA1 or MSP1-19 appeared to be more sensitive markers of hotspots at very low transmission intensity. These findings may support the choice of either serology or PCR as markers in the detection of malaria transmission hotspots for targeted interventions.

  16. Effect of transmission intensity on hotspots and micro-epidemiology of malaria in sub-Saharan Africa.

    Science.gov (United States)

    Mogeni, Polycarp; Omedo, Irene; Nyundo, Christopher; Kamau, Alice; Noor, Abdisalan; Bejon, Philip

    2017-06-30

    Malaria transmission intensity is heterogeneous, complicating the implementation of malaria control interventions. We provide a description of the spatial micro-epidemiology of symptomatic malaria and asymptomatic parasitaemia in multiple sites. We assembled data from 19 studies conducted between 1996 and 2015 in seven countries of sub-Saharan Africa with homestead-level geospatial data. Data from each site were used to quantify spatial autocorrelation and examine the temporal stability of hotspots. Parameters from these analyses were examined to identify trends over varying transmission intensity. Significant hotspots of malaria transmission were observed in most years and sites. The risk ratios of malaria within hotspots were highest at low malaria positive fractions (MPFs) and decreased with increasing MPF (p hotspots was lowest at extremely low and extremely high MPFs, with a peak in statistical significance at an MPF of ~0.3. In four sites with longitudinal data we noted temporal instability and variable negative correlations between MPF and average age of symptomatic malaria across all sites, suggesting varying degrees of temporal stability. We observed geographical micro-variation in malaria transmission at sites with a variety of transmission intensities across sub-Saharan Africa. Hotspots are marked at lower transmission intensity, but it becomes difficult to show statistical significance when cases are sparse at very low transmission intensity. Given the predictability with which hotspots occur as transmission intensity falls, malaria control programmes should have a low threshold for responding to apparent clustering of cases.

  17. Mosquito transmission of the rodent malaria parasite Plasmodium chabaudi

    Directory of Open Access Journals (Sweden)

    Spence Philip J

    2012-12-01

    Full Text Available Abstract Background Serial blood passage of Plasmodium increases virulence, whilst mosquito transmission inherently regulates parasite virulence within the mammalian host. It is, therefore, imperative that all aspects of experimental malaria research are studied in the context of the complete Plasmodium life cycle. Methods Plasmodium chabaudi chabaudi displays many characteristics associated with human Plasmodium infection of natural mosquito vectors and the mammalian host, and thus provides a unique opportunity to study the pathogenesis of malaria in a single infection setting. An optimized protocol that permits efficient and reproducible vector transmission of P. c. chabaudi via Anopheles stephensi was developed. Results and conclusions This protocol was utilized for mosquito transmission of genetically distinct P. c. chabaudi isolates, highlighting differential parasite virulence within the mosquito vector and the spectrum of host susceptibility to infection initiated via the natural route, mosquito bite. An apposite experimental system in which to delineate the pathogenesis of malaria is described in detail.

  18. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Osadolor Ebhuoma

    2016-06-01

    Full Text Available Malaria is a serious public health threat in Sub-Saharan Africa (SSA, and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI Web of KnowledgeSM databases (PubMed, Web of Science and ScienceDirect was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI derived from either the National Oceanic and Atmospheric Administration (NOAA Advanced Very High Resolution Radiometer (AVHRR or Moderate-resolution Imaging Spectrometer (MODIS satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical

  19. Remote Sensing-Driven Climatic/Environmental Variables for Modelling Malaria Transmission in Sub-Saharan Africa.

    Science.gov (United States)

    Ebhuoma, Osadolor; Gebreslasie, Michael

    2016-06-14

    Malaria is a serious public health threat in Sub-Saharan Africa (SSA), and its transmission risk varies geographically. Modelling its geographic characteristics is essential for identifying the spatial and temporal risk of malaria transmission. Remote sensing (RS) has been serving as an important tool in providing and assessing a variety of potential climatic/environmental malaria transmission variables in diverse areas. This review focuses on the utilization of RS-driven climatic/environmental variables in determining malaria transmission in SSA. A systematic search on Google Scholar and the Institute for Scientific Information (ISI) Web of Knowledge(SM) databases (PubMed, Web of Science and ScienceDirect) was carried out. We identified thirty-five peer-reviewed articles that studied the relationship between remotely-sensed climatic variable(s) and malaria epidemiological data in the SSA sub-regions. The relationship between malaria disease and different climatic/environmental proxies was examined using different statistical methods. Across the SSA sub-region, the normalized difference vegetation index (NDVI) derived from either the National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) or Moderate-resolution Imaging Spectrometer (MODIS) satellite sensors was most frequently returned as a statistically-significant variable to model both spatial and temporal malaria transmission. Furthermore, generalized linear models (linear regression, logistic regression and Poisson regression) were the most frequently-employed methods of statistical analysis in determining malaria transmission predictors in East, Southern and West Africa. By contrast, multivariate analysis was used in Central Africa. We stress that the utilization of RS in determining reliable malaria transmission predictors and climatic/environmental monitoring variables would require a tailored approach that will have cognizance of the geographical

  20. A mathematical model for malaria transmission relating global warming and local socioeconomic conditions

    Directory of Open Access Journals (Sweden)

    Hyun M Yang

    2001-06-01

    Full Text Available OBJECTIVE: Sensitivity analysis was applied to a mathematical model describing malaria transmission relating global warming and local socioeconomic conditions. METHODS: A previous compartment model was proposed to describe the overall transmission of malaria. This model was built up on several parameters and the prevalence of malaria in a community was characterized by the values assigned to them. To assess the control efforts, the model parameters can vary on broad intervals. RESULTS: By performing the sensitivity analysis on equilibrium points, which represent the level of malaria infection in a community, the different possible scenarios are obtained when the parameters are changed. CONCLUSIONS: Depending on malaria risk, the efforts to control its transmission can be guided by a subset of parameters used in the mathematical model.

  1. Transmission dynamics of malaria in Nigeria. | Okwa | Annals of ...

    African Journals Online (AJOL)

    Background: Two of the problems of malaria parasite vector control in Nigeria are the diversity of Anopheline vectors and large size of the country. Anopheline distribution and transmission dynamics of malaria were therefore compared between four ecotypes in Nigeria during the rainy season. Methods: Polymerase chain ...

  2. Malaria epidemiology in an area of stable transmission in tribal population of Jharkhand, India.

    Science.gov (United States)

    Das, Manoj K; Prajapati, Brijesh K; Tiendrebeogo, Régis W; Ranjan, Kumud; Adu, Bright; Srivastava, Amit; Khera, Harvinder K; Chauhan, Narendra; Tevatiya, Sanjay; Kana, Ikhlaq H; Sharma, Surya Kant; Singh, Subhash; Theisen, Michael

    2017-05-02

    Malaria remains an important health problem in India with approximately 1 million cases in 2014. Of these, 7% occurred in the Jharkhand state mainly in the tribal population. This study was conducted in Dumargarhi, a tribal village about 42 km east of Ranchi city, Jharkhand, from May 2014 to September 2016. Four point prevalence surveys were carried out during consecutive high (October-December) and low (June-August) transmission seasons. Malaria cases were recorded from April 2015 to April 2016 through fortnightly visits to the village. Adult mosquito densities were monitored fortnightly by manual catching using suction tube method. The study area consists of five hamlets inhabited by 945 individuals living in 164 households as recorded through a house-to-house census survey performed at enrollment. The study population consisted predominantly of the Munda (n = 425, 45%) and Oraon (n = 217, 23%) ethnic groups. Study participants were categorized as per their age 0-5, 6-10, 11-15 and >15 years. There were 99 cases of clinical malaria from April 2015 to April 2016 and all malaria cases confirmed by microscopy were attributed to Plasmodium falciparum (94 cases) and Plasmodium vivax (5 cases), respectively. During the high transmission season the mean density of P. falciparum parasitaemia per age group increased to a peak level of 23,601 parasites/μl in the 6-10 years age group and gradually declined in the adult population. Malaria attack rates, parasite prevalence and density levels in the study population showed a gradual decrease with increasing age. This finding is consistent with the phenomenon of naturally acquired immunity against malaria. Three vector species were detected: Anopheles fluviatilis, Anopheles annularis, and Anopheles culicifacies. The incoherence or complete out of phase pattern of the vector density peaks together with a high prevalence of parasite positive individuals in the study population explains the year-round malaria

  3. The incidence of malaria in travellers to South-East Asia: is local malaria transmission a useful risk indicator?

    Directory of Open Access Journals (Sweden)

    Jänisch Thomas

    2010-10-01

    Full Text Available Abstract Background The presence of ongoing local malaria transmission, identified though local surveillance and reported to regional WHO offices, by S-E Asian countries, forms the basis of national and international chemoprophylaxis recommendations in western countries. The study was designed to examine whether the strategy of using malaria transmission in a local population was an accurate estimate of the malaria threat faced by travellers and a correlate of malaria in returning travellers. Methods Malaria endemicity was described from distribution and intensity in the local populations of ten S-E Asian destination countries over the period 2003-2008 from regionally reported cases to WHO offices. Travel acquired malaria was collated from malaria surveillance reports from the USA and 12 European countries over the same period. The numbers of travellers visiting the destination countries was based on immigration and tourism statistics collected on entry of tourists to the destination countries. Results In the destination countries, mean malaria rates in endemic countries ranged between 0.01 in Korea to 4:1000 population per year in Lao PDR, with higher regional rates in a number of countries. Malaria cases imported into the 13 countries declined by 47% from 140 cases in 2003 to 66 in 2008. A total of 608 cases (27.3% Plasmodium falciparum (Pf were reported over the six years, the largest number acquired in Indonesia, Thailand and Korea. Four countries had an incidence > 1 case per 100,000 traveller visits; Burma (Myanmar, Indonesia, Cambodia and Laos (range 1 to 11.8-case per 100,000 visits. The remaining six countries rates were Conclusion The intensity of malaria transmission particularly sub-national activity did not correlate with the risk of travellers acquiring malaria in the large numbers of arriving visitors. It is proposed to use a threshold incidence of > 1 case per 100,000 visits to consider targeted malaria prophylaxis

  4. Can antibodies against flies alter malaria transmission in birds by changing vector behavior?

    Science.gov (United States)

    Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R

    2014-10-07

    Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.

  5. Micro-heterogeneity of malaria transmission in the Peruvian Amazon: a baseline assessment underlying a population-based cohort study.

    Science.gov (United States)

    Rosas-Aguirre, Angel; Guzman-Guzman, Mitchel; Gamboa, Dionicia; Chuquiyauri, Raul; Ramirez, Roberson; Manrique, Paulo; Carrasco-Escobar, Gabriel; Puemape, Carmen; Llanos-Cuentas, Alejandro; Vinetz, Joseph M

    2017-08-04

    Understanding the dynamics of malaria transmission in diverse endemic settings is key for designing and implementing locally adapted and sustainable control and elimination strategies. A parasitological and epidemiological survey was conducted in September-October 2012, as a baseline underlying a 3-year population-based longitudinal cohort study. The aim was to characterize malaria transmission patterns in two contrasting ecological rural sites in the Peruvian Amazon, Lupuna (LUP), a riverine environment, and Cahuide (CAH), associated with road-linked deforestation. After a full population census, 1941 individuals 3 years and older (829 in LUP, 1112 in CAH) were interviewed, clinically examined and had a blood sample taken for the detection of malaria parasites by microscopy and PCR. Species-specific parasite prevalence was estimated overall and by site. Multivariate logistic regression models assessed risk factors for parasite infection by PCR, while SaTScan detected spatial clusters of PCR-positive individuals within each site. In addition, data from routine malaria surveillance in the period 2009-2012 were obtained. Parasite prevalence by PCR was higher in CAH than in LUP for Plasmodium vivax (6.2% vs. 3.9%) and for Plasmodium falciparum (2.6% vs. 1.2%). Among PCR-confirmed infections, asymptomatic (Asy) parasite carriers were always more common than symptomatic (Sy) infections for P. vivax (Asy/Sy ratio: 2/1 in LUP and 3.7/1 in CAH) and for P. falciparum (Asy/Sy ratio: 1.3/1 in LUP and 4/1 in CAH). Sub-patent (Spat) infections also predominated over patent (Pat) infections for both species: P. vivax (Spat/Pat ratio: 2.8/1 in LUP and 3.7/1 in CAH) and P. falciparum malaria (Spat/Pat ratio: 1.9/1 in LUP and 26/0 in CAH). For CAH, age, gender and living in a household without electricity were significantly associated with P. vivax infection, while only age and living in a household with electricity was associated with P. falciparum infection. For LUP, only

  6. Re-imagining malaria: heterogeneity of human and mosquito behaviour in relation to residual malaria transmission in Cambodia.

    Science.gov (United States)

    Gryseels, Charlotte; Durnez, Lies; Gerrets, René; Uk, Sambunny; Suon, Sokha; Set, Srun; Phoeuk, Pisen; Sluydts, Vincent; Heng, Somony; Sochantha, Tho; Coosemans, Marc; Peeters Grietens, Koen

    2015-04-24

    In certain regions in Southeast Asia, where malaria is reduced to forested regions populated by ethnic minorities dependent on slash-and-burn agriculture, malaria vector populations have developed a propensity to feed early and outdoors, limiting the effectiveness of long-lasting insecticide-treated nets (LLIN) and indoor residual spraying (IRS). The interplay between heterogeneous human, as well as mosquito behaviour, radically challenges malaria control in such residual transmission contexts. This study examines human behavioural patterns in relation to the vector behaviour. The anthropological research used a sequential mixed-methods study design in which quantitative survey research methods were used to complement findings from qualitative ethnographic research. The qualitative research existed of in-depth interviews and participant observation. For the entomological research, indoor and outdoor human landing collections were performed. All research was conducted in selected villages in Ratanakiri province, Cambodia. Variability in human behaviour resulted in variable exposure to outdoor and early biting vectors: (i) indigenous people were found to commute between farms in the forest, where malaria exposure is higher, and village homes; (ii) the indoor/outdoor biting distinction was less clear in forest housing often completely or partly open to the outside; (iii) reported sleeping times varied according to the context of economic activities, impacting on the proportion of infections that could be accounted for by early or nighttime biting; (iv) protection by LLINs may not be as high as self-reported survey data indicate, as observations showed around 40% (non-treated) market net use while (v) unprotected evening resting and deep forest activities impacted further on the suboptimal use of LLINs. The heterogeneity of human behaviour and the variation of vector densities and biting behaviours may lead to a considerable proportion of exposure occurring during

  7. Unstable malaria in Sudan: the influence of the dry season. Malaria in areas of unstable and seasonal transmission. Lessons from Daraweesh

    DEFF Research Database (Denmark)

    Theander, T G

    1999-01-01

    Most studies of the natural history of Plasmodium falciparum infection have been performed in areas of stable malaria transmission and the acquisition of immunity to malaria in individuals who live in such areas is well documented. For the past 10 years, we have monitored host-parasite relationsh......Most studies of the natural history of Plasmodium falciparum infection have been performed in areas of stable malaria transmission and the acquisition of immunity to malaria in individuals who live in such areas is well documented. For the past 10 years, we have monitored host...

  8. Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies.

    Directory of Open Access Journals (Sweden)

    Jamie T Griffin

    2010-08-01

    Full Text Available Over the past decade malaria intervention coverage has been scaled up across Africa. However, it remains unclear what overall reduction in transmission is achievable using currently available tools.We developed an individual-based simulation model for Plasmodium falciparum transmission in an African context incorporating the three major vector species (Anopheles gambiae s.s., An. arabiensis, and An. funestus with parameters obtained by fitting to parasite prevalence data from 34 transmission settings across Africa. We incorporated the effect of the switch to artemisinin-combination therapy (ACT and increasing coverage of long-lasting insecticide treated nets (LLINs from the year 2000 onwards. We then explored the impact on transmission of continued roll-out of LLINs, additional rounds of indoor residual spraying (IRS, mass screening and treatment (MSAT, and a future RTS,S/AS01 vaccine in six representative settings with varying transmission intensity (as summarized by the annual entomological inoculation rate, EIR: 1 setting with low, 3 with moderate, and 2 with high EIRs, vector-species combinations, and patterns of seasonality. In all settings we considered a realistic target of 80% coverage of interventions. In the low-transmission setting (EIR approximately 3 ibppy [infectious bites per person per year], LLINs have the potential to reduce malaria transmission to low levels (90% or novel tools and/or substantial social improvements will be required, although considerable reductions in prevalence can be achieved with existing tools and realistic coverage levels.Interventions using current tools can result in major reductions in P. falciparum malaria transmission and the associated disease burden in Africa. Reduction to the 1% parasite prevalence threshold is possible in low- to moderate-transmission settings when vectors are primarily endophilic (indoor-resting, provided a comprehensive and sustained intervention program is achieved through

  9. Referral patterns of community health workers diagnosing and treating malaria

    DEFF Research Database (Denmark)

    Lal, Sham; Ndyomugenyi, Richard; Magnussen, Pascal

    2016-01-01

    Malaria-endemic countries have implemented community health worker (CHW) programs to provide malaria diagnosis and treatment to populations living beyond the reach of health systems. However, there is limited evidence describing the referral practices of CHWs. We examined the impact of malaria...... rapid diagnostic tests (mRDTs) on CHW referral in two cluster-randomized trials, one conducted in a moderate-to-high malaria transmission setting and one in a low-transmission setting in Uganda, between January 2010 and July 2012. All CHWs were trained to prescribe artemisinin-based combination therapy...... (ACT) for malaria and recognize signs and symptoms for referral to health centers. CHWs in the control arm used a presumptive diagnosis for malaria based on clinical symptoms, whereas intervention arm CHWs used mRDTs. CHWs recorded ACT prescriptions, mRDT results, and referral inpatient registers...

  10. Rapid assessment of malaria transmission using age-specific sero-conversion rates.

    Directory of Open Access Journals (Sweden)

    Laveta Stewart

    2009-06-01

    Full Text Available Malaria transmission intensity is a crucial determinant of malarial disease burden and its measurement can help to define health priorities. Rapid, local estimates of transmission are required to focus resources better but current entomological and parasitological methods for estimating transmission intensity are limited in this respect. An alternative is determination of antimalarial antibody age-specific sero-prevalence to estimate sero-conversion rates (SCR, which have been shown to correlate with transmission intensity. This study evaluated SCR generated from samples collected from health facility attendees as a tool for a rapid assessment of malaria transmission intensity.The study was conducted in north east Tanzania. Antibodies to Plasmodium falciparum merozoite antigens MSP-1(19 and AMA-1 were measured by indirect ELISA. Age-specific antibody prevalence was analysed using a catalytic conversion model based on maximum likelihood to generate SCR. A pilot study, conducted near Moshi, found SCRs for AMA-1 were highly comparable between samples collected from individuals in a conventional cross-sectional survey and those collected from attendees at a local health facility. For the main study, 3885 individuals attending village health facilities in Korogwe and Same districts were recruited. Both malaria parasite prevalence and sero-positivity were higher in Korogwe than in Same. MSP-1(19 and AMA-1 SCR rates for Korogwe villages ranged from 0.03 to 0.06 and 0.07 to 0.21 respectively. In Same district there was evidence of a recent reduction in transmission, with SCR among those born since 1998 [MSP-1(19 0.002 to 0.008 and AMA-1 0.005 to 0.014 ] being 5 to 10 fold lower than among individuals born prior to 1998 [MSP-1(19 0.02 to 0.04 and AMA-1 0.04 to 0.13]. Current health facility specific estimates of SCR showed good correlations with malaria incidence rates in infants in a contemporaneous clinical trial (MSP-1(19 r(2 = 0.78, p<0.01 & AMA-1 r

  11. Malaria surveillance-response strategies in different transmission zones of the People's Republic of China: preparing for climate change

    Directory of Open Access Journals (Sweden)

    Yang Guo-Jing

    2012-12-01

    Full Text Available Abstract Background A sound understanding of malaria transmission patterns in the People’s Republic of China (P.R. China is crucial for designing effective surveillance-response strategies that can guide the national malaria elimination programme (NMEP. Using an established biology-driven model, it is expected that one may design and refine appropriate surveillance-response strategies for different transmission zones, which, in turn, assist the NMEP in the ongoing implementation period (2010–2020 and, potentially, in the post-elimination stage (2020–2050. Methods Environmental data obtained from 676 locations across P.R. China, such as monthly temperature and yearly relative humidity (YRH, for the period 1961–2000 were prepared. Smoothed surface maps of the number of months suitable for parasite survival derived from monthly mean temperature and YRH were generated. For each decade, the final malaria prediction map was overlaid by two masked maps, one showing the number of months suitable for parasite survival and the other the length of YRH map in excess of 60%. Results Considering multiple environmental factors simultaneously, the environmental variables suitable for malaria transmission were found to have shifted northwards, which was especially pronounced in northern P.R. China. The unstable suitable regions (transmission periods between five and six months showed increased transmission intensity due to prolonged suitable periods, especially in the central part of the country. Conclusion Adequate and effective surveillance-response strategies for NMEP should be designed to achieve the goal of malaria elimination in P.R. China by 2020, especially in the zones predicted to be the most vulnerable for climate change.

  12. Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control.

    Science.gov (United States)

    Lefevre, Thierry; Ohm, Johanna; Dabiré, Kounbobr R; Cohuet, Anna; Choisy, Marc; Thomas, Matthew B; Cator, Lauren

    2018-04-01

    Evaluating the risk of emergence and transmission of vector-borne diseases requires knowledge of the genetic and environmental contributions to pathogen transmission traits. Compared to the significant effort devoted to understanding the biology of malaria transmission from vertebrate hosts to mosquito vectors, the strategies that malaria parasites have evolved to maximize transmission from vectors to vertebrate hosts have been largely overlooked. While determinants of infection success within the mosquito host have recently received attention, the causes of variability for other key transmission traits of malaria, namely the duration of parasite development and its virulence within the vector, as well as its ability to alter mosquito behavior, remain largely unknown. This important gap in our knowledge needs to be bridged in order to obtain an integrative view of the ecology and evolution of malaria transmission strategies. Associations between transmission traits also need to be characterized, as they trade-offs and constraints could have important implications for understanding the evolution of parasite transmission. Finally, theoretical studies are required to evaluate how genetic and environmental influences on parasite transmission traits can shape malaria dynamics and evolution in response to disease control.

  13. Larvivorous fish for preventing malaria transmission

    Science.gov (United States)

    Walshe, Deirdre P; Garner, Paul; Adeel, Ahmed A; Pyke, Graham H; Burkot, Thomas R

    2017-01-01

    Background Adult female Anopheles mosquitoes can transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization (WHO) includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. In the past, the Global Fund has financed larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policymakers may return to this option. Therefore, we assessed the evidence base for larvivorous fish programmes in malaria control. Objectives To evaluate whether introducing larvivorous fish to anopheline larval habitats impacts Plasmodium parasite transmission. We also sought to summarize studies that evaluated whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (Ovid); CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) up to 6 July 2017. We checked the reference lists of all studies identified by the search. We examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Also we contacted researchers in the field and the authors of studies that met the inclusion criteria for additional information regarding potential studies for inclusion and ongoing studies. This is an update of a Cochrane Review published in 2013. Selection criteria Randomized controlled trials (RCTs) and non-RCTs, including controlled before-and-after studies, controlled time series, and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and

  14. Invasive Salmonella Infections in Areas of High and Low Malaria Transmission Intensity in Tanzania

    Science.gov (United States)

    Biggs, Holly M.; Lester, Rebecca; Nadjm, Behzad; Mtove, George; Todd, Jim E.; Kinabo, Grace D.; Philemon, Rune; Amos, Ben; Morrissey, Anne B.; Reyburn, Hugh; Crump, John A.

    2014-01-01

    Background. The epidemiology of Salmonella Typhi and invasive nontyphoidal Salmonella (NTS) differs, and prevalence of these pathogens among children in sub-Saharan Africa may vary in relation to malaria transmission intensity. Methods. We compared the prevalence of bacteremia among febrile pediatric inpatients aged 2 months to 13 years recruited at sites of high and low malaria endemicity in Tanzania. Enrollment at Teule Hospital, the high malaria transmission site, was from June 2006 through May 2007, and at Kilimanjaro Christian Medical Centre (KCMC), the low malaria transmission site, from September 2007 through August 2008. Automated blood culture, malaria microscopy with Giemsa-stained blood films, and human immunodeficiency virus testing were performed. Results. At Teule, 3639 children were enrolled compared to 467 at KCMC. Smear-positive malaria was detected in 2195 of 3639 (60.3%) children at Teule and 11 of 460 (2.4%) at KCMC (P < .001). Bacteremia was present in 336 of 3639 (9.2%) children at Teule and 20 of 463 (4.3%) at KCMC (P < .001). NTS was isolated in 162 of 3639 (4.5%) children at Teule and 1 of 463 (0.2%) at KCMC (P < .001). Salmonella Typhi was isolated from 11 (0.3%) children at Teule and 6 (1.3%) at KCMC (P = .008). With NTS excluded, the prevalence of bacteremia at Teule was 5.0% and at KCMC 4.1% (P = .391). Conclusions. Where malaria transmission was intense, invasive NTS was common and Salmonella Typhi was uncommon, whereas the inverse was observed at a low malaria transmission site. The relationship between these pathogens, the environment, and the host is a compelling area for further research. PMID:24336909

  15. Simulation of the Impact of Climate Variability on Malaria Transmission in the Sahel

    Science.gov (United States)

    Bomblies, A.; Eltahir, E.; Duchemin, J.

    2007-12-01

    A coupled hydrology and entomology model for simulation of malaria transmission and malaria transmitting mosquito population dynamics is presented. Model development and validation is done using field data and observations collected at Banizoumbou and Zindarou, Niger spanning three wet seasons, from 2005 through 2007. The primary model objective is the accurate determination of climate variability effects on village scale malaria transmission. Malaria transmission dependence on climate variables is highly nonlinear and complex. Temperature and humidity affect mosquito longevity, temperature controls parasite development rates in the mosquito as well as subadult mosquito development rates, and precipitation determines the formation and persistence of adequate breeding pools. Moreover, unsaturated zone hydrology influences overland flow, and climate controlled evapotranspiration rates and root zone uptake therefore also influence breeding pool formation. High resolution distributed hydrologic simulation allows representation of the small-scale ephemeral pools that constitute the primary habitat of Anopheles gambiae mosquitoes, the dominant malaria vectors in the Niger Sahel. Remotely sensed soil type, vegetation type, and microtopography rasters are used to assign the distributed parameter fields for simulation of the land surface hydrologic response to precipitation and runoff generation. Predicted runoff from each cell flows overland and into topographic depressions, with explicit representation of infiltration and evapotranspiration. The model's entomology component interacts with simulated pools. Subadult (aquatic stage) mosquito breeding is simulated in the pools, and water temperature dependent stage advancement rates regulate adult mosquito emergence into the model domain. Once emerged, adult mosquitoes are tracked as independent individual agents that interact with their immediate environment. Attributes relevant to malaria transmission such as gonotrophic

  16. Highly focused anopheline breeding sites and malaria transmission in Dakar

    Directory of Open Access Journals (Sweden)

    Bouzid Samia

    2009-06-01

    Full Text Available Abstract Background Urbanization has a great impact on the composition of the vector system and malaria transmission dynamics. In Dakar, some malaria cases are autochthonous but parasite rates and incidences of clinical malaria attacks have been recorded at low levels. Ecological heterogeneity of malaria transmission was investigated in Dakar, in order to characterize the Anopheles breeding sites in the city and to study the dynamics of larval density and adult aggressiveness in ten characteristically different urban areas. Methods Ten study areas were sampled in Dakar and Pikine. Mosquitoes were collected by human landing collection during four nights in each area (120 person-nights. The Plasmodium falciparum circumsporozoite (CSP index was measured by ELISA and the entomological inoculation rates (EIR were calculated. Open water collections in the study areas were monitored weekly for physico-chemical characterization and the presence of anopheline larvae. Adult mosquitoes and hatched larvae were identified morphologically and by molecular methods. Results In September-October 2007, 19,451 adult mosquitoes were caught among which, 1,101 were Anopheles gambiae s.l. The Human Biting Rate ranged from 0.1 bites per person per night in Yoff Village to 43.7 in Almadies. Seven out of 1,101 An. gambiae s.l. were found to be positive for P. falciparum (CSP index = 0.64%. EIR ranged from 0 infected bites per person per year in Yoff Village to 16.8 in Almadies. The An. gambiae complex population was composed of Anopheles arabiensis (94.8% and Anopheles melas (5.2%. None of the An. melas were infected with P. falciparum. Of the 54 water collection sites monitored, 33 (61.1% served as anopheline breeding sites on at least one observation. No An. melas was identified among the larval samples. Some physico-chemical characteristics of water bodies were associated with the presence/absence of anopheline larvae and with larval density. A very close parallel

  17. Development of malaria transmission-blocking vaccines: from concept to product.

    Science.gov (United States)

    Wu, Yimin; Sinden, Robert E; Churcher, Thomas S; Tsuboi, Takafumi; Yusibov, Vidadi

    2015-06-01

    Despite decades of effort battling against malaria, the disease is still a major cause of morbidity and mortality. Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. In the 1950s, Huff et al. first demonstrated the induction of transmission-blocking immunity in chickens by repeated immunizations with Plasmodium gallinaceum-infected red blood cells. Since then, significant progress has been made in identification of parasite antigens responsible for transmission-blocking activity. Recombinant technologies accelerated evaluation of these antigens as vaccine candidates, and it is possible to induce effective transmission-blocking immunity in humans both by natural infection and now by immunization with recombinant vaccines. This chapter reviews the efforts to produce TBVs, summarizes the current status and advances and discusses the remaining challenges and approaches. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Human movement data for malaria control and elimination strategic planning.

    Science.gov (United States)

    Pindolia, Deepa K; Garcia, Andres J; Wesolowski, Amy; Smith, David L; Buckee, Caroline O; Noor, Abdisalan M; Snow, Robert W; Tatem, Andrew J

    2012-06-18

    Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.

  19. Parasite threshold associated with clinical malaria in areas of different transmission intensities in north eastern Tanzania

    DEFF Research Database (Denmark)

    Mmbando, Bruno P; Lusingu, John P; Vestergaard, Lasse S

    2009-01-01

    BACKGROUND: In Sub-Sahara Africa, malaria due to Plasmodium falciparum is the main cause of ill health. Evaluation of malaria interventions, such as drugs and vaccines depends on clinical definition of the disease, which is still a challenge due to lack of distinct malaria specific clinical...... features. Parasite threshold is used in definition of clinical malaria in evaluation of interventions. This however, is likely to be influenced by other factors such as transmission intensity as well as individual level of immunity against malaria. METHODS: This paper describes step function and dose...... response model with threshold parameter as a tool for estimation of parasite threshold for onset of malaria fever in highlands (low transmission) and lowlands (high transmission intensity) strata. These models were fitted using logistic regression stratified by strata and age groups (0-1, 2-3, 4-5, 6...

  20. Importance of adequate local spatiotemporal transmission measures in malaria cohort studies: application to the relation between placental malaria and first malaria infection in infants.

    Science.gov (United States)

    Le Port, Agnès; Cottrell, Gilles; Chandre, Fabrice; Cot, Michel; Massougbodji, Achille; Garcia, André

    2013-07-01

    According to several studies, infants whose mothers had a malaria-infected placenta (MIP) at delivery are at increased risk of a first malaria infection. Immune tolerance caused by intrauterine contact with the parasite could explain this phenomenon, but it is also known that infants who are highly exposed to Anopheles mosquitoes infected with Plasmodium are at greater risk of contracting malaria. Consequently, local malaria transmission must be taken into account to demonstrate the immune tolerance hypothesis. From data collected between 2007 and 2010 on 545 infants followed from birth to age 18 months in southern Benin, we compared estimates of the effect of MIP on time to first malaria infection obtained through different Cox models. In these models, MIP was adjusted for either 1) "village-like" time-independent exposure variables or 2) spatiotemporal exposure prediction derived from local climatic, environmental, and behavioral factors. Only the use of exposure prediction improved the model's goodness of fit (Bayesian Information Criterion) and led to clear conclusions regarding the effect of placental infection, whereas the models using the village-like variables were less successful than the univariate model. This demonstrated clearly the benefit of adequately taking transmission into account in cohort studies of malaria.

  1. Mathematical modeling of climate change and malaria transmission dynamics: a historical review.

    Science.gov (United States)

    Eikenberry, Steffen E; Gumel, Abba B

    2018-04-24

    Malaria, one of the greatest historical killers of mankind, continues to claim around half a million lives annually, with almost all deaths occurring in children under the age of five living in tropical Africa. The range of this disease is limited by climate to the warmer regions of the globe, and so anthropogenic global warming (and climate change more broadly) now threatens to alter the geographic area for potential malaria transmission, as both the Plasmodium malaria parasite and Anopheles mosquito vector have highly temperature-dependent lifecycles, while the aquatic immature Anopheles habitats are also strongly dependent upon rainfall and local hydrodynamics. A wide variety of process-based (or mechanistic) mathematical models have thus been proposed for the complex, highly nonlinear weather-driven Anopheles lifecycle and malaria transmission dynamics, but have reached somewhat disparate conclusions as to optimum temperatures for transmission, and the possible effect of increasing temperatures upon (potential) malaria distribution, with some projecting a large increase in the area at risk for malaria, but others predicting primarily a shift in the disease's geographic range. More generally, both global and local environmental changes drove the initial emergence of P. falciparum as a major human pathogen in tropical Africa some 10,000 years ago, and the disease has a long and deep history through the present. It is the goal of this paper to review major aspects of malaria biology, methods for formalizing these into mathematical forms, uncertainties and controversies in proper modeling methodology, and to provide a timeline of some major modeling efforts from the classical works of Sir Ronald Ross and George Macdonald through recent climate-focused modeling studies. Finally, we attempt to place such mathematical work within a broader historical context for the "million-murdering Death" of malaria.

  2. Meteorological, environmental remote sensing and neural network analysis of the epidemiology of malaria transmission in Thailand

    Directory of Open Access Journals (Sweden)

    Richard Kiang

    2006-11-01

    Full Text Available In many malarious regions malaria transmission roughly coincides with rainy seasons, which provide for more abundant larval habitats. In addition to precipitation, other meteorological and environmental factors may also influence malaria transmission. These factors can be remotely sensed using earth observing environmental satellites and estimated with seasonal climate forecasts. The use of remote sensing usage as an early warning tool for malaria epidemics have been broadly studied in recent years, especially for Africa, where the majority of the world’s malaria occurs. Although the Greater Mekong Subregion (GMS, which includes Thailand and the surrounding countries, is an epicenter of multidrug resistant falciparum malaria, the meteorological and environmental factors affecting malaria transmissions in the GMS have not been examined in detail. In this study, the parasitological data used consisted of the monthly malaria epidemiology data at the provincial level compiled by the Thai Ministry of Public Health. Precipitation, temperature, relative humidity, and vegetation index obtained from both climate time series and satellite measurements were used as independent variables to model malaria. We used neural network methods, an artificial-intelligence technique, to model the dependency of malaria transmission on these variables. The average training accuracy of the neural network analysis for three provinces (Kanchanaburi, Mae Hong Son, and Tak which are among the provinces most endemic for malaria, is 72.8% and the average testing accuracy is 62.9% based on the 1994-1999 data. A more complex neural network architecture resulted in higher training accuracy but also lower testing accuracy. Taking into account of the uncertainty regarding reported malaria cases, we divided the malaria cases into bands (classes to compute training accuracy. Using the same neural network architecture on the 19 most endemic provinces for years 1994 to 2000, the

  3. Simplified models of vector control impact upon malaria transmission by zoophagic mosquitoes.

    Directory of Open Access Journals (Sweden)

    Samson S Kiware

    Full Text Available BACKGROUND: High coverage of personal protection measures that kill mosquitoes dramatically reduce malaria transmission where vector populations depend upon human blood. However, most primary malaria vectors outside of sub-Saharan Africa can be classified as "very zoophagic," meaning they feed occasionally (<10% of blood meals upon humans, so personal protection interventions have negligible impact upon their survival. METHODS AND FINDINGS: We extended a published malaria transmission model to examine the relationship between transmission, control, and the baseline proportion of bloodmeals obtained from humans (human blood index. The lower limit of the human blood index enables derivation of simplified models for zoophagic vectors that (1 Rely on only three field-measurable parameters. (2 Predict immediate and delayed (with and without assuming reduced human infectivity, respectively impacts of personal protection measures upon transmission. (3 Illustrate how appreciable indirect communal-level protection for non-users can be accrued through direct personal protection of users. (4 Suggest the coverage and efficacy thresholds required to attain epidemiological impact. The findings suggest that immediate, indirect, community-wide protection of users and non-users alike may linearly relate to the efficacy of a user's direct personal protection, regardless of whether that is achieved by killing or repelling mosquitoes. High protective coverage and efficacy (≥80% are important to achieve epidemiologically meaningful impact. Non-users are indirectly protected because the two most common species of human malaria are strict anthroponoses. Therefore, the small proportion of mosquitoes that are killed or diverted while attacking humans can represent a large proportion of those actually transmitting malaria. CONCLUSIONS: Simplified models of malaria transmission by very zoophagic vectors may be used by control practitioners to predict intervention impact

  4. One-year delayed effect of fog on malaria transmission: a time-series analysis in the rain forest area of Mengla County, south-west China

    Directory of Open Access Journals (Sweden)

    Goggins William B

    2008-06-01

    Full Text Available Abstract Background Malaria is a major public health burden in the tropics with the potential to significantly increase in response to climate change. Analyses of data from the recent past can elucidate how short-term variations in weather factors affect malaria transmission. This study explored the impact of climate variability on the transmission of malaria in the tropical rain forest area of Mengla County, south-west China. Methods Ecological time-series analysis was performed on data collected between 1971 and 1999. Auto-regressive integrated moving average (ARIMA models were used to evaluate the relationship between weather factors and malaria incidence. Results At the time scale of months, the predictors for malaria incidence included: minimum temperature, maximum temperature, and fog day frequency. The effect of minimum temperature on malaria incidence was greater in the cool months than in the hot months. The fog day frequency in October had a positive effect on malaria incidence in May of the following year. At the time scale of years, the annual fog day frequency was the only weather predictor of the annual incidence of malaria. Conclusion Fog day frequency was for the first time found to be a predictor of malaria incidence in a rain forest area. The one-year delayed effect of fog on malaria transmission may involve providing water input and maintaining aquatic breeding sites for mosquitoes in vulnerable times when there is little rainfall in the 6-month dry seasons. These findings should be considered in the prediction of future patterns of malaria for similar tropical rain forest areas worldwide.

  5. Intricacies of using temperature of different niches for assessing impact on malaria transmission

    Directory of Open Access Journals (Sweden)

    Poonam Singh

    2016-01-01

    Full Text Available Background & objectives: The influence of temperature on the life cycle of mosquitoes as well as on development of malaria parasite in mosquitoes is well studied. Most of the studies use outdoor temperature for understanding the transmission dynamics and providing projections of malaria. As the mosquitoes breed in water and rest usually indoors, it is logical to relate the transmission dynamics with temperature of micro-niche. The present study was, therefore, undertaken to understand the influence of different formats of temperature of different micro-niches on transmission of malaria for providing more realistic projections. Methods: The study was conducted in one village each of Assam and Uttarakhand s0 tates of India. Temperatures recorded from outdoor (air as well as indoor habitats (resting place of mosquito were averaged into daily, fortnightly and monthly and were used for determination of transmission windows (TWs for Plasmodium vivax (Pv and P. falciparum (Pf based on minimum temperature threshold required for transmission. Results: The daily temperature was found more useful for calculation of sporogony than fortnightly and monthly temperatures. Monthly TWs were further refined using fortnightly temperature, keeping in view the completion of more than one life cycle of malaria vectors and sporogony of malaria parasite in a month. A linear regression equation was generated to find out the relationship between outdoor and indoor temperatures and R [2] to predict the percentage of variation in indoor temperature as a function of outdoor temperature at both localities. Interpretation & conclusions: The study revealed that the indoor temperature was more than outdoors in stable malarious area (Assam but fluctuating in low endemic area like Uttarakhand. Transmission windows of malaria should be determined by transforming outdoor data to indoor and preferably at fortnightly interval. With daily recorded temperature, sporogonic and

  6. Assessing the Role of Climate Change in Malaria Transmission in Africa

    Directory of Open Access Journals (Sweden)

    E. T. Ngarakana-Gwasira

    2016-01-01

    Full Text Available The sensitivity of vector borne diseases like malaria to climate continues to raise considerable concern over the implications of climate change on future disease dynamics. The problem of malaria vectors shifting from their traditional locations to invade new zones is of important concern. A mathematical model incorporating rainfall and temperature is constructed to study the transmission dynamics of malaria. The reproduction number obtained is applied to gridded temperature and rainfall datasets for baseline climate and future climate with aid of GIS. As a result of climate change, malaria burden is likely to increase in the tropics, the highland regions, and East Africa and along the northern limit of falciparum malaria. Falciparum malaria will spread into the African highlands; however it is likely to die out at the southern limit of the disease.

  7. Surveillance of vector populations and malaria transmission during the 2009/10 El Niño event in the western Kenya highlands: opportunities for early detection of malaria hyper-transmission

    Directory of Open Access Journals (Sweden)

    Wanjala Christine L

    2011-07-01

    Full Text Available Abstract Background Vector control in the highlands of western Kenya has resulted in a significant reduction of malaria transmission and a change in the vectorial system. Climate variability as a result of events such as El Niño increases the highlands suitability for malaria transmission. Surveillance and monitoring is an important component of early transmission risk identification and management. However, below certain disease transmission thresholds, traditional tools for surveillance such as entomological inoculation rates may become insensitive. A rapid diagnostic kit comprising Plasmodium falciparum circumsporozoite surface protein and merozoite surface protein antibodies in humans was tested for early detection of transmission surges in the western Kenya highlands during an El Niño event (October 2009-February 2010. Methods Indoor resting female adult malaria vectors were collected in western Kenya highlands in four selected villages categorized into two valley systems, the U-shaped (Iguhu and Emutete and the V-shaped valleys (Marani and Fort Ternan for eight months. Members of the Anopheles gambiae complex were identified by PCR. Blood samples were collected from children 6-15 years old and exposure to malaria was tested using a circum-sporozoite protein and merozoite surface protein immunchromatographic rapid diagnostic test kit. Sporozoite ELISA was conducted to detect circum-sporozoite protein, later used for estimation of entomological inoculation rates. Results Among the four villages studied, an upsurge in antibody levels was first observed in October 2009. Plasmodium falciparum sporozoites were then first observed in December 2009 at Iguhu village and February 2010 at Emutete. Despite the upsurge in Marani and Fort Ternan no sporozoites were detected throughout the eight month study period. The antibody-based assay had much earlier transmission detection ability than the sporozoite-based assay. The proportion of An. arabiensis

  8. Observation of Blood Donor-Recipient Malaria Parasitaemia Patterns in a Malaria Endemic Region

    OpenAIRE

    Jamilu Abdullahi Faruk; Gboye Olufemi Ogunrinde; Aisha Indo Mamman

    2017-01-01

    Background. Asymptomatic malaria parasitaemia has been documented in donor blood in West Africa. However, donated blood is not routinely screened for malaria parasites (MPs). The present study therefore aimed to document the frequency of blood transfusion-induced donor-recipient malaria parasitaemia patterns, in children receiving blood transfusion in a tertiary health-centre. Methodology. A cross-sectional, observational study involving 140 children receiving blood transfusion was carried ou...

  9. The role of spatial mobility in malaria transmission in the Brazilian Amazon: The case of Porto Velho municipality, Rondônia, Brazil (2010-2012.

    Directory of Open Access Journals (Sweden)

    Jussara Rafael Angelo

    Full Text Available This study aims to describe the role of mobility in malaria transmission by discussing recent changes in population movements in the Brazilian Amazon and developing a flow map of disease transmission in this region.This study presents a descriptive analysis using an ecological approach on regional and local scales. The study location was the municipality of Porto Velho, which is the capital of Rondônia state, Brazil. Our dataset was obtained from the official health database, the population census and an environmental database. During 2000-2007 and 2007-2010, the Porto Velho municipality had an annual population growth of 1.42% and 5.07%, respectively. This population growth can be attributed to migration, which was driven by the construction of the Madeira River hydroelectric complex. From 2010 to 2012, 63,899 malaria-positive slides were reported for residents of Porto Velho municipality; 92% of the identified samples were autochthonous, and 8% were allochthonous. The flow map of patients' movements between residential areas and areas of suspected infection showed two patterns of malaria transmission: 1 commuting between residential areas and the Jirau hydropower dam reservoir, and 2 movements between urban areas and farms and resorts in rural areas. It was also observed that areas with greater occurrences of malaria were characterized by a low rate of deforestation.The Porto Velho municipality exhibits high malaria endemicity and plays an important role in disseminating the parasite to other municipalities in the Amazon and even to non-endemic areas of the country. Migration remains an important factor for the occurrence of malaria. However, due to recent changes in human occupation of the Brazilian Amazon, characterized by intense expansion of transportation networks, commuting has also become an important factor in malaria transmission. The magnitude of this change necessitates a new model to explain malaria transmission in the Brazilian

  10. Experimental evaluation of the relationship between lethal or non-lethal virulence and transmission success in malaria parasite infections

    Directory of Open Access Journals (Sweden)

    Nithiuthai S

    2004-09-01

    Full Text Available Abstract Background Evolutionary theory suggests that the selection pressure on parasites to maximize their transmission determines their optimal host exploitation strategies and thus their virulence. Establishing the adaptive basis to parasite life history traits has important consequences for predicting parasite responses to public health interventions. In this study we examine the extent to which malaria parasites conform to the predicted adaptive trade-off between transmission and virulence, as defined by mortality. The majority of natural infections, however, result in sub-lethal virulent effects (e.g. anaemia and are often composed of many strains. Both sub-lethal effects and pathogen population structure have been theoretically shown to have important consequences for virulence evolution. Thus, we additionally examine the relationship between anaemia and transmission in single and mixed clone infections. Results Whereas there was a trade-off between transmission success and virulence as defined by host mortality, contradictory clone-specific patterns occurred when defining virulence by anaemia. A negative relationship between anaemia and transmission success was found for one of the parasite clones, whereas there was no relationship for the other. Notably the two parasite clones also differed in a transmission phenotype (gametocyte sex ratio that has previously been shown to respond adaptively to a changing blood environment. In addition, as predicted by evolutionary theory, mixed infections resulted in increased anaemia. The increased anaemia was, however, not correlated with any discernable parasite trait (e.g. parasite density or with increased transmission. Conclusions We found some evidence supporting the hypothesis that there is an adaptive basis correlating virulence (as defined by host mortality and transmission success in malaria parasites. This confirms the validity of applying evolutionary virulence theory to biomedical

  11. Human movement data for malaria control and elimination strategic planning

    Directory of Open Access Journals (Sweden)

    Pindolia Deepa K

    2012-06-01

    Full Text Available Abstract Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i discuss relevant types of HPM across spatial and temporal scales, (ii document where datasets exist to quantify HPM, (iii highlight where data gaps remain and (iv briefly put forward methods for integrating these datasets in a Geographic Information System (GIS framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.

  12. Is there a risk of suburban transmission of malaria in Selangor, Malaysia?

    Science.gov (United States)

    Braima, Kamil A; Sum, Jia-Siang; Ghazali, Amir-Ridhwan M; Muslimin, Mustakiza; Jeffery, John; Lee, Wenn-Chyau; Shaker, Mohammed R; Elamin, Alaa-Eldeen M; Jamaiah, Ibrahim; Lau, Yee-Ling; Rohela, Mahmud; Kamarulzaman, Adeeba; Sitam, Frankie; Mohd-Noh, Rosnida; Abdul-Aziz, Noraishah M

    2013-01-01

    The suburban transmission of malaria in Selangor, Malaysia's most developed and populous state still remains a concern for public health in this region. Despite much successful control efforts directed at its reduction, sporadic cases, mostly brought in by foreigners have continued to occur. In addition, cases of simian malaria caused by Plasmodium knowlesi, some with fatal outcome have caused grave concern to health workers. The aim of this study was to investigate the possibility of local malaria transmission in suburban regions of Selangor, which are adjacent to secondary rainforests. A malaria survey spanning 7 years (2006 - 2012) was conducted in Selangor. A total of 1623 laboratory confirmed malaria cases were reported from Selangor's nine districts. While 72.6% of these cases (1178/1623) were attributed to imported malaria (cases originating from other countries), 25.5% (414/1623) were local cases and 1.9% (31/1623) were considered as relapse and unclassified cases combined. In this study, the most prevalent infection was P. vivax (1239 cases, prevalence 76.3%) followed by P. falciparum (211, 13.0%), P. knowlesi (75, 4.6%), P. malariae (71, 4.4%) and P. ovale (1, 0.06%). Mixed infections comprising of P. vivax and P. falciparum were confirmed (26, 1.6%). Entomological surveys targeting the residences of malaria patients' showed that the most commonly trapped Anopheles species was An. maculatus. No oocysts or sporozoites were found in the An. maculatus collected. Nevertheless, the possibility of An. maculatus being the malaria vector in the investigated locations was high due to its persistent occurrence in these areas. Malaria cases reported in this study were mostly imported cases. However the co-existence of local cases and potential Plasmodium spp. vectors should be cause for concern. The results of this survey reflect the need of maintaining closely monitored malaria control programs and continuous extensive malaria surveillance in Peninsula Malaysia.

  13. Urban Malaria: Understanding its Epidemiology, Ecology, and Transmission across Seven Diverse ICEMR Network Sites

    Science.gov (United States)

    Wilson, Mark L.; Krogstad, Donald J.; Arinaitwe, Emmanuel; Arevalo-Herrera, Myriam; Chery, Laura; Ferreira, Marcelo U.; Ndiaye, Daouda; Mathanga, Don P.; Eapen, Alex

    2015-01-01

    A major public health question is whether urbanization will transform malaria from a rural to an urban disease. However, differences about definitions of urban settings, urban malaria, and whether malaria control should differ between rural and urban areas complicate both the analysis of available data and the development of intervention strategies. This report examines the approach of the International Centers of Excellence for Malaria Research (ICEMR) to urban malaria in Brazil, Colombia, India (Chennai and Goa), Malawi, Senegal, and Uganda. Its major theme is the need to determine whether cases diagnosed in urban areas were imported from surrounding rural areas or resulted from transmission within the urban area. If infections are being acquired within urban areas, malaria control measures must be targeted within those urban areas to be effective. Conversely, if malaria cases are being imported from rural areas, control measures must be directed at vectors, breeding sites, and infected humans in those rural areas. Similar interventions must be directed differently if infections were acquired within urban areas. The hypothesis underlying the ICEMR approach to urban malaria is that optimal control of urban malaria depends on accurate epidemiologic and entomologic information about transmission. PMID:26259941

  14. Surveillance and Control of Malaria Transmission in Thailand using Remotely Sensed Meteorological and Environmental Parameters

    Science.gov (United States)

    Kiang, Richard K.; Adimi, Farida; Soika, Valerii; Nigro, Joseph

    2007-01-01

    These slides address the use of remote sensing in a public health application. Specifically, this discussion focuses on the of remote sensing to detect larval habitats to predict current and future endemicity and identify key factors that sustain or promote transmission of malaria in a targeted geographic area (Thailand). In the Malaria Modeling and Surveillance Project, which is part of the NASA Applied Sciences Public Health Applications Program, we have been developing techniques to enhance public health's decision capability for malaria risk assessments and controls. The main objectives are: 1) identification of the potential breeding sites for major vector species; 2) implementation of a risk algorithm to predict the occurrence of malaria and its transmission intensity; 3) implementation of a dynamic transmission model to identify the key factors that sustain or intensify malaria transmission. The potential benefits are: 1) increased warning time for public health organizations to respond to malaria outbreaks; 2) optimized utilization of pesticide and chemoprophylaxis; 3) reduced likelihood of pesticide and drug resistance; and 4) reduced damage to environment. !> Environmental parameters important to malaria transmission include temperature, relative humidity, precipitation, and vegetation conditions. The NASA Earth science data sets that have been used for malaria surveillance and risk assessment include AVHRR Pathfinder, TRMM, MODIS, NSIPP, and SIESIP. Textural-contextual classifications are used to identify small larval habitats. Neural network methods are used to model malaria cases as a function of the remotely sensed parameters. Hindcastings based on these environmental parameters have shown good agreement to epidemiological records. Discrete event simulations are used for modeling the detailed interactions among the vector life cycle, sporogonic cycle and human infection cycle, under the explicit influences of selected extrinsic and intrinsic factors

  15. Assessing malaria transmission in a low endemicity area of north-western Peru

    DEFF Research Database (Denmark)

    Rosas-Aguirre, Angel; Llanos-Cuentas, Alejandro; Speybroeck, Niko

    2013-01-01

    Where malaria endemicity is low, control programmes need increasingly sensitive tools for monitoring malaria transmission intensity (MTI) and to better define health priorities. A cross-sectional survey was conducted in a low endemicity area of the Peruvian north-western coast to assess the MTI u...

  16. Estimated effect of climatic variables on the transmission of Plasmodium vivax malaria in the Republic of Korea.

    Science.gov (United States)

    Kim, Young-Min; Park, Jae-Won; Cheong, Hae-Kwan

    2012-09-01

    Climate change may affect Plasmodium vivax malaria transmission in a wide region including both subtropical and temperate areas. We aimed to estimate the effects of climatic variables on the transmission of P. vivax in temperate regions. We estimated the effects of climatic factors on P. vivax malaria transmission using data on weekly numbers of malaria cases for the years 2001-2009 in the Republic of Korea. Generalized linear Poisson models and distributed lag nonlinear models (DLNM) were adopted to estimate the effects of temperature, relative humidity, temperature fluctuation, duration of sunshine, and rainfall on malaria transmission while adjusting for seasonal variation, between-year variation, and other climatic factors. A 1°C increase in temperature was associated with a 17.7% [95% confidence interval (CI): 16.9, 18.6%] increase in malaria incidence after a 3-week lag, a 10% rise in relative humidity was associated with 40.7% (95% CI: -44.3, -36.9%) decrease in malaria after a 7-week lag, a 1°C increase in the diurnal temperature range was associated with a 24.1% (95% CI: -26.7, -21.4%) decrease in malaria after a 7-week lag, and a 10-hr increase in sunshine per week was associated with a 5.1% (95% CI: -8.4, -1.7%) decrease in malaria after a 2-week lag. The cumulative relative risk for a 10-mm increase in rainfall (≤ 350 mm) on P. vivax malaria was 3.61 (95% CI: 1.69, 7.72) based on a DLNM with a 10-week maximum lag. Our findings suggest that malaria transmission in temperate areas is highly dependent on climate factors. In addition, lagged estimates of the effect of rainfall on malaria are consistent with the time necessary for mosquito development and P. vivax incubation.

  17. Knowledge and beliefs about malaria transmission and practices for vector control in Southern Mexico

    Directory of Open Access Journals (Sweden)

    Rodríguez Américo David

    2003-01-01

    Full Text Available OBJECTIVE: To investigate the knowledge and beliefs about malaria transmission and practices for vector control in eight villages on the coastal plain of Chiapas, Mexico. MATERIAL AND METHODS: A cross-sectional survey was conducted during May and June 1995 in Chiapas, Mexico. A questionnaire to investigate family structure, knowledge on malaria transmission, preventive measures and attitudes towards seeking treatment was applied to both family heads of a sample of households. Associations were analyzed by estimating odds ratios with confidence intervals and p values, using bivariate and multivariate logistic regression methods. RESULTS: Malaria knowledge was poor and only 48% associated malaria with mosquito bites. The perceived benefit of indoor residual spraying was associated to a reduction of mosquitoes, a reduction in the numbers of cockroaches and rats, but only 3% associated it directly with the prevention of malaria transmission. Most villagers (97.6% agreed with the indoor residual spraying of insecticides. Ninety nine percent of villagers had mosquito bednets, 75.7% used them all year round. Other measures used by villagers to prevent mosquito bites were smoke and mosquito coils. Above 40% of villagers self-medicated when any member of the family had a fever episode, but 51% attended proper health services (community dispensary, private physician, health worker. About 61% used pesticides for agricultural or livestock purposes and 55% applied them themselves. Women had a greater participation as family health promoters, with 70% of the housewives being in charge of the application of self-protection preventive measures. CONCLUSIONS: Educational programs aimed at increasing awareness on the participation of mosquitoes on malaria transmission could promote community participation in malaria control in the region.

  18. Vector incrimination and effects of antimalarial drugs on malaria transmission and control in the Amazon Basin of Brazil

    Directory of Open Access Journals (Sweden)

    T. A. Klein

    1992-01-01

    Full Text Available World ecosystems differ significantly and a multidisciplinary malaria control approach must be adjusted to meet these requirements. These include a comprehensive understanding of the malaria vectors, their behavior, seasonal distribution and abundance, susceptibility to insecticides (physiological and behavioral, methods to reduce the numbers of human gametocyte carriers through effective health care systems and antimalarial drug treatment, urban malaria transmission versus rural or forest malaria transmission, and the impact of vaccine development. Many malaria vectors are members of species complexes and individual relationship to malaria transmission, seasonal distribution, bitting behavior, etc. is poorly understood. Additionaly, malaria patients are not examined for circulating gametocytes and both falciparum and vivax malaria patients may be highly infective to mosquitoes after treatment with currently used antimalarial drugs. Studies on the physiological and behavioral effects of DDT and other insecticides are inconclusive and need to be evalusted.

  19. Transmission Dynamics and Optimal Control of Malaria in Kenya

    Directory of Open Access Journals (Sweden)

    Gabriel Otieno

    2016-01-01

    Full Text Available This paper proposes and analyses a mathematical model for the transmission dynamics of malaria with four-time dependent control measures in Kenya: insecticide treated bed nets (ITNs, treatment, indoor residual spray (IRS, and intermittent preventive treatment of malaria in pregnancy (IPTp. We first considered constant control parameters and calculate the basic reproduction number and investigate existence and stability of equilibria as well as stability analysis. We proved that if R0≤1, the disease-free equilibrium is globally asymptotically stable in D. If R0>1, the unique endemic equilibrium exists and is globally asymptotically stable. The model also exhibits backward bifurcation at R0=1. If R0>1, the model admits a unique endemic equilibrium which is globally asymptotically stable in the interior of feasible region D. The sensitivity results showed that the most sensitive parameters are mosquito death rate and mosquito biting rates. We then consider the time-dependent control case and use Pontryagin’s Maximum Principle to derive the necessary conditions for the optimal control of the disease using the proposed model. The existence of optimal control problem is proved. Numerical simulations of the optimal control problem using a set of reasonable parameter values suggest that the optimal control strategy for malaria control in endemic areas is the combined use of treatment and IRS; for epidemic prone areas is the use of treatment and IRS; for seasonal areas is the use of treatment; and for low risk areas is the use of ITNs and treatment. Control programs that follow these strategies can effectively reduce the spread of malaria disease in different malaria transmission settings in Kenya.

  20. Effectiveness of intermittent preventive treatment with sulfadoxine-pyrimethamine during pregnancy on placental malaria, maternal anaemia and birthweight in areas with high and low malaria transmission intensity in Tanzania.

    Science.gov (United States)

    Mosha, Dominic; Chilongola, Jaffu; Ndeserua, Rabi; Mwingira, Felista; Genton, Blaise

    2014-09-01

    To assess the effectiveness of IPTp in two areas with different malaria transmission intensities. Prospective observational study recruiting pregnant women in two health facilities in areas with high and low malaria transmission intensities. A structured questionnaire was used for interview. Maternal clinic cards and medical logs were assessed to determine drug intake. Placental parasitaemia was screened using both light microscopy and real-time quantitative PCR. Of 350 pregnant women were recruited and screened for placental parasitaemia, 175 from each area. Prevalence of placental parasitaemia was 16.6% (CI 11.4-22.9) in the high transmission area and 2.3% (CI 0.6-5.7) in the low transmission area. Being primigravida and residing in a high transmission area were significant risk factors for placental malaria (OR 2.4; CI 1.1-5.0; P = 0.025) and (OR 9.4; CI 3.2-27.7; P anaemia or low birthweight, regardless of transmission intensity. The number needed to treat (NNT) was four (CI 2-6) women in the high transmission area and 33 (20-50) in the low transmission area to prevent one case of placental malaria. IPTp may have an effect on lowering the risk of placental malaria in areas of high transmission, but this effect did not translate into a benefit on risks of maternal anaemia or low birthweight. The NNT needs to be considered, and weighted against that of other protective measures, eventually targeting areas which are above a certain threshold of malaria transmission to maximise the benefit. © 2014 John Wiley & Sons Ltd.

  1. Targeting imported malaria through social networks: a potential strategy for malaria elimination in Swaziland.

    Science.gov (United States)

    Koita, Kadiatou; Novotny, Joseph; Kunene, Simon; Zulu, Zulizile; Ntshalintshali, Nyasatu; Gandhi, Monica; Gosling, Roland

    2013-06-27

    Swaziland has made great progress towards its goal of malaria elimination by 2015. However, malaria importation from neighbouring high-endemic Mozambique through Swaziland's eastern border remains a major factor that could prevent elimination from being achieved. In order to reach elimination, Swaziland must rapidly identify and treat imported malaria cases before onward transmission occurs. A nationwide formative assessment was conducted over eight weeks to determine if the imported cases of malaria identified by the Swaziland National Malaria Control Programme could be linked to broader social networks and to explore methods to access these networks. Using a structured format, interviews were carried out with malaria surveillance agents (6), health providers (10), previously identified imported malaria cases (19) and people belonging to the networks identified through these interviews (25). Most imported malaria cases were Mozambicans (63%, 12/19) making a living in Swaziland and sustaining their families in Mozambique. The majority of imported cases (73%, 14/19) were labourers and self-employed contractors who travelled frequently to Mozambique to visit their families and conduct business. Social networks of imported cases with similar travel patterns were identified through these interviews. Nearly all imported cases (89%, 17/19) were willing to share contact information to enable network members to be interviewed. Interviews of network members and key informants revealed common congregation points, such as the urban market places in Manzini and Malkerns, as well as certain bus stations, where people with similar travel patterns and malaria risk behaviours could be located and tested for malaria. This study demonstrated that imported cases of malaria belonged to networks of people with similar travel patterns. This study may provide novel methods for screening high-risk groups of travellers using both snowball sampling and time-location sampling of networks to

  2. Analysis of a malaria model with mosquito-dependent transmission ...

    Indian Academy of Sciences (India)

    model for the spread of malaria in human and mosquito population. ... tures, high humidity and water bodies allow mosquito and parasites to reproduce. The ... understand the main parameters in the transmission of the disease and to develop ...

  3. Urban Malaria: Understanding its Epidemiology, Ecology, and Transmission Across Seven Diverse ICEMR Network Sites.

    Science.gov (United States)

    Wilson, Mark L; Krogstad, Donald J; Arinaitwe, Emmanuel; Arevalo-Herrera, Myriam; Chery, Laura; Ferreira, Marcelo U; Ndiaye, Daouda; Mathanga, Don P; Eapen, Alex

    2015-09-01

    A major public health question is whether urbanization will transform malaria from a rural to an urban disease. However, differences about definitions of urban settings, urban malaria, and whether malaria control should differ between rural and urban areas complicate both the analysis of available data and the development of intervention strategies. This report examines the approach of the International Centers of Excellence for Malaria Research (ICEMR) to urban malaria in Brazil, Colombia, India (Chennai and Goa), Malawi, Senegal, and Uganda. Its major theme is the need to determine whether cases diagnosed in urban areas were imported from surrounding rural areas or resulted from transmission within the urban area. If infections are being acquired within urban areas, malaria control measures must be targeted within those urban areas to be effective. Conversely, if malaria cases are being imported from rural areas, control measures must be directed at vectors, breeding sites, and infected humans in those rural areas. Similar interventions must be directed differently if infections were acquired within urban areas. The hypothesis underlying the ICEMR approach to urban malaria is that optimal control of urban malaria depends on accurate epidemiologic and entomologic information about transmission. © The American Society of Tropical Medicine and Hygiene.

  4. Border Malaria Associated with Multidrug Resistance on Thailand-Myanmar and Thailand-Cambodia Borders: Transmission Dynamic, Vulnerability, and Surveillance

    Science.gov (United States)

    Bhumiratana, Adisak; Intarapuk, Apiradee; Sorosjinda-Nunthawarasilp, Prapa; Maneekan, Pannamas; Koyadun, Surachart

    2013-01-01

    This systematic review elaborates the concepts and impacts of border malaria, particularly on the emergence and spread of Plasmodium falciparum and Plasmodium vivax multidrug resistance (MDR) malaria on Thailand-Myanmar and Thailand-Cambodia borders. Border malaria encompasses any complex epidemiological settings of forest-related and forest fringe-related malaria, both regularly occurring in certain transmission areas and manifesting a trend of increased incidence in transmission prone areas along these borders, as the result of interconnections of human settlements and movement activities, cross-border population migrations, ecological changes, vector population dynamics, and multidrug resistance. For regional and global perspectives, this review analyzes and synthesizes the rationales pertaining to transmission dynamics and the vulnerabilities of border malaria that constrain surveillance and control of the world's most MDR falciparum and vivax malaria on these chaotic borders. PMID:23865048

  5. Cytophilic antibodies to Plasmodium falciparum glutamate rich protein are associated with malaria protection in an area of holoendemic transmission

    DEFF Research Database (Denmark)

    Lusingu, John P A; Vestergaard, Lasse S; Alifrangis, Michael

    2005-01-01

    BACKGROUND: Several studies conducted in areas of medium or low malaria transmission intensity have found associations between malaria immunity and plasma antibody levels to glutamate rich protein (GLURP). This study was conducted to analyse if a similar relationship could be documented in an area...... of intense malaria transmission. METHODS: A six month longitudinal study was conducted in an area of holoendemic malaria transmission in north-eastern Tanzania, where the incidence of febrile malaria decreased sharply by the age of three years, and anaemia constituted a significant part of the malaria...... disease burden. Plasma antibodies to glutamate rich protein (GLURP) were analysed and related with protection against malaria morbidity in models correcting for the effect of age. RESULTS: The risk of febrile malaria episodes was reduced significantly in children with measurable anti-GLURP IgG1 antibodies...

  6. Detecting Foci of Malaria Transmission with School Surveys: A Pilot Study in the Gambia.

    Directory of Open Access Journals (Sweden)

    Ebako N Takem

    Full Text Available In areas of declining malaria transmission such as in The Gambia, the identification of malaria infected individuals becomes increasingly harder. School surveys may be used to identify foci of malaria transmission in the community.The survey was carried out in May-June 2011, before the beginning of the malaria transmission season. Thirty two schools in the Upper River Region of The Gambia were selected with probability proportional to size; in each school approximately 100 children were randomly chosen for inclusion in the study. Each child had a finger prick blood sample collected for the determination of antimalarial antibodies by ELISA, malaria infection by microscopy and PCR, and for haemoglobin measurement. In addition, a simple questionnaire on socio-demographic variables and the use of insecticide-treated bed nets was completed. The cut-off for positivity for antimalarial antibodies was obtained using finite mixture models. The clustered nature of the data was taken into account in the analyses.A total of 3,277 children were included in the survey. The mean age was 10 years (SD = 2.7 [range 4-21], with males and females evenly distributed. The prevalence of malaria infection as determined by PCR was 13.6% (426/3124 [95% CI = 12.2-16.3] with marked variation between schools (range 3-25%, p<0.001, while the seroprevalence was 7.8% (234/2994 [95%CI = 6.4-9.8] for MSP119, 11.6% (364/2997 [95%CI = 9.4-14.5] for MSP2, and 20.0% (593/2973 [95% CI = 16.5-23.2 for AMA1. The prevalence of all the three antimalarial antibodies positive was 2.7% (79/2920.This survey shows that malaria prevalence and seroprevalence before the transmission season were highly heterogeneous.

  7. Is there a risk of suburban transmission of malaria in Selangor, Malaysia?

    Directory of Open Access Journals (Sweden)

    Kamil A Braima

    Full Text Available The suburban transmission of malaria in Selangor, Malaysia's most developed and populous state still remains a concern for public health in this region. Despite much successful control efforts directed at its reduction, sporadic cases, mostly brought in by foreigners have continued to occur. In addition, cases of simian malaria caused by Plasmodium knowlesi, some with fatal outcome have caused grave concern to health workers. The aim of this study was to investigate the possibility of local malaria transmission in suburban regions of Selangor, which are adjacent to secondary rainforests.A malaria survey spanning 7 years (2006 - 2012 was conducted in Selangor. A total of 1623 laboratory confirmed malaria cases were reported from Selangor's nine districts. While 72.6% of these cases (1178/1623 were attributed to imported malaria (cases originating from other countries, 25.5% (414/1623 were local cases and 1.9% (31/1623 were considered as relapse and unclassified cases combined. In this study, the most prevalent infection was P. vivax (1239 cases, prevalence 76.3% followed by P. falciparum (211, 13.0%, P. knowlesi (75, 4.6%, P. malariae (71, 4.4% and P. ovale (1, 0.06%. Mixed infections comprising of P. vivax and P. falciparum were confirmed (26, 1.6%. Entomological surveys targeting the residences of malaria patients' showed that the most commonly trapped Anopheles species was An. maculatus. No oocysts or sporozoites were found in the An. maculatus collected. Nevertheless, the possibility of An. maculatus being the malaria vector in the investigated locations was high due to its persistent occurrence in these areas.Malaria cases reported in this study were mostly imported cases. However the co-existence of local cases and potential Plasmodium spp. vectors should be cause for concern. The results of this survey reflect the need of maintaining closely monitored malaria control programs and continuous extensive malaria surveillance in Peninsula

  8. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    Science.gov (United States)

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  9. Construction site workers' malaria knowledge and treatment-seeking pattern in a highly endemic urban area of India.

    Science.gov (United States)

    Shivalli, Siddharudha; Pai, Sudarshan; Akshaya, Kibballi Madhukeshwar; D'Souza, Neevan

    2016-03-16

    Construction sites are potential breeding places for some species of mosquitoes. Construction workers usually stay at the construction sites, thus being extremely susceptible to malaria. For malaria control, a special focus on them is warranted as they often seek treatment from unregulated, private vendors, increasing their risk of exposure to substandard drugs. To elicit the socio-demographic factors associated with comprehensive malaria knowledge (symptoms, mode of spread, and preventive measures) and treatment-seeking pattern (preferred source and type of treatment) among the construction workers in Mangaluru, India; and, to study the association among their comprehensive malaria knowledge, past suffering from malaria (within 1 year) and treatment-seeking pattern. A community based cross-sectional study was conducted in nine randomly selected construction sites of Mangaluru, a high-risk city for malaria with an annual parasite incidence of >2/1000/year, from June-September 2012. A sample size of 132 was estimated assuming at least 30% of them have satisfactory malaria knowledge, 10% absolute precision, 95% confidence level, design effect of 1.5 and 10% non-responses. A semi-structured interview schedule was used, and knowledge scores were computed. Multivariate linear (for knowledge score) and logistic regressions (for preferred source and type of treatment) were applied. One hundred and nineteen workers participated in the study (total approached-138). 85% (n = 101) of them were males. Mean knowledge score was 9.95 ± 3.19 (maximum possible score-16). The majority of them were aware of the symptoms and the mode of malaria transmission. However, workers (β = -0.281, p = 0.001), self stated malaria within 1 year (β = 0.276, p workers (AdjOR 7.21, 95% CI 2.3-22.9) and those with self stated malaria within 1 year (AdjOR 11.21, 95% CI 2.38-52.8) showed favorable treatment-seeking pattern. There is an urgent need of intensifying and streamlining of ongoing malaria

  10. Transmission intensity and malaria vector population structure in ...

    African Journals Online (AJOL)

    The entomological inoculation rate (EIR) was estimated at 0.51 infectious bites per person per year. This EIR was considered to be relatively low, indicating that malaria transmission in this area is low. Variability in mosquito blood meal shows availability of variety of preferred blood meal choices and impact of other factors ...

  11. Modern immunological approaches to assess malaria transmission and immunity and to diagnose plasmodial infection

    Directory of Open Access Journals (Sweden)

    C. T. Daniel-Ribeiro

    1992-01-01

    Full Text Available The present paper reviews our recent data concerning the use of immunological methods employing monoclonal antibodies and synthetic peptides to study malaria transmission and immunity and to diagnose plasmodial infection. As concerns malaria transmission, we studied the main vectors of human malaria and the plasmodial species transmitted in endemic areas of Rondônia state, Brazil. The natural infection on anopheline was evaluated by immunoradiometric assay (IRMA using monoclonal antibodies to an immunodominant sporozoite surface antigen (CS protein demonstrated to be species specific. Our results showed that among six species of Anopheles found infected, An. darlingi was the main vector transmitting Plasmodium falciparum and P. vivax malaria in the immediate vicinity of houses. In order to assess the level of anti-CS antibodies we studied, by IRMA using the synthetic peptide corresponding to the repetitive epitope of the sporozoite CS protein, sera of individuals living in the same areas where the entomological survey has been performed. In this assay the prevalence of anti-CS antibodies was very low and did not reflect the malaria transmission rate in the studied areas. In relation to malaria diagnosis, a monoclonal antibody specific to an epitope of a 50 kDa exoantigen, the major component of supernatant collected at the time of schizont rupture, was used as a probe for the detection of P. falciparum antigens. This assay seemed to be more sensitive than parasitological examination for malaria diagnosis since it was able to detect plasmodial antigens in both symptomatic and asymtomatic individuals with negative thick blood smear at different intervals after a last parasitologically confirmed confirmed attack of malaria.

  12. Border Malaria Associated with Multidrug Resistance on Thailand-Myanmar and Thailand-Cambodia Borders: Transmission Dynamic, Vulnerability, and Surveillance

    Directory of Open Access Journals (Sweden)

    Adisak Bhumiratana

    2013-01-01

    Full Text Available This systematic review elaborates the concepts and impacts of border malaria, particularly on the emergence and spread of Plasmodium falciparum and Plasmodium vivax multidrug resistance (MDR malaria on Thailand-Myanmar and Thailand-Cambodia borders. Border malaria encompasses any complex epidemiological settings of forest-related and forest fringe-related malaria, both regularly occurring in certain transmission areas and manifesting a trend of increased incidence in transmission prone areas along these borders, as the result of interconnections of human settlements and movement activities, cross-border population migrations, ecological changes, vector population dynamics, and multidrug resistance. For regional and global perspectives, this review analyzes and synthesizes the rationales pertaining to transmission dynamics and the vulnerabilities of border malaria that constrain surveillance and control of the world’s most MDR falciparum and vivax malaria on these chaotic borders.

  13. A controlled human malaria infection model enabling evaluation of transmission-blocking interventions

    NARCIS (Netherlands)

    Collins, K.A.; Wang, C.Y.; Adams, M.; Mitchell, H.; Rampton, M.; Elliott, S.; Reuling, I.J.; Bousema, T.; Sauerwein, R.; Chalon, S.; Mohrle, J.J.; McCarthy, J.S.

    2018-01-01

    BACKGROUND: Drugs and vaccines that can interrupt the transmission of Plasmodium falciparum will be important for malaria control and elimination. However, models for early clinical evaluation of candidate transmission-blocking interventions are currently unavailable. Here, we describe a new model

  14. Zinc and copper levels in children with severe plasmodium falciparum malaria in an area of unstable malaria transmission in eastern Sudan

    International Nuclear Information System (INIS)

    Doka, Y. A.

