WorldWideScience

Sample records for malaria parasite species

  1. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi.

    Kanako Komaki-Yasuda

    Full Text Available A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient's blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a "fast PCR enzyme". In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the "fast PCR enzyme", with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses.

  2. A novel PCR-based system for the detection of four species of human malaria parasites and Plasmodium knowlesi

    Komaki-Yasuda, Kanako; Vincent, Jeanne Perpétue; Nakatsu, Masami; Kato, Yasuyuki; Ohmagari, Norio

    2018-01-01

    A microscopy-based diagnosis is the gold standard for the detection and identification of malaria parasites in a patient’s blood. However, the detection of cases involving a low number of parasites and the differentiation of species sometimes requires a skilled microscopist. Although PCR-based diagnostic methods are already known to be very powerful tools, the time required to apply such methods is still much longer in comparison to traditional microscopic observation. Thus, improvements to PCR systems are sought to facilitate the more rapid and accurate detection of human malaria parasites Plasmodium falciparum, P. vivax, P. ovale, and P. malariae, as well as P. knowlesi, which is a simian malaria parasite that is currently widely distributed in Southeast Asia. A nested PCR that targets the small subunit ribosomal RNA genes of malaria parasites was performed using a “fast PCR enzyme”. In the first PCR, universal primers for all parasite species were used. In the second PCR, inner-specific primers, which targeted sequences from P. falciparum, P. vivax, P. ovale, P. malariae, and P. knowlesi, were used. The PCR reaction time was reduced with the use of the “fast PCR enzyme”, with only 65 minutes required to perform the first and second PCRs. The specific primers only reacted with the sequences of their targeted parasite species and never cross-reacted with sequences from other species under the defined PCR conditions. The diagnoses of 36 clinical samples that were obtained using this new PCR system were highly consistent with the microscopic diagnoses. PMID:29370297

  3. A Feast of Malaria Parasite Genomes.

    Carlton, Jane M; Sullivan, Steven A

    2017-03-08

    The Plasmodium genus has evolved over time and across hosts, complexifying our understanding of malaria. In a recent Nature paper, Rutledge et al. (2017) describe the genome sequences of three major human malaria parasite species, providing insight into Plasmodium evolution and raising the question of how many species there are. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Optimized Pan-species and speciation duplex real-time PCR assays for Plasmodium parasites detection in malaria vectors.

    Maurice Marcel Sandeu

    Full Text Available BACKGROUND: An accurate method for detecting malaria parasites in the mosquito's vector remains an essential component in the vector control. The Enzyme linked immunosorbent assay specific for circumsporozoite protein (ELISA-CSP is the gold standard method for the detection of malaria parasites in the vector even if it presents some limitations. Here, we optimized multiplex real-time PCR assays to accurately detect minor populations in mixed infection with multiple Plasmodium species in the African malaria vectors Anopheles gambiae and Anopheles funestus. METHODS: Complementary TaqMan-based real-time PCR assays that detect Plasmodium species using specific primers and probes were first evaluated on artificial mixtures of different targets inserted in plasmid constructs. The assays were further validated in comparison with the ELISA-CSP on 200 field caught Anopheles gambiae and Anopheles funestus mosquitoes collected in two localities in southern Benin. RESULTS: The validation of the duplex real-time PCR assays on the plasmid mixtures demonstrated robust specificity and sensitivity for detecting distinct targets. Using a panel of mosquito specimen, the real-time PCR showed a relatively high sensitivity (88.6% and specificity (98%, compared to ELISA-CSP as the referent standard. The agreement between both methods was "excellent" (κ=0.8, P<0.05. The relative quantification of Plasmodium DNA between the two Anopheles species analyzed showed no significant difference (P=0, 2. All infected mosquito samples contained Plasmodium falciparum DNA and mixed infections with P. malariae and/or P. ovale were observed in 18.6% and 13.6% of An. gambiae and An. funestus respectively. Plasmodium vivax was found in none of the mosquito samples analyzed. CONCLUSION: This study presents an optimized method for detecting the four Plasmodium species in the African malaria vectors. The study highlights substantial discordance with traditional ELISA-CSP pointing out the

  5. Immune escape strategies of malaria parasites

    Pollyanna Stephanie Gomes

    2016-10-01

    Full Text Available Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.