    2012-08-01

    The aim of this study is to measure the levels of zinc and copper in children suffering from plasmodium falciparum malaria in an area of unstable malaria transmission in Eastern Sudan. The importance of the study emanates from the fact that this type of malaria is prevalent in a serious manner and causes many fatalities and problems. In this study the analytic statistical methodology was adopted using Atomic Absorption Spectroscopy. Subject target groups, confirmed microscopically to be infected with malaria, (severe malaria 35 samples and two control groups: 35 samples of uncomplicated malaria and 35 samples of apparently healthy). The study revealed that there is a significant increase in the level of copper for both types of malaria ( the severe and the uncomplicated) while uncomplicated malaria decreased the level of zinc significantly. The study recommended that zinc supplement could be used for the patients suffering from severe malaria. (Author)

  15. Risk factors for low birth-weight in areas with varying malaria transmission in Korogwe, Tanzania: implications for malaria control

    DEFF Research Database (Denmark)

    Mmbando, Bruno Paul; Cole-Lewis, H; Sembuche, S

    2008-01-01

    Low birth weight (LBW) is a risk factor for infant mortality, morbidity, growth retardation, poor cognitive development, and chronic diseases. Maternal exposure to diseases such as malaria, HIV, and syphilis has been shown to have a significant impact on birth weight (BW). This study was aimed...... at determining whether there was a difference in rates of LBW in areas of varying malaria transmission intensity in Korogwe, Tanzania. Retrospective data for one year (June 2004-May 2005) in three maternal and child health (MCH) clinics in the district were analysed. Villages were stratified into three strata...... babies compared to first parity women (OR=0.44, 95% CI 0.19-0.98, P=0.045). Similarly, the risk of LBW was higher in women who had delayed MCH gestational booking and in women who conceived during high malaria transmission seasons. There was high degree of preference of digits ending with 0...

  16. Risk of malaria transmission through blood transfusion and its detection by serological method

    International Nuclear Information System (INIS)

    Rahman, M.; Akhtar, G.N.; Rashid, S.; Lodhi, Y.

    2003-01-01

    Objective: To assess the risk of transmission of malaria through blood transfusion, and compare efficacy of testing by immuno chromatographic (ICT) devices vis a vis peripheral blood film (PBF). Results: Amongst healthy blood donors we did not find even a single case of malaria and there was no report of persistent post transfusion pyrexia. We are unable to comment on species frequency in blood donors. However, amongst known patients of malaria we found a higher frequency of Plasmodium viax(P.v) as compared to Plasmodium falciparum(P.f). Testing by serological method, helped us to diagnose 5% of our patients who were missed by peripheral blood films. Conclusion: Between properly selected voluntary non-remunerated blood donors the incidence of malaria transmission is zero and the blood is safe for transfusion. Serological testing shows good correlation with peripheral blood film detection. In fact, it can detect the disease even when film detection has been unsuccessful. If proper donor selection criteria are observed there is little risk of transmitting malaria through transfusion. However, as the donor pool in the Service is not necessarily totally the of voluntary non-remunerated donors and substantive numbers of replacement/first time, occasionally uneducated/unaware donors, are being bled, screening for malaria will not be totally unrewarding. (author)

  17. Effectiveness of reactive case detection for malaria elimination in three archetypical transmission settings: a modelling study.

    Science.gov (United States)

    Gerardin, Jaline; Bever, Caitlin A; Bridenbecker, Daniel; Hamainza, Busiku; Silumbe, Kafula; Miller, John M; Eisele, Thomas P; Eckhoff, Philip A; Wenger, Edward A

    2017-06-12

    Reactive case detection could be a powerful tool in malaria elimination, as it selectively targets transmission pockets. However, field operations have yet to demonstrate under which conditions, if any, reactive case detection is best poised to push a region to elimination. This study uses mathematical modelling to assess how baseline transmission intensity and local interconnectedness affect the impact of reactive activities in the context of other possible intervention packages. Communities in Southern Province, Zambia, where elimination operations are currently underway, were used as representatives of three archetypes of malaria transmission: low-transmission, high household density; high-transmission, low household density; and high-transmission, high household density. Transmission at the spatially-connected household level was simulated with a dynamical model of malaria transmission, and local variation in vectorial capacity and intervention coverage were parameterized according to data collected from the area. Various potential intervention packages were imposed on each of the archetypical settings and the resulting likelihoods of elimination by the end of 2020 were compared. Simulations predict that success of elimination campaigns in both low- and high-transmission areas is strongly dependent on stemming the flow of imported infections, underscoring the need for regional-scale strategies capable of reducing transmission concurrently across many connected areas. In historically low-transmission areas, treatment of clinical malaria should form the cornerstone of elimination operations, as most malaria infections in these areas are symptomatic and onward transmission would be mitigated through health system strengthening; reactive case detection has minimal impact in these settings. In historically high-transmission areas, vector control and case management are crucial for limiting outbreak size, and the asymptomatic reservoir must be addressed through

  18. Observation of Blood Donor-Recipient Malaria Parasitaemia Patterns in a Malaria Endemic Region.

    Science.gov (United States)

    Faruk, Jamilu Abdullahi; Ogunrinde, Gboye Olufemi; Mamman, Aisha Indo

    2017-01-01

    Asymptomatic malaria parasitaemia has been documented in donor blood in West Africa. However, donated blood is not routinely screened for malaria parasites (MPs). The present study therefore aimed to document the frequency of blood transfusion-induced donor-recipient malaria parasitaemia patterns, in children receiving blood transfusion in a tertiary health-centre. A cross-sectional, observational study involving 140 children receiving blood transfusion was carried out. Blood donor units and patients' blood samples were obtained, for the determination of malaria parasites (MPs). Giemsa staining technique was used to determine the presence of malaria parasitaemia. Malaria parasites were detected in 7% of donor blood and in 8.3% of the recipients' pretransfusion blood. The incidence of posttransfusion MPs was 3%, but none of these were consistent with blood transfusion-induced malaria, as no child with posttransfusion parasitaemia was transfused with parasitized donor blood. Majority of the blood transfusions (89.4%) had no MPs in either donors or recipients, while 6.8% had MPs in both donors and recipients, with the remaining 3.8% showing MPs in recipients alone. In conclusion, the incidence of posttransfusion malaria parasitaemia appears low under the prevailing circumstances.

  19. Plasmodium knowlesi transmission: integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis.

    Science.gov (United States)

    Brock, P M; Fornace, K M; Parmiter, M; Cox, J; Drakeley, C J; Ferguson, H M; Kao, R R

    2016-04-01

    The public health threat posed by zoonotic Plasmodium knowlesi appears to be growing: it is increasingly reported across South East Asia, and is the leading cause of malaria in Malaysian Borneo. Plasmodium knowlesi threatens progress towards malaria elimination as aspects of its transmission, such as spillover from wildlife reservoirs and reliance on outdoor-biting vectors, may limit the effectiveness of conventional methods of malaria control. The development of new quantitative approaches that address the ecological complexity of P. knowlesi, particularly through a focus on its primary reservoir hosts, will be required to control it. Here, we review what is known about P. knowlesi transmission, identify key knowledge gaps in the context of current approaches to transmission modelling, and discuss the integration of these approaches with clinical parasitology and geostatistical analysis. We highlight the need to incorporate the influences of fine-scale spatial variation, rapid changes to the landscape, and reservoir population and transmission dynamics. The proposed integrated approach would address the unique challenges posed by malaria as a zoonosis, aid the identification of transmission hotspots, provide insight into the mechanistic links between incidence and land use change and support the design of appropriate interventions.

  20. Quantifying behavioural interactions between humans and mosquitoes: Evaluating the protective efficacy of insecticidal nets against malaria transmission in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Mathenge Evan

    2006-11-01

    Full Text Available Abstract Background African malaria vectors bite predominantly indoors at night so sleeping under an Insecticide-Treated Net (ITN can greatly reduce malaria risk. Behavioural adaptation by mosquitoes to increasing ITN coverage could allow vector mosquitoes to bite outside of peak sleeping hours and undermine efficacy of this key malaria prevention measure. Methods High coverage with largely untreated nets has been achieved in the Kilombero Valley, southern Tanzania through social marketing programmes. Direct surveys of nightly biting activity by An. gambiae Giles were conducted in the area before (1997 and after (2004 implementation of ITN promotion. A novel analytical model was applied to estimate the effective protection provided by an ITN, based on published experimental hut trials combined with questionnaire surveys of human sleeping behaviour and recorded mosquito biting patterns. Results An. gambiae was predominantly endophagic and nocturnal in both surveys: Approximately 90% and 80% of exposure occurred indoors and during peak sleeping hours, respectively. ITNs consistently conferred >70% protection against exposure to malaria transmission for users relative to non-users. Conclusion As ITN coverage increases, behavioural adaptation by mosquitoes remains a future possibility. The approach described allows comparison of mosquito biting patterns and ITN efficacy at multiple study sites and times. Initial results indicate ITNs remain highly effective and should remain a top-priority intervention. Combined with recently developed transmission models, this approach allows rapid, informative and cost-effective preliminary comparison of diverse control strategies in terms of protection against exposure before more costly and intensive clinical trials.

  1. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity

    Directory of Open Access Journals (Sweden)

    Kabaria Caroline W

    2008-10-01

    Full Text Available Abstract Background The efficient allocation of financial resources for malaria control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of malaria risk and of the human populations it affects. Low population densities in rural areas and high population densities in urban areas can influence malaria transmission substantially. Here, the Malaria Atlas Project (MAP global database of Plasmodium falciparum parasite rate (PfPR surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining malaria risk maps with those of human population distribution in order to define populations at risk more accurately. Methods First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as malaria free regions. Second, the potential of international travel and health guidelines (ITHGs for identifying malaria free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. Results Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 malaria free urban areas within endemic countries. Comparison of PfPR survey results showed

  2. The potential impact of integrated malaria transmission control on entomologic inoculation rate in highly endemic areas.

    Science.gov (United States)

    Killeen, G F; McKenzie, F E; Foy, B D; Schieffelin, C; Billingsley, P F; Beier, J C

    2000-05-01

    We have used a relatively simple but accurate model for predicting the impact of integrated transmission control on the malaria entomologic inoculation rate (EIR) at four endemic sites from across sub-Saharan Africa and the southwest Pacific. The simulated campaign incorporated modestly effective vaccine coverage, bed net use, and larval control. The results indicate that such campaigns would reduce EIRs at all four sites by 30- to 50-fold. Even without the vaccine, 15- to 25-fold reductions of EIR were predicted, implying that integrated control with a few modestly effective tools can meaningfully reduce malaria transmission in a range of endemic settings. The model accurately predicts the effects of bed nets and indoor spraying and demonstrates that they are the most effective tools available for reducing EIR. However, the impact of domestic adult vector control is amplified by measures for reducing the rate of emergence of vectors or the level of infectiousness of the human reservoir. We conclude that available tools, including currently neglected methods for larval control, can reduce malaria transmission intensity enough to alleviate mortality. Integrated control programs should be implemented to the fullest extent possible, even in areas of intense transmission, using simple models as decision-making tools. However, we also conclude that to eliminate malaria in many areas of intense transmission is beyond the scope of methods which developing nations can currently afford. New, cost-effective, practical tools are needed if malaria is ever to be eliminated from highly endemic areas.

  3. Analysis of a Malaria Model with Mosquito-Dependent Transmission ...

    Indian Academy of Sciences (India)

    In this paper, we discuss an ordinary differential equation mathematical model for the spread of malaria in human and mosquito population. We suppose the human population to act as a reservoir. Both the species follow a logistic population model. The transmission coefficient or the interaction coefficient of humans is ...

  4. Impact of El Nino and malaria on birthweight in two areas of Tanzania with different malaria transmission patterns

    NARCIS (Netherlands)

    Wort, Ulrika Uddenfeldt; Hastings, Ian M.; Carlstedt, Anders; Mutabingwa, T. K.; Brabin, Bernard J.

    2004-01-01

    Background Malaria infection increases low birthweight especially in primigravidae. Malaria epidemics occur when weather conditions favour this vector borne disease. Forecasting using the El Nino Southern Oscillation (ENSO) may assist in anticipating epidemics and reducing the impact of a disease

  5. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission.

    Directory of Open Access Journals (Sweden)

    Lindsay M Beck-Johnson

    Full Text Available The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for vector borne diseases.

  6. An integrated risk and vulnerability assessment framework for climate change and malaria transmission in East Africa.

    Science.gov (United States)

    Onyango, Esther Achieng; Sahin, Oz; Awiti, Alex; Chu, Cordia; Mackey, Brendan

    2016-11-11

    Malaria is one of the key research concerns in climate change-health relationships. Numerous risk assessments and modelling studies provide evidence that the transmission range of malaria will expand with rising temperatures, adversely impacting on vulnerable communities in the East African highlands. While there exist multiple lines of evidence for the influence of climate change on malaria transmission, there is insufficient understanding of the complex and interdependent factors that determine the risk and vulnerability of human populations at the community level. Moreover, existing studies have had limited focus on the nature of the impacts on vulnerable communities or how well they are prepared to cope. In order to address these gaps, a systems approach was used to present an integrated risk and vulnerability assessment framework for studies of community level risk and vulnerability to malaria due to climate change. Drawing upon published literature on existing frameworks, a systems approach was applied to characterize the factors influencing the interactions between climate change and malaria transmission. This involved structural analysis to determine influential, relay, dependent and autonomous variables in order to construct a detailed causal loop conceptual model that illustrates the relationships among key variables. An integrated assessment framework that considers indicators of both biophysical and social vulnerability was proposed based on the conceptual model. A major conclusion was that this integrated assessment framework can be implemented using Bayesian Belief Networks, and applied at a community level using both quantitative and qualitative methods with stakeholder engagement. The approach enables a robust assessment of community level risk and vulnerability to malaria, along with contextually relevant and targeted adaptation strategies for dealing with malaria transmission that incorporate both scientific and community perspectives.

  7. Dynamics of forest malaria transmission in Balaghat district, Madhya Pradesh, India.

    Directory of Open Access Journals (Sweden)

    Neeru Singh

    Full Text Available BACKGROUND: An epidemiological and entomological study was carried out in Balaghat district, Madhya Pradesh, India to understand the dynamics of forest malaria transmission in a difficult and hard to reach area where indoor residual spray and insecticide treated nets were used for vector control. METHODS: This community based cross-sectional study was undertaken from January 2010 to December 2012 in Baihar and Birsa Community Health Centres of district Balaghat for screening malaria cases. Entomological surveillance included indoor resting collections, pyrethrum spray catches and light trap catches. Anophelines were assayed by ELISA for detection of Plasmodium circumsporozoite protein. FINDINGS: Plasmodium falciparum infection accounted for >80% of all infections. P. vivax 16.5%, P. malariae 0.75% and remaining were mixed infections of P. falciparum, P. vivax and P. malariae. More than, 30% infections were found in infants under 6 months of age. Overall, an increasing trend in malaria positivity was observed from 2010 to 2012 (chi-square for trend  =  663.55; P<0.0001. Twenty five Anopheles culicifacies (sibling species C, D and E were positive for circumsporozoite protein of P. falciparum (44% and P. vivax (56%. Additionally, 2 An. fluviatilis, were found positive for P. falciparum and 1 for P. vivax (sibling species S and T. An. fluviatilis sibling species T was found as vector in forest villages for the first time in India. CONCLUSION: These results showed that the study villages are experiencing almost perennial malaria transmission inspite of indoor residual spray and insecticide treated nets. Therefore, there is a need for new indoor residual insecticides which has longer residual life or complete coverage of population with long lasting insecticide treated nets or both indoor residual spray and long lasting bed nets for effective vector control. There is a need to undertake a well designed case control study to evaluate the efficacy

  8. Algae-Produced Pfs25 Elicits Antibodies That Inhibit Malaria Transmission

    Science.gov (United States)

    Gregory, James A.; Li, Fengwu; Tomosada, Lauren M.; Cox, Chesa J.; Topol, Aaron B.; Vinetz, Joseph M.; Mayfield, Stephen

    2012-01-01

    Subunit vaccines are significantly more expensive to produce than traditional vaccines because they are based primarily on recombinant proteins that must be purified from the expression system. Despite the increased cost, subunit vaccines are being developed because they are safe, effective, and can elicit antibodies that confer protection against diseases that are not currently vaccine-preventable. Algae are an attractive platform for producing subunit vaccines because they are relatively inexpensive to grow, genetically tractable, easily scaled to large volumes, have a short generation time, and are devoid of inflammatory, viral, or prion contaminants often present in other systems. We tested whether algal chloroplasts can produce malaria transmission blocking vaccine candidates, Plasmodium falciparum surface protein 25 (Pfs25) and 28 (Pfs28). Antibodies that recognize Pfs25 and Pfs28 disrupt the sexual development of parasites within the mosquito midgut, thus preventing transmission of malaria from one human host to the next. These proteins have been difficult to produce in traditional recombinant systems because they contain tandem repeats of structurally complex epidermal growth factor-like domains, which cannot be produced in bacterial systems, and because they are not glycosylated, so they must be modified for production in eukaryotic systems. Production in algal chloroplasts avoids these issues because chloroplasts can fold complex eukaryotic proteins and do not glycosylate proteins. Here we demonstrate that algae are the first recombinant system to successfully produce an unmodified and aglycosylated version of Pfs25 or Pfs28. These antigens are structurally similar to the native proteins and antibodies raised to these recombinant proteins recognize Pfs25 and Pfs28 from P. falciparum. Furthermore, antibodies to algae-produced Pfs25 bind the surface of in-vitro cultured P. falciparum sexual stage parasites and exhibit transmission blocking activity. Thus

  9. Chronic Plasmodium falciparum infections in an area of low intensity malaria transmission in the Sudan

    DEFF Research Database (Denmark)

    Hamad, A A; El Hassan, I M; El Khalifa, A A

    2000-01-01

    Chronic Plasmodium falciparum malaria infections in a Sudanese village, in an area of seasonal and unstable malaria transmission, were monitored and genetically characterized to study the influence of persistent infection on the immunology and epidemiology of low endemicity malaria. During...... the October-December malaria season of 1996, 51 individuals out of a population of 420 had confirmed and treated P. falciparum malaria in the village of Daraweesh in eastern Sudan. In a cross-sectional survey carried out in December 1996, an additional 6 individuals were found to harbour a microscopically...

  10. Malaria diagnostic testing and treatment practices in three different Plasmodium falciparum transmission settings in Tanzania: before and after a government policy change

    Directory of Open Access Journals (Sweden)

    Bousema Teun

    2011-04-01

    Full Text Available Abstract Background Patterns of decreasing malaria transmission intensity make presumptive treatment of malaria an unjustifiable approach in many African settings. The controlled use of anti-malarials after laboratory confirmed diagnosis is preferable in low endemic areas. Diagnosis may be facilitated by malaria rapid diagnostic tests (RDTs. In this study, the impact of a government policy change, comprising the provision of RDTs and advice to restrict anti-malarial treatment to RDT-positive individuals, was assessed by describing diagnostic behaviour and treatment decision-making in febrile outpatients Methods Prospective data from Biharamulo and Rubya Designated District Hospital (DDH were collected before and after policy change, in Sumve DDH no new policy was implemented. Diagnosis of malaria was confirmed by RDT; transmission intensity was evaluated by a serological marker of malaria exposure in hospital attendees. Results Prior to policy change, there was no evident association between the actual level of transmission intensity and drug-prescribing behaviour. After policy change, there was a substantial decrease in anti-malarial prescription and an increase in prescription of antibiotics. The proportion of parasite-negative individuals who received anti-malarials decreased from 89.1% (244/274 to 38.7% (46/119 in Biharamulo and from 76.9% (190/247 to 10.0% (48/479 in Rubya after policy change. Conclusion This study shows that an official policy change, where RDTs were provided and healthcare providers were advised to adhere to RDT results in prescribing drugs can be followed by more rational drug-prescribing behaviour. The current findings are promising for improving treatment policy in Tanzanian hospitals.

  11. Submicroscopic malaria cases play role in local transmission in Trenggalek district, East Java Province, Indonesia.

    Science.gov (United States)

    Arwati, Heny; Yotopranoto, Subagyo; Rohmah, Etik Ainun; Syafruddin, Din

    2018-01-05

    Trenggalek district is a hypoendemic malaria area with mainly imported cases brought by migrant workers from islands outside Java. During malaria surveillance in 2015, no malaria cases were found microscopically, but some cases were positive by PCR. Therefore, a study was conducted to prove that local malaria transmission still occur. The adult villagers were invited to the house of the head of this village to be screened for malaria using aseptic venipuncture of 1 mL blood upon informed consent. Thin and thick blood films as well as blood spots on filter paper were made for each subject. The blood films were stained with Giemsa and the blood spots were used to extract DNA for polymerase chain reaction (PCR) amplification to determine the malaria infection. In addition, the history of malaria infection and travel to malaria endemic areas were recorded. Entomologic survey to detect the existence of anopheline vector was also conducted. Of the total 64 subjects that participated in the survey, no malaria parasites were found through microscopic examination of the blood films. The PCR analysis found six positive cases (two Plasmodium falciparum, one Plasmodium vivax and two mixed infection of both species), and two of them had no history of malaria and have never travelled to malaria endemic area. Entomologic survey using human bait trap detected the existence of Anopheles indefinitus that was found to be positive for P. vivax by PCR. The results indicated that although we did not find any microscopically slide positive cases, six PCR positive subjects were found. The fact that 2 of the 6 malaria positive subjects have never travelled to malaria endemic area together with the existence of the vector confirm the occurence of local transmission of malaria in the area.

  12. Travel patterns and demographic characteristics of malaria cases in Swaziland, 2010-2014.

    Science.gov (United States)

    Tejedor-Garavito, Natalia; Dlamini, Nomcebo; Pindolia, Deepa; Soble, Adam; Ruktanonchai, Nick W; Alegana, Victor; Le Menach, Arnaud; Ntshalintshali, Nyasatu; Dlamini, Bongani; Smith, David L; Tatem, Andrew J; Kunene, Simon

    2017-09-08

    As Swaziland progresses towards national malaria elimination, the importation of parasites into receptive areas becomes increasingly important. Imported infections have the potential to instigate local transmission and sustain local parasite reservoirs. Travel histories from Swaziland's routine surveillance data from January 2010 to June 2014 were extracted and analysed. The travel patterns and demographics of rapid diagnostic test (RDT)-confirmed positive cases identified through passive and reactive case detection (RACD) were analysed and compared to those found to be negative through RACD. Of 1517 confirmed cases identified through passive surveillance, 67% reported travel history. A large proportion of positive cases reported domestic or international travel history (65%) compared to negative cases (10%). The primary risk factor for malaria infection in Swaziland was shown to be travel, more specifically international travel to Mozambique by 25- to 44-year old males, who spent on average 28 nights away. Maputo City, Inhambane and Gaza districts were the most likely travel destinations in Mozambique, and 96% of RDT-positive international travellers were either Swazi (52%) or Mozambican (44%) nationals, with Swazis being more likely to test negative. All international travellers were unlikely to have a bed net at home or use protection of any type while travelling. Additionally, paths of transmission, important border crossings and means of transport were identified. Results from this analysis can be used to direct national and well as cross-border targeting of interventions, over space, time and by sub-population. The results also highlight that collaboration between neighbouring countries is needed to tackle the importation of malaria at the regional level.

  13. Environmental Constraints Guide Migration of Malaria Parasites during Transmission

    Science.gov (United States)

    Hellmann, Janina Kristin; Münter, Sylvia; Kudryashev, Mikhail; Schulz, Simon; Heiss, Kirsten; Müller, Ann-Kristin; Matuschewski, Kai; Spatz, Joachim P.; Schwarz, Ulrich S.; Frischknecht, Friedrich

    2011-01-01

    Migrating cells are guided in complex environments mainly by chemotaxis or structural cues presented by the surrounding tissue. During transmission of malaria, parasite motility in the skin is important for Plasmodium sporozoites to reach the blood circulation. Here we show that sporozoite migration varies in different skin environments the parasite encounters at the arbitrary sites of the mosquito bite. In order to systematically examine how sporozoite migration depends on the structure of the environment, we studied it in micro-fabricated obstacle arrays. The trajectories observed in vivo and in vitro closely resemble each other suggesting that structural constraints can be sufficient to guide Plasmodium sporozoites in complex environments. Sporozoite speed in different environments is optimized for migration and correlates with persistence length and dispersal. However, this correlation breaks down in mutant sporozoites that show adhesion impairment due to the lack of TRAP-like protein (TLP) on their surfaces. This may explain their delay in infecting the host. The flexibility of sporozoite adaption to different environments and a favorable speed for optimal dispersal ensures efficient host switching during malaria transmission. PMID:21698220

  14. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission.

    Directory of Open Access Journals (Sweden)

    Francesco Pizzitutti

    Full Text Available Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.

  15. Out of the net: An agent-based model to study human movements influence on local-scale malaria transmission.

    Science.gov (United States)

    Pizzitutti, Francesco; Pan, William; Feingold, Beth; Zaitchik, Ben; Álvarez, Carlos A; Mena, Carlos F

    2018-01-01

    Though malaria control initiatives have markedly reduced malaria prevalence in recent decades, global eradication is far from actuality. Recent studies show that environmental and social heterogeneities in low-transmission settings have an increased weight in shaping malaria micro-epidemiology. New integrated and more localized control strategies should be developed and tested. Here we present a set of agent-based models designed to study the influence of local scale human movements on local scale malaria transmission in a typical Amazon environment, where malaria is transmission is low and strongly connected with seasonal riverine flooding. The agent-based simulations show that the overall malaria incidence is essentially not influenced by local scale human movements. In contrast, the locations of malaria high risk spatial hotspots heavily depend on human movements because simulated malaria hotspots are mainly centered on farms, were laborers work during the day. The agent-based models are then used to test the effectiveness of two different malaria control strategies both designed to reduce local scale malaria incidence by targeting hotspots. The first control scenario consists in treat against mosquito bites people that, during the simulation, enter at least once inside hotspots revealed considering the actual sites where human individuals were infected. The second scenario involves the treatment of people entering in hotspots calculated assuming that the infection sites of every infected individual is located in the household where the individual lives. Simulations show that both considered scenarios perform better in controlling malaria than a randomized treatment, although targeting household hotspots shows slightly better performance.

  16. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control.

    Science.gov (United States)

    Kibret, Solomon; Wilson, G Glenn; Tekie, Habte; Petros, Beyene

    2014-09-13

    releases. Similarly, there was a strong positive correlation between bi-weekly vector density and canal water releases lagged by two weeks. Furthermore, monthly malaria incidence was strongly correlated with monthly vector density lagged by a month in the irrigated villages. The present study revealed that the irrigation schemes resulted in intensified malaria transmission due to poor canal water management. Proper canal water management could reduce vector abundance and malaria transmission in the irrigated villages.

  17. Attributing Climate Conditions for Stable Malaria Transmission to Human Activity in sub-Saharan Africa

    Science.gov (United States)

    Sheldrake, L.; Mitchell, D.; Allen, M. R.

    2015-12-01

    Temperature and precipitation limit areas of stable malaria transmission, but the effects of climate change on the disease remain controversial. Previously, studies have not separated the influence of anthropogenic climate change and natural variability, despite being an essential step in the attribution of climate change impacts. Ensembles of 2900 simulations of regional climate in sub-Saharan Africa for the year 2013, one representing realistic conditions and the other how climate might have been in the absence of human influence, were used to force a P.falciparium climate suitability model developed by the Mapping Malaria Risk in Africa project. Strongest signals were detected in areas of unstable transmission, indicating their heightened sensitivity to climatic factors. Evidently, impacts of human-induced climate change were unevenly distributed: the probability of conditions being suitable for stable malaria transmission were substantially reduced (increased) in the Sahel (Greater Horn of Africa (GHOA), particularly in the Ethiopian and Kenyan highlands). The length of the transmission season was correspondingly shortened in the Sahel and extended in the GHOA, by 1 to 2 months, including in Kericho (Kenya), where the role of climate change in driving recent malaria occurrence is hotly contested. Human-induced warming was primarily responsible for positive anomalies in the GHOA, while reduced rainfall caused negative anomalies in the Sahel. The latter was associated with anthropogenic impacts on the West African Monsoon, but uncertainty in the RCM's ability to reproduce precipitation trends in the region weakens confidence in the result. That said, outputs correspond well with broad-scale changes in observed endemicity, implying a potentially important contribution of anthropogenic climate change to the malaria burden during the past century. Results support the health-framing of climate risk and help indicate hotspots of climate vulnerability, providing

  18. Vector bionomics and malaria transmission in the Upper Orinoco River, Southern Venezuela

    Directory of Open Access Journals (Sweden)

    Magda Magris

    2007-06-01

    Full Text Available A longitudinal epidemiological and entomological study was carried out in Ocamo, Upper Orinoco River, between January 1994 and February 1995 to understand the dynamics of malaria transmission in this area. Malaria transmission occurs throughout the year with a peak in June at the beginning of the rainy season. The Annual Parasite Index was 1,279 per 1,000 populations at risk. Plasmodium falciparum infections accounted for 64% of all infections, P. vivax for 28%, and P. malariae for 4%. Mixed P. falciparum/P. vivax infections were diagnosed in 15 people representing 4% of total cases. Children under 10 years accounted for 58% of the cases; the risk for malaria in this age group was 77% higher than for those in the greater than 50 years age group. Anopheles darlingi was the predominant anopheline species landing on humans indoors with a biting peak between midnight and dawn. A significant positive correlation was found between malaria monthly incidence and mean number of An. darlingi caught. There was not a significant relationship between mean number of An. darlingi and rainfall or between incidence and rainfall. A total of 7295 anophelines were assayed by ELISA for detection of Plasmodium circumsporozoite (CS protein. Only An. darlingi (55 was positive for CS proteins of P. falciparum (0.42%, P. malariae (0.25%, and P. vivax-247 (0.1%. The overall estimated entomological inoculation rate was 129 positive bites/person/year. The present study was the first longitudinal entomological and epidemiological study conducted in this area and set up the basic ground for subsequent intervention with insecticide-treated nets.

  19. Random forest variable selection in spatial malaria transmission modelling in Mpumalanga Province, South Africa

    Directory of Open Access Journals (Sweden)

    Thandi Kapwata

    2016-11-01

    Full Text Available Malaria is an environmentally driven disease. In order to quantify the spatial variability of malaria transmission, it is imperative to understand the interactions between environmental variables and malaria epidemiology at a micro-geographic level using a novel statistical approach. The random forest (RF statistical learning method, a relatively new variable-importance ranking method, measures the variable importance of potentially influential parameters through the percent increase of the mean squared error. As this value increases, so does the relative importance of the associated variable. The principal aim of this study was to create predictive malaria maps generated using the selected variables based on the RF algorithm in the Ehlanzeni District of Mpumalanga Province, South Africa. From the seven environmental variables used [temperature, lag temperature, rainfall, lag rainfall, humidity, altitude, and the normalized difference vegetation index (NDVI], altitude was identified as the most influential predictor variable due its high selection frequency. It was selected as the top predictor for 4 out of 12 months of the year, followed by NDVI, temperature and lag rainfall, which were each selected twice. The combination of climatic variables that produced the highest prediction accuracy was altitude, NDVI, and temperature. This suggests that these three variables have high predictive capabilities in relation to malaria transmission. Furthermore, it is anticipated that the predictive maps generated from predictions made by the RF algorithm could be used to monitor the progression of malaria and assist in intervention and prevention efforts with respect to malaria.

  20. Modeling the influence of local environmental factors on malaria transmission in Benin and its implications for cohort study.

    Science.gov (United States)

    Cottrell, Gilles; Kouwaye, Bienvenue; Pierrat, Charlotte; le Port, Agnès; Bouraïma, Aziz; Fonton, Noël; Hounkonnou, Mahouton Norbert; Massougbodji, Achille; Corbel, Vincent; Garcia, André

    2012-01-01

    Malaria remains endemic in tropical areas, especially in Africa. For the evaluation of new tools and to further our understanding of host-parasite interactions, knowing the environmental risk of transmission--even at a very local scale--is essential. The aim of this study was to assess how malaria transmission is influenced and can be predicted by local climatic and environmental factors.As the entomological part of a cohort study of 650 newborn babies in nine villages in the Tori Bossito district of Southern Benin between June 2007 and February 2010, human landing catches were performed to assess the density of malaria vectors and transmission intensity. Climatic factors as well as household characteristics were recorded throughout the study. Statistical correlations between Anopheles density and environmental and climatic factors were tested using a three-level Poisson mixed regression model. The results showed both temporal variations in vector density (related to season and rainfall), and spatial variations at the level of both village and house. These spatial variations could be largely explained by factors associated with the house's immediate surroundings, namely soil type, vegetation index and the proximity of a watercourse. Based on these results, a predictive regression model was developed using a leave-one-out method, to predict the spatiotemporal variability of malaria transmission in the nine villages.This study points up the importance of local environmental factors in malaria transmission and describes a model to predict the transmission risk of individual children, based on environmental and behavioral characteristics.

  1. Rural health centres, communities and malaria case detection in Zambia using mobile telephones: a means to detect potential reservoirs of infection in unstable transmission conditions.

    Science.gov (United States)

    Kamanga, Aniset; Moono, Petros; Stresman, Gillian; Mharakurwa, Sungano; Shiff, Clive

    2010-04-15

    Effective malaria control depends on timely acquisition of information on new cases, their location and their frequency so as to deploy supplies, plan interventions or focus attention on specific locations appropriately to intervene and prevent an upsurge in transmission. The process is known as active case detection, but because the information is time sensitive, it is difficult to carry out. In Zambia, the rural health services are operating effectively and for the most part are provided with adequate supplies of rapid diagnostic tests (RDT) as well as effective drugs for the diagnosis and treatment of malaria. The tests are administered to all prior to treatment and appropriate records are kept. Data are obtained in a timely manner and distribution of this information is important for the effective management of malaria control operations. The work reported here involves combining the process of positive diagnoses in rural health centres (passive case detection) to help detect potential outbreaks of malaria and target interventions to foci where parasite reservoirs are likely to occur. Twelve rural health centres in the Choma and Namwala Districts were recruited to send weekly information of rapid malaria tests used and number of positive diagnoses to the Malaria Institute at Macha using mobile telephone SMS. Data were entered in excel, expressed as number of cases per rural health centre and distributed weekly to interested parties. These data from each of the health centres which were mapped using geographical positioning system (GPS) coordinates were used in a time sensitive manner to plot the patterns of malaria case detection in the vicinity of each location. The data were passed on to the appropriate authorities. The seasonal pattern of malaria transmission associated with local ecological conditions can be seen in the distribution of cases diagnosed. Adequate supplies of RDT are essential in health centres and the system can be expanded throughout the

  2. Rural health centres, communities and malaria case detection in Zambia using mobile telephones: a means to detect potential reservoirs of infection in unstable transmission conditions

    Directory of Open Access Journals (Sweden)

    Kamanga Aniset

    2010-04-01

    Full Text Available Abstract Background Effective malaria control depends on timely acquisition of information on new cases, their location and their frequency so as to deploy supplies, plan interventions or focus attention on specific locations appropriately to intervene and prevent an upsurge in transmission. The process is known as active case detection, but because the information is time sensitive, it is difficult to carry out. In Zambia, the rural health services are operating effectively and for the most part are provided with adequate supplies of rapid diagnostic tests (RDT as well as effective drugs for the diagnosis and treatment of malaria. The tests are administered to all prior to treatment and appropriate records are kept. Data are obtained in a timely manner and distribution of this information is important for the effective management of malaria control operations. The work reported here involves combining the process of positive diagnoses in rural health centres (passive case detection to help detect potential outbreaks of malaria and target interventions to foci where parasite reservoirs are likely to occur. Methods Twelve rural health centres in the Choma and Namwala Districts were recruited to send weekly information of rapid malaria tests used and number of positive diagnoses to the Malaria Institute at Macha using mobile telephone SMS. Data were entered in excel, expressed as number of cases per rural health centre and distributed weekly to interested parties. Results These data from each of the health centres which were mapped using geographical positioning system (GPS coordinates were used in a time sensitive manner to plot the patterns of malaria case detection in the vicinity of each location. The data were passed on to the appropriate authorities. The seasonal pattern of malaria transmission associated with local ecological conditions can be seen in the distribution of cases diagnosed. Conclusions Adequate supplies of RDT are essential in

  3. Transplacental Transmission of Plasmodium falciparum in a Highly Malaria Endemic Area of Burkina Faso

    Directory of Open Access Journals (Sweden)

    Alphonse Ouédraogo

    2012-01-01

    Full Text Available Malaria congenital infection constitutes a major risk in malaria endemic areas. In this study, we report the prevalence of transplacental malaria in Burkina Faso. In labour and delivery units, thick and thin blood films were made from maternal, placental, and umbilical cord blood to determine malaria infection. A total of 1,309 mother/baby pairs were recruited. Eighteen cord blood samples (1.4% contained malaria parasites (Plasmodium falciparum. Out of the 369 (28.2% women with peripheral positive parasitemia, 211 (57.2% had placental malaria and 14 (3.8% had malaria parasites in their umbilical cord blood. The umbilical cord parasitemia levels were statistically associated with the presence of maternal peripheral parasitemia (OR=9.24, ≪0.001, placental parasitemia (OR=10.74, ≪0.001, high-density peripheral parasitemia (OR=9.62, ≪0.001, and high-density placental parasitemia (OR=4.91, =0.03. In Burkina Faso, the mother-to-child transmission rate of malaria appears to be low.

  4. Blood-feeding patterns of Anopheles mosquitoes in a malaria-endemic area of Bangladesh

    Directory of Open Access Journals (Sweden)

    Bashar Kabirul

    2012-02-01

    Full Text Available Abstract Background Blood-feeding patterns of mosquitoes are crucial for incriminating malaria vectors. However, little information is available on the host preferences of Anopheles mosquitoes in Bangladesh. Therefore, the objective of the present study was to determine the hematophagic tendencies of the anophelines inhabiting a malaria-endemic area of Bangladesh. Methods Adult Anopheles mosquitoes were collected using light traps (LTs, pyrethrum spray (PS, and human bait (HB from a malaria-endemic village (Kumari, Bandarban, Bangladesh during the peak months of malaria transmission (August-September. Enzyme-linked immunosorbent assay (ELISA and polymerase chain reaction (PCR were performed to identify the host blood meals of Anopheles mosquitoes. Results In total, 2456 female anopheline mosquitoes representing 21 species were collected from the study area. Anopheles vagus Doenitz (35.71% was the dominant species followed by An. philippinensis Ludlow (26.67% and An. minimus s.l. Theobald (5.78%. All species were collected by LTs set indoors (n = 1094, 19 species were from outdoors (n = 784, whereas, six by PS (n = 549 and four species by HB (n = 29. Anopheline species composition significantly differed between every possible combination of the three collection methods (χ2 test, P Anopheles samples belonging to 17 species. Values of the human blood index (HBI of anophelines collected from indoors and outdoors were 6.96% and 11.73%, respectively. The highest values of HBI were found in An. baimai Baimaii (80%, followed by An. minimus s.l. (43.64% and An. annularis Van den Wulp (37.50%. Anopheles baimai (Bi = 0.63 and An. minimus s.l. (Bi = 0.24 showed strong relative preferences (Bi for humans among all hosts (human, bovine, goats/sheep, and others. Anopheles annularis, An. maculatus s.l. Theobald, and An. pallidus Theobald exhibited opportunistic blood-feeding behavior, in that they fed on either humans or animals, depending on whichever was

  5. Short report: entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa.

    Science.gov (United States)

    Beier, J C; Killeen, G F; Githure, J I

    1999-07-01

    Epidemiologic patterns of malaria infection are governed by environmental parameters that regulate vector populations of Anopheles mosquitoes. The intensity of malaria parasite transmission is normally expressed as the entomologic inoculation rate (EIR), the product of the vector biting rate times the proportion of mosquitoes infected with sporozoite-stage malaria parasites. Malaria transmission intensity in Africa is highly variable with annual EIRs ranging from 1,000 infective bites per person per year. Malaria control programs often seek to reduce morbidity and mortality due to malaria by reducing or eliminating malaria parasite transmission by mosquitoes. This report evaluates data from 31 sites throughout Africa to establish fundamental relationships between annual EIRs and the prevalence of Plasmodium falciparum malaria infection. The majority of sites fitted a linear relationship (r2 = 0.71) between malaria prevalence and the logarithm of the annual EIR. Some sites with EIRs 80%. The basic relationship between EIR and P. falciparum prevalence, which likely holds in east and west Africa, and across different ecologic zones, shows convincingly that substantial reductions in malaria prevalence are likely to be achieved only when EIRs are reduced to levels less than 1 infective bite per person per year. The analysis also highlights that the EIR is a more direct measure of transmission intensity than traditional measures of malaria prevalence or hospital-based measures of infection or disease incidence. As such, malaria field programs need to consider both entomologic and clinical assessments of the efficacy of transmission control measures.

  6. Chronic malaria revealed by a new fluorescence pattern on the antinuclear autoantibodies test.

    Directory of Open Access Journals (Sweden)

    Benjamin Hommel

    Full Text Available BACKGROUND: Several clinical forms of malaria such as chronic carriage, gestational malaria or hyper-reactive malarial splenomegaly may follow a cryptic evolution with afebrile chronic fatigue sometimes accompanied by anemia and/or splenomegaly. Conventional parasitological tests are often negative or not performed, and severe complications may occur. Extensive explorations of these conditions often include the search for antinuclear autoantibodies (ANA. METHODS: We analysed fluorescence patterns in the ANA test in patients with either chronic cryptic or acute symptomatic malaria, then conducted a one-year prospective study at a single hospital on all available sera drawn for ANA detections. We then identified autoantibodies differentially expressed in malaria patients and in controls using human protein microarray. RESULTS: We uncovered and defined a new, malaria-related, nucleo-cytoplasmic ANA pattern displaying the specific association of a nuclear speckled pattern with diffuse cytoplasmic perinuclearly-enhanced fluorescence. In the one-year prospective analysis, 79% of sera displaying this new nucleo-cytoplasmic fluorescence were from patients with malaria. This specific pattern, not seen in other parasitic diseases, allowed a timely reorientation of the diagnosis toward malaria. To assess if the autoantibody immune response was due to autoreactivity or molecular mimicry we isolated 42 autoantigens, targets of malarial autoantibodies. BLAST analysis indicated that 23 of recognized autoantigens were homologous to plasmodial proteins suggesting autoimmune responses directly driven by the plasmodial infection. CONCLUSION: In patients with malaria in whom parasitological tests have not been performed recognition of this new, malaria-related fluorescence pattern on the ANA test is highly suggestive of the diagnosis and triggers immediate, easy confirmation and adapted therapy.

  7. Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia

    Directory of Open Access Journals (Sweden)

    Cook Jackie

    2012-03-01

    transmission season than children, whilst members of the Charay ethnic group demonstrated the largest increases. Discussion In areas of low transmission intensity, such as in Cambodia, the analysis of longitudinal serological data enables a sensitive evaluation of transmission dynamics. Consecutive serological surveys allow an insight into spatio-temporal patterns of malaria transmission. The use of CART enabled multiple interactions to be accounted for simultaneously and permitted risk factors for exposure to be clearly identified.

  8. Modeling the influence of local environmental factors on malaria transmission in Benin and its implications for cohort study.

    Directory of Open Access Journals (Sweden)

    Gilles Cottrell

    Full Text Available Malaria remains endemic in tropical areas, especially in Africa. For the evaluation of new tools and to further our understanding of host-parasite interactions, knowing the environmental risk of transmission--even at a very local scale--is essential. The aim of this study was to assess how malaria transmission is influenced and can be predicted by local climatic and environmental factors.As the entomological part of a cohort study of 650 newborn babies in nine villages in the Tori Bossito district of Southern Benin between June 2007 and February 2010, human landing catches were performed to assess the density of malaria vectors and transmission intensity. Climatic factors as well as household characteristics were recorded throughout the study. Statistical correlations between Anopheles density and environmental and climatic factors were tested using a three-level Poisson mixed regression model. The results showed both temporal variations in vector density (related to season and rainfall, and spatial variations at the level of both village and house. These spatial variations could be largely explained by factors associated with the house's immediate surroundings, namely soil type, vegetation index and the proximity of a watercourse. Based on these results, a predictive regression model was developed using a leave-one-out method, to predict the spatiotemporal variability of malaria transmission in the nine villages.This study points up the importance of local environmental factors in malaria transmission and describes a model to predict the transmission risk of individual children, based on environmental and behavioral characteristics.

  9. Pattern and predictors of neurological morbidities among childhood cerebral malaria survivors in central Sudan.

    Science.gov (United States)

    Mergani, Adil; Khamis, Ammar H; Fatih Hashim, E L; Gumma, Mohamed; Awadelseed, Bella; Elwali, Nasr Eldin M A; Haboor, Ali Babikir

    2015-09-01

    Cerebral malaria is considered a leading cause of neuro-disability in sub-Saharan Africa among children and about 25% of survivors have long-term neurological and cognitive deficits or epilepsy. Their development was reported to be associated with protracted seizures, deep and prolonged coma. The study was aimed to determine the discharge pattern and to identify potential and informative predictors of neurological sequelae at discharge, complicating childhood cerebral malaria in central Sudan. A cross-sectional prospective study was carried out during malaria transmission seasons from 2000 to 2004 in Wad Medani, Sinnar and Singa hospitals, central Sudan. Children suspected of having cerebral malaria were examined and diagnosed by a Pediatrician for clinical, laboratory findings and any neurological complications. Univariate and multiple regression model analysis were performed to evaluate the association of clinical and laboratory findings with occurrence of neurological complications using the SPSS. Out of 940 examined children, only 409 were diagnosed with cerebral malaria with a mean age of 6.1 ± 3.3 yr. The mortality rate associated with the study was 14.2% (58) and 18.2% (64) of survivors (351) had neurological sequelae. Abnormal posture, either decerebration or decortication, focal convulsion and coma duration of >48 h were significant predictors for surviving from cerebral malaria with a neurological sequelae in children from central Sudan by Univariate analysis. Multiple logistic regression model fitting these variables, revealed 39.6% sensitivity for prediction of childhood cerebral malaria survivors with neurological sequelae (R² = 0.396; p=0.001). Neurological sequelae are common due to childhood cerebral malaria in central Sudan. Their prediction at admission, clinical presentation and laboratory findings may guide clinical intervention and proper management that may decrease morbidity and improve CM consequences.

  10. Alternative transmission routes in the malaria elimination era: an overview of transfusion-transmitted malaria in the Americas.

    Science.gov (United States)

    Alho, Regina M; Machado, Kim Vinícius Amaral; Val, Fernando F A; Fraiji, Nelson A; Alexandre, Marcia A A; Melo, Gisely C; Recht, Judith; Siqueira, André M; Monteiro, Wuelton M; Lacerda, Marcus V G

    2017-02-15

    neoplastic diseases. There is an important research and knowledge gap regarding the TT malaria burden in Latin American countries where malaria remains endemic. No screening method that is practical, affordable and suitably sensitive is available at blood banks in Latin American countries, where infections with low parasitaemia contribute greatly to transmission. Lethality from TT malaria was not negligible. TT malaria needs to be acknowledged and addressed in areas moving toward elimination.

  11. Population Density, Climate Variables and Poverty Synergistically Structure Spatial Risk in Urban Malaria in India.

    Directory of Open Access Journals (Sweden)

    Mauricio Santos-Vega

    2016-12-01

    Full Text Available The world is rapidly becoming urban with the global population living in cities projected to double by 2050. This increase in urbanization poses new challenges for the spread and control of communicable diseases such as malaria. In particular, urban environments create highly heterogeneous socio-economic and environmental conditions that can affect the transmission of vector-borne diseases dependent on human water storage and waste water management. Interestingly India, as opposed to Africa, harbors a mosquito vector, Anopheles stephensi, which thrives in the man-made environments of cities and acts as the vector for both Plasmodium vivax and Plasmodium falciparum, making the malaria problem a truly urban phenomenon. Here we address the role and determinants of within-city spatial heterogeneity in the incidence patterns of vivax malaria, and then draw comparisons with results for falciparum malaria.Statistical analyses and a phenomenological transmission model are applied to an extensive spatio-temporal dataset on cases of Plasmodium vivax in the city of Ahmedabad (Gujarat, India that spans 12 years monthly at the level of wards. A spatial pattern in malaria incidence is described that is largely stationary in time for this parasite. Malaria risk is then shown to be associated with socioeconomic indicators and environmental parameters, temperature and humidity. In a more dynamical perspective, an Inhomogeneous Markov Chain Model is used to predict vivax malaria risk. Models that account for climate factors, socioeconomic level and population size show the highest predictive skill. A comparison to the transmission dynamics of falciparum malaria reinforces the conclusion that the spatio-temporal patterns of risk are strongly driven by extrinsic factors.Climate forcing and socio-economic heterogeneity act synergistically at local scales on the population dynamics of urban malaria in this city. The stationarity of malaria risk patterns provides a

  12. Population Density, Climate Variables and Poverty Synergistically Structure Spatial Risk in Urban Malaria in India.

    Science.gov (United States)

    Santos-Vega, Mauricio; Bouma, Menno J; Kohli, Vijay; Pascual, Mercedes

    2016-12-01

    The world is rapidly becoming urban with the global population living in cities projected to double by 2050. This increase in urbanization poses new challenges for the spread and control of communicable diseases such as malaria. In particular, urban environments create highly heterogeneous socio-economic and environmental conditions that can affect the transmission of vector-borne diseases dependent on human water storage and waste water management. Interestingly India, as opposed to Africa, harbors a mosquito vector, Anopheles stephensi, which thrives in the man-made environments of cities and acts as the vector for both Plasmodium vivax and Plasmodium falciparum, making the malaria problem a truly urban phenomenon. Here we address the role and determinants of within-city spatial heterogeneity in the incidence patterns of vivax malaria, and then draw comparisons with results for falciparum malaria. Statistical analyses and a phenomenological transmission model are applied to an extensive spatio-temporal dataset on cases of Plasmodium vivax in the city of Ahmedabad (Gujarat, India) that spans 12 years monthly at the level of wards. A spatial pattern in malaria incidence is described that is largely stationary in time for this parasite. Malaria risk is then shown to be associated with socioeconomic indicators and environmental parameters, temperature and humidity. In a more dynamical perspective, an Inhomogeneous Markov Chain Model is used to predict vivax malaria risk. Models that account for climate factors, socioeconomic level and population size show the highest predictive skill. A comparison to the transmission dynamics of falciparum malaria reinforces the conclusion that the spatio-temporal patterns of risk are strongly driven by extrinsic factors. Climate forcing and socio-economic heterogeneity act synergistically at local scales on the population dynamics of urban malaria in this city. The stationarity of malaria risk patterns provides a basis for more

  13. The antibody response to well-defined malaria antigens after acute malaria in individuals living under continuous malaria transmission

    DEFF Research Database (Denmark)

    Petersen, E; Høgh, B; Dziegiel, M

    1992-01-01

    The IgG and IgM antibody responses to the C-terminal 783 amino acids of the P. falciparum glutamate-rich protein, GLURP489-1271, expressed as an E. coli fusion protein, the IgG response to a 18-mer synthetic peptide EDKNEKGQHEIVEVEEIL (GLURP899-916) representing the C-terminal repeats of GLURP......, and a synthetic peptide (EENV)6 representing the C-terminal repeats from Pf155/RESA, were investigated longitudinally in 13 children and 7 adults living under conditions of continuous, intense malaria transmission. Some subjects did not recognize the antigens after malaria infection, and in subjects recognizing...... the antigens, the responses were often short-lived. In adults, the antibody responses to the GLURP489-1271 fusion protein and the (EENV)6 peptide peaked after 2 weeks, and not all individuals responded to all antigens. The antibody response, even against large fragments of conserved antigens, is not uniformly...

  14. Malaria risk in young male travellers but local transmission persists: a case-control study in low transmission Namibia.

    Science.gov (United States)

    Smith, Jennifer L; Auala, Joyce; Haindongo, Erastus; Uusiku, Petrina; Gosling, Roly; Kleinschmidt, Immo; Mumbengegwi, Davis; Sturrock, Hugh J W

    2017-02-10

    A key component of malaria elimination campaigns is the identification and targeting of high risk populations. To characterize high risk populations in north central Namibia, a prospective health facility-based case-control study was conducted from December 2012-July 2014. Cases (n = 107) were all patients presenting to any of the 46 health clinics located in the study districts with a confirmed Plasmodium infection by multi-species rapid diagnostic test (RDT). Population controls (n = 679) for each district were RDT negative individuals residing within a household that was randomly selected from a census listing using a two-stage sampling procedure. Demographic, travel, socio-economic, behavioural, climate and vegetation data were also collected. Spatial patterns of malaria risk were analysed. Multivariate logistic regression was used to identify risk factors for malaria. Malaria risk was observed to cluster along the border with Angola, and travel patterns among cases were comparatively restricted to northern Namibia and Angola. Travel to Angola was associated with excessive risk of malaria in males (OR 43.58 95% CI 2.12-896), but there was no corresponding risk associated with travel by females. This is the first study to reveal that gender can modify the effect of travel on risk of malaria. Amongst non-travellers, male gender was also associated with a higher risk of malaria compared with females (OR 1.95 95% CI 1.25-3.04). Other strong risk factors were sleeping away from the household the previous night, lower socioeconomic status, living in an area with moderate vegetation around their house, experiencing moderate rainfall in the month prior to diagnosis and living young male travellers, who have a disproportionate risk of malaria in northern Namibia, to coordinate cross-border regional malaria prevention initiatives and to scale up coverage of prevention measures such as indoor residual spraying and long-lasting insecticide nets in high risk areas if

  15. Vector bionomics and malaria transmission along the Thailand-Myanmar border: a baseline entomological survey.

    Science.gov (United States)

    Kwansomboon, N; Chaumeau, V; Kittiphanakun, P; Cerqueira, D; Corbel, V; Chareonviriyaphap, T

    2017-06-01

    Baseline entomological surveys were conducted in four sentinel sites along the Thailand-Myanmar border to address vector bionomics and malaria transmission in the context of a study on malaria elimination. Adult Anopheles mosquitoes were collected using human-landing catch and cow-bait collection in four villages during the rainy season from May-June, 2013. Mosquitoes were identified to species level by morphological characters and by AS-PCR. Sporozoite indexes were determined on head/thoraces of primary and secondary malaria vectors using real-time PCR. A total of 4,301 anopheles belonging to 12 anopheline taxa were identified. Anopheles minimus represented >98% of the Minimus Complex members (n=1,683), whereas the An. maculatus group was composed of two dominant species, An. sawadwongporni and An. maculatus. Overall, 25 Plasmodium-positive mosquitoes (of 2,323) were found, representing a sporozoite index of 1.1% [95%CI 0.66-1.50]. The transmission intensity as measured by the EIR strongly varied according to the village (ANOVA, F=17.67, df=3, PMyanmar border that represent a formidable challenge for malaria control and elimination. © 2017 The Society for Vector Ecology.

  16. The US President's Malaria Initiative, Plasmodium falciparum transmission and mortality: A modelling study.

    Science.gov (United States)

    Winskill, Peter; Slater, Hannah C; Griffin, Jamie T; Ghani, Azra C; Walker, Patrick G T

    2017-11-01

    Although significant progress has been made in reducing malaria transmission globally in recent years, a large number of people remain at risk and hence the gains made are fragile. Funding lags well behind amounts needed to protect all those at risk and ongoing contributions from major donors, such as the President's Malaria Initiative (PMI), are vital to maintain progress and pursue further reductions in burden. We use a mathematical modelling approach to estimate the impact of PMI investments to date in reducing malaria burden and to explore the potential negative impact on malaria burden should a proposed 44% reduction in PMI funding occur. We combined an established mathematical model of Plasmodium falciparum transmission dynamics with epidemiological, intervention, and PMI-financing data to estimate the contribution PMI has made to malaria control via funding for long-lasting insecticide treated nets (LLINs), indoor residual spraying (IRS), and artemisinin combination therapies (ACTs). We estimate that PMI has prevented 185 million (95% CrI: 138 million, 230 million) malaria cases and saved 940,049 (95% CrI: 545,228, 1.4 million) lives since 2005. If funding is maintained, PMI-funded interventions are estimated to avert a further 162 million (95% CrI: 116 million, 194 million) cases, saving a further 692,589 (95% CrI: 392,694, 955,653) lives between 2017 and 2020. With an estimate of US$94 (95% CrI: US$51, US$166) per Disability Adjusted Life Year (DALY) averted, PMI-funded interventions are highly cost-effective. We also demonstrate the further impact of this investment by reducing caseloads on health systems. If a 44% reduction in PMI funding were to occur, we predict that this loss of direct aid could result in an additional 67 million (95% CrI: 49 million, 82 million) cases and 290,649 (95% CrI: 167,208, 395,263) deaths between 2017 and 2020. We have not modelled indirect impacts of PMI funding (such as health systems strengthening) in this analysis. Our

  17. Simulating the spread of malaria using a generic transmission model for mosquito-borne infectious diseases

    Science.gov (United States)

    Kon, Cynthia Mui Lian; Labadin, Jane

    2016-06-01

    Malaria is a critical infection caused by parasites which are spread to humans through mosquito bites. Approximately half of the world's population is in peril of getting infected by malaria. Mosquito-borne diseases have a standard behavior where they are transmitted in the same manner, only through vector mosquito. Taking this into account, a generic spatial-temporal model for transmission of multiple mosquito-borne diseases had been formulated. Our interest is to reproduce the actual cases of different mosquito-borne diseases using the generic model and then predict future cases so as to improve control and target measures competently. In this paper, we utilize notified weekly malaria cases in four districts in Sarawak, Malaysia, namely Kapit, Song, Belaga and Marudi. The actual cases for 36 weeks, which is from week 39 in 2012 to week 22 in 2013, are compared with simulations of the generic spatial-temporal transmission mosquito-borne diseases model. We observe that the simulation results display corresponding result to the actual malaria cases in the four districts.

  18. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda.

    Science.gov (United States)

    Kateera, Fredrick; Nsobya, Sam L; Tukwasibwe, Stephen; Mens, Petra F; Hakizimana, Emmanuel; Grobusch, Martin P; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele

    2016-04-26

    Malaria remains a public health challenge in sub-Saharan Africa with Plasmodium falciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity-a characteristic that has yet to be studied in Rwanda. Characterizing P. falciparum molecular epidemiology in an area is needed for a better understand of malaria transmission and to inform choice of malaria control strategies. In this health-facility based survey, malaria case clinical profiles and parasite densities as well as parasite genetic diversity were compared among P. falciparum-infected patients identified at two sites of different malaria transmission intensities in Rwanda. Data on demographics and clinical features and finger-prick blood samples for microscopy and parasite genotyping were collected(.) Nested PCR was used to genotype msp-2 alleles of FC27 and 3D7. Patients' variables of age group, sex, fever (both by patient report and by measured tympanic temperatures), parasite density, and bed net use were found differentially distributed between the higher endemic (Ruhuha) and lower endemic (Mubuga) sites. Overall multiplicity of P. falciparum infection (MOI) was 1.73 but with mean MOI found to vary significantly between 2.13 at Ruhuha and 1.29 at Mubuga (p < 0.0001). At Ruhuha, expected heterozygosity (EH) for FC27 and 3D7 alleles were 0.62 and 0.49, respectively, whilst at Mubuga, EH for FC27 and 3D7 were 0.26 and 0.28, respectively. In this study, a higher geometrical mean parasite counts, more polyclonal infections, higher MOI, and higher allelic frequency were observed at the higher malaria-endemic (Ruhuha) compared to the lower malaria-endemic (Mubuga) area. These differences in malaria risk and MOI should be considered when choosing setting-specific malaria control strategies, assessing p. falciparum associated parameters such as drug resistance, immunity and impact of used

  19. Simulation of malaria epidemiology and control in the highlands of western Kenya

    Directory of Open Access Journals (Sweden)

    Stuckey Erin M

    2012-10-01

    Full Text Available Abstract Background Models of Plasmodium falciparum malaria epidemiology that provide realistic quantitative predictions of likely epidemiological outcomes of existing vector control strategies have the potential to assist in planning for the control and elimination of malaria. This work investigates the applicability of mathematical modelling of malaria transmission dynamics in Rachuonyo South, a district with low, unstable transmission in the highlands of western Kenya. Methods Individual-based stochastic simulation models of malaria in humans and a deterministic model of malaria in mosquitoes as part of the OpenMalaria platform were parameterized to create a scenario for the study area based on data from ongoing field studies and available literature. The scenario was simulated for a period of two years with a population of 10,000 individuals and validated against malaria survey data from Rachuonyo South. Simulations were repeated with multiple random seeds and an ensemble of 14 model variants to address stochasticity and model uncertainty. A one-dimensional sensitivity analysis was conducted to address parameter uncertainty. Results The scenario was able to reproduce the seasonal pattern of the entomological inoculation rate (EIR and patent infections observed in an all-age cohort of individuals sampled monthly for one year. Using an EIR estimated from serology to parameterize the scenario resulted in a closer fit to parasite prevalence than an EIR estimated using entomological methods. The scenario parameterization was most sensitive to changes in the timing and effectiveness of indoor residual spraying (IRS and the method used to detect P. falciparum in humans. It was less sensitive than expected to changes in vector biting behaviour and climatic patterns. Conclusions The OpenMalaria model of P. falciparum transmission can be used to simulate the impact of different combinations of current and potential control interventions to help plan

  20. Dynamics of malaria transmission and susceptibility to clinical malaria episodes following treatment of Plasmodium falciparum asymptomatic carriers: results of a cluster-randomized study of community-wide screening and treatment, and a parallel entomology study.

    Science.gov (United States)

    Tiono, Alfred B; Guelbeogo, Moussa W; Sagnon, N Falé; Nébié, Issa; Sirima, Sodiomon B; Mukhopadhyay, Amitava; Hamed, Kamal

    2013-11-12

    In malaria-endemic countries, large proportions of individuals infected with Plasmodium falciparum are asymptomatic and constitute a reservoir of parasites for infection of newly hatched mosquitoes. Two studies were run in parallel in Burkina Faso to evaluate the impact of systematic identification and treatment of asymptomatic carriers of P. falciparum, detected by rapid diagnostic test, on disease transmission and susceptibility to clinical malaria episodes. A clinical study assessed the incidence of symptomatic malaria episodes with a parasite density >5,000/μL after three screening and treatment campaigns ~1 month apart before the rainy season; and an entomological study determined the effect of these campaigns on malaria transmission as measured by entomological inoculation rate. The intervention arm had lower prevalence of asymptomatic carriers of asexual parasites and lower prevalence of gametocyte carriers during campaigns 2 and 3 as compared to the control arm. During the entire follow-up period, out of 13,767 at-risk subjects, 2,516 subjects (intervention arm 1,332; control arm 1,184) had symptomatic malaria. Kaplan-Meier analysis of the incidence of first symptomatic malaria episode with a parasite density >5,000/μL showed that, in the total population, the two treatment arms were similar until Week 11-12 after campaign 3, corresponding with the beginning of the malaria transmission season, after which the probability of being free of symptomatic malaria was lower in the intervention arm (logrank p entomological inoculation rate was comparable in both arms, with September peaks in both indices. Community screening and targeted treatment of asymptomatic carriers of P. falciparum had no effect on the dynamics of malaria transmission, but seemed to be associated with an increase in the treated community's susceptibility to symptomatic malaria episodes after the screening campaigns had finished. These results highlight the importance of further

  1. Malaria infection, morbidity and transmission in two ecological zones Southern Ghana.

    Science.gov (United States)

    Afari, Edwin A.; Appawu, Maxwell; Dunyo, Samuel; Baffoe-Wilmot, Aba; Nkrumah, Francis K.

    1995-05-01

    A one year survey was conducted in 1992 to compare malaria infection, morbidity and transmission patterns between a coastal savannah community (Prampram) and a community (Dodowa) in the forest zone in southern Ghana. The study population of 6682 at Prampram and 6558 at Dodowa were followed up in their homes once every two weeks and all episodes of clinical malaria recorded. Blood films for microscopy were prepared from 600 participants randomly selected in each community in April and in August representing dry and wet seasons respectively. Mosquitoes biting humans between 1800 hrs and 0600 hrs, as well as indoor and outdoor resting mosquitoes were collected weekly. All mosquitoes collected were classified into species and examined for sporozoites by dissection and ELISA. The incidence rate of clinical malaria was higher in Dodowa (106.6/1000 pop.) than in Prampram (68.5/1000 pop.) It was highest in < 10 year age groups in both communities. It was also higher in the wet season than in the dry season. The prevalence of patent parasitaemia at Prampram and Dodowa in April in the dry season. The prevalence of patent parasitaemia at Prampram and Dodowa in April 1992 was 19.8% (117/590) and 42.2% (253/599) respectively. The corresponding figures for August were 26.6%(160/602)at Prampram and 51.3% (309/602) at Dodowa. Plasmodium falciparum infection contributed 78-85% of the parasitaemia in April and 93-99% in August. The average man-biting rate for Anopheles gambiae s.l was higher at Prampram than at Dodowa (1.54 vs 0.79 bites/man/night) but the average sporozoite rate was higher at Dodowa than at Prampram (2% vs 0.7%). The peak of biting density at Prampram occurred in June whilst that of Dodowa occurred in November.

  2. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia

    Directory of Open Access Journals (Sweden)

    Quispe Vicente

    2008-07-01

    Full Text Available Abstract Background The length of the gonotrophic cycle varies the vectorial capacity of a mosquito vector and therefore its exact estimation is important in epidemiological modelling. Because the gonotrophic cycle length depends on temperature, its estimation can be satisfactorily computed by means of physiological time analysis. Methods A model of physiological time was developed and calibrated for Anopheles pseudopunctipennis, one of the main malaria vectors in South America, using data from laboratory temperature controlled experiments. The model was validated under varying temperatures and could predict the time elapsed from blood engorgement to oviposition according to the temperature. Results In laboratory experiments, a batch of An. pseudopunctipennis fed at the same time may lay eggs during several consecutive nights (2–3 at high temperature and > 10 at low temperature. The model took into account such pattern and was used to predict the range of the gonotrophic cycle duration of An. pseudopunctipennis in four characteristic sites of Bolivia. It showed that the predicted cycle duration for An. pseudopunctipennis exhibited a seasonal pattern, with higher variances where climatic conditions were less stable. Predicted mean values of the (minimum duration ranged from 3.3 days up to > 10 days, depending on the season and the geographical location. The analysis of ovaries development stages of field collected biting mosquitoes indicated that the phase 1 of Beklemishev might be of significant duration for An. pseudopunctipennis. The gonotrophic cycle length of An. pseudopunctipennis correlates with malaria transmission patterns observed in Bolivia which depend on locations and seasons. Conclusion A new presentation of cycle length results taking into account the number of ovipositing nights and the proportion of mosquitoes laying eggs is suggested. The present approach using physiological time analysis might serve as an outline to other

  3. Risk factors for low birth-weight in areas with varying malaria transmission in Korogwe, Tanzania: implications for malaria control

    DEFF Research Database (Denmark)

    Mmbando, Bruno Paul; Cole-Lewis, H; Sembuche, S

    2008-01-01

    Low birth weight (LBW) is a risk factor for infant mortality, morbidity, growth retardation, poor cognitive development, and chronic diseases. Maternal exposure to diseases such as malaria, HIV, and syphilis has been shown to have a significant impact on birth weight (BW). This study was aimed...... babies compared to first parity women (OR=0.44, 95% CI 0.19-0.98, P=0.045). Similarly, the risk of LBW was higher in women who had delayed MCH gestational booking and in women who conceived during high malaria transmission seasons. There was high degree of preference of digits ending with 0...

  4. Bionomics of Anopheline species and malaria transmission dynamics along an altitudinal transect in Western Cameroon

    Directory of Open Access Journals (Sweden)

    Toto Jean-Claude

    2010-05-01

    Full Text Available Abstract Background Highland areas of Africa are mostly malaria hypoendemic, due to climate which is not appropriate for anophelines development and their reproductive fitness. In view of designing a malaria control strategy in Western Cameroon highlands, baseline data on anopheline species bionomics were collected. Methods Longitudinal entomological surveys were conducted in three localities at different altitudinal levels. Mosquitoes were captured when landing on human volunteers and by pyrethrum spray catches. Sampled Anopheles were tested for the presence of Plasmodium circumsporozoite proteins and their blood meal origin with ELISA. Entomological parameters of malaria epidemiology were assessed using Mac Donald's formula. Results Anopheline species diversity and density decreased globally from lowland to highland. The most aggressive species along the altitudinal transect was Anopheles gambiae s.s. of S molecular form, followed in the lowland and on the plateau by An. funestus, but uphill by An. hancocki. An. gambiae and An. ziemanni exhibited similar seasonal biting patterns at the different levels, whereas different features were observed for An. funestus. Only indoor resting species could be captured uphill; it is therefore likely that endophilic behaviour is necessary for anophelines to climb above a certain threshold. Of the ten species collected along the transect, only An. gambiae and An. funestus were responsible for malaria transmission, with entomological inoculation rates (EIR of 90.5, 62.8 and zero infective bites/human/year in the lowland, on the plateau and uphill respectively. The duration of gonotrophic cycle was consistently one day shorter for An. gambiae as compared to An. funestus at equal altitude. Altitudinal climate variations had no effect on the survivorship and the subsequent life expectancy of the adult stage of these malaria vectors, but most probably on aquatic stages. On the contrary increasing altitude

  5. Melanotic pathology and vertical transmission of the gut commensal Elizabethkingia meningoseptica in the major malaria vector Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Idir G Akhouayri

    Full Text Available The resident gut flora is known to have significant impacts on the life history of the host organism. Endosymbiotic bacterial species in the Anopheles mosquito gut are potent modulators of sexual development of the malaria parasite, Plasmodium, and thus proposed as potential control agents of malaria transmission.Here we report a melanotic pathology in the major African malaria vector Anopheles gambiae, caused by the dominant mosquito endosymbiont Elizabethkingiameningoseptica. Transfer of melanised tissues into the haemolymph of healthy adult mosquitoes or direct haemolymph inoculation with isolated E. meningoseptica bacteria were the only means for transmission and de novo formation of melanotic lesions, specifically in the fat body tissues of recipient individuals. We show that E. meningoseptica can be vertically transmitted from eggs to larvae and that E. meningoseptica-mono-associated mosquitoes display significant mortality, which is further enhanced upon Plasmodium infection, suggesting a synergistic impact of E. meningoseptica and Plasmodium on mosquito survival.The high pathogenicity and permanent association of E. meningoseptica with An. Gambiae through vertical transmission constitute attractive characteristics towards the potential design of novel mosquito/malaria biocontrol strategies.

  6. Assessment of climate-driven variations in malaria incidence in Swaziland: toward malaria elimination.

    Science.gov (United States)

    Chuang, Ting-Wu; Soble, Adam; Ntshalintshali, Nyasatu; Mkhonta, Nomcebo; Seyama, Eric; Mthethwa, Steven; Pindolia, Deepa; Kunene, Simon

    2017-06-01

    Swaziland aims to eliminate malaria by 2020. However, imported cases from neighbouring endemic countries continue to sustain local parasite reservoirs and initiate transmission. As certain weather and climatic conditions may trigger or intensify malaria outbreaks, identification of areas prone to these conditions may aid decision-makers in deploying targeted malaria interventions more effectively. Malaria case-surveillance data for Swaziland were provided by Swaziland's National Malaria Control Programme. Climate data were derived from local weather stations and remote sensing images. Climate parameters and malaria cases between 2001 and 2015 were then analysed using seasonal autoregressive integrated moving average models and distributed lag non-linear models (DLNM). The incidence of malaria in Swaziland increased between 2005 and 2010, especially in the Lubombo and Hhohho regions. A time-series analysis indicated that warmer temperatures and higher precipitation in the Lubombo and Hhohho administrative regions are conducive to malaria transmission. DLNM showed that the risk of malaria increased in Lubombo when the maximum temperature was above 30 °C or monthly precipitation was above 5 in. In Hhohho, the minimum temperature remaining above 15 °C or precipitation being greater than 10 in. might be associated with malaria transmission. This study provides a preliminary assessment of the impact of short-term climate variations on malaria transmission in Swaziland. The geographic separation of imported and locally acquired malaria, as well as population behaviour, highlight the varying modes of transmission, part of which may be relevant to climate conditions. Thus, the impact of changing climate conditions should be noted as Swaziland moves toward malaria elimination.

  7. International funding for malaria control in relation to populations at risk of stable Plasmodium falciparum transmission.

    Directory of Open Access Journals (Sweden)

    Robert W Snow

    2008-07-01

    Full Text Available The international financing of malaria control has increased significantly in the last ten years in parallel with calls to halve the malaria burden by the year 2015. The allocation of funds to countries should reflect the size of the populations at risk of infection, disease, and death. To examine this relationship, we compare an audit of international commitments with an objective assessment of national need: the population at risk of stable Plasmodium falciparum malaria transmission in 2007.The national distributions of populations at risk of stable P. falciparum transmission were projected to the year 2007 for each of 87 P. falciparum-endemic countries. Systematic online- and literature-based searches were conducted to audit the international funding commitments made for malaria control by major donors between 2002 and 2007. These figures were used to generate annual malaria funding allocation (in US dollars per capita population at risk of stable P. falciparum in 2007. Almost US$1 billion are distributed each year to the 1.4 billion people exposed to stable P. falciparum malaria risk. This is less than US$1 per person at risk per year. Forty percent of this total comes from the Global Fund to Fight AIDS, Tuberculosis and Malaria. Substantial regional and national variations in disbursements exist. While the distribution of funds is found to be broadly appropriate, specific high population density countries receive disproportionately less support to scale up malaria control. Additionally, an inadequacy of current financial commitments by the international community was found: under-funding could be from 50% to 450%, depending on which global assessment of the cost required to scale up malaria control is adopted.Without further increases in funding and appropriate targeting of global malaria control investment it is unlikely that international goals to halve disease burdens by 2015 will be achieved. Moreover, the additional financing

  8. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    Directory of Open Access Journals (Sweden)

    Paulo FP Pimenta

    2015-02-01

    Full Text Available In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence.

  9. An overview of malaria transmission from the perspective of Amazon Anopheles vectors

    Science.gov (United States)

    Pimenta, Paulo FP; Orfano, Alessandra S; Bahia, Ana C; Duarte, Ana PM; Ríos-Velásquez, Claudia M; Melo, Fabrício F; Pessoa, Felipe AC; Oliveira, Giselle A; Campos, Keillen MM; Villegas, Luis Martínez; Rodrigues, Nilton Barnabé; Nacif-Pimenta, Rafael; Simões, Rejane C; Monteiro, Wuelton M; Amino, Rogerio; Traub-Cseko, Yara M; Lima, José BP; Barbosa, Maria GV; Lacerda, Marcus VG; Tadei, Wanderli P; Secundino, Nágila FC

    2015-01-01

    In the Americas, areas with a high risk of malaria transmission are mainly located in the Amazon Forest, which extends across nine countries. One keystone step to understanding the Plasmodium life cycle in Anopheles species from the Amazon Region is to obtain experimentally infected mosquito vectors. Several attempts to colonise Ano- pheles species have been conducted, but with only short-lived success or no success at all. In this review, we review the literature on malaria transmission from the perspective of its Amazon vectors. Currently, it is possible to develop experimental Plasmodium vivax infection of the colonised and field-captured vectors in laboratories located close to Amazonian endemic areas. We are also reviewing studies related to the immune response to P. vivax infection of Anopheles aquasalis, a coastal mosquito species. Finally, we discuss the importance of the modulation of Plasmodium infection by the vector microbiota and also consider the anopheline genomes. The establishment of experimental mosquito infections with Plasmodium falciparum, Plasmodium yoelii and Plasmodium berghei parasites that could provide interesting models for studying malaria in the Amazonian scenario is important. Understanding the molecular mechanisms involved in the development of the parasites in New World vectors is crucial in order to better determine the interaction process and vectorial competence. PMID:25742262

  10. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Directory of Open Access Journals (Sweden)

    Ghania Ramdani

    2015-05-01

    Full Text Available Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites.