  6. Transformation of the rodent malaria parasite Plasmodium chabaudi

    Spence, Philip J; Cunningham, Deirdre; Jarra, William; Lawton, Jennifer; Langhorne, Jean; Thompson, Joanne

    2011-01-01

    The rodent malaria parasite Plasmodium chabaudi chabaudi shares many features with human malaria species, including P. falciparum, and is the in vivo model of choice for many aspects of malaria research in the mammalian host, from sequestration of parasitized erythrocytes, to antigenic variation and host immunity and immunopathology. this protocol describes an optimized method for the transformation of mature blood-stage P.c. chabaudi and a description of a vector that targets efficient, sing...

  7. Rodent malaria parasites : genome organization & comparative genomics

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P.

  8. Transformation of the rodent malaria parasite Plasmodium chabaudi.

    Spence, Philip J; Cunningham, Deirdre; Jarra, William; Lawton, Jennifer; Langhorne, Jean; Thompson, Joanne

    2011-04-01

    The rodent malaria parasite Plasmodium chabaudi chabaudi shares many features with human malaria species, including P. falciparum, and is the in vivo model of choice for many aspects of malaria research in the mammalian host, from sequestration of parasitized erythrocytes, to antigenic variation and host immunity and immunopathology. This protocol describes an optimized method for the transformation of mature blood-stage P.c. chabaudi and a description of a vector that targets efficient, single crossover integration into the P.c. chabaudi genome. Transformed lines are reproducibly generated and selected within 14-20 d, and show stable long-term protein expression even in the absence of drug selection. This protocol, therefore, provides the scientific community with a robust and reproducible method to generate transformed P.c. chabaudi parasites expressing fluorescent, bioluminescent and model antigens that can be used in vivo to dissect many of the fundamental principles of malaria infection.

  9. Chimpanzee malaria parasites related to Plasmodium ovale in Africa.

    Linda Duval

    Full Text Available Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes and gorillas (Gorilla gorilla from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes.

  10. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have bee...

  11. Signalling in malaria parasites. The MALSIG consortium.

    Doerig, C.; Baker, D.; Billker, O.; Blackman, M.J.; Chitnis, C.; Dhar Kumar, S.; Heussler, V.; Holder, A.A.; Kocken, C.; Krishna, S.; Langsley, G.; Lasonder, E.; Menard, R.; Meissner, M.; Pradel, G.; Ranford-Cartwright, L.; Sharma, A.; Sharma, P.; Tardieux, T.; Tatu, U.; Alano, P.

    2009-01-01

    Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense

  12. Detection of Malaria parasite species based on 18S rRNA and assessment of its resistance to the drug for DHPS gene to support the development of irradiation Malaria vaccine

    Mukh Syaifudin; Darlina; Siti Nurhayati

    2016-01-01

    Malaria remains a major public health problem because it causes 1-2 million mortality per year. Therefore the development of its vaccine, including vaccine created by ionizing radiation, is urgently needed to control the disease. Aim of this research was to determine the species of malaria parasite infecting the blood of malaria suspected patients and its resistance to sulfadoxine-pyrimethamine (SP). The number of samples used were 10 blood specimens that obtained from Dok II Hospital in Jayapura. Microscopic examination on thin blood smear was done according to standard procedure, followed by Polymerase Chain Reaction (PCR) based diagnosis to further confirm the parasite using 18S rRNA gene on deoxyribonucleic acid extract. The presence of mutation in the dhps (dihydropteroate synthetase) gene related to SP drugs was examined using restriction fragment length polymorphism (RFLP) method. Results showed that 9 samples were infected with Plasmodium falciparum and 1 infected with P. vivax. Allelic mutants of dhps gene at codon K540E were detected in 3 (33.3%) samples. Even though only in very limited number of samples analyzed, the information obtained will be a great value in additional knowledge for vaccine development with irradiation. (author)

  13. Malaria parasites: the great escape

    Laurent Rénia

    2016-11-01

    Full Text Available Parasites of the genus Plasmodium have a complex life cycle. They alternate between their final mosquito host and their intermediate hosts. The parasite can be either extra- or intracellular, depending on the stage of development. By modifying their shape, motility, and metabolic requirements, the parasite adapts to the different environments in their different hosts. The parasite has evolved to escape the multiple immune mechanisms in the host that try to block parasite development at the different stages of their development. In this article, we describe the mechanisms reported thus far that allow the Plasmodium parasite to evade innate and adaptive immune responses.

  14. From malaria parasite point of view – Plasmodium falciparum evolution

    Agata Zerka

    2015-12-01

    Full Text Available Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium, which have arguably exerted the greatest selection pressure on humans in the history of our species. Besides humans, different Plasmodium parasites infect a wide range of animal hosts, from marine invertebrates to primates. On the other hand, individual Plasmodium species show high host specificity. The extraordinary evolution of Plasmodium probably began when a free-living red algae turned parasitic, and culminated with its ability to thrive inside a human red blood cell. Studies on the African apes generated new data on the evolution of malaria parasites in general and the deadliest human-specific species, Plasmodium falciparum, in particular. Initially, it was hypothesized that P. falciparum descended from the chimpanzee malaria parasite P. reichenowi, after the human and the chimp lineage diverged about 6 million years ago. However, a recently identified new species infecting gorillas, unexpectedly showed similarity to P. falciparum and was therefore named P. praefalciparum. That finding spurred an alternative hypothesis, which proposes that P. falciparum descended from its gorilla rather than chimp counterpart. In addition, the gorilla-to-human host shift may have occurred more recently (about 10 thousand years ago than the theoretical P. falciparum-P. reichenowi split. One of the key aims of the studies on Plasmodium evolution is to elucidate the mechanisms that allow the incessant host shifting and retaining the host specificity, especially in the case of human-specific species. Thorough understanding of these phenomena will be necessary to design effective malaria treatment and prevention strategies.

  15. Pitting of malaria parasites and spherocyte formation

    Gichuki Charity W

    2006-07-01

    Full Text Available Abstract Background A high prevalence of spherocytes was detected in blood smears of children enrolled in a case control study conducted in the malaria holoendemic Lake Victoria basin. It was speculated that the spherocytes reflect intraerythrocytic removal of malarial parasites with a concurrent removal of RBC membrane through a process analogous to pitting of intraerythrocytic inclusion bodies. Pitting and re-circulation of RBCs devoid of malaria parasites could be a host mechanism for parasite clearance while minimizing the anaemia that would occur were the entire parasitized RBC removed. The prior demonstration of RBCs containing ring-infected erythrocyte surface antigen (pf 155 or RESA but no intracellular parasites, support the idea of pitting. Methods An in vitro model was developed to examine the phenomenon of pitting and spherocyte formation in Plasmodium falciparum infected RBCs (iRBC co-incubated with human macrophages. In vivo application of this model was evaluated using blood specimens from patients attending Kisumu Ditrict Hospital. RBCs were probed with anti-RESA monoclonal antibody and a DNA stain (propidium iodide. Flow cytometry and fluorescent microscopy was used to compare RBCs containing both the antigen and the parasites to those that were only RESA positive. Results Co-incubation of iRBC and tumor necrosis factor-alpha activated macrophages led to pitting (14% ± 1.31% macrophages with engulfed trophozoites as opposed to erythrophagocytosis (5.33% ± 0.95% (P Conclusion It is proposed that in malaria holoendemic areas where prevalence of asexual stage parasites approaches 100% in children, RBCs with pitted parasites are re-circulated and pitting may produce spherocytes.

  16. Big bang in the evolution of extant malaria parasites.

    Hayakawa, Toshiyuki; Culleton, Richard; Otani, Hiroto; Horii, Toshihiro; Tanabe, Kazuyuki

    2008-10-01

    Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite mitochondrial genome reveals that the extant primate, rodent, bird, and reptile parasite lineages rapidly diverged from a common ancestor during an evolutionary short time period. This rapid diversification occurred long after the establishment of the primate, rodent, bird, and reptile host lineages, which implies that host-switch events contributed to the rapid diversification of extant malaria parasite lineages. Interestingly, the rapid diversification coincides with the radiation of the mammalian genera, suggesting that adaptive radiation to new mammalian hosts triggered the rapid diversification of extant malaria parasite lineages.

  17. The genome of the simian and human malaria parasite Plasmodium knowlesi

    Pain, A; Böhme, U; Berry, A E

    2008-01-01

    Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite...... species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood...... cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described...