  11. Prospective malaria control using entomopathogenic fungi: comparative evaluation of impact on transmission and selection for resistance

    Directory of Open Access Journals (Sweden)

    Lynch Penelope A

    2012-11-01

    Full Text Available Abstract Background Chemical insecticides against adult mosquitoes are a key element in most malaria management programmes, but their efficacy is threatened by the evolution of insecticide-resistant mosquitoes. By killing only older mosquitoes, entomopathogenic fungi can in principle significantly impact parasite transmission while imposing much less selection for resistance. Here an assessment is made as to which of the wide range of possible virulence characteristics for fungal biopesticides best realise this potential. Methods With mathematical models that capture relevant timings and survival probabilities within successive feeding cycles, transmission and resistance-management metrics are used to compare susceptible and resistant mosquitoes exposed to no intervention, to conventional instant-kill interventions, and to delayed-action biopesticides with a wide range of virulence characteristics. Results Fungal biopesticides that generate high rates of mortality at around the time mosquitoes first become able to transmit the malaria parasite offer potential for large reductions in transmission while imposing low fitness costs. The best combinations of control and resistance management are generally accessed at high levels of coverage. Strains which have high virulence in malaria-infected mosquitoes but lower virulence in malaria-free mosquitoes offer the ultimate benefit in terms of minimizing selection pressure whilst maximizing impact on transmission. Exploiting this phenotype should be a target for product development. For indoor residual spray programmes, biopesticides may offer substantial advantages over the widely used pyrethroid-based insecticides. Not only do fungal biopesticides provide substantial resistance management gains in the long term, they may also provide greater reductions in transmission before resistance has evolved. This is because fungal spores do not have contact irritancy, reducing the chances that a blood

  12. The use of insecticide-treated nets for reducing malaria morbidity among children aged 6-59 months, in an area of high malaria transmission in central Côte d'Ivoire

    Directory of Open Access Journals (Sweden)

    Nsanzabana Christian

    2010-09-01

    Full Text Available Abstract Background Long-lasting insecticidal nets (LLINs are an important tool for controlling malaria. Much attention has been devoted to determine both the effect of LLINs on the reduction of Plasmodium infection rate and on clinically-confirmed malaria cases in sub-Saharan Africa. We carried out an epidemiological study to investigate whether LLINs impact on Plasmodium prevalence rate and the proportion of clinically-confirmed malaria cases, in five villages in the district of Toumodi, central Côte d'Ivoire. Methods From April 2007 to November 2008, a community-based malaria control programme was implemented in the study villages, which involved large-scale distribution of LLINs, and training and sensitization activities within the community. We determined the effect of this programme on Plasmodium prevalence rate, clinically-confirmed malaria cases and proportion of high parasitaemia rates in children aged 6-59 months through a series of cross-sectional surveys starting in April 2007 and repeated once every 6 months. Results We observed a significant decrease in the mean P. falciparum prevalence rate from April 2007 to April 2008 (p = 0.029. An opposite trend was observed from November 2007 to November 2008 when P. falciparum prevalence rate increased significantly (p = 0.003. Highly significant decreases in the proportions of clinical malaria cases were observed between April 2007 and April 2008 (p Conclusions Large-scale distribution of LLINs, accompanied by training and sensitization activities, significantly reduced Plasmodium prevalence rates among young children in the first year of the project, whereas overall clinical malaria rates dropped over the entire 18-month project period. A decrease in community motivation to sleep under bed nets, perhaps along with changing patterns of malaria transmission, might explain the observed increase in the Plasmodium prevalence rate between November 2007 and November 2008.

  13. The US President's Malaria Initiative, Plasmodium falciparum transmission and mortality: A modelling study.

    Directory of Open Access Journals (Sweden)

    Peter Winskill

    2017-11-01

    Full Text Available Although significant progress has been made in reducing malaria transmission globally in recent years, a large number of people remain at risk and hence the gains made are fragile. Funding lags well behind amounts needed to protect all those at risk and ongoing contributions from major donors, such as the President's Malaria Initiative (PMI, are vital to maintain progress and pursue further reductions in burden. We use a mathematical modelling approach to estimate the impact of PMI investments to date in reducing malaria burden and to explore the potential negative impact on malaria burden should a proposed 44% reduction in PMI funding occur.We combined an established mathematical model of Plasmodium falciparum transmission dynamics with epidemiological, intervention, and PMI-financing data to estimate the contribution PMI has made to malaria control via funding for long-lasting insecticide treated nets (LLINs, indoor residual spraying (IRS, and artemisinin combination therapies (ACTs. We estimate that PMI has prevented 185 million (95% CrI: 138 million, 230 million malaria cases and saved 940,049 (95% CrI: 545,228, 1.4 million lives since 2005. If funding is maintained, PMI-funded interventions are estimated to avert a further 162 million (95% CrI: 116 million, 194 million cases, saving a further 692,589 (95% CrI: 392,694, 955,653 lives between 2017 and 2020. With an estimate of US$94 (95% CrI: US$51, US$166 per Disability Adjusted Life Year (DALY averted, PMI-funded interventions are highly cost-effective. We also demonstrate the further impact of this investment by reducing caseloads on health systems. If a 44% reduction in PMI funding were to occur, we predict that this loss of direct aid could result in an additional 67 million (95% CrI: 49 million, 82 million cases and 290,649 (95% CrI: 167,208, 395,263 deaths between 2017 and 2020. We have not modelled indirect impacts of PMI funding (such as health systems strengthening in this analysis

  14. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission

    Science.gov (United States)

    Glennon, Elizabeth K. K.; Adams, L. Garry; Hicks, Derrick R.; Dehesh, Katayoon; Luckhart, Shirley

    2016-01-01

    Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation. PMID:27001761

  15. Knowledge, attitudes and practices on malaria transmission in Mamfene, KwaZulu-Natal Province, South Africa 2015.

    Science.gov (United States)

    Manana, Pinky N; Kuonza, Lazarus; Musekiwa, Alfred; Mpangane, Hluphi D; Koekemoer, Lizette L

    2017-07-20

    In South Africa malaria is endemic in Mpumalanga, Limpopo and the north-eastern areas of KwaZulu-Natal provinces. South Africa has set targets to eliminate malaria by 2018 and research into complementary vector control tools such as the Sterile Insect Technique (SIT) is ongoing. It is important to understand community perceptions regarding malaria transmission and control interventions to enable development of community awareness campaign messages appropriate to the needs of the community. We aimed to assess knowledge, attitudes, and practices regarding malaria transmission to inform a public awareness campaign for SIT in Jozini Local Municipality, Mamfene in KwaZulu-Natal province. We conducted a cross-sectional survey in three communities in Mamfene, KwaZulu-Natal during 2015. A structured field piloted questionnaire was administered to 400 randomly selected heads of households. Descriptive statistics were used to summarize data. Of the 400 participants interviewed, 99% had heard about malaria and correctly associated it with mosquito bites. The sources of malaria information were the local health facility (53%), radio (16%) and community meetings (7%). Approximately 63% of the participants were able to identify three or four symptoms of malaria. The majority (76%) were confident that indoor residual spraying (IRS) kills mosquitoes and prevents infection. Bed nets were used by 2% of the participants. SIT knowledge was poor (9%), however 63% of the participants were supportive of mosquito releases for research purposes. The remaining 37% raised concerns and fears, including fear of the unknown and lack of information on the SIT. Appropriate knowledge, positive attitude and acceptable treatment-seeking behaviour for malaria were demonstrated by members of the community. Community involvement will be crucial in achieving success of the SIT and future studies should further investigate concerns raised by the community. The existing communication channels used by the

  16. Mapping Malaria Transmission Risk in Northern Morocco Using Entomological and Environmental Data

    Directory of Open Access Journals (Sweden)

    E. Adlaoui

    2011-01-01

    Full Text Available Malaria resurgence risk in Morocco depends, among other factors, on environmental changes as well as the introduction of parasite carriers. The aim of this paper is to analyze the receptivity of the Loukkos area, large wetlands in Northern Morocco, to quantify and to map malaria transmission risk in this region using biological and environmental data. This risk was assessed on entomological risk basis and was mapped using environmental markers derived from satellite imagery. Maps showing spatial and temporal variations of entomological risk for Plasmodium vivax and P. falciparum were produced. Results showed this risk to be highly seasonal and much higher in rice fields than in swamps. This risk is lower for Afrotropical P. falciparum strains because of the low infectivity of Anopheles labranchiae, principal malaria vector in Morocco. However, it is very high for P. vivax mainly during summer corresponding to the rice cultivation period. Although the entomological risk is high in Loukkos region, malaria resurgence risk remains very low, because of the low vulnerability of the area.

  17. Remotely Sensed Environmental Conditions and Malaria Mortality in Three Malaria Endemic Regions in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Maquins Odhiambo Sewe

    Full Text Available Malaria is an important cause of morbidity and mortality in malaria endemic countries. The malaria mosquito vectors depend on environmental conditions, such as temperature and rainfall, for reproduction and survival. To investigate the potential for weather driven early warning systems to prevent disease occurrence, the disease relationship to weather conditions need to be carefully investigated. Where meteorological observations are scarce, satellite derived products provide new opportunities to study the disease patterns depending on remotely sensed variables. In this study, we explored the lagged association of Normalized Difference Vegetation Index (NVDI, day Land Surface Temperature (LST and precipitation on malaria mortality in three areas in Western Kenya.The lagged effect of each environmental variable on weekly malaria mortality was modeled using a Distributed Lag Non Linear Modeling approach. For each variable we constructed a natural spline basis with 3 degrees of freedom for both the lag dimension and the variable. Lag periods up to 12 weeks were considered. The effect of day LST varied between the areas with longer lags. In all the three areas, malaria mortality was associated with precipitation. The risk increased with increasing weekly total precipitation above 20 mm and peaking at 80 mm. The NDVI threshold for increased mortality risk was between 0.3 and 0.4 at shorter lags.This study identified lag patterns and association of remote- sensing environmental factors and malaria mortality in three malaria endemic regions in Western Kenya. Our results show that rainfall has the most consistent predictive pattern to malaria transmission in the endemic study area. Results highlight a potential for development of locally based early warning forecasts that could potentially reduce the disease burden by enabling timely control actions.

  18. The effects of varying exposure to malaria transmission on development of antimalarial antibody responses in preschool children. XVI. Asembo Bay Cohort Project

    NARCIS (Netherlands)

    Singer, Lauren M.; Mirel, Lisa B.; ter Kuile, Feiko O.; Branch, OraLee H.; Vulule, John M.; Kolczak, Margarette S.; Hawley, William A.; Kariuki, Simon K.; Kaslow, David C.; Lanar, David E.; Lal, Altaf A.

    2003-01-01

    In areas of intense malaria transmission, malaria morbidity and mortality is highest in children 3-18 months old. Interventions that reduce malaria exposure early in life reduce morbidity but may also delay development of clinical immunity. We assessed the relationship between intensity of malaria

  19. Factors associated with malaria microscopy diagnostic performance following a pilot quality-assurance programme in health facilities in malaria low-transmission areas of Kenya, 2014.

    Science.gov (United States)

    Odhiambo, Fredrick; Buff, Ann M; Moranga, Collins; Moseti, Caroline M; Wesongah, Jesca Okwara; Lowther, Sara A; Arvelo, Wences; Galgalo, Tura; Achia, Thomas O; Roka, Zeinab G; Boru, Waqo; Chepkurui, Lily; Ogutu, Bernhards; Wanja, Elizabeth

    2017-09-13

    Malaria accounts for ~21% of outpatient visits annually in Kenya; prompt and accurate malaria diagnosis is critical to ensure proper treatment. In 2013, formal malaria microscopy refresher training for microscopists and a pilot quality-assurance (QA) programme for malaria diagnostics were independently implemented to improve malaria microscopy diagnosis in malaria low-transmission areas of Kenya. A study was conducted to identify factors associated with malaria microscopy performance in the same areas. From March to April 2014, a cross-sectional survey was conducted in 42 public health facilities; 21 were QA-pilot facilities. In each facility, 18 malaria thick blood slides archived during January-February 2014 were selected by simple random sampling. Each malaria slide was re-examined by two expert microscopists masked to health-facility results. Expert results were used as the reference for microscopy performance measures. Logistic regression with specific random effects modelling was performed to identify factors associated with accurate malaria microscopy diagnosis. Of 756 malaria slides collected, 204 (27%) were read as positive by health-facility microscopists and 103 (14%) as positive by experts. Overall, 93% of slide results from QA-pilot facilities were concordant with expert reference compared to 77% in non-QA pilot facilities (p malaria diagnosis. Microscopists who had recently completed refresher training and worked in a QA-pilot facility performed the best overall. The QA programme and formal microscopy refresher training should be systematically implemented together to improve parasitological diagnosis of malaria by microscopy in Kenya.

  20. Severe anemia in young children after high and low malaria transmission seasons in the Kassena-Nankana district of northern Ghana.

    Science.gov (United States)

    Koram, K A; Owusu-Agyei, S; Utz, G; Binka, F N; Baird, J K; Hoffman, S L; Nkrumah, F K

    2000-06-01

    Malaria and anemia accounted for 41% and 18% respectively of hospital deaths in the Kassena-Nankana district of northern Ghana during 1996. We measured hemoglobin (Hb), malaria prevalence, and anthropometric indices of 6--24-month-old infants and young children randomly selected from this community at the end of the high (May-October, n = 347) and low (November-April, n = 286) malaria transmission seasons. High transmission season is characterized by rainfall (the equivalent of 800-900 mm/yr.), while the remaining months receive less than 50 mm/yr. Severe anemia, defined as Hb < 6.0 g/dL, was 22.1% at the end of the high transmission season compared to 1.4% at the end of the low transmission season (Odds Ratio [OR] = 20.1; 95% CI: 7.1-55.3). Parasitemia was 71% and 54.3% at these time points (OR = 2.1; 95% CI: 1.5-2.9). Nutritional anemia appeared to have little impact upon this seasonal difference since anthropometric indices were comparable. Although the relative contributions of other causes of severe anemia were not assessed, repeated malaria infections may be a primary determinant of severe anemia among infants and young children during the high transmission season.

  1. Relationship between altitude and intensity of malaria transmission in the Usambara Mountains, Tanzania

    DEFF Research Database (Denmark)

    Bødker, Rene; Akida, J.; Shayo, D.

    2003-01-01

    the holoendemic lowland and the hypoendemic highland plateau. Lowland transmission was perennial with a significant peak in the cool season after the long rains in May, when vectors densities were high. In the highlands, low temperatures prevented parasite development in mosquitoes during the cool season rains......, and highland transmission was therefore limited to the warm dry season when vector densities were low. The primary effect of increasing altitude was a log-linear reduction in vector abundance and, to a lesser extent, a reduction in the proportion of infective mosquitoes. Highland malaria transmission...

  2. Challenges of DHS and MIS to capture the entire pattern of malaria parasite risk and intervention effects in countries with different ecological zones: the case of Cameroon.

    Science.gov (United States)

    Massoda Tonye, Salomon G; Kouambeng, Celestin; Wounang, Romain; Vounatsou, Penelope

    2018-04-06

    In 2011, the demographic and health survey (DHS) in Cameroon was combined with the multiple indicator cluster survey. Malaria parasitological data were collected, but the survey period did not overlap with the high malaria transmission season. A malaria indicator survey (MIS) was also conducted during the same year, within the malaria peak transmission season. This study compares estimates of the geographical distribution of malaria parasite risk and of the effects of interventions obtained from the DHS and MIS survey data. Bayesian geostatistical models were applied on DHS and MIS data to obtain georeferenced estimates of the malaria parasite prevalence and to assess the effects of interventions. Climatic predictors were retrieved from satellite sources. Geostatistical variable selection was used to identify the most important climatic predictors and indicators of malaria interventions. The overall observed malaria parasite risk among children was 33 and 30% in the DHS and MIS data, respectively. Both datasets identified the Normalized Difference Vegetation Index and the altitude as important predictors of the geographical distribution of the disease. However, MIS selected additional climatic factors as important disease predictors. The magnitude of the estimated malaria parasite risk at national level was similar in both surveys. Nevertheless, DHS estimates lower risk in the North and Coastal areas. MIS did not find any important intervention effects, although DHS revealed that the proportion of population with an insecticide-treated nets access in their household was statistically important. An important negative relationship between malaria parasitaemia and socioeconomic factors, such as the level of mother's education, place of residence and the household welfare were captured by both surveys. Timing of the malaria survey influences estimates of the geographical distribution of disease risk, especially in settings with seasonal transmission. In countries with

  3. Pattern of Clinical Medication Seeking for Import Malaria by Migrant Workers

    Directory of Open Access Journals (Sweden)

    Muhammad Mahmudi

    2015-05-01

    Full Text Available Number of malaria cases in Kabupaten Trenggalek in 2014 is 89 cases, and 83 cases are import malaria from migrant workers. Import malaria is transmitted across two areas and affects the clinical medication seeking. This research wants to describe the pattern of clinical medication seeking for import malaria by migrant workers in Puskesmas Pandean working area. This was cross sectional study with descriptive quantitative approach. Research’s sample is 26 import malaria sufferers in 2013–2015 who has chosen purposively with inclusion criteria. Interview had used to get information about characteristics, place felt the symptom, first clinical medication seeking (place and time, clinical diagnosis, medication follow up, and recovery status. The result of the research shows 100% respondent is man and the age about 20-30 years old (53,8 who is working as agricultural laborers outside Java. Mostly of respondent feel the malaria symptoms in their working place (53,8%. The day seeks clinical medication at day three after symptom (34, 6%. Respondents that feel the symptom in Puskesmas Pandean working area chose Puskesmas as clinical medication place (42,3%, and hospital (19,2% for them whose experience the malaria symptom in their working area. Puskesmas is chosen as clinical diagnosis place (69% and only 11,5% respondent got medication follow up. Puskesmas is chosen as intermediate clinical medication place (60% for 19,2% respondent that is not recovered well, although 20% go to Dukun. All of respondent chose the clinical medication as their prime medication. Need to make medication follow up visitation well complete. Keyword: pattern, clinical medication, import malaria, migrant worker

  4. Malaria vaccines and their potential role in the elimination of malaria

    Directory of Open Access Journals (Sweden)

    Greenwood Brian M

    2008-12-01

    Full Text Available Abstract Research on malaria vaccines is currently directed primarily towards the development of vaccines that prevent clinical malaria. Malaria elimination, now being considered seriously in some epidemiological situations, requires a different vaccine strategy, since success will depend on killing all parasites in the community in order to stop transmission completely. The feature of the life-cycles of human malarias that presents the greatest challenge to an elimination programme is the persistence of parasites as asymptomatic infections. These are an important source from which transmission to mosquitoes can occur. Consequently, an elimination strategy requires a community-based approach covering all individuals and not just those who are susceptible to clinical malaria. The progress that has been made in development of candidate malaria vaccines is reviewed. It is unlikely that many of these will have the efficacy required for complete elimination of parasites, though they may have an important role to play as part of future integrated control programmes. Vaccines for elimination must have a high level of efficacy in order to stop transmission to mosquitoes. This might be achieved with some pre-erythrocytic stage candidate vaccines or by targeting the sexual stages directly with transmission-blocking vaccines. An expanded malaria vaccine programme with such objectives is now a priority.

  5. MIGRATION AND MALARIA IN EUROPE

    Directory of Open Access Journals (Sweden)

    Begoña Monge-Maillo

    2012-03-01

    Full Text Available The proportion of imported malaria cases due to immigrants in Europe has increased during the lasts decades, being the higher rates for those settled immigrants who travel to visit friends and relatives (VFRs at their country of origin. Cases are mainly due to P. falciparum and Sub-Saharan Africa is the most common origin. Clinically, malaria in immigrants is characterized by a mild clinical presentation with even asymptomatic o delayed malaria cases and low parasitemic level. These characteristics may be explained by a semi-immunity acquired after long periods of time exposed to stable transmission of malaria. Malaria cases among immigrants, even those asymptomatic patients with sub-microscopic parasitemia, could increase the risk of transmission and reintroduction of malaria in certain areas with the adequate vectors and climate conditions. Moreover imported malaria cases by immigrants can also play an important role in the non-vectorial transmission out of endemic area, by blood transfusions, organ transplantation or congenital or occupational exposures. Probably, out of endemic areas, screening of malaria among recent arrived immigrants coming from malaria endemic countries should be performed. These aim to reduce the risk of clinical malaria in the individual as well as to prevent autochthonous transmission of malaria in areas where it had been eradicated.

  6. Potential for reduction of burden and local elimination of malaria by reducing Plasmodium falciparum malaria transmission: a mathematical modelling study.

    Science.gov (United States)

    Griffin, Jamie T; Bhatt, Samir; Sinka, Marianne E; Gething, Peter W; Lynch, Michael; Patouillard, Edith; Shutes, Erin; Newman, Robert D; Alonso, Pedro; Cibulskis, Richard E; Ghani, Azra C

    2016-04-01

    Rapid declines in malaria prevalence, cases, and deaths have been achieved globally during the past 15 years because of improved access to first-line treatment and vector control. We aimed to assess the intervention coverage needed to achieve further gains over the next 15 years. We used a mathematical model of the transmission of Plasmodium falciparum malaria to explore the potential effect on case incidence and malaria mortality rates from 2015 to 2030 of five different intervention scenarios: remaining at the intervention coverage levels of 2011-13 (Sustain), for which coverage comprises vector control and access to treatment; two scenarios of increased coverage to 80% (Accelerate 1) and 90% (Accelerate 2), with a switch from quinine to injectable artesunate for management of severe disease and seasonal malaria chemoprevention where recommended for both Accelerate scenarios, and rectal artesunate for pre-referral treatment at the community level added to Accelerate 2; a near-term innovation scenario (Innovate), which included longer-lasting insecticidal nets and expansion of seasonal malaria chemoprevention; and a reduction in coverage to 2006-08 levels (Reverse). We did the model simulations at the first administrative level (ie, state or province) for the 80 countries with sustained stable malaria transmission in 2010, accounting for variations in baseline endemicity, seasonality in transmission, vector species, and existing intervention coverage. To calculate the cases and deaths averted, we compared the total number of each under the five scenarios between 2015 and 2030 with the predicted number in 2015, accounting for population growth. With an increase to 80% coverage, we predicted a reduction in case incidence of 21% (95% credible intervals [CrI] 19-29) and a reduction in mortality rates of 40% (27-61) by 2030 compared with 2015 levels. Acceleration to 90% coverage and expansion of treatment at the community level was predicted to reduce case incidence by

  7. Vectors and malaria transmission in deforested, rural communities in north-central Vietnam

    Directory of Open Access Journals (Sweden)

    Do Manh Cuong

    2010-09-01

    Full Text Available Abstract Background Malaria is still prevalent in rural communities of central Vietnam even though, due to deforestation, the primary vector Anopheles dirus is uncommon. In these situations little is known about the secondary vectors which are responsible for maintaining transmission. Basic information on the identification of the species in these rural communities is required so that transmission parameters, such as ecology, behaviour and vectorial status can be assigned to the appropriate species. Methods In two rural villages - Khe Ngang and Hang Chuon - in Truong Xuan Commune, Quang Binh Province, north central Vietnam, a series of longitudinal entomological surveys were conducted during the wet and dry seasons from 2003 - 2007. In these surveys anopheline mosquitoes were collected in human landing catches, paired human and animal bait collections, and from larval surveys. Specimens belonging to species complexes were identified by PCR and sequence analysis, incrimination of vectors was by detection of circumsporozoite protein using an enzyme-linked immunosorbent assay. Results Over 80% of the anopheline fauna was made up of Anopheles sinensis, Anopheles aconitus, Anopheles harrisoni, Anopheles maculatus, Anopheles sawadwongporni, and Anopheles philippinensis. PCR and sequence analysis resolved identification issues in the Funestus Group, Maculatus Group, Hyrcanus Group and Dirus Complex. Most species were zoophilic and while all species could be collected biting humans significantly higher densities were attracted to cattle and buffalo. Anopheles dirus was the most anthropophilic species but was uncommon making up only 1.24% of all anophelines collected. Anopheles sinensis, An. aconitus, An. harrisoni, An. maculatus, An. sawadwongporni, Anopheles peditaeniatus and An. philippinensis were all found positive for circumsporozoite protein. Heterogeneity in oviposition site preference between species enabled vector densities to be high in both

  8. Mapping hotspots of malaria transmission from pre-existing hydrology, geology and geomorphology data in the pre-elimination context of Zanzibar, United Republic of Tanzania.

    Science.gov (United States)

    Hardy, Andrew; Mageni, Zawadi; Dongus, Stefan; Killeen, Gerry; Macklin, Mark G; Majambare, Silas; Ali, Abdullah; Msellem, Mwinyi; Al-Mafazy, Abdul-Wahiyd; Smith, Mark; Thomas, Chris

    2015-01-22

    Larval source management strategies can play an important role in malaria elimination programmes, especially for tackling outdoor biting species and for eliminating parasite and vector populations when they are most vulnerable during the dry season. Effective larval source management requires tools for identifying geographic foci of vector proliferation and malaria transmission where these efforts may be concentrated. Previous studies have relied on surface topographic wetness to indicate hydrological potential for vector breeding sites, but this is unsuitable for karst (limestone) landscapes such as Zanzibar where water flow, especially in the dry season, is subterranean and not controlled by surface topography. We examine the relationship between dry and wet season spatial patterns of diagnostic positivity rates of malaria infection amongst patients reporting to health facilities on Unguja, Zanzibar, with the physical geography of the island, including land cover, elevation, slope angle, hydrology, geology and geomorphology in order to identify transmission hot spots using Boosted Regression Trees (BRT) analysis. The distribution of both wet and dry season malaria infection rates can be predicted using freely available static data, such as elevation and geology. Specifically, high infection rates in the central and southeast regions of the island coincide with outcrops of hard dense limestone which cause locally elevated water tables and the location of dolines (shallow depressions plugged with fine-grained material promoting the persistence of shallow water bodies). This analysis provides a tractable tool for the identification of malaria hotspots which incorporates subterranean hydrology, which can be used to target larval source management strategies.

  9. Spatio-Temporal Dynamics of Asymptomatic Malaria: Bridging the Gap Between Annual Malaria Resurgences in a Sahelian Environment.

    Science.gov (United States)

    Coulibaly, Drissa; Travassos, Mark A; Tolo, Youssouf; Laurens, Matthew B; Kone, Abdoulaye K; Traore, Karim; Sissoko, Mody; Niangaly, Amadou; Diarra, Issa; Daou, Modibo; Guindo, Boureima; Rebaudet, Stanislas; Kouriba, Bourema; Dessay, Nadine; Piarroux, Renaud; Plowe, Christopher V; Doumbo, Ogobara K; Thera, Mahamadou A; Gaudart, Jean

    2017-12-01

    In areas of seasonal malaria transmission, the incidence rate of malaria infection is presumed to be near zero at the end of the dry season. Asymptomatic individuals may constitute a major parasite reservoir during this time. We conducted a longitudinal analysis of the spatio-temporal distribution of clinical malaria and asymptomatic parasitemia over time in a Malian town to highlight these malaria transmission dynamics. For a cohort of 300 rural children followed over 2009-2014, periodicity and phase shift between malaria and rainfall were determined by spectral analysis. Spatial risk clusters of clinical episodes or carriage were identified. A nested-case-control study was conducted to assess the parasite carriage factors. Malaria infection persisted over the entire year with seasonal peaks. High transmission periods began 2-3 months after the rains began. A cluster with a low risk of clinical malaria in the town center persisted in high and low transmission periods. Throughout 2009-2014, cluster locations did not vary from year to year. Asymptomatic and gametocyte carriage were persistent, even during low transmission periods. For high transmission periods, the ratio of asymptomatic to clinical cases was approximately 0.5, but was five times higher during low transmission periods. Clinical episodes at previous high transmission periods were a protective factor for asymptomatic carriage, but carrying parasites without symptoms at a previous high transmission period was a risk factor for asymptomatic carriage. Stable malaria transmission was associated with sustained asymptomatic carriage during dry seasons. Control strategies should target persistent low-level parasitemia clusters to interrupt transmission.

  10. Ecology and conservation biology of avian malaria

    Science.gov (United States)

    LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.

    2012-01-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.

  11. Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area, Mali.

    Science.gov (United States)

    Gaudart, Jean; Touré, Ousmane; Dessay, Nadine; Dicko, A Lassane; Ranque, Stéphane; Forest, Loic; Demongeot, Jacques; Doumbo, Ogobara K

    2009-04-10

    The risk of Plasmodium falciparum infection is variable over space and time and this variability is related to environmental variability. Environmental factors affect the biological cycle of both vector and parasite. Despite this strong relationship, environmental effects have rarely been included in malaria transmission models.Remote sensing data on environment were incorporated into a temporal model of the transmission, to forecast the evolution of malaria epidemiology, in a locality of Sudanese savannah area. A dynamic cohort was constituted in June 1996 and followed up until June 2001 in the locality of Bancoumana, Mali. The 15-day composite vegetation index (NDVI), issued from satellite imagery series (NOAA) from July 1981 to December 2006, was used as remote sensing data.The statistical relationship between NDVI and incidence of P. falciparum infection was assessed by ARIMA analysis. ROC analysis provided an NDVI value for the prediction of an increase in incidence of parasitaemia.Malaria transmission was modelled using an SIRS-type model, adapted to Bancoumana's data. Environmental factors influenced vector mortality and aggressiveness, as well as length of the gonotrophic cycle. NDVI observations from 1981 to 2001 were used for the simulation of the extrinsic variable of a hidden Markov chain model. Observations from 2002 to 2006 served as external validation. The seasonal pattern of P. falciparum incidence was significantly explained by NDVI, with a delay of 15 days (p = 0.001). An NDVI threshold of 0.361 (p = 0.007) provided a Diagnostic Odd Ratio (DOR) of 2.64 (CI95% [1.26;5.52]).The deterministic transmission model, with stochastic environmental factor, predicted an endemo-epidemic pattern of malaria infection. The incidences of parasitaemia were adequately modelled, using the observed NDVI as well as the NDVI simulations. Transmission pattern have been modelled and observed values were adequately predicted. The error parameters have shown the smallest

  12. Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area, Mali

    Science.gov (United States)

    Gaudart, Jean; Touré, Ousmane; Dessay, Nadine; Dicko, A lassane; Ranque, Stéphane; Forest, Loic; Demongeot, Jacques; Doumbo, Ogobara K

    2009-01-01

    Background The risk of Plasmodium falciparum infection is variable over space and time and this variability is related to environmental variability. Environmental factors affect the biological cycle of both vector and parasite. Despite this strong relationship, environmental effects have rarely been included in malaria transmission models. Remote sensing data on environment were incorporated into a temporal model of the transmission, to forecast the evolution of malaria epidemiology, in a locality of Sudanese savannah area. Methods A dynamic cohort was constituted in June 1996 and followed up until June 2001 in the locality of Bancoumana, Mali. The 15-day composite vegetation index (NDVI), issued from satellite imagery series (NOAA) from July 1981 to December 2006, was used as remote sensing data. The statistical relationship between NDVI and incidence of P. falciparum infection was assessed by ARIMA analysis. ROC analysis provided an NDVI value for the prediction of an increase in incidence of parasitaemia. Malaria transmission was modelled using an SIRS-type model, adapted to Bancoumana's data. Environmental factors influenced vector mortality and aggressiveness, as well as length of the gonotrophic cycle. NDVI observations from 1981 to 2001 were used for the simulation of the extrinsic variable of a hidden Markov chain model. Observations from 2002 to 2006 served as external validation. Results The seasonal pattern of P. falciparum incidence was significantly explained by NDVI, with a delay of 15 days (p = 0.001). An NDVI threshold of 0.361 (p = 0.007) provided a Diagnostic Odd Ratio (DOR) of 2.64 (CI95% [1.26;5.52]). The deterministic transmission model, with stochastic environmental factor, predicted an endemo-epidemic pattern of malaria infection. The incidences of parasitaemia were adequately modelled, using the observed NDVI as well as the NDVI simulations. Transmission pattern have been modelled and observed values were adequately predicted. The error

  13. Malaria prevalence defined by microscopy, antigen detection, DNA amplification and total nucleic acid amplification in a malaria-endemic region during the peak malaria transmission season.

    Science.gov (United States)

    Waitumbi, John N; Gerlach, Jay; Afonina, Irina; Anyona, Samuel B; Koros, Joseph N; Siangla, Joram; Ankoudinova, Irina; Singhal, Mitra; Watts, Kate; Polhemus, Mark E; Vermeulen, Nicolaas M; Mahoney, Walt; Steele, Matt; Domingo, Gonzalo J

    2011-07-01

    To determine the malaria prevalence by microscopy, antigen detection and nucleic acid detection in a defined subpopulation in a Plasmodium falciparum-endemic region during the peak transmission season. Blood specimens were collected in a cross-sectional study involving children aged 5-10 years (n = 195) presenting with acute fever to two clinics in Western Kenya. All specimens underwent microscopy, HRP2 and aldolase antigen detection by enzyme immunoassay (EIA), parasite-specific DNA and total nucleic acid (RNA and DNA) by real-time PCR (qPCR) and reverse-transcriptase PCR (qRT-PCR). Microscopy detected 65/195 cases of malaria infection [95% confidence interval (CI) 52-78]. HRP2 and aldolase EIA had similar sensitivity levels detecting antigen in 65/195 (95% CI, 52-78) and 57/195 (95% CI, 45-70) cases. Discordants in antigen detection vs. microscopy occurred at Detection of total nucleic acid allowed a 3 log lower limit of detection than just DNA detection by real-time PCR in vitro. In clinical specimens, 114/195 (95% CI, 100-127) were qPCR positive (DNA), and 187/195 (95% CI, 179-191) were qRT-PCR positive (DNA plus RNA). The prevalence of submicroscopic malaria infection was significantly higher when detecting total nucleic acid than just DNA in this outpatient population during the high transmission season. Defining standards for submicroscopic infection will be important for control programmes, diagnostics development efforts and molecular epidemiology studies. © 2011 Blackwell Publishing Ltd.

  14. Efficacy of malaria prevention during pregnancy in an area of low and unstable transmission

    DEFF Research Database (Denmark)

    Ndyomugyenyi, Richard; Clarke, Siân E; Hutchison, Coll L.

    2011-01-01

    -randomised placebo-controlled trial involving 5775 women of all parities examined the effect of IPTp, ITNs alone, or ITNs used in combination with IPTp on maternal anaemia and low birth weight (LBW) in a highland area of southwestern Uganda. The overall prevalence of malaria infection, maternal anaemia and LBW...... services was observed. With ITNs offering a number of advantages over IPTp, yet showing comparable efficacy, we discuss why ITNs could be an appropriate preventive strategy for malaria control during pregnancy in areas of low and unstable transmission....

  15. Potential of household environmental resources and practices in eliminating residual malaria transmission: a case study of Tanzania, Burundi, Malawi and Liberia.

    Science.gov (United States)

    Semakula, Henry M; Song, Guobao; Zhang, Shushen; Achuu, Simon P

    2015-09-01

    The increasing protection gaps of insecticide-treated nets and indoor-residual spraying methods against malaria have led to an emergence of residual transmission in sub-Saharan Africa and thus, supplementary strategies to control mosquitoes are urgently required. To assess household environmental resources and practices that increase or reduce malaria risk among children under-five years of age in order to identify those aspects that can be adopted to control residual transmission. Household environmental resources, practices and malaria test results were extracted from Malaria Indicators Survey datasets for Tanzania, Burundi, Malawi and Liberia with 16,747 children from 11,469 households utilised in the analysis. Logistic regressions were performed to quantify the contribution of each factor to malaria occurrence. Cattle rearing reduced malaria risk between 26%-49% while rearing goats increased the risk between 26%-32%. All piped-water systems reduced malaria risk between 30%-87% (Tanzania), 48%-95% (Burundi), 67%-77% (Malawi) and 58%-73 (Liberia). Flush toilets reduced malaria risk between 47%-96%. Protected-wells increased malaria risk between 19%-44%. Interestingly, boreholes increased malaria risk between 19%-75%. Charcoal use reduced malaria risk between 11%-49%. Vector control options for tackling mosquitoes were revealed based on their risk levels. These included cattle rearing, installation of piped-water systems and flush toilets as well as use of smokeless fuels.

  16. Clinico-epidemiological profile of malaria: Analysis from a primary health centre in Karnataka, Southern India

    Directory of Open Access Journals (Sweden)

    Ramachandra Kamath

    2012-01-01

    Full Text Available Malaria continues to be a major public health problem in India and worldwide. The present study was based on records from a primary health centre in Karnataka. Morbidity patterns and important features of malaria transmission specific to Udupi district were investigated. The incidence of malaria and various morbidity patterns during 2010 and 2011 were compared and analyzed. Factors such as rapid urbanization, increased construction activities and influx of migratory workers were highlighted as the leading causes for the advent of malaria in the area. Recommendations have been provided for implementation in the near future.

  17. Clinico-epidemiological profile of malaria: Analysis from a primary health centre in Karnataka, Southern India

    Directory of Open Access Journals (Sweden)

    Ramachandra Kamath

    2013-01-01

    Full Text Available Malaria continues to be a major public health problem in India and worldwide. The present study was based on records from a primary health centre in Karnataka. Morbidity patterns and important features of malaria transmission specific to Udupi district were investigated. The incidence of malaria and various morbidity patterns during 2010 and 2011 were compared and analyzed. Factors such as rapid urbanization, increased construction activities and influx of migratory workers were highlighted as the leading causes for the advent of malaria in the area. Recommendations have been provided for implementation in the near future.

  18. Adult vector control, mosquito ecology and malaria transmission.

    Science.gov (United States)

    Brady, Oliver J; Godfray, H Charles J; Tatem, Andrew J; Gething, Peter W; Cohen, Justin M; McKenzie, F Ellis; Alex Perkins, T; Reiner, Robert C; Tusting, Lucy S; Scott, Thomas W; Lindsay, Steven W; Hay, Simon I; Smith, David L

    2015-03-01

    Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of 'vectorial capacity', a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene.

  19. Natural plant sugar sources of Anopheles mosquitoes strongly impact malaria transmission potential.

    Directory of Open Access Journals (Sweden)

    Weidong Gu

    Full Text Available An improved knowledge of mosquito life history could strengthen malaria vector control efforts that primarily focus on killing mosquitoes indoors using insecticide treated nets and indoor residual spraying. Natural sugar sources, usually floral nectars of plants, are a primary energy resource for adult mosquitoes but their role in regulating the dynamics of mosquito populations is unclear. To determine how the sugar availability impacts Anopheles sergentii populations, mark-release-recapture studies were conducted in two oases in Israel with either absence or presence of the local primary sugar source, flowering Acacia raddiana trees. Compared with population estimates from the sugar-rich oasis, An. sergentii in the sugar-poor oasis showed smaller population size (37,494 vs. 85,595, lower survival rates (0.72 vs. 0.93, and prolonged gonotrophic cycles (3.33 vs. 2.36 days. The estimated number of females older than the extrinsic incubation period of malaria (10 days in the sugar rich site was 4 times greater than in the sugar poor site. Sugar feeding detected in mosquito guts in the sugar-rich site was significantly higher (73% than in the sugar-poor site (48%. In contrast, plant tissue feeding (poor quality sugar source in the sugar-rich habitat was much less (0.3% than in the sugar-poor site (30%. More important, the estimated vectorial capacity, a standard measure of malaria transmission potential, was more than 250-fold higher in the sugar-rich oasis than that in the sugar-poor site. Our results convincingly show that the availability of sugar sources in the local environment is a major determinant regulating the dynamics of mosquito populations and their vector potential, suggesting that control interventions targeting sugar-feeding mosquitoes pose a promising tactic for combating transmission of malaria parasites and other pathogens.

  20. 3D7-derived Plasmodium falciparum erythrocyte membrane protein 1 is a frequent target of naturally acquired antibodies recognizing protein domains in a particular pattern independent of malaria transmission intensity

    DEFF Research Database (Denmark)

    Joergensen, Louise; Vestergaard, Lasse S; Turner, Louise

    2007-01-01

    Protection against Plasmodium falciparum malaria is largely mediated by IgG against surface Ags such as the erythrocyte membrane protein 1 family (PfEMP1) responsible for antigenic variation and sequestration of infected erythrocytes. PfEMP1 molecules can be divided into groups A, B/A, B, C, and B......, the sequence by which individuals acquired Abs to particular constructs was largely the same in the three villages. This indicates that the pattern of PfEMP1 expression by parasites transmitted at the different sites was similar, suggesting that PfEMP1 expression is nonrandom and shaped by host......-parasite relationship factors operating at all transmission intensities....

  1. Malaria PCR Detection in Cambodian Low-Transmission Settings: Dried Blood Spots versus Venous Blood Samples

    Science.gov (United States)

    Canier, Lydie; Khim, Nimol; Kim, Saorin; Eam, Rotha; Khean, Chanra; Loch, Kaknika; Ken, Malen; Pannus, Pieter; Bosman, Philippe; Stassijns, Jorgen; Nackers, Fabienne; Alipon, SweetC; Char, Meng Chuor; Chea, Nguon; Etienne, William; De Smet, Martin; Kindermans, Jean-Marie; Ménard, Didier

    2015-01-01

    In the context of malaria elimination, novel strategies for detecting very low malaria parasite densities in asymptomatic individuals are needed. One of the major limitations of the malaria parasite detection methods is the volume of blood samples being analyzed. The objective of the study was to compare the diagnostic accuracy of a malaria polymerase chain reaction assay, from dried blood spots (DBS, 5 μL) and different volumes of venous blood (50 μL, 200 μL, and 1 mL). The limit of detection of the polymerase chain reaction assay, using calibrated Plasmodium falciparum blood dilutions, showed that venous blood samples (50 μL, 200 μL, 1 mL) combined with Qiagen extraction methods gave a similar threshold of 100 parasites/mL, ∼100-fold lower than 5 μL DBS/Instagene method. On a set of 521 field samples, collected in two different transmission areas in northern Cambodia, no significant difference in the proportion of parasite carriers, regardless of the methods used was found. The 5 μL DBS method missed 27% of the samples detected by the 1 mL venous blood method, but most of the missed parasites carriers were infected by Plasmodium vivax (84%). The remaining missed P. falciparum parasite carriers (N = 3) were only detected in high-transmission areas. PMID:25561570

  2. Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control

    Directory of Open Access Journals (Sweden)

    Ndenga Bryson A

    2006-11-01

    Full Text Available Abstract Background Recent resurgence of malaria in the highlands of Western Kenya has called for a more comprehensive understanding of the previously neglected complex highland vector ecology. Besides other drivers of malaria epidemiology, topography is likely to have a major effect on spatial vector and parasite distribution. The aim of this study was to determine the effects of topography on malaria spatial vector distribution and parasite prevalence. Methodology Indoor resting adult malaria vectors and blood parasites were collected in three villages along a 4 km transect originating from the valley bottom and ending at the hilltop for 13 months. Members of the Anopheles gambiae complex were identified by PCR. Blood parasites were collected from children 6–13 years old and densities categorized by site of home location and age of the children. Results Ninety eight percent (98% of An. gambiae s.s. and (99% Anopheles funestus were collected in houses located at the edge of the valley bottom, whereas 1% of An. gambiae s.s. were collected at mid hill and at the hilltop respectively. No An. funestus were collected at the hilltop. Malaria prevalence was 68% at the valley bottom, 40.2% at mid hill and 26.7% at the hilltop. Children aged six years and living at the edge of the valley bottom had an annual geometric mean number of 66.1 trophozoites for every 200 white blood cells, while those living at mid-hill had a mean of 84.8, and those living at hilltop had 199.5 trophozoites. Conclusion Malaria transmission in this area is mainly confined to the valley bottom. Effective vector control could be targeted at the foci. However, the few vectors observed at mid-hill maintained a relatively high prevalence rate. The higher variability in blood parasite densities and their low correlation with age in children living at the hilltop suggests a lower stability of transmission than at the mid-hill and valley bottom.

  3. Additional burden of asymptomatic and sub-patent malaria infections during low transmission season in forested tribal villages in Chhattisgarh, India.

    Science.gov (United States)

    Chourasia, Mehul Kumar; Raghavendra, Kamaraju; Bhatt, Rajendra M; Swain, Dipak Kumar; Meshram, Hemraj M; Meshram, Jayant K; Suman, Shrity; Dubey, Vinita; Singh, Gyanendra; Prasad, Kona Madhavinadha; Kleinschmidt, Immo

    2017-08-08

    The burden of sub-patent malaria is difficult to recognize in low endemic areas due to limitation of diagnostic tools, and techniques. Polymerase chain reaction (PCR), a molecular based technique, is one of the key methods for detection of low parasite density infections. The study objective was to assess the additional burden of asymptomatic and sub-patent malaria infection among tribal populations inhabiting three endemic villages in Keshkal sub-district, Chhattisgarh, India. A cross-sectional survey was conducted in March-June 2016, during the low transmission season, to measure and compare prevalence of malaria infection using three diagnostics: rapid diagnostic test, microscopy and nested-PCR. Out of 437 individuals enrolled in the study, 103 (23.6%) were malaria positive by PCR and/or microscopy of whom 89.3% were Plasmodium falciparum cases, 77.7% were afebrile and 35.9% had sub-patent infections. A substantial number of asymptomatic and sub-patent malaria infections were identified in the survey. Hence, strategies for identifying and reducing the hidden burden of asymptomatic and sub-patent infections should focus on forest rural tribal areas using more sensitive molecular diagnostic methods to curtail malaria transmission.

  4. Intermittent preventive treatment for the prevention of malaria during pregnancy in high transmission areas

    Directory of Open Access Journals (Sweden)

    Massougbodji Achille

    2007-12-01

    Full Text Available Abstract Malaria in pregnancy is one of the major causes of maternal morbidity and adverse birth outcomes. In high transmission areas, its prevention has recently changed, moving from a weekly or bimonthly chemoprophylaxis to intermittent preventive treatment (IPTp. IPTp consists in the administration of a single curative dose of an efficacious anti-malarial drug at least twice during pregnancy – regardless of whether the woman is infected or not. The drug is administered under supervision during antenatal care visits. Sulphadoxine-pyrimethamine (SP is the drug currently recommended by the WHO. While SP-IPTp seems an adequate strategy, there are many issues still to be explored to optimize it. This paper reviewed data on IPTp efficacy and discussed how to improve it. In particular, the determination of both the optimal number of doses and time of administration of the drug is essential, and this has not yet been done. As both foetal growth and deleterious effects of malaria are maximum in late pregnancy women should particularly be protected during this period. Monitoring of IPTp efficacy should be applied to all women, and not only to primi- and secondigravidae, as it has not been definitively established that multigravidae are not at risk for malaria morbidity and mortality. In HIV-positive women, there is an urgent need for specific information on drug administration patterns (need for higher doses, possible interference with sulpha-based prophylaxis of opportunistic infections. Because of the growing level of resistance of parasites to SP, alternative drugs for IPTp are urgently needed. Mefloquine is presently one of the most attractive options because of its long half life, high efficacy in sub-Saharan Africa and safety during pregnancy. Also, efforts should be made to increase IPTp coverage by improving the practices of health care workers, the motivation of women and their perception of malaria complications in pregnancy. Because IPTp

  5. Plasmodium falciparum, anaemia and cognitive and educational performance among school children in an area of moderate malaria transmission: baseline results of a cluster randomized trial on the coast of Kenya.

    Science.gov (United States)

    Halliday, Katherine E; Karanja, Peris; Turner, Elizabeth L; Okello, George; Njagi, Kiambo; Dubeck, Margaret M; Allen, Elizabeth; Jukes, Matthew C H; Brooker, Simon J

    2012-05-01

    Studies have typically investigated health and educational consequences of malaria among school-aged children in areas of high malaria transmission, but few have investigated these issues in moderate transmission settings. This study investigates the patterns of and risks for Plasmodium falciparum and anaemia and their association with cognitive and education outcomes on the Kenyan coast, an area of moderate malaria transmission. As part of a cluster randomised trial, a baseline cross-sectional survey assessed the prevalence of and risk factors for P. falciparum infection and anaemia and the associations between health status and measures of cognition and educational achievement. Results are presented for 2400 randomly selected children who were enrolled in the 51 intervention schools. The overall prevalence of P. falciparum infection and anaemia was 13.0% and 45.5%, respectively. There was marked heterogeneity in the prevalence of P. falciparum infection by school. In multivariable analysis, being male, younger age, not sleeping under a mosquito net and household crowding were adjusted risk factors for P. falciparum infection, whilst P. falciparum infection, being male and indicators of poor nutritional intake were risk factors for anaemia. No association was observed between either P. falciparum or anaemia and performance on tests of sustained attention, cognition, literacy or numeracy. The results indicate that in this moderate malaria transmission setting, P. falciparum is strongly associated with anaemia, but there is no clear association between health status and education. Intervention studies are underway to investigate whether removing the burden of chronic asymptomatic P. falciparum and related anaemia can improve education outcomes. © 2012 Blackwell Publishing Ltd.

  6. On Oscillatory Pattern of Malaria Dynamics in a Population with Temporary Immunity

    Directory of Open Access Journals (Sweden)

    J. Tumwiine

    2007-01-01

    Full Text Available We use a model to study the dynamics of malaria in the human and mosquito population to explain the stability patterns of malaria. The model results show that the disease-free equilibrium is globally asymptotically stable and occurs whenever the basic reproduction number, R0 is less than unity. We also note that when R0>1, the disease-free equilibrium is unstable and the endemic equilibrium is stable. Numerical simulations show that recoveries and temporary immunity keep the populations at oscillation patterns and eventually converge to a steady state.

  7. The influence of mosquito resting behaviour and associated microclimate for malaria risk

    Directory of Open Access Journals (Sweden)

    Thomas Matthew B

    2011-07-01

    Full Text Available Abstract Background The majority of the mosquito and parasite life-history traits that combine to determine malaria transmission intensity are temperature sensitive. In most cases, the process-based models used to estimate malaria risk and inform control and prevention strategies utilize measures of mean outdoor temperature. Evidence suggests, however, that certain malaria vectors can spend large parts of their adult life resting indoors. Presentation of hypothesis If significant proportions of mosquitoes are resting indoors and indoor conditions differ markedly from ambient conditions, simple use of outdoor temperatures will not provide reliable estimates of malaria transmission intensity. To date, few studies have quantified the differential effects of indoor vs outdoor temperatures explicitly, reflecting a lack of proper understanding of mosquito resting behaviour and associated microclimate. Testing the hypothesis Published records from 8 village sites in East Africa revealed temperatures to be warmer indoors than outdoors and to generally show less daily variation. Exploring the effects of these temperatures on malaria parasite development rate suggested indoor-resting mosquitoes could transmit malaria between 0.3 and 22.5 days earlier than outdoor-resting mosquitoes. These differences translate to increases in transmission risk ranging from 5 to approaching 3,000%, relative to predictions based on outdoor temperatures. The pattern appears robust for low- and highland areas, with differences increasing with altitude. Implications of the hypothesis Differences in indoor vs outdoor environments lead to large differences in the limits and the intensity of malaria transmission. This finding highlights a need to better understand mosquito resting behaviour and the associated microclimate, and to broaden assessments of transmission ecology and risk to consider the potentially important role of endophily.

  8. The ecology of malaria--as seen from Earth-observation satellites.

    Science.gov (United States)

    Thomson, M C; Connor, S J; Milligan, P J; Flasse, S P

    1996-06-01

    Data from sensors on board geostationary and polar-orbiting, meteorological satellites (Meteosat and NOAA series) are routinely obtained free, via local reception systems, in an increasing number of African countries. Data collected by these satellites are processed to produce proxy ecological variables which have been extensively investigated for monitoring changes in the distribution and condition of different natural resources, including rainfall and vegetation state. How these data products (once incorporated, along with other data, into a geographical information system) could contribute to the goals of monitoring patterns of malaria transmission, predicting epidemics and planning control strategies is the subject of the present review. By way of illustration, an analysis of two of these products, normalized difference vegetation index (NVDI) and cold-cloud duration (CCD), is given in conjunction with epidemiological and entomological data from The Gambia, a country where extensive studies on malaria transmission have been undertaken in recent years. Preliminary results indicate that even simple analysis of proxy ecological variables derived from satellite data can indicate variation in environmental factors affecting malaria-transmission indices. However, it is important to note that the associations observed will vary depending on the local ecology, season and species of vector. Whilst further quantitative research is required to validate the relationship between satellite-data products and malaria-transmission indices, this approach offers a means by which detailed knowledge of the underlying spatial and temporal variation in the environment can be incorporated into a decision-support system for malaria control.

  9. Modelling malaria incidence with environmental dependency in a locality of Sudanese savannah area, Mali

    Directory of Open Access Journals (Sweden)

    Demongeot Jacques

    2009-04-01

    Full Text Available Abstract Background The risk of Plasmodium falciparum infection is variable over space and time and this variability is related to environmental variability. Environmental factors affect the biological cycle of both vector and parasite. Despite this strong relationship, environmental effects have rarely been included in malaria transmission models. Remote sensing data on environment were incorporated into a temporal model of the transmission, to forecast the evolution of malaria epidemiology, in a locality of Sudanese savannah area. Methods A dynamic cohort was constituted in June 1996 and followed up until June 2001 in the locality of Bancoumana, Mali. The 15-day composite vegetation index (NDVI, issued from satellite imagery series (NOAA from July 1981 to December 2006, was used as remote sensing data. The statistical relationship between NDVI and incidence of P. falciparum infection was assessed by ARIMA analysis. ROC analysis provided an NDVI value for the prediction of an increase in incidence of parasitaemia. Malaria transmission was modelled using an SIRS-type model, adapted to Bancoumana's data. Environmental factors influenced vector mortality and aggressiveness, as well as length of the gonotrophic cycle. NDVI observations from 1981 to 2001 were used for the simulation of the extrinsic variable of a hidden Markov chain model. Observations from 2002 to 2006 served as external validation. Results The seasonal pattern of P. falciparum incidence was significantly explained by NDVI, with a delay of 15 days (p = 0.001. An NDVI threshold of 0.361 (p = 0.007 provided a Diagnostic Odd Ratio (DOR of 2.64 (CI95% [1.26;5.52]. The deterministic transmission model, with stochastic environmental factor, predicted an endemo-epidemic pattern of malaria infection. The incidences of parasitaemia were adequately modelled, using the observed NDVI as well as the NDVI simulations. Transmission pattern have been modelled and observed values were adequately

  10. Malaria early warning tool: linking inter-annual climate and malaria variability in northern Guadalcanal, Solomon Islands.

    Science.gov (United States)

    Smith, Jason; Tahani, Lloyd; Bobogare, Albino; Bugoro, Hugo; Otto, Francis; Fafale, George; Hiriasa, David; Kazazic, Adna; Beard, Grant; Amjadali, Amanda; Jeanne, Isabelle

    2017-11-21

    Malaria control remains a significant challenge in the Solomon Islands. Despite progress made by local malaria control agencies over the past decade, case rates remain high in some areas of the country. Studies from around the world have confirmed important links between climate and malaria transmission. This study focuses on understanding the links between malaria and climate in Guadalcanal, Solomon Islands, with a view towards developing a climate-based monitoring and early warning for periods of enhanced malaria transmission. Climate records were sourced from the Solomon Islands meteorological service (SIMS) and historical malaria case records were sourced from the National Vector-Borne Disease Control Programme (NVBDCP). A declining trend in malaria cases over the last decade associated with improved malaria control was adjusted for. A stepwise regression was performed between climate variables and climate-associated malaria transmission (CMT) at different lag intervals to determine where significant relationships existed. The suitability of these results for use in a three-tiered categorical warning system was then assessed using a Mann-Whitney U test. Of the climate variables considered, only rainfall had a consistently significant relationship with malaria in North Guadalcanal. Optimal lag intervals were determined for prediction using R 2 skill scores. A highly significant negative correlation (R = - 0.86, R 2  = 0.74, p malaria transmission periods in January-June. Cross-validation emphasized the suitability of this relationship for forecasting purposes [Formula: see text]  as did Mann-Whitney U test results showing that rainfall below or above specific thresholds was significantly associated with above or below normal malaria transmission, respectively. This study demonstrated that rainfall provides the best predictor of malaria transmission in North Guadalcanal. This relationship is thought to be underpinned by the unique hydrological conditions

  11. Taking malaria transmission out of the bottle: implications of mosquito dispersal for vector-control interventions

    NARCIS (Netherlands)

    Killeen, G.F.; Knols, B.G.J.; Gu, W.D.

    2003-01-01

    Most malaria transmission models assume enclosed systems of people, parasites, and vectors in which neither emigration nor immigration of mosquitoes is considered. This simplification has facilitated insightful analyses but has substantial limitations for evaluating control measures in the field.

  12. Cost implications of improving malaria diagnosis: findings from north-eastern Tanzania.

    Directory of Open Access Journals (Sweden)

    Jacklin F Mosha

    Full Text Available BACKGROUND: Over diagnosis of malaria contributes to improper treatment, wastage of drugs and resistance to the few available drugs. This paper attempts to estimate the rates of over diagnosis of malaria among children attending dispensaries in rural Tanzania and examines the potential cost implications of improving the quality of diagnosis. METHODOLOGY/PRINCIPAL FINDINGS: The magnitude of over diagnosis of malaria was estimated by comparing the proportion of outpatient attendees of all ages clinically diagnosed as malaria to the proportion of attendees having a positive malaria rapid diagnostic test over a two month period. Pattern of causes of illness observed in a or=5 year age group in the lower transmission site (RR 14.0 95%CI 8.2-24.2. In the low transmission site the proportion of morbidity attributable to malaria was substantially lower in <2 year old cohort compared to children seen at routine care system. (0.08% vs 28.2%; p<0.001. A higher proportion of children were diagnosed with ARI in the <2 year old cohort compared to children seen at the routine care system ( 42% vs 26%; p<0.001. Using a RDT reduced overall drug and diagnostic costs by 10% in the high transmission site and by 15% in the low transmission site compared to total diagnostic and drug costs of treatment based on clinical judgment in routine health care system. IMPLICATIONS: The introduction of RDTs is likely to lead to financial savings. However, improving diagnosis to one disease may lead to over diagnosis of another illness. Quality improvement is complex but introducing RDTs for the diagnosis of malaria is a good start.

  13. The invasive shrub Prosopis juliflora enhances the malaria parasite transmission capacity of Anopheles mosquitoes: a habitat manipulation experiment.

    Science.gov (United States)

    Muller, Gunter C; Junnila, Amy; Traore, Mohamad M; Traore, Sekou F; Doumbia, Seydou; Sissoko, Fatoumata; Dembele, Seydou M; Schlein, Yosef; Arheart, Kristopher L; Revay, Edita E; Kravchenko, Vasiliy D; Witt, Arne; Beier, John C

    2017-07-05

    A neglected aspect of alien invasive plant species is their influence on mosquito vector ecology and malaria transmission. Invasive plants that are highly attractive to Anopheles mosquitoes provide them with sugar that is critical to their survival. The effect on Anopheles mosquito populations was examined through a habitat manipulation experiment that removed the flowering branches of highly attractive Prosopis juliflora from selected villages in Mali, West Africa. Nine villages in the Bandiagara district of Mali were selected, six with flowering Prosopis juliflora, and three without. CDC-UV light traps were used to monitor their Anopheles spp. vector populations, and recorded their species composition, population size, age structure, and sugar feeding status. After 8 days, all of the flowering branches were removed from three villages and trap catches were analysed again. Villages where flowering branches of the invasive shrub Prosopis juliflora were removed experienced a threefold drop in the older more dangerous Anopheles females. Population density dropped by 69.4% and the species composition shifted from being a mix of three species of the Anopheles gambiae complex to one dominated by Anopheles coluzzii. The proportion of sugar fed females dropped from 73 to 15% and males from 77 to 10%. This study demonstrates how an invasive plant shrub promotes the malaria parasite transmission capacity of African malaria vector mosquitoes. Proper management of invasive plants could potentially reduce mosquito populations and malaria transmission.

  14. A vectorial capacity product to monitor changing malaria transmission potential in epidemic regions of Africa

    Science.gov (United States)

    Ceccato, Pietro; Vancutsem, Christelle; Klaver, Robert; Rowland, James; Connor, Stephen J.

    2012-01-01

    Rainfall and temperature are two of the major factors triggering malaria epidemics in warm semi-arid (desert-fringe) and high altitude (highland-fringe) epidemic risk areas. The ability of the mosquitoes to transmit Plasmodium spp. is dependent upon a series of biological features generally referred to as vectorial capacity. In this study, the vectorial capacity model (VCAP) was expanded to include the influence of rainfall and temperature variables on malaria transmission potential. Data from two remote sensing products were used to monitor rainfall and temperature and were integrated into the VCAP model. The expanded model was tested in Eritrea and Madagascar to check the viability of the approach. The analysis of VCAP in relation to rainfall, temperature and malaria incidence data in these regions shows that the expanded VCAP correctly tracks the risk of malaria both in regions where rainfall is the limiting factor and in regions where temperature is the limiting factor. The VCAP maps are currently offered as an experimental resource for testing within Malaria Early Warning applications in epidemic prone regions of sub-Saharan Africa. User feedback is currently being collected in preparation for further evaluation and refinement of the VCAP model.

  15. Increase in cases of malaria in Mozambique, 2014: epidemic or new endemic pattern?

    Science.gov (United States)

    Arroz, Jorge Alexandre Harrison

    2016-01-01

    To describe the increase in cases of malaria in Mozambique. Cross-sectional study conducted in 2014, in Mozambique with national weekly epidemiological bulletin data. I analyzed the number of recorded cases in the 2009-2013 period, which led to the creation of an endemic channel using the quartile and C-Sum methods. Monthly incidence rates were calculated for the first half of 2014, making it possible to determine the pattern of endemicity. Months in which the incidence rates exceeded the third quartile or line C-sum were declared as epidemic months. The provinces of Nampula, Zambezia, Sofala, and Inhambane accounted for 52.7% of all cases in the first half of 2014. Also during this period, the provinces of Nampula, Sofala and Tete were responsible for 54.9% of the deaths from malaria. The incidence rates of malaria in children, and in all ages, have showed patterns in the epidemic zone. For all ages, the incidence rate has peaked in April (2,573 cases/100,000 inhabitants). The results suggest the occurrence of an epidemic pattern of malaria in the first half of 2014 in Mozambique. It is strategic to have a more accurate surveillance at all levels (central, provincial and district) to target prevention and control interventions in a timely manner.

  16. Unstable Malaria Transmission in the Southern Peruvian Amazon and Its Association with Gold Mining, Madre de Dios, 2001–2012

    Science.gov (United States)

    Sanchez, Juan F.; Carnero, Andres M.; Rivera, Esteban; Rosales, Luis A.; Baldeviano, G. Christian; Asencios, Jorge L.; Edgel, Kimberly A.; Vinetz, Joseph M.; Lescano, Andres G.

    2017-01-01

    The reemergence of malaria in the last decade in Madre de Dios, southern Peruvian Amazon basin, was accompanied by ecological, political, and socioeconomic changes related to the proliferation of illegal gold mining. We conducted a secondary analysis of passive malaria surveillance data reported by the health networks in Madre de Dios between 2001 and 2012. We calculated the number of cases of malaria by year, geographic location, intensity of illegal mining activities, and proximity of health facilities to the Peru–Brazil Interoceanic Highway. During 2001–2012, 203,773 febrile cases were identified in Madre de Dios, of which 30,811 (15.1%) were confirmed cases of malaria; all but 10 cases were due to Plasmodium vivax. Cases of malaria rose rapidly between 2004 and 2007, reached 4,469 cases in 2005, and then declined after 2010 to pre-2004 levels. Health facilities located in areas of intense illegal gold mining reported 30-fold more cases than those in non-mining areas (ratio = 31.54, 95% confidence interval [CI] = 19.28, 51.60). Finally, health facilities located > 1 km from the Interoceanic Highway reported significantly more cases than health facilities within this distance (ratio = 16.20, 95% CI = 8.25, 31.80). Transmission of malaria in Madre de Dios is unstable, geographically heterogeneous, and strongly associated with illegal gold mining. These findings highlight the importance of spatially oriented interventions to control malaria in Madre de Dios, as well as the need for research on malaria transmission in illegal gold mining camps. PMID:27879461

  17. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets

    NARCIS (Netherlands)

    Russell, T.L.; Lwetoijera, D.W.; Maliti, D.; Chipwaza, B.; Kihonda, J.; Charlwood, J.D.; Smith, T.A.; Lengeler, C.; Mwanyangala, M.A.; Nathan, R.; Knols, B.G.J.; Takken, W.; Killeen, G.F.

    2010-01-01

    Background The communities of Namawala and Idete villages in southern Tanzania experienced extremely high malaria transmission in the 1990s. By 2001-03, following high usage rates (75% of all age groups) of untreated bed nets, a 4.2-fold reduction in malaria transmission intensity was achieved.

  18. Malaria prevalence pattern observed in the highland fringe of Butajira, Southern Ethiopia: A longitudinal study from parasitological and entomological survey

    Directory of Open Access Journals (Sweden)

    Mengesha Tesfaye

    2011-06-01

    Full Text Available Abstract Background In Ethiopia, information regarding highland malaria transmission is scarce, and no report has been presented from Butajira highland so far whether the appearance of malaria in the area was due to endemicity or due to highland malaria transmission. Thus this study aimed to determine the presence and magnitude of malaria transmission in Butajira. Methods For parasitological survey, longitudinal study was conducted from October to December 2006. The entomological surveys were done from October to December 2006 and continued from April to May 2007. Both parasitological and entomological surveys were done using standard procedures. Results The parasitological result in all the survey months (October-December showed an overall detection rate of 4.4% (48/1082 (CI 95%; 3.2-5.7% malaria parasite. Among infected individuals, 32 (3.0% of the infection was due to Plasmodium vivax and the rest 16 (1.5% were due to Plasmodium falciparum. The highest prevalence 39(3.6% of the parasite was observed in age groups of above 15 years old. Among the total tested, 25(2.3% of males and 23(2.1% of females had malaria infection. Among tested individuals, 38(5.3% and 10 (2.7% of infection was occurred in Misrak-Meskan (2100 m a.s.l and Mirab-Meskan (2280 m a.s.l, respectively which was statistically significant (X2 = 3.72, P Plasmodium species declined from October to December, the trend was non-significant (X2 for trend = 0.49, P > 0.05. The entomological survey showed a collection of 602 larvae and 80 adult Anopheles. Anopheles christyi was the dominant species both in the first (45.3% and in the second (35.4% surveys; where as, Anopheles gambiae sensu lato comprised 4.7% and 14.6%, in the first and second surveys, respectively. Anopheles gambiae s.l comprises 55% of the adult collection, and both species were collected more from outdoors (57.5%. The number of An. christyi was higher in Mirab-Meskan (58. 3% than Misrak-Meskan (41.7% (P Conclusion

  19. The Impact of Hotspot-Targeted Interventions on Malaria Transmission in Rachuonyo South District in the Western Kenyan Highlands: A Cluster-Randomized Controlled Trial

    Science.gov (United States)

    Bradley, John; Knight, Philip; Stone, William; Osoti, Victor; Makori, Euniah; Owaga, Chrispin; Odongo, Wycliffe; China, Pauline; Shagari, Shehu; Doumbo, Ogobara K.; Sauerwein, Robert W.; Kariuki, Simon; Drakeley, Chris; Stevenson, Jennifer; Cox, Jonathan

    2016-01-01

    Background Malaria transmission is highly heterogeneous, generating malaria hotspots that can fuel malaria transmission across a wider area. Targeting hotspots may represent an efficacious strategy for reducing malaria transmission. We determined the impact of interventions targeted to serologically defined malaria hotspots on malaria transmission both inside hotspots and in surrounding communities. Methods and Findings Twenty-seven serologically defined malaria hotspots were detected in a survey conducted from 24 June to 31 July 2011 that included 17,503 individuals from 3,213 compounds in a 100-km2 area in Rachuonyo South District, Kenya. In a cluster-randomized trial from 22 March to 15 April 2012, we randomly allocated five clusters to hotspot-targeted interventions with larviciding, distribution of long-lasting insecticide-treated nets, indoor residual spraying, and focal mass drug administration (2,082 individuals in 432 compounds); five control clusters received malaria control following Kenyan national policy (2,468 individuals in 512 compounds). Our primary outcome measure was parasite prevalence in evaluation zones up to 500 m outside hotspots, determined by nested PCR (nPCR) at baseline and 8 wk (16 June–6 July 2012) and 16 wk (21 August–10 September 2012) post-intervention by technicians blinded to the intervention arm. Secondary outcome measures were parasite prevalence inside hotpots, parasite prevalence in the evaluation zone as a function of distance from the hotspot boundary, Anopheles mosquito density, mosquito breeding site productivity, malaria incidence by passive case detection, and the safety and acceptability of the interventions. Intervention coverage exceeded 87% for all interventions. Hotspot-targeted interventions did not result in a change in nPCR parasite prevalence outside hotspot boundaries (p ≥ 0.187). We observed an average reduction in nPCR parasite prevalence of 10.2% (95% CI −1.3 to 21.7%) inside hotspots 8 wk post

  20. Malaria prevalence pattern observed in the highland fringe of Butajira, Southern Ethiopia: a longitudinal study from parasitological and entomological survey.

    Science.gov (United States)

    Tesfaye, Solomon; Belyhun, Yeshambel; Teklu, Takele; Mengesha, Tesfaye; Petros, Beyene

    2011-06-07

    In Ethiopia, information regarding highland malaria transmission is scarce, and no report has been presented from Butajira highland so far whether the appearance of malaria in the area was due to endemicity or due to highland malaria transmission. Thus this study aimed to determine the presence and magnitude of malaria transmission in Butajira. For parasitological survey, longitudinal study was conducted from October to December 2006. The entomological surveys were done from October to December 2006 and continued from April to May 2007. Both parasitological and entomological surveys were done using standard procedures. The parasitological result in all the survey months (October-December) showed an overall detection rate of 4.4% (48/1082) (CI 95%; 3.2-5.7%) malaria parasite. Among infected individuals, 32 (3.0%) of the infection was due to Plasmodium vivax and the rest 16 (1.5%) were due to Plasmodium falciparum. The highest prevalence 39(3.6%) of the parasite was observed in age groups of above 15 years old. Among the total tested, 25(2.3%) of males and 23(2.1%) of females had malaria infection. Among tested individuals, 38(5.3%) and 10 (2.7%) of infection was occurred in Misrak-Meskan (2100 m a.s.l) and Mirab-Meskan (2280 m a.s.l), respectively which was statistically significant (X2=3.72, P0.05). The entomological survey showed a collection of 602 larvae and 80 adult Anopheles. Anopheles christyi was the dominant species both in the first (45.3%) and in the second (35.4%) surveys; where as, Anopheles gambiae sensu lato comprised 4.7% and 14.6%, in the first and second surveys, respectively. Anopheles gambiae s.l comprises 55% of the adult collection, and both species were collected more from outdoors (57.5%). The number of An. christyi was higher in Mirab-Meskan (58. 3%) than Misrak-Meskan (41.7%) (Prisk of malaria and its control programme in the area must be given adequate attention to minimize potential epidemics. In addition, the current study should be

  1. Community knowledge, attitudes and practices (KAP on malaria in Swaziland: A country earmarked for malaria elimination

    Directory of Open Access Journals (Sweden)

    Govender Dayanandan

    2009-02-01

    Full Text Available Abstract Background The potential contribution of knowledge, attitudes and practices (KAP studies to malaria research and control has not received much attention in most southern African countries. This study investigated the local communities' understanding of malaria transmission, recognition of signs and symptoms, perceptions of cause, treatment-seeking patterns, preventive measures and practices in order to inform the country's proposed malaria elimination programme in Swaziland. Methods A descriptive cross-sectional survey was undertaken in four Lubombo Spatial Development Initiative (LSDI sentinel sites in Swaziland. These sentinel sites share borders with Mozambique. A structured questionnaire was administered to 320 randomly selected households. Only one adult person was interviewed per household. The interviewees were the heads of households and in the absence of the heads of households responsible adults above 18 years were interviewed. Results A substantial number of research participants showed reasonable knowledge of malaria, including correct association between malaria and mosquito bites, its potential fatal consequences and correct treatment practices. Almost 90% (n = 320 of the respondents stated that they would seek treatment within 24 hours of onset of malaria symptoms, with health facilities as their first treatment option. Most people (78% perceived clinics and vector control practices as central to treating and preventing malaria disease. Indoor residual spraying (IRS coverage and bed net ownership were 87.2% and 38.8%, respectively. IRS coverage was in agreement with the World Health Organization's (WHO recommendation of more than 80% within the targeted communities. Conclusion Despite fair knowledge of malaria in Swaziland, there is a need for improving the availability of information through the preferred community channels, such as tinkhundlas (districts, as well as professional health routes. This recommendation

  2. The Malaria Transition on the Arabian Peninsula: Progress toward a Malaria-Free Region between 1960–2010

    Science.gov (United States)

    Snow, Robert W.; Amratia, Punam; Zamani, Ghasem; Mundia, Clara W.; Noor, Abdisalan M.; Memish, Ziad A.; Al Zahrani, Mohammad H.; Al Jasari, Adel; Fikri, Mahmoud; Atta, Hoda

    2014-01-01

    The transmission of malaria across the Arabian Peninsula is governed by the diversity of dominant vectors and extreme aridity. It is likely that where malaria transmission was historically possible it was intense and led to a high disease burden. Here, we review the speed of elimination, approaches taken, define the shrinking map of risk since 1960 and discuss the threats posed to a malaria-free Arabian Peninsula using the archive material, case data and published works. From as early as the 1940s, attempts were made to eliminate malaria on the peninsula but were met with varying degrees of success through to the 1970s; however, these did result in a shrinking of the margins of malaria transmission across the peninsula. Epidemics in the 1990s galvanised national malaria control programmes to reinvigorate control efforts. Before the launch of the recent global ambition for malaria eradication, countries on the Arabian Peninsula launched a collaborative malaria-free initiative in 2005. This initiative led a further shrinking of the malaria risk map and today locally acquired clinical cases of malaria are reported only in Saudi Arabia and Yemen, with the latter contributing to over 98% of the clinical burden. PMID:23548086

  3. Community-based intermittent mass testing and treatment for malaria in an area of high transmission intensity, western Kenya: study design and methodology for a cluster randomized controlled trial.

    Science.gov (United States)

    Samuels, Aaron M; Awino, Nobert; Odongo, Wycliffe; Abong'o, Benard; Gimnig, John; Otieno, Kephas; Shi, Ya Ping; Were, Vincent; Allen, Denise Roth; Were, Florence; Sang, Tony; Obor, David; Williamson, John; Hamel, Mary J; Patrick Kachur, S; Slutsker, Laurence; Lindblade, Kim A; Kariuki, Simon; Desai, Meghna

    2017-06-07

    Most human Plasmodium infections in western Kenya are asymptomatic and are believed to contribute importantly to malaria transmission. Elimination of asymptomatic infections requires active treatment approaches, such as mass testing and treatment (MTaT) or mass drug administration (MDA), as infected persons do not seek care for their infection. Evaluations of community-based approaches that are designed to reduce malaria transmission require careful attention to study design to ensure that important effects can be measured accurately. This manuscript describes the study design and methodology of a cluster-randomized controlled trial to evaluate a MTaT approach for malaria transmission reduction in an area of high malaria transmission. Ten health facilities in western Kenya were purposively selected for inclusion. The communities within 3 km of each health facility were divided into three clusters of approximately equal population size. Two clusters around each health facility were randomly assigned to the control arm, and one to the intervention arm. Three times per year for 2 years, after the long and short rains, and again before the long rains, teams of community health volunteers visited every household within the intervention arm, tested all consenting individuals with malaria rapid diagnostic tests, and treated all positive individuals with an effective anti-malarial. The effect of mass testing and treatment on malaria transmission was measured through population-based longitudinal cohorts, outpatient visits for clinical malaria, periodic population-based cross-sectional surveys, and entomological indices.

  4. Prevention of Congenital Transmission of Malaria in Sub-Saharan African Countries: Challenges and Implications for Health System Strengthening

    OpenAIRE

    Osungbade, Kayode O.; Oladunjoye, Olubunmi O.

    2012-01-01

    Objectives. Review of burden of congenital transmission of malaria, challenges of preventive measures, and implications for health system strengthening in sub-Saharan Africa. Methods. Literature from Pubmed (MEDLINE), Biomed central, Google Scholar, and Cochrane Database were reviewed. Results. The prevalence of congenital malaria in sub-Saharan Africa ranges from 0 to 23%. Diagnosis and existing preventive measures are constantly hindered by weak health systems and sociocultural issues. WHO ...

  5. Molecular inference of sources and spreading patterns of Plasmodium falciparum malaria parasites in internally displaced persons settlements in Myanmar-China border area.

    Science.gov (United States)

    Lo, Eugenia; Zhou, Guofa; Oo, Winny; Lee, Ming-Chieh; Baum, Elisabeth; Felgner, Philip L; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun

    2015-07-01

    In Myanmar, civil unrest and establishment of internally displaced persons (IDP) settlement along the Myanmar-China border have impacted malaria transmission. The growing IDP populations raise deep concerns about health impact on local communities. Microsatellite markers were used to examine the source and spreading patterns of Plasmodium falciparum between IDP settlement and surrounding villages in Myanmar along the China border. Genotypic structure of P. falciparum was compared over the past three years from the same area and the demographic history was inferred to determine the source of recent infections. In addition, we examined if border migration is a factor of P. falciparum infections in China by determining gene flow patterns across borders. Compared to local community, the IDP samples showed a reduced and consistently lower genetic diversity over the past three years. A strong signature of genetic bottleneck was detected in the IDP samples. P. falciparum infections from the border regions in China were genetically similar to Myanmar and parasite gene flow was not constrained by geographical distance. Reduced genetic diversity of P. falciparum suggested intense malaria control within the IDP settlement. Human movement was a key factor to the spread of malaria both locally in Myanmar and across the international border. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Frequently Asked Questions (FAQs) about Malaria

    Science.gov (United States)

    ... Facebook Tweet Share Compartir The Disease What is Malaria? Malaria is a serious and sometimes fatal disease ... cycle of disease and poverty. How People Get Malaria (Transmission) How is malaria transmitted? Usually, people get ...

  7. Effect of chemotherapy on malaria transmission among Yanomami Amerindians: simulated consequences of placebo treatment.

    Science.gov (United States)

    Freeman, J; Laserson, K F; Petralanda, I; Spielman, A

    1999-05-01

    To determine whether chemotherapy effectively reduces Plasmodium falciparum malaria transmission in isolated human populations, we followed two abrupt sequential outbreaks of malaria infection among Yanomami Amerindians and modeled the effect of chemotherapy and the consequences if no drug was available. A Macdonald-type mathematical model demonstrated that both outbreaks comprised a single epidemic event linked by an invisible outbreak in vector mosquitoes. The basic reproductive number, R0, from fitted values based on the treated epidemic was 2 during the initial phase of the epidemic, and waned as vector density decreased with the onset of the dry season. In the observed epidemic, 60 (45%) of 132 village residents were affected, and the treated outbreak ended after two months. Although the initial chemotherapy regimen was only marginally effective, the duration of human infectivity was reduced from an expected nine months to two weeks. In the absence of this intervention, the initial R0 value would have been 40, more than 60% of the population would have been infected, and more than 30% would have remained parasitemic until the next rainy season (about six months later). Another outbreak would then have ensued, and malaria probably would have remained endemic in this village. Our simulated placebo treatment permits us to conclude that even partially effective chemotherapeutic interventions, such as those in our study, interrupt serial transmission of P. falciparum among isolated human populations that are exposed to infection seasonally.

  8. Impact of permethrin-treated bed nets on malaria, anemia, and growth in infants in an area of intense perennial malaria transmission in western Kenya

    NARCIS (Netherlands)

    ter Kuile, Feiko O.; Terlouw, Dianne J.; Kariuki, Simon K.; Phillips-Howard, Penelope A.; Mirel, Lisa B.; Hawley, William A.; Friedman, Jennifer F.; Shi, Ya Ping; Kolczak, Margarette S.; Lal, Altaf A.; Vulule, John M.; Nahlen, Bernard L.

    2003-01-01

    As part of a community-based, group-randomized, controlled trial of insecticide-treated bed nets (ITNs) in an area with intense malaria transmission in western Kenya, a birth cohort (n = 833) was followed monthly until the age of 24 months to determine the potential beneficial and adverse effects of

  9. Challenges for malaria elimination in Brazil.

    Science.gov (United States)

    Ferreira, Marcelo U; Castro, Marcia C

    2016-05-20

    Brazil currently contributes 42 % of all malaria cases reported in the Latin America and the Caribbean, a region where major progress towards malaria elimination has been achieved in recent years. In 2014, malaria burden in Brazil (143,910 microscopically confirmed cases and 41 malaria-related deaths) has reached its lowest levels in 35 years, Plasmodium falciparum is highly focal, and the geographic boundary of transmission has considerably shrunk. Transmission in Brazil remains entrenched in the Amazon Basin, which accounts for 99.5 % of the country's malaria burden. This paper reviews major lessons learned from past and current malaria control policies in Brazil. A comprehensive discussion of the scientific and logistic challenges that may impact malaria elimination efforts in the country is presented in light of the launching of the Plan for Elimination of Malaria in Brazil in November 2015. Challenges for malaria elimination addressed include the high prevalence of symptomless and submicroscopic infections, emerging anti-malarial drug resistance in P. falciparum and Plasmodium vivax and the lack of safe anti-relapse drugs, the largely neglected burden of malaria in pregnancy, the need for better vector control strategies where Anopheles mosquitoes present a highly variable biting behaviour, human movement, the need for effective surveillance and tools to identify foci of infection in areas with low transmission, and the effects of environmental changes and climatic variability in transmission. Control actions launched in Brazil and results to come are likely to influence control programs in other countries in the Americas.

  10. Malaria and Travelers

    Science.gov (United States)

    ... Providers, Emergency Consultations, and General Public. Contact Us Malaria and Travelers for U.S. Residents Recommend on Facebook ... may be at risk for infection. Determine if malaria transmission occurs at the destinations Obtain a detailed ...

  11. Diagnosis and treatment of malaria in peripheral health facilities in Uganda: findings from an area of low transmission in south-western Uganda

    Directory of Open Access Journals (Sweden)

    Clarke Siân

    2007-04-01

    Full Text Available Abstract Background Early recognition of symptoms and signs perceived as malaria are important for effective case management, as few laboratories are available at peripheral health facilities. The validity and reliability of clinical signs and symptoms used by health workers to diagnose malaria were assessed in an area of low transmission in south-western Uganda. Methods The study had two components: 1 passive case detection where all patients attending the out patient clininc with a febrile illness were included and 2 a longitudinal active malaria case detection survey was conducted in selected villages. A malaria case was defined as any slide-confirmed parasitaemia in a person with an axillary temperature ≥ 37.5°C or a history of fever within the last 24 hrs and no signs suggestive of other diseases. Results Cases of malaria were significantly more likely to report joint pains, headache, vomiting and abdominal pains. However, due to the low prevalence of malaria, the predictive values of these individual signs alone, or in combination, were poor. Only 24.8% of 1627 patients had malaria according to case definition and > 75% of patients were unnecessarily treated for malaria and few slide negative cases received alternative treatment. Conclusion In low-transmission areas, more attention needs to be paid to differential diagnosis of febrile illnesses In view of suggested changes in anti-malarial drug policy, introducing costly artemisinin combination therapy accurate, rapid diagnostic tools are necessary to target treatment to people in need.

  12. Unexpectedly long incubation period of Plasmodium vivax malaria, in the absence of chemoprophylaxis, in patients diagnosed outside the transmission area in Brazil

    Directory of Open Access Journals (Sweden)

    da Silveira Bressan Clarisse

    2011-05-01

    Full Text Available Abstract Background In 2010, Brazil recorded 3343,599 cases of malaria, with 99.6% of them concentrated in the Amazon region. Plasmodium vivax accounts for 86% of the cases circulating in the country. The extra-Amazonian region, where transmission does not occur, recorded about 566 cases imported from the Amazonian area in Brazil and South America, from Central America, Asia and African countries. Prolonged incubation periods have been described for P. vivax malaria in temperate climates. The diversity in essential biological characteristics is traditionally considered as one possible explanation to the emergence of relapse in malaria and to the differences in the duration of the incubation period, which can also be explained by the use of chemoprophylaxis. Studying the reported cases of P. vivax malaria in Rio de Janeiro, where there is no vector transmission, has made it possible to evaluate the extension of the incubation period and to notice that it may be extended in some cases. Methods Descriptive study of every malaria patients who visited the clinic in the last five years. The mean, standard deviation, median, minimum and maximum of all incubation periods were analysed. Results From the total of 80 patients seen in the clinic during the study time, with confirmed diagnosis of malaria, 49 (63% were infected with P. vivax. Between those, seven had an estimated incubation period varying from three to 12 months and were returned travellers from Brazilian Amazonian states (6 and Indonesia (1. None of them had taken malarial chemoprophylaxis. Conclusions The authors emphasize that considering malaria as a possible cause of febrile syndrome should be a post-travel routine, independent of the time elapsed after exposure in the transmission area, even in the absence of malaria chemoprophylaxis. They speculate that, since there is no current and detailed information about the biological cycle of human malaria plasmodia's in Brazil, it is possible

  13. Patterns of malaria related mortality based on verbal autopsy in ...

    African Journals Online (AJOL)

    Patterns of malaria related mortality based on verbal autopsy in Muleba District, north-western Tanzania. G.M Kaatano, F.M Mashauri, S.M Kinung'hi, J.R Mwanga, R.C Malima, C Kishamawe, S.E Nnko, S.M Magesa, L.E.G Mboera ...

  14. Establishing the extent of malaria transmission and challenges facing pre-elimination in the Republic of Djibouti

    Directory of Open Access Journals (Sweden)

    Drakeley Christopher J

    2011-05-01

    Full Text Available Abstract Background Countries aiming for malaria elimination require a detailed understanding of the current intensity of malaria transmission within their national borders. National household sample surveys are now being used to define infection prevalence but these are less efficient in areas of exceptionally low endemicity. Here we present the results of a national malaria indicator survey in the Republic of Djibouti, the first in sub-Saharan Africa to combine parasitological and serological markers of malaria, to evaluate the extent of transmission in the country and explore the potential for elimination. Methods A national cross-sectional household survey was undertaken from December 2008 to January 2009. A finger prick blood sample was taken from randomly selected participants of all ages to examine for parasitaemia using rapid diagnostic tests (RDTs and confirmed using Polymerase Chain Reaction (PCR. Blood spots were also collected on filter paper and subsequently used to evaluate the presence of serological markers (combined AMA-1 and MSP-119 of Plasmodium falciparum exposure. Multivariate regression analysis was used to determine the risk factors for P. falciparum infection and/or exposure. The Getis-Ord G-statistic was used to assess spatial heterogeneity of combined infections and serological markers. Results A total of 7151 individuals were tested using RDTs of which only 42 (0.5% were positive for P. falciparum infections and confirmed by PCR. Filter paper blood spots were collected for 5605 individuals. Of these 4769 showed concordant optical density results and were retained in subsequent analysis. Overall P. falciparum sero-prevalence was 9.9% (517/4769 for all ages; 6.9% (46/649 in children under the age of five years; and 14.2% (76/510 in the oldest age group (≥ 50 years. The combined infection and/or antibody prevalence was 10.5% (550/4769 and varied from 8.1% to 14.1% but overall regional differences were not statistically

  15. Spatial and temporal distribution of falciparum malaria in China

    Directory of Open Access Journals (Sweden)

    Lin Hualiang

    2009-06-01

    Full Text Available Abstract Background Falciparum malaria is the most deadly among the four main types of human malaria. Although great success has been achieved since the launch of the National Malaria Control Programme in 1955, malaria remains a serious public health problem in China. This paper aimed to analyse the geographic distribution, demographic patterns and time trends of falciparum malaria in China. Methods The annual numbers of falciparum malaria cases during 1992–2003 and the individual case reports of each clinical falciparum malaria during 2004–2005 were extracted from communicable disease information systems in China Center for Diseases Control and Prevention. The annual number of cases and the annual incidence were mapped by matching them to corresponding province- and county-level administrative units in a geographic information system. The distribution of falciparum malaria by age, gender and origin of infection was analysed. Time-series analysis was conducted to investigate the relationship between the falciparum malaria in the endemic provinces and the imported falciparum malaria in non-endemic provinces. Results Falciparum malaria was endemic in two provinces of China during 2004–05. Imported malaria was reported in 26 non-endemic provinces. Annual incidence of falciparum malaria was mapped at county level in the two endemic provinces of China: Yunnan and Hainan. The sex ratio (male vs. female for the number of cases in Yunnan was 1.6 in the children of 0–15 years and it reached 5.7 in the adults over 15 years of age. The number of malaria cases in Yunnan was positively correlated with the imported malaria of concurrent months in the non-endemic provinces. Conclusion The endemic area of falciparum malaria in China has remained restricted to two provinces, Yunnan and Hainan. Stable transmission occurs in the bordering region of Yunnan and the hilly-forested south of Hainan. The age and gender distribution in the endemic area is

  16. Malaria in the Greater Mekong Subregion: Heterogeneity and Complexity

    Science.gov (United States)

    Cui, Liwang; Yan, Guiyun; Sattabongkot, Jetsumon; Cao, Yaming; Chen, Bin; Chen, Xiaoguang; Fan, Qi; Fang, Qiang; Jongwutiwes, Somchai; Parker, Daniel; Sirichaisinthop, Jeeraphat; Kyaw, Myat Phone; Su, Xin-zhuan; Yang, Henglin; Yang, Zhaoqing; Wang, Baomin; Xu, Jianwei; Zheng, Bin; Zhong, Daibin; Zhou, Guofa

    2011-01-01

    severely undermined due to high prevalence of glucose-6-phosphate dehydrogenase deficiency in target human populations. In the GMS, the dramatically different ecologies, diverse vector systems, and insecticide resistance render traditional mosquito control less efficient. Here we attempt to review the changing malaria epidemiology in the GMS, analyze the vector systems and patterns of malaria transmission, and identify the major challenges the malaria control community faces on its way to malaria elimination. PMID:21382335

  17. Biosignatures of Exposure/Transmission and Immunity.

    Science.gov (United States)

    King, Christopher L; Davies, D Huw; Felgner, Phil; Baum, Elizabeth; Jain, Aarti; Randall, Arlo; Tetteh, Kevin; Drakeley, Christopher J; Greenhouse, Bryan

    2015-09-01

    A blood test that captures cumulative exposure over time and assesses levels of naturally acquired immunity (NAI) would provide a critical tool to monitor the impact of interventions to reduce malaria transmission and broaden our understanding of how NAI develops around the world as a function of age and exposure. This article describes a collaborative effort in multiple International Centers of Excellence in Malaria Research (ICEMRs) to develop such tests using malaria-specific antibody responses as biosignatures of transmission and immunity. The focus is on the use of Plasmodium falciparum and Plasmodium vivax protein microarrays to identify a panel of the most informative antibody responses in diverse malaria-endemic settings representing an unparalleled spectrum of malaria transmission and malaria species mixes before and after interventions to reduce malaria transmission. © The American Society of Tropical Medicine and Hygiene.

  18. Avian malaria in Hawaiian forest birds: Infection and population impacts across species and elevations

    Science.gov (United States)

    Samuel, Michael D.; Woodworth, Bethany L.; Atkinson, Carter T.; Hart, P. J.; LaPointe, Dennis

    2015-01-01

    Wildlife diseases can present significant threats to ecological systems and biological diversity, as well as domestic animal and human health. However, determining the dynamics of wildlife diseases and understanding the impact on host populations is a significant challenge. In Hawai‘i, there is ample circumstantial evidence that introduced avian malaria (Plasmodium relictum) has played an important role in the decline and extinction of many native forest birds. However, few studies have attempted to estimate disease transmission and mortality, survival, and individual species impacts in this distinctive ecosystem. We combined multi-state capture-recapture (longitudinal) models with cumulative age-prevalence (cross-sectional) models to evaluate these patterns in Apapane, Hawai‘i Amakihi, and Iiwi in low-, mid-, and high-elevation forests on the island of Hawai‘i based on four longitudinal studies of 3–7 years in length. We found species-specific patterns of malaria prevalence, transmission, and mortality rates that varied among elevations, likely in response to ecological factors that drive mosquito abundance. Malaria infection was highest at low elevations, moderate at mid elevations, and limited in high-elevation forests. Infection rates were highest for Iiwi and Apapane, likely contributing to the absence of these species in low-elevation forests. Adult malaria fatality rates were highest for Iiwi, intermediate for Amakihi at mid and high elevations, and lower for Apapane; low-elevation Amakihi had the lowest malaria fatality, providing strong evidence of malaria tolerance in this low-elevation population. Our study indicates that hatch-year birds may have greater malaria infection and/or fatality rates than adults. Our study also found that mosquitoes prefer feeding on Amakihi rather than Apapane, but Apapane are likely a more important reservoir for malaria transmission to mosquitoes. Our approach, based on host abundance and infection rates, may be an

  19. Prospects for Malaria Elimination in Mesoamerica and Hispaniola

    Science.gov (United States)

    Herrera, Sócrates; Ochoa-Orozco, Sergio Andrés; González, Iveth J.; Peinado, Lucrecia; Quiñones, Martha L.; Arévalo-Herrera, Myriam

    2015-01-01

    Malaria remains endemic in 21 countries of the American continent with an estimated 427,000 cases per year. Approximately 10% of these occur in the Mesoamerican and Caribbean regions. During the last decade, malaria transmission in Mesoamerica showed a decrease of ~85%; whereas, in the Caribbean region, Hispaniola (comprising the Dominican Republic [DR] and Haiti) presented an overall rise in malaria transmission, primarily due to a steady increase in Haiti, while DR experienced a significant transmission decrease in this period. The significant malaria reduction observed recently in the region prompted the launch of an initiative for Malaria Elimination in Mesoamerica and Hispaniola (EMMIE) with the active involvement of the National Malaria Control Programs (NMCPs) of nine countries, the Regional Coordination Mechanism (RCM) for Mesoamerica, and the Council of Health Ministries of Central America and Dominican Republic (COMISCA). The EMMIE initiative is supported by the Global Fund for Aids, Tuberculosis and Malaria (GFATM) with active participation of multiple partners including Ministries of Health, bilateral and multilateral agencies, as well as research centers. EMMIE’s main goal is to achieve elimination of malaria transmission in the region by 2020. Here we discuss the prospects, challenges, and research needs associated with this initiative that, if successful, could represent a paradigm for other malaria-affected regions. PMID:25973753

  20. History of malaria control in Tajikistan and rapid malaria appraisal in an agro-ecological setting.

    Science.gov (United States)

    Matthys, Barbara; Sherkanov, Tohir; Karimov, Saifudin S; Khabirov, Zamonidin; Mostowlansky, Till; Utzinger, Jürg; Wyss, Kaspar

    2008-10-26

    Reported malaria cases in rice growing areas in western Tajikistan were at the root of a rapid appraisal of the local malaria situation in a selected agro-ecological setting where only scarce information was available. The rapid appraisal was complemented by a review of the epidemiology and control of malaria in Tajikistan and Central Asia from 1920 until today. Following a resurgence in the 1990s, malaria transmission has been reduced considerably in Tajikistan as a result of concerted efforts by the government and international agencies. The goal for 2015 is transmission interruption, with control interventions and surveillance currently concentrated in the South, where foci of Plasmodium vivax and Plasmodium falciparum persist. The rapid malaria appraisal was carried out in six communities of irrigated rice cultivation during the peak of malaria transmission (August/September 2007) in western Tajikistan. In a cross-sectional survey, blood samples were taken from 363 schoolchildren and examined for Plasmodium under a light microscope. A total of 56 farmers were interviewed about agricultural activities and malaria. Potential Anopheles breeding sites were characterized using standardized procedures. A literature review on the epidemiology and control of malaria in Tajikistan was conducted. One case of P. vivax was detected among the 363 schoolchildren examined (0.28%). The interviewees reported to protect themselves against mosquito bites and used their own concepts on fever conditions, which do not distinguish between malaria and other diseases. Three potential malaria vectors were identified, i.e. Anopheles superpictus, Anopheles pulcherrimus and Anopheles hyrcanus in 58 of the 73 breeding sites examined (79.5%). Rice paddies, natural creeks and man-made ponds were the most important Anopheles habitats. The presence of malaria vectors and parasite reservoirs, low awareness of, and protection against malaria in the face of population movements and inadequate

  1. History of malaria control in Tajikistan and rapid malaria appraisal in an agro-ecological setting

    Directory of Open Access Journals (Sweden)

    Utzinger Jürg

    2008-10-01

    Full Text Available Abstract Background Reported malaria cases in rice growing areas in western Tajikistan were at the root of a rapid appraisal of the local malaria situation in a selected agro-ecological setting where only scarce information was available. The rapid appraisal was complemented by a review of the epidemiology and control of malaria in Tajikistan and Central Asia from 1920 until today. Following a resurgence in the 1990s, malaria transmission has been reduced considerably in Tajikistan as a result of concerted efforts by the government and international agencies. The goal for 2015 is transmission interruption, with control interventions and surveillance currently concentrated in the South, where foci of Plasmodium vivax and Plasmodium falciparum persist. Methods The rapid malaria appraisal was carried out in six communities of irrigated rice cultivation during the peak of malaria transmission (August/September 2007 in western Tajikistan. In a cross-sectional survey, blood samples were taken from 363 schoolchildren and examined for Plasmodium under a light microscope. A total of 56 farmers were interviewed about agricultural activities and malaria. Potential Anopheles breeding sites were characterized using standardized procedures. A literature review on the epidemiology and control of malaria in Tajikistan was conducted. Results One case of P. vivax was detected among the 363 schoolchildren examined (0.28%. The interviewees reported to protect themselves against mosquito bites and used their own concepts on fever conditions, which do not distinguish between malaria and other diseases. Three potential malaria vectors were identified, i.e. Anopheles superpictus, Anopheles pulcherrimus and Anopheles hyrcanus in 58 of the 73 breeding sites examined (79.5%. Rice paddies, natural creeks and man-made ponds were the most important Anopheles habitats. Conclusion The presence of malaria vectors and parasite reservoirs, low awareness of, and protection against

  2. Changes in malaria burden and transmission in sentinel sites after the roll-out of long-lasting insecticidal nets in Papua New Guinea.

    Science.gov (United States)

    Hetzel, Manuel W; Reimer, Lisa J; Gideon, Gibson; Koimbu, Gussy; Barnadas, Céline; Makita, Leo; Siba, Peter M; Mueller, Ivo

    2016-06-14

    Papua New Guinea exhibits a complex malaria epidemiology due to diversity in malaria parasites, mosquito vectors, human hosts, and their natural environment. Heterogeneities in transmission and burden of malaria at various scales are likely to affect the success of malaria control interventions, and vice-versa. This manuscript assesses changes in malaria prevalence, incidence and transmission in sentinel sites following the first national distribution of long-lasting insecticidal nets (LLINs). Before and after the distribution of LLINs, data collection in six purposively selected sentinel sites included clinical surveillance in the local health facility, household surveys and entomological surveys. Not all activities were carried out in all sites. Mosquitoes were collected by human landing catches. Diagnosis of malaria infection in humans was done by rapid diagnostic test, light microscopy and PCR for species confirmation. Following the roll-out of LLINs, the average monthly malaria incidence rate dropped from 13/1,000 population to 2/1,000 (incidence rate ratio = 0.12; 95 % CI: 0.09-0.17; P < 0.001). The average population prevalence of malaria decreased from 15.7 % pre-LLIN to 4.8 % post-LLIN (adjusted odds ratio = 0.26; 95 % CI: 0.20-0.33; P < 0.001). In general, reductions in incidence and prevalence were more pronounced in infections with P. falciparum than with P. vivax. Additional morbidity indicators (anaemia, splenomegaly, self-reported fever) showed a decreasing trend in most sites. Mean Anopheles man biting rates decreased from 83 bites/person/night pre-LLIN to 31 post-LLIN (P = 0.008). Anopheles species composition differed between sites but everywhere diversity was lower post-LLIN. In two sites, post-LLIN P. vivax infections in anophelines had decreased but P. falciparum infections had increased despite the opposite observation in humans. LLIN distribution had distinct effects on P. falciparum and P. vivax. Higher resilience of

  3. [A longitudinal entomologic survey on the transmission of malaria in Ouagadougou (Burkina Faso)].

    Science.gov (United States)

    Rossi, P; Belli, A; Mancini, L; Sabatinelli, G

    1986-04-01

    A longitudinal entomological malaria survey was carried out in five zones of the town of Ouagadougou, Burkina Faso, and in three neighbouring villages. The main vector is Anopheles gambiae s.l. with An. funestus having a role in some localities during the dry season. Pyrethrum spray catches were carried out once or twice per month to determine variations in vector density. Inoculation rates were estimated from the number of blood-fed vectors per man and from the sporozoite rates. Larval sampling was routinely carried out all over the urban area in order to map the larval breeding sites. Widely different degrees of malaria transmission were documented in the urban area mainly related to the spatial and temporal distribution of An. gambiae larval breeding sites. Higher inoculation rates, depending both on higher vector densities and sporozoite rates, were documented in the villages.

  4. Biodiversity can help prevent malaria outbreaks in tropical forests.

    Directory of Open Access Journals (Sweden)

    Gabriel Zorello Laporta

    Full Text Available BACKGROUND: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. METHODOLOGY/PRINCIPAL FINDINGS: The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text] estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals. CONCLUSIONS/SIGNIFICANCE: To achieve biological conservation and to eliminate

  5. Overview of revised measures to prevent malaria transmission by blood transfusion in France.

    Science.gov (United States)

    Garraud, O; Assal, A; Pelletier, B; Danic, B; Kerleguer, A; David, B; Joussemet, M; de Micco, P

    2008-10-01

    Plasmodial transmission by blood donation is rare in non-endemic countries, but a very serious complication of blood transfusion. The French national blood service (Etablissement Français du Sang and Centre de Transfusion sanguine des Armees) intended to revise the measures to strengthen blood safety with regard to Plasmodiae as transmissible pathogens. To limit the risk of transmission during infusion, serious additive measures have been taken for more than a decade in France, which is the European country with the highest rate of exposure to imported plasmodial infections or malaria. These measures were revised and strengthened after the occurrence of a lethal transfusion-transmitted infection in 2002, but did not prevent another occurrence in 2006. This report examines the weaknesses of the systems and aims at emphasizing the safety measures already taken and addresses issues to best respond to that risk.

  6. Spatial heterogeneity of malaria in Indian reserves of Southwestern Amazonia, Brazil

    Directory of Open Access Journals (Sweden)

    Santos Ricardo

    2008-11-01

    Full Text Available Abstract Background Malaria constitutes a major cause of morbidity in the Brazilian Amazon where an estimated 6 million people are considered at high risk of transmission. Indigenous peoples in the Amazon are particularly vulnerable to potentially epidemic disease such as malaria; notwithstanding, very little is known about the epidemiology of malaria in Indian reservations of the region. The aim of this paper is to present a spatial analysis of malaria cases over a four-year time period (2003–2006 among indigenous peoples of the Brazilian State of Rondônia, southwestern Amazon, by using passive morbidity data (results from Giemsa-stained thick blood smears gathered from the National Malaria Epidemiologic Surveillance System databank. Results A total of 4,160 cases of malaria were recorded in 14 Indian reserves in the State of Rondônia between 2003 and 2006. In six reservations no cases of malaria were reported in the period. Overall, P. vivax accounted for 76.18 of malaria cases reported in the indigenous population of Rondônia. The P. vivax/P. falciparum ratio for the period was 3.78. Two reserves accounted for over half of the cases reported for the total indigenous population in the period – Roosevelt and Pacaas Novas – with a total of 1,646 (39.57% and 1,145 (27.52% cases, respectively. Kernel mapping of malaria mean Annual Parasite Index – API according to indigenous reserves and environmental zones revealed a heterogeneous pattern of disease distribution, with one clear area of high risk of transmission comprising reservations of west Rondônia along the Guaporé-Madeira River basins, and another high risk area to the east, on the Roosevelt reserve. Conclusion By means of kernel mapping, it was shown that malaria risk varies widely between Indian reserves and environmental zones defined on the basis of predominant ecologic characteristics and land use patterns observed in the southwestern Brazilian Amazon. The geographical

  7. Mapping transmission foci to eliminate malaria in the People's Republic of China, 2010-2015: a retrospective analysis.

    Science.gov (United States)

    Feng, Jun; Tu, Hong; Zhang, Li; Zhang, Shaosen; Jiang, Shan; Xia, Zhigui; Zhou, Shuisen

    2018-03-07

    China has initiated the National Malaria Elimination Action Plan, which aims to eliminate malaria by 2020. However, the transmission of malaria occurs sporadically or in distinct foci, which greatly hampers progress toward elimination in China and other countries. The object of this study was to foci categorization and evaluates whether the response met the requirements issued by the nation or WHO. Residual transmissions were investigated and located with fine spatial resolution mapping from parasitological confirmed malaria cases by use of routine national surveillance data. The "1-3-7" timeframes were monitored for each focus between 2012 and 2015. Each focus was identified, and the application of appropriate measures was evaluated. A total of 5996 indigenous cases were recorded between 2010 and 2015; during this period, the number of cases declined by 99.1% (2010, n = 4262; 2015, n = 39). Most indigenous cases (92.5%) were reported in Anhui (n = 2326), Yunnan (n = 1373), Henan (n = 930), Hubei (n = 459), and Guizhou (n = 458). The temporal distribution showed that the indigenous malaria cases were clustered during the period of May to August. A total of 320 foci were carefully investigated and analyzed: 24 were active foci; 72, residual non-active foci; and 224 cleared-up foci. For the foci response evaluation, all the active foci were investigated within 7 days, while 80.2% of the residual non-active foci were responded within 7 days. In addition, reactive case detection (RACD) was carried out with 92.9% of the active foci and vector investigation carried out with 75%. For residual non-active foci, RACD was carried out with 83.2% and vector investigation with 78.2% of the foci. This study used nationwide data to categorize foci in China and evaluate the response of these areas during the control and elimination phases. Our approach stratifies future control responses by identifying those locations where the elimination of endemic

  8. Malaria has no effect on birth weight in Rwanda

    NARCIS (Netherlands)

    Rulisa, S.; Mens, P.F.; Karema, C.; Schallig, H.D.F.H.; Kaligirwa, N.; Vyankandondera, J.; de Vries, P.J.

    2009-01-01

    Background: Malaria has a negative effect on pregnancy outcome, causing low birth weight, premature birth and stillbirths, particularly in areas with high malaria transmission. In Rwanda, malaria transmission intensity ranges from high to nil, probably associated with variable altitudes. Overall,

  9. Malaria has no effect on birth weight in Rwanda

    NARCIS (Netherlands)

    Rulisa, Stephen; Mens, Pètra F.; Karema, Corine; Schallig, Henk D. F. H.; Kaligirwa, Nadine; Vyankandondera, Joseph; de Vries, Peter J.

    2009-01-01

    Malaria has a negative effect on pregnancy outcome, causing low birth weight, premature birth and stillbirths, particularly in areas with high malaria transmission. In Rwanda, malaria transmission intensity ranges from high to nil, probably associated with variable altitudes. Overall, the incidence

  10. Change of strategy is required for malaria elimination: a case study in Purworejo District, Central Java Province, Indonesia.

    Science.gov (United States)

    Murhandarwati, E Elsa Herdiana; Fuad, Anis; Sulistyawati; Wijayanti, Mahardika Agus; Bia, Michael Badi; Widartono, Barandi Sapta; Kuswantoro; Lobo, Neil F; Supargiyono; Hawley, William A

    2015-08-16

    Malaria has been targeted for elimination from Indonesia by 2030, with varying timelines for specific geographical areas based on disease endemicity. The regional deadline for malaria elimination for Java island, given the steady decrease of malaria cases, was the end of 2015. Purworejo District, a malaria-endemic area in Java with an annual parasite incidence (API) of 0.05 per 1,000 population in 2009, aims to enter this elimination stage. This study documents factors that affect incidence and spatial distribution of malaria in Purworejo, such as geomorphology, topography, health system issues, and identifies potential constraints and challenges to achieve the elimination stage, such as inter-districts coordination, decentralization policy and allocation of financial resources for the programme. Historical malaria data from 2007 to 2011 were collected through secondary data, in-depth interviews and focus group discussions during study year (2010-2011). Malaria cases were mapped using the village-centroid shape file to visualize its distribution with geomorphologic characteristics overlay and spatial distribution of malaria. API in each village in Purworejo and its surrounding districts from 2007 to 2011 was stratified into high, middle or low case incidence to show the spatiotemporal mapping pattern. The spatiotemporal pattern of malaria cases in Purworejo and the adjacent districts demonstrate repeated concentrated occurrences of malaria in specific areas from 2007 to 2011. District health system issues, i.e., suboptimal coordination between primary care and referral systems, suboptimal inter-district collaboration for malaria surveillance, decentralization policy and the lack of resources, especially district budget allocations for the malaria programme, were major constraints for programme sustainability. A new malaria elimination approach that fits the local disease transmission, intervention and political system is required. These changes include timely

  11. Aggressive mosquito fauna and malaria transmission in a forest area targeted for the creation of an agro-industrial complex in the south of Cameroon

    Directory of Open Access Journals (Sweden)

    P. Ntonga Akono

    2016-12-01

    Full Text Available Baseline entomological information should be collected before the implementation of industrial projects in malaria endemic areas. This allows for subsequent monitoring and evaluation of the project impact on malaria vectors. This study aimed at assessing the vectorial system and malaria transmission in two ecologically different villages of the South-Cameroon forest bloc targeted for the creation of an agro-industrial complex. For four consecutive seasons in 2013, adult mosquitoes were captured using Human Landing Catch in NDELLE village (located along a main road in a degraded forest with many fish ponds and KOMBO village (located 5km far from the main road in a darker forest and crossed by the Mvobo River. Morpho-taxonomic techniques were used alongside molecular techniques for the identification of mosquito species. ELISA test was used for the detection of circumsporozoite protein antigen of Plasmodium falciparum. Mosquito biting rate was higher in NDELLE than in KOMBO (28.18 versus 17.34 bites per person per night. Mosquitoes had a strong tendency to endophagy both in NDELLE (73.57% and KOMBO (70.21%. Three anophelines species were identified; An. gambiae, An. funestus s.s and An. moucheti s.s.. An. gambiae and An. funestus s.s. represented the bulk of aggressive mosquitoes in NDELLE (n=10,891; 96.62%. An. gambiae was responsible for 62.6% and 77.72% of malaria transmission in KOMBO and NDELLE respectively. Mean entomological inoculation rate recorded in KOMBO and NDELLE were 4.82 and 2.02 infective bites per person per night respectively. Vector control was mainly based on the use of long-lasting insecticidal nets and indoor residual spraying. The degraded forest environment added to the presence of fishponds resulted in the increase of aggressive mosquito density but not of malaria transmission. The managers should use these data for monitoring and evaluation of the impact of their project; malaria control strategies should be included in

  12. Effectiveness of malaria control interventions in Madagascar: a nationwide case-control survey.

    Science.gov (United States)

    Kesteman, Thomas; Randrianarivelojosia, Milijaona; Raharimanga, Vaomalala; Randrianasolo, Laurence; Piola, Patrice; Rogier, Christophe

    2016-02-11

    Madagascar, as other malaria endemic countries, depends mainly on international funding for the implementation of malaria control interventions (MCI). As these funds no longer increase, policy makers need to know whether these MCI actually provide the expected protection. This study aimed at measuring the effectiveness of MCI deployed in all transmission patterns of Madagascar in 2012-2013 against the occurrence of clinical malaria cases. From September 2012 to August 2013, patients consulting for non-complicated malaria in 31 sentinel health centres (SHC) were asked to answer a short questionnaire about long-lasting insecticidal nets (LLIN) use, indoor residual spraying (IRS) in the household and intermittent preventive treatment of pregnant women (IPTp) intake. Controls were healthy all-ages individuals sampled from a concurrent cross-sectional survey conducted in areas surrounding the SHC. Cases and controls were retained in the database if they were resident of the same communes. The association between Plasmodium infection and exposure to MCI was calculated by multivariate multilevel models, and the protective effectiveness (PE) of an intervention was defined as 1 minus the odds ratio of this association. Data about 841 cases (out of 6760 cases observed in SHC) and 8284 controls was collected. The regular use of LLIN provided a significant 51 % PE (95 % CI [16-71]) in multivariate analysis, excluding in one transmission pattern where PE was -11 % (95 % CI [-251 to 65]) in univariate analysis. The PE of IRS was 51 % (95 % CI [31-65]), and the PE of exposure to both regular use of LLIN and IRS was 72 % (95 % CI [28-89]) in multivariate analyses. Vector control interventions avoided yearly over 100,000 clinical cases of malaria in Madagascar. The maternal PE of IPTp was 73 %. In Madagascar, LLIN and IRS had good PE against clinical malaria. These results may apply to other countries with similar transmission profiles, but such case-control surveys could be

  13. Characterization of Plasmodium vivax transmission-blocking activity in low to moderate malaria transmission settings of the Colombian Pacific coast.

    Science.gov (United States)

    Arévalo-Herrera, Myriam; Solarte, Yezid; Rocha, Leonardo; Alvarez, Diego; Beier, John C; Herrera, Sócrates

    2011-02-01

    Malaria infection induces antibodies capable of suppressing the infectivity of gametocytes and gametes, however, little is known about the duration of the antibody response, the parasite specificity, and the role of complement. We report the analyses of the transmission-blocking (TB) activity of sera collected from 105 Plasmodium vivax-infected and 44 non-infected individuals from a malaria endemic region of Colombia, using a membrane feeding assay in Anopheles albimanus mosquitoes. In infected donors we found that TB activity was antibody dose dependent (35%), lasted for 2-4 months after infection, and in 70% of the cases different P. vivax wild isolates displayed differential susceptibility to blocking antibodies. Additionally, in a number of assays TB was complement-dependent. Twenty-seven percent of non-infected individuals presented TB activity that correlated with antibody titers. Studies here provide preliminary data on factors of great importance for further work on the development of TB vaccines.

  14. Changing pattern of malaria in Bissau, Guinea Bissau

    DEFF Research Database (Denmark)

    Rodrigues, Amabelia; Schellenberg, Joanna Armstrong; Kofoed, Poul-Erik

    2008-01-01

    OBJECTIVE: To describe the epidemiology of malaria in Guinea-Bissau, in view of the fact that more funds are available now for malaria control in the country. METHODS: From May 2003 to May 2004, surveillance for malaria was conducted among children less than 5 years of age at three health centres...... covering the study area of the Bandim Health Project (BHP) and at the outpatient clinic of the national hospital in Bissau. Cross-sectional surveys were conducted in the community in different malaria seasons. RESULTS: Malaria was overdiagnosed in both health centres and hospital. Sixty-four per cent...... of the children who presented at a health centre were clinically diagnosed with malaria, but only 13% of outpatient children who tested for malaria had malaria parasitaemia. Only 44% (963/2193) of children admitted to hospital with a diagnosis of malaria had parasitaemia. The proportion of positive cases...

  15. History of malaria research and its contribution to the malaria control success in Suriname: a review

    NARCIS (Netherlands)

    Breeveld, Florence J. V.; Vreden, Stephen G. S.; Grobusch, Martin P.

    2012-01-01

    Suriname has cleared malaria from its capital city and coastal areas mainly through the successful use of chloroquine and DDT (dichloro-diphenyl-trichloroethane) during the Global Malaria Eradication programme that started in 1955. Nonetheless, malaria transmission rates remained high in the

  16. Transmission scenarios of major vector-borne diseases in Colombia, 1990-2016

    Directory of Open Access Journals (Sweden)

    Julio César Padilla

    2017-03-01

    Conclusions: Persistent epidemic and endemic transmission of vector-borne diseases in urban and rural settings in Colombia was observed mainly in the case of malaria, dengue, leishmaniasis and Chagas disease. Such transmission was focused and had variable intensity patterns. On the other hand, the conditions that have favored the emergence of new arboviruses persist.

  17. Socio-cultural factors associated with malaria transmission: a review.

    Science.gov (United States)

    Pinikahana, J

    1992-06-01

    Poverty creates preconditions for malaria and ways for its spread, thereby making it difficult to control malaria. Individual perceptions of illness, in this case malaria, determine people's response to seeking medical care. For example, in Orissa state, India, tribal peoples do not take treatment for malaria or take part in parasite control because they do not consider mosquito bites to be harmful and consider malaria as a mild disease. Untreated people are potential sources of malaria infection. Research from rural areas in other developing countries show the widespread belief that mosquitoes do not transmit malaria. The bad smell emitted by insecticides keep people from various areas in developing countries from spraying their households. The practice forbidding nonkin males from entering houses where only women assemble (purdah) prevents teams from spraying Muslim households in Sri Lanka. Thus, refusal to allow spraying increases the density of mosquitoes, resulting in an increased frequency of mosquito bites, and spread of malaria. Sleeping habits which contribute to the spread of malaria include not using mosquito nets or any protective device, outdoor sleeping, and children sharing a bed. People should protect themselves from mosquito bites by using bed nets, protective repellents, and screening and site selection for dwellings. A study in the Gambia revealed that, among 3 ethnic groups, Mandinkas children had the lowest prevalence rate because almost everyone used bed nets while 1-6% of people in Fula and Wolof villages did. Further, Mandinka children slept on mattresses and the other children slept on the floor. Research needs to examine whether cultural beliefs and values or poverty prevent some people from not using bed nets or any other protective device.

  18. Congenital malaria with atypical presentation: A case report from low transmission area in India

    Directory of Open Access Journals (Sweden)

    Biswas Sukla

    2007-04-01

    Full Text Available Abstract Background Malaria during first few months of life may be due to transplacental transfer of parasitized maternal erythrocytes. Although IgG and IgM antimalarial antibodies can be detected in maternal blood, only IgG antibodies are present in the infant's blood. These antibodies can delay and modify the onset of clinical manifestations. Case Presentation An infant is described who presented with irritability and feeding problems. Clinical examination and investigations revealed that the infant was afebrile, had jaundice, hepatosplenomegaly and haemolytic anaemia. Peripheral smear demonstrated Plasmodium vivax. While the mother had significant levels of immunoglobulin G (IgG, the infant was found negative for IgG and had low immunoglobulin M (IgM levels. The mother had a history of febrile illness during pregnancy and her peripheral smear was also positive for P. vivax. Both were successfully treated with chloroquine in the dose of 25 mg/kg/day over three days. Conclusion The case emphasizes the importance of considering the diagnosis of malaria even in infants in low transmission area, who may not present with typical symptoms of malaria, such as fever, but have other clinical manifestations like jaundice and haemolytic anaemia.

  19. Placental malaria among HIV-infected and uninfected women receiving anti-folates in a high transmission area of Uganda

    Directory of Open Access Journals (Sweden)

    Dorsey Grant

    2009-11-01

    Full Text Available Abstract Background HIV infection increases the risk of placental malaria, which is associated with poor maternal and infant outcomes. Recommendations in Uganda are for HIV-infected pregnant women to receive daily trimethoprim-sulphamethoxazole (TS and HIV-uninfected women to receive intermittent sulphadoxine-pyrimethamine (SP. TS decreases the risk of malaria in HIV-infected adults and children but has not been evaluated among pregnant women. Methods This was a cross sectional study comparing the prevalence of placental malaria between HIV-infected women prescribed TS and HIV-uninfected women prescribed intermittent preventive therapy with sulphadoxine-pyrimethamine (IPT-SP in a high malaria transmission area in Uganda. Placental blood was evaluated for malaria using smear and PCR. Results Placentas were obtained from 150 HIV-infected women on TS and 336 HIV-uninfected women on IPT-SP. The proportion of HIV-infected and HIV-uninfected women with placental malaria was 19% vs. 26% for those positive by PCR and 6% vs. 9% for those positive by smear, respectively. Among all infants, smear+ placental malaria was most predictive of low birth weight (LBW. Primigravidae were at higher risk than multigravidae of having placental malaria among HIV-uninfected, but not HIV-infected, women. Adjusting for gravidity, age, and season at the time of delivery, HIV-infected women on TS were not at increased risk for placental malaria compared to HIV-uninfected women on IPT-SP, regardless of the definition used. Conclusion Prevalence of placental malaria was similar in HIV-infected women on TS and HIV-uninfected women on IPT-SP. Nonetheless, while nearly all of the women in this study were prescribed anti-folates, the overall risk of placental malaria and LBW was unacceptably high. The population attributable risk of placental malaria on LBW was substantial, suggesting that future interventions that further diminish the risk of placental malaria may have a

  20. Modelling the epidemiological impact of intermittent preventive treatment against malaria in infants.

    Directory of Open Access Journals (Sweden)

    Amanda Ross

    Full Text Available BACKGROUND: Trials of intermittent preventive treatment against malaria in infants (IPTi using sulphadoxine-pyrimethamine (SP have shown a positive, albeit variable, protective efficacy against clinical malaria episodes. The impact of IPTi in different epidemiological settings and over time is unknown and predictions are hampered by the lack of knowledge about how IPTi works. We investigated mechanisms proposed for the action of IPTi and made predictions of the likely impact on morbidity and mortality. METHODS/PRINCIPAL FINDINGS: We used a comprehensive, individual-based, stochastic model of malaria epidemiology to simulate recently published trials of IPTi using SP with site-specific characteristics as inputs. This baseline model was then modified to represent hypotheses concerning the duration of action of SP, the temporal pattern of fevers caused by individual infections, potential benefits of avoiding fevers on immunity and the effect of sub-therapeutic levels of SP on parasite dynamics. The baseline model reproduced the pattern of results reasonably well. None of the models based on alternative hypotheses improved the fit between the model predictions and observed data. Predictions suggest that IPTi would have a beneficial effect across a range of transmission intensities. IPTi was predicted to avert a greater number of episodes where IPTi coverage was higher, the health system treatment coverage lower, and for drugs which were more efficacious and had longer prophylactic periods. The predicted cumulative benefits were proportionately slightly greater for severe malaria episodes and malaria-attributable mortality than for acute episodes in the settings modelled. Modest increased susceptibility was predicted between doses and following the last dose, but these were outweighed by the cumulative benefits. The impact on transmission intensity was negligible. CONCLUSIONS: The pattern of trial results can be accounted for by differences between

  1. Identifying malaria hotspots in Keur Soce health and demographic surveillance site in context of low transmission.

    Science.gov (United States)

    Ndiath, Mansour; Faye, Babacar; Cisse, Badara; Ndiaye, Jean Louis; Gomis, Jules François; Dia, Anta Tal; Gaye, Oumar

    2014-11-24

    Malaria is major public health problem in Senegal. In some parts of the country, it occurs almost permanently with a seasonal increase during the rainy season. There is evidence to suggest that the prevalence of malaria in Senegal has decreased considerably during the past few years. Recent data from the Senegalese National Malaria Control Programme (NMCP) indicates that the number of malaria cases decrease from 1,500,000 in 2006 to 174,339 in 2010. With the decline of malaria morbidity in Senegal, the characterization of the new epidemiological profile of this disease is crucial for public health decision makers. SaTScan™ software using the Kulldorf method of retrospective space-time permutation and the Bernoulli purely spatial model was used to identify malaria clusters using confirmed malaria cases in 74 villages. ArcMAp was used to map malaria hotspots. Logistic regression was used to investigate risk factors for malaria hotspots in Keur Soce health and demographic surveillance site. A total of 1,614 individuals in 440 randomly selected households were enrolled. The overall malaria prevalence was 12%. The malaria prevalence during the study period varied from less than 2% to more than 25% from one village to another. The results showed also that rooms located between 50 m to 100 m away from livestock holding place [adjusted O.R = 0.7, P = 0.044, 95% C.I (1.02 - 7.42)], bed net use [adjusted O.R = 1.2, P = 0.024, 95% C.I (1.02 -1.48)], are good predictors for malaria hotspots in the Keur Soce health and demographic surveillance site. The socio economic status of the household also predicted on hotspots patterns. The less poor household are 30% less likely to be classified as malaria hotspots area compared to the poorest household [adjusted O.R = 0.7, P = 0.014, 95% C.I (0.47 - 0.91)]. The study investigated risk factors for malaria hotspots in small communities in the Keur Soce site. The result showed considerable variation of malaria

  2. An experimental hut study to quantify the effect of DDT and airborne pyrethroids on entomological parameters of malaria transmission

    Science.gov (United States)

    2014-01-01

    Background Current malaria vector control programmes rely on insecticides with rapid contact toxicity. However, spatial repellents can also be applied to reduce man-vector contact, which might ultimately impact malaria transmission. The aim of this study was to quantify effects of airborne pyrethroids from coils and DDT used an indoor residual spray (IRS) on entomological parameters that influence malaria transmission. Methods The effect of Transfluthrin and Metofluthrin coils compared to DDT on house entry, exit and indoor feeding behaviour of Anopheles gambiae sensu lato were measured in experimental huts in the field and in the semi-field. Outcomes were deterrence - reduction in house entry of mosquitoes; irritancy or excito-repellency – induced premature exit of mosquitoes; blood feeding inhibition and effect on mosquito fecundity. Results Transfluthrin coils, Metofluthrin coils and DDT reduced human vector contact through deterrence by 38%, 30% and 8%, respectively and induced half of the mosquitoes to leave huts before feeding (56%, 55% and 48%, respectively). Almost all mosquitoes inside huts with Metofluthrin and Transfluthrin coils and more than three quarters of mosquitoes in the DDT hut did not feed, almost none laid eggs and 67%, 72% and 70% of all mosquitoes collected from Transfluthrin, Metofluthrin and DDT huts, respectively had died after 24 hours. Conclusion This study highlights that airborne pyrethroids and DDT affect a range of anopheline mosquito behaviours that are important parameters in malaria transmission, namely deterrence, irritancy/excito-repellency and blood-feeding inhibition. These effects are in addition to significant toxicity and reduced mosquito fecundity that affect mosquito densities and, therefore, provide community protection against diseases for both users and non-users. Airborne insecticides and freshly applied DDT had similar effects on deterrence, irritancy and feeding inhibition. Therefore, it is suggested that

  3. An experimental hut study to quantify the effect of DDT and airborne pyrethroids on entomological parameters of malaria transmission.

    Science.gov (United States)

    Ogoma, Sheila B; Lorenz, Lena M; Ngonyani, Hassan; Sangusangu, Robert; Kitumbukile, Mohammed; Kilalangongono, Masoudi; Simfukwe, Emmanuel T; Mseka, Anton; Mbeyela, Edgar; Roman, Deogratius; Moore, Jason; Kreppel, Katharina; Maia, Marta F; Moore, Sarah J

    2014-04-01

    Current malaria vector control programmes rely on insecticides with rapid contact toxicity. However, spatial repellents can also be applied to reduce man-vector contact, which might ultimately impact malaria transmission. The aim of this study was to quantify effects of airborne pyrethroids from coils and DDT used an indoor residual spray (IRS) on entomological parameters that influence malaria transmission. The effect of Transfluthrin and Metofluthrin coils compared to DDT on house entry, exit and indoor feeding behaviour of Anopheles gambiae sensu lato were measured in experimental huts in the field and in the semi-field. Outcomes were deterrence--reduction in house entry of mosquitoes; irritancy or excito-repellency--induced premature exit of mosquitoes; blood feeding inhibition and effect on mosquito fecundity. Transfluthrin coils, Metofluthrin coils and DDT reduced human vector contact through deterrence by 38%, 30% and 8%, respectively and induced half of the mosquitoes to leave huts before feeding (56%, 55% and 48%, respectively). Almost all mosquitoes inside huts with Metofluthrin and Transfluthrin coils and more than three quarters of mosquitoes in the DDT hut did not feed, almost none laid eggs and 67%, 72% and 70% of all mosquitoes collected from Transfluthrin, Metofluthrin and DDT huts, respectively had died after 24 hours. This study highlights that airborne pyrethroids and DDT affect a range of anopheline mosquito behaviours that are important parameters in malaria transmission, namely deterrence, irritancy/excito-repellency and blood-feeding inhibition. These effects are in addition to significant toxicity and reduced mosquito fecundity that affect mosquito densities and, therefore, provide community protection against diseases for both users and non-users. Airborne insecticides and freshly applied DDT had similar effects on deterrence, irritancy and feeding inhibition. Therefore, it is suggested that airborne pyrethroids, if delivered in suitable

  4. Epidemiology of Plasmodium vivax Malaria in Peru.

    Science.gov (United States)

    Rosas-Aguirre, Angel; Gamboa, Dionicia; Manrique, Paulo; Conn, Jan E; Moreno, Marta; Lescano, Andres G; Sanchez, Juan F; Rodriguez, Hugo; Silva, Hermann; Llanos-Cuentas, Alejandro; Vinetz, Joseph M

    2016-12-28

    Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s-2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005-2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine-primaquine for P. vivax Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination. © The American Society of Tropical Medicine and Hygiene.

  5. Epidemiology of Plasmodium vivax Malaria in Peru

    Science.gov (United States)

    Rosas-Aguirre, Angel; Gamboa, Dionicia; Manrique, Paulo; Conn, Jan E.; Moreno, Marta; Lescano, Andres G.; Sanchez, Juan F.; Rodriguez, Hugo; Silva, Hermann; Llanos-Cuentas, Alejandro; Vinetz, Joseph M.

    2016-01-01

    Malaria in Peru, dominated by Plasmodium vivax, remains a public health problem. The 1990s saw newly epidemic malaria emerge, primarily in the Loreto Department in the Amazon region, including areas near to Iquitos, the capital city, but sporadic malaria transmission also occurred in the 1990s–2000s in both north-coastal Peru and the gold mining regions of southeastern Peru. Although a Global Fund-supported intervention (PAMAFRO, 2005–2010) was temporally associated with a decrease of malaria transmission, from 2012 to the present, both P. vivax and Plasmodium falciparum malaria cases have rapidly increased. The Peruvian Ministry of Health continues to provide artemesinin-based combination therapy for microscopy-confirmed cases of P. falciparum and chloroquine–primaquine for P. vivax. Malaria transmission continues in remote areas nonetheless, where the mobility of humans and parasites facilitates continued reintroduction outside of ongoing surveillance activities, which is critical to address for future malaria control and elimination efforts. Ongoing P. vivax research gaps in Peru include the following: identification of asymptomatic parasitemics, quantification of the contribution of patent and subpatent parasitemics to mosquito transmission, diagnosis of nonparasitemic hypnozoite carriers, and implementation of surveillance for potential emergence of chloroquine- and 8-aminoquinoline-resistant P. vivax. Clinical trials of tafenoquine in Peru have been promising, and glucose-6-phosphate dehydrogenase deficiency in the region has not been observed to be a limitation to its use. Larger-scale challenges for P. vivax (and malaria in general) in Peru include logistical difficulties in accessing remote riverine populations, consequences of government policy and poverty trends, and obtaining international funding for malaria control and elimination. PMID:27799639

  6. Is the Malaria Elimination Target Achievable?

    African Journals Online (AJOL)

    user

    in low and middle income countries (1-4). In. 2013, malaria killed over a billion people, mostly in sub-Saharan ... According to the 2016 report,. 27% of the population lives in high transmission areas while 41% ... Similarly several countries have reduced malaria transmission to levels low enough to allow them to embark on ...

  7. Plasmodium evasion of mosquito immunity and global malaria transmission: The lock-and-key theory.

    Science.gov (United States)

    Molina-Cruz, Alvaro; Canepa, Gaspar E; Kamath, Nitin; Pavlovic, Noelle V; Mu, Jianbing; Ramphul, Urvashi N; Ramirez, Jose Luis; Barillas-Mury, Carolina

    2015-12-08

    Plasmodium falciparum malaria originated in Africa and became global as humans migrated to other continents. During this journey, parasites encountered new mosquito species, some of them evolutionarily distant from African vectors. We have previously shown that the Pfs47 protein allows the parasite to evade the mosquito immune system of Anopheles gambiae mosquitoes. Here, we investigated the role of Pfs47-mediated immune evasion in the adaptation of P. falciparum to evolutionarily distant mosquito species. We found that P. falciparum isolates from Africa, Asia, or the Americas have low compatibility to malaria vectors from a different continent, an effect that is mediated by the mosquito immune system. We identified 42 different haplotypes of Pfs47 that have a strong geographic population structure and much lower haplotype diversity outside Africa. Replacement of the Pfs47 haplotypes in a P. falciparum isolate is sufficient to make it compatible to a different mosquito species. Those parasites that express a Pfs47 haplotype compatible with a given vector evade antiplasmodial immunity and survive. We propose that Pfs47-mediated immune evasion has been critical for the globalization of P. falciparum malaria as parasites adapted to new vector species. Our findings predict that this ongoing selective force by the mosquito immune system could influence the dispersal of Plasmodium genetic traits and point to Pfs47 as a potential target to block malaria transmission. A new model, the "lock-and-key theory" of P. falciparum globalization, is proposed, and its implications are discussed.

  8. N-Terminal Prodomain of Pfs230 Synthesized Using a Cell-Free System Is Sufficient To Induce Complement-Dependent Malaria Transmission-Blocking Activity▿

    Science.gov (United States)

    Tachibana, Mayumi; Wu, Yimin; Iriko, Hideyuki; Muratova, Olga; MacDonald, Nicholas J.; Sattabongkot, Jetsumon; Takeo, Satoru; Otsuki, Hitoshi; Torii, Motomi; Tsuboi, Takafumi

    2011-01-01

    The aim of a malaria transmission-blocking vaccine is to block the development of malaria parasites in the mosquito and thus prevent subsequent infection of the human host. Previous studies have demonstrated that the gametocyte/gamete surface protein Pfs230 can induce transmission-blocking immunity and have evaluated Escherichia coli-produced Pfs230 as a transmission-blocking vaccine candidate. In this study, we used the wheat germ cell-free expression system to produce N-terminal fragments of Pfs230 and evaluated the transmission-blocking activity of antisera raised against the recombinant Pfs230 protein. The rabbit antisera reacted to the surface of cultured gametocytes and gametes of the Plasmodium falciparum NF54 line, recognized the 360-kDa form of parasite-produced Pfs230 by Western blot assay, and reduced the infectivity of NF54 parasites to Anopheles stefensi mosquitoes in the presence of complement in a standard membrane feeding assay. Thus, our data demonstrate that the N-terminal pro domain of Pfs230 is sufficient to induce complement-dependent transmission-blocking activity against P. falciparum. PMID:21715579

  9. N-terminal prodomain of Pfs230 synthesized using a cell-free system is sufficient to induce complement-dependent malaria transmission-blocking activity.

    Science.gov (United States)

    Tachibana, Mayumi; Wu, Yimin; Iriko, Hideyuki; Muratova, Olga; MacDonald, Nicholas J; Sattabongkot, Jetsumon; Takeo, Satoru; Otsuki, Hitoshi; Torii, Motomi; Tsuboi, Takafumi

    2011-08-01

    The aim of a malaria transmission-blocking vaccine is to block the development of malaria parasites in the mosquito and thus prevent subsequent infection of the human host. Previous studies have demonstrated that the gametocyte/gamete surface protein Pfs230 can induce transmission-blocking immunity and have evaluated Escherichia coli-produced Pfs230 as a transmission-blocking vaccine candidate. In this study, we used the wheat germ cell-free expression system to produce N-terminal fragments of Pfs230 and evaluated the transmission-blocking activity of antisera raised against the recombinant Pfs230 protein. The rabbit antisera reacted to the surface of cultured gametocytes and gametes of the Plasmodium falciparum NF54 line, recognized the 360-kDa form of parasite-produced Pfs230 by Western blot assay, and reduced the infectivity of NF54 parasites to Anopheles stefensi mosquitoes in the presence of complement in a standard membrane feeding assay. Thus, our data demonstrate that the N-terminal pro domain of Pfs230 is sufficient to induce complement-dependent transmission-blocking activity against P. falciparum.

  10. The Development of Plasmodium falciparum-Specific IL10 CD4 T Cells and Protection from Malaria in Children in an Area of High Malaria Transmission.

    Science.gov (United States)

    Boyle, Michelle J; Jagannathan, Prasanna; Bowen, Katherine; McIntyre, Tara I; Vance, Hilary M; Farrington, Lila A; Schwartz, Alanna; Nankya, Felistas; Naluwu, Kate; Wamala, Samuel; Sikyomu, Esther; Rek, John; Greenhouse, Bryan; Arinaitwe, Emmanuel; Dorsey, Grant; Kamya, Moses R; Feeney, Margaret E

    2017-01-01

    Cytokine-producing CD4 T cells have important roles in immunity against Plasmodium falciparum (Pf) malaria. However, the factors influencing functional differentiation of Pf- specific CD4 T cells in naturally exposed children are not well understood. Moreover, it is not known which CD4 T-cell cytokine-producing subsets are most critical for protection. We measured Pf- specific IFNγ-, IL10-, and TNFα-producing CD4 T-cell responses by multi-parametric flow cytometry in 265 children aged 6 months to 10 years enrolled in a longitudinal observational cohort in a high malaria transmission site in Uganda. We found that both age and parasite burden were independently associated with cytokine production by CD4 T cells. IL10 production by IFNγ + CD4 T cells was higher in younger children and in those with high-parasite burden during recent infection. To investigate the role of CD4 T cells in immunity to malaria, we measured associations of Pf -specific CD4 cytokine-producing cells with the prospective risk of Pf infection and clinical malaria, adjusting for household exposure to Pf -infected mosquitos. Overall, the prospective risk of infection was not associated with the total frequency of Pf- specific CD4 T cells, nor of any cytokine-producing CD4 subset. However, the frequency of CD4 cells producing IL10 but not inflammatory cytokines (IFNγ and TNFα) was associated with a decreased risk of clinical malaria once infected. These data suggest that functional polarization of the CD4 T-cell response may modulate the clinical manifestations of malaria and play a role in naturally acquired immunity.

  11. Anopheles culicifacies sibling species in Odisha, eastern India: First appearance of Anopheles culicifacies E and its vectorial role in malaria transmission.

    Science.gov (United States)

    Das, Mumani; Das, Biswadeep; Patra, Aparna P; Tripathy, Hare K; Mohapatra, Namita; Kar, Santanu K; Hazra, Rupenangshu K

    2013-07-01

    To identify the Anopheles culicifacies sibling species complex and study their vectorial role in malaria endemic regions of Odisha. Mosquitoes were collected from 6 malaria endemic districts using standard entomological collection methods. An. culicifacies sibling species were identified by multiplex polymerase chain reaction (PCR) using cytochrome oxidase subunit II (COII) region of mitochondrial DNA. Plasmodium falciparum (Pf) sporozoite rate and human blood fed percentage (HBF) were estimated by PCR using Pf- and human-specific primers. Sequencing and phylogenetic analysis were performed to confirm the type of sibling species of An. culicifacies found in Odisha. Multiplex PCR detected An. culicifacies sibling species A, B, C, D and E in the malaria endemic regions of Odisha. An. culicifacies E was detected for the first time in Odisha, which was further confirmed by molecular phylogenetics. Highest sporozoite rate and HBF percentage were observed in An. culicifacies E in comparison with other sibling species. An. culicifacies E collected from Nawarangapur, Nuapara and Keonjhar district showed high HBF percentage and sporozoite rates. An. culicifacies B was the most abundant species, followed by An. culicifacies C and E. High sporozoite rate and HBF of An. culicifacies E indicated that it plays an important role in malaria transmission in Odisha. Appropriate control measures against An. culicifacies E at an early stage are needed to prevent further malaria transmission in Odisha. © 2013 Blackwell Publishing Ltd.

  12. Malaria transmission and insecticide resistance of Anopheles gambiae in Libreville and Port-Gentil, Gabon

    Directory of Open Access Journals (Sweden)

    Kombila Maryvonne

    2010-11-01

    Full Text Available Abstract Background Urban malaria is a major health priority for civilian and militaries populations. A preliminary entomologic study has been conducted in 2006-2007, in the French military camps of the two mains towns of Gabon: Libreville and Port-Gentil. The aim was to assess the malaria transmission risk for troops. Methods Mosquitoes sampled by human landing collection were identified morphologically and by molecular methods. The Plasmodium falciparum circumsporozoïte (CSP indexes were measured by ELISA, and the entomological inoculation rates (EIR were calculated for both areas. Molecular assessments of pyrethroid knock down (kdr resistance and of insensitive acetylcholinesterase resistance were conducted. Results In Libreville, Anopheles gambiae s.s. S form was the only specie of the An. gambiae complex present and was responsible of 9.4 bites per person per night. The circumsporozoïte index was 0.15% and the entomological inoculation rate estimated to be 1.23 infective bites during the four months period. In Port-Gentil, Anopheles melas (75.5% of catches and An. gambiae s.s. S form (24.5% were responsible of 58.7 bites per person per night. The CSP indexes were of 1.67% for An. gambiae s.s and 0.28% for An. melas and the EIRs were respectively of 1.8 infective bites per week and of 0.8 infective bites per week. Both kdr-w and kdr-e mutations in An. gambiae S form were found in Libreville and in Port-Gentil. Insensitive acetylcholinesterase has been detected for the first time in Gabon in Libreville. Conclusion Malaria transmission exists in both town, but with high difference in the level of risk. The co-occurrence of molecular resistances to the main families of insecticide has implications for the effectiveness of the current vector control programmes that are based on pyrethroid-impregnated bed nets.

  13. 20 YEARS OF PROGRESS IN MALARIA RESEARCH

    Directory of Open Access Journals (Sweden)

    J. Kevin Baird

    2012-09-01

    Full Text Available U.S. Naval Medical Research Unit No. 2 Detachment (NAMRU, in collaboration with National Institute of Health Research and Development (NIHRD and many other Indonesian government agencies and universities, has conducted studies of malaria throughout Java, Sumatra, Sulawesi, Kalimantan, Flores, Timor, and Irian Jaya. Most studies have characterized the disease epidemiologically by defining the parasitologic distribution of the disease in the population, and by defining the entomologic parameters of local transmission. Studies of patterns of resistance to antimalarials have also been done at many field sites. Several studies on the clinical management of malaria occurred in Rumah Sakit Umum Propinsi in Jayapura. In addition to these studies which impact upon local public health planning policy, immunologic studies routinely occurred in support of the global effort to develop a vaccine against malaria. This report summarizes the progress made in these areas of research during the first 20 years of NAMRU in Indonesia.

  14. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control.

    Directory of Open Access Journals (Sweden)

    Lauren M Childs

    2016-12-01

    Full Text Available The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.

  15. Urban and suburban malaria in Rondônia (Brazilian Western Amazon II: perennial transmissions with high anopheline densities are associated with human environmental changes

    Directory of Open Access Journals (Sweden)

    Luiz Herman Soares Gil

    2007-06-01

    Full Text Available Longitudinal entomological surveys were performed in Vila Candelária and adjacent rural locality of Bate Estaca concomitantly with a clinical epidemiologic malaria survey. Vila Candelária is a riverside periurban neighborhood of Porto Velho, capital of the state of Rondônia in the Brazilian Amazon. High anopheline densities were found accompanying the peak of rainfall, as reported in rural areas of the region. Moreover, several minor peaks of anophelines were recorded between the end of the dry season and the beginning of the next rainy season. These secondary peaks were related to permanent anopheline breeding sites resulting from human activities. Malaria transmission is, therefore, observed all over the year. In Vila Candelária, the risk of malaria infection both indoors and outdoors was calculated as being 2 and 10/infecting bites per year per inhabitant respectively. Urban malaria in riverside areas was associated with two factors: (1 high prevalence of asymptomatic carriers in a stable human population and (2 high anopheline densities related to human environmental changes. This association is probably found in other Amazonian urban and suburban communities. The implementation of control measures should include environmental sanitation and better characterization of the role of asymptomatic carriers in malaria transmission.

  16. morphological identification of malaria vectors within anopheles

    African Journals Online (AJOL)

    DR. AMIN

    Africa among the human population. Determination of risk of malaria transmission requires quick and accurate methods of identification of Anopheles mosquitoes especially when targeting vector control. (Maxwell, et al., 2003). Anopheles mosquito transmits malaria. The most important vectors of malaria are members of.

  17. Malaria in Brazil: an overview.

    Science.gov (United States)

    Oliveira-Ferreira, Joseli; Lacerda, Marcus V G; Brasil, Patrícia; Ladislau, José L B; Tauil, Pedro L; Daniel-Ribeiro, Cláudio Tadeu

    2010-04-30

    Malaria is still a major public health problem in Brazil, with approximately 306,000 registered cases in 2009, but it is estimated that in the early 1940s, around six million cases of malaria occurred each year. As a result of the fight against the disease, the number of malaria cases decreased over the years and the smallest numbers of cases to-date were recorded in the 1960s. From the mid-1960s onwards, Brazil underwent a rapid and disorganized settlement process in the Amazon and this migratory movement led to a progressive increase in the number of reported cases. Although the main mosquito vector (Anopheles darlingi) is present in about 80% of the country, currently the incidence of malaria in Brazil is almost exclusively (99,8% of the cases) restricted to the region of the Amazon Basin, where a number of combined factors favors disease transmission and impair the use of standard control procedures. Plasmodium vivax accounts for 83,7% of registered cases, while Plasmodium falciparum is responsible for 16,3% and Plasmodium malariae is seldom observed. Although vivax malaria is thought to cause little mortality, compared to falciparum malaria, it accounts for much of the morbidity and for huge burdens on the prosperity of endemic communities. However, in the last few years a pattern of unusual clinical complications with fatal cases associated with P. vivax have been reported in Brazil and this is a matter of concern for Brazilian malariologists. In addition, the emergence of P. vivax strains resistant to chloroquine in some reports needs to be further investigated. In contrast, asymptomatic infection by P. falciparum and P. vivax has been detected in epidemiological studies in the states of Rondonia and Amazonas, indicating probably a pattern of clinical immunity in both autochthonous and migrant populations. Seropidemiological studies investigating the type of immune responses elicited in naturally-exposed populations to several malaria vaccine candidates in

  18. Malaria in Brazil: an overview

    Directory of Open Access Journals (Sweden)

    Brasil Patrícia

    2010-04-01

    Full Text Available Abstract Malaria is still a major public health problem in Brazil, with approximately 306 000 registered cases in 2009, but it is estimated that in the early 1940s, around six million cases of malaria occurred each year. As a result of the fight against the disease, the number of malaria cases decreased over the years and the smallest numbers of cases to-date were recorded in the 1960s. From the mid-1960s onwards, Brazil underwent a rapid and disorganized settlement process in the Amazon and this migratory movement led to a progressive increase in the number of reported cases. Although the main mosquito vector (Anopheles darlingi is present in about 80% of the country, currently the incidence of malaria in Brazil is almost exclusively (99,8% of the cases restricted to the region of the Amazon Basin, where a number of combined factors favors disease transmission and impair the use of standard control procedures. Plasmodium vivax accounts for 83,7% of registered cases, while Plasmodium falciparum is responsible for 16,3% and Plasmodium malariae is seldom observed. Although vivax malaria is thought to cause little mortality, compared to falciparum malaria, it accounts for much of the morbidity and for huge burdens on the prosperity of endemic communities. However, in the last few years a pattern of unusual clinical complications with fatal cases associated with P. vivax have been reported in Brazil and this is a matter of concern for Brazilian malariologists. In addition, the emergence of P. vivax strains resistant to chloroquine in some reports needs to be further investigated. In contrast, asymptomatic infection by P. falciparum and P. vivax has been detected in epidemiological studies in the states of Rondonia and Amazonas, indicating probably a pattern of clinical immunity in both autochthonous and migrant populations. Seropidemiological studies investigating the type of immune responses elicited in naturally-exposed populations to several

  19. Establishing the extent of malaria transmission and challenges facing pre-elimination in the Republic of Djibouti.

    Science.gov (United States)

    Noor, Abdisalan M; Mohamed, Maoulid B; Mugyenyi, Cleopatra K; Osman, Mouna A; Guessod, Hawa H; Kabaria, Caroline W; Ahmed, Ifrah A; Nyonda, Mary; Cook, Jackie; Drakeley, Christopher J; Mackinnon, Margaret J; Snow, Robert W

    2011-05-11

    Countries aiming for malaria elimination require a detailed understanding of the current intensity of malaria transmission within their national borders. National household sample surveys are now being used to define infection prevalence but these are less efficient in areas of exceptionally low endemicity. Here we present the results of a national malaria indicator survey in the Republic of Djibouti, the first in sub-Saharan Africa to combine parasitological and serological markers of malaria, to evaluate the extent of transmission in the country and explore the potential for elimination. A national cross-sectional household survey was undertaken from December 2008 to January 2009. A finger prick blood sample was taken from randomly selected participants of all ages to examine for parasitaemia using rapid diagnostic tests (RDTs) and confirmed using Polymerase Chain Reaction (PCR). Blood spots were also collected on filter paper and subsequently used to evaluate the presence of serological markers (combined AMA-1 and MSP-119) of Plasmodium falciparum exposure. Multivariate regression analysis was used to determine the risk factors for P. falciparum infection and/or exposure. The Getis-Ord G-statistic was used to assess spatial heterogeneity of combined infections and serological markers. A total of 7151 individuals were tested using RDTs of which only 42 (0.5%) were positive for P. falciparum infections and confirmed by PCR. Filter paper blood spots were collected for 5605 individuals. Of these 4769 showed concordant optical density results and were retained in subsequent analysis. Overall P. falciparum sero-prevalence was 9.9% (517/4769) for all ages; 6.9% (46/649) in children under the age of five years; and 14.2% (76/510) in the oldest age group (≥50 years). The combined infection and/or antibody prevalence was 10.5% (550/4769) and varied from 8.1% to 14.1% but overall regional differences were not statistically significant (χ2=33.98, p=0.3144). Increasing

  20. Characterization of malaria transmission by vector populations for improved interventions during the dry season in the Kpone-on-Sea area of coastal Ghana

    Directory of Open Access Journals (Sweden)

    Tchouassi David P

    2012-09-01

    Full Text Available Abstract Background Malaria is a major public health problem in Ghana. We present a site-specific entomological study of malaria vectors and transmission indices as part of an effort to develop a site for the testing of improved control strategies including possible vaccine trials. Methods Pyrethrum spray catches (PSC, and indoor and outdoor human landing collections of adult female anopheline mosquitoes were carried out over a six-month period (November 2005 - April 2006 at Kpone-on-Sea, a fishing village in southern Ghana. These were morphologically identified to species level and sibling species of the Anopheles gambiae complex further characterized by the polymerase chain reaction (PCR. Enzyme-linked immunosorbent assay was used to detect Plasmodium falciparum mosquito infectivity and host blood meal sources. Parity rate was examined based on dilatation of ovarian tracheoles following dissection. Results Of the 1233 Anopheles mosquitoes collected, An. gambiae s.l. was predominant (99.5%, followed by An. funestus (0.4% and An. pharoensis (0.1%. All An. gambiae s.l. examined (480 were identified as An. gambiae s.s. with a majority of M molecular form (98.2% and only 1.8% S form with no record of M/S hybrid. A significantly higher proportion of anophelines were observed outdoors relative to indoors (χ2 = 159.34, df = 1, p An. gambiae M molecular form contributed to transmission with a high degree of anthropophily, parity rate and an estimated entomological inoculation rate (EIR of 62.1 infective bites/person/year. The Majority of the infective bites occurred outdoors after 09.00 pm reaching peaks between 12.00-01.00 am and 03.00-04.00 am. Conclusion Anopheles gambiae M molecular form is responsible for maintaining the status quo of malaria in the surveyed site during the study period. The findings provide a baseline for evidence-based planning and implementation of improved malaria interventions. The plasticity observed in

  1. Malaria in pregnant women living in areas of low transmission on the southeast Brazilian Coast: molecular diagnosis and humoural immunity profile

    Directory of Open Access Journals (Sweden)

    Angélica Domingues Hristov

    2014-12-01

    Full Text Available Studies on autochthonous malaria in low-transmission areas in Brazil have acquired epidemiological relevance because they suggest continued transmission in what remains of the Atlantic Forest. In the southeastern portion of the state of São Paulo, outbreaks in the municipality of Juquitiba have been the focus of studies on the prevalence of Plasmodium, including asymptomatic cases. Data on the occurrence of the disease or the presence of antiplasmodial antibodies in pregnant women from this region have not previously been described. Although Plasmodium falciparum in pregnant women has been widely addressed in the literature, the interaction of Plasmodium vivax and Plasmodium malariae with this cohort has been poorly explored to date. We monitored the circulation of Plasmodium in pregnant women in health facilities located in Juquitiba using thick blood film and molecular protocols, as well as immunological assays, to evaluate humoural immune parameters. Through real-time and nested polymerase chain reaction, P. vivax and P. malariae were detected for the first time in pregnant women, with a positivity of 5.6%. Immunoassays revealed the presence of IgG antibodies: 44% for ELISA-Pv, 38.4% for SD-Bioline-Pv and 18.4% for indirect immunofluorescence assay-Pm. The high prevalence of antibodies showed significant exposure of this population to Plasmodium. In regions with similar profiles, testing for a malaria diagnosis might be indicated in prenatal care.