  18. Compartmentation of redox metabolism in malaria parasites.

    Sebastian Kehr

    Full Text Available Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito - a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes--glutathione reductase and thioredoxin reductase--Plasmodium makes use of alternative-translation-initiation (ATI to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.

  19. Regulatory hotspots in the malaria parasite genome dictate transcriptional variation.

    Joseph M Gonzales

    2008-09-01

    Full Text Available The determinants of transcriptional regulation in malaria parasites remain elusive. The presence of a well-characterized gene expression cascade shared by different Plasmodium falciparum strains could imply that transcriptional regulation and its natural variation do not contribute significantly to the evolution of parasite drug resistance. To clarify the role of transcriptional variation as a source of stain-specific diversity in the most deadly malaria species and to find genetic loci that dictate variations in gene expression, we examined genome-wide expression level polymorphisms (ELPs in a genetic cross between phenotypically distinct parasite clones. Significant variation in gene expression is observed through direct co-hybridizations of RNA from different P. falciparum clones. Nearly 18% of genes were regulated by a significant expression quantitative trait locus. The genetic determinants of most of these ELPs resided in hotspots that are physically distant from their targets. The most prominent regulatory locus, influencing 269 transcripts, coincided with a Chromosome 5 amplification event carrying the drug resistance gene, pfmdr1, and 13 other genes. Drug selection pressure in the Dd2 parental clone lineage led not only to a copy number change in the pfmdr1 gene but also to an increased copy number of putative neighboring regulatory factors that, in turn, broadly influence the transcriptional network. Previously unrecognized transcriptional variation, controlled by polymorphic regulatory genes and possibly master regulators within large copy number variants, contributes to sweeping phenotypic evolution in drug-resistant malaria parasites.

  20. Estimating sequestered parasite population dynamics in cerebral malaria

    Gravenor, M. B.; van Hensbroek, M. B.; Kwiatkowski, D.

    1998-01-01

    Clinical investigation of malaria is hampered by the lack of a method for estimating the number of parasites that are sequestered in the tissues, for it is these parasites that are thought to be crucial to the pathogenesis of life-threatening complications such as cerebral malaria. We present a

  1. Current status of malaria parasite among blood donors in Port ...

    This study was carried out to determine the prevalence of malaria parasite among blood donors at the Police Clinic Port Harcourt, Rivers State, Nigeria. The standard parasitological techniques using both thick and thin blood films from the donors for the detection of malaria parasite was followed. Venous blood was ...

  2. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Smith, Ryan C; Vega-Rodríguez, Joel; Jacobs-Lorena, Marcelo

    2014-01-01

    Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission. PMID:25185005

  3. The Plasmodium bottleneck: malaria parasite losses in the mosquito vector

    Ryan C Smith

    2014-08-01

    Full Text Available Nearly one million people are killed every year by the malaria parasite Plasmodium. Although the disease-causing forms of the parasite exist only in the human blood, mosquitoes of the genus Anopheles are the obligate vector for transmission. Here, we review the parasite life cycle in the vector and highlight the human and mosquito contributions that limit malaria parasite development in the mosquito host. We address parasite killing in its mosquito host and bottlenecks in parasite numbers that might guide intervention strategies to prevent transmission.

  4. Rethinking the extrinsic incubation period of malaria parasites.

    Ohm, Johanna R; Baldini, Francesco; Barreaux, Priscille; Lefevre, Thierry; Lynch, Penelope A; Suh, Eunho; Whitehead, Shelley A; Thomas, Matthew B

    2018-03-12

    The time it takes for malaria parasites to develop within a mosquito, and become transmissible, is known as the extrinsic incubation period, or EIP. EIP is a key parameter influencing transmission intensity as it combines with mosquito mortality rate and competence to determine the number of mosquitoes that ultimately become infectious. In spite of its epidemiological significance, data on EIP are scant. Current approaches to estimate EIP are largely based on temperature-dependent models developed from data collected on parasite development within a single mosquito species in the 1930s. These models assume that the only factor affecting EIP is mean environmental temperature. Here, we review evidence to suggest that in addition to mean temperature, EIP is likely influenced by genetic diversity of the vector, diversity of the parasite, and variation in a range of biotic and abiotic factors that affect mosquito condition. We further demonstrate that the classic approach of measuring EIP as the time at which mosquitoes first become infectious likely misrepresents EIP for a mosquito population. We argue for a better understanding of EIP to improve models of transmission, refine predictions of the possible impacts of climate change, and determine the potential evolutionary responses of malaria parasites to current and future mosquito control tools.