  2. Bayesian geostatistical modelling of malaria and lymphatic filariasis infections in Uganda: predictors of risk and geographical patterns of co-endemicity

    Directory of Open Access Journals (Sweden)

    Pedersen Erling M

    2011-10-01

    Full Text Available Abstract Background In Uganda, malaria and lymphatic filariasis (causative agent Wuchereria bancrofti are transmitted by the same vector species of Anopheles mosquitoes, and thus are likely to share common environmental risk factors and overlap in geographical space. In a comprehensive nationwide survey in 2000-2003 the geographical distribution of W. bancrofti was assessed by screening school-aged children for circulating filarial antigens (CFA. Concurrently, blood smears were examined for malaria parasites. In this study, the resultant malariological data are analysed for the first time and the CFA data re-analysed in order to identify risk factors, produce age-stratified prevalence maps for each infection, and to define the geographical patterns of Plasmodium sp. and W. bancrofti co-endemicity. Methods Logistic regression models were fitted separately for Plasmodium sp. and W. bancrofti within a Bayesian framework. Models contained covariates representing individual-level demographic effects, school-level environmental effects and location-based random effects. Several models were fitted assuming different random effects to allow for spatial structuring and to capture potential non-linearity in the malaria- and filariasis-environment relation. Model-based risk predictions at unobserved locations were obtained via Bayesian predictive distributions for the best fitting models. Maps of predicted hyper-endemic malaria and filariasis were furthermore overlaid in order to define areas of co-endemicity. Results Plasmodium sp. parasitaemia was found to be highly endemic in most of Uganda, with an overall population adjusted parasitaemia risk of 47.2% in the highest risk age-sex group (boys 5-9 years. High W. bancrofti prevalence was predicted for a much more confined area in northern Uganda, with an overall population adjusted infection risk of 7.2% in the highest risk age-group (14-19 year olds. Observed overall prevalence of individual co

  3. The Effect of Indoor Residual Spraying on the Prevalence of Malaria Parasite Infection, Clinical Malaria and Anemia in an Area of Perennial Transmission and Moderate Coverage of Insecticide Treated Nets in Western Kenya.

    Directory of Open Access Journals (Sweden)

    John E Gimnig

    Full Text Available Insecticide treated nets (ITNs and indoor residual spraying (IRS have been scaled up for malaria prevention in sub-Saharan Africa. However, there are few studies on the benefit of implementing IRS in areas with moderate to high coverage of ITNs. We evaluated the impact of an IRS program on malaria related outcomes in western Kenya, an area of intense perennial malaria transmission and moderate ITN coverage (55-65% use of any net the previous night.The Kenya Division of Malaria Control, with support from the US President's Malaria Initiative, conducted IRS in one lowland endemic district with moderate coverage of ITNs. Surveys were conducted in the IRS district and a neighboring district before IRS, after one round of IRS in July-Sept 2008 and after a second round of IRS in April-May 2009. IRS was conducted with pyrethroid insecticides. At each survey, 30 clusters were selected for sampling and within each cluster, 12 compounds were randomly selected. The primary outcomes measured in all residents of selected compounds included malaria parasitemia, clinical malaria (P. falciparum infection plus history of fever and anemia (Hb<8 of all residents in randomly selected compounds. At each survey round, individuals from the IRS district were matched to those from the non-IRS district using propensity scores and multivariate logistic regression models were constructed based on the matched dataset.At baseline and after one round of IRS, there were no differences between the two districts in the prevalence of malaria parasitemia, clinical malaria or anemia. After two rounds of IRS, the prevalence of malaria parasitemia was 6.4% in the IRS district compared to 16.7% in the comparison district (OR = 0.36, 95% CI = 0.22-0.59, p<0.001. The prevalence of clinical malaria was also lower in the IRS district (1.8% vs. 4.9%, OR = 0.37, 95% CI = 0.20-0.68, p = 0.001. The prevalence of anemia was lower in the IRS district but only in children under 5 years of age (2

  4. PATTERNS OF SEVEN AND COMPLICATED MALARIA IN CHILDREN

    African Journals Online (AJOL)

    GB

    2015-10-04

    Oct 4, 2015 ... ABSTRACT. BACKGROUND: Malaria is endemic in Nigeria, with significant records of mortality and morbidity. Adequate community involvement is central to a successful implementation of malaria control programs. This study assessed the effects of a training programme on knowledge of malaria ...

  5. Magnitude of Malaria and Factors among Febrile Cases in Low Transmission Areas of Hadiya Zone, Ethiopia: A Facility Based Cross Sectional Study.

    Directory of Open Access Journals (Sweden)

    Romedan Kedir Delil

    Full Text Available Despite a remarkable decline in morbidity and mortality since the era of malaria roll back strategy, it still poses a huge challenge in Ethiopia in general and in Hadiya Zone in particular. Although, there are data from routine health management information on few indicators, there is scarcity of data showing magnitude of malaria and associated factors including knowledge and practice in the study area. Therefore, the aim of this study was to assess magnitude and factors affecting malaria in low transmission areas among febrile cases attending public health facilities in Hadiya Zone, Ethiopia.A facility based cross-sectional study was conducted in Hadiya Zone from May 15 to June 15, 2014. Simple random sampling was used to select the health facility while systematic random sampling technique was used to reach febrile patients attending public health facilities. Data were collected by a pre-tested structured questionnaire containing sections of socio demographic risk factors and knowledge and prevention practices of malaria. Data were entered to Epi-Info software version 3.5.4 and exported to SPSS version 16 for descriptive and logistic regression analysis.One hundred six (25.8% of participating febrile patients attending at sampled health facilities were found to have malaria by microscopy. Of which, P.vivax, P.falciparum and mixed infection accounted for 76(71. 7%, 27 (25.5% and 3 (2.8%, respectively. History of travel to malaria endemic area, [AOR: 2.59, 95% CI: (1.24, 5.38], not using bed net, [AOR: 4.67, 95%CI:, (2.11, 10.37], poor practice related to malaria prevention and control, [AOR: 2.28, (95%CI: (1.10, 4.74], poor knowledge about malaria, [AOR: 5.09,95%CI: (2.26,11.50] and estimated distance of stagnant water near to the residence, [AOR: 3.32, (95%CI: (1.13, 9.76] were significantly associated factors of malaria positivity in the study.The present study revealed that malaria is still a major source of morbidity in the study area among

  6. Plasmodium vivax hospitalizations in a monoendemic malaria region: severe vivax malaria?

    Science.gov (United States)

    Quispe, Antonio M; Pozo, Edwar; Guerrero, Edith; Durand, Salomón; Baldeviano, G Christian; Edgel, Kimberly A; Graf, Paul C F; Lescano, Andres G

    2014-07-01

    Severe malaria caused by Plasmodium vivax is no longer considered rare. To describe its clinical features, we performed a retrospective case control study in the subregion of Luciano Castillo Colonna, Piura, Peru, an area with nearly exclusive vivax malaria transmission. Severe cases and the subset of critically ill cases were compared with a random set of uncomplicated malaria cases (1:4). Between 2008 and 2009, 6,502 malaria cases were reported, including 106 hospitalized cases, 81 of which fit the World Health Organization definition for severe malaria. Of these 81 individuals, 28 individuals were critically ill (0.4%, 95% confidence interval = 0.2-0.6%) with severe anemia (57%), shock (25%), lung injury (21%), acute renal failure (14%), or cerebral malaria (11%). Two potentially malaria-related deaths occurred. Compared with uncomplicated cases, individuals critically ill were older (38 versus 26 years old, P < 0.001), but similar in other regards. Severe vivax malaria monoinfection with critical illness is more common than previously thought. © The American Society of Tropical Medicine and Hygiene.

  7. The Dynamics of Transmission and Spatial Distribution of Malaria in Riverside Areas of Porto Velho, Rondônia, in the Amazon Region of Brazil

    Science.gov (United States)

    Katsuragawa, Tony Hiroshi; Gil, Luiz Herman Soares; Tada, Mauro Shugiro; Silva, Alexandre de Almeida e; Costa, Joana D'Arc Neves; da Silva Araújo, Maisa; Escobar, Ana Lúcia; Pereira da Silva, Luiz Hildebrando

    2010-01-01

    The study area in Rondônia was the site of extensive malaria epidemic outbreaks in the 19th and 20th centuries related to environmental impacts, with large immigration flows. The present work analyzes the transmission dynamics of malaria in these areas to propose measures for avoiding epidemic outbreaks due to the construction of two Hydroelectric Power Plants. A population based baseline demographic census and a malaria prevalence follow up were performed in two river side localities in the suburbs of Porto Velho city and in its rural vicinity. The quantification and nature of malaria parasites in clinical patients and asymptomatic parasite carriers were performed using microscopic and Real Time PCR methodologies. Anopheles densities and their seasonal variation were done by monthly captures for defining HBR (hourly biting rate) values. Main results: (i) malaria among residents show the riverside profile, with population at risk represented by children and young adults; (ii) asymptomatic vivax and falciparum malaria parasite carriers correspond to around 15% of adults living in the area; (iii) vivax malaria relapses were responsible for 30% of clinical cases; (iv) malaria risk for the residents was evaluated as 20–25% for vivax and 5–7% for falciparum malaria; (v) anopheline densities shown outdoors HBR values 5 to 10 fold higher than indoors and reach 10.000 bites/person/year; (vi) very high incidence observed in one of the surveyed localities was explained by a micro epidemic outbreak affecting visitors and temporary residents. Temporary residents living in tents or shacks are accessible to outdoors transmission. Seasonal fishermen were the main group at risk in the study and were responsible for a 2.6 fold increase in the malaria incidence in the locality. This situation illustrates the danger of extensive epidemic outbreaks when thousands of workers and secondary immigrant population will arrive attracted by opportunities opened by the Hydroelectric Power

  8. The dynamics of transmission and spatial distribution of malaria in riverside areas of Porto Velho, Rondônia, in the Amazon region of Brazil.

    Directory of Open Access Journals (Sweden)

    Tony Hiroshi Katsuragawa

    Full Text Available UNLABELLED: The study area in Rondônia was the site of extensive malaria epidemic outbreaks in the 19(th and 20(th centuries related to environmental impacts, with large immigration flows. The present work analyzes the transmission dynamics of malaria in these areas to propose measures for avoiding epidemic outbreaks due to the construction of two Hydroelectric Power Plants. A population based baseline demographic census and a malaria prevalence follow up were performed in two river side localities in the suburbs of Porto Velho city and in its rural vicinity. The quantification and nature of malaria parasites in clinical patients and asymptomatic parasite carriers were performed using microscopic and Real Time PCR methodologies. Anopheles densities and their seasonal variation were done by monthly captures for defining HBR (hourly biting rate values. MAIN RESULTS: (i malaria among residents show the riverside profile, with population at risk represented by children and young adults; (ii asymptomatic vivax and falciparum malaria parasite carriers correspond to around 15% of adults living in the area; (iii vivax malaria relapses were responsible for 30% of clinical cases; (iv malaria risk for the residents was evaluated as 20-25% for vivax and 5-7% for falciparum malaria; (v anopheline densities shown outdoors HBR values 5 to 10 fold higher than indoors and reach 10.000 bites/person/year; (vi very high incidence observed in one of the surveyed localities was explained by a micro epidemic outbreak affecting visitors and temporary residents. Temporary residents living in tents or shacks are accessible to outdoors transmission. Seasonal fishermen were the main group at risk in the study and were responsible for a 2.6 fold increase in the malaria incidence in the locality. This situation illustrates the danger of extensive epidemic outbreaks when thousands of workers and secondary immigrant population will arrive attracted by opportunities opened by

  9. Resurgence of Malaria Following Discontinuation of Indoor Residual Spraying of Insecticide in an Area of Uganda With Previously High-Transmission Intensity.

    Science.gov (United States)

    Raouf, Saned; Mpimbaza, Arthur; Kigozi, Ruth; Sserwanga, Asadu; Rubahika, Denis; Katamba, Henry; Lindsay, Steve W; Kapella, Bryan K; Belay, Kassahun A; Kamya, Moses R; Staedke, Sarah G; Dorsey, Grant

    2017-08-01

    Indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) are the primary tools for malaria prevention in Africa. It is not known whether reductions in malaria can be sustained after IRS is discontinued. Our aim in this study was to assess changes in malaria morbidity in an area of Uganda with historically high transmission where IRS was discontinued after a 4-year period followed by universal LLIN distribution. Individual-level malaria surveillance data were collected from 1 outpatient department and 1 inpatient setting in Apac District, Uganda, from July 2009 through November 2015. Rounds of IRS were delivered approximately every 6 months from February 2010 through May 2014 followed by universal LLIN distribution in June 2014. Temporal changes in the malaria test positivity rate (TPR) were estimated during and after IRS using interrupted time series analyses, controlling for age, rainfall, and autocorrelation. Data include 65 421 outpatient visits and 13 955 pediatric inpatient admissions for which a diagnostic test for malaria was performed. In outpatients aged malaria morbidity to pre-IRS levels. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com

  10. Fever treatment in the absence of malaria transmission in an urban informal settlement in Nairobi, Kenya.

    Science.gov (United States)

    Ye, Yazoume; Madise, Nyovani; Ndugwa, Robert; Ochola, Sam; Snow, Robert W

    2009-07-15

    In sub-Saharan Africa, knowledge of malaria transmission across rapidly proliferating urban centres and recommendations for its prevention or management remain poorly defined. This paper presents the results of an investigation into infection prevalence and treatment of recent febrile events among a slum population in Nairobi, Kenya. In July 2008, a community-based malaria parasite prevalence survey was conducted in Korogocho slum, which forms part of the Nairobi Urban Health and Demographic Surveillance system. Interviewers visited 1,069 participants at home and collected data on reported fevers experienced over the preceding 14 days and details on the treatment of these episodes. Each participant was tested for malaria parasite presence with Rapid Diagnostic Test (RDT) and microscopy. Descriptive analyses were performed to assess the period prevalence of reported fever episodes and treatment behaviour. Of the 1,069 participants visited, 983 (92%) consented to be tested. Three were positive for Plasmodium falciparum using RDT; however, all were confirmed negative on microscopy. Microscopic examination of all 953 readable slides showed zero prevalence. Overall, from the 1,004 participants who have data on fever, 170 fever episodes were reported giving a relatively high period prevalence (16.9%, 95% CI:13.9%-20.5%) and higher among children below five years (20.1%, 95%CI:13.8%-27.8%). Of the fever episodes with treatment information 54.3% (95%CI:46.3%-62.2%) were treated as malaria using mainly sulphadoxine-pyrimethamine or amodiaquine, including those managed at a formal health facility. Only four episodes were managed using the nationally recommended first-line treatment, artemether-lumefantrine. The study could not demonstrate any evidence of malaria in Korogocho, a slum in the centre of Nairobi. Fever was a common complaint and often treated as malaria with anti-malarial drugs. Strategies, including testing for malaria parasites to reduce the inappropriate

  11. Fever treatment in the absence of malaria transmission in an urban informal settlement in Nairobi, Kenya

    Directory of Open Access Journals (Sweden)

    Ochola Sam

    2009-07-01

    Full Text Available Abstract Background In sub-Saharan Africa, knowledge of malaria transmission across rapidly proliferating urban centres and recommendations for its prevention or management remain poorly defined. This paper presents the results of an investigation into infection prevalence and treatment of recent febrile events among a slum population in Nairobi, Kenya. Methods In July 2008, a community-based malaria parasite prevalence survey was conducted in Korogocho slum, which forms part of the Nairobi Urban Health and Demographic Surveillance system. Interviewers visited 1,069 participants at home and collected data on reported fevers experienced over the preceding 14 days and details on the treatment of these episodes. Each participant was tested for malaria parasite presence with Rapid Diagnostic Test (RDT and microscopy. Descriptive analyses were performed to assess the period prevalence of reported fever episodes and treatment behaviour. Results Of the 1,069 participants visited, 983 (92% consented to be tested. Three were positive for Plasmodium falciparum using RDT; however, all were confirmed negative on microscopy. Microscopic examination of all 953 readable slides showed zero prevalence. Overall, from the 1,004 participants who have data on fever, 170 fever episodes were reported giving a relatively high period prevalence (16.9%, 95% CI:13.9%–20.5% and higher among children below five years (20.1%, 95%CI:13.8%–27.8%. Of the fever episodes with treatment information 54.3% (95%CI:46.3%–62.2% were treated as malaria using mainly sulphadoxine-pyrimethamine or amodiaquine, including those managed at a formal health facility. Only four episodes were managed using the nationally recommended first-line treatment, artemether-lumefantrine. Conclusion The study could not demonstrate any evidence of malaria in Korogocho, a slum in the centre of Nairobi. Fever was a common complaint and often treated as malaria with anti-malarial drugs. Strategies

  12. Field evaluation of ZeroFly--an insecticide incorporated plastic sheeting against malaria vectors & its impact on malaria transmission in tribal area of northern Orissa.

    Science.gov (United States)

    Sharma, S K; Upadhyay, A K; Haque, M A; Tyagi, P K; Mohanty, S S; Mittal, P K; Dash, A P

    2009-10-01

    Insecticide incorporated plastic sheeting is a new technology to control mosquitoes in emergency shelter places and also temporary habitations in different locations. Therefore, field studies were conducted to assess the efficacy of ZeroFly plastic sheeting treated with deltamethrin on prevailing disease vectors Anopheles culicifacies and An. fluviatilis and its impact on malaria transmission in one of the highly endemic areas of Orissa. The study was conducted in Birkera block of Sundargarh district, Orissa state. The study area comprised 3 villages, which were randomized as ZeroFly plastic sheet, untreated plastic sheet and no sheet area. ZeroFly plastic sheets and untreated plastic sheets were fixed in study and control villages respectively covering all the rooms in each household. Longitudinal studies were conducted on the bioefficacy with the help of cone bioassays, monitoring of the mosquito density through hand catch, floor sheet and exit trap collections and fortnightly domiciliary active surveillance in all the study villages. In ZeroFly plastic sheeting area, there was a significant reduction of 84.7 per cent in the entry rate of total mosquitoes in comparison to pre-intervention phase. There was 56.2 per cent immediate mortality in total mosquitoes in houses with ZeroFly sheeting. The overall feeding success rate of mosquitoes in the trial village was only 12.5 per cent in comparison to 49.7 and 51.1 per cent in villages with untreated plastic sheet and no sheet respectively. There was a significant reduction of 65.0 and 70.5 per cent in malaria incidence in ZeroFly plastic sheeting area as compared to untreated plastic sheet and no sheet area respectively. Our study showed that introduction of ZeroFly plastic sheets in a community-based intervention programme is operationally feasible to contain malaria especially in the high transmission difficult areas.

  13. Effect of climatic variability on malaria trends in Baringo County, Kenya.

    Science.gov (United States)

    Kipruto, Edwin K; Ochieng, Alfred O; Anyona, Douglas N; Mbalanya, Macrae; Mutua, Edna N; Onguru, Daniel; Nyamongo, Isaac K; Estambale, Benson B A

    2017-05-25

    Malaria transmission in arid and semi-arid regions of Kenya such as Baringo County, is seasonal and often influenced by climatic factors. Unravelling the relationship between climate variables and malaria transmission dynamics is therefore instrumental in developing effective malaria control strategies. The main aim of this study was to describe the effects of variability of rainfall, maximum temperature and vegetation indices on seasonal trends of malaria in selected health facilities within Baringo County, Kenya. Climate variables sourced from the International Research Institute (IRI)/Lamont-Doherty Earth Observatory (LDEO) climate database and malaria cases reported in 10 health facilities spread across four ecological zones (riverine, lowland, mid-altitude and highland) between 2004 and 2014 were subjected to a time series analysis. A negative binomial regression model with lagged climate variables was used to model long-term monthly malaria cases. The seasonal Mann-Kendall trend test was then used to detect overall monotonic trends in malaria cases. Malaria cases increased significantly in the highland and midland zones over the study period. Changes in malaria prevalence corresponded to variations in rainfall and maximum temperature. Rainfall at a time lag of 2 months resulted in an increase in malaria transmission across the four zones while an increase in temperature at time lags of 0 and 1 month resulted in an increase in malaria cases in the riverine and highland zones, respectively. Given the existence of a time lag between climatic variables more so rainfall and peak malaria transmission, appropriate control measures can be initiated at the onset of short and after long rains seasons.

  14. Entomological aspects and the role of human behaviour in malaria transmission in a highland region of the Republic of Yemen.

    Science.gov (United States)

    Al-Eryani, Samira M A; Kelly-Hope, Louise; Harbach, Ralph E; Briscoe, Andrew G; Barnish, Guy; Azazy, Ahmed; McCall, Philip J

    2016-03-01

    The Republic of Yemen has the highest incidence of malaria in the Arabian Peninsula, yet little is known of its vectors or transmission dynamics. A 24-month study of the vectors and related epidemiological aspects of malaria transmission was conducted in two villages in the Taiz region in 2004-2005. Cross-sectional blood film surveys recorded an overall malaria infection rate of 15.3 % (250/1638), with highest rates exceeding 30 % in one village in May and December 2005. With one exception, Plasmodium malariae, all infections were P. falciparum. Seven Anopheles species were identified among 3407 anophelines collected indoors using light traps (LT) and pyrethrum knockdown catches (PKD): Anopheles arabiensis (86.9 %), An. sergentii (9 %), An. azaniae, An. dthali, An. pretoriensis, An. coustani and An. algeriensis. Sequences for the standard barcode region of the mitochondrial COI gene confirmed the presence of two morphological forms of An. azaniae, the typical form and a previously unrecognized form not immediately identifiable as An. azaniae. ELISA detected Plasmodium sporozoites in 0.9 % of 2921 An. arabiensis (23 P. falciparum, two P. vivax) confirming this species as the primary malaria vector in Yemen. Plasmodium falciparum sporozoites were detected in An. sergentii (2/295) and a single female of An. algeriensis, incriminating both species as malaria vectors for the first time in Yemen. A vector in both wet and dry seasons, An. arabiensis was predominantly anthropophilic (human blood index = 0.86) with an entomological inoculation rate of 1.58 infective bites/person/year. Anopheles sergentii fed on cattle (67.3 %) and humans (48.3; 20.7 % mixed both species), but only 14.7 % were found in PKDs, indicating predominantly exophilic behaviour. A GIS analysis of geographic and socio-economic parameters revealed that An. arabiensis were significantly higher (P < 0.001) in houses with televisions, most likely due to the popular evening habit of viewing television

  15. Climate Change and Malaria in Canada: A Systems Approach

    Directory of Open Access Journals (Sweden)

    L. Berrang-Ford

    2009-01-01

    Full Text Available This article examines the potential for changes in imported and autochthonous malaria incidence in Canada as a consequence of climate change. Drawing on a systems framework, we qualitatively characterize and assess the potential direct and indirect impact of climate change on malaria in Canada within the context of other concurrent ecological and social trends. Competent malaria vectors currently exist in southern Canada, including within this range several major urban centres, and conditions here have historically supported endemic malaria transmission. Climate change will increase the occurrence of temperature conditions suitable for malaria transmission in Canada, which, combined with trends in international travel, immigration, drug resistance, and inexperience in both clinical and laboratory diagnosis, may increase malaria incidence in Canada and permit sporadic autochthonous cases. This conclusion challenges the general assumption of negligible malaria risk in Canada with climate change.

  16. SPECIES COMPOSITION OF MALARIAL MOSQUITOES KHARKIV REGION. NATURAL FACTORS OF MALARIA TRANSMISSION

    Directory of Open Access Journals (Sweden)

    Gazzawi - Rogozinа L. V.

    2015-05-01

    .5-4 months, and Preimaginal stages in reservoirs - about 4.5 months. The maximum number of species observed in mid-July. Due to the high number of attacks and activity in the summer , as well as the confinement of breeding sites to human settlements , An.maculipennis, An. messeae pose the greatest epidemiological risk. Conclusion. All of the above demonstrates the improvement of environmental conditions for the spread of malaria : growth of the transporter , the increase in precipitation , temperature longer transmission period of invasion .

  17. Evaluation of a laboratory quality assurance pilot programme for malaria diagnostics in low-transmission areas of Kenya, 2013.

    Science.gov (United States)

    Wanja, Elizabeth; Achilla, Rachel; Obare, Peter; Adeny, Rose; Moseti, Caroline; Otieno, Victor; Morang'a, Collins; Murigi, Ephantus; Nyamuni, John; Monthei, Derek R; Ogutu, Bernhards; Buff, Ann M

    2017-05-25

    One objective of the Kenya National Malaria Strategy 2009-2017 is scaling access to prompt diagnosis and effective treatment. In 2013, a quality assurance (QA) pilot was implemented to improve accuracy of malaria diagnostics at selected health facilities in low-transmission counties of Kenya. Trends in malaria diagnostic and QA indicator performance during the pilot are described. From June to December 2013, 28 QA officers provided on-the-job training and mentoring for malaria microscopy, malaria rapid diagnostic tests and laboratory QA/quality control (QC) practices over four 1-day visits at 83 health facilities. QA officers observed and recorded laboratory conditions and practices and cross-checked blood slides for malaria parasite presence, and a portion of cross-checked slides were confirmed by reference laboratories. Eighty (96%) facilities completed the pilot. Among 315 personnel at pilot initiation, 13% (n = 40) reported malaria diagnostics training within the previous 12 months. Slide positivity ranged from 3 to 7%. Compared to the reference laboratory, microscopy sensitivity ranged from 53 to 96% and positive predictive value from 39 to 53% for facility staff and from 60 to 96% and 52 to 80%, respectively, for QA officers. Compared to reference, specificity ranged from 88 to 98% and negative predictive value from 98 to 99% for health-facility personnel and from 93 to 99% and 99%, respectively, for QA officers. The kappa value ranged from 0.48-0.66 for facility staff and 0.57-0.84 for QA officers compared to reference. The only significant test performance improvement observed for facility staff was for specificity from 88% (95% CI 85-90%) to 98% (95% CI 97-99%). QA/QC practices, including use of positive-control slides, internal and external slide cross-checking and recording of QA/QC activities, all increased significantly across the pilot (p malaria QA/QC practices over the pilot. However, these advances did not translate into improved accuracy of

  18. A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence

    Directory of Open Access Journals (Sweden)

    Edlund Stefan

    2012-09-01

    Full Text Available Abstract Background The role of the Anopheles vector in malaria transmission and the effect of climate on Anopheles populations are well established. Models of the impact of climate change on the global malaria burden now have access to high-resolution climate data, but malaria surveillance data tends to be less precise, making model calibration problematic. Measurement of malaria response to fluctuations in climate variables offers a way to address these difficulties. Given the demonstrated sensitivity of malaria transmission to vector capacity, this work tests response functions to fluctuations in land surface temperature and precipitation. Methods This study of regional sensitivity of malaria incidence to year-to-year climate variations used an extended Macdonald Ross compartmental disease model (to compute malaria incidence built on top of a global Anopheles vector capacity model (based on 10 years of satellite climate data. The predicted incidence was compared with estimates from the World Health Organization and the Malaria Atlas. The models and denominator data used are freely available through the Eclipse Foundation’s Spatiotemporal Epidemiological Modeller (STEM. Results Although the absolute scale factor relating reported malaria to absolute incidence is uncertain, there is a positive correlation between predicted and reported year-to-year variation in malaria burden with an averaged root mean square (RMS error of 25% comparing normalized incidence across 86 countries. Based on this, the proposed measure of sensitivity of malaria to variations in climate variables indicates locations where malaria is most likely to increase or decrease in response to specific climate factors. Bootstrapping measures the increased uncertainty in predicting malaria sensitivity when reporting is restricted to national level and an annual basis. Results indicate a potential 20x improvement in accuracy if data were available at the level ISO 3166–2

  19. Long-run relative importance of temperature as the main driver to malaria transmission in Limpopo Province, South Africa: a simple econometric approach.

    Science.gov (United States)

    Komen, Kibii; Olwoch, Jane; Rautenbach, Hannes; Botai, Joel; Adebayo, Adetunji

    2015-03-01

    Malaria in Limpopo Province of South Africa is shifting and now observed in originally non-malaria districts, and it is unclear whether climate change drives this shift. This study examines the distribution of malaria at district level in the province, determines direction and strength of the linear relationship and causality between malaria with the meteorological variables (rainfall and temperature) and ascertains their short- and long-run variations. Spatio-temporal method, Correlation analysis and econometric methods are applied. Time series monthly meteorological data (1998-2007) were obtained from South Africa Weather Services, while clinical malaria data came from Malaria Control Centre in Tzaneen (Limpopo Province) and South African Department of Health. We find that malaria changes and pressures vary in different districts with a strong positive correlation between temperature with malaria, r = 0.5212, and a weak positive relationship for rainfall, r = 0.2810. Strong unidirectional causality runs from rainfall and temperature to malaria cases (and not vice versa): F (1, 117) = 3.89, ρ = 0.0232 and F (1, 117) = 20.08, P < 0.001 and between rainfall and temperature, a bi-directional causality exists: F (1, 117) = 19.80; F (1,117) = 17.14, P < 0.001, respectively, meaning that rainfall affects temperature and vice versa. Results show evidence of strong existence of a long-run relationship between climate variables and malaria, with temperature maintaining very high level of significance than rainfall. Temperature, therefore, is more important in influencing malaria transmission in Limpopo Province.

  20. Estimation of heterogeneity in malaria transmission by stochastic modelling of apparent deviations from mass action kinetics

    Directory of Open Access Journals (Sweden)

    Smith Thomas A

    2008-01-01

    Full Text Available Abstract Background Quantifying heterogeneity in malaria transmission is a prerequisite for accurate predictive mathematical models, but the variance in field measurements of exposure overestimates true micro-heterogeneity because it is inflated to an uncertain extent by sampling variation. Descriptions of field data also suggest that the rate of Plasmodium falciparum infection is not proportional to the intensity of challenge by infectious vectors. This appears to violate the principle of mass action that is implied by malaria biology. Micro-heterogeneity may be the reason for this anomaly. It is proposed that the level of micro-heterogeneity can be estimated from statistical models that estimate the amount of variation in transmission most compatible with a mass-action model for the relationship of infection to exposure. Methods The relationship between the entomological inoculation rate (EIR for falciparum malaria and infection risk was reanalysed using published data for cohorts of children in Saradidi (western Kenya. Infection risk was treated as binomially distributed, and measurement-error (Poisson and negative binomial models were considered for the EIR. Models were fitted using Bayesian Markov chain Monte Carlo algorithms and model fit compared for models that assume either mass-action kinetics, facilitation, competition or saturation of the infection process with increasing EIR. Results The proportion of inocula that resulted in infection in Saradidi was inversely related to the measured intensity of challenge. Models of facilitation showed, therefore, a poor fit to the data. When sampling error in the EIR was neglected, either competition or saturation needed to be incorporated in the model in order to give a good fit. Negative binomial models for the error in exposure could achieve a comparable fit while incorporating the more parsimonious and biologically plausible mass action assumption. Models that assume negative binomial micro

  1. Toward Malaria Risk Prediction in Afghanistan Using Remote Sensing

    Science.gov (United States)

    Safi, N.; Adimi, F.; Soebiyanto, R. P.; Kiang, R. K.

    2010-01-01

    Malaria causes more than one million deaths every year worldwide, with most of the mortality in Sub-Saharan Africa. It is also a significant public health concern in Afghanistan, with approximately 60% of the population, or nearly 14 million people, living in a malaria-endemic area. Malaria transmission has been shown to be dependent on a number of environmental and meteorological variables. For countries in the tropics and the subtropics, rainfall is normally the most important variable, except for regions with high altitude where temperature may also be important. Afghanistan s diverse landscape contributes to the heterogeneous malaria distribution. Understanding the environmental effects on malaria transmission is essential to the effective control of malaria in Afghanistan. Provincial malaria data gathered by Health Posts in 23 provinces during 2004-2007 are used in this study. Remotely sensed geophysical parameters, including precipitation from TRMM, and surface temperature and vegetation index from MODIS are used to derive the empirical relationship between malaria cases and these geophysical parameters. Both neural network methods and regression analyses are used to examine the environmental dependency of malaria transmission. And the trained models are used for predicting future transmission. While neural network methods are intrinsically more adaptive for nonlinear relationship, the regression approach lends itself in providing statistical significance measures. Our results indicate that NDVI is the strongest predictor. This reflects the role of irrigation, instead of precipitation, in Afghanistan for agricultural production. The second strongest prediction is surface temperature. Precipitation is not shown as a significant predictor, contrary to other malarious countries in the tropics or subtropics. With the regression approach, the malaria time series are modelled well, with average R2 of 0.845. For cumulative 6-month prediction of malaria cases, the

  2. Reactive Case Detection for Plasmodium vivax Malaria Elimination in Rural Amazonia.

    Directory of Open Access Journals (Sweden)

    Pablo S Fontoura

    2016-12-01

    Full Text Available Malaria burden in Brazil has reached its lowest levels in 35 years and Plasmodium vivax now accounts for 84% of cases countrywide. Targeting residual malaria transmission entrenched in the Amazon is the next major challenge for ongoing elimination efforts. Better strategies are urgently needed to address the vast reservoir of asymptomatic P. vivax carriers in this and other areas approaching malaria elimination.We evaluated a reactive case detection (RCD strategy tailored for P. vivax transmission in farming settlements in the Amazon Basin of Brazil. Over six months, 41 cases detected by passive surveillance triggered four rounds of RCD (0, 30, 60, and 180 days after index case enrollment, using microscopy- and quantitative real-time polymerase chain reaction (qPCR-based diagnosis, comprising subjects sharing the household (HH with the index case (n = 163, those living in the 5 nearest HHs within 3 km (n = 878, and individuals from 5 randomly chosen control HHs located > 5 km away from index cases (n = 841. Correlates of infection were identified with mixed-effects logistic regression models. Molecular genotyping was used to infer local parasite transmission networks.Subjects in index and neighbor HHs were significantly more likely to be parasitemic than control HH members, after adjusting for potential confounders, and together harbored > 90% of the P. vivax biomass in study subjects. Clustering patterns were temporally stable. Four rounds of microscopy-based RCD would identify only 49.5% of the infections diagnosed by qPCR, but 76.8% of the total parasite biomass circulating in the proximity of index HHs. However, control HHs accounted for 27.6% of qPCR-positive samples, 92.6% of them from asymptomatic carriers beyond the reach of RCD. Molecular genotyping revealed high P. vivax diversity, consistent with complex transmission networks and multiple sources of infection within clusters, potentially complicating malaria elimination efforts.

  3. Ranking malaria risk factors to guide malaria control efforts in African highlands.

    Science.gov (United States)

    Protopopoff, Natacha; Van Bortel, Wim; Speybroeck, Niko; Van Geertruyden, Jean-Pierre; Baza, Dismas; D'Alessandro, Umberto; Coosemans, Marc

    2009-11-25

    Malaria is re-emerging in most of the African highlands exposing the non immune population to deadly epidemics. A better understanding of the factors impacting transmission in the highlands is crucial to improve well targeted malaria control strategies. A conceptual model of potential malaria risk factors in the highlands was built based on the available literature. Furthermore, the relative importance of these factors on malaria can be estimated through "classification and regression trees", an unexploited statistical method in the malaria field. This CART method was used to analyse the malaria risk factors in the Burundi highlands. The results showed that Anopheles density was the best predictor for high malaria prevalence. Then lower rainfall, no vector control, higher minimum temperature and houses near breeding sites were associated by order of importance to higher Anopheles density. In Burundi highlands monitoring Anopheles densities when rainfall is low may be able to predict epidemics. The conceptual model combined with the CART analysis is a decision support tool that could provide an important contribution toward the prevention and control of malaria by identifying major risk factors.

  4. Malaria in Europe: emerging threat or minor nuisance?

    Science.gov (United States)

    Piperaki, E T; Daikos, G L

    2016-06-01

    Malaria was eradicated from Europe in the 1970s through a combination of insecticide spraying, drug therapy and environmental engineering. Since then, it has been mostly imported into the continent by international travellers and immigrants from endemic regions. Despite the substantial number of imported malaria cases and the documented presence of suitable anopheline vectors, autochthonous transmission has not been widely observed in Europe, probably as a result of early diagnosis and treatment, afforded by efficient healthcare systems. Current climatic conditions are conducive to malaria transmission in several areas of Southern Europe, and climate change might favour mosquito proliferation and parasite development, further facilitating malaria transmission. Moreover, the continuing massive influx of refugee and migrant populations from endemic areas could contribute to building up of an infectious parasite reservoir. Although the malariogenic potential of Europe is currently low, particularly in the northern and western parts of the continent, strengthening of disease awareness and maintaining robust public health infrastructures for surveillance and vector control are of the utmost importance and should be technically and financially supported to avert the possibility of malaria transmission in Europe's most vulnerable areas. Copyright © 2016 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  5. Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether.

    Directory of Open Access Journals (Sweden)

    Colin J Sutherland

    2005-04-01

    Full Text Available Resistance of malaria parasites to chloroquine (CQ and sulphadoxine-pyrimethamine (SP is increasing in prevalence in Africa. Combination therapy can both improve treatment and provide important public health benefits if it curbs the spread of parasites harbouring resistance genes. Thus, drug combinations must be identified which minimise gametocyte emergence in treated cases, and so prevent selective transmission of parasites resistant to any of the partner drugs.In a randomised controlled trial, 497 children with uncomplicated falciparum malaria were treated with CQ and SP (three doses and one dose respectively; n = 91, or six doses of artemether in fixed combination with lumefantrine (co-artemether [Coartem, Riamet] (n = 406. Carriage rates of Plasmodium falciparum gametocytes and trophozoites were measured 7, 14, and 28 d after treatment. The infectiousness of venous blood from 29 children carrying P. falciparum gametocytes 7 d after treatment was tested by membrane-feeding of Anopheles mosquitoes. Children treated with co-artemether were significantly less likely to carry gametocytes within the 4 weeks following treatment than those receiving CQ/SP (30 of 378 [7.94%] versus 42 of 86 [48.8%]; p < 0.0001. Carriers in the co-artemether group harboured gametocytes at significantly lower densities, for shorter periods (0.3 d versus 4.2 d; p < 0.0001 and were less infectious to mosquitoes at day 7 (p < 0.001 than carriers who had received CQ/SP.Co-artemether is highly effective at preventing post-treatment transmission of P. falciparum. Our results suggest that co-artemether has specific activity against immature sequestered gametocytes, and has the capacity to minimise transmission of drug-resistant parasites.

  6. Spatio-temporal heterogeneity of malaria morbidity in Ghana: Analysis of routine health facility data.

    Science.gov (United States)

    Awine, Timothy; Malm, Keziah; Peprah, Nana Yaw; Silal, Sheetal P

    2018-01-01

    Malaria incidence is largely influenced by vector abundance. Among the many interconnected factors relating to malaria transmission, weather conditions such as rainfall and temperature are known to create suitable environmental conditions that sustain reproduction and propagation of anopheles mosquitoes and malaria parasites. In Ghana, climatic conditions vary across the country. Understanding the heterogeneity of malaria morbidity using data sourced from a recently setup data repository for routine health facility data could support planning. Monthly aggregated confirmed uncomplicated malaria cases from the District Health Information Management System and average monthly rainfall and temperature records obtained from the Ghana Meteorological Agency from 2008 to 2016 were analysed. Univariate time series models were fitted to the malaria, rainfall and temperature data series. After pre-whitening the morbidity data, cross correlation analyses were performed. Subsequently, transfer function models were developed for the relationship between malaria morbidity and rainfall and temperature. Malaria morbidity patterns vary across zones. In the Guinea savannah, morbidity peaks once in the year and twice in both the Transitional forest and Coastal savannah, following similar patterns of rainfall at the zonal level. While the effects of rainfall on malaria morbidity are delayed by a month in the Guinea savannah and Transitional Forest zones those of temperature are delayed by two months in the Transitional forest zone. In the Coastal savannah however, incidence of malaria is significantly associated with two months lead in rainfall and temperature. Data captured on the District Health Information Management System has been used to demonstrate heterogeneity in the dynamics of malaria morbidity across the country. Timing of these variations could guide the deployment of interventions such as indoor residual spraying, Seasonal Malaria Chemoprevention or vaccines to optimise

  7. Epidemiological and entomological studies of a malaria outbreak among French armed forces deployed at illegal gold mining sites reveal new aspects of the disease's transmission in French Guiana.

    Science.gov (United States)

    Pommier de Santi, Vincent; Girod, Romain; Mura, Marie; Dia, Aissata; Briolant, Sébastien; Djossou, Félix; Dusfour, Isabelle; Mendibil, Alexandre; Simon, Fabrice; Deparis, Xavier; Pagès, Frédéric

    2016-01-22

    In December 2010, a Plasmodium vivax malaria outbreak occurred among French forces involved in a mission to control illegal gold mining in French Guiana. The findings of epidemiological and entomological investigations conducted after this outbreak are presented here. Data related to malaria cases reported to the French armed forces epidemiological surveillance system were collected during the epidemic period from December 2010 to April 2011. A retrospective cohort study was conducted to identify presumed contamination sites. Anopheles mosquitoes were sampled at the identified sites using Mosquito Magnet and CDC light traps. Specimens were identified morphologically and confirmed using molecular methods (sequencing of ITS2 gene and/or barcoding). Anopheles infections with Plasmodium falciparum and P. vivax were tested by both enzyme-linked immunosorbent assay and real-time PCR. Seventy-two P. vivax malaria cases were reported (three were mixed P. falciparum/P. vivax infections), leading to a global attack rate of 26.5% (72/272). Lack of compliance with vector control measures and doxycycline chemoprophylaxis was reported by patients. Two illegal gold mining sites located in remote areas in the primary forest were identified as places of contamination. In all, 595 Anopheles females were caught and 528 specimens were formally identified: 305 Anopheles darlingi, 145 Anopheles nuneztovari s.l., 63 Anopheles marajoara and 15 Anopheles triannulatus s.l. Three An. darlingi were infected by P. falciparum (infection rate: 1.1%) and four An. marajoara by P. vivax (infection rate: 6.4%). The main drivers of the outbreak were the lack of adherence by military personnel to malaria prevention measures and the high level of malaria transmission at illegal gold mining sites. Anopheles marajoara was clearly implicated in malaria transmission for the first time in French Guiana. The high infection rates observed confirm that illegal gold mining sites must be considered as high level

  8. Malaria's missing number: calculating the human component of R0 by a within-host mechanistic model of Plasmodium falciparum infection and transmission.

    Directory of Open Access Journals (Sweden)

    Geoffrey L Johnston

    2013-04-01

    Full Text Available Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito. Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce disease burden can benefit from the development of mathematical models of disease transmission. To date, however, comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we describe a mechanistic within-host model of Plasmodium falciparum infection in humans and pathogen transmission to the mosquito vector. Our model incorporates the entire parasite lifecycle, including the intra-erythrocytic asexual forms responsible for disease, the onset of symptoms, the development and maturation of intra-erythrocytic gametocytes that are transmissible to Anopheles mosquitoes, and human-to-mosquito infectivity. These model components were parameterized from malaria therapy data and other studies to simulate individual infections, and the ensemble of outputs was found to reproduce the full range of patient responses to infection. Using this model, we assessed human infectivity over the course of untreated infections and examined the effects in relation to transmission intensity, expressed by the basic reproduction number R0 (defined as the number of secondary cases produced by a single typical infection in a completely susceptible population. Our studies predict that net human-to-mosquito infectivity from a single non-immune individual is on average equal to 32 fully infectious days. This estimate of mean infectivity is equivalent to calculating the human component of malarial R0 . We also predict that mean daily infectivity exceeds five percent for approximately 138 days. The mechanistic framework described herein, made available as stand-alone software, will enable investigators to conduct detailed studies into theories of malaria control, including the effects of

  9. Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis.

    Science.gov (United States)

    Adeola, Abiodun M; Botai, Joel O; Rautenbach, Hannes; Adisa, Omolola M; Ncongwane, Katlego P; Botai, Christina M; Adebayo-Ojo, Temitope C

    2017-11-08

    The north-eastern parts of South Africa, comprising the Limpopo Province, have recorded a sudden rise in the rate of malaria morbidity and mortality in the 2017 malaria season. The epidemiological profiles of malaria, as well as other vector-borne diseases, are strongly associated with climate and environmental conditions. A retrospective understanding of the relationship between climate and the occurrence of malaria may provide insight into the dynamics of the disease's transmission and its persistence in the north-eastern region. In this paper, the association between climatic variables and the occurrence of malaria was studied in the Mutale local municipality in South Africa over a period of 19-year. Time series analysis was conducted on monthly climatic variables and monthly malaria cases in the Mutale municipality for the period of 1998-2017. Spearman correlation analysis was performed and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed. Microsoft Excel was used for data cleaning, and statistical software R was used to analyse the data and develop the model. Results show that both climatic variables' and malaria cases' time series exhibited seasonal patterns, showing a number of peaks and fluctuations. Spearman correlation analysis indicated that monthly total rainfall, mean minimum temperature, mean maximum temperature, mean average temperature, and mean relative humidity were significantly and positively correlated with monthly malaria cases in the study area. Regression analysis showed that monthly total rainfall and monthly mean minimum temperature ( R ² = 0.65), at a two-month lagged effect, are the most significant climatic predictors of malaria transmission in Mutale local municipality. A SARIMA (2,1,2) (1,1,1) model fitted with only malaria cases has a prediction performance of about 51%, and the SARIMAX (2,1,2) (1,1,1) model with climatic variables as exogenous factors has a prediction performance of about 72% in

  10. Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia

    DEFF Research Database (Denmark)

    Cook, Jackie; Speybroeck, Nico; Sochanta, Tho

    2012-01-01

    In Cambodia, malaria transmission is low and most cases occur in forested areas. Sero-epidemiological techniques can be used to identify both areas of ongoing transmission and high-risk groups to be targeted by control interventions. This study utilizes repeated cross-sectional data to assess...

  11. Impact of dams and irrigation schemes in Anopheline (Diptera: Culicidae bionomics and malaria epidemiology

    Directory of Open Access Journals (Sweden)

    Jordi Sanchez-Ribas

    2012-08-01

    Full Text Available Irrigation schemes and dams have posed a great concern on public health systems of several countries, mainly in the tropics. The focus of the present review is to elucidate the different ways how these human interventions may have an effect on population dynamics of anopheline mosquitoes and hence, how local malaria transmission patterns may be changed. We discuss different studies within the three main tropical and sub-tropical regions (namely Africa, Asia and the Pacific and the Americas. Factors such as pre-human impact malaria epidemiological patterns, control measures, demographic movements, human behaviour and local Anopheles bionomics would determine if the implementation of an irrigation scheme or a dam will have negative effects on human health. Some examples of successful implementation of control measures in such settings are presented. The use of Geographic Information System as a powerful tool to assist on the study and control of malaria in these scenarios is also highlighted.

  12. Characteristics of the transmission of autoregressive sub-patterns in financial time series

    Science.gov (United States)

    Gao, Xiangyun; An, Haizhong; Fang, Wei; Huang, Xuan; Li, Huajiao; Zhong, Weiqiong

    2014-09-01

    There are many types of autoregressive patterns in financial time series, and they form a transmission process. Here, we define autoregressive patterns quantitatively through an econometrical regression model. We present a computational algorithm that sets the autoregressive patterns as nodes and transmissions between patterns as edges, and then converts the transmission process of autoregressive patterns in a time series into a network. We utilised daily Shanghai (securities) composite index time series to study the transmission characteristics of autoregressive patterns. We found statistically significant evidence that the financial market is not random and that there are similar characteristics between parts and whole time series. A few types of autoregressive sub-patterns and transmission patterns drive the oscillations of the financial market. A clustering effect on fluctuations appears in the transmission process, and certain non-major autoregressive sub-patterns have high media capabilities in the financial time series. Different stock indexes exhibit similar characteristics in the transmission of fluctuation information. This work not only proposes a distinctive perspective for analysing financial time series but also provides important information for investors.

  13. Malaria Surveillance - United States, 2014.

    Science.gov (United States)

    Mace, Kimberly E; Arguin, Paul M

    2017-05-26

    Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to identify episodes of local transmission and to guide prevention recommendations for travelers. This report summarizes cases in persons with onset of illness in 2014 and trends during previous years. Malaria cases diagnosed by blood film, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System, National Notifiable Diseases Surveillance System, or direct CDC consultations. CDC conducts antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. Data from these reporting systems serve as the basis for this report. CDC received reports of 1,724 confirmed malaria cases, including one congenital case and two cryptic cases, with onset of symptoms in 2014 among persons in the United States. The number of confirmed cases in 2014 is consistent with the number of confirmed cases reported in 2013 (n = 1,741; this number has been updated from a previous publication to account for delayed reporting for persons with symptom onset occurring in late 2013). Plasmodium falciparum, P. vivax, P. ovale, and P. malariae were identified in 66.1%, 13.3%, 5.2%, and 2.7% of cases, respectively

  14. Increasing Incidence of Plasmodium knowlesi Malaria following Control of P. falciparum and P. vivax Malaria in Sabah, Malaysia

    Science.gov (United States)

    William, Timothy; Rahman, Hasan A.; Jelip, Jenarun; Ibrahim, Mohammad Y.; Menon, Jayaram; Grigg, Matthew J.; Yeo, Tsin W.; Anstey, Nicholas M.; Barber, Bridget E.

    2013-01-01

    Background The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time. Methods Reporting of microscopy-diagnosed malaria cases in Sabah is mandatory. We reviewed all available Department of Health malaria notification records from 1992–2011. Notifications of P. malariae and P. knowlesi were considered as a single group due to microscopic near-identity. Results From 1992–2011 total malaria notifications decreased dramatically, with P. falciparum peaking at 33,153 in 1994 and decreasing 55-fold to 605 in 2011, and P. vivax peaking at 15,857 in 1995 and decreasing 25-fold to 628 in 2011. Notifications of P. malariae/P. knowlesi also demonstrated a peak in the mid-1990s (614 in 1994) before decreasing to ≈100/year in the late 1990s/early 2000s. However, P. malariae/P. knowlesi notifications increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly. Conclusions A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination. Determination of transmission dynamics and risk factors for knowlesi malaria is required to guide measures to control this rising incidence. PMID:23359830

  15. Multiple causes of an unexpected malaria outbreak in a high-transmission area in Madagascar.

    Science.gov (United States)

    Kesteman, Thomas; Rafalimanantsoa, Solofoniaina A; Razafimandimby, Harimahefa; Rasamimanana, Heriniaina H; Raharimanga, Vaomalala; Ramarosandratana, Benjamin; Ratsimbasoa, Arsene; Ratovonjato, Jocelyn; Elissa, Nohal; Randrianasolo, Laurence; Finlay, Alyssa; Rogier, Christophe; Randrianarivelojosia, Milijaona

    2016-02-02

    pyrethroids. Two years after distribution, nearly all LLINs collected showed a loss of physical integrity and insecticide activity, Increased rainfall, decreasing use and reduced insecticide activity of long-lasting insecticide-treated nets, and drug shortages may have been responsible for, or contributed to, the outbreak observed in South-Eastern Madagascar in 2011-2012. Control interventions for malaria elimination must be sustained at the risk of triggering harmful epidemics, even in zones of high transmission.

  16. Bionomics of Anopheles fluviatilis and Anopheles culicifacies (Diptera: Culicidae) in Relation to Malaria Transmission in East-Central India.

    Science.gov (United States)

    Sahu, S S; Gunasekaran, K; Krishnamoorthy, N; Vanamail, P; Mathivanan, A; Manonmani, A; Jambulingam, P

    2017-07-01

    The southern districts of Odisha State in east-central India have been highly endemic for falciparum malaria for many decades. However, there is no adequate information on the abundance of the vector species or their bionomics in relation to space and time in these districts. Therefore, a study was carried out on the entomological aspects of malaria transmission to generate such information. Collections of mosquitoes were made once during each of the three seasons in 128 villages selected from eight districts. Villages within the foot-hill ecotype had a significantly greater abundance of Anopheles fluviatilis James s. l., whereas the abundance of Anopheles culicifacies Giles s. l. was significantly greater in the plain ecotype. The abundance of An. fluviatilis was maximum during the cold season, whereas An. culicifacies abundance was highest during summer and rainy seasons. The maximum likelihood estimation of the malaria infection rate in An. fluviatilis was 1.78%, 6.05%, and 2.6% in Ganjam, Kalahandi, and Rayagada districts, respectively. The infection rate of An. culicifacies was 1.39% only in Kandhamal district; infected females were not detected elsewhere. Concurrently, the annual malaria parasite incidence (MPI) was significantly higher in hill-top (17.6) and foot-hill (14.4) villages compared to plain villages (4.1). The districts with more villages in hill-top and foot-hill ecotypes also had a greater abundance of An. fluviatilis, the major malaria vector, and exhibited a higher incidence of malaria than villages within the plain ecotype, where An. culicifacies was the most abundant vector. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  17. [Vectorial transmission of malaria in a village along the Niger River and its fishing hamlet (Kéniéroba and Fourda, Mali)].

    Science.gov (United States)

    Keïta, M; Baber, I; Sogoba, N; Maïga, H M; Diallo, M'b; Doumbia, S; Traoré, S F

    2014-12-01

    A better understanding of malaria transmission dynamics is an essential element in the development of any targeted vector control strategy. The objective of this study was to better understand malaria transmission dynamics along the Niger River in Sudan savanna zone of Mali. Trough cross-sectional surveys, Anopheline larvae were collected by WHO standard dipping technique, and vector adults by Human Landing and pyrethrum spray catches methods. The vector population was composed of An. gambiae s.l. (> 99%) and An. funestus (hamlet Fourda) compared to farther inland Kéniéroba. The average infection rate of An. gambiae s.l. was 3.63% and 4.06% in Kéniéroba and Fourda respectively. The average entomological inoculation rate (EIR) during the study period was almost similar in Kéniéroba (0.70 infective bites/person/month) and Fourda (0.69 infective bites/person/month). The means EIRs over each of the rainy season 2006 and 2007 were always higher than the one of the dry season 2007 in both localities, with much smaller amplitude in Fourda than in Kéniéroba. However, the level of the transmission was 2.31 (0.37/0.16) times higher in Fourda than in Kéniéroba during the dry season.We conclude that in Sudan savanna zone of Mali, malaria transmission along the river is continuous throughout the year, but it is more intense in the immediate vicinity of the river during the dry season than during the rainy season in opposition to more distant localities to the river and vector control should not be focused only on the rainy in such setting.

  18. Ranking malaria risk factors to guide malaria control efforts in African highlands.

    Directory of Open Access Journals (Sweden)

    Natacha Protopopoff

    Full Text Available INTRODUCTION: Malaria is re-emerging in most of the African highlands exposing the non immune population to deadly epidemics. A better understanding of the factors impacting transmission in the highlands is crucial to improve well targeted malaria control strategies. METHODS AND FINDINGS: A conceptual model of potential malaria risk factors in the highlands was built based on the available literature. Furthermore, the relative importance of these factors on malaria can be estimated through "classification and regression trees", an unexploited statistical method in the malaria field. This CART method was used to analyse the malaria risk factors in the Burundi highlands. The results showed that Anopheles density was the best predictor for high malaria prevalence. Then lower rainfall, no vector control, higher minimum temperature and houses near breeding sites were associated by order of importance to higher Anopheles density. CONCLUSIONS: In Burundi highlands monitoring Anopheles densities when rainfall is low may be able to predict epidemics. The conceptual model combined with the CART analysis is a decision support tool that could provide an important contribution toward the prevention and control of malaria by identifying major risk factors.

  19. PERCEPTIONS ABOUT MALARIA TRANSMISSION AND CONTROL ...

    African Journals Online (AJOL)

    An ethnobotanical survey was conducted in Mola, Kariba district, in order to collect information on some common herbal remedies used by traditional healers and rural folk in the treatment and prevention of malaria. Structured questionnaires were administered to 220 respondents in Mola, Kariba. Two hundred and twenty ...

  20. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south-eastern Tanzania.

    Science.gov (United States)

    Kaindoa, Emmanuel W; Matowo, Nancy S; Ngowo, Halfan S; Mkandawile, Gustav; Mmbando, Arnold; Finda, Marcelina; Okumu, Fredros O

    2017-01-01

    Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs). Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR) was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA) was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR). An. arabiensis fed on humans (73.4%), cattle (22.0%), dogs (3.1%) and chicken (1.5%), but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality), deltamethrin (18.7%), lambda-cyhalothrin (18.7%) and DDT (26.2%), and had reduced susceptibility to bendiocarb (95%) and propoxur (90.1%). Parity rate was higher in An. funestus (65.8%) than

  1. Interventions that effectively target Anopheles funestus mosquitoes could significantly improve control of persistent malaria transmission in south–eastern Tanzania

    Science.gov (United States)

    Matowo, Nancy S.; Ngowo, Halfan S.; Mkandawile, Gustav; Mmbando, Arnold; Finda, Marcelina; Okumu, Fredros O.

    2017-01-01

    Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs). Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR) was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA) was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR). An. arabiensis fed on humans (73.4%), cattle (22.0%), dogs (3.1%) and chicken (1.5%), but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality), deltamethrin (18.7%), lambda-cyhalothrin (18.7%) and DDT (26.2%), and had reduced susceptibility to bendiocarb (95%) and propoxur (90.1%). Parity rate was higher in An. funestus (65.8%) than

  2. The Summary Index of Malaria Surveillance (SIMS: a stable index of malaria within India

    Directory of Open Access Journals (Sweden)

    Sharma Vinod P

    2010-02-01

    Full Text Available Abstract Background Malaria in India has been difficult to measure. Mortality and morbidity are not comprehensively reported, impeding efforts to track changes in disease burden. However, a set of blood measures has been collected regularly by the National Malaria Control Program in most districts since 1958. Methods Here, we use principal components analysis to combine these measures into a single index, the Summary Index of Malaria Surveillance (SIMS, and then test its temporal and geographic stability using subsets of the data. Results The SIMS correlates positively with all its individual components and with external measures of mortality and morbidity. It is highly consistent and stable over time (1995-2005 and regions of India. It includes measures of both vivax and falciparum malaria, with vivax dominant at lower transmission levels and falciparum dominant at higher transmission levels, perhaps due to ecological specialization of the species. Conclusions This measure should provide a useful tool for researchers looking to summarize geographic or temporal trends in malaria in India, and can be readily applied by administrators with no mathematical or scientific background. We include a spreadsheet that allows simple calculation of the index for researchers and local administrators. Similar principles are likely applicable worldwide, though further validation is needed before using the SIMS outside India.

  3. Mass mosquito trapping for malaria control in western Kenya

    NARCIS (Netherlands)

    Hiscox, Alexandra; Homan, Tobias; Mweresa, Collins K.; Maire, Nicolas; Pasquale, Di Aurelio; Masiga, Daniel; Oria, Prisca A.; Alaii, Jane; Leeuwis, Cees; Mukabana, Wolfgang R.; Takken, Willem; Smith, Thomas A.

    2016-01-01

    Background: Increasing levels of insecticide resistance as well as outdoor, residual transmission of malaria threaten the efficacy of existing vector control tools used against malaria mosquitoes. The development of odour-baited mosquito traps has led to the possibility of controlling malaria

  4. Malaria in Children.

    Science.gov (United States)

    Cohee, Lauren M; Laufer, Miriam K

    2017-08-01

    Malaria is a leading cause of morbidity and mortality in endemic areas, leading to an estimated 438,000 deaths in 2015. Malaria is also an important health threat to travelers to endemic countries and should be considered in evaluation of any traveler returning from a malaria-endemic area who develops fever. Considering the diagnosis of malaria in patients with potential exposure is critical. Prompt provision of effective treatment limits the complications of malaria and can be life-saving. Understanding Plasmodium species variation, epidemiology, and drug-resistance patterns in the geographic area where infection was acquired is important for determining treatment choices. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. High Levels of Antibodies to Multiple Domains and Strains of VAR2CSA Correlate with the Absence of Placental Malaria in Cameroonian Women Living in an Area of High Plasmodium falciparum Transmission

    Science.gov (United States)

    Tutterrow, Yeung L.; Avril, Marion; Singh, Kavita; Long, Carole A.; Leke, Robert J.; Sama, Grace; Salanti, Ali; Smith, Joseph D.; Leke, Rose G. F.

    2012-01-01

    Placental malaria, caused by sequestration of Plasmodium falciparum-infected erythrocytes in the placenta, is associated with increased risk of maternal morbidity and poor birth outcomes. The parasite antigen VAR2CSA (variant surface antigen 2-chondroitin sulfate A) is expressed on infected erythrocytes and mediates binding to chondroitin sulfate A, initiating inflammation and disrupting homeostasis at the maternal-fetal interface. Although antibodies can prevent sequestration, it is unclear whether parasite clearance is due to antibodies to a single Duffy binding-like (DBL) domain or to an extensive repertoire of antibodies to multiple DBL domains and allelic variants. Accordingly, plasma samples collected longitudinally from pregnant women were screened for naturally acquired antibodies against an extensive panel of VAR2CSA proteins, including 2 to 3 allelic variants for each of 5 different DBL domains. Analyses were performed on plasma samples collected from 3 to 9 months of pregnancy from women living in areas in Cameroon with high and low malaria transmission. The results demonstrate that high antibody levels to multiple VAR2CSA domains, rather than a single domain, were associated with the absence of placental malaria when antibodies were present from early in the second trimester until term. Absence of placental malaria was associated with increasing antibody breadth to different DBL domains and allelic variants in multigravid women. Furthermore, the antibody responses of women in the lower-transmission site had both lower magnitude and lesser breadth than those in the high-transmission site. These data suggest that immunity to placental malaria results from high antibody levels to multiple VAR2CSA domains and allelic variants and that antibody breadth is influenced by malaria transmission intensity. PMID:22331427

  6. Good performances but short lasting efficacy of Actellic 50 EC Indoor Residual Spraying (IRS) on malaria transmission in Benin, West Africa.

    Science.gov (United States)

    Aïkpon, Rock; Sèzonlin, Michel; Tokponon, Filémon; Okè, Mariam; Oussou, Olivier; Oké-Agbo, Frédéric; Beach, Raymond; Akogbéto, Martin

    2014-05-30

    The National Malaria Control Program (NMCP) has been using pirimiphos methyl for the first time for indoor residual spraying (IRS) in Benin. The first round was a success with a significant decrease of entomological indicators of malaria transmission in the treated districts. We present the results of the entomological impact on malaria transmission. Entomologic parameters in the control area were compared with those in intervention sites. Mosquito collections were carried out in three districts in the Atacora-Dongo region of which two were treated with pirimiphos methyl (Actellic 50EC) (Tanguiéta and Kouandé) and the untreated (Copargo) served as control. Anopheles gambiae s.l. populations were sampled monthly by human landing catch. In addition, window exit traps and pyrethrum spray catches were performed to assess exophagic behavior of Anopheles vectors. In the three districts, mosquito collections were organized to follow the impact of pirimiphos methyl IRS on malaria transmission and possible changes in the behavior of mosquitoes. The residual activity of pirimiphos methyl in the treated walls was also assessed using WHO bioassay test. A significant reduction (94.25%) in human biting rate was recorded in treated districts where an inhabitant received less than 1 bite of An. gambiae per night. During this same time, the entomological inoculation rate (EIR) dramatically declined in the treated area (99.24% reduction). We also noted a significant reduction in longevity of the vectors and an increase in exophily induced by pirimiphos methyl on An. gambiae. However, no significant impact was found on the blood feeding rate. Otherwise, the low residual activity of Actellic 50 EC, which is three months, is a disadvantage. Pirimiphos methyl was found to be effective for IRS in Benin. However, because of the low persistence of Actellic 50EC used in this study on the treated walls, the recourse to another more residual formulation of pirimiphos methyl is required.

  7. Spatial patterns of malaria in a land reform colonization project, Juruena municipality, Mato Grosso, Brazil

    Directory of Open Access Journals (Sweden)

    Souza-Santos Reinaldo

    2011-06-01

    Full Text Available Abstract Background In Brazil, 99% of malaria cases are concentrated in the Amazon, and malaria's spatial distribution is commonly associated with socio-environmental conditions on a fine landscape scale. In this study, the spatial patterns of malaria and its determinants in a rural settlement of the Brazilian agricultural reform programme called "Vale do Amanhecer" in the northern Mato Grosso state were analysed. Methods In a fine-scaled, exploratory ecological study, geocoded notification forms corresponding to malaria cases from 2005 were compared with spectral indices, such as the Normalized Difference Vegetation Index (NDVI and the third component of the Tasseled Cap Transformation (TC_3 and thematic layers, derived from the visual interpretation of multispectral TM-Landsat 5 imagery and the application of GIS distance operators. Results Of a total of 336 malaria cases, 102 (30.36% were caused by Plasmodium falciparum and 174 (51.79% by Plasmodium vivax. Of all the cases, 37.6% (133 cases were from residents of a unique road. In total, 276 cases were reported for the southern part of the settlement, where the population density is higher, with notification rates higher than 10 cases per household. The local landscape mostly consists of open areas (38.79 km². Training forest occupied 27.34 km² and midsize vegetation 7.01 km². Most domiciles with more than five notified malaria cases were located near areas with high NDVI values. Most domiciles (41.78% and malaria cases (44.94% were concentrated in areas with intermediate values of the TC_3, a spectral index representing surface and vegetation humidity. Conclusions Environmental factors and their alteration are associated with the occurrence and spatial distribution of malaria cases in rural settlements.

  8. CASE STUDY: Mexico — Fighting malaria without DDT | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-23

    Dec 23, 2010 ... ... spraying techniques, Mexico has dramatically reduced malaria transmission. ... and the parasite, community perceptions of malaria, statistical analyses, and ... epidemiology, informatics, entomology, and the social sciences.

  9. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities.

    Science.gov (United States)

    Gurarie, David; Karl, Stephan; Zimmerman, Peter A; King, Charles H; St Pierre, Timothy G; Davis, Timothy M E

    2012-01-01

    Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns). We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT) studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB) communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.

  10. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities.

    Directory of Open Access Journals (Sweden)

    David Gurarie

    Full Text Available BACKGROUND: Agent-based modeling of Plasmodium falciparum infection offers an attractive alternative to the conventional Ross-Macdonald methodology, as it allows simulation of heterogeneous communities subjected to realistic transmission (inoculation patterns. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new, agent based model that accounts for the essential in-host processes: parasite replication and its regulation by innate and adaptive immunity. The model also incorporates a simplified version of antigenic variation by Plasmodium falciparum. We calibrated the model using data from malaria-therapy (MT studies, and developed a novel calibration procedure that accounts for a deterministic and a pseudo-random component in the observed parasite density patterns. Using the parasite density patterns of 122 MT patients, we generated a large number of calibrated parameters. The resulting data set served as a basis for constructing and simulating heterogeneous agent-based (AB communities of MT-like hosts. We conducted several numerical experiments subjecting AB communities to realistic inoculation patterns reported from previous field studies, and compared the model output to the observed malaria prevalence in the field. There was overall consistency, supporting the potential of this agent-based methodology to represent transmission in realistic communities. CONCLUSIONS/SIGNIFICANCE: Our approach represents a novel, convenient and versatile method to model Plasmodium falciparum infection.

  11. Important advances in malaria vaccine research

    Directory of Open Access Journals (Sweden)

    Priyanka Jadhav

    2012-01-01

    Full Text Available Malaria is one of the most widespread parasitic infection in Asian countries affecting the poor of the poor. In an effort to develop an effective vaccine for the treatment of malaria, various attempts are being made worldwide. If successful, such a vaccine can be effective for treatment of both Plasmodium vivax and Plasmodium falciparum. This would also be able to avoid complications such as drug resistance, resistance to insecticides, nonadherence to the treatment schedule, and eventually high cost of treatment in the resource-limited settings. In the current compilation, the details from the literature were collected by using PubMed and Medline as search engines and searched for terms such as malaria, vaccine, and malaria treatment. This review collates and provides glimpses of the information on the recent malaria vaccine development. The reader will be taken through the historical perspective followed by the approaches to the malaria vaccine development from pre-erythrocytic stage vaccines, asexual stage vaccines, transmission blocking vaccines, etc. Looking at the current scenario of the malaria and treatment strategies, it is an absolute need of an hour that an effective malaria vaccine should be developed. This would bring a revolutionary breakthrough in the treatment modalities especially when there is increasing emergence of resistance to existing drug therapy. It would be of great purpose to serve those living in malaria endemic region and also for travelers which are nonimmune and coming to malaria endemic region. As infection by P. vivax is more prevalent in India and other Asian subcontinent and is often prominent in areas where elimination is being attempted, special consideration is required of the role of vaccines in blocking transmission, regardless of the stages being targeted. Development of vaccines is feasible but with the support of private sector and government organization in terms of regulatory and most importantly

  12. Genetic and phenotypic variation of the malaria vector Anopheles atroparvus in southern Europe

    Directory of Open Access Journals (Sweden)

    Romi Roberto

    2011-01-01

    Full Text Available Abstract Background There is a growing concern that global climate change will affect the potential for pathogen transmission by insect species that are vectors of human diseases. One of these species is the former European malaria vector, Anopheles atroparvus. Levels of population differentiation of An. atroparvus from southern Europe were characterized as a first attempt to elucidate patterns of population structure of this former malaria vector. Results are discussed in light of a hypothetical situation of re-establishment of malaria transmission. Methods Genetic and phenotypic variation was analysed in nine mosquito samples collected from five European countries, using eight microsatellite loci and geometric morphometrics on 21 wing landmarks. Results Levels of genetic diversity were comparable to those reported for tropical malaria vectors. Low levels of genetic (0.004 FST An. atroparvus populations spanning over 3,000 km distance. Genetic differentiation (0.202 FST An. atroparvus and Anopheles maculipennis s.s. Differentiation between sibling species was not so evident at the phenotype level. Conclusions Levels of population differentiation within An. atroparvus were low and not correlated with geographic distance or with putative physical barriers to gene flow (Alps and Pyrenées. While these results may suggest considerable levels of gene flow, other explanations such as the effect of historical population perturbations can also be hypothesized.

  13. The ¿/d T-cell response to Plasmodium falciparum malaria in a population in which malaria is endemic

    DEFF Research Database (Denmark)

    Hviid, L; Kurtzhals, J A; Dodoo, D

    1996-01-01

    Frequencies and absolute numbers of peripheral gamma/delta T cells have been reported to increase after episodes of Plasmodium falciparum malaria in adults with limited or no previous malaria exposure. In contrast, little is known about the gamma/delta T-cell response to malaria in children from...... areas where malaria is endemic, who bear the burden of malaria-related morbidity and mortality. We investigated the gamma/delta T-cell response in 19 Ghanaian children from an area of hyperendemic, seasonal malaria transmission. The children presented with cerebral malaria (n = 7), severe malarial...... anemia (n = 5), or uncomplicated malaria (n = 7) and were monitored from admission until 4 weeks later. We found no evidence of increased frequencies of gamma/delta T cells in any of the patient groups, whereas one adult expatriate studied in Ghana and three adults admitted to the hospital in Copenhagen...

  14. Plasmodium falciparum incidence relative to entomologic inoculation rates at a site proposed for testing malaria vaccines in western Kenya.

    Science.gov (United States)

    Beier, J C; Oster, C N; Onyango, F K; Bales, J D; Sherwood, J A; Perkins, P V; Chumo, D K; Koech, D V; Whitmire, R E; Roberts, C R

    1994-05-01

    Relationships between Plasmodium falciparum incidence and entomologic inoculation rates (EIRs) were determined for a 21-month period in Saradidi, western Kenya, in preparation for malaria vaccine field trials. Children, ranging in age from six months to six years and treated to clear malaria parasites, were monitored daily for up to 12 weeks to detect new malaria infections. Overall, new P. falciparum infections were detected in 77% of 809 children. The percentage of children that developed infections per two-week period averaged 34.7%, ranging from 7.3% to 90.9%. Transmission by vector populations was detected in 86.4% (38 of 44) of the two-week periods, with daily EIRs averaging 0.75 infective bites per person. Periods of intense transmission during April to August, and from November to January, coincided with seasonal rains. Relationships between daily malaria attack rates and EIRs indicated that an average of only 7.5% (1 in 13) of the sporozoite inoculations produced new infections in children. Regression analysis demonstrated that EIRs accounted for 74% of the variation in attack rates. One of the components of the EIR, the human-biting rate, alone accounted for 68% of the variation in attack rates. Thus, measurements of either the EIR or the human-biting rate can be used to predict corresponding attack rates in children. These baseline epidemiologic studies indicate that the intense transmission patterns of P. falciparum in Saradidi will provide excellent conditions for evaluating malaria vaccine efficacy.

  15. Malaria morbidity and immunity among residents of villages with different Plasmodium falciparum transmission intensity in North-Eastern Tanzania

    DEFF Research Database (Denmark)

    Lusingu, John P A; Vestergaard, Lasse S; Mmbando, Bruno P

    2004-01-01

    and was highest in the village with high transmission intensity. Although a considerable percentage of individuals in all villages carried intestinal worms, logistic regression models indicated that Plasmodium falciparum was the only significant parasitic determinant of anaemia. Interestingly, children who...... carried low-density parasitaemia at the start of the study had a lower risk of contracting a febrile malaria episode but a higher risk of anaemia during the study period, than children who were slide negative at this point in time. CONCLUSION: Young children living in the high transmission village carried...

  16. The impact of the expansion of urban vegetable farming on malaria transmission in major cities of Benin

    Directory of Open Access Journals (Sweden)

    Kindé Gazard

    2010-12-01

    Full Text Available Abstract Background Urban agricultural practices are expanding in several cities of the Republic of Benin. This study aims to assess the impact of such practices on transmission of the malaria parasite in major cities of Benin. Method A cross sectional entomological study was carried out from January to December 2009 in two vegetable farming sites in southern Benin (Houeyiho and Acron and one in the northern area (Azèrèkè. The study was based on sampling of mosquitoes by Human Landing Catches (HLC in households close to the vegetable farms and in others located far from the farms. Results During the year of study, 71,678 female mosquitoes were caught by HLC of which 25% (17,920/71,678 were Anopheles species. In the areas surveyed, the main malaria parasite, Plasmodium falciparum was transmitted in the south by Anopheles gambiae s.s. Transmission was high during the two rainy seasons (April to July and October to November but declined in the two dry seasons (December to March and August to September. In the north, transmission occurred from June to October during the rainy season and was vehicled by two members of the An. gambiae complex: Anopheles gambiae s.s. (98% and Anopheles arabiensis (2%. At Houeyiho, Acron and Azèrèkè, the Entomological Inoculation Rates (EIRs and the Human Biting Rates (HBRs were significantly higher during the dry season in Households Close to Vegetable Farms (HCVF than in those located far from the vegetable areas (HFVF (p 0.05. The knock-down resistance (kdr mutation was the main resistance mechanism detected at high frequency (0.86 to 0.91 in An. gambiae s.l. at all sites. The ace-1R mutation was also found but at a very low frequency ( Conclusion These findings showed that communities living close to vegetable farms are permanently exposed to malaria throughout the year, whereas the risk in those living far from such agricultural practices is limited and only critical during the rainy seasons. Measures must be

  17. Effect of malaria transmission reduction by insecticide-treated bed nets (ITNs) on the genetic diversity of Plasmodium falciparum merozoite surface protein (MSP-1) and circumsporozoite (CSP) in western Kenya.

    Science.gov (United States)

    Kariuki, Simon K; Njunge, James; Muia, Ann; Muluvi, Geofrey; Gatei, Wangeci; Ter Kuile, Feiko; Terlouw, Dianne J; Hawley, William A; Phillips-Howard, Penelope A; Nahlen, Bernard L; Lindblade, Kim A; Hamel, Mary J; Slutsker, Laurence; Shi, Ya Ping

    2013-08-27

    Although several studies have investigated the impact of reduced malaria transmission due to insecticide-treated bed nets (ITNs) on the patterns of morbidity and mortality, there is limited information on their effect on parasite diversity. Sequencing was used to investigate the effect of ITNs on polymorphisms in two genes encoding leading Plasmodium falciparum vaccine candidate antigens, the 19 kilodalton blood stage merozoite surface protein-1 (MSP-1(19kDa)) and the Th2R and Th3R T-cell epitopes of the pre-erythrocytic stage circumsporozoite protein (CSP) in a large community-based ITN trial site in western Kenya. The number and frequency of haplotypes as well as nucleotide and haplotype diversity were compared among parasites obtained from children diversity of > 0.7. No MSP-1(19kDa) 3D7 sequence-types were detected in 1996 and the frequency was less than 4% in 2001. The CSP Th2R and Th3R domains were highly polymorphic with a total of 26 and 14 haplotypes, respectively detected in 1996 and 34 and 13 haplotypes in 2001, with an overall haplotype diversity of > 0.9 and 0.75 respectively. The frequency of the most predominant Th2R and Th3R haplotypes was 14 and 36%, respectively. The frequency of Th2R and Th3R haplotypes corresponding to the 3D7 parasite strain was less than 4% at both time points. There was no significant difference in nucleotide and haplotype diversity in parasite isolates collected at both time points. High diversity in these two genes has been maintained overtime despite marked reductions in malaria transmission due to ITNs use. The frequency of 3D7 sequence-types was very low in this area. These findings provide information that could be useful in the design of future malaria vaccines for deployment in endemic areas with high ITN coverage and in interpretation of efficacy data for malaria vaccines based on 3D7 parasite strains.

  18. A Mathematical Model of Malaria Transmission with Structured Vector Population and Seasonality

    Directory of Open Access Journals (Sweden)

    Bakary Traoré

    2017-01-01

    Full Text Available In this paper, we formulate a mathematical model of nonautonomous ordinary differential equations describing the dynamics of malaria transmission with age structure for the vector population. The biting rate of mosquitoes is considered as a positive periodic function which depends on climatic factors. The basic reproduction ratio of the model is obtained and we show that it is the threshold parameter between the extinction and the persistence of the disease. Thus, by applying the theorem of comparison and the theory of uniform persistence, we prove that if the basic reproduction ratio is less than 1, then the disease-free equilibrium is globally asymptotically stable and if it is greater than 1, then there exists at least one positive periodic solution. Finally, numerical simulations are carried out to illustrate our analytical results.

  19. Space-time clustering of childhood malaria at the household level: a dynamic cohort in a Mali village

    Directory of Open Access Journals (Sweden)

    Ouattara Amed

    2006-11-01

    Full Text Available Abstract Background Spatial and temporal heterogeneities in the risk of malaria have led the WHO to recommend fine-scale stratification of the epidemiological situation, making it possible to set up actions and clinical or basic researches targeting high-risk zones. Before initiating such studies it is necessary to define local patterns of malaria transmission and infection (in time and in space in order to facilitate selection of the appropriate study population and the intervention allocation. The aim of this study was to identify, spatially and temporally, high-risk zones of malaria, at the household level (resolution of 1 to 3 m. Methods This study took place in a Malian village with hyperendemic seasonal transmission as part of Mali-Tulane Tropical Medicine Research Center (NIAID/NIH. The study design was a dynamic cohort (22 surveys, from June 1996 to June 2001 on about 1300 children (Plasmodium falciparum, P. malariae and P. ovale infection and P. falciparum gametocyte carriage by means of time series and Kulldorff's scan statistic for space-time cluster detection. Results The time series analysis determined that malaria parasitemia (primarily P. falciparum was persistently present throughout the population with the expected seasonal variability pattern and a downward temporal trend. We identified six high-risk clusters of P. falciparum infection, some of which persisted despite an overall tendency towards a decrease in risk. The first high-risk cluster of P. falciparum infection (rate ratio = 14.161 was detected from September 1996 to October 1996, in the north of the village. Conclusion This study showed that, although infection proportions tended to decrease, high-risk zones persisted in the village particularly near temporal backwaters. Analysis of this heterogeneity at the household scale by GIS methods lead to target preventive actions more accurately on the high-risk zones identified. This mapping of malaria risk makes it possible

  20. Malaria has no effect on birth weight in Rwanda

    Directory of Open Access Journals (Sweden)

    Karema Corine

    2009-08-01

    Full Text Available Abstract Background Malaria has a negative effect on pregnancy outcome, causing low birth weight, premature birth and stillbirths, particularly in areas with high malaria transmission. In Rwanda, malaria transmission intensity ranges from high to nil, probably associated with variable altitudes. Overall, the incidence decreased over the last six years (2002–2007. Therefore, the impact of malaria on birth outcomes is also expected to vary over time and space. Methods Obstetric indicators (birth weight and pregnancy outcome and malaria incidence were compared and analyzed to their association over time (2002–2007 and space. Birth data from 12,526 deliveries were collected from maternity registers of 11 different primary health centers located in different malaria endemic areas. Malaria data for the same communities were collected from the National Malaria Control Programme. Associations were sought with mixed effects models and logistic regression. Results In all health centres, a significant increase of birth weight over the years was observed (p Conclusion In Rwanda, birth weight and pregnancy outcome are not directly influenced by malaria, which is in contrast to many other studied areas. Although malaria incidence overall has declined and mean birth weight increased over the studied period, no direct association was found between the two. Socio-economic factors and improved nutrition could be responsible for birth weight changes in recent years.

  1. Geo-additive modelling of malaria in Burundi

    Directory of Open Access Journals (Sweden)

    Gebhardt Albrecht

    2011-08-01

    Full Text Available Abstract Background Malaria is a major public health issue in Burundi in terms of both morbidity and mortality, with around 2.5 million clinical cases and more than 15,000 deaths each year. It is still the single main cause of mortality in pregnant women and children below five years of age. Because of the severe health and economic burden of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies/researches have been done on the subject yielding different results as which factors are most responsible for the increase in malaria transmission. This paper considers the modelling of the dependence of malaria cases on spatial determinants and climatic covariates including rainfall, temperature and humidity in Burundi. Methods The analysis carried out in this work exploits real monthly data collected in the area of Burundi over 12 years (1996-2007. Semi-parametric regression models are used. The spatial analysis is based on a geo-additive model using provinces as the geographic units of study. The spatial effect is split into structured (correlated and unstructured (uncorrelated components. Inference is fully Bayesian and uses Markov chain Monte Carlo techniques. The effects of the continuous covariates are modelled by cubic p-splines with 20 equidistant knots and second order random walk penalty. For the spatially correlated effect, Markov random field prior is chosen. The spatially uncorrelated effects are assumed to be i.i.d. Gaussian. The effects of climatic covariates and the effects of other spatial determinants are estimated simultaneously in a unified regression framework. Results The results obtained from the proposed model suggest that although malaria incidence in a given month is strongly positively associated with the minimum temperature of the previous months, regional patterns of malaria that are related to factors other than climatic variables have been identified

  2. Current and cumulative malaria infections in a setting embarking on elimination: Amhara, Ethiopia.

    Science.gov (United States)

    Yalew, Woyneshet G; Pal, Sampa; Bansil, Pooja; Dabbs, Rebecca; Tetteh, Kevin; Guinovart, Caterina; Kalnoky, Michael; Serda, Belendia A; Tesfay, Berhane H; Beyene, Belay B; Seneviratne, Catherine; Littrell, Megan; Yokobe, Lindsay; Noland, Gregory S; Domingo, Gonzalo J; Getachew, Asefaw; Drakeley, Chris; Steketee, Richard W

    2017-06-08

    Since 2005, Ethiopia has aggressively scaled up malaria prevention and case management. As a result, the number of malaria cases and deaths has significantly declined. In order to track progress towards the elimination of malaria in Amhara Region, coverage of malaria control tools and current malaria transmission need to be documented. A cross-sectional household survey oversampling children under 5 years of age was conducted during the dry season in 2013. A bivalent rapid diagnostic test (RDT) detecting both Plasmodium falciparum and Plasmodium vivax and serology assays using merozoite antigens from both these species were used to assess the prevalence of malaria infections and exposure to malaria parasites in 16 woredas (districts) in Amhara Region. 7878 participants were included, with a mean age of 16.8 years (range 0.5-102.8 years) and 42.0% being children under 5 years of age. The age-adjusted RDT-positivity for P. falciparum and P. vivax infection was 1.5 and 0.4%, respectively, of which 0.05% presented as co-infections. Overall age-adjusted seroprevalence was 30.0% for P. falciparum, 21.8% for P. vivax, and seroprevalence for any malaria species was 39.4%. The prevalence of RDT-positive infections varied by woreda, ranging from 0.0 to 8.3% and by altitude with rates of 3.2, 0.7, and 0.4% at under 2000, 2000-2500, and >2500 m, respectively. Serological analysis showed heterogeneity in transmission intensity by area and altitude and evidence for a change in the force of infection in the mid-2000s. Current and historic malaria transmission across Amhara Region show substantial variation by age and altitude with some settings showing very low or near-zero transmission. Plasmodium vivax infections appear to be lower but relatively more stable across geography and altitude, while P. falciparum is the dominant infection in the higher transmission, low-altitude areas. Age-dependent seroprevalence analyses indicates a drop in transmission occurred in the mid

  3. Malaria Surveillance - United States, 2015.

    Science.gov (United States)

    Mace, Kimberly E; Arguin, Paul M; Tan, Kathrine R

    2018-05-04

    Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to provide information on its occurrence (e.g., temporal, geographic, and demographic), guide prevention and treatment recommendations for travelers and patients, and facilitate transmission control measures if locally acquired cases are identified. This report summarizes confirmed malaria cases in persons with onset of illness in 2015 and summarizes trends in previous years. Malaria cases diagnosed by blood film microscopy, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff members. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), the National Notifiable Diseases Surveillance System (NNDSS), or direct CDC consultations. CDC reference laboratories provide diagnostic assistance and conduct antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. This report summarizes data from the integration of all NMSS and NNDSS cases, CDC reference laboratory reports, and CDC clinical consultations. CDC received reports of 1,517 confirmed malaria cases, including one congenital case, with an onset of symptoms in 2015 among persons who received their diagnoses in the United States. Although the number of

  4. Malaria, HIV and sickle cell disease in Ghana : Towards tailor-made interventions

    NARCIS (Netherlands)

    Owusu, E.D.A.

    2018-01-01

    Ghana has made many strides in the fight against malaria. This research looked at the contribution of malaria transmission heterogeneity to malaria, and the effect of geographical overlap between malaria, HIV and sickle cell disease. Our systematic review of the interactions between HIV and SCD

  5. Pengendalian Malaria dalam Upaya Percepatan Pencapaian Target Millennium Development Goals

    Directory of Open Access Journals (Sweden)

    Tri Rini Puji Lestari

    2012-08-01

    health official Malaria Center, and community leaders who observe malaria. Retrieval of data time is 10 – 16 April 2011 by in-depth interviews. It was found that malaria control programs have been implemented by the Departement of Health North Maluku Province, but have not been able to effectively reduce malaria morbidity. This is because malaria control is performed is not comprehensive. Handling is more directed to break the chain transmission to human, their habitats have not been touched up. Key words: Control of malaria, millennium development goals, malaria morbidity

  6. Forecasting Malaria in the Western Amazon

    Science.gov (United States)

    Pan, W. K.; Zaitchik, B. F.; Pizzitutti, F.; Berky, A.; Feingold, B.; Mena, C.; Janko, M.

    2017-12-01

    Reported cases of malaria in the western Amazon regions of Peru, Colombia and Ecuador have more than tripled since 2011. Responding to this epidemic has been challenging given large-scale environmental impacts and demographic changes combined with changing financial and political priorities. In Peru alone, malaria cases increased 5-fold since 2011. Reasons include changes in the Global Malaria Fund, massive flooding in 2012, the "mega" El Nino in 2016, and continued natural resource extraction via logging and mining. These challenges prompted the recent creation of the Malaria Cero program in 2017 with the goal to eradicate malaria by 2021. To assist in malaria eradiation, a team of investigators supported by NASA have been developing an Early Warning System for Malaria. The system leverages demographic, epidemiological, meteorological and land use/cover data to develop a four-component system that will improve detection of malaria across the western Amazon Basin. System components include a land data assimilation system (LDAS) to estimate past and future hydrological states and flux, a seasonal human population model to estimate population at risk and spatial connectivity to high risk transmission areas, a sub-regional statistical model to identify when and where observed malaria cases have exceeded those expected, and an Agent Based Model (ABM) to integrate human, environmental, and entomological transmission dynamics with potential strategies for control. Data include: daily case detection reports between 2000 and 2017 from all health posts in the region of Loreto in the northern Peruvian Amazon; LDAS outputs (precipitation, temperature, humidity, solar radiation) at a 1km and weekly scale; satellite-derived estimates of land cover; and human population size from census and health data. This presentation will provide an overview of components, focusing on how the system identifies an outbreak and plans for technology transfer.

  7. Malaria prevalence, risk factors and spatial distribution in a hilly forest area of Bangladesh.

    Directory of Open Access Journals (Sweden)

    Ubydul Haque

    Full Text Available BACKGROUND: Malaria is a major public health concern in Bangladesh and it is highly endemic in the Chittagong Hill Tracts where prevalence was 11.7% in 2007. One sub-district, Rajasthali, had a prevalence of 36%. Several interventions were introduced in early 2007 to control malaria. This study was undertaken to evaluate the impacts of these intensive early stage interventions on malaria in Bangladesh. This prevalence study assesses whether or not high malaria prevalence remains, and if so, which areas and individuals remain at high risk of infection. METHODS AND PRINCIPAL FINDINGS: A 2-stage cluster sampling technique was used to sample 1,400 of 5,322 (26.3% households in Rajasthali, and screened using a rapid diagnostic test (Falci-vax. Overall malaria prevalence was 11.5%. The proportions of Plasmodium falciparum, Plasmodium vivax and infection with both species were 93.2%, 1.9% and 5.0%, respectively. Univariate, multivariate logistic regression, and spatial cluster analyses were performed separately. Sex, age, number of bed nets, forest cover, altitude and household density were potential risk factors. A statistically significant malaria cluster was identified. Significant differences among risk factors were observed between cluster and non-cluster areas. CONCLUSION AND SIGNIFICANCE: Malaria has significantly decreased within 2 years after onset of intervention program. Both aspects of the physical and social environment, as well as demographic characteristics are associated with spatial heterogeneity of risk. The ability to identify and locate these areas provides a strategy for targeting interventions during initial stages of intervention programs. However, in high risk clusters of transmission, even extensive coverage by current programs leaves transmission ongoing at reduced levels. This indicates the need for continued development of new strategies for identification and treatment as well as improved understanding of the patterns and

  8. Malaria chemotherapy.

    Science.gov (United States)

    Winstanley, Peter; Ward, Stephen

    2006-01-01

    Most malaria control strategies today depend on safe and effective drugs, as they have done for decades. But sensitivity to chloroquine, hitherto the workhorse of malaria chemotherapy, has rapidly declined throughout the tropics since the 1980s, and this drug is now useless in many high-transmission areas. New options for resource-constrained governments are few, and there is growing evidence that the burden from malaria has been increasing, as has malaria mortality in Africa. In this chapter, we have tried to outline the main pharmacological properties of current drugs, and their therapeutic uses and limitations. We have summarised the ways in which these drugs are employed, both in the formal health sector and in self-medication. We have briefly touched on the limitations of current drug development, but have tried to pick out a few promising drugs that are under development. Given that Plasmodium falciparum is the organism that kills, and that has developed multi-drug resistance, we have tended to focus upon it. Similarly, given that around 90% of global mortality from malaria occurs in Africa, there is the tendency to dwell on this continent. We give no apology for placing our emphasis upon the use of antimalarial drugs in endemic populations rather than their use for prophylaxis in travellers.

  9. Prevalence of sickle cell, malaria and glucose-6-phosphate ...

    African Journals Online (AJOL)

    PD) deficiency are relatively common genetic disorders in population exposed to malaria in sub-Saharan Africa. The prevalence of these two genetic disorders differs between different malaria transmission areas. Objectives: This cross ...

  10. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia

    Directory of Open Access Journals (Sweden)

    Sukowati Supratman

    2010-11-01

    Full Text Available Abstract Background Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca. Methods Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined. Results The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus and Anopheles vagus. The 1014F allele was not found in the other areas. Conclusion The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are needed.

  11. Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia.

    Science.gov (United States)

    Syafruddin, Din; Hidayati, Anggi P N; Asih, Puji B S; Hawley, William A; Sukowati, Supratman; Lobo, Neil F

    2010-11-08

    Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca. Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC) and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined. The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus and Anopheles vagus. The 1014F allele was not found in the other areas. The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are needed.

  12. Malaria transmission in Bissau, Guinea-Bissau between 1995 and 2012

    DEFF Research Database (Denmark)

    Ursing, Johan; Rombo, Lars; Rodrigues, Amabelia

    2014-01-01

    of insecticide treated bed nets (ITN) amongst children chloroquine treatment regime was routinely used until artemisinin based combination therapy (ACT) was introduced in 2008. Long lasting insecticide treated bed nets (LLIN) were distributed in 2011. By 2012 there was 1 net...... (1995-2012) were considered incident cases. The mean annual malaria incidence per thousand children in 1995-1997, 1999-2003, 2007, 2011, 2012 were as follows; age use...... per 2 people and 97% usage. All-cause mortality decreased from post-war peaks in 1999 until 2012 in all age groups and was not negatively affected by malaria resurgence. CONCLUSION: The cause of decreasing malaria incidence (1995-2007) was probably multifactorial and coincident with the use...

  13. [Vectors of malaria: biology, diversity, prevention, and individual protection].

    Science.gov (United States)

    Pages, F; Orlandi-Pradines, E; Corbel, V

    2007-03-01

    Only the Anopheles mosquitoes are implicated in the transmission of malaria. Among the numerous species of anopheles, around fifty are currently involved in the transmission. 20 are responsible for most of the transmission in the world. The diversity of behavior between species and in a single species of anopheles as well as climatic and geographical conditions along with the action of man on the environment condition the man vector contact level and the various epidemiological aspects of malaria. The anopheles are primarily rural mosquitoes and are less likely to be found in city surroundings in theory. But actually, the adaptation of some species to urban surroundings and the common habit of market gardening in big cities or in the suburbs is responsible for the de persistence of Anopheles populations in town. Except for South-East Asia, urban malaria has become a reality. The transmission risk of malaria is heterogeneous and varies with time. There is a great variation of risk within a same country, a same zone, and even within a few kilometers. The transmission varies in time according to seasons but also according to years and to the level of climatic events. For the traveler, prevention at any time relies on the strict application of individual protection, as well in rural than in urban surroundings.

  14. Pattern of pre-existing IgG subclass responses to a panel of asexual stage malaria antigens reported during the lengthy dry season in Daraweesh, Sudan

    DEFF Research Database (Denmark)

    Nasr, A; Iriemenam, N C; Troye-Blomberg, M

    2011-01-01

    The anti-malarial IgG immune response during the lengthy and dry season in areas of low malaria transmission as in Eastern Sudan is largely unknown. In this study, ELISA was used for the measurement of pre-existing total IgG and IgG subclasses to a panel of malaria antigens, MSP2-3D7, MSP2-FC27, ...

  15. Urban malaria transmission in Buenaventura, Colombia: entomologic aspects Transmisión de la malaria urbana en Buenaventura, Colombia: aspectos entomológicos

    Directory of Open Access Journals (Sweden)

    Víctor Olano

    1997-12-01

    Full Text Available In recent years, the number of cases of urban malaria in Buenaventura, Colombia, has increased, rising from 576 in 1987 to 3296 in 1991 and 2017 in 1992. For this reason, an epidemiologic study to identify malaria transmission patterns was carried out in this municipality on Colombia’s Pacific coast. This article describes the entomologic findings regarding the vectors, their breeding sites, and the behavior of Anopheles species during the period from June 1993 to May 1994. Of the 469 potential breeding sites identified in the urban area, 28 were positive for anophelines, while in neighboring zones 20 out of 80 potential breeding sites were positive for the immature forms of these mosquitoes. Mining excavations, lakes, and commercial fish and crayfish rearing ponds were the places where A. albimanus was most frequently found. For A. nuñeztovari, the breeding sites were rain puddles and aquiculture ponds. A. neivai larvae were collected from bromeliads. Mosquitoes were collected both inside and outside houses, and 90% of the collected mosquitoes were identified as A. albimanus. Of the female A. albimanus, 54.8% were parous. This species was found to have peak peridomiciliary activity between 6 p.m. and 10 p.m. The highest biting rate outside houses was 7.1 bites per person-hour and was observed during March. It is hoped that this entomologic information will permit the launching of a strong community participation process and the implementation of control measures that are guided by these results.En los últimos años, el número de casos de malaria urbana en Buenaventura, Colombia, ha aumentado de 576 en 1987 a 3296 en 1991 y 2017 en 1992, por lo que se desarrolló un estudio epidemiológico para identificar patrones de transmisión de la malaria en este municipio del litoral pacífico colombiano. Se describen los hallazgos entomológicos en relación con los vectores, los criaderos y el comportamiento de las especies de Anopheles durante el

  16. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007.

    Directory of Open Access Journals (Sweden)

    Simon I Hay

    2010-06-01

    Full Text Available The epidemiology of malaria makes surveillance-based methods of estimating its disease burden problematic. Cartographic approaches have provided alternative malaria burden estimates, but there remains widespread misunderstanding about their derivation and fidelity. The aims of this study are to present a new cartographic technique and its application for deriving global clinical burden estimates of Plasmodium falciparum malaria for 2007, and to compare these estimates and their likely precision with those derived under existing surveillance-based approaches.In seven of the 87 countries endemic for P. falciparum malaria, the health reporting infrastructure was deemed sufficiently rigorous for case reports to be used verbatim. In the remaining countries, the mapped extent of unstable and stable P. falciparum malaria transmission was first determined. Estimates of the plausible incidence range of clinical cases were then calculated within the spatial limits of unstable transmission. A modelled relationship between clinical incidence and prevalence was used, together with new maps of P. falciparum malaria endemicity, to estimate incidence in areas of stable transmission, and geostatistical joint simulation was used to quantify uncertainty in these estimates at national, regional, and global scales. Combining these estimates for all areas of transmission risk resulted in 451 million (95% credible interval 349-552 million clinical cases of P. falciparum malaria in 2007. Almost all of this burden of morbidity occurred in areas of stable transmission. More than half of all estimated P. falciparum clinical cases and associated uncertainty occurred in India, Nigeria, the Democratic Republic of the Congo (DRC, and Myanmar (Burma, where 1.405 billion people are at risk. Recent surveillance-based methods of burden estimation were then reviewed and discrepancies in national estimates explored. When these cartographically derived national estimates were ranked

  17. Seasonal Abundance and Host-Feeding Patterns of Anopheline Vectors in Malaria Endemic Area of Iran

    Directory of Open Access Journals (Sweden)

    Hamidreza Basseri

    2010-01-01

    Full Text Available Seasonal abundance and tendency to feed on humans are important parameters to measure for effective control of malaria vectors. The objective of this study was to describe relation between feeding pattern, abundance, and resting behavior of four malaria vectors in southern Iran. This study was conducted in ten indicator villages (based on malaria incidence and entomological indices in mountainous/hilly and plain regions situated south and southeastern Iran. Mosquito vectors were collected from indoor as well as outdoor shelters and the blood meals were examined by ELISA test. Over all 7654 female Anopheles spp. were captured, the most common species were Anopheles stephensi, An. culicifacies, An. fluviatilis, and An. d'thali. The overall human blood index was 37.50%, 19.83%, 16.4%, and 30.1% for An. fluviatilis, An. stephensi, An. culicifacies, and An. d'thali, respectively. In addition, An. fluviatilis fed on human blood during the entire year but the feeding behavior of An. stephensi and An. culicifacies varied according to seasons. Overall, the abundance of the female mosquito positive to human blood was 4.25% per human shelter versus 17.5% per animal shelter. This result indicates that the vectors had tendency to rest in animal shelters after feeding on human. Therefore, vector control measure should be planned based on such as feeding pattern, abundance, and resting behavior of these vectors in the area.

  18. Strategies for Early Outbreak Detection of Malaria in the Amhara Region of Ethiopia

    Science.gov (United States)

    Nekorchuk, D.; Gebrehiwot, T.; Mihretie, A.; Awoke, W.; Wimberly, M. C.

    2017-12-01

    Traditional epidemiological approaches to early detection of disease outbreaks are based on relatively straightforward thresholds (e.g. 75th percentile, standard deviations) estimated from historical case data. For diseases with strong seasonality, these can be modified to create separate thresholds for each seasonal time step. However, for disease processes that are non-stationary, more sophisticated techniques are needed to more accurately estimate outbreak threshold values. Early detection for geohealth-related diseases that also have environmental drivers, such as vector-borne diseases, may also benefit from the integration of time-lagged environmental data and disease ecology models into the threshold calculations. The Epidemic Prognosis Incorporating Disease and Environmental Monitoring for Integrated Assessment (EPIDEMIA) project has been integrating malaria case surveillance with remotely-sensed environmental data for early detection, warning, and forecasting of malaria epidemics in the Amhara region of Ethiopia, and has five years of weekly time series data from 47 woredas (districts). Efforts to reduce the burden of malaria in Ethiopia has been met with some notable success in the past two decades with major reduction in cases and deaths. However, malaria remains a significant public health threat as 60% of the population live in malarious areas, and due to the seasonal and unstable transmission patterns with cyclic outbreaks, protective immunity is generally low which could cause high morbidity and mortality during the epidemics. This study compared several approaches for defining outbreak thresholds and for identifying a potential outbreak based on deviations from these thresholds. We found that model-based approaches that accounted for climate-driven seasonality in malaria transmission were most effective, and that incorporating a trend component improved outbreak detection in areas with active malaria elimination efforts. An advantage of these early

  19. Integrated vector management for malaria control

    Directory of Open Access Journals (Sweden)

    Impoinvil Daniel E

    2008-12-01

    Full Text Available Abstract Integrated vector management (IVM is defined as "a rational decision-making process for the optimal use of resources for vector control" and includes five key elements: 1 evidence-based decision-making, 2 integrated approaches 3, collaboration within the health sector and with other sectors, 4 advocacy, social mobilization, and legislation, and 5 capacity-building. In 2004, the WHO adopted IVM globally for the control of all vector-borne diseases. Important recent progress has been made in developing and promoting IVM for national malaria control programmes in Africa at a time when successful malaria control programmes are scaling-up with insecticide-treated nets (ITN and/or indoor residual spraying (IRS coverage. While interventions using only ITNs and/or IRS successfully reduce transmission intensity and the burden of malaria in many situations, it is not clear if these interventions alone will achieve those critical low levels that result in malaria elimination. Despite the successful employment of comprehensive integrated malaria control programmes, further strengthening of vector control components through IVM is relevant, especially during the "end-game" where control is successful and further efforts are required to go from low transmission situations to sustained local and country-wide malaria elimination. To meet this need and to ensure sustainability of control efforts, malaria control programmes should strengthen their capacity to use data for decision-making with respect to evaluation of current vector control programmes, employment of additional vector control tools in conjunction with ITN/IRS tactics, case-detection and treatment strategies, and determine how much and what types of vector control and interdisciplinary input are required to achieve malaria elimination. Similarly, on a global scale, there is a need for continued research to identify and evaluate new tools for vector control that can be integrated with

  20. Pharmacotherapy follow-up: Role in active malaria surveillance in a travel medicine centre outside the transmission area in Brazil.

    Science.gov (United States)

    Pedro, R S; Brasil, P; Pina-Costa, A; Machado, C R; Damasceno, L S; Daniel-Ribeiro, C T; Guaraldo, L

    2017-12-01

    Malaria is a potentially severe disease, widespread in tropical and subtropical areas. Apart from parasite drug resistance, which receives the largest share of attention, several factors directly influence the response to antimalarial treatment such as incorrect doses, adverse drug events, lack of adherence to treatment, drug quality and drug-drug interactions. Pharmacotherapy follow-up can be used to monitor and improve the effectiveness of treatment, prevent drug-related problems and ensure patient safety. The aim of this study was to describe the results of the implementation of pharmacotherapy follow-up of patients with malaria seen at a reference centre for malaria diagnosis and treatment (CPD-Mal) located in the city of Rio de Janeiro, an area without malaria transmission. A descriptive study was conducted from January 2009 to September 2013 at the Instituto Nacional de Infectologia Evandro Chagas (INI) of the Fundação Oswaldo Cruz (Fiocruz). All malaria patients enrolled in the study were treated according to the Brazilian Malaria Therapy Guidelines. Data collected during pharmacotherapy follow-up were recorded in a standardized form. The variables included were age, gender, comorbidities, antimalarials and concomitant medications used, adverse drug reactions (ADR), clinical and parasitological cure times, and treatment outcomes classified as success, recurrence (recrudescence or relapse); and lost to follow-up. The ADR were classified by severity (DAIDS-NIH), organ system affected (WHO-ART) and likelihood to be caused by drugs (Naranjo scale). One hundred thirteen cases of malaria were included. Patients were aged between 13 and 66 years and the majority of them (75.2%) were male. Ninety-four ADR were observed, most classified as mild (85.1%), related to disorders of the gastrointestinal system (63.8%), such as nausea and vomiting, and assessed as "possibly" caused by the antimalarial drugs (91.5%). The majority of clinical (90.9%) and parasitological

  1. Mapping multiple components of malaria risk for improved targeting of elimination interventions.

    Science.gov (United States)

    Cohen, Justin M; Le Menach, Arnaud; Pothin, Emilie; Eisele, Thomas P; Gething, Peter W; Eckhoff, Philip A; Moonen, Bruno; Schapira, Allan; Smith, David L

    2017-11-13

    There is a long history of considering the constituent components of malaria risk and the malaria transmission cycle via the use of mathematical models, yet strategic planning in endemic countries tends not to take full advantage of available disease intelligence to tailor interventions. National malaria programmes typically make operational decisions about where to implement vector control and surveillance activities based upon simple categorizations of annual parasite incidence. With technological advances, an enormous opportunity exists to better target specific malaria interventions to the places where they will have greatest impact by mapping and evaluating metrics related to a variety of risk components, each of which describes a different facet of the transmission cycle. Here, these components and their implications for operational decision-making are reviewed. For each component, related mappable malaria metrics are also described which may be measured and evaluated by malaria programmes seeking to better understand the determinants of malaria risk. Implementing tailored programmes based on knowledge of the heterogeneous distribution of the drivers of malaria transmission rather than only consideration of traditional metrics such as case incidence has the potential to result in substantial improvements in decision-making. As programmes improve their ability to prioritize their available tools to the places where evidence suggests they will be most effective, elimination aspirations may become increasingly feasible.

  2. A new world malaria map: Plasmodium falciparum endemicity in 2010.

    Science.gov (United States)

    Gething, Peter W; Patil, Anand P; Smith, David L; Guerra, Carlos A; Elyazar, Iqbal R F; Johnston, Geoffrey L; Tatem, Andrew J; Hay, Simon I

    2011-12-20

    Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR) and the basic reproductive number (PfR). Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR) surveys were used in a model-based geostatistical (MBG) prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The maps presented here contribute to a rational basis for control and

  3. A new world malaria map: Plasmodium falciparum endemicity in 2010

    Directory of Open Access Journals (Sweden)

    Gething Peter W

    2011-12-01

    Full Text Available Abstract Background Transmission intensity affects almost all aspects of malaria epidemiology and the impact of malaria on human populations. Maps of transmission intensity are necessary to identify populations at different levels of risk and to evaluate objectively options for disease control. To remain relevant operationally, such maps must be updated frequently. Following the first global effort to map Plasmodium falciparum malaria endemicity in 2007, this paper describes the generation of a new world map for the year 2010. This analysis is extended to provide the first global estimates of two other metrics of transmission intensity for P. falciparum that underpin contemporary questions in malaria control: the entomological inoculation rate (PfEIR and the basic reproductive number (PfR. Methods Annual parasite incidence data for 13,449 administrative units in 43 endemic countries were sourced to define the spatial limits of P. falciparum transmission in 2010 and 22,212 P. falciparum parasite rate (PfPR surveys were used in a model-based geostatistical (MBG prediction to create a continuous contemporary surface of malaria endemicity within these limits. A suite of transmission models were developed that link PfPR to PfEIR and PfR and these were fitted to field data. These models were combined with the PfPR map to create new global predictions of PfEIR and PfR. All output maps included measured uncertainty. Results An estimated 1.13 and 1.44 billion people worldwide were at risk of unstable and stable P. falciparum malaria, respectively. The majority of the endemic world was predicted with a median PfEIR of less than one and a median PfRc of less than two. Values of either metric exceeding 10 were almost exclusive to Africa. The uncertainty described in both PfEIR and PfR was substantial in regions of intense transmission. Conclusions The year 2010 has a particular significance as an evaluation milestone for malaria global health policy. The

  4. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control

    OpenAIRE

    Kibret, Solomon; Wilson, G Glenn; Tekie, Habte; Petros, Beyene

    2014-01-01

    Background Irrigation schemes have been blamed for the increase in malaria in many parts of sub-Saharan Africa. However, proper water management could help mitigate malaria around irrigation schemes in this region. This study investigates the link between irrigation and malaria in Central Ethiopia. Methods Larval and adult mosquitoes were collected fortnightly between November 2009 and October 2010 from two irrigated and two non-irrigated (control) villages in the Ziway area, Central Ethiopia...

  5. Prevalence and pattern of malaria parasitaemia among under-five ...

    African Journals Online (AJOL)

    2015-08-07

    Aug 7, 2015 ... malaria control programs while ensuring proper ... cent of global infectious diseases burden.1 According to the World Malaria ... Maiduguri Teaching Hospital is a centre of excellence ... 100 oil-immersion fields. For positive ...

  6. Bionomics and vector potential of Anopheles subpictus as a malaria vector in India: An overview.

    Directory of Open Access Journals (Sweden)

    Dr. Raj Kumar Singh

    2014-03-01

    Full Text Available Anopheles subpictus has been recognised as an important vector of malaria in Sri Lanka and some other countries like Malaysia and Maldives. It has been found to play an important role in malaria transmission as a secondary vector in certain parts of Odisha and coastal areas of south India. An. subpictus is a widely distributed mosquito species that breeds in a variety of fresh as well as saline water habitats. The species is a complex of four sibling species provisionally designated as: sibling species A, B, C and D, but the role of these sibling species in malaria transmission is not clearly known. As there is limited research work available on this species in India, it was thought prudent to review the bionomics and the role of An. subpictus in malaria transmission in Indian context. Further studies are required on the bionomics of An. subpictus and its role in malaria transmission in other parts of the country under the influence of changing ecological conditions.

  7. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  8. Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches.

    Science.gov (United States)

    Franke, Jonas; Gebreslasie, Michael; Bauwens, Ides; Deleu, Julie; Siegert, Florian

    2015-06-03

    Malaria affects about half of the world's population, with the vast majority of cases occuring in Africa. National malaria control programmes aim to reduce the burden of malaria and its negative, socioeconomic effects by using various control strategies (e.g. vector control, environmental management and case tracking). Vector control is the most effective transmission prevention strategy, while environmental factors are the key parameters affecting transmission. Geographic information systems (GIS), earth observation (EO) and spatial modelling are increasingly being recognised as valuable tools for effective management and malaria vector control. Issues previously inhibiting the use of EO in epidemiology and malaria control such as poor satellite sensor performance, high costs and long turnaround times, have since been resolved through modern technology. The core goal of this study was to develop and implement the capabilities of EO data for national malaria control programmes in South Africa, Swaziland and Mozambique. High- and very high resolution (HR and VHR) land cover and wetland maps were generated for the identification of potential vector habitats and human activities, as well as geoinformation on distance to wetlands for malaria risk modelling, population density maps, habitat foci maps and VHR household maps. These products were further used for modelling malaria incidence and the analysis of environmental factors that favour vector breeding. Geoproducts were also transferred to the staff of national malaria control programmes in seven African countries to demonstrate how EO data and GIS can support vector control strategy planning and monitoring. The transferred EO products support better epidemiological understanding of environmental factors related to malaria transmission, and allow for spatio-temporal targeting of malaria control interventions, thereby improving the cost-effectiveness of interventions.

  9. Assessing the impact of model and climate uncertainty in malaria simulations for the Kenyan Highlands.

    Science.gov (United States)

    Tompkins, A. M.; Thomson, M. C.

    2017-12-01

    Simulations of the impact of climate variations on a vector-bornedisease such as malaria are subject to a number of sources ofuncertainty. These include the model structure and parameter settingsin addition to errors in the climate data and the neglect of theirspatial heterogeneity, especially over complex terrain. We use aconstrained genetic algorithm to confront these two sources ofuncertainty for malaria transmission in the highlands of Kenya. Thetechnique calibrates the parameter settings of a process-based,mathematical model of malaria transmission to vary within theirassessed level of uncertainty and also allows the calibration of thedriving climate data. The simulations show that in highland settingsclose to the threshold for sustained transmission, the uncertainty inclimate is more important to address than the malaria modeluncertainty. Applications of the coupled climate-malaria modelling system are briefly presented.

  10. Application of optimal control strategies to HIV-malaria co-infection dynamics

    Science.gov (United States)

    Fatmawati; Windarto; Hanif, Lathifah

    2018-03-01

    This paper presents a mathematical model of HIV and malaria co-infection transmission dynamics. Optimal control strategies such as malaria preventive, anti-malaria and antiretroviral (ARV) treatments are considered into the model to reduce the co-infection. First, we studied the existence and stability of equilibria of the presented model without control variables. The model has four equilibria, namely the disease-free equilibrium, the HIV endemic equilibrium, the malaria endemic equilibrium, and the co-infection equilibrium. We also obtain two basic reproduction ratios corresponding to the diseases. It was found that the disease-free equilibrium is locally asymptotically stable whenever their respective basic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. sic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. Then, the optimal control theory for the model was derived analytically by using Pontryagin Maximum Principle. Numerical simulations of the optimal control strategies are also performed to illustrate the results. From the numerical results, we conclude that the best strategy is to combine the malaria prevention and ARV treatments in order to reduce malaria and HIV co-infection populations.

  11. Multisensor earth observations to characterize wetlands and malaria epidemiology in Ethiopia

    Science.gov (United States)

    Midekisa, Alemayehu; Senay, Gabriel; Wimberly, Michael C.

    2014-01-01

    Malaria is a major global public health problem, particularly in Sub-Saharan Africa. The spatial heterogeneity of malaria can be affected by factors such as hydrological processes, physiography, and land cover patterns. Tropical wetlands, for example, are important hydrological features that can serve as mosquito breeding habitats. Mapping and monitoring of wetlands using satellite remote sensing can thus help to target interventions aimed at reducing malaria transmission. The objective of this study was to map wetlands and other major land cover types in the Amhara region of Ethiopia and to analyze district-level associations of malaria and wetlands across the region. We evaluated three random forests classification models using remotely sensed topographic and spectral data based on Shuttle Radar Topographic Mission (SRTM) and Landsat TM/ETM+ imagery, respectively. The model that integrated data from both sensors yielded more accurate land cover classification than single-sensor models. The resulting map of wetlands and other major land cover classes had an overall accuracy of 93.5%. Topographic indices and subpixel level fractional cover indices contributed most strongly to the land cover classification. Further, we found strong spatial associations of percent area of wetlands with malaria cases at the district level across the dry, wet, and fall seasons. Overall, our study provided the most extensive map of wetlands for the Amhara region and documented spatiotemporal associations of wetlands and malaria risk at a broad regional level. These findings can assist public health personnel in developing strategies to effectively control and eliminate malaria in the region.

  12. changing trends in the diagnosis of malaria and typhoid fever

    African Journals Online (AJOL)

    A vast proportion of malaria morbidity occurs in sub-Saharan Africa, (SSA). However, there is substantial evidence that the intensity of malaria transmission in Africa is declining (Snow et al. 2012, Graz et al. 2011), and rapid malaria parasitemia tests are well distributed in endemic countries and easy to use (Graz et al. 2011) ...

  13. Rapid urban malaria appraisal (RUMA I: Epidemiology of urban malaria in Ouagadougou

    Directory of Open Access Journals (Sweden)

    Convelbo Natalie

    2005-09-01

    Full Text Available Abstract Background Rapid urbanization in sub-Saharan Africa has a major impact on malaria epidemiology. While much is known about malaria in rural areas in Burkina Faso, the urban situation is less well understood. Methods An assessment of urban malaria was carried out in Ouagadougou in November -December, 2002 during which a rapid urban malaria appraisal (RUMA was applied. Results The school parasitaemia prevalence was relatively high (48.3% at the cold and dry season 2002. Routine malaria statistics indicated that seasonality of malaria transmission was marked. In the health facilities, the number of clinical cases diminished quickly at the start of the cold and dry season and the prevalence of parasitaemia detected in febrile and non-febrile cases was 21.1% and 22.0%, respectively. The health facilities were likely to overestimate the malaria incidence and the age-specific fractions of malaria-attributable fevers were low (0–0.13. Peak prevalence tended to occur in older children (aged 6–15 years. Mapping of Anopheles sp. breeding sites indicated a gradient of endemicity between the urban centre and the periphery of Ouagadougou. A remarkable link was found between urban agriculture activities, seasonal availability of water supply and the occurrence of malaria infections in this semi-arid area. The study also demonstrated that the usage of insecticide-treated nets and the education level of family caretakers played a key role in reducing malaria infection rates. Conclusion These findings show that determining local endemicity and the rate of clinical malaria cases are urgently required in order to target control activities and avoid over-treatment with antimalarials. The case management needs to be tailored to the level of the prevailing endemicity.

  14. Plasmodium vivax Transmission in Africa.

    Directory of Open Access Journals (Sweden)

    Rosalind E Howes

    2015-11-01

    Full Text Available Malaria in sub-Saharan Africa has historically been almost exclusively attributed to Plasmodium falciparum (Pf. Current diagnostic and surveillance systems in much of sub-Saharan Africa are not designed to identify or report non-Pf human malaria infections accurately, resulting in a dearth of routine epidemiological data about their significance. The high prevalence of Duffy negativity provided a rationale for excluding the possibility of Plasmodium vivax (Pv transmission. However, review of varied evidence sources including traveller infections, community prevalence surveys, local clinical case reports, entomological and serological studies contradicts this viewpoint. Here, these data reports are weighted in a unified framework to reflect the strength of evidence of indigenous Pv transmission in terms of diagnostic specificity, size of individual reports and corroboration between evidence sources. Direct evidence was reported from 21 of the 47 malaria-endemic countries studied, while 42 countries were attributed with infections of visiting travellers. Overall, moderate to conclusive evidence of transmission was available from 18 countries, distributed across all parts of the continent. Approximately 86.6 million Duffy positive hosts were at risk of infection in Africa in 2015. Analysis of the mechanisms sustaining Pv transmission across this continent of low frequency of susceptible hosts found that reports of Pv prevalence were consistent with transmission being potentially limited to Duffy positive populations. Finally, reports of apparent Duffy-independent transmission are discussed. While Pv is evidently not a major malaria parasite across most of sub-Saharan Africa, the evidence presented here highlights its widespread low-level endemicity. An increased awareness of Pv as a potential malaria parasite, coupled with policy shifts towards species-specific diagnostics and reporting, will allow a robust assessment of the public health

  15. Asymptomatic Malaria and its Challenges in the Malaria Elimination Program in Iran: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Gholmreza Hassanpour

    2017-06-01

    Full Text Available Background: The ob­jective of this study was to find an appropriate approach to asymptomatic malaria in elimination setting through a systematic review.Methods: A broad search was conducted to find articles with the words ‘malaria’ in their titles and ‘asymptomatic’ or ‘submicroscopic’ in their texts, irrespective of the type of study conducted. The Cochrane, Medline/PubMed, and Scopus databases, as well as Google Scholar were systematically searched for English articles and reports and Iran’s databases- IranMedex, SID and Magiran were searched for Persian reports and articles, with no time limitation. The study was qualitatively summarized if it contained precise information on the role of asymptomatic malaria in the elimination phase.Results: Six articles were selected from the initial 2645 articles. The results all re-emphasize the significance of asymptomatic malaria in the elimination phase, and empha­size the significance of diagnostic tests of higher sensitivity to locate these patients and perform interventions to re­duce the asymptomatic parasitic reservoirs particularly in regions of low transmission. However, we may infer from the results that the current evidence cannot yet specify an accurate strategy on the role of asymptomatic malaria in the elimination phase.Conclusion: To eliminate malaria, alongside vector control, and treatment of symptomatic and asymptomatic pa­tients, active and inactive methods of case detection need to be employed. The precise monitoring of asymptomatic individuals and submicroscopic cases of malaria through molecular assays and valid serological methods, especially in regions where seasonal and low transmission exists can be very helpful at this phase.

  16. Malaria and large dams in sub-Saharan Africa: future impacts in a changing climate.

    Science.gov (United States)

    Kibret, Solomon; Lautze, Jonathan; McCartney, Matthew; Nhamo, Luxon; Wilson, G Glenn

    2016-09-05

    Sub-Saharan Africa (SSA) has embarked on a new era of dam building to improve food security and promote economic development. Nonetheless, the future impacts of dams on malaria transmission are poorly understood and seldom investigated in the context of climate and demographic change. The distribution of malaria in the vicinity of 1268 existing dams in SSA was mapped under the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathways (RCP) 2.6 and 8.5. Population projections and malaria incidence estimates were used to compute population at risk of malaria in both RCPs. Assuming no change in socio-economic interventions that may mitigate impacts, the change in malaria stability and malaria burden in the vicinity of the dams was calculated for the two RCPs through to the 2080s. Results were compared against the 2010 baseline. The annual number of malaria cases associated with dams and climate change was determined for each of the RCPs. The number of dams located in malarious areas is projected to increase in both RCPs. Population growth will add to the risk of transmission. The population at risk of malaria around existing dams and associated reservoirs, is estimated to increase from 15 million in 2010 to 21-23 million in the 2020s, 25-26 million in the 2050s and 28-29 million in the 2080s, depending on RCP. The number of malaria cases associated with dams in malarious areas is expected to increase from 1.1 million in 2010 to 1.2-1.6 million in the 2020s, 2.1-3.0 million in the 2050s and 2.4-3.0 million in the 2080s depending on RCP. The number of cases will always be higher in RCP 8.5 than RCP 2.6. In the absence of changes in other factors that affect transmission (e.g., socio-economic), the impact of dams on malaria in SSA will be significantly exacerbated by climate change and increases in population. Areas without malaria transmission at present, which will transition to regions of unstable transmission, may be worst affected

  17. A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots.

    Science.gov (United States)

    Bejon, Philip; Williams, Thomas N; Nyundo, Christopher; Hay, Simon I; Benz, David; Gething, Peter W; Otiende, Mark; Peshu, Judy; Bashraheil, Mahfudh; Greenhouse, Bryan; Bousema, Teun; Bauni, Evasius; Marsh, Kevin; Smith, David L; Borrmann, Steffen

    2014-04-24

    Malaria transmission is spatially heterogeneous. This reduces the efficacy of control strategies, but focusing control strategies on clusters or 'hotspots' of transmission may be highly effective. Among 1500 homesteads in coastal Kenya we calculated (a) the fraction of febrile children with positive malaria smears per homestead, and (b) the mean age of children with malaria per homestead. These two measures were inversely correlated, indicating that children in homesteads at higher transmission acquire immunity more rapidly. This inverse correlation increased gradually with increasing spatial scale of analysis, and hotspots of febrile malaria were identified at every scale. We found hotspots within hotspots, down to the level of an individual homestead. Febrile malaria hotspots were temporally unstable, but 4 km radius hotspots could be targeted for 1 month following 1 month periods of surveillance.DOI: http://dx.doi.org/10.7554/eLife.02130.001. Copyright © 2014, Bejon et al.

  18. Faktor Risiko Perilaku dan Lingkungan dalam Penularan Malaria di Pulau Sebatik, Kabupaten Nunukan, Kalimantan Timur

    Directory of Open Access Journals (Sweden)

    Wiwik Trapsilowati

    2016-12-01

    Full Text Available Malaria transmission is influenced by several factors, including parasites, human, mosquito and environment. In 2009, slide positive rate (SPR in Puskesmas Aji Kuning, Sungai Nyamuk and Setabu in Sebatik Island were identified as amount 63,61%, 28,04% and 30,12% respectively, while the target malaria pre-elimination SPR < 5%. The aim of this study was to determine the behavioral and environmental risk factors of malaria transmission. This is a cross sectional study and the number of sample were 101 respondents. The results showed that there was significant association between the habit of using mosquito nets, the habit of using mosquito coils, repellent and others, the respondent's house near breeding mosquitoes habitats and the respondent’s house near the cocoa/coffee plantation with the occurrence of malaria cases. Relative risk (RR value were 2,0, 2,3, 2,9 and 1,7, respectively. Behavioral risk factors of malaria transmission were the habit of using a mosquito nets and habit of using mosquito coils, repellent and others. Environmental risk of malaria transmission were the house near mosquito breeding habitats, and the house near the cocoa and coffee plantation.

  19. Funding for malaria control 2006–2010: A comprehensive global assessment

    Directory of Open Access Journals (Sweden)

    Pigott David M

    2012-07-01

    Full Text Available Abstract Background The last decade has seen a dramatic increase in international and domestic funding for malaria control, coupled with important declines in malaria incidence and mortality in some regions of the world. As the ongoing climate of financial uncertainty places strains on investment in global health, there is an increasing need to audit the origin, recipients and geographical distribution of funding for malaria control relative to populations at risk of the disease. Methods A comprehensive review of malaria control funding from international donors, bilateral sources and national governments was undertaken to reconstruct total funding by country for each year 2006 to 2010. Regions at risk from Plasmodium falciparum and/or Plasmodium vivax transmission were identified using global risk maps for 2010 and funding was assessed relative to populations at risk. Those nations with unequal funding relative to a regional average were identified and potential explanations highlighted, such as differences in national policies, government inaction or donor neglect. Results US$8.9 billion was disbursed for malaria control and elimination programmes over the study period. Africa had the largest levels of funding per capita-at-risk, with most nations supported primarily by international aid. Countries of the Americas, in contrast, were supported typically through national government funding. Disbursements and government funding in Asia were far lower with a large variation in funding patterns. Nations with relatively high and low levels of funding are discussed. Conclusions Global funding for malaria control is substantially less than required. Inequity in funding is pronounced in some regions particularly when considering the distinct goals of malaria control and malaria elimination. Efforts to sustain and increase international investment in malaria control should be informed by evidence-based assessment of funding equity.

  20. Malaria prophylaxis in the French armed forces: evolution of concepts.

    Science.gov (United States)

    Touze, J E; Paule, P; Baudon, D; Boutin, J P

    2001-01-01

    Malaria is still a serious public health problem in the world and control remains a major priority for the approximately 25.000 French troops deployed, mostly on permanent assignment, in malaria transmission regions. Epidemiological surveillance of malaria provides data necessary to assess morbidity, monitor changing patterns of Plasmodium falciparum drug-sensitivity, and evaluate the efficacy of malaria control measures. About 540 cases were observed in 1999 for an incidence of 4.1 p. 100 men. year. Since 1991, strong emphasis has been placed on prophylaxis. In addition to vector control measures and individual protection against mosquito bites (impregnated bednets, protective clothing, application of repellents, and indoor insecticide spraying), drug prophylaxis has been recommended using a combination of 100 mg of chloroquine and 200 mg of proguanil chlorhydrate (CQ + PG) in a single capsule manufactured by the French Health Army Service. Initially this policy led to a significant decrease in malaria cases among French soldiers. However the incidence of malaria rose in 1995 and 1996. This recrudescence was attributed to poor compliance with chemoprophylaxis and to the declining efficacy of the CQ + PG combination. In response to these problems, a new policy was implemented especially in countries where cycloguanil-resistant Plasmodium falciparum incidence rate is increasing. The new chemoprophylactic regimen calls for a personal prescription of mefloquine. Doxycycline monohydrate is used in case of mefloquine contra-indication or intolerance. Combination of CQ + PG delivered in a single capsule remains a suitable chemoprophylactic regimen in Sahel countries as well as Horn of Africa.

  1. Modeling malaria control intervention effect in KwaZulu-Natal, South Africa using intervention time series analysis.

    Science.gov (United States)

    Ebhuoma, Osadolor; Gebreslasie, Michael; Magubane, Lethumusa

    The change of the malaria control intervention policy in South Africa (SA), re-introduction of dichlorodiphenyltrichloroethane (DDT), may be responsible for the low and sustained malaria transmission in KwaZulu-Natal (KZN). We evaluated the effect of the re-introduction of DDT on malaria in KZN and suggested practical ways the province can strengthen her already existing malaria control and elimination efforts, to achieve zero malaria transmission. We obtained confirmed monthly malaria cases in KZN from the malaria control program of KZN from 1998 to 2014. The seasonal autoregressive integrated moving average (SARIMA) intervention time series analysis (ITSA) was employed to model the effect of the re-introduction of DDT on confirmed monthly malaria cases. The result is an abrupt and permanent decline of monthly malaria cases (w 0 =-1174.781, p-value=0.003) following the implementation of the intervention policy. The sustained low malaria cases observed over a long period suggests that the continued usage of DDT did not result in insecticide resistance as earlier anticipated. It may be due to exophagic malaria vectors, which renders the indoor residual spraying not totally effective. Therefore, the feasibility of reducing malaria transmission to zero in KZN requires other reliable and complementary intervention resources to optimize the existing ones. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Does deforestation promote or inhibit malaria transmission in the Amazon? A systematic literature review and critical appraisal of current evidence.

    Science.gov (United States)

    Tucker Lima, Joanna M; Vittor, Amy; Rifai, Sami; Valle, Denis

    2017-06-05

    Considerable interest in the relationship between biodiversity and disease has recently captured the attention of the research community, with important public policy implications. In particular, malaria in the Amazon region is often cited as an example of how forest conservation can improve public health outcomes. However, despite a growing body of literature and an increased understanding of the relationship between malaria and land use / land cover change (LULC) in Amazonia, contradictions have emerged. While some studies report that deforestation increases malaria risk, others claim the opposite. Assessing malaria risk requires examination of dynamic processes among three main components: (i) the environment (i.e. LULC and landscape transformations), (ii) vector biology (e.g. mosquito species distributions, vector activity and life cycle, plasmodium infection rates), and (iii) human populations (e.g. forest-related activity, host susceptibility, movement patterns). In this paper, we conduct a systematic literature review on malaria risk and deforestation in the Amazon focusing on these three components. We explore key features that are likely to generate these contrasting results using the reviewed articles and our own data from Brazil and Peru, and conclude with suggestions for productive avenues in future research.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'. © 2017 The Authors.

  3. The drug sensitivity and transmission dynamics of human malaria on Nias Island, North Sumatra, Indonesia.

    Science.gov (United States)

    Fryauff, D J; Leksana, B; Masbar, S; Wiady, I; Sismadi, P; Susanti, A I; Nagesha, H S; Syafruddin; Atmosoedjono, S; Bangs, M J; Baird, J K

    2002-07-01

    Nias Island, off the north-western coast of Sumatra, Indonesia, was one of the first locations in which chloroquine-resistant Plasmodium vivax malaria was reported. This resistance is of particular concern because its ancient megalithic culture and the outstanding surfing conditions make the island a popular tourist destination. International travel to and from the island could rapidly spread chloroquine-resistant strains of P. vivax across the planet. The threat posed by such strains, locally and internationally, has led to the routine and periodic re-assessment of the efficacy of antimalarial drugs and transmission potential on the island. Active case detection identified malaria in 124 (17%) of 710 local residents whereas passive case detection, at the central health clinic, confirmed malaria in 77 (44%) of 173 cases of presumed 'clinical malaria'. Informed consenting volunteers who had malarial parasitaemias were treated, according to the Indonesian Ministry of Health's recommendations, with sulfadoxine-pyrimethamine (SP) on day 0 (for P. falciparum) or with chloroquine (CQ) on days 0, 1 and 2 (for P. vivax). Each volunteer was then monitored for clinical and parasite response until day 28. Recurrent parasitaemia by day 28 treatment was seen in 29 (83%) of the 35 P. falciparum cases given SP (14, 11 and four cases showing RI, RII and RIII resistance, respectively). Recurrent parasitaemia was also observed, between day 11 and day 21, in six (21%) of the 28 P. vivax cases given CQ. Although the results of quantitative analysis confirmed only low prevalences of CQ-resistant P. vivax malaria, the prevalence of SP resistance among the P. falciparum cases was among the highest seen in Indonesia. When the parasites present in the volunteers with P. falciparum infections were genotyped, mutations associated with pyrimethamine resistance were found at high frequency in the dhfr gene but there was no evidence of selection for sulfadoxine resistance in the dhps gene

  4. Impact of malaria interventions on child mortality in endemic African settings: comparison and alignment between LiST and Spectrum-Malaria model.

    Science.gov (United States)

    Korenromp, Eline; Hamilton, Matthew; Sanders, Rachel; Mahiané, Guy; Briët, Olivier J T; Smith, Thomas; Winfrey, William; Walker, Neff; Stover, John

    2017-11-07

    In malaria-endemic countries, malaria prevention and treatment are critical for child health. In the context of intervention scale-up and rapid changes in endemicity, projections of intervention impact and optimized program scale-up strategies need to take into account the consequent dynamics of transmission and immunity. The new Spectrum-Malaria program planning tool was used to project health impacts of Insecticide-Treated mosquito Nets (ITNs) and effective management of uncomplicated malaria cases (CMU), among other interventions, on malaria infection prevalence, case incidence and mortality in children 0-4 years, 5-14 years of age and adults. Spectrum-Malaria uses statistical models fitted to simulations of the dynamic effects of increasing intervention coverage on these burdens as a function of baseline malaria endemicity, seasonality in transmission and malaria intervention coverage levels (estimated for years 2000 to 2015 by the World Health Organization and Malaria Atlas Project). Spectrum-Malaria projections of proportional reductions in under-five malaria mortality were compared with those of the Lives Saved Tool (LiST) for the Democratic Republic of the Congo and Zambia, for given (standardized) scenarios of ITN and/or CMU scale-up over 2016-2030. Proportional mortality reductions over the first two years following scale-up of ITNs from near-zero baselines to moderately higher coverages align well between LiST and Spectrum-Malaria -as expected since both models were fitted to cluster-randomized ITN trials in moderate-to-high-endemic settings with 2-year durations. For further scale-up from moderately high ITN coverage to near-universal coverage (as currently relevant for strategic planning for many countries), Spectrum-Malaria predicts smaller additional ITN impacts than LiST, reflecting progressive saturation. For CMU, especially in the longer term (over 2022-2030) and for lower-endemic settings (like Zambia), Spectrum-Malaria projects larger

  5. Urban malaria risk in sub-Saharan Africa: where is the evidence?

    Science.gov (United States)

    Byrne, Neville

    2007-03-01

    It is essential that the precautions that are advisable for travel in sub-Saharan Africa, including antimalarial prophylaxis, are supported by evidence. Sub-Saharan Africa accounts for 90% of global malaria cases and the more serious falciparum form predominates. The risk of malaria transmission is qualitatively much greater in rural than urban areas. However, there is little quantitative data on the risk in urban areas on which to base a risk assessment. Rapid urban population growth and trends of tourism to urban-only (rather than rural) areas both support the need to focus attention on the level of risk in malaria endemic African cities. There is evidence in urban settings that the reduced intensity of malaria transmission is due to a decline in the level of parasitism in the local population and reduced anophelism. The most useful evidence for an urban risk assessment is the entomological inoculation rate (EIR) which is generally below 30 infective bites per person per year. Transmission is acknowledged to be much lower in central urban areas compared with peri-urban areas or rural areas. Transmission is local and focal because the anopheles mosquito has a limited flight range of several kilometres. The risk assessment should examine nocturnal activities outside an air-conditioned environment (because the anopheline mosquito only bites between dusk and dawn) and the level of adherence to accompanying protective measures. Several studies have noted the protection air-conditioning provides against malaria. Evidence of low occupational risk for airline crew, unprotected by prophylaxis, from brief layovers of several nights in quality hotels in 8 endemic cities is explored. A literature search examines the evidence of environmental surveys and entomological inoculation rates. The limitations of the available data are discussed, including the highly focal nature of malaria transmission.

  6. Risk of daytime transmission of malaria in the French Guiana rain forest.

    Science.gov (United States)

    Pommier de Santi, V; Dusfour, I; de Parseval, E; Lespinet, B; Nguyen, C; Gaborit, P; Carinci, R; Hyvert, G; Girod, R; Briolant, S

    2017-02-01

    Between 2008 and 2014, there were 1070 malaria cases reported in French Guiana among members of the armed forces. Most of the malaria outbreaks investigated were multifactorial and followed missions conducted at illegal gold mining sites. For example, a malaria outbreak occurred in September 2013, three weeks after the deployment of 15 soldiers at Dagobert, which is such a site. The attack rate was 53%, with seven Plasmodium vivax infections and one coinfection with both Plasmodium vivax and Plasmodium falciparum. Two months later, an entomological investigation in the field caught 321 anopheles by the human landing catch method. Among them, 282 were Anopheles darlingi. One specimen was PCR-positive for P. vivax, for an infection rate of 0.4% (1/282). In 15.7% of these cases, the An. darlingi was caught during the day. The existence of daytime biting activity by An. darlingi in the Guianese forest might play a key role in malaria outbreaks among military personnel. This finding requires that the Army Health Service adapt its recommendations concerning malaria prevention in French Guiana.

  7. Congenital malaria in China.

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Tao

    2014-03-01

    Full Text Available BACKGROUND: Congenital malaria, in which infants are directly infected with malaria parasites from their mother prior to or during birth, is a potentially life-threatening condition that occurs at relatively low rates in malaria-endemic regions. It is recognized as a serious problem in Plasmodium falciparum-endemic sub-Saharan Africa, where recent data suggests that it is more common than previously believed. In such regions where malaria transmission is high, neonates may be protected from disease caused by congenital malaria through the transfer of maternal antibodies against the parasite. However, in low P. vivax-endemic regions, immunity to vivax malaria is low; thus, there is the likelihood that congenital vivax malaria poses a more significant threat to newborn health. Malaria had previously been a major parasitic disease in China, and congenital malaria case reports in Chinese offer valuable information for understanding the risks posed by congenital malaria to neonatal health. As most of the literature documenting congenital malaria cases in China are written in Chinese and therefore are not easily accessible to the global malaria research community, we have undertaken an extensive review of the Chinese literature on this subject. METHODS/PRINCIPAL FINDINGS: Here, we reviewed congenital malaria cases from three major searchable Chinese journal databases, concentrating on data from 1915 through 2011. Following extensive screening, a total of 104 cases of congenital malaria were identified. These cases were distributed mainly in the eastern, central, and southern regions of China, as well as in the low-lying region of southwest China. The dominant species was P. vivax (92.50%, reflecting the malaria parasite species distribution in China. The leading clinical presentation was fever, and other clinical presentations were anaemia, jaundice, paleness, diarrhoea, vomiting, and general weakness. With the exception of two cases, all patients

  8. Earth observation in support of malaria control and epidemiology: MALAREO monitoring approaches

    Directory of Open Access Journals (Sweden)

    Jonas Franke

    2015-06-01

    Full Text Available Malaria affects about half of the world’s population, with the vast majority of cases occuring in Africa. National malaria control programmes aim to reduce the burden of malaria and its negative, socioeconomic effects by using various control strategies (e.g. vector control, environmental management and case tracking. Vector control is the most effective transmission prevention strategy, while environmental factors are the key parameters affecting transmission. Geographic information systems (GIS, earth observation (EO and spatial modelling are increasingly being recognised as valuable tools for effective management and malaria vector control. Issues previously inhibiting the use of EO in epidemiology and malaria control such as poor satellite sensor performance, high costs and long turnaround times, have since been resolved through modern technology. The core goal of this study was to develop and implement the capabilities of EO data for national malaria control programmes in South Africa, Swaziland and Mozambique. High- and very high resolution (HR and VHR land cover and wetland maps were generated for the identification of potential vector habitats and human activities, as well as geoinformation on distance to wetlands for malaria risk modelling, population density maps, habitat foci maps and VHR household maps. These products were further used for modelling malaria incidence and the analysis of environmental factors that favour vector breeding. Geoproducts were also transferred to the staff of national malaria control programmes in seven African countries to demonstrate how EO data and GIS can support vector control strategy planning and monitoring. The transferred EO products support better epidemiological understanding of environmental factors related to malaria transmission, and allow for spatio-temporal targeting of malaria control interventions, thereby improving the cost-effectiveness of interventions.

  9. Sero-epidemiological evaluation of Plasmodium falciparum malaria in Senegal.

    Science.gov (United States)

    Sylla, Khadime; Tine, Roger Clément Kouly; Ndiaye, Magatte; Sow, Doudou; Sarr, Aïssatou; Mbuyi, Marie Louise Tshibola; Diouf, Ibrahima; Lô, Amy Colé; Abiola, Annie; Seck, Mame Cheikh; Ndiaye, Mouhamadou; Badiane, Aïda Sadikh; N'Diaye, Jean Louis A; Ndiaye, Daouda; Faye, Oumar; Dieng, Thérèse; Dieng, Yémou; Ndir, Oumar; Gaye, Oumar; Faye, Babacar

    2015-07-16

    In Senegal, a significant decrease of malaria transmission intensity has been noted the last years. Parasitaemia has become lower and, therefore, more difficult to detect by microscopy. In the context of submicroscopic parasitaemia, it has become relevant to rely on relevant malaria surveillance tools to better document malaria epidemiology in such settings. Serological markers have been proposed as an essential tool for malaria surveillance. This study aimed to evaluate the sero-epidemiological situation of Plasmodium falciparum malaria in two sentinel sites in Senegal. Cross-sectional surveys were carried out in Velingara (south Senegal) and Keur Soce (central Senegal) between September and October 2010. Children under 10 years old, living in these areas, were enrolled using two-level, random sampling methods. P. falciparum infection was diagnosed using microscopy. P. falciparum antibodies against circumsporozoite protein (CSP), apical membrane protein (AMA1) and merozoite surface protein 1_42 (MSP1_42) were measured by ELISA method. A stepwise logistic regression analysis was done to assess factors associated with P. falciparum antibodies carriage. A total of 1,865 children under 10 years old were enrolled. The overall falciparum malaria prevalence was 4.99% with high prevalence in Velingara of 10.03% compared to Keur Soce of 0.3%. Symptomatic malaria cases (fever associated with parasitaemia) represented 17.37%. Seroprevalence of anti-AMA1, anti-MSP1_42 and anti-CSP antibody was 38.12, 41.55 and 40.38%, respectively. The seroprevalence was more important in Velingara and increased with age, active malaria infection and area of residence. The use of serological markers can contribute to improved malaria surveillance in areas with declining malaria transmission. This study provided useful baseline information about the sero-epidemiological situation of malaria in Senegal and can contribute to the identification of malaria hot spots in order to concentrate

  10. Malaria situation in an endemic area, southeastern iran.

    Directory of Open Access Journals (Sweden)

    Sajjad Fekri

    2014-06-01

    Full Text Available Malaria is an endemic infectious disease in southeastern parts of Iran. Despite years of efforts and intervention programs against malaria, transmission still occurs in Jask County.The epidemiological perspective of malaria in Jask County was conducted by gathering data from Jask County health center, during 2006-2010. A knowledge, attitude and practice study was also carried out. Data analysis was conducted using SPSS ver. 11.5.A total of 2875 malaria cases were recorded, with highest and lowest numbers in 2007 and 2010, respectively. The number of cases had a decreasing trend from 1022 cases in 2006 to 114 cases in 2010. The main causative parasitic agent was Plasmodium vivax. Blood examination rate and slide positive rate were also decreased from 39.5% and 4.3% in 2006 to 15.6% and 1.4% in 2010, respectively. Most of people interviewed in the KAP study had a good knowledge about malaria transmission and symptoms but their use of the bed net for prevention was low (35%.Malaria incidence had significant reduction during the study years. The main reason for this may be due to changing environmental condition for Anopheline breeding and survival because of drought. Another reason may be integration of vector management by using long lasting insecticide treated bed nets, active case detection and treatment by implementation of mobile teams and increasing in financial sources of malaria control program. Knowledge, attitude and practice of people were good in malaria control and prevention, but needs to do more activities for health education and awareness.

  11. Successfully controlling malaria in South Africa | Blumberg | South ...

    African Journals Online (AJOL)

    Following major successes in malaria control over the past 75 years, South Africa is now embarking on a malaria elimination campaign with the goal of zero local transmission by the year 2018. The key control elements have been intensive vector control, primarily through indoor residual spraying, case management based ...

  12. How well are malaria maps used to design and finance malaria control in Africa?

    Science.gov (United States)

    Omumbo, Judy A; Noor, Abdisalan M; Fall, Ibrahima S; Snow, Robert W

    2013-01-01

    Rational decision making on malaria control depends on an understanding of the epidemiological risks and control measures. National Malaria Control Programmes across Africa have access to a range of state-of-the-art malaria risk mapping products that might serve their decision-making needs. The use of cartography in planning malaria control has never been methodically reviewed. An audit of the risk maps used by NMCPs in 47 malaria endemic countries in Africa was undertaken by examining the most recent national malaria strategies, monitoring and evaluation plans, malaria programme reviews and applications submitted to the Global Fund. The types of maps presented and how they have been used to define priorities for investment and control was investigated. 91% of endemic countries in Africa have defined malaria risk at sub-national levels using at least one risk map. The range of risk maps varies from maps based on suitability of climate for transmission; predicted malaria seasons and temperature/altitude limitations, to representations of clinical data and modelled parasite prevalence. The choice of maps is influenced by the source of the information. Maps developed using national data through in-country research partnerships have greater utility than more readily accessible web-based options developed without inputs from national control programmes. Although almost all countries have stratification maps, only a few use them to guide decisions on the selection of interventions allocation of resources for malaria control. The way information on the epidemiology of malaria is presented and used needs to be addressed to ensure evidence-based added value in planning control. The science on modelled impact of interventions must be integrated into new mapping products to allow a translation of risk into rational decision making for malaria control. As overseas and domestic funding diminishes, strategic planning will be necessary to guide appropriate financing for malaria

  13. How well are malaria maps used to design and finance malaria control in Africa?

    Directory of Open Access Journals (Sweden)

    Judy A Omumbo

    Full Text Available Rational decision making on malaria control depends on an understanding of the epidemiological risks and control measures. National Malaria Control Programmes across Africa have access to a range of state-of-the-art malaria risk mapping products that might serve their decision-making needs. The use of cartography in planning malaria control has never been methodically reviewed.An audit of the risk maps used by NMCPs in 47 malaria endemic countries in Africa was undertaken by examining the most recent national malaria strategies, monitoring and evaluation plans, malaria programme reviews and applications submitted to the Global Fund. The types of maps presented and how they have been used to define priorities for investment and control was investigated.91% of endemic countries in Africa have defined malaria risk at sub-national levels using at least one risk map. The range of risk maps varies from maps based on suitability of climate for transmission; predicted malaria seasons and temperature/altitude limitations, to representations of clinical data and modelled parasite prevalence. The choice of maps is influenced by the source of the information. Maps developed using national data through in-country research partnerships have greater utility than more readily accessible web-based options developed without inputs from national control programmes. Although almost all countries have stratification maps, only a few use them to guide decisions on the selection of interventions allocation of resources for malaria control.The way information on the epidemiology of malaria is presented and used needs to be addressed to ensure evidence-based added value in planning control. The science on modelled impact of interventions must be integrated into new mapping products to allow a translation of risk into rational decision making for malaria control. As overseas and domestic funding diminishes, strategic planning will be necessary to guide appropriate

  14. How Well Are Malaria Maps Used to Design and Finance Malaria Control in Africa?

    Science.gov (United States)

    Omumbo, Judy A.; Noor, Abdisalan M.; Fall, Ibrahima S.; Snow, Robert W.