  5. Stress Response and Artemisinin Resistance in Malaria Parasite

    2017-07-01

    AWARD NUMBER: W81XWH-16-1-0241 TITLE: Stress Response and Artemisinin Resistance in Malaria Parasite PRINCIPAL INVESTIGATOR: Juan C. Pizarro...SUBTITLE Stress Response and Artemisinin Resistance in Malaria Parasite 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-16-1-0241 5c. PROGRAM ELEMENT...13. SUPPLEMENTARY NOTES 14. ABSTRACT In malaria , drug resistance is a major treat to disease control efforts. Unfortunately, there is a significant

  6. Quantifying Transmission Investment in Malaria Parasites.

    Megan A Greischar

    2016-02-01

    Full Text Available Many microparasites infect new hosts with specialized life stages, requiring a subset of the parasite population to forgo proliferation and develop into transmission forms. Transmission stage production influences infectivity, host exploitation, and the impact of medical interventions like drug treatment. Predicting how parasites will respond to public health efforts on both epidemiological and evolutionary timescales requires understanding transmission strategies. These strategies can rarely be observed directly and must typically be inferred from infection dynamics. Using malaria as a case study, we test previously described methods for inferring transmission stage investment against simulated data generated with a model of within-host infection dynamics, where the true transmission investment is known. We show that existing methods are inadequate and potentially very misleading. The key difficulty lies in separating transmission stages produced by different generations of parasites. We develop a new approach that performs much better on simulated data. Applying this approach to real data from mice infected with a single Plasmodium chabaudi strain, we estimate that transmission investment varies from zero to 20%, with evidence for variable investment over time in some hosts, but not others. These patterns suggest that, even in experimental infections where host genetics and other environmental factors are controlled, parasites may exhibit remarkably different patterns of transmission investment.

  7. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research

    Giulia eSiciliano

    2015-05-01

    Full Text Available The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite Plasmodium berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  8. Enlightening the malaria parasite life cycle: bioluminescent Plasmodium in fundamental and applied research.

    Siciliano, Giulia; Alano, Pietro

    2015-01-01

    The unicellular protozoan parasites of the genus Plasmodium impose on human health worldwide the enormous burden of malaria. The possibility to genetically modify several species of malaria parasites represented a major advance in the possibility to elucidate their biology and is now turning laboratory lines of transgenic Plasmodium into precious weapons to fight malaria. Amongst the various genetically modified plasmodia, transgenic parasite lines expressing bioluminescent reporters have been essential to unveil mechanisms of parasite gene expression and to develop in vivo imaging approaches in mouse malaria models. Mainly the human malaria parasite Plasmodium falciparum and the rodent parasite P. berghei have been engineered to express bioluminescent reporters in almost all the developmental stages of the parasite along its complex life cycle between the insect and the vertebrate hosts. Plasmodium lines expressing conventional and improved luciferase reporters are now gaining a central role to develop cell based assays in the much needed search of new antimalarial drugs and to open innovative approaches for both fundamental and applied research in malaria.

  9. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon

    Albert Lalremruata

    2015-09-01

    Interpretation: This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  10. History of the discovery of the malaria parasites and their vectors

    Cox Francis EG

    2010-02-01

    Full Text Available Abstract Malaria is caused by infection with protozoan parasites belonging to the genus Plasmodium transmitted by female Anopheles species mosquitoes. Our understanding of the malaria parasites begins in 1880 with the discovery of the parasites in the blood of malaria patients by Alphonse Laveran. The sexual stages in the blood were discovered by William MacCallum in birds infected with a related haematozoan, Haemoproteus columbae, in 1897 and the whole of the transmission cycle in culicine mosquitoes and birds infected with Plasmodium relictum was elucidated by Ronald Ross in 1897. In 1898 the Italian malariologists, Giovanni Battista Grassi, Amico Bignami, Giuseppe Bastianelli, Angelo Celli, Camillo Golgi and Ettore Marchiafava demonstrated conclusively that human malaria was also transmitted by mosquitoes, in this case anophelines. The discovery that malaria parasites developed in the liver before entering the blood stream was made by Henry Shortt and Cyril Garnham in 1948 and the final stage in the life cycle, the presence of dormant stages in the liver, was conclusively demonstrated in 1982 by Wojciech Krotoski. This article traces the main events and stresses the importance of comparative studies in that, apart from the initial discovery of parasites in the blood, every subsequent discovery has been based on studies on non-human malaria parasites and related organisms.