    2013-01-01

    Introduction Rational decision making on malaria control depends on an understanding of the epidemiological risks and control measures. National Malaria Control Programmes across Africa have access to a range of state-of-the-art malaria risk mapping products that might serve their decision-making needs. The use of cartography in planning malaria control has never been methodically reviewed. Materials and Methods An audit of the risk maps used by NMCPs in 47 malaria endemic countries in Africa was undertaken by examining the most recent national malaria strategies, monitoring and evaluation plans, malaria programme reviews and applications submitted to the Global Fund. The types of maps presented and how they have been used to define priorities for investment and control was investigated. Results 91% of endemic countries in Africa have defined malaria risk at sub-national levels using at least one risk map. The range of risk maps varies from maps based on suitability of climate for transmission; predicted malaria seasons and temperature/altitude limitations, to representations of clinical data and modelled parasite prevalence. The choice of maps is influenced by the source of the information. Maps developed using national data through in-country research partnerships have greater utility than more readily accessible web-based options developed without inputs from national control programmes. Although almost all countries have stratification maps, only a few use them to guide decisions on the selection of interventions allocation of resources for malaria control. Conclusion The way information on the epidemiology of malaria is presented and used needs to be addressed to ensure evidence-based added value in planning control. The science on modelled impact of interventions must be integrated into new mapping products to allow a translation of risk into rational decision making for malaria control. As overseas and domestic funding diminishes, strategic planning will be

  15. Malaria in Brazil: what happens outside the Amazonian endemic region.

    Science.gov (United States)

    de Pina-Costa, Anielle; Brasil, Patrícia; Di Santi, Sílvia Maria; de Araujo, Mariana Pereira; Suárez-Mutis, Martha Cecilia; Santelli, Ana Carolina Faria e Silva; Oliveira-Ferreira, Joseli; Lourenço-de-Oliveira, Ricardo; Daniel-Ribeiro, Cláudio Tadeu

    2014-08-01

    Brazil, a country of continental proportions, presents three profiles of malaria transmission. The first and most important numerically, occurs inside the Amazon. The Amazon accounts for approximately 60% of the nation's territory and approximately 13% of the Brazilian population. This region hosts 99.5% of the nation's malaria cases, which are predominantly caused by Plasmodium vivax (i.e., 82% of cases in 2013). The second involves imported malaria, which corresponds to malaria cases acquired outside the region where the individuals live or the diagnosis was made. These cases are imported from endemic regions of Brazil (i.e., the Amazon) or from other countries in South and Central America, Africa and Asia. Imported malaria comprised 89% of the cases found outside the area of active transmission in Brazil in 2013. These cases highlight an important question with respect to both therapeutic and epidemiological issues because patients, especially those with falciparum malaria, arriving in a region where the health professionals may not have experience with the clinical manifestations of malaria and its diagnosis could suffer dramatic consequences associated with a potential delay in treatment. Additionally, because the Anopheles vectors exist in most of the country, even a single case of malaria, if not diagnosed and treated immediately, may result in introduced cases, causing outbreaks and even introducing or reintroducing the disease to a non-endemic, receptive region. Cases introduced outside the Amazon usually occur in areas in which malaria was formerly endemic and are transmitted by competent vectors belonging to the subgenus Nyssorhynchus (i.e., Anopheles darlingi, Anopheles aquasalis and species of the Albitarsis complex). The third type of transmission accounts for only 0.05% of all cases and is caused by autochthonous malaria in the Atlantic Forest, located primarily along the southeastern Atlantic Coast. They are caused by parasites that seem to be (or

  16. Malaria in Brazil: what happens outside the Amazonian endemic region

    Directory of Open Access Journals (Sweden)

    Anielle de Pina-Costa

    2014-08-01

    Full Text Available Brazil, a country of continental proportions, presents three profiles of malaria transmission. The first and most important numerically, occurs inside the Amazon. The Amazon accounts for approximately 60% of the nation’s territory and approximately 13% of the Brazilian population. This region hosts 99.5% of the nation’s malaria cases, which are predominantly caused by Plasmodium vivax (i.e., 82% of cases in 2013. The second involves imported malaria, which corresponds to malaria cases acquired outside the region where the individuals live or the diagnosis was made. These cases are imported from endemic regions of Brazil (i.e., the Amazon or from other countries in South and Central America, Africa and Asia. Imported malaria comprised 89% of the cases found outside the area of active transmission in Brazil in 2013. These cases highlight an important question with respect to both therapeutic and epidemiological issues because patients, especially those with falciparum malaria, arriving in a region where the health professionals may not have experience with the clinical manifestations of malaria and its diagnosis could suffer dramatic consequences associated with a potential delay in treatment. Additionally, because the Anopheles vectors exist in most of the country, even a single case of malaria, if not diagnosed and treated immediately, may result in introduced cases, causing outbreaks and even introducing or reintroducing the disease to a non-endemic, receptive region. Cases introduced outside the Amazon usually occur in areas in which malaria was formerly endemic and are transmitted by competent vectors belonging to the subgenus Nyssorhynchus (i.e., Anopheles darlingi, Anopheles aquasalis and species of the Albitarsis complex. The third type of transmission accounts for only 0.05% of all cases and is caused by autochthonous malaria in the Atlantic Forest, located primarily along the southeastern Atlantic Coast. They are caused by parasites

  17. Knowledge on the transmission, prevention and treatment of malaria among two endemic populations of Bangladesh and their health-seeking behaviour

    Directory of Open Access Journals (Sweden)

    Haque Ubydul

    2009-07-01

    Full Text Available Abstract Background Data on sociological and behavioural aspects of malaria, which is essential for an evidence-based design of prevention and control programmes, is lacking in Bangladesh. This paper attempts to fill this knowledge gap by using data from a population-based prevalence survey conducted during July to November 2007, in 13 endemic districts of Bangladesh. Methods A two-stage cluster sampling technique was used to select study respondents randomly from 30 mauzas in each district for the socio-behavioural inquiry (n = 9,750. A pre-tested, semi-structured questionnaire was used to collect data in face-to-face interview by trained interviewers, after obtaining informed consent. Results The overall malaria prevalence rate in the 13 endemic districts was found to be 3.1% by the Rapid Diagnostic Test 'FalciVax' (P. falciparum 2.73%, P. vivax 0.16% and mixed infection 0.19%, with highest concentration in the three hill districts (11%. Findings revealed superficial knowledge on malaria transmission, prevention and treatment by the respondents. Poverty and level of schooling were found as important determinants of malaria knowledge and practices. Allopathic treatment was uniformly advocated, but the 'know-do' gap became especially evident when in practice majority of the ill persons either did not seek any treatment (31% or practiced self-treatment (12%. Of those who sought treatment, the majority went to the village doctors and drugstore salespeople (around 40%. Also, there was a delay beyond twenty-four hours in beginning treatment of malaria-like fever in more than half of the instances. In the survey, gender divide in knowledge and health-seeking behaviour was observed disfavouring women. There was also a geographical divide between the high endemic south-eastern area and the low-endemicnorth-eastern area, the former being disadvantaged with respect to different aspects of malaria studied. Conclusion The respondents in this study lacked

  18. The Changing Limits and Incidence of Malaria in Africa: 1939–2009

    Science.gov (United States)

    Snow, Robert W.; Amratia, Punam; Kabaria, Caroline W.; Noor, Abdisalan M.; Marsh, Kevin

    2012-01-01

    Understanding the historical, temporal changes of malaria risk following control efforts in Africa provides a unique insight into what has been and might be archived towards a long-term ambition of elimination on the continent. Here, we use archived published and unpublished material combined with biological constraints on transmission accompanied by a narrative on malaria control to document the changing incidence of malaria in Africa since earliest reports pre-second World War. One result is a more informed mapped definition of the changing margins of transmission in 1939, 1959, 1979, 1999 and 2009. PMID:22520443

  19. Application of GIS to predict malaria hotspots based on Anopheles arabiensis habitat suitability in Southern Africa

    Science.gov (United States)

    Gwitira, Isaiah; Murwira, Amon; Zengeya, Fadzai M.; Shekede, Munyaradzi Davis

    2018-02-01

    Malaria remains a major public health problem and a principal cause of morbidity and mortality in most developing countries. Although malaria still presents health problems, significant successes have been recorded in reducing deaths resulting from the disease. As malaria transmission continues to decline, control interventions will increasingly depend on the ability to define high-risk areas known as malaria hotspots. Therefore, there is urgent need to use geospatial tools such as geographic information system to detect spatial patterns of malaria and delineate disease hot spots for better planning and management. Thus, accurate mapping and prediction of seasonality of malaria hotspots is an important step towards developing strategies for effective malaria control. In this study, we modelled seasonal malaria hotspots as a function of habitat suitability of Anopheles arabiensis (A. Arabiensis) as a first step towards predicting likely seasonal malaria hotspots that could provide guidance in targeted malaria control. We used Geographical information system (GIS) and spatial statistic methods to identify seasonal hotspots of malaria cases at the country level. In order to achieve this, we first determined the spatial distribution of seasonal malaria hotspots using the Getis Ord Gi* statistic based on confirmed positive malaria cases recorded at health facilities in Zimbabwe over four years (1996-1999). We then used MAXENT technique to model habitat suitability of A. arabiensis from presence data collected from 1990 to 2002 based on bioclimatic variables and altitude. Finally, we used autologistic regression to test the extent to which malaria hotspots can be predicted using A. arabiensis habitat suitability. Our results show that A. arabiensis habitat suitability consistently and significantly (p < 0.05) predicts malaria hotspots from 1996 to 1999. Overall, our results show that malaria hotspots can be predicted using A. arabiensis habitat suitability, suggesting

  20. Knowledge and practice of malaria prevention among caregivers of children with malaria admitted to a teaching hospital in Ghana

    Directory of Open Access Journals (Sweden)

    Emmanuel Ameyaw

    2015-08-01

    Full Text Available Objective: To assess the knowledge and practice of malaria prevention among caregivers of children admitted to a teaching hospital in Ghana. Methods: A descriptive cross-sectional survey was conducted on caregivers of children who were hospitalized at the paediatric wards of the Komfo Anokye Teaching Hospital from March 2009 to June 2009. Data were analysed using StataTM version 8.2. Results: Nearly all caregivers (97.1% had heard of malaria. Of this proportion, 89.7% knew mosquito bite as a cause of malaria. The proportion of caregivers who were able to recognise the signs and symptoms of malaria were 87.6% (for fever, 47.1% (for vomiting and 28.1% (for headache. Radio and television were the major sources of information about malaria. Conclusions: Caregivers of children have adequate knowledge about malaria and its mode of transmission. Further education on the implementation of the preventive methods is still needed to help reduce the incidence of malaria among children.

  1. Remote Sensing as a Landscape Epidemiologic Tool to Identify Villages at High Risk for Malaria Transmission

    Science.gov (United States)

    Beck, Louisa R.; Rodriquez, Mario H.; Dister, Sheri W.; Rodriquez, Americo D.; Rejmankova, Eliska; Ulloa, Armando; Meza, Rosa A.; Roberts, Donald R.; Paris, Jack F.; Spanner, Michael A.; hide

    1994-01-01

    A landscape approach using remote sensing and Geographic Information System (GIS) technologies was developed to discriminate between villages at high and low risk for malaria transmission, as defined by adult Anopheles albimanus abundance. Satellite data for an area in southern Chiapas, Mexico were digitally processed to generate a map of landscape elements. The GIS processes were used to determine the proportion of mapped landscape elements surrounding 40 villages where An. albimanus data had been collected. The relationships between vector abundance and landscape element proportions were investigated using stepwise discriminant analysis and stepwise linear regression. Both analyses indicated that the most important landscape elements in terms of explaining vector abundance were transitional swamp and unmanaged pasture. Discriminant functions generated for these two elements were able to correctly distinguish between villages with high ind low vector abundance, with an overall accuracy of 90%. Regression results found both transitional swamp and unmanaged pasture proportions to be predictive of vector abundance during the mid-to-late wet season. This approach, which integrates remotely sensed data and GIS capabilities to identify villages with high vector-human contact risk, provides a promising tool for malaria surveillance programs that depend on labor-intensive field techniques. This is particularly relevant in areas where the lack of accurate surveillance capabilities may result in no malaria control action when, in fact, directed action is necessary. In general, this landscape approach could be applied to other vector-borne diseases in areas where: 1. the landscape elements critical to vector survival are known and 2. these elements can be detected at remote sensing scales.

  2. Recognizing and Treating Malaria in U.S. Residents

    Centers for Disease Control (CDC) Podcasts

    This podcast is an overview of the Clinician Outreach and Communication Activity (COCA) Call: It's a Small World After All: Dengue and Malaria in U.S. Residents - Recognizing and Treating These Mosquito-borne Diseases. CDC's David Townes discusses clinical presentation, transmission, prevention strategies, new treatments, and malaria resources available to health care providers.

  3. Improving the malaria transmission-blocking activity of a Plasmodium falciparum 48/45 based vaccine antigen by SpyTag/SpyCatcher mediated virus-like display

    DEFF Research Database (Denmark)

    Singh, Susheel K; Thrane, Susan; Janitzek, Christoph M

    2017-01-01

    Malaria is a devastating disease caused by Plasmodium parasites, resulting in almost 0.5 million deaths per year. The Pfs48/45 protein exposed on the P. falciparum sexual stages is one of the most advanced antigen candidates for a transmission-blocking (TB) vaccine in the clinical pipeline. However...

  4. Monitoring antifolate resistance in intermittent preventive therapy for malaria

    DEFF Research Database (Denmark)

    Venkatesan, Meera; Alifrangis, Michael; Roper, Cally

    2013-01-01

    Mutations in the Plasmodium falciparum genes Pfdhfr and Pfdhps have rendered sulfadoxine-pyrimethamine (SP) ineffective for malaria treatment in most regions of the world. Yet, SP is efficacious as intermittent preventive therapy in pregnant women (IPTp) and infants (IPTi) and as seasonal malaria...... control in children (SMC). SP-IPTp is being widely implemented in sub-Saharan Africa. SP-IPTi is recommended where the prevalence of SP-resistant malaria parasites is low, whereas SMC is recommended for areas of intense seasonal malaria transmission. The continuing success of these interventions depends...

  5. To what extent does climate explain variations in reported malaria cases in early 20th century Uganda?

    Directory of Open Access Journals (Sweden)

    Adrian M. Tompkins

    2016-03-01

    Full Text Available Malaria case statistics were analysed for the period 1926 to 1960 to identify inter-annual variations in malaria cases for the Uganda Protectorate. The analysis shows the mid-to-late 1930s to be a period of increased reported cases. After World War II, malaria cases trend down to a relative minimum in the early 1950s, before increasing rapidly after 1953 to the end of the decade. Data for the Western Province confirm these national trends, which at the time were attributed to a wide range of causes, including land development and management schemes, population mobility, interventions and misdiagnosis. Climate was occasionally proposed as a contributor to enhanced case numbers, and unusual precipitation patterns were held responsible; temperature was rarely, if ever, considered. In this study, a dynamical malaria model was driven with available precipitation and temperature data from the period for five stations located across a range of environments in Uganda. In line with the historical data, the simulations produced relatively enhanced transmission in the 1930s, although there is considerable variability between locations. In all locations, malaria transmission was low in the late 1940s and early 1950s, steeply increasing after 1954. Results indicate that past climate variability explains some of the variations in numbers of reported malaria cases. The impact of multiannual variability in temperature, while only on the order of 0.5°C, was sufficient to drive some of the trends observed in the statistics and thus the role of climate was likely underestimated in the contemporary reports. As the elimination campaigns of the 1960s followed this partly climate-driven increase in malaria, this emphasises the need to account for climate when planning and evaluating intervention strategies.

  6. Malaria hotspots drive hypoendemic transmission in the Chittagong Hill Districts of Bangladesh.

    Directory of Open Access Journals (Sweden)

    Sabeena Ahmed

    Full Text Available Malaria is endemic in 13 of 64 districts of Bangladesh, representing a population at risk of about 27 million people. The highest rates of malaria in Bangladesh occur in the Chittagong Hill Districts, and Plasmodium falciparum (predominately chloroquine resistant is the most prevalent species.The objective of this research was to describe the epidemiology of symptomatic P. falciparum malaria in an area of Bangladesh following the introduction of a national malaria control program. We carried out surveillance for symptomatic malaria due to P. falciparum in two demographically defined unions of the Chittagong Hill Districts in Bangladesh, bordering western Myanmar, between October 2009 and May 2012. The association between sociodemographics and temporal and climate factors with symptomatic P. falciparum infection over two years of surveillance data was assessed. Risk factors for infection were determined using a multivariate regression model.472 cases of symptomatic P. falciparum malaria cases were identified among 23,372 residents during the study period. Greater than 85% of cases occurred during the rainy season from May to October, and cases were highly clustered geographically within these two unions with more than 80% of infections occurring in areas that contain approximately one-third of the total population. Risk factors statistically associated with infection in a multivariate logistic regression model were living in the areas of high incidence, young age, and having an occupation including jhum cultivation and/or daily labor. Use of long lasting insecticide-treated bed nets was high (89.3%, but its use was not associated with decreased incidence of infection.Here we show that P. falciparum malaria continues to be hypoendemic in the Chittagong Hill Districts of Bangladesh, is highly seasonal, and is much more common in certain geographically limited hot spots and among certain occupations.

  7. Efficiency of histidine rich protein II-based rapid diagnostic tests for monitoring malaria transmission intensities in an endemic area

    Science.gov (United States)

    Modupe, Dokunmu Titilope; Iyabo, Olasehinde Grace; Oladoke, Oladejo David; Oladeji, Olanrewaju; Abisola, Akinbobola; Ufuoma, Adjekukor Cynthia; Faith, Yakubu Omolara; Humphrey, Adebayo Abiodun

    2018-04-01

    In recent years there has been a global decrease in the prevalence of malaria due to scaling up of control measures, hence global control efforts now target elimination and eradication of the disease. However, a major problem associated with elimination is asymptomatic reservoir of infection especially in endemic areas. This study aims to determine the efficiency of histidine rich protein II (HRP-2) based rapid diagnostic tests (RDT) for monitoring transmission intensities in an endemic community in Nigeria during the pre-elimination stage. Plasmodium falciparum asymptomatic malaria infection in healthy individuals and symptomatic cases were detected using HRP-2. RDT negative tests were re-checked by microscopy and by primer specific PCR amplification of merozoite surface protein 2 (msp-2) for asexual parasites and Pfs25 gene for gametocytes in selected samples to detect low level parasitemia undetectable by microscopy. The mean age of the study population (n=280) was 6.12 years [95% CI 5.16 - 7.08, range 0.5 - 55], parasite prevalence was 44.6% and 36.3% by microscopy and RDT respectively (p =0.056). The parasite prevalence of 61.5% in children aged >2 - 10 years was significantly higher than 3.7% rate in adults >18years (p malaria in endemic areas.

  8. Cost-effectiveness analysis of malaria rapid diagnostic tests for appropriate treatment of malaria at the community level in Uganda

    DEFF Research Database (Denmark)

    Hansen, Kristian S; Ndyomugyenyi, Richard; Magnussen, Pascal

    2017-01-01

    was a cost-effectiveness analysis of the introduction of malaria rapid diagnostic tests (mRDTs) performed by CHWs in two areas of moderate-to-high and low malaria transmission in rural Uganda. CHWs were trained to perform mRDTs and treat children with artemisinin-based combination therapy (ACT......) in the intervention arm while CHWs offered treatment based on presumptive diagnosis in the control arm. Data on the proportion of children with fever 'appropriately treated for malaria with ACT' were captured from a randomised trial. Health sector costs included: training of CHWs, community sensitisation, supervision...

  9. Malaria in the Republic of Djibouti, 1998-2009.

    Science.gov (United States)

    Ollivier, Lénaïck; Nevin, Remington L; Darar, Houssein Y; Bougère, Jacques; Saleh, Moustapha; Gidenne, Stéphane; Maslin, Jérôme; Anders, Dietmar; Decam, Christophe; Todesco, Alain; Khaireh, Bouh A; Ahmed, Ammar A

    2011-09-01

    Historically, native populations in the Republic of Djibouti have experienced only low and unstable malaria transmission and intermittent epidemics. In recent years, efforts at malaria control have been aggressively pursued. This study was performed to inform revised malaria prevention recommendations for military service members and international travelers to the country. Laboratory-confirmed cases of malaria documented at large medical facilities and within military and civilian health care systems in the Republic of Djibouti from 1998 to 2009 were reviewed. In recent years, fewer than 5% of febrile cases among the three largest passive surveillance systems were laboratory-confirmed as malaria, and incidence of confirmed malaria was well below 1/1,000 persons/year. As efforts in the Republic of Djibouti progress toward elimination, and in conjunction with continued efforts at surveillance, emphasizing mosquito-avoidance measures and standby emergency treatment will become reasonable recommendations for malaria prevention.

  10. Malaria

    Science.gov (United States)

    2011-06-01

    dividing and are far more noticeable than the small amount of clear cyto- plasm surrounding them (Figs 10.6a & 10.6b). Mature schizonts contain 8...edema Same as P. vivax 16 10 • Topics on The paThology of proTozoan and invasive arThropod diseases Figure 10.38 Transmission electron micrograph of...mesangiopathic glo- merulonephropathy caused by quartan malaria, deposition of immune complexes may be demonstrated by electron or immunofluorescence microscopy

  11. Accuracy of PfHRP2 versus Pf-pLDH antigen detection by malaria rapid diagnostic tests in hospitalized children in a seasonal hyperendemic malaria transmission area in Burkina Faso.

    Science.gov (United States)

    Maltha, Jessica; Guiraud, Issa; Lompo, Palpouguini; Kaboré, Bérenger; Gillet, Philippe; Van Geet, Chris; Tinto, Halidou; Jacobs, Jan

    2014-01-13

    In most sub-Saharan African countries malaria rapid diagnostic tests (RDTs) are now used for the diagnosis of malaria. Most RDTs used detect Plasmodium falciparum histidine-rich protein-2 (PfHRP2), though P. falciparum-specific parasite lactate dehydrogenase (Pf-pLDH)-detecting RDTs may have advantages over PfHRP2-detecting RDTs. Only few data are available on the use of RDTs in severe illness and the present study compared Pf-pLDH to PfHRP2-detection. Hospitalized children aged one month to 14 years presenting with fever or severe illness were included over one year. Venous blood samples were drawn for malaria diagnosis (microscopy and RDT), culture and complete blood count. Leftovers were stored at -80 °C and used for additional RDT analysis and PCR. An RDT targeting both PfHRP2 and Pf-pLDH was performed on all samples for direct comparison of diagnostic accuracy with microscopy as reference method. PCR was performed to explore false-positive RDT results. In 376 of 694 (54.2%) included children, malaria was microscopically confirmed. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value were 100.0, 70.9, 69.4 and 100.0%, respectively for PfHRP2-detection and 98.7, 94.0, 91.6 and 99.1%, respectively for Pf-pLDH-detection. Specificity and PPV were significantly lower for PfHRP2-detection (p <0.001). For both detection antigens, specificity was lowest for children one to five years and in the rainy season. PPV for both antigens was highest in the rainy season, because of higher malaria prevalence. False positive PfHRP2 results were associated with prior anti-malarial treatment and positive PCR results (98/114 (86.0%) samples tested). Among children presenting with severe febrile illness in a seasonal hyperendemic malaria transmission area, the present study observed similar sensitivity but lower specificity and PPV of PfHRP2 compared to Pf-pLDH-detection. Further studies should assess the diagnostic accuracy and safety of an

  12. Accelerating to Zero: Strategies to Eliminate Malaria in the Peruvian Amazon

    Science.gov (United States)

    Quispe, Antonio M.; Llanos-Cuentas, Alejandro; Rodriguez, Hugo; Clendenes, Martin; Cabezas, Cesar; Leon, Luis M.; Chuquiyauri, Raul; Moreno, Marta; Kaslow, David C.; Grogl, Max; Herrera, Sócrates; Magill, Alan J.; Kosek, Margaret; Vinetz, Joseph M.; Lescano, Andres G.; Gotuzzo, Eduardo

    2016-01-01

    In February 2014, the Malaria Elimination Working Group, in partnership with the Peruvian Ministry of Health (MoH), hosted its first international conference on malaria elimination in Iquitos, Peru. The 2-day meeting gathered 85 malaria experts, including 18 international panelists, 23 stakeholders from different malaria-endemic regions of Peru, and 11 MoH authorities. The main outcome was consensus that implementing a malaria elimination project in the Amazon region is achievable, but would require: 1) a comprehensive strategic plan, 2) the altering of current programmatic guidelines from control toward elimination by including symptomatic as well as asymptomatic individuals for antimalarial therapy and transmission-blocking interventions, and 3) the prioritization of community-based active case detection with proper rapid diagnostic tests to interrupt transmission. Elimination efforts must involve key stakeholders and experts at every level of government and include integrated research activities to evaluate, implement, and tailor sustainable interventions appropriate to the region.

  13. High seasonal variation in entomologic inoculation rates in Eritrea, a semi-arid region of unstable malaria in Africa.

    Science.gov (United States)

    Shililu, Josephat; Ghebremeskel, Tewolde; Mengistu, Solomon; Fekadu, Helen; Zerom, Mehari; Mbogo, Charles; Githure, John; Novak, Robert; Brantly, Eugene; Beier, John C

    2003-12-01

    Entomologic studies were conducted in eight villages to investigate the patterns of malaria transmission in different ecologic zones in Eritrea. Mosquito collections were conducted for 24 months between September 1999 and January 2002. The biting rates of Anopheles arabiensis were highly seasonal, with activity concentrated in the wet season between June and October in the highlands and western lowlands, and between December and March in the coastal region. The biting rates in the western lowlands were twice as high as in the western escarpment and 20 times higher than in the coastal region. Sporozoite rates were not significantly different among villages. The risk of infection ranged from zero on the coast to 70.6 infective bites per year in the western lowlands. The number of days it would take for an individual to receive an infective bite from an infected An. arabiensis was variable among villages (range = 2.8-203.1 days). The data revealed the presence of only one main malaria transmission period between July and October for the highlands and western lowlands. Peak inoculation rates were recorded in August and September (range = 0.29-43.6 infective bits/person/month) at all sites over the two-year period. The annual entomologic inoculation rates (EIRs) varied greatly depending on year. The EIR profiles indicated that the risk of exposure to infected mosquitoes is highly heterogeneous and seasonal, with high inoculation rates during the rainy season, and with little or no transmission during the dry season. This study demonstrates the need to generate spatial and temporal data on transmission intensity on smaller scales to guide targeted control of malaria operations in semi-arid regions. Furthermore, EIR estimates derived in the present study provide a means of quantifying levels of exposure to infected mosquitoes in different regions of the country and could be important for evaluating the efficacy of vector control measures, since Eritrea has made

  14. A world malaria map: Plasmodium falciparum endemicity in 2007.

    Directory of Open Access Journals (Sweden)

    Simon I Hay

    2009-03-01

    Full Text Available Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007.A total of 8,938 P. falciparum parasite rate (PfPR surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia, 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+, and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 5 to or = 40% areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion, with a smaller number (0.11 billion at low stable risk.High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are

  15. A world malaria map: Plasmodium falciparum endemicity in 2007.

    Science.gov (United States)

    Hay, Simon I; Guerra, Carlos A; Gething, Peter W; Patil, Anand P; Tatem, Andrew J; Noor, Abdisalan M; Kabaria, Caroline W; Manh, Bui H; Elyazar, Iqbal R F; Brooker, Simon; Smith, David L; Moyeed, Rana A; Snow, Robert W

    2009-03-24

    Efficient allocation of resources to intervene against malaria requires a detailed understanding of the contemporary spatial distribution of malaria risk. It is exactly 40 y since the last global map of malaria endemicity was published. This paper describes the generation of a new world map of Plasmodium falciparum malaria endemicity for the year 2007. A total of 8,938 P. falciparum parasite rate (PfPR) surveys were identified using a variety of exhaustive search strategies. Of these, 7,953 passed strict data fidelity tests for inclusion into a global database of PfPR data, age-standardized to 2-10 y for endemicity mapping. A model-based geostatistical procedure was used to create a continuous surface of malaria endemicity within previously defined stable spatial limits of P. falciparum transmission. These procedures were implemented within a Bayesian statistical framework so that the uncertainty of these predictions could be evaluated robustly. The uncertainty was expressed as the probability of predicting correctly one of three endemicity classes; previously stratified to be an informative guide for malaria control. Population at risk estimates, adjusted for the transmission modifying effects of urbanization in Africa, were then derived with reference to human population surfaces in 2007. Of the 1.38 billion people at risk of stable P. falciparum malaria, 0.69 billion were found in Central and South East Asia (CSE Asia), 0.66 billion in Africa, Yemen, and Saudi Arabia (Africa+), and 0.04 billion in the Americas. All those exposed to stable risk in the Americas were in the lowest endemicity class (PfPR2-10 5 to or = 40%) areas. High endemicity was widespread in the Africa+ region, where 0.35 billion people are at this level of risk. Most of the rest live at intermediate risk (0.20 billion), with a smaller number (0.11 billion) at low stable risk. High levels of P. falciparum malaria endemicity are common in Africa. Uniformly low endemic levels are found in the

  16. Reduction in malaria prevalence and increase in malaria awareness in endemic districts of Bangladesh.

    Science.gov (United States)

    Alam, Mohammad Shafiul; Kabir, Mohammad Moktadir; Hossain, Mohammad Sharif; Naher, Shamsun; Ferdous, Nur E Naznin; Khan, Wasif Ali; Mondal, Dinesh; Karim, Jahirul; Shamsuzzaman, A K M; Ahmed, Be-Nazir; Islam, Akramul; Haque, Rashidul

    2016-11-11

    Malaria is endemic in 13 districts of Bangladesh. A baseline malaria prevalence survey across the endemic districts of Bangladesh was conducted in 2007, when the prevalence was reported around 39.7 per 1000 population. After two rounds of Global Fund to Fight AIDS, Tuberculosis and Malaria (GFATM)-funded intervention by the National Malaria Control Programme (NMCP) and a BRAC-led NGO consortium, a follow-up survey was conducted across the malaria-endemic districts of Bangladesh to measure the change in prevalence rate and in people's knowledge of malaria. The survey was carried out from August to November 2013 in 70 upazilas (sub-districts) of 13 malaria-endemic districts of Bangladesh, following the same multi-stage cluster sampling design and the same number of households enrolled during the baseline prevalence survey in 2007, to collect 9750 randomly selected blood samples. For on-the-spot diagnosis of malaria, a rapid diagnostic test was used. The household head or eldest person available was interviewed using a pre-coded structured questionnaire to collect data on the knowledge and awareness of malaria in the household. Based on a weighted calculation, the overall malaria prevalence was found to be 1.41 per 1000 population. The proportion of Plasmodium falciparum mono-infection was 77.78% while both Plasmodium vivax mono-infection and mixed infection of the two species were found to be 11.11%. Bandarban had the highest prevalence (6.67 per 1000 population). Knowledge of malaria signs, symptoms and mode of transmission were higher in the follow-up survey (97.26%) than the baseline survey. Use of bed nets for prevention of malaria was found to be high (90.15%) at respondent level. People's knowledge of selected parameters increased significantly during the follow-up survey compared to the baseline survey conducted in 2007. A reduced prevalence rate of malaria and increased level of knowledge were observed in the present malaria prevalence survey in Bangladesh.

  17. Malaria elimination in Haiti by the year 2020: an achievable goal?

    Science.gov (United States)

    Boncy, Paul Jacques; Adrien, Paul; Lemoine, Jean Frantz; Existe, Alexandre; Henry, Patricia Jean; Raccurt, Christian; Brasseur, Philippe; Fenelon, Natael; Dame, John B; Okech, Bernard A; Kaljee, Linda; Baxa, Dwayne; Prieur, Eric; El Badry, Maha A; Tagliamonte, Massimiliano S; Mulligan, Connie J; Carter, Tamar E; Beau de Rochars, V Madsen; Lutz, Chelsea; Parke, Dana M; Zervos, Marcus J

    2015-06-05

    Haiti and the Dominican Republic, which share the island of Hispaniola, are the last locations in the Caribbean where malaria still persists. Malaria is an important public health concern in Haiti with 17,094 reported cases in 2014. Further, on January 12, 2010, a record earthquake devastated densely populated areas in Haiti including many healthcare and laboratory facilities. Weakened infrastructure provided fertile reservoirs for uncontrolled transmission of infectious pathogens. This situation results in unique challenges for malaria epidemiology and elimination efforts. To help Haiti achieve its malaria elimination goals by year 2020, the Laboratoire National de Santé Publique and Henry Ford Health System, in close collaboration with the Direction d'Épidémiologie, de Laboratoire et de Recherches and the Programme National de Contrôle de la Malaria, hosted a scientific meeting on "Elimination Strategies for Malaria in Haiti" on January 29-30, 2015 at the National Laboratory in Port-au-Prince, Haiti. The meeting brought together laboratory personnel, researchers, clinicians, academics, public health professionals, and other stakeholders to discuss main stakes and perspectives on malaria elimination. Several themes and recommendations emerged during discussions at this meeting. First, more information and research on malaria transmission in Haiti are needed including information from active surveillance of cases and vectors. Second, many healthcare personnel need additional training and critical resources on how to properly identify malaria cases so as to improve accurate and timely case reporting. Third, it is necessary to continue studies genotyping strains of Plasmodium falciparum in different sites with active transmission to evaluate for drug resistance and impacts on health. Fourth, elimination strategies outlined in this report will continue to incorporate use of primaquine in addition to chloroquine and active surveillance of cases. Elimination of

  18. Malaria in South Africa: 110 years of learning to control the disease ...

    African Journals Online (AJOL)

    Major donor agencies are partnering with African governments in an attempt to curb transmission of malaria parasites, and in some countries on the edges of the distribution of malaria, there is talk of eliminating the disease. South Africa is at the very southernmost fringe of malaria distribution on the African continent and ...

  19. Malaria, anaemia and antimalarial drug resistance in African children

    NARCIS (Netherlands)

    Obonyo, C.O.

    2006-01-01

    Malaria-associated anaemia is a potentially preventable cause of severe morbidity and mortality in children < 5years of age, in areas of high malaria transmission in sub-Saharan Africa. In a cross-sectional study of 3586 children, 80% were anaemic (haemoglobin [Hb]<11g/dL) and 3% had severe anaemia

  20. Clinical malaria case definition and malaria attributable fraction in the highlands of western Kenya.

    Science.gov (United States)

    Afrane, Yaw A; Zhou, Guofa; Githeko, Andrew K; Yan, Guiyun

    2014-10-15

    In African highland areas where endemicity of malaria varies greatly according to altitude and topography, parasitaemia accompanied by fever may not be sufficient to define an episode of clinical malaria in endemic areas. To evaluate the effectiveness of malaria interventions, age-specific case definitions of clinical malaria needs to be determined. Cases of clinical malaria through active case surveillance were quantified in a highland area in Kenya and defined clinical malaria for different age groups. A cohort of over 1,800 participants from all age groups was selected randomly from over 350 houses in 10 villages stratified by topography and followed for two-and-a-half years. Participants were visited every two weeks and screened for clinical malaria, defined as an individual with malaria-related symptoms (fever [axillary temperature≥37.5°C], chills, severe malaise, headache or vomiting) at the time of examination or 1-2 days prior to the examination in the presence of a Plasmodium falciparum positive blood smear. Individuals in the same cohort were screened for asymptomatic malaria infection during the low and high malaria transmission seasons. Parasite densities and temperature were used to define clinical malaria by age in the population. The proportion of fevers attributable to malaria was calculated using logistic regression models. Incidence of clinical malaria was highest in valley bottom population (5.0% cases per 1,000 population per year) compared to mid-hill (2.2% cases per 1,000 population per year) and up-hill (1.1% cases per 1,000 population per year) populations. The optimum cut-off parasite densities through the determination of the sensitivity and specificity showed that in children less than five years of age, 500 parasites per μl of blood could be used to define the malaria attributable fever cases for this age group. In children between the ages of 5-14, a parasite density of 1,000 parasites per μl of blood could be used to define the

  1. P. falciparum malaria prevalence among blood donors in Bamako, Mali.

    Science.gov (United States)

    Kouriba, B; Diarra, A B; Douyon, I; Diabaté, D T; Kamissoko, F; Guitteye, H; Baby, M; Guindo, M A; Doumbo, O K

    2017-06-01

    Malaria parasite is usually transmitted to humans by Anopheles mosquitoes but it can also be transmitted through blood transfusion. Usually malaria transmission is low in African urban settings. In West Africa where the P. falciparum is the most predominant malaria species, there are limited measures to reduce the risk of blood transfusion malaria. The aim of this study was to evaluate the prevalence of P. falciparum malaria carriage among blood donors in the National Blood Center of Bamako, capital city of Mali. The study was conducted using a random sample of 946 blood donors in Bamako, Mali, from January to December 2011. Screening for malaria was performed by thick smear and rapid diagnostic test (RDT). Blood group was typed by Beth-Vincent and Simonin techniques. The frequency of malaria infection was 1.4% by thick smear and 0.8% by the RDT. The pick prevalence of P. falciparum malaria was in rainy season, indicating a probable high seasonal risk of malaria by blood transfusion, in Mali. The prevalence of P. falciparum infection was 2% among donors of group O the majority being in this group. There is a seasonal prevalence of malaria among blood donors in Bamako. A prevention strategy of transfusion malaria based on the combination of selection of blood donors through the medical interview, promoting a voluntary low-risk blood donation and screening all blood bags intended to be transfused to children under 5, pregnant women and immune-compromised patients during transmission season using thick smear will reduce the risk of transfusion malaria in Mali. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Renewed mobilization against malaria.

    Science.gov (United States)

    1991-01-01

    1 million people die in the world from malaria annually, 800,000 of whom are 5 year old children in Sub-Sahara Africa. Further it affects 270 million people. In fact, 110 million develop malaria, 90 million of whom are from Sub-Saharan Africa. Thus WHO has introduced a new world initiative for malaria control to reverse the worsening trend that began in the mid 1970s. In October 1991, 150 officials from 50 African, Asian, and Latin American countries and participants from UN cooperation and development agencies and bilateral agencies attended an interregional conference at the WHO Regional office for Africa in Brazzaville, Congo. It strove to evaluate malaria situations specific to Africa, to update the malaria control plan in Africa, and to contribute to the development of an implementable world strategy. This world strategy needs to consider the local situation and encourage participation of the government and people of affected countries. Further individuals, communities, and various sectors of the national economy including those involved in health, education, development, and agriculture need to participate in malaria control. In addition, for this strategy to work, most countries must strengthen the management and financing of health services to meet their needs. For example, local populations must share local operating costs such as those for essential drugs and mosquito control operations. Community participation must also include personal protection such as impregnated bed nets and environmental measures. Besides malaria control must be integrated into the existing health system at country, provincial, and peripheral levels. In sum, improved case management, control of malaria transmission, and prevention and control of epidemics form the basis for the new strategy.

  3. Malaria entomological profile in Tanzania from 1950 to 2010: a ...

    African Journals Online (AJOL)

    2011-12-10

    Dec 10, 2011 ... malaria transmission dynamics, vector biology, ecology, behaviour and ... control achieved by ITNs, as this may vary with the molecular ..... with multilocus protein electrophoresis (11.3%) and cytogenetic analysis together with PCR (2%). ... the mosquito host is one of the principal components in malaria ...

  4. Malaria successes and challenges in Asia.

    Science.gov (United States)

    Bhatia, Rajesh; Rastogi, Rakesh Mani; Ortega, Leonard

    2013-12-01

    Asia ranks second to Africa in terms of malaria burden. In 19 countries of Asia, malaria is endemic and 2.31 billion people or 62% of the total population in these countries are at risk of malaria. In 2010, WHO estimated around 34.8 million cases and 45,600 deaths due to malaria in Asia. In 2011, 2.7 million cases and > 2000 deaths were reported. India, Indonesia, Myanmar and Pakistan are responsible for >85% of the reported cases (confirmed) and deaths in Asia. In last 10 yr, due to availability of donor's fund specially from Global fund, significant progress has been made by the countries in Asia in scaling-up malaria control interventions which were instrumental in reducing malaria morbidity and mortality significantly. There is a large heterogeneity in malaria epidemiology in Asia. As a result, the success in malaria control/elimination is also diverse. As compared to the data of the year 2000, out of 19 malaria endemic countries, 12 countries were able to reduce malaria incidence (microscopically confirmed cases only) by 75%. Two countries, namely Bangladesh and Malaysia are projected to reach 75% reduction by 2015 while India is projected to reach 50-75% only by 2015. The trend could not be assessed in four countries, namely Indonesia, Myanmar, Pakistan and Timor-Leste due to insufficient consistent data. Numerous key challenges need to be addressed to sustain the gains and eliminate malaria in most parts of Asia. Some of these are to control the spread of resistance in Plasmodium falciparum to artemisinin, control of outdoor transmission, control of vivax malaria and ensuring universal coverage of key interventions. Asia has the potential to influence the malaria epidemiology all over the world as well as to support the global efforts in controlling and eliminating malaria through production of quality-assured ACTs, RDTs and long-lasting insecticidal nets.

  5. Recognizing and Treating Malaria in U.S. Residents

    Centers for Disease Control (CDC) Podcasts

    2010-06-09

    This podcast is an overview of the Clinician Outreach and Communication Activity (COCA) Call: It's a Small World After All: Dengue and Malaria in U.S. Residents - Recognizing and Treating These Mosquito-borne Diseases. CDC's David Townes discusses clinical presentation, transmission, prevention strategies, new treatments, and malaria resources available to health care providers.  Created: 6/9/2010 by Division of Parasitic Diseases and Malaria, Center for Global Health and Emergency Communication System (ECS)/Joint Information Center (JIC); Office of Public Health Preparedness and Response (OPHPR).   Date Released: 6/15/2010.

  6. A multi-criteria decision analysis approach to assessing malaria risk in northern South America

    Directory of Open Access Journals (Sweden)

    Temitope O. Alimi

    2016-03-01

    Full Text Available Abstract Background Malaria control in South America has vastly improved in the past decade, leading to a decrease in the malaria burden. Despite the progress, large parts of the continent continue to be at risk of malaria transmission, especially in northern South America. The objectives of this study were to assess the risk of malaria transmission and vector exposure in northern South America using multi-criteria decision analysis. Methods The risk of malaria transmission and vector exposure in northern South America was assessed using multi-criteria decision analysis, in which expert opinions were taken on the key environmental and population risk factors. Results Results from our risk maps indicated areas of moderate-to-high risk along rivers in the Amazon basin, along the coasts of the Guianas, the Pacific coast of Colombia and northern Colombia, in parts of Peru and Bolivia and within the Brazilian Amazon. When validated with occurrence records for malaria, An. darlingi, An. albimanus and An. nuneztovari s.l., t-test results indicated that risk scores at occurrence locations were significantly higher (p < 0.0001 than a control group of geographically random points. Conclusion In this study, we produced risk maps based on expert opinion on the spatial representation of risk of potential vector exposure and malaria transmission. The findings provide information to the public health decision maker/policy makers to give additional attention to the spatial planning of effective vector control measures. Therefore, as the region tackles the challenge of malaria elimination, prioritizing areas for interventions by using spatially accurate, high-resolution (1 km or less risk maps may guide targeted control and help reduce the disease burden in the region.

  7. Population Movement as a Risk Factor for Malaria Infection in High-Altitude Villages of Tahtay-Maychew District, Tigray, Northern Ethiopia: A Case-Control Study.

    Science.gov (United States)

    Haile, Mebrahtom; Lemma, Hailemariam; Weldu, Yemane

    2017-09-01

    Key goal and targets of the Ethiopia National Malaria Control Program are to achieve malaria elimination within specific geographical areas with historically low malaria transmission and to reach near-zero malaria transmission in the remaining malarious areas by 2020. However, back and forth population movement between high-transmission and low-transmission area imposes challenge on the success of national malaria control programs. Therefore, examining the effect of human movement and identification of at-risk populations is crucial in an elimination setting. A matched case-control study was conducted among 520 study participants at a community level in low malaria transmission settings in northern Ethiopia. Study participants who received a malaria test were interviewed regarding their recent travel history. Bivariate and multivariate analyses were carried out to determine if the reported travel was related to malaria infection. Younger age (adjusted odds ratio [AOR] = 3.20, 95% confidence interval [CI]: 1.73, 5.89) and travel in the previous month (AOR = 11.40, 95% CI: 6.91, 18.82) were statistically significant risk factors for malaria infection. Other statistically significant factors, including lower educational level (AOR = 2.21, 95% CI: 1.26, 3.86) and nonagricultural in occupation (AOR = 2.0, 95% CI: 1.02, 3.94), were also found as risk factors for malaria infection. Generally, travel history was found to be a strong predictor for malaria acquisition in the high-altitude villages. Therefore, besides the existing efforts in endemic areas, targeting those who frequently travel to malarious areas is crucial to reduce malaria infection risks and possibility of local transmissions in high-altitude areas of northern Ethiopia.

  8. Serologic markers for detecting malaria in areas of low endemicity, Somalia, 2008.

    Science.gov (United States)

    Bousema, Teun; Youssef, Randa M; Cook, Jackie; Cox, Jonathan; Alegana, Victor A; Amran, Jamal; Noor, Abdisalan M; Snow, Robert W; Drakeley, Chris

    2010-03-01

    Areas in which malaria is not highly endemic are suitable for malaria elimination, but assessing transmission is difficult because of lack of sensitivity of commonly used methods. We evaluated serologic markers for detecting variation in malaria exposure in Somalia. Plasmodium falciparum or P. vivax was not detected by microscopy in cross-sectional surveys of samples from persons during the dry (0/1,178) and wet (0/1,128) seasons. Antibody responses against P. falciparum or P. vivax were detected in 17.9% (179/1,001) and 19.3% (202/1,044) of persons tested. Reactivity against P. falciparum was significantly different between 3 villages (p<0.001); clusters of seroreactivity were present. Distance to the nearest seasonal river was negatively associated with P. falciparum (p = 0.028) and P. vivax seroreactivity (p = 0.016). Serologic markers are a promising tool for detecting spatial variation in malaria exposure and evaluating malaria control efforts in areas where transmission has decreased to levels below the detection limit of microscopy.

  9. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Science.gov (United States)

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  10. Efficacy of permethrin-treated bed nets in the prevention of mortality in young children in an area of high perennial malaria transmission in western Kenya

    NARCIS (Netherlands)

    Phillips-Howard, Penelope A.; Nahlen, Bernard L.; Kolczak, Margarette S.; Hightower, Allen W.; ter Kuile, Feiko O.; Alaii, Jane A.; Gimnig, John E.; Arudo, John; Vulule, John M.; Odhacha, Amos; Kachur, S. Patrick; Schoute, Erik; Rosen, Daniel H.; Sexton, John D.; Oloo, Aggrey J.; Hawley, William A.

    2003-01-01

    A group-randomized controlled trial of insecticide (permethrin)-treated bed nets (ITNs) was conducted in an area of high perennial malaria transmission in western Kenya to test the effect of ITNs on all-cause mortality in children 1-59 months of age. Child deaths were monitored over a two-year

  11. Seasonality and shift in age-specific malaria prevalence and incidence in Binko and Carrière villages close to the lake in Selingué, Mali.

    Science.gov (United States)

    Touré, Mahamoudou; Sanogo, Daouda; Dembele, Soumaila; Diawara, Sory Ibrahima; Oppfeldt, Karen; Schiøler, Karin L; Haidara, Dade Ben; Traoré, Sékou F; Alifrangis, Michael; Konradsen, Flemming; Doumbia, Seydou

    2016-04-18

    Malaria transmission in Mali is seasonal and peaks at the end of the rainy season in October. This study assessed the seasonal variations in the epidemiology of malaria among children under 10 years of age living in two villages in Selingué: Carrière, located along the Sankarani River but distant from the hydroelectric dam, and Binko, near irrigated rice fields, close to the dam. The aim of this study was to provide baseline data, seasonal pattern and age distribution of malaria incidence in two sites situated close to a lake in Selingué. Geographically, Selingué area is located in the basin of Sakanrani and belongs to the district of Yanfolila in the third administrative region of Mali, Sikasso. Two cross-sectional surveys were conducted in October 2010 (end of transmission season) and in July 2011 (beginning of transmission season) to determine the point prevalence of asymptomatic parasitaemia, and anaemia among the children. Cumulative incidence of malaria per month was determined in a cohort of 549 children through active and passive case detection from November 2010 through October 2011. The number of clinical episodes per year was determined among the children in the cohort. Logistic regression was used to determine risk factors for malaria. The prevalence of malaria parasitaemia varied significantly between villages with a strong seasonality in Carrière (52.0-18.9 % in October 2010 and July 2011, respectively) compared with Binko (29.8-23.8 % in October 2010 and July 2011, respectively). Children 6-9 years old were at least twice more likely to carry parasites than children up to 5 years old. For malaria incidence, 64.8-71.9 % of all children experienced at least one episode of clinical malaria in Binko and Carrière, respectively. The peak incidence was observed between August and October (end of the rainy season), but the incidence remained high until December. Surprisingly, the risk of clinical malaria was two- to nine-fold higher among

  12. Impact of mass distribution of free long-lasting insecticidal nets on childhood malaria morbidity: The Togo National Integrated Child Health Campaign

    Directory of Open Access Journals (Sweden)

    Sodahlon Yao K

    2010-07-01

    Full Text Available Abstract Background An evaluation of the short-term impact on childhood malaria morbidity of mass distribution of free long-lasting insecticidal nets (LLINs to households with children aged 9-59 months as part of the Togo National Integrated Child Health Campaign. Methods The prevalence of anaemia and malaria in children aged zero to 59 months was measured during two cross-sectional household cluster-sample surveys conducted during the peak malaria transmission, three months before (Sept 2004, n = 2521 and nine months after the campaign (Sept 2005, n = 2813 in three districts representative of Togo's three epidemiological malaria transmission regions: southern tropical coastal plains (Yoto, central fertile highlands (Ogou and northern semi-arid savannah (Tone. Results In households with children 65% in all 3 districts. Reported ITN use by children during the previous night was 35.9%, 43.8% and 80.6% in Yoto, Ogou and Tone, respectively. Rainfall patterns were comparable in both years. The overall prevalence of moderate to severe anaemia (Hb The effect was predominantly seen in children aged 18-59 months and in the two southern districts: PR (95% CI for moderate to severe anaemia and clinical malaria: Yoto 0.62 (0.44-0.88 and 0.49 (0.35-0.75; Ogou 0.54 (0.37-0.79 and 0.85 (0.57-1.27, respectively. Similar reductions occurred in children Conclusions A marked reduction in childhood malaria associated morbidity was observed in the year following mass distribution of free LLINs in two of the three districts in Togo. Sub-national level impact evaluations will contribute to a better understanding of the impact of expanding national malaria control efforts.

  13. Malaria in the Republic of Djibouti, 1998–2009

    Science.gov (United States)

    Ollivier, Lénaïck; Nevin, Remington L.; Darar, Houssein Y.; Bougère, Jacques; Saleh, Moustapha; Gidenne, Stéphane; Maslin, Jérôme; Anders, Dietmar; Decam, Christophe; Todesco, Alain; Khaireh, Bouh A.; Ahmed, Ammar A.

    2011-01-01

    Historically, native populations in the Republic of Djibouti have experienced only low and unstable malaria transmission and intermittent epidemics. In recent years, efforts at malaria control have been aggressively pursued. This study was performed to inform revised malaria prevention recommendations for military service members and international travelers to the country. Laboratory-confirmed cases of malaria documented at large medical facilities and within military and civilian health care systems in the Republic of Djibouti from 1998 to 2009 were reviewed. In recent years, fewer than 5% of febrile cases among the three largest passive surveillance systems were laboratory-confirmed as malaria, and incidence of confirmed malaria was well below 1/1,000 persons/year. As efforts in the Republic of Djibouti progress toward elimination, and in conjunction with continued efforts at surveillance, emphasizing mosquito-avoidance measures and standby emergency treatment will become reasonable recommendations for malaria prevention. PMID:21896822

  14. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51.

    Directory of Open Access Journals (Sweden)

    Yimin Wu

    2008-07-01

    Full Text Available Pfs25 and Pvs25, surface proteins of mosquito stage of the malaria parasites P. falciparum and P. vivax, respectively, are leading candidates for vaccines preventing malaria transmission by mosquitoes. This single blinded, dose escalating, controlled Phase 1 study assessed the safety and immunogenicity of recombinant Pfs25 and Pvs25 formulated with Montanide ISA 51, a water-in-oil emulsion.The trial was conducted at The Johns Hopkins Center for Immunization Research, Washington DC, USA, between May 16, 2005-April 30, 2007. The trial was designed to enroll 72 healthy male and non-pregnant female volunteers into 1 group to receive adjuvant control and 6 groups to receive escalating doses of the vaccines. Due to unexpected reactogenicity, the vaccination was halted and only 36 volunteers were enrolled into 4 groups: 3 groups of 10 volunteers each were immunized with 5 microg of Pfs25/ISA 51, 5 microg of Pvs25/ISA 51, or 20 microg of Pvs25/ISA 51, respectively. A fourth group of 6 volunteers received adjuvant control (PBS/ISA 51. Frequent local reactogenicity was observed. Systemic adverse events included two cases of erythema nodosum considered to be probably related to the combination of the antigen and the adjuvant. Significant antibody responses were detected in volunteers who completed the lowest scheduled doses of Pfs25/ISA 51. Serum anti-Pfs25 levels correlated with transmission blocking activity.It is feasible to induce transmission blocking immunity in humans using the Pfs25/ISA 51 vaccine, but these vaccines are unexpectedly reactogenic for further development. This is the first report that the formulation is associated with systemic adverse events including erythema nodosum.ClinicalTrials.gov NCT00295581.

  15. Community mobilization for malaria elimination: application of an open space methodology in Ruhuha sector, Rwanda

    NARCIS (Netherlands)

    Ingabire, Chantal Marie; Alaii, Jane; Hakizimana, Emmanuel; Kateera, Fredrick; Muhimuzi, Daniel; Nieuwold, Ingmar; Bezooijen, Karsten; Rulisa, Stephen; Kaligirwa, Nadine; Muvunyi, Claude; Koenraadt, Constantianus J. M.; Mutesa, Leon; van Vugt, Michele; van den Borne, Bart

    2014-01-01

    Despite the significant reduction of malaria transmission in Rwanda, Ruhuha sector is still a highly endemic area for malaria. The objective of this activity was to explore and brainstorm the potential roles of various community stakeholders in malaria elimination. Horizontal participatory

  16. Transmission of data: Digital processing of isodose patterns

    Energy Technology Data Exchange (ETDEWEB)

    Tsien, K C [Department of Radiology, Temple University School of Medicine and Hospital, Philadelphia, PA (United States)

    1966-06-15

    Communication technology has now reached a stage in which we can transmit almost any form of data from one place to another. While television is the best general form of transmission for visual data, the simplest and least expensive way is by coding the data into numerals. Transmission of data by numerical coding, however, requires decoding at the receiving end to restore it to the original form. The transmission of line curves is done most often by translating the curve into a series of points and then determining the co-ordinates of the I points for transmission. The decoding of these data is generally time-consuming if there is no automatic plotter available. A new method of digitizing line drawings has been developed for use in pattern recognition, which simplifies greatly both coding and decoding in the transmission of line curves. This system can be readily adopted for use with isodose curves.

  17. Anopheles (Kerteszia cruzii (DIPTERA: CULICIDAE IN PERIDOMICILIARY AREA DURING ASYMPTOMATIC MALARIA TRANSMISSION IN THE ATLANTIC FOREST: MOLECULAR IDENTIFICATION OF BLOOD-MEAL SOURCES INDICATES HUMANS AS PRIMARY INTERMEDIATE HOSTS

    Directory of Open Access Journals (Sweden)

    Karin Kirchgatter

    2014-09-01

    Full Text Available Anopheles (Kerteszia cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker. cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen.

  18. Anopheles (Kerteszia) cruzii (Diptera: Culicidae) in peridomiciliary area during asymptomatic malaria transmission in the Atlantic Forest: molecular identification of blood-meal sources indicates humans as primary intermediate hosts.

    Science.gov (United States)

    Kirchgatter, Karin; Tubaki, Rosa Maria; Malafronte, Rosely dos Santos; Alves, Isabel Cristina; Lima, Giselle Fernandes Maciel de Castro; Guimarães, Lilian de Oliveira; Zampaulo, Robson de Almeida; Wunderlich, Gerhard

    2014-01-01

    Anopheles (Kerteszia) cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker.) cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen.

  19. A review on malaria eradication: what hope for Nigeria? | Amadi ...

    African Journals Online (AJOL)

    Malaria and its transmitting vectors are household names. Malaria which helped Africa from the venomous fangs of colonialism has turned to be the bane of development in tropical countries including Nigeria. The factors which promote prevalence of the disease and its transmission dynamics are well discussed in this ...

  20. Integrated malaria vector control in different agro-ecosystems in western Kenya

    NARCIS (Netherlands)

    Imbahale, S.S.

    2009-01-01

    Malaria is a complex disease and its transmission is a function of the interaction between the Anopheles mosquito vector, the Plasmodium parasite, the hosts and the environment. Malaria control has mainly targeted the Plasmodium parasite or the adult anopheline mosquitoes. However, development of

  1. Man biting rate seasonal variation of malaria vectors in Roraima, Brazil

    Directory of Open Access Journals (Sweden)

    Fábio Saito Monteiro de Barros

    2007-06-01

    Full Text Available Malaria control has been directed towards regional actions where more detailed knowledge of local determinants of transmission is of primary importance. This is a short report on range distribution and biting indices for Anopheles darlingi and An. albitarsis during the dry and rainy season that follows river level variation in a savanna/alluvial forest malaria system area in the Northern Amazon Basin. Distribution range and adult biting indices were at their highest during the rainy season for both An. darlingi and An. albitarsis. During the rainy season the neighboring alluvial forest was extensively flooded. This coincided with highest rates in malaria transmission with case clustering near the river. As the river receded, anopheline distribution range and density decreased. This decrease in distribution and density corresponded to a malaria decrease in the near area. An exponential regression function was derived to permit estimations of An. darlingi distribution over specified distances. Anopheline spatio-temporal variations lead to uneven malaria case distribution and are of important implications for control strategies.

  2. Serological markers suggest heterogeneity of effectiveness of malaria control interventions on Bioko Island, equatorial Guinea.

    Directory of Open Access Journals (Sweden)

    Jackie Cook

    Full Text Available In order to control and eliminate malaria, areas of on-going transmission need to be identified and targeted for malaria control interventions. Immediately following intense interventions, malaria transmission can become more heterogeneous if interventions are more successful in some areas than others. Bioko Island, Equatorial Guinea, has been subject to comprehensive malaria control interventions since 2004. This has resulted in substantial reductions in the parasite burden, although this drop has not been uniform across the island.In 2008, filter paper blood samples were collected from 7387 people in a cross-sectional study incorporating 18 sentinel sites across Bioko, Equatorial Guinea. Antibodies were measured to P. falciparum Apical Membrane Antigen-1 (AMA-1 by Enzyme Linked Immunosorbent Assay (ELISA. Age-specific seropositivity rates were used to estimate seroconversion rates (SCR. Analysis indicated there had been at least a 60% decline in SCR in four out of five regions on the island. Changes in SCR showed a high degree of congruence with changes in parasite rate (PR and with regional reductions in all cause child mortality. The mean age adjusted concentration of anti-AMA-1 antibodies was mapped to identify areas where individual antibody responses were higher than expected. This approach confirmed the North West of the island as a major focus of continuing infection and an area where control interventions need to be concentrated or re-evaluated.Both SCR and PR revealed heterogeneity in malaria transmission and demonstrated the variable effectiveness of malaria control measures. This work confirms the utility of serological analysis as an adjunct measure for monitoring transmission. Age-specific seroprevalence based evidence of changes in transmission over time will be of particular value when no baseline data are available. Importantly, SCR data provide additional evidence to link malaria control activities to contemporaneous

  3. Mapping hypoendemic, seasonal malaria in rural Bandarban, Bangladesh: a prospective surveillance

    Directory of Open Access Journals (Sweden)

    Glass Gregory

    2011-05-01

    Full Text Available Abstract Background Until recently the Chittagong Hill tracts have been hyperendemic for malaria. A past cross-sectional RDT based survey in 2007 recorded rates of approximately 15%. This study was designed to understand the present epidemiology of malaria in this region, to monitor and facilitate the uptake of malaria intervention activities of the national malaria programme and to serve as an area for developing new and innovative control strategies for malaria. Methods This research field area was established in two rural unions of Bandarban District of Bangladesh north of Bandarban city, which are known to be endemic for malaria due to Plasmodium falciparum. The project included the following elements: a a demographic surveillance system including an initial census with updates every four months, b periodic surveys of knowledge attitude and practice, c a geographic information system, d weekly active and continuous passive surveillance for malaria infections using smears, rapid tests and PCR, f monthly mosquito surveillance, and e daily weather measures. The programme included both traditional and molecular methods for detecting malaria as well as lab methods for speciating mosquitoes and detecting mosquitoes infected with sporozoites. Results The demographic surveillance enumerated and mapped 20,563 people, 75% of which were tribal non-Bengali. The monthly mosquito surveys identified 22 Anopheles species, eight of which were positive by circumsporozoite ELISA. The annual rate of malaria was close to 1% with 85% of cases in the rainy months of May-October. Definitive clustering identified in the low transmission season persisted during the high transmission season. Conclusion This demographically and geographically defined area, near to the Myanmar border, which is also hypoendemic for malaria, will be useful for future studies of the epidemiology of malaria and for evaluation of strategies for malaria control including new drugs and

  4. Steady progress toward a malaria vaccine.

    Science.gov (United States)

    Lyke, Kirsten E

    2017-10-01

    Great progress has been made in reducing malaria morbidity and mortality, yet the parasite continues to cause a startling 200 million infections and 500 000 deaths annually. Malaria vaccine development is pushing new boundaries by steady advancement toward a licensed product. Despite 50 years of research, the complexity of Plasmoidum falciparum confounds all attempts to eradicate the organism. This very complexity has pushed the boundaries of vaccine development to new heights, yet it remains to be seen if an affordable vaccine can provide durable and high-level protection. Novel vaccines such as RTS,S/AS01E are on the edge of licensure, but old techniques have resurged with the ability to deliver vialed, whole organism vaccines. Novel adjuvants, multistage/multiantigen approaches and transmission blocking vaccines all contribute to a multipronged battle plan to conquer malaria. Vaccines are the most cost-effective tools to control infectious diseases, yet the complexity of malaria has frustrated all attempts to develop an effective product. This review concentrates on recent advances in malaria vaccine development that lend hope that a vaccine can be produced and malaria eradicated.

  5. Submicroscopic gametocytes and the transmission of antifolate-resistant Plasmodium falciparum in Western Kenya

    DEFF Research Database (Denmark)

    Oesterholt, Mayke J A M; Alifrangis, Michael; Sutherland, Colin J

    2009-01-01

    BACKGROUND: Single nucleotide polymorphisms (SNPs) in the dhfr and dhps genes are associated with sulphadoxine-pyrimethamine (SP) treatment failure and gametocyte carriage. This may result in enhanced transmission of mutant malaria parasites, as previously shown for chloroquine resistant parasites...... gametocytemia or enhanced malaria transmission. The absence of wild-type infections is likely to have reduced our power to detect differences. Our data further support the use of ACT to reduce the transmission of drug-resistant malaria parasites....

  6. First record of the Asian malaria vector Anopheles stephensi and its possible role in the resurgence of malaria in Djibouti, Horn of Africa.

    Science.gov (United States)

    Faulde, Michael K; Rueda, Leopoldo M; Khaireh, Bouh A

    2014-11-01

    Anopheles stephensi is an important vector of urban malaria in India and the Persian Gulf area. Its previously known geographical range includes southern Asia and the Arab Peninsula. For the first time, we report A. stephensi from the African continent, based on collections made in Djibouti, on the Horn of Africa, where this species' occurrence was linked to an unusual urban outbreak of Plasmodium falciparum malaria, with 1228 cases reported from February to May 2013, and a second, more severe epidemic that emerged in November 2013 and resulted in 2017 reported malaria cases between January and February 2014. Anopheles stephensi was initially identified using morphological identification keys, followed by sequencing of the Barcode cytochrome c-oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2). Positive tests for P. falciparum circumsporozoite antigen in two of six female A. stephensi trapped in homes of malaria patients in March 2013 are evidence that autochthonous urban malaria transmission by A. stephensi has occurred. Concurrent with the second malaria outbreak, P. falciparum-positive A. stephensi females were detected in Djibouti City starting in November 2013. In sub-Saharan Africa, newly present A. stephensi may pose a significant future health threat because of this species' high susceptibility to P. falciparum infection and its tolerance of urban habitats. This may lead to increased malaria outbreaks in African cities. Rapid interruption of the urban malaria transmission cycle, based on integrated vector surveillance and control programs aimed at the complete eradication of A. stephensi from the African continent, is strongly recommended. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Detecting Malaria Hotspots: A Comparison of Rapid Diagnostic Test, Microscopy, and Polymerase Chain Reaction.

    Science.gov (United States)

    Mogeni, Polycarp; Williams, Thomas N; Omedo, Irene; Kimani, Domtila; Ngoi, Joyce M; Mwacharo, Jedida; Morter, Richard; Nyundo, Christopher; Wambua, Juliana; Nyangweso, George; Kapulu, Melissa; Fegan, Gregory; Bejon, Philip

    2017-11-27

    Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  8. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Directory of Open Access Journals (Sweden)

    Ryan C Smith

    2014-08-01

    Full Text Available Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.

  9. High heterogeneity of malaria transmission and a large sub-patent and diverse reservoir of infection in Wusab As Safil district, Republic of Yemen.

    Science.gov (United States)

    Cook, Jackie; Grignard, Lynn; Al-Eryani, Samira; Al-Selwei, Mustafa; Mnzava, Abraham; Al-Yarie, Hafed; Rand, Alison; Kleinschmidt, Immo; Drakeley, Chris

    2016-04-08

    Yemen remains the country with the highest malaria transmission within the Arabian Peninsula and a source of imported cases to neighbouring countries. This study collected samples from individuals resident in a valley in Western Yemen as a baseline to examine infection prevalence for a future trial. As well as rapid diagnostic test (RDT) and microscopy, a filter paper blood spot was collected for molecular and serological analyses. Samples were collected from 2261 individuals from 12 clusters across a study area of approximately 100 km(2). Plasmodium falciparum infection prevalence was 12.4, 11.1 and 19.6% by RDT, microscopy and polymerase chain reaction (PCR), respectively. RDT and microscopy did not detect 45% of infections present, suggesting many infections were low-density. Infection prevalence and seroprevalence were highly heterogeneous between clusters, with evidence of higher exposure in clusters close to the wadi. The mean multiplicity of infection (MOI) was 2.3 and high heterozygosity and allelic richness were detected. This highly diverse parasite population suggests a high degree of transmissibility and coupled with the substantial proportion of low-density infections, may pose challenges for malaria control and elimination efforts.

  10. [Identification of anopheles breeding sites in the residual foci of low malaria transmission «hotspots» in Central and Western Senegal].

    Science.gov (United States)

    Sy, O; Konaté, L; Ndiaye, A; Dia, I; Diallo, A; Taïrou, F; Bâ, E L; Gomis, J F; Ndiaye, J L; Cissé, B; Gaye, O; Faye, O

    2016-02-01

    Malaria incidence has markedly declined in the Mbour, Fatick, Niakhar and Bambey districts (central and western Senegal) thanks to a scaling up of effective control measures namely LLINs (Long Lasting Insecticide Treated Net), ACTs (Artesunate Combination Therapy) and promoting care seeking. However malaria cases are now maintained by foci of transmission called hotspots. We evaluate the role of anopheles breeding sites in the identification of malaria hotspots in the health districts of Mbour, Fatick, Niakhar and Bambey. Surveys of breeding sites were made in 6 hotspot villages and 4 non-hotspot villages. A sample was taken in each water point with mosquito larvae by dipping method and the collected specimens were identified to the genus level. Additional parameters as name of the village and breeding sites, type of collection, original water turbidity, presence of vegetation, proximity to dwellings, geographic coordinates, sizes were also collected. Sixty-two water collections were surveyed and monitored between 2013 and 2014. Temporary natural breeding sites were predominant regardless of the epidemiological status of the village. Among the 31 breeding sites located within 500 meters of dwellings in hotspots villages, 70% carried Anopheles larvae during the rainy season while 43% of the 21 breeding sites located at similar distances in non-hotspot villages carried Anopheles larvae during the same period (P = 0.042). At the end of the rainy season, the trend is the same with 27% of positive breeding sites in hotspots and 14% in non-hotspots villages. The breeding sites encountered in hotspots villages are mostly small to medium size and are more productive by Anopheles larvae than those found in non-hotspot area. This study showed that the high frequency of smallest and productive breeding sites around and inside the villages can create conditions of residual transmission.

  11. Social marketing of insecticide-treated bed net for malaria control ...

    African Journals Online (AJOL)

    Background: The effectiveness of the insecticide-treated bed net in reducing the morbidity and mortality associated with malaria has been proved at all levels of malaria transmission. Several models on how to achieve massive coverage have been suggested, but social marketing of the nets is highly favoured for its ...

  12. Border malaria in China: knowledge and use of personal protection by minority populations and implications for malaria control: a questionnaire-based survey

    Directory of Open Access Journals (Sweden)

    Hill Nigel

    2008-10-01

    Full Text Available Abstract Background Malaria control in remote, forested areas of the Mekong region relies on personal protection from mosquito bites. Uptake of these methods may be limited by knowledge of the link between mosquitoes and malaria as well as social and economic aspects. Understanding barriers to uptake will inform malaria control programmes on targets for improvement of delivery. Methods A total 748 key respondents: health providers and village heads, from 187 villages and 25 different ethnic groups, were interviewed using structured questionnaires. Differences in use of personal protection, and knowledge of malaria between groups were analysed using chi-square; and binary logistic regression used for multivariate analysis. Results Malaria knowledge was poor with 19.4% of women and 37.5% of men linking mosquitoes with malaria, although 95.6% knew one or more methods of mosquito control. Virtually all respondents used personal protection at some time during the year; and understanding of malaria transmission was strongly associated with bednet use. Those working in forest agriculture were significantly more likely to know that mosquitoes transmit malaria but this did not translate into a significantly greater likelihood of using bednets. Furthermore, use of personal protection while woing outdoors was rare, and less than 3% of respondents knew about the insecticide impregnation of bednets. The use of bednets, synthetic repellents and mosquito coils varied between ethnic groups, but was significantly more frequent among those with higher income, more years of education and permanent housing. The reported use of repellents and coils was also more common among women despite their low knowledge of malaria transmission, and low likelihood of having heard information on malaria within the last year. Conclusion The use of personal protection must be increased, particularly among outdoor workers that have higher malaria risk. However, personal protection

  13. Border malaria in China: knowledge and use of personal protection by minority populations and implications for malaria control: a questionnaire-based survey.

    Science.gov (United States)

    Moore, Sarah J; Min, Xia; Hill, Nigel; Jones, Caroline; Zaixing, Zhang; Cameron, Mary M

    2008-10-01

    Malaria control in remote, forested areas of the Mekong region relies on personal protection from mosquito bites. Uptake of these methods may be limited by knowledge of the link between mosquitoes and malaria as well as social and economic aspects. Understanding barriers to uptake will inform malaria control programmes on targets for improvement of delivery. A total 748 key respondents: health providers and village heads, from 187 villages and 25 different ethnic groups, were interviewed using structured questionnaires. Differences in use of personal protection, and knowledge of malaria between groups were analysed using chi-square; and binary logistic regression used for multivariate analysis. Malaria knowledge was poor with 19.4% of women and 37.5% of men linking mosquitoes with malaria, although 95.6% knew one or more methods of mosquito control. Virtually all respondents used personal protection at some time during the year; and understanding of malaria transmission was strongly associated with bednet use. Those working in forest agriculture were significantly more likely to know that mosquitoes transmit malaria but this did not translate into a significantly greater likelihood of using bednets. Furthermore, use of personal protection while woing outdoors was rare, and less than 3% of respondents knew about the insecticide impregnation of bednets. The use of bednets, synthetic repellents and mosquito coils varied between ethnic groups, but was significantly more frequent among those with higher income, more years of education and permanent housing. The reported use of repellents and coils was also more common among women despite their low knowledge of malaria transmission, and low likelihood of having heard information on malaria within the last year. The use of personal protection must be increased, particularly among outdoor workers that have higher malaria risk. However, personal protection is widely used and widely accepted to prevent nuisance biting

  14. Cost Effectiveness Analysis of Optimal Malaria Control Strategies in Kenya

    Directory of Open Access Journals (Sweden)

    Gabriel Otieno

    2016-03-01

    Full Text Available Malaria remains a leading cause of mortality and morbidity among the children under five and pregnant women in sub-Saharan Africa, but it is preventable and controllable provided current recommended interventions are properly implemented. Better utilization of malaria intervention strategies will ensure the gain for the value for money and producing health improvements in the most cost effective way. The purpose of the value for money drive is to develop a better understanding (and better articulation of costs and results so that more informed, evidence-based choices could be made. Cost effectiveness analysis is carried out to inform decision makers on how to determine where to allocate resources for malaria interventions. This study carries out cost effective analysis of one or all possible combinations of the optimal malaria control strategies (Insecticide Treated Bednets—ITNs, Treatment, Indoor Residual Spray—IRS and Intermittent Preventive Treatment for Pregnant Women—IPTp for the four different transmission settings in order to assess the extent to which the intervention strategies are beneficial and cost effective. For the four different transmission settings in Kenya the optimal solution for the 15 strategies and their associated effectiveness are computed. Cost-effective analysis using Incremental Cost Effectiveness Ratio (ICER was done after ranking the strategies in order of the increasing effectiveness (total infections averted. The findings shows that for the endemic regions the combination of ITNs, IRS, and IPTp was the most cost-effective of all the combined strategies developed in this study for malaria disease control and prevention; for the epidemic prone areas is the combination of the treatment and IRS; for seasonal areas is the use of ITNs plus treatment; and for the low risk areas is the use of treatment only. Malaria transmission in Kenya can be minimized through tailor-made intervention strategies for malaria control

  15. Toll-like receptor polymorphisms in malaria-endemic populations

    Directory of Open Access Journals (Sweden)

    Zimmerman Peter A

    2009-03-01

    Full Text Available Abstract Background Toll-like receptors (TLR and related downstream signaling pathways of innate immunity have been implicated in the pathogenesis of Plasmodium falciparum malaria. Because of their potential role in malaria pathogenesis, polymorphisms in these genes may be under selective pressure in populations where this infectious disease is endemic. Methods A post-PCR Ligation Detection Reaction-Fluorescent Microsphere Assay (LDR-FMA was developed to determine the frequencies of TLR2, TLR4, TLR9, MyD88-Adaptor Like Protein (MAL single nucleotide polymorphisms (SNPs, and TLR2 length polymorphisms in 170 residents of two regions of Kenya where malaria transmission is stable and high (holoendemic or episodic and low, 346 residents of a malaria holoendemic region of Papua New Guinea, and 261 residents of North America of self-identified ethnicity. Results The difference in historical malaria exposure between the two Kenyan sites has significantly increased the frequency of malaria protective alleles glucose-6-phoshpate dehydrogenase (G6PD and Hemoglobin S (HbS in the holoendemic site compared to the episodic transmission site. However, this study detected no such difference in the TLR2, TLR4, TLR9, and MAL allele frequencies between the two study sites. All polymorphisms were in Hardy Weinberg Equilibrium in the Kenyan and Papua New Guinean populations. TLR9 SNPs and length polymorphisms within the TLR2 5' untranslated region were the only mutant alleles present at a frequency greater than 10% in all populations. Conclusion Similar frequencies of TLR2, TLR4, TLR9, and MAL genetic polymorphisms in populations with different histories of malaria exposure suggest that these innate immune pathways have not been under strong selective pressure by malaria. Genotype frequencies are consistent with Hardy-Weinberg Equilibrium and the Neutral Theory, suggesting that genetic drift has influenced allele frequencies to a greater extent than selective

  16. Health care seeking patterns and determinants of out-of-pocket expenditure for malaria for the children under-five in Uganda.

    Science.gov (United States)

    Nabyonga Orem, Juliet; Mugisha, Frederick; Okui, Albert Peter; Musango, Laurent; Kirigia, Joses Muthuri

    2013-05-31

    The objectives of this study were to assess the patterns of treatment seeking behaviour for children under five with malaria; and to examine the statistical relationship between out-of-pocket expenditure (OOP) on malaria treatment for under-fives and source of treatment, place of residence, education and wealth characteristics of Uganda households. OOP expenditure on health care is now a development concern due to its negative effect on households' ability to finance consumption of other basic needs. The 2009 Uganda Malaria Indicator Survey was the source of data on treatment seeking behaviour for under-five children with malaria, and patterns and levels of OOP expenditure for malaria treatment. Binomial logit and Log-lin regression models were estimated. In logit model the dependent variable was a dummy (1=incurred some OOP, 0=none incurred) and independent variables were wealth quintiles, rural versus urban, place of treatment, education level, sub-region, and normal duty disruption. The dependent variable in Log-lin model was natural logarithm of OOP and the independent variables were the same as mentioned above. Five key descriptive analysis findings emerge. First, malaria is quite prevalent at 44.7% among children below the age of five. Second, a significant proportion seeks treatment (81.8%). Third, private providers are the preferred option for the under-fives for the treatment of malaria. Fourth, the majority pay about 70.9% for either consultation, medicines, transport or hospitalization but the biggest percent of those who pay, do so for medicines (54.0%). Fifth, hospitalization is the most expensive at an average expenditure of US$7.6 per child, even though only 2.9% of those that seek treatment are hospitalized.The binomial logit model slope coefficients for the variables richest wealth quintile, Private facility as first source of treatment, and sub-regions Central 2, East central, Mid-eastern, Mid-western, and Normal duties disrupted were positive and

  17. Exploiting the behaviour of wild malaria vectors to achieve high infection with fungal biocontrol agents

    Science.gov (United States)

    2012-01-01

    Background Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. Results Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. Conclusions Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy. PMID:22449130

  18. Patterns of Plasmodium vivax and Plasmodium falciparum malaria underscore importance of data collection from private health care facilities in India.

    Science.gov (United States)

    Gupta, Sangeeta; Gunter, James T; Novak, Robert J; Regens, James L

    2009-10-12

    This study describes patterns of falciparum and vivax malaria in a private comprehensive-care, multi-specialty hospital in New Delhi from July 2006 to July 2008. Malarial morbidity by Plasmodium species (Plasmodium falciparum, Plasmodium vivax, or Plasmodium sp.) was confirmed using microscopy and antigen tests. The influence of seasonal factors and selected patient demographics on morbidity was evaluated. The proportions of malaria cases caused by P. falciparum at the private facility were compared to data from India's National Vector Borne Disease Control Programme (NVBDCP) during the same period for the Delhi region. In New Delhi, P. faciparum was the dominant cause of cases requiring treatment in the private hospital during the period examined. The national data reported a smaller proportion of malaria cases caused by P. falciparum in the national capital region than was observed in a private facility within the region. Plasmodium vivax also caused a large proportion of the cases presenting clinically at the private hospital during the summer and monsoon seasons. The proportion of P. falciparum malaria cases tends to be greatest during the post-monsoon season while the proportion of P. vivax malaria cases tends to be greatest in the monsoon season. Private hospital data demonstrate an under-reporting of malaria case incidences in the data from India's national surveillance programme during the same period for the national capital region.

  19. A validated agent-based model to study the spatial and temporal heterogeneities of malaria incidence in the rainforest environment.

    Science.gov (United States)

    Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F

    2015-12-22

    The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.

  20. Selective Intermittent Preventive Treatment of Vivax Malaria: Reduction of Malaria Incidence in an Open Cohort Study in Brazilian Amazon

    Science.gov (United States)

    Gil, Luiz Herman Soares; de Lima, Alzemar Alves; Freitag, Elci Marlei; dos Santos, Tatiana Marcondes; do Nascimento Filha, Maria Teixeira; dos Santos Júnior, Alcides Procópio Justiniano; da Silva, Josiane Mendes; Rodrigues, Aline de Freitas; Tada, Mauro Shugiro; Fontes, Cor Jesus Fernandes; Pereira da Silva, Luiz Hildebrando

    2013-01-01

    In children, the Intermittent Preventive Treatment (IPTc), currently called Seasonal Malaria Chemoprevention (SMC), was considered effective on malaria control due to the reduction of its incidence in Papua New Guinea and in some areas with seasonal malaria in Africa. However, the IPT has not been indicated because of its association with drug resistance and for hindering natural immunity development. Thus, we evaluated the alternative IPT impact on malaria incidence in three riverside communities on Madeira River, in the municipality of Porto Velho, RO. We denominate this scheme Selective Intermittent Preventive Treatment (SIPT). The SIPT consists in a weekly dose of two 150 mg chloroquine tablets for 12 weeks, for adults, and an equivalent dose for children, after complete supervised treatment for P. vivax infection. This scheme is recommend by Brazilian Health Ministry to avoid frequent relapses. The clinic parasitological and epidemiological surveillance showed a significant reduction on vivax malaria incidence. The results showed a reduction on relapses and recurrence of malaria after SIPT implementation. The SIPT can be effective on vivax malaria control in localities with high transmission risk in the Brazilian Amazon. PMID:23577276

  1. Selective Intermittent Preventive Treatment of Vivax Malaria: Reduction of Malaria Incidence in an Open Cohort Study in Brazilian Amazon

    Directory of Open Access Journals (Sweden)

    Tony Hiroshi Katsuragawa

    2013-01-01

    Full Text Available In children, the Intermittent Preventive Treatment (IPTc, currently called Seasonal Malaria Chemoprevention (SMC, was considered effective on malaria control due to the reduction of its incidence in Papua New Guinea and in some areas with seasonal malaria in Africa. However, the IPT has not been indicated because of its association with drug resistance and for hindering natural immunity development. Thus, we evaluated the alternative IPT impact on malaria incidence in three riverside communities on Madeira River, in the municipality of Porto Velho, RO. We denominate this scheme Selective Intermittent Preventive Treatment (SIPT. The SIPT consists in a weekly dose of two 150 mg chloroquine tablets for 12 weeks, for adults, and an equivalent dose for children, after complete supervised treatment for P. vivax infection. This scheme is recommend by Brazilian Health Ministry to avoid frequent relapses. The clinic parasitological and epidemiological surveillance showed a significant reduction on vivax malaria incidence. The results showed a reduction on relapses and recurrence of malaria after SIPT implementation. The SIPT can be effective on vivax malaria control in localities with high transmission risk in the Brazilian Amazon.

  2. Predicting Malaria occurrence in Southwest and North central Nigeria using Meteorological parameters

    Science.gov (United States)

    Akinbobola, A.; Omotosho, J. Bayo

    2013-09-01

    Malaria is a major public health problem especially in the tropics with the potential to significantly increase in response to changing weather and climate. This study explored the impact of weather and climate and its variability on the occurrence and transmission of malaria in Akure, the tropical rain forest area of southwest and Kaduna, in the savanna area of Nigeria. We investigate this supposition by looking at the relationship between rainfall, relative humidity, minimum and maximum temperature, and malaria at the two stations. This study uses monthly data of 7 years (2001-2007) for both meteorological data and record of reported cases of malaria infection. Autoregressive integrated moving average (ARIMA) models were used to evaluate the relationship between weather factors and malaria incidence. Of all the models tested, the ARIMA (1, 0, 1) model fits the malaria incidence data best for Akure and Kaduna according to normalized Bayesian information criterion (BIC) and goodness-of-fit criteria. Humidity and rainfall have almost the same trend of association in all the stations while maximum temperature share the same negative association at southwestern stations and positive in the northern station. Rainfall and humidity have a positive association with malaria incidence at lag of 1 month. In all, we found that minimum temperature is not a limiting factor for malaria transmission in Akure but otherwise in the other stations.

  3. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia

    Directory of Open Access Journals (Sweden)

    Midekisa Alemayehu

    2012-05-01

    Full Text Available Abstract Background Malaria is one of the leading public health problems in most of sub-Saharan Africa, particularly in Ethiopia. Almost all demographic groups are at risk of malaria because of seasonal and unstable transmission of the disease. Therefore, there is a need to develop malaria early-warning systems to enhance public health decision making for control and prevention of malaria epidemics. Data from orbiting earth-observing sensors can monitor environmental risk factors that trigger malaria epidemics. Remotely sensed environmental indicators were used to examine the influences of climatic and environmental variability on temporal patterns of malaria cases in the Amhara region of Ethiopia. Methods In this study seasonal autoregressive integrated moving average (SARIMA models were used to quantify the relationship between malaria cases and remotely sensed environmental variables, including rainfall, land-surface temperature (LST, vegetation indices (NDVI and EVI, and actual evapotranspiration (ETa with lags ranging from one to three months. Predictions from the best model with environmental variables were compared to the actual observations from the last 12 months of the time series. Results Malaria cases exhibited positive associations with LST at a lag of one month and positive associations with indicators of moisture (rainfall, EVI and ETa at lags from one to three months. SARIMA models that included these environmental covariates had better fits and more accurate predictions, as evidenced by lower AIC and RMSE values, than models without environmental covariates. Conclusions Malaria risk indicators such as satellite-based rainfall estimates, LST, EVI, and ETa exhibited significant lagged associations with malaria cases in the Amhara region and improved model fit and prediction accuracy. These variables can be monitored frequently and extensively across large geographic areas using data from earth-observing sensors to support public

  4. High proportion of subclinical Plasmodium falciparum infections in an area of seasonal and unstable malaria in Sudan

    DEFF Research Database (Denmark)

    Elhassan, I M; Hviid, L; Jakobsen, P H

    1995-01-01

    In the present longitudinal study, a cohort (n = 98) of children and adults 5-30 years of age living in an area of highly seasonal and unstable malaria transmission were followed for malaria morbidity during several successive transmission seasons. Based on morbidity surveillance during 1993 and ...

  5. Immune escape strategies of malaria parasites

    Directory of Open Access Journals (Sweden)

    Pollyanna Stephanie Gomes

    2016-10-01

    Full Text Available Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.

  6. Simulation of the cost-effectiveness of malaria vaccines

    Directory of Open Access Journals (Sweden)

    Tediosi Fabrizio

    2009-06-01

    Full Text Available Abstract Background A wide range of possible malaria vaccines is being considered and there is a need to identify which vaccines should be prioritized for clinical development. An important element of the information needed for this prioritization is a prediction of the cost-effectiveness of potential vaccines in the transmission settings in which they are likely to be deployed. This analysis needs to consider a range of delivery modalities to ensure that clinical development plans can be aligned with the most appropriate deployment strategies. Methods The simulations are based on a previously published individual-based stochastic model for the natural history and epidemiology of Plasmodium falciparum malaria. Three different vaccine types: pre-erythrocytic vaccines (PEV, blood stage vaccines (BSV, mosquito-stage transmission-blocking vaccines (MSTBV, and combinations of these, are considered each delivered via a range of delivery modalities (Expanded Programme of Immunization – EPI-, EPI with booster, and mass vaccination combined with EPI. The cost-effectiveness ratios presented are calculated for four health outcomes, for assumed vaccine prices of US$ 2 or US$ 10 per dose, projected over a 10-year period. Results The simulations suggest that PEV will be more cost-effective in low transmission settings, while BSV at higher transmission settings. Combinations of BSV and PEV are more efficient than PEV, especially in moderate to high transmission settings, while compared to BSV they are more cost-effective in moderate to low transmission settings. Combinations of MSTBV and PEV or PEV and BSV improve the effectiveness and the cost-effectiveness compared to PEV and BSV alone only when applied with EPI and mass vaccinations. Adding booster doses to the EPI is unlikely to be a cost-effective alternative to delivering vaccines via the EPI for any vaccine, while mass vaccination improves effectiveness, especially in low transmission settings, and is

  7. Impact of vegetable crop agriculture on anopheline agressivity and malaria transmission in urban and less urbanized settings of the South region of Cameroon.

    Science.gov (United States)

    Akono, Patrick Ntonga; Mbida, Jean Arthur Mbida; Tonga, Calvin; Belong, Philippe; Ngo Hondt, Odette Etoile; Magne, Gaëlle Tamdem; Peka, Marie Florence; Lehman, Leopold Gustave

    2015-05-28

    The use of inland valley swamps for vegetable crop agriculture contributes to food security in urban and less urbanized settings in Africa. The impact of this agriculture on aggressive mosquitoes' diversity and malaria transmission in central Africa is poorly documented. This study is aimed at assessing the impact of vegetable crop agriculture on these entomological parameters in urban and less urbanized settings of the forest area, south of Cameroon. The human bait technique was used for the capture of aggressive mosquitoes from January to December 2012. For three consecutive days each month, captures were performed on volunteers in hydro-agricultural and river bank sites of Akonolinga and Yaoundé. Physico-chemical characteristics of mosquito breeding sites were recorded. Molecular alongside morpho-taxonomic techniques were used for the identification of mosquito species; ELISA test was used to reveal Plasmodium falciparum infected mosquitoes through the detection of CSP. Mosquito diversity, aggressivity and malaria transmission in sites and settings were determined and compared. Biting rates were higher in hydro-agricultural sites of less urbanized and urban settings (31.8 b/p/n and 28.6 b/p/n respectively) than in river banks sites (6.83 b/p/n and 3.64 b/p/n respectively; p agricultural sites 2 species were captured in the urban setting versus 4 in the less urbanized setting, meanwhile in river bank sites, 3 species were captured in the urban setting versus 4 species in the less urbanized setting. An. nili s.s. was found in river banks only. An. hancocki was not found to insure Plasmodium falciparum Welch transmission. EIR in hydro-agricultural sites varied from 1.86 ib/p/n (urban area) to 2.13 ib/p/n (less urbanized area) with higher rates in April/May and August. Overall, EIR was higher in less urbanized areas (p agriculture (p = 0.2). These results highlight the need for specific preventive measures that take into account the ecological peculiarities

  8. Comparing ownership and use of bed nets at two sites with differential malaria transmission in western Kenya.

    Science.gov (United States)

    Ernst, Kacey C; Hayden, Mary H; Olsen, Heather; Cavanaugh, Jamie L; Ruberto, Irene; Agawo, Maurice; Munga, Stephen

    2016-04-14

    Challenges persist in ensuring access to and optimal use of long-lasting, insecticidal bed nets (LLINs). Factors associated with ownership and use may differ depending on the history of malaria and prevention control efforts in a specific region. Understanding how the cultural and social-environmental context of bed net use may differ between high- and low-risk regions is important when identifying solutions to improve uptake and appropriate use. Community forums and a household, cross-sectional survey were used to collect information on factors related to bed net ownership and use in western Kenya. Sites with disparate levels of transmission were selected, including an endemic lowland area, Miwani, and a highland epidemic-prone area, Kapkangani. Analysis of ownership was stratified by site. A combined site analysis was conducted to examine factors associated with use of all available bed nets. Logistic regression modelling was used to determine factors associated with ownership and use of owned bed nets. Access to bed nets as the leading barrier to their use was identified in community forums and cross-sectional surveys. While disuse of available bed nets was discussed in the forums, it was a relatively rare occurrence in both sites. Factors associated with ownership varied by site. Education, perceived risk of malaria and knowledge of individuals who had died of malaria were associated with higher bed net ownership in the highlands, while in the lowlands individuals reporting it was easy to get a bed net were more likely to own one. A combined site analysis indicated that not using an available bed net was associated with the attitudes that taking malaria drugs is easier than using a bed net and that use of a bed net will not prevent malaria. In addition, individuals with an unused bed net in the household were more likely to indicate that bed nets are difficult to use, that purchased bed nets are better than freely distributed ones, and that bed nets should only

  9. Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique

    OpenAIRE

    Ferr?o, Jo?o Lu?s; Mendes, Jorge M.; Painho, Marco

    2017-01-01

    Ferrão, J. L., Mendes, J. M., & Painho, M. (2017). Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique. Parasites and Vectors, 10(1), 1-12. DOI: 10.1186/s13071-017-2205-6 Background: Mozambique was recently ranked fifth in the African continent for the number of cases of malaria. In Chimoio municipality cases of malaria are increasing annually, contrary to the decreasing trend in Africa. As malaria transmission is influenced to a large extent by cli...

  10. Why use of interventions targeting outdoor biting mosquitoes will be necessary to achieve malaria elimination

    Directory of Open Access Journals (Sweden)

    Nicodem James Govella

    2012-06-01

    Full Text Available By definition, elimination of malaria means permanent reduction to zero of locally incidence of infections. Achieving this goal among other reasons, it requires fully understanding on where and when persons are most exposed to malaria vectors as these are fundamental for targeting interventions to achieve maximum impact. While elimination can be possible in some settings with low malaria transmission intensity and dominated with late and indoor biting of vectors using Long Lasting Insecticidal Nets (LLIN and Indoor Residual Spraying (IRs, it’s difficult and even impossible in areas with high and where majority of human exposure to transmission occurs outside human dwellings. Recently in response to wide spread use of LLIN and IRS, human risk of exposure to transmission is increasingly spread across the entire night so that much of it occurs outdoors and before bed time. This modification of vector populations and behaviour has now been reported from across Africa, Asia and from the Solomon Islands. Historical evidence shows that even in areas with intervention coverage exceeding 90% of human population it was so hard to even push prevalence down below the pre elimination threshold of 1% being compromised mainly with the outdoor residual transmission. Malaria control experts must however continue to deliver interventions that tackle indoor transmission but considerable amount of resources that target mosquitoes outside of houses and outside of sleeping hours will therefore be required to sustain and go beyond existing levels of malaria control and achieve elimination.

  11. Assessing the quality of service of village malaria workers to strengthen community-based malaria control in Cambodia

    Directory of Open Access Journals (Sweden)

    Ly Po

    2010-04-01

    Full Text Available Abstract Background Malaria continues to be a major public health problem in remote forested areas in Cambodia. As a national strategy to strengthen community-based malaria control, the Cambodian government has been running the Village Malaria Worker (VMW project since 2001. This study sought to examine the nature and quality of the VMWs' services. Methods Data collection was carried out in February and March 2008 through interviews with one of the two VMWs who takes the lead in malaria control activities in each of the 315 VMW villages (n = 251. The questionnaire addressed 1 the sociodemographic characteristics of VMWs, 2 service quality, 3 actions for malaria prevention and vector control, and 4 knowledge of malaria epidemiology and vector ecology. Results VMWs were effective in conducting diagnosis with Rapid Diagnostic Tests (RDTs and prescribing anti-malarials to those who had positive RDT results, skills that they had acquired through their training programmes. However, most other services, such as active detection, explanations about compliance, and follow-up of patients, were carried out by only a small proportion of VMWs. The variety of actions that VMWs took for malaria prevention and vector control was small (average action index score 12.8/23, and their knowledge was very limited with less than 20% of the VMWs giving correct answers to six out of seven questions on malaria epidemiology and vector ecology. Knowledge of vector breeding places and malaria transmission were significant determinants of both the quality of VMWs' services and the variety of their actions for malaria prevention and vector control. Conclusions VMWs' services focused primarily on diagnosis and treatment. Their focus needs to be broadened to cover other aspects of malaria control in order to further strengthen community-based malaria control. VMWs' actions and knowledge also need substantial improvement. Strengthening training programmes can help achieve better

  12. Patterns of malaria-related hospital admissions and mortality among Malawian children: an example of spatial modelling of hospital register data

    Directory of Open Access Journals (Sweden)

    Kleinschmidt Immo

    2006-10-01

    Full Text Available Abstract Background Malaria is a leading cause of hospitalization and in-hospital mortality among children in Africa, yet, few studies have described the spatial distribution of the two outcomes. Here spatial regression models were applied, aimed at quantifying spatial variation and risk factors associated with malaria hospitalization and in-hospital mortality. Methods Paediatric ward register data from Zomba district, Malawi, between 2002 and 2003 were used, as a case study. Two spatial models were developed. The first was a Poisson model applied to analyse hospitalization and minimum mortality rates, with age and sex as covariates. The second was a logistic model applied to individual level data to analyse case-fatality rate, adjusting for individual covariates. Results and conclusion Rates of malaria hospitalization and in-hospital mortality decreased with age. Case fatality rate was associated with distance, age, wet season and increased if the patient was referred to the hospital. Furthermore, death rate was high on first day, followed by relatively low rate as length of hospital stay increased. Both outcomes showed substantial spatial heterogeneity, which may be attributed to the varying determinants of malaria risk, health services availability and accessibility, and health seeking behaviour. The increased risk of mortality of children referred from primary health facilities may imply inadequate care being available at the referring facility, or the referring facility are referring the more severe cases which are expected to have a higher case fatality rate. Improved prognosis as the length of hospital stay increased suggest that appropriate care when available can save lives. Reducing malaria burden may require integrated strategies encompassing availability of adequate care at primary facilities, introducing home or community case management as well as encouraging early referral, and reinforcing interventions to interrupt malaria

  13. Genetic surveillance detects both clonal and epidemic transmission of malaria following enhanced intervention in Senegal.

    Directory of Open Access Journals (Sweden)

    Rachel Daniels

    Full Text Available Using parasite genotyping tools, we screened patients with mild uncomplicated malaria seeking treatment at a clinic in Thiès, Senegal, from 2006 to 2011. We identified a growing frequency of infections caused by genetically identical parasite strains, coincident with increased deployment of malaria control interventions and decreased malaria deaths. Parasite genotypes in some cases persisted clonally across dry seasons. The increase in frequency of genetically identical parasite strains corresponded with decrease in the probability of multiple infections. Further, these observations support evidence of both clonal and epidemic population structures. These data provide the first evidence of a temporal correlation between the appearance of identical parasite types and increased malaria control efforts in Africa, which here included distribution of insecticide treated nets (ITNs, use of rapid diagnostic tests (RDTs for malaria detection, and deployment of artemisinin combination therapy (ACT. Our results imply that genetic surveillance can be used to evaluate the effectiveness of disease control strategies and assist a rational global malaria eradication campaign.

  14. Routine delivery of artemisinin-based combination treatment at fixed health facilities reduces malaria prevalence in Tanzania: an observational study

    Directory of Open Access Journals (Sweden)

    Khatib Rashid A

    2012-04-01

    Full Text Available Abstract Background Artemisinin-based combination therapy (ACT has been promoted as a means to reduce malaria transmission due to their ability to kill both asexual blood stages of malaria parasites, which sustain infections over long periods and the immature derived sexual stages responsible for infecting mosquitoes and onward transmission. Early studies reported a temporal association between ACT introduction and reduced malaria transmission in a number of ecological settings. However, these reports have come from areas with low to moderate malaria transmission, been confounded by the presence of other interventions or environmental changes that may have reduced malaria transmission, and have not included a comparison group without ACT. This report presents results from the first large-scale observational study to assess the impact of case management with ACT on population-level measures of malaria endemicity in an area with intense transmission where the benefits of effective infection clearance might be compromised by frequent and repeated re-infection. Methods A pre-post observational study with a non-randomized comparison group was conducted at two sites in Tanzania. Both sites used sulphadoxine-pyrimethamine (SP monotherapy as a first-line anti-malarial from mid-2001 through 2002. In 2003, the ACT, artesunate (AS co-administered with SP (AS + SP, was introduced in all fixed health facilities in the intervention site, including both public and registered non-governmental facilities. Population-level prevalence of Plasmodium falciparum asexual parasitaemia and gametocytaemia were assessed using light microscopy from samples collected during representative household surveys in 2001, 2002, 2004, 2005 and 2006. Findings Among 37,309 observations included in the analysis, annual asexual parasitaemia prevalence in persons of all ages ranged from 11% to 28% and gametocytaemia prevalence ranged from Interpretation The introduction of ACT at

  15. Towards clinical development of a Pfs48/45-based transmission blocking malaria vaccine

    NARCIS (Netherlands)

    Theisen, M.; Jore, M.M.; Sauerwein, R.

    2017-01-01

    INTRODUCTION: Malaria is a devastating vector-borne disease caused by the Plasmodium parasite, resulting in almost 0.5 million casualties per year. The parasite has a complex life-cycle that includes asexual replication in human red blood cells, causing symptomatic malaria, and sexual stages which

  16. Field evaluation of a push-pull system to reduce malaria transmission.

    Directory of Open Access Journals (Sweden)

    David J Menger

    Full Text Available Malaria continues to place a disease burden on millions of people throughout the tropics, especially in sub-Saharan Africa. Although efforts to control mosquito populations and reduce human-vector contact, such as long-lasting insecticidal nets and indoor residual spraying, have led to significant decreases in malaria incidence, further progress is now threatened by the widespread development of physiological and behavioural insecticide-resistance as well as changes in the composition of vector populations. A mosquito-directed push-pull system based on the simultaneous use of attractive and repellent volatiles offers a complementary tool to existing vector-control methods. In this study, the combination of a trap baited with a five-compound attractant and a strip of net-fabric impregnated with micro-encapsulated repellent and placed in the eaves of houses, was tested in a malaria-endemic village in western Kenya. Using the repellent delta-undecalactone, mosquito house entry was reduced by more than 50%, while the traps caught high numbers of outdoor flying mosquitoes. Model simulations predict that, assuming area-wide coverage, the addition of such a push-pull system to existing prevention efforts will result in up to 20-fold reductions in the entomological inoculation rate. Reductions of such magnitude are also predicted when mosquitoes exhibit a high resistance against insecticides. We conclude that a push-pull system based on non-toxic volatiles provides an important addition to existing strategies for malaria prevention.

  17. Malaria and anaemia among pregnant women at first antenatal clinic visit in Kisumu, western Kenya

    NARCIS (Netherlands)

    Ouma, Peter; van Eijk, Anna M.; Hamel, Mary J.; Parise, Monica; Ayisi, John G.; Otieno, Kephas; Kager, Piet A.; Slutsker, Laurence

    2007-01-01

    OBJECTIVE: To determine the prevalence of malaria and anaemia among urban and peri-urban women attending their first antenatal clinic (ANC) in an area of perennial malaria transmission. METHODS: Between November 2003 and May 2004 we screened first ANC attenders for malaria and anaemia in a large

  18. Global warming and the problem of malaria in Armenia

    International Nuclear Information System (INIS)

    Keshishyan, A.Sh.; Manukyan, D.V.; Melik-Andreasyan, G.G.; Aleksanyan, Yu.T.; Melkonyan, G.A.; Hovhannisyan, D.M.

    2012-01-01

    The presented in the paper data suggest that air temperature in Armenia is expected to increase both in seasonal and annual terms. In result of the marked increase in temperature, susceptibility of the territories of Armenia towards malaria is expected to increase significantly. Zoning of the territory of Armenia according to the risk of malaria transmission resumption has been performed

  19. Comparison of Malaria Simulations Driven by Meteorological Observations and Reanalysis Products in Senegal

    Directory of Open Access Journals (Sweden)

    Ibrahima Diouf

    2017-09-01

    Full Text Available The analysis of the spatial and temporal variability of climate parameters is crucial to study the impact of climate-sensitive vector-borne diseases such as malaria. The use of malaria models is an alternative way of producing potential malaria historical data for Senegal due to the lack of reliable observations for malaria outbreaks over a long time period. Consequently, here we use the Liverpool Malaria Model (LMM, driven by different climatic datasets, in order to study and validate simulated malaria parameters over Senegal. The findings confirm that the risk of malaria transmission is mainly linked to climate variables such as rainfall and temperature as well as specific landscape characteristics. For the whole of Senegal, a lag of two months is generally observed between the peak of rainfall in August and the maximum number of reported malaria cases in October. The malaria transmission season usually takes place from September to November, corresponding to the second peak of temperature occurring in October. Observed malaria data from the Programme National de Lutte contre le Paludisme (PNLP, National Malaria control Programme in Senegal and outputs from the meteorological data used in this study were compared. The malaria model outputs present some consistencies with observed malaria dynamics over Senegal, and further allow the exploration of simulations performed with reanalysis data sets over a longer time period. The simulated malaria risk significantly decreased during the 1970s and 1980s over Senegal. This result is consistent with the observed decrease of malaria vectors and malaria cases reported by field entomologists and clinicians in the literature. The main differences between model outputs and observations regard amplitude, but can be related not only to reanalysis deficiencies but also to other environmental and socio-economic factors that are not included in this mechanistic malaria model framework. The present study can be

  20. Comparison of Malaria Simulations Driven by Meteorological Observations and Reanalysis Products in Senegal.

    Science.gov (United States)

    Diouf, Ibrahima; Rodriguez-Fonseca, Belen; Deme, Abdoulaye; Caminade, Cyril; Morse, Andrew P; Cisse, Moustapha; Sy, Ibrahima; Dia, Ibrahima; Ermert, Volker; Ndione, Jacques-André; Gaye, Amadou Thierno

    2017-09-25

    The analysis of the spatial and temporal variability of climate parameters is crucial to study the impact of climate-sensitive vector-borne diseases such as malaria. The use of malaria models is an alternative way of producing potential malaria historical data for Senegal due to the lack of reliable observations for malaria outbreaks over a long time period. Consequently, here we use the Liverpool Malaria Model (LMM), driven by different climatic datasets, in order to study and validate simulated malaria parameters over Senegal. The findings confirm that the risk of malaria transmission is mainly linked to climate variables such as rainfall and temperature as well as specific landscape characteristics. For the whole of Senegal, a lag of two months is generally observed between the peak of rainfall in August and the maximum number of reported malaria cases in October. The malaria transmission season usually takes place from September to November, corresponding to the second peak of temperature occurring in October. Observed malaria data from the Programme National de Lutte contre le Paludisme (PNLP, National Malaria control Programme in Senegal) and outputs from the meteorological data used in this study were compared. The malaria model outputs present some consistencies with observed malaria dynamics over Senegal, and further allow the exploration of simulations performed with reanalysis data sets over a longer time period. The simulated malaria risk significantly decreased during the 1970s and 1980s over Senegal. This result is consistent with the observed decrease of malaria vectors and malaria cases reported by field entomologists and clinicians in the literature. The main differences between model outputs and observations regard amplitude, but can be related not only to reanalysis deficiencies but also to other environmental and socio-economic factors that are not included in this mechanistic malaria model framework. The present study can be considered as a

  1. Anopheles Vectors in Mainland China While Approaching Malaria Elimination.

    Science.gov (United States)

    Zhang, Shaosen; Guo, Shaohua; Feng, Xinyu; Afelt, Aneta; Frutos, Roger; Zhou, Shuisen; Manguin, Sylvie

    2017-11-01

    China is approaching malaria elimination; however, well-documented information on malaria vectors is still missing, which could hinder the development of appropriate surveillance strategies and WHO certification. This review summarizes the nationwide distribution of malaria vectors, their bionomic characteristics, control measures, and related studies. After several years of effort, the area of distribution of the principal malaria vectors was reduced, in particular for Anopheles lesteri (synonym: An. anthropophagus) and Anopheles dirus s.l., which nearly disappeared from their former endemic regions. Anopheles sinensis is becoming the predominant species in southwestern China. The bionomic characteristics of these species have changed, and resistance to insecticides was reported. There is a need to update surveillance tools and investigate the role of secondary vectors in malaria transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Feasibility and roadmap analysis for malaria elimination in China.

    Science.gov (United States)

    Zhou, Xiao-Nong; Xia, Zhi-Gui; Wang, Ru-Bo; Qian, Ying-Jun; Zhou, Shui-Sen; Utzinger, Jürg; Tanner, Marcel; Kramer, Randall; Yang, Wei-Zhong

    2014-01-01

    To understand the current status of the malaria control programme at the county level in accordance with the criteria of the World Health Organisation, the gaps and feasibility of malaria elimination at the county and national levels were analysed based on three kinds of indicators: transmission capacity, capacity of the professional team, and the intensity of intervention. Finally, a roadmap for national malaria elimination in the People's Republic of China is proposed based on the results of a feasibility assessment at the national level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Diagnostic and prognostic utility of an inexpensive rapid on site malaria diagnostic test (ParaHIT f) among ethnic tribal population in areas of high, low and no transmission in central India

    Science.gov (United States)

    Singh, Neeru; Mishra, AK; Shukla, MM; Chand, SK; Bharti, Praveen Kumar

    2005-01-01

    Background Malaria presents a diagnostic challenge in most tropical countries. Rapid detection of the malaria parasite and early treatment of infection still remain the most important goals of disease management. Therefore, performance characteristics of the new indigenous ParaHIT f test (Span diagnostic Ltd, Surat, India) was determined among ethnic tribal population in four districts of different transmission potential in central India to assess whether this rapid diagnostic test (RDT) could be widely applied as a diagnostic tool to control malaria. Beyond diagnosis, the logical utilization of RDTs is to monitor treatment outcome. Methods A finger prick blood sample was collected from each clinically suspected case of malaria to prepare blood smear and for testing with the RDT after taking informed consent. The blood smears were read by an experienced technician blinded to the RDT results and clinical status of the subjects. The figures for specificity, sensitivity, accuracy and predictive values were calculated using microscopy as gold standard. Results The prevalence of malaria infection estimated by RDT in parallel with microscopy provide evidence of the type of high, low or no transmission in the study area. Analysis revealed (pooled data of all four epidemiological settings) that overall sensitivity, specificity and accuracy of the RDT were >90% in areas of different endemicity. While, RDT is useful to confirm the diagnosis of new symptomatic cases of suspected P. falciparum infection, the persistence of parasite antigen leading to false positives even after clearance of asexual parasitaemia has limited its utility as a prognostic tool. Conclusion The study showed that the ParaHIT f test was easy to use, reliable and cheap. Thus this RDT is an appropriate test for the use in the field by paramedical staff when laboratory facilities are not available and thus likely to contribute greatly to an effective control of malaria in resource poor countries. PMID

  4. Malaria's Missing Number: Calculating the Human Component of R0 by a Within-Host Mechanistic Model of Plasmodium falciparum Infection and Transmission

    OpenAIRE

    Johnston, Geoffrey L.; Smith, David L.; Fidock, David A.

    2013-01-01

    Human infection by malarial parasites of the genus Plasmodium begins with the bite of an infected Anopheles mosquito. Current estimates place malaria mortality at over 650,000 individuals each year, mostly in African children. Efforts to reduce disease burden can benefit from the development of mathematical models of disease transmission. To date, however, comprehensive modeling of the parameters defining human infectivity to mosquitoes has remained elusive. Here, we describe a mechanistic wi...

  5. The comparison of detection methods of asymptomatic malaria in hypoendemic areas

    Science.gov (United States)

    Siahaan, L.; Panggabean, M.; Panggabean, Y. C.

    2018-03-01

    Malaria is still a problem that disrupts public health in North Sumatera. Late diagnosis will increase the chances of increased morbidity and mortality due to malaria. The early detection of asymptomatic malaria is one of the best efforts to reduce the transmission of the disease. Early detection is certainly must be done on suspect patients who have no malaria complaints. Passive Case Detection (PCD) methods seem hard to find asymptomatic malaria. This study was conducted to compare ACD (Active Case Detection) and PCD methods in asymptomatic malaria detection in the hypoendemic areas of malaria. ACD method is done by going to the sample based on secondary data. Meanwhile, PCD is done on samples that come to health services. Samples were taken randomly and diagnosis was confirmed by microscopic examination with 3% Giemsa staining, as gold standard of malaria diagnostics. There was a significant difference between ACD and PCD detection methods (p = 0.034), where ACD method was seen superior in detecting malaria patients in all categories, such as: clinical malaria (65.2%), asymptomatic malaria (65.1%) and submicroscopic malaria (58.5%). ACD detection methods are superior in detecting malaria sufferers, especially asymptomatic malaria sufferers.

  6. Aggressive active case detection: a malaria control strategy based on the Brazilian model.

    Science.gov (United States)

    Macauley, Cameron

    2005-02-01

    Since 1996, the Brazilian Ministry of Health has adopted a malaria control strategy known as aggressive active case detection (AACD) in which most or all members of every community are tested and treated for malaria on a monthly basis. The strategy attempts to identify and treat cases of asymptomatic malaria, which, if untreated, continue to transmit the infection. Malaria remains uncontrolled because almost all health care systems in the world rely on passive case detection: the treatment of only symptomatic cases of malaria. Research has shown conclusively that asymptomatic cases exist in any population where malaria transmission is stable and incidence is high: therefore passive case detection simply will not succeed in breaking the cycle of transmission. Numerous case studies show that malaria has been successfully controlled on a regional or national level by mass blood surveys. AACD is an effective malaria control strategy if used in conjunction with other methods, especially when (1) an effective treatment exists, (2) influx of potential carriers of the infection can be monitored, and (3) people are inclined to cooperate with monthly blood testing. AACD requires access to rapid diagnostic tests (RDTs), microscopy supplies, extensive human resources, and prompt, affordable, and effective treatment. AACD is compared to PCD in terms of clinical efficacy and cost effectiveness in a case study of malaria in the Brazilian Yanomami Indians. Where it is feasible, AACD could drastically reduce the incidence of malaria and should be an integral part of the World Health Organization's Roll Back Malaria strategy.

  7. Elimination of Plasmodium falciparum malaria in Tajikistan.

    Science.gov (United States)

    Kondrashin, Anatoly V; Sharipov, Azizullo S; Kadamov, Dilshod S; Karimov, Saifuddin S; Gasimov, Elkhan; Baranova, Alla M; Morozova, Lola F; Stepanova, Ekaterina V; Turbabina, Natalia A; Maksimova, Maria S; Morozov, Evgeny N

    2017-05-30

    Malaria was eliminated in Tajikistan by the beginning of the 1960s. However, sporadic introduced cases of malaria occurred subsequently probably as a result of transmission from infected mosquito Anopheles flying over river the Punj from the border areas of Afghanistan. During the 1970s and 1980s local outbreaks of malaria were reported in the southern districts bordering Afghanistan. The malaria situation dramatically changed during the 1990s following armed conflict and civil unrest in the newly independent Tajikistan, which paralyzed health services including the malaria control activities and a large-scale malaria epidemic occurred with more than 400,000 malaria cases. The malaria epidemic was contained by 1999 as a result of considerable financial input from the Government and the international community. Although Plasmodium falciparum constituted only about 5% of total malaria cases, reduction of its incidence was slower than that of Plasmodium vivax. To prevent increase in P. falciparum malaria both in terms of incidence and territory, a P. falciparum elimination programme in the Republic was launched in 200, jointly supported by the Government and the Global Fund for control of AIDS, tuberculosis and malaria. The main activities included the use of pyrethroids for the IRS with determined periodicity, deployment of mosquito nets, impregnated with insecticides, use of larvivorous fishes as a biological larvicide, implementation of small-scale environmental management, and use of personal protection methods by population under malaria risk. The malaria surveillance system was strengthened by the use of ACD, PCD, RCD and selective use of mass blood surveys. All detected cases were timely epidemiologically investigated and treated based on the results of laboratory diagnosis. As a result, by 2009, P. falciparum malaria was eliminated from all of Tajikistan, one year ahead of the originally targeted date. Elimination of P. falciparum also contributed towards

  8. Socio-demographic factors influencing knowledge, attitude and practice (KAP) regarding malaria in Bangladesh.

    Science.gov (United States)

    Bashar, Kabirul; Al-Amin, H M; Reza, Md Selim; Islam, Muzahidul; Asaduzzaman; Ahmed, Touhid Uddin

    2012-12-18

    A clear understanding of the social and behavioral risk factors, and knowledge gaps, related to exposure to malaria are essential when developing guidelines and recommendations for more effective disease prevention in many malaria endemic areas of the world including Bangladesh and elsewhere in the South East Asia. To-date, the level of knowledge that human populations, residing in moderate to high malaria risk zones, have with respect to the basic pathogen transmission dynamics, risk factors for malaria or disease preventative strategies, has not been assessed in Bangladesh. The purpose of this study was to address this gap by conducting surveys of the knowledge, attitudes and practices (KAP) of people, from variable socio-demographic backgrounds, residing in selected rural malaria endemic areas in Bangladesh. The KAP survey was conducted in portions of six different malaria endemic districts in Bangladesh from July to October 2011. The survey consisted of interviewing residence of these malaria endemic districts using a structured questionnaire and interviewers also completed observational checklists at each household where people were interviewed. The study area was further divided into two zones (1 and 2) based on differences in the physical geography and level of malaria endemicity in the two zones. Data from the questionnaires and observational checklists were analysised using Statistical Package for Social Sciences 16.0 (SPSS, Inc., Chicago, IL, USA). A total of 468 individuals from individual households were interviewed, and most respondents were female. Monthly incomes varied within and among the zones. It was found that 46.4% and 41% of respondents' family had malaria within the past one year in zones 1 and 2, respectively. Nearly 86% of the respondents did not know the exact cause of malaria or the role of Anopheles mosquitoes in the pathogen's transmission. Knowledge on malaria transmission and symptoms of the respondents of zones 1 and 2 were

  9. Management of uncomplicated malaria in febrile under five-year-old children by community health workers in Madagascar: reliability of malaria rapid diagnostic tests

    Directory of Open Access Journals (Sweden)

    Ratsimbasoa Arsène

    2012-03-01

    Full Text Available Abstract Background Early diagnosis, as well as prompt and effective treatment of uncomplicated malaria, are essential components of the anti-malaria strategy in Madagascar to prevent severe malaria, reduce mortality and limit malaria transmission. The purpose of this study was to assess the performance of the malaria rapid diagnostic tests (RDTs used by community health workers (CHWs by comparing RDT results with two reference methods (microscopy and Polymerase Chain Reaction, PCR. Methods Eight CHWs in two districts, each with a different level of endemic malaria transmission, were trained to use RDTs in the management of febrile children under five years of age. RDTs were performed by CHWs in all febrile children who consulted for fever. In parallel, retrospective parasitological diagnoses were made by microscopy and PCR. The results of these different diagnostic methods were analysed to evaluate the diagnostic performance of the RDTs administered by the CHWs. The stability of the RDTs stored by CHWs was also evaluated. Results Among 190 febrile children with suspected malaria who visited CHWs between February 2009 and February 2010, 89.5% were found to be positive for malaria parasites by PCR, 51.6% were positive by microscopy and 55.8% were positive by RDT. The performance accuracy of the RDTs used by CHWs in terms of sensitivity, specificity, positive and negative predictive values was greater than 85%. Concordance between microscopy and RDT, estimated by the Kappa value was 0.83 (95% CI: 0.75-0.91. RDTs stored by CHWs for 24 months were capable of detecting Plasmodium falciparum in blood at a level of 200 parasites/μl. Conclusion Introduction of easy-to-use diagnostic tools, such as RDTs, at the community level appears to be an effective strategy for improving febrile patient management and for reducing excessive use of anti-malarial drugs.

  10. Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique.

    Science.gov (United States)

    Ferrão, João Luís; Mendes, Jorge M; Painho, Marco

    2017-05-25

    Mozambique was recently ranked fifth in the African continent for the number of cases of malaria. In Chimoio municipality cases of malaria are increasing annually, contrary to the decreasing trend in Africa. As malaria transmission is influenced to a large extent by climatic conditions, modelling this relationship can provide useful insights for designing precision health measures for malaria control. There is a scarcity of information on the association between climatic variability and malaria transmission risk in Mozambique in general, and in Chimoio in particular. Therefore, the aim of this study is to model the association between climatic variables and malaria cases on a weekly basis, to help policy makers find adequate measures for malaria control and eradication. Time series analysis was conducted using data on weekly climatic variables and weekly malaria cases (counts) in Chimoio municipality, from 2006 to 2014. All data were analysed using SPSS-20, R 3.3.2 and BioEstat 5.0. Cross-correlation analysis, linear processes, namely ARIMA models and regression modelling, were used to develop the final model. Between 2006 and 2014, 490,561 cases of malaria were recorded in Chimoio. Both malaria and climatic data exhibit weekly and yearly systematic fluctuations. Cross-correlation analysis showed that mean temperature and precipitation present significantly lagged correlations with malaria cases. An ARIMA model (2,1,0) (2,1,1) 52 , and a regression model for a Box-Cox transformed number of malaria cases with lags 1, 2 and 3 of weekly malaria cases and lags 6 and 7 of weekly mean temperature and lags 12 of precipitation were fitted. Although, both produced similar widths for prediction intervals, the last was able to anticipate malaria outbreak more accurately. The Chimoio climate seems ideal for malaria occurrence. Malaria occurrence peaks during January to March in Chimoio. As the lag effect between climatic events and malaria occurrence is important for the

  11. Endothelial glycocalyx on brain endothelial cells is lost in experimental cerebral malaria

    DEFF Research Database (Denmark)

    Hempel, Casper; Hyttel, Poul; Kurtzhals, Jørgen Al

    2014-01-01

    We hypothesized that the glycocalyx, which is important for endothelial integrity, is lost in severe malaria. C57BL/6 mice were infected with Plasmodium berghei ANKA, resulting in cerebral malaria, or P. chabaudi AS, resulting in uncomplicated malaria. We visualized the glycocalyx with transmission...... electron microscopy and measured circulating glycosaminoglycans by dot blot and ELISA. The glycocalyx was degraded in brain vasculature in cerebral and to a lesser degree uncomplicated malaria. It was affected on both intact and apoptotic endothelial cells. Circulating glycosaminoglycan levels suggested...

  12. Attitudes to malaria, prevention, treatment and management ...

    African Journals Online (AJOL)

    SERVER

    2007-11-05

    Nov 5, 2007 ... consequences of malaria treatment pattern and management strategies in an urban center. Questionnaires were issued ... anopheles mosquitoes as malaria vector are some of the factors militating against prevention and proper management of the .... bush clearing, drainage and gutter control in preventing.

  13. Hidden burden of malaria in Indian women

    Directory of Open Access Journals (Sweden)

    Sharma Vinod P

    2009-12-01

    Full Text Available Abstract Malaria is endemic in India with an estimated 70-100 million cases each year (1.6-1.8 million reported by NVBDCP; of this 50-55% are Plasmodium vivax and 45-50% Plasmodium falciparum. A recent study on malaria in pregnancy reported from undivided Madhya Pradesh state (includes Chhattisgarh state, that an estimated over 220,000 pregnant women contract malaria infection each year. Malaria in pregnancy caused- abortions 34.5%; stillbirths 9%; and maternal deaths 0.45%. Bulk of this tragic outcome can be averted by following the Roll Back Malaria/WHO recommendations of the use of malaria prevention i.e. indoor residual spraying (IRS/insecticide-treated bed nets (ITN preferably long-lasting treated bed nets (LLIN; intermittent preventive therapy (IPT; early diagnosis, prompt and complete treatment using microscopic/malaria rapid diagnostics test (RDT and case management. High incidence in pregnancy has arisen because of malaria surveillance lacking coverage, lack of age and sex wise data, staff shortages, and intermittent preventive treatment (IPT applicable in high transmission states/pockets is not included in the national drug policy- an essential component of fighting malaria in pregnancy in African settings. Inadequate surveillance and gross under-reporting has been highlighted time and again for over three decades. As a result the huge problem of malaria in pregnancy reported occasionally by researchers has remained hidden. Malaria in pregnancy may quicken severity in patients with drug resistant parasites, anaemia, endemic poverty, and malnutrition. There is, therefore, urgent need to streamline malaria control strategies to make a difference in tackling this grim scenario in human health.

  14. Nationwide genetic surveillance of Plasmodium vivax in Papua New Guinea reveals heterogeneous transmission dynamics and routes of migration amongst subdivided populations.

    Science.gov (United States)

    Fola, Abebe A; Nate, Elma; Abby Harrison, G L; Barnadas, Céline; Hetzel, Manuel W; Iga, Jonah; Siba, Peter; Mueller, Ivo; Barry, Alyssa E

    2018-03-01

    The Asia Pacific Leaders in Malaria Alliance (APLMA) have committed to eliminate malaria from the region by 2030. Papua New Guinea (PNG) has the highest malaria burden in the Asia-Pacific region but with the intensification of control efforts since 2005, transmission has been dramatically reduced and Plasmodium vivax is now the dominant malaria infection in some parts of the country. To gain a better understanding of the transmission dynamics and migration patterns of P. vivax in PNG, here we investigate population structure in eight geographically and ecologically distinct regions of the country. A total of 219 P. vivax isolates (16-30 per population) were successfully haplotyped using 10 microsatellite markers. A wide range of genetic diversity (H e =0.37-0.87, R s =3.60-7.58) and significant multilocus linkage disequilibrium (LD) was observed in six of the eight populations (I A S =0.08-0.15 p-value<0.05) reflecting a spectrum of transmission intensities across the country. Genetic differentiation between regions was evident (Jost's D=0.07-0.72), with increasing divergence of populations with geographic distance. Overall, P. vivax isolates clustered into three major genetic populations subdividing the Mainland lowland and coastal regions, the Islands and the Highlands. P. vivax gene flow follows major human migration routes, and there was higher gene flow amongst Mainland parasite populations than among Island populations. The Central Province (samples collected in villages close to the capital city, Port Moresby), acts as a sink for imported infections from the three major endemic areas. These insights into P. vivax transmission dynamics and population networks will inform targeted strategies to contain malaria infections and to prevent the spread of drug resistance in PNG. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Control of malaria in the Comoro Islands over the past century.

    Science.gov (United States)

    Chakir, Ismaël; Said, Ali Ibrahim; Affane, Bacar; Jambou, Ronan

    2017-09-26

    The Comoros are an archipelago located in the Indian Ocean between the eastern coasts of Africa and north of Madagascar. Malaria transmission appeared late in the 19th century due to the intensification of human migration. The story of malaria transmission for the past century is depicted to provide useful lessons for the future. Currently, malaria transmission occurs differently on each island; thus, control strategies must be adapted for each particular island. Tentative malaria control in Comoros has a long history of success and failure. This study reviews the data available as a basis for recommendations for the future. There has been much effort to reach a pre-eradication state in Anjouan and Moheli, but only control steps have been taken in the Great Comoro. To date, the primary strategy used is mass treatment of the population using artemisinin-based combination therapy (ACT), which is similar to the strategy deployed during the 1950s in other countries. ACT appears efficient in two of the three islands; however, the sustainability of the strategy is unknown. This sustainability is compromised by (i) the huge level of uncontrolled exchange between the Comoro Islands and their neighbours, increasing the risk of introducing ACT-resistant strains, (ii) the use of large quantities of pesticides for agriculture usually associated with the resistance of mosquitoes, and (iii) the cost of the actions themselves. In view of the history of malaria in this area, the first recommendation is to enhance the training of health workers and the population. The second step is to establish a national strategy to assess malaria and related factors, which is currently lacking. A survey to assess the drug sensitivity of the parasites is particularly important in a context of low transmission associated with mass treatment of the population. The last point should be to secure financial support, which is not obvious in a context of pre-elimination. The Comoro Islands are thus a

  16. Lousy mums: patterns of vertical transmission of an amphibious louse.

    Science.gov (United States)

    Leonardi, M S; Crespo, E A; Raga, J A; Aznar, F J

    2013-09-01

    In this study, we document patterns of vertical transmission of the amphibious louse Antarctophthirus microchir (Echinophthiriidae) in pups of South American sea lion, Otaria flavescens, from Patagonia. Vertical transmission is fundamental for the long-term stability of A. microchir populations because only pups stay long enough (1 month) on land for the louse to reproduce. A total of 72 pups ≤7 days old from a single rookery were captured and examined for lice. Infection parameters and population structure of A. microchir did not differ among pups collected at the beginning, middle, and end of the reproductive season, suggesting that patterns of early vertical transmission are not affected by the increase of rookery size during this period. Over 60% of 1-day-old pups were infected with A. microchir, and recruitment increased in pups up to 3 days old and then leveled off. In 1-day-old pups, significantly more adults than nymphs were found, but the pattern was reversed in older pups. The number of first-stage nymphs was significantly smaller than that of second- and third-stage nymphs, as it was the number of males vs. females, particularly in 1-day-old pups. Three non-exclusive hypotheses could account for these patterns, i.e., recruitment merely reflects the population structure of A. microchir is cows; the relative ability of lice to pass from cows onto pups increases in advanced instars; and/or natural selection favors transmission of adults, especially females, because they accrue greater fitness. The importance of latter hypothesis should not be underestimated in a species with a tight reproductive schedule.

  17. Naturally acquired antibody responses to recombinant Pfs230 and Pfs48/45 transmission blocking vaccine candidates

    DEFF Research Database (Denmark)

    Jones, Sophie; Grignard, Lynn; Nebie, Issa

    2015-01-01

    for the future evaluation of vaccine immunogenicity and efficacy in populations naturally exposed to malaria. METHODS: We determined naturally acquired antibody responses to the recombinant proteins Pfs48/45-10C and Pfs230-230CMB in children from three malaria endemic settings in Ghana, Tanzania and Burkina Faso......OBJECTIVES: Pfs48/45 and Pfs230 are Plasmodium falciparum sexual stage proteins and promising malaria transmission-blocking vaccine candidates. Antibody responses against these proteins may be naturally acquired and target antigens may be under selective pressure. This has consequences....... We also examined genetic polymorphisms in the P. falciparum gene pfs48/45. RESULTS: Antibody prevalence was 1.1-18.2% for 10C and 6.7-18.9% for 230CMB. In Burkina Faso we observed evidence of an age-dependent acquisition pattern for both 10C (p assays...

  18. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting

    Directory of Open Access Journals (Sweden)

    Harris Ivor

    2010-09-01

    Full Text Available Abstract Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR and rapid diagnostic tests (RDTs. The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%, indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162 compared to P. falciparum (36/118. The malaria RDT detected the 12 microscopy and

  19. Prevalence and risk factors for Plasmodium falciparum malaria in pregnant women of eastern Sudan

    Directory of Open Access Journals (Sweden)

    Khamis Amar H

    2005-04-01

    Full Text Available Abstract Background Pregnant women are more susceptible to malaria, which is associated with serious adverse effects on pregnancy. The presentation of malaria during pregnancy varies according to the level of transmission in the area. Our study aimed to demonstrate the prevalence and risk factors for malaria (age, parity and gestational age among pregnant women of eastern Sudan, which is characterized by unstable malaria transmission. Methods The prevalence and possible risk factors for Plasmodium falciparum malaria were investigated in 744 pregnant Sudanese women attending the antenatal clinic of New Haifa Teaching Hospital, eastern Sudan, during October 2003-April 2004. Results A total 102 (13.7% had P. falciparum malaria, 18(17.6% of these were severe cases (jaundice and severe anaemia. Univariate and multivariate analysis showed that, age and parity were not associated with malaria. Women who attended the antenatal clinic in the third trimester were at highest risk for malaria (OR = 1.58, 95% CI = 1.02–2.4; P Women with malaria had significantly lower mean haemoglobin (9.4 g/dl, 95% CI 9.1–9.7 versus 10.7, CI 10.6–10.8, P Conclusion The results suggest that P. falciparum malaria is common in pregnant women attending antenatal care and that anaemia is an important complication. Preventive measures (chemoprophylaxis and insecticide-treated bednets may be beneficial in this area for all women irrespective of age or parity.

  20. Over-diagnosis of malaria is not a lost cause

    Directory of Open Access Journals (Sweden)

    Chandramohan Daniel

    2006-12-01

    Full Text Available Abstract Background Recent studies have highlighted the over-diagnosis of malaria in clinical settings in Africa. This study assessed the impact of a training programme implemented as part of an intervention trial on diagnostic behaviour of clinicians in a rural district hospital in a low-moderate malaria transmission setting. Methods From the beginning of 2005, a randomized controlled trial (RCT of intermittent preventive treatment for malaria in infants (IPTi has been conducted at the study hospital. As part of the RCT, the study team offered laboratory quality assurance, and supervision and training of paediatric ward staff using information on malaria epidemiology in the community. Data on clinical and blood slide confirmed cases of malaria from 2001 to 2005 were extracted from the hospital records. Results The proportion of blood slides positive for malaria parasites had decreased from 21% in 2001 to 7% in 2005 (p Conclusion It may be possible to change the diagnostic behaviour of clinicians by rigorous training using local malaria epidemiology data and supportive supervision.

  1. Evaluating malaria case management at public health facilities in two provinces in Angola.

    Science.gov (United States)

    Plucinski, Mateusz M; Ferreira, Manzambi; Ferreira, Carolina Miguel; Burns, Jordan; Gaparayi, Patrick; João, Lubaki; da Costa, Olinda; Gill, Parambir; Samutondo, Claudete; Quivinja, Joltim; Mbounga, Eliane; de León, Gabriel Ponce; Halsey, Eric S; Dimbu, Pedro Rafael; Fortes, Filomeno

    2017-05-03

    Malaria accounts for the largest portion of healthcare demand in Angola. A pillar of malaria control in Angola is the appropriate management of malaria illness, including testing of suspect cases with rapid diagnostic tests (RDTs) and treatment of confirmed cases with artemisinin-based combination therapy (ACT). Periodic systematic evaluations of malaria case management are recommended to measure health facility readiness and adherence to national case management guidelines. Cross-sectional health facility surveys were performed in low-transmission Huambo and high-transmission Uíge Provinces in early 2016. In each province, 45 health facilities were randomly selected from among all public health facilities stratified by level of care. Survey teams performed inventories of malaria commodities and conducted exit interviews and re-examinations, including RDT testing, of a random selection of all patients completing outpatient consultations. Key health facility readiness and case management indicators were calculated adjusting for the cluster sampling design and utilization. Availability of RDTs or microscopy on the day of the survey was 71% (54-83) in Huambo and 85% (67-94) in Uíge. At least one unit dose pack of one formulation of an ACT (usually artemether-lumefantrine) was available in 83% (66-92) of health facilities in Huambo and 79% (61-90) of health facilities in Uíge. Testing rates of suspect malaria cases in Huambo were 30% (23-38) versus 69% (53-81) in Uíge. Overall, 28% (13-49) of patients with uncomplicated malaria, as determined during the re-examination, were appropriately treated with an ACT with the correct dose in Huambo, compared to 60% (42-75) in Uíge. Incorrect case management of suspect malaria cases was associated with lack of healthcare worker training in Huambo and ACT stock-outs in Uíge. The results reveal important differences between provinces. Despite similar availability of testing and ACT, testing and treatment rates were lower in

  2. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study.

    Directory of Open Access Journals (Sweden)

    Stephanie Dellicour

    2010-01-01

    Full Text Available Comprehensive and contemporary estimates of the number of pregnancies at risk of malaria are not currently available, particularly for endemic areas outside of Africa. We derived global estimates of the number of women who became pregnant in 2007 in areas with Plasmodium falciparum and P. vivax transmission.A recently published map of the global limits of P. falciparum transmission and an updated map of the limits of P. vivax transmission were combined with gridded population data and growth rates to estimate total populations at risk of malaria in 2007. Country-specific demographic data from the United Nations on age, sex, and total fertility rates were used to estimate the number of women of child-bearing age and the annual rate of live births. Subregional estimates of the number of induced abortions and country-specific stillbirths rates were obtained from recently published reviews. The number of miscarriages was estimated from the number of live births and corrected for induced abortion rates. The number of clinically recognised pregnancies at risk was then calculated as the sum of the number of live births, induced abortions, spontaneous miscarriages, and stillbirths among the population at risk in 2007. In 2007, 125.2 million pregnancies occurred in areas with P. falciparum and/or P. vivax transmission resulting in 82.6 million live births. This included 77.4, 30.3, 13.1, and 4.3 million pregnancies in the countries falling under the World Health Organization (WHO regional offices for South-East-Asia (SEARO and the Western-Pacific (WPRO combined, Africa (AFRO, Europe and the Eastern Mediterranean (EURO/EMRO, and the Americas (AMRO, respectively. Of 85.3 million pregnancies in areas with P. falciparum transmission, 54.7 million occurred in areas with stable transmission and 30.6 million in areas with unstable transmission (clinical incidence <1 per 10,000 population/year; 92.9 million occurred in areas with P. vivax transmission, 53

  3. African Burkitt lymphoma: age-specific risk and correlations with malaria biomarkers.

    Science.gov (United States)

    Emmanuel, Benjamin; Kawira, Esther; Ogwang, Martin D; Wabinga, Henry; Magatti, Josiah; Nkrumah, Francis; Neequaye, Janet; Bhatia, Kishor; Brubaker, Glen; Biggar, Robert J; Mbulaiteye, Sam M

    2011-03-01

    African Burkitt lymphoma is an aggressive B-cell, non-Hodgkin lymphoma linked to Plasmodium falciparum malaria. Malaria biomarkers related to onset of African Burkitt lymphoma are unknown. We correlated age-specific patterns of 2,602 cases of African Burkitt lymphoma (60% male, mean ± SD age = 7.1 ± 2.9 years) from Uganda, Ghana, and Tanzania with malaria biomarkers published from these countries. Age-specific patterns of this disease and mean multiplicity of P. falciparum malaria parasites, defined as the average number of distinct genotypes per positive blood sample based on the merozoite surface protein-2 assessed by polymerase chain reaction, were correlated and both peaked between 5 and 9 years. This pattern, which was strong and consistent across regions, contrasted parasite prevalence, which peaked at 2 years and decreased slightly, and geometric mean parasite density, which peaked between 2 and 3 years and decreased sharply. Our findings suggest that concurrent infection with multiple malaria genotypes may be related to onset of African Burkitt lymphoma.

  4. Pregnancy malaria: cryptic disease, apparent solution

    Directory of Open Access Journals (Sweden)

    Patrick Emmet Duffy

    2011-08-01

    Full Text Available Malaria during pregnancy can be severe in non-immune women, but in areas of stable transmission, where women are semi-immune and often asymptomatic during infection, malaria is an insidious cause of disease and death for mothers and their offspring. Sequelae, such as severe anaemia and hypertension in the mother and low birth weight and infant mortality in the offspring, are often not recognised as consequences of infection. Pregnancy malaria, caused by Plasmodium falciparum, is mediated by infected erythrocytes (IEs that bind to chondroitin sulphate A and are sequestered in the placenta. These parasites have a unique adhesion phenotype and distinct antigenicity, which indicates that novel targets may be required for development of an effective vaccine. Women become resistant to malaria as they acquire antibodies against placental IE, which leads to higher haemoglobin levels and heavier babies. Proteins exported from the placental parasites have been identified, including both variant and conserved antigens, and some of these are in preclinical development for vaccines. A vaccine that prevents P. falciparum malaria in pregnant mothers is feasible and would potentially save hundreds of thousands of lives each year.

  5. The endemicity of dracunculiasis, transmission pattern and ecology ...

    African Journals Online (AJOL)

    Studies on the endemicity of dracunculiasis, it's transmission pattern and ecology of cyclopoid copepods in Ezza North Local Government Area of Ebonyi State Nigeria were carried out between January and December 2001. Of the 2226 persons examined in eight communities, 426 (19.1%) were infected. This included 24 ...

  6. Age patterns and transmission characteristics of hand, foot and mouth disease in China

    Directory of Open Access Journals (Sweden)

    Jijun Zhao

    2016-11-01

    Full Text Available Abstract Background Hand, foot and mouth disease (HFMD has circulated in China and caused yearly outbreak. To understand the transmission of the disease and to assess the spatial variation in cases reported, we examined age-specific transmission characteristics and reporting rates of HFMD for 31 provinces in mainland China. Methods We first analyzed incidence spatial patterns and age-specific incidence patterns using dataset from 2008 to 2012. Transmission characteristics were estimated based on catalytic model. Reporting rates were estimated using a simple mass action model from “Time Series Susceptible Infectious Recovered” (TSIR modeling. Results We found age-specific spatial incidence patterns: age-specific proportions of HFMD cases varied geographically in China; larger case percentage was among children of 3–5 years old in the northern part of China and was among children of 0–2 years old in the southern part of China. Our analysis results revealed that: 1 reporting rates and transmission characteristics including the average age at infection, the force of infection and the basic reproduction number varied geographically in China; 2 patterns of the age-specific force of infection for 30 provinces were similar to that of childhood infections in developed countries; the age group that had the highest infection risk was 3–5 years old in 30 provinces, and 10–14 years old in Tibet; 3 a large difference in HFMD transmission existed between northwest region and southeast region; 4 transmission characteristics determined incidence patterns: the higher the disease transmission in a province, the earlier the annual seasonality started and the more case percentage was among children 0–2 years old and less among 3–5 years old. Conclusion Because HFMD has higher transmission than most childhood infections reported, high effective vaccine coverage is needed to substantially reduce HFMD incidence. Control measures before the vaccine

  7. PENELITIAN VEKTOR MALARIA YANG DILAKUKAN OLEH INSTITUSI KESEHATAN TAHUN 1975-1990

    Directory of Open Access Journals (Sweden)

    Santyo Kirnowardoyo

    2012-09-01

    Full Text Available Studies on the ecology of Anopheles aconitus, An.sundaicus, An. balabacensis and An. punctulatus group were carried out in the year of 1975-1990. The results were found useful to support malaria control programme. Studies on other species of malaria vectors revealed limitted results. Based on the results of these studies, simple methods of vector control which could be done through community participation, could be formulated. Therefore, in malarious areas in Java and Bali where An. aconitus and An. sundaicus are the main vectors, residual house sprayings could be minimized or even stopped. On the other hand health education to motivate community participation on vector control and survaillance should be intensified by the programme, to keep the malaria transmission under control. Study on the ecology of An. balabacensis was carried out only in Balikpapan, East Kalimantan. The result showed that the effectivity of malaria transmission by An. balabacensis was very high. Residual sprayings by DDT were still effective to control malaria incidence in this area. Studies on the ecology of An. punctulatus groups were done by NAMRU-2 but the results will not be discussed here. Studies on the ecology of other species of malaria vector were still needed, especially in the Easten part of Indonesia and at the Borders betwen Indonesia and neighboring countries.

  8. Asymptomatic and sub-microscopic malaria infection in Kayah State, eastern Myanmar.

    Science.gov (United States)

    Zaw, Myo Thiha; Thant, Myo; Hlaing, Tin Maung; Aung, Naing Zin; Thu, Min; Phumchuea, Kanit; Phusri, Kanokwan; Saeseu, Teerawat; Yorsaeng, Ritthideach; Nguitragool, Wang; Felger, Ingrid; Kaewkungwal, Jaranit; Cui, Liwang; Sattabongkot, Jetsumon

    2017-04-04

    Myanmar has the heaviest burden of malaria in the Greater Mekong Sub-region. Asymptomatic Plasmodium spp. infections are common in this region and may represent an important reservoir of transmission that must be targeted for malaria elimination. A mass blood survey was conducted among 485 individuals from six villages in Kayah State, an area of endemic but low transmission malaria in eastern Myanmar. Malaria infection was screened by rapid diagnostic test (RDT), light microscopy and real-time polymerase chain reaction (PCR), and its association with demographic factors was explored. The prevalence of asymptomatic Plasmodium spp. infection was 2.3% (11/485) by real-time PCR. Plasmodium vivax accounted for 72.7% (8/11) and Plasmodium falciparum for 27.3% (3/11) of infections. Men were at greater risk of infection by Plasmodium spp. than women. Individuals who worked as farmers or wood and bamboo cutters had an increased risk of infection. A combination of RDT, light microscopy and PCR diagnostics were used to identify asymptomatic malaria infection, providing additional information on asymptomatic cases in addition to the routine statistics on symptomatic cases, so as to determine the true burden of disease in the area. Such information and risk factors can improve malaria risk stratification and guide decision-makers towards better design and delivery of targeted interventions in small villages, representative of Kayah State.

  9. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts.

    Directory of Open Access Journals (Sweden)

    Thomas S Churcher

    2017-01-01

    Full Text Available Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP, and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

  10. Observations on the distribution of anophelines in Suriname with particular reference to the malaria vector Anopheles darlingi

    Directory of Open Access Journals (Sweden)

    J. A. Rozendaal

    1990-06-01

    Full Text Available A study was made on the distribution of anophelines in Suriname with special emphasis on the principal malaria vector Anopheles darlingi and on the occurrence of other possible vector species. Peridomestic human bait collections of adult mosquitoes and collections of larvae were made in many localities with a recent history of malaria transmission. Stable population of An. darlingi were only found in the interior, south of the limit of tidal influence, due to year-round availability of breeding habitats in quietly sunlit places in flooded forest areas and along river banks. In the area with tidal movement of the rivers, breeding is limited to flooded areas in the west season. Anopheles darlingi was only incidentally collected in low densities. In the interior, malaria transmission occurred in all places where An. darlingi was found. The absence of malaria transmission along the Upper Suriname River could be explained by the absence of An. darlingi. In the malaria endemic areas, An darlingi was the most numerous mosquito biting on man. In the tidal region, malaria outbreak are infrequent and might be explained by the temporary availability of favourable beeding habitats for An. darlingi. However, evidence is insufficient to incriminate an. darlingi as the vector of malaria in this region and the possible vectorial role of other anophelines is discussed.

  11. [Urban malaria in Yaounde (Cameroon). 2. Entomologic study in 2 suburban districts].

    Science.gov (United States)

    Fondjo, E; Robert, V; Le Goff, G; Toto, J C; Carnevale, P

    1992-01-01

    A one year entomological survey was carried out to precise the malaria vectors and the malaria transmission in Yaounde, the Cameroon capital (800,000 inhabitants). The study was done in two districts not yet fully urbanized: Nkol Bikok and Nkol Bisson. The latter is located at the periphery and has a pool. Anopheles gambiae was the only human malaria vector. Its agressivity for man depended on the urbanization of the district. Annual man biting rate was 284 in Nkol Bikok and 1,813 in Nkol Bisson. The densities were maximum in May-June and in October-November, corresponding to the end of the short and long rainy seasons. The presence of A. gambiae was permanent except in August-September in Nkol Bikok. In Nkol Bisson the density was higher in the houses near the pool. The yearly inoculation rate (h) was 14 in Nkol Bikok and 30 in Nkol Bisson. The vectorial transmission was observed in may in Nkol Bikok and during four months (June, August, January, February) in Nkol Bisson. These entomological data showed clearly that malaria transmission actually occurred in Yaounde and that the probability to receive at least one infected anopheline bite per year was very near to 1 for inhabitants unprotected against mosquito bites.

  12. Battling malaria in rural Zambia with modern technology: a qualitative study on the value of cell phones, geographical information systems, asymptomatic carriers and rapid diagnostic tests to identify, treat and control malaria

    Directory of Open Access Journals (Sweden)

    David Nygren

    2014-02-01

    Full Text Available During the last decade much progress has been made in reducing malaria transmission in Macha, Southern Province, Zambia. Introduction of artemisinin combination therapies as well as mass screenings of asymptomatic carriers is believed to have contributed the most. When an endemic malaria situation is moving towards a non-endemic situation the resident population loses acquired immunity and therefore active case detection and efficient surveillance is crucial to prevent epidemic outbreaks. Our purpose was to evaluate the impact of cell phone surveillance and geographical information systems on malaria control in Macha. Furthermore, it evaluates what screening and treatment of asymptomatic carriers and implementation of rapid diagnostic tests in rural health care has led to. Ten in-depth semistructured interviews, field observations and data collection were performed at the Macha Research Trust and at surrounding rural health centers. This qualitative method was inspired by rapid assessment procedure. The cell phone surveillance has been easily integrated in health care, and its integration with Geographical Information Systems has provided the ability to follow malaria transmission on a weekly basis. In addition, active case detection of asymptomatic carriers has been fruitful, which is reflected in it soon being applied nationwide. Furthermore, rapid diagnostic tests have provided rural health centers with reliable malaria diagnostics, thereby decreasing excessive malaria treatments and selection for drug resistance. This report reflects the importance of asymptomatic carriers in targeting malaria elimination, as well as development of effective surveillance systems when transmission decreases. Such an approach would be cost-efficient in the long run through positive effects in reduced child mortality and relief in health care.

  13. Current vector control challenges in the fight against malaria.

    Science.gov (United States)

    Benelli, Giovanni; Beier, John C

    2017-10-01

    The effective and eco-friendly control of Anopheles vectors plays a key role in any malaria management program. Integrated Vector Management (IVM) suggests making use of the full range of vector control tools available. The strategies for IVM require novel technologies to control outdoor transmission of malaria. Despite the wide number of promising control tools tested against mosquitoes, current strategies for malaria vector control used in most African countries are not sufficient to achieve successful malaria control. The majority of National Malaria Control Programs in Africa still rely on indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs). These methods reduce malaria incidence but generally have little impact on malaria prevalence. In addition to outdoor transmission, growing levels of insecticide resistance in targeted vectors threaten the efficacy of LLINs and IRS. Larvicidal treatments can be useful, but are not recommended for rural areas. The research needed to improve the quality and delivery of mosquito vector control should focus on (i) optimization of processes and methods for vector control delivery; (ii) monitoring of vector populations and biting activity with reliable techniques; (iii) the development of effective and eco-friendly tools to reduce the burden or locally eliminate malaria and other mosquito-borne diseases; (iv) the careful evaluation of field suitability and efficacy of new mosquito control tools to prove their epidemiological impact; (v) the continuous monitoring of environmental changes which potentially affect malaria vector populations; (vi) the cooperation among different disciplines, with main emphasis on parasitology, tropical medicine, ecology, entomology, and ecotoxicology. A better understanding of behavioral ecology of malaria vectors is required. Key ecological obstacles that limit the effectiveness of vector control include the variation in mosquito behavior, development of insecticide resistance

  14. Cost effective malaria risk control using remote sensing and environmental data

    Science.gov (United States)

    Rahman, Md. Z.; Roytman, Leonid; Kadik, Abdel Hamid

    2012-06-01

    Malaria transmission in many part of the world specifically in Bangladesh and southern African countries is unstable and epidemic. An estimate of over a million cases is reported annually. Malaria is heterogeneous, potentially due to variations in ecological settings, socio-economic status, land cover, and agricultural practices. Malaria control only relies on treatment and supply of bed networks. Drug resistance to these diseases is widespread. Vector control is minimal. Malaria control in those countries faces many formidable challenges such as inadequate accessibility to effective treatment, lack of trained manpower, inaccessibility of endemic areas, poverty, lack of education, poor health infrastructure and low health budgets. Health facilities for malaria management are limited, surveillance is inadequate, and vector control is insufficient. Control can only be successful if the right methods are used at the right time in the right place. This paper aims to improve malaria control by developing malaria risk maps and risk models using satellite remote sensing data by identifying, assessing, and mapping determinants of malaria associated with environmental, socio-economic, malaria control, and agricultural factors.

  15. Malaria Transmission Potential in Adim Community of Biase Local ...

    African Journals Online (AJOL)

    It is hypothesized that the marshy ricefields in the area would permit the persistence of anopheline larval development all year round and therefore malaria ... The mean sporozoite inoculation rate (EIR) over the 12-month study period was 0.34 infective bites per person per night (ib/p/night), giving an average of 124.1 ...

  16. Supporting capacity for research on malaria in Africa

    DEFF Research Database (Denmark)

    Greenwood, Brian; Gaye, Oumar; Kamya, Moses R

    2018-01-01

    Substantial progress has been made in the control of malaria in Africa but much remains to be done before malaria elimination on the continent can be achieved. Further progress can be made by enhancing uptake of existing control tools but, in high transmission areas, additional tools will be needed....... Development and evaluation of these new tools will require a substantial cadre of African scientists well trained in many different disciplines. This paper describes the activities undertaken by the Malaria Capacity Development Consortium (MCDC) to support the careers of PhD students and postdoctoral fellows...... undertaking research on malaria at five African universities. A systematic assessment of constraints on PhD training and research support systems was undertaken at each partner African university at the beginning of the programme and many of these constraints were remedied. The success of the programme...

  17. Spatio-Temporal Analysis to Predict Environmental Influence on Malaria

    Science.gov (United States)

    Baig, S.; Sarfraz, M. S.

    2018-05-01

    Malaria is a vector borne disease which is a major cause of morbidity and mortality. It is one of the major diseases in the category of infectious diseases. The survival and bionomics of malaria is affected by environmental factors such as climatic, demographic and land-use/land-cover etc. Currently, a very few under developing countries are using Geo-informatics approaches to control this disease. Gujrat a district of Pakistan, is still under threat of malaria disease. Current research is carried on malaria incidents obtained from District Executive Officer of Health Gujrat. The objective of this study was to explore the spatio-temporal patterns of malaria in district Gujrat and to identify the areas being affected by Malaria. Furthermore, it has been also analyzed the relationship between malaria incident and environmental factors in highly favorable zones. Data is analyzed based on spatial and temporal patterns using (Moran's I). Moreover cluster and hot spots analysis were performed on the incident data. This study shows positive correlation with rainfall, vegetation index, population density and water bodies; while it shows positive and negative correlation with temperature in different seasons. However, variation between amount of vegetation and water bodies were observed. Finding of this research can help the decision makers to take preventive measures and reduce the morbidity and mortality related with malaria in Gujrat, Pakistan.

  18. PATTERNS OF SEVEN AND COMPLICATED MALARIA IN CHILDREN

    African Journals Online (AJOL)

    GB

    2010-03-02

    Mar 2, 2010 ... diagnostic test in the management of children with this overlap, but this has not been evaluated. ... METHODS: A pilot quasi-experimental study was conducted November ... (IMCI) malaria (defined as axillary temperature of.

  19. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi

    Science.gov (United States)

    Tan, Cheong H; Vythilingam, Indra; Matusop, Asmad; Chan, Seng T; Singh, Balbir

    2008-01-01

    Background A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit. Methods Three different ecological sites in the forest, farm and longhouse in the Kapit district were selected for the study. Mosquitoes were collected by human landing collection at all sites and at the forest also by monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites. Results and Discussions Over an 11-month period, a total of 2,504 Anopheles mosquitoes comprising 12 species were caught; 1,035 at the farm, 774 at the forest and 425 at the longhouse. Anopheles latens (62.3%) and Anopheles watsonii (30.6%) were the predominant species caught in the forested ecotypes, while in the farm Anopheles donaldi (49.9%) and An. latens (35.6%) predominated. In the long house, An. latens (29.6%) and An. donaldi (22.8%) were the major Anopheline species. However, An. latens was the only mosquito positive for sporozoites and it was found to be attracted to both human and monkey hosts. In monkey-baited net traps, it preferred to bite monkeys at the canopy level than at ground level. An. latens was found biting early as 18.00 hours. Conclusion Anopheles latens is the main vector for P. knowlesi malaria parasites in the Kapit District of Sarawak, Malaysian Borneo. The study underscores the relationship between ecology, abundance and bionomics of anopheline fauna. The simio-anthropophagic and acrodendrophilic behaviour of An. latens makes it an efficient vector for the transmission of P. knowlesi parasites to both human and monkey hosts. PMID:18377652

  20. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi

    Directory of Open Access Journals (Sweden)

    Matusop Asmad

    2008-03-01

    Full Text Available Abstract Background A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit. Methods Three different ecological sites in the forest, farm and longhouse in the Kapit district were selected for the study. Mosquitoes were collected by human landing collection at all sites and at the forest also by monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites. Results and Discussions Over an 11-month period, a total of 2,504 Anopheles mosquitoes comprising 12 species were caught; 1,035 at the farm, 774 at the forest and 425 at the longhouse. Anopheles latens (62.3% and Anopheles watsonii (30.6% were the predominant species caught in the forested ecotypes, while in the farm Anopheles donaldi (49.9% and An. latens (35.6% predominated. In the long house, An. latens (29.6% and An. donaldi (22.8% were the major Anopheline species. However, An. latens was the only mosquito positive for sporozoites and it was found to be attracted to both human and monkey hosts. In monkey-baited net traps, it preferred to bite monkeys at the canopy level than at ground level. An. latens was found biting early as 18.00 hours. Conclusion Anopheles latens is the main vector for P. knowlesi malaria parasites in the Kapit District of Sarawak, Malaysian Borneo. The study underscores the relationship between ecology, abundance and bionomics of anopheline fauna. The simio-anthropophagic and acrodendrophilic behaviour of An. latens makes it an efficient vector for the transmission of P. knowlesi parasites to both human and monkey hosts.