  11. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon.

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G

    2015-09-01

    The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  12. Origin of the human malaria parasite Plasmodium falciparum in gorillas.

    Liu, Weimin; Li, Yingying; Learn, Gerald H; Rudicell, Rebecca S; Robertson, Joel D; Keele, Brandon F; Ndjango, Jean-Bosco N; Sanz, Crickette M; Morgan, David B; Locatelli, Sabrina; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Delaporte, Eric; Mpoudi-Ngole, Eitel; Georgiev, Alexander V; Muller, Martin N; Shaw, George M; Peeters, Martine; Sharp, Paul M; Rayner, Julian C; Hahn, Beatrice H

    2010-09-23

    Plasmodium falciparum is the most prevalent and lethal of the malaria parasites infecting humans, yet the origin and evolutionary history of this important pathogen remain controversial. Here we develop a single-genome amplification strategy to identify and characterize Plasmodium spp. DNA sequences in faecal samples from wild-living apes. Among nearly 3,000 specimens collected from field sites throughout central Africa, we found Plasmodium infection in chimpanzees (Pan troglodytes) and western gorillas (Gorilla gorilla), but not in eastern gorillas (Gorilla beringei) or bonobos (Pan paniscus). Ape plasmodial infections were highly prevalent, widely distributed and almost always made up of mixed parasite species. Analysis of more than 1,100 mitochondrial, apicoplast and nuclear gene sequences from chimpanzees and gorillas revealed that 99% grouped within one of six host-specific lineages representing distinct Plasmodium species within the subgenus Laverania. One of these from western gorillas comprised parasites that were nearly identical to P. falciparum. In phylogenetic analyses of full-length mitochondrial sequences, human P. falciparum formed a monophyletic lineage within the gorilla parasite radiation. These findings indicate that P. falciparum is of gorilla origin and not of chimpanzee, bonobo or ancient human origin.

  13. The distinct proteome of placental malaria parasites.

    Fried, Michal; Hixson, Kim K.; Anderson, Lori; Ogata, Yuko; Mutabingwa, Theonest K.; Duffy, Patrick E.

    2007-09-01

    Malaria proteins expressed on the surface of Plasmodium falciparum infected erythrocytes (IE) mediate adhesion and are targeted by protective immune responses. During pregnancy, IE sequester in the placenta. Placental IE bind to the molecule chondroitin sulfate A (CSA) and preferentially transcribe the gene that encodes VAR2CSA, a member of the PfEMP1 variant surface antigen family. Over successive pregnancies women develop specific immunity to CSA-binding IE and antibodies to VAR2CSA. We used tandem mass spectrometry together with accurate mass and time tag technology to study IE membrane fractions of placental parasites. VAR2CSA peptides were detected in placental IE and in IE from children, but the MC variant of VAR2CSA was specifically associated with placental IE. We identified six conserved hypothetical proteins with putative TM or signal peptides that were exclusively expressed by the placental IE, and 11 such proteins that were significantly more abundant in placental IE. One of these hypothetical proteins, PFI1785w, is a 42kDa molecule detected by Western blot in parasites infecting pregnant women but not those infecting children.

  14. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    Lef?vre, Thierry; Vantaux, Am?lie; Dabir?, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies reve...

  15. Protease-associated cellular networks in malaria parasite Plasmodium falciparum

    Lilburn Timothy G

    2011-12-01

    Full Text Available Abstract Background Malaria continues to be one of the most severe global infectious diseases, responsible for 1-2 million deaths yearly. The rapid evolution and spread of drug resistance in parasites has led to an urgent need for the development of novel antimalarial targets. Proteases are a group of enzymes that play essential roles in parasite growth and invasion. The possibility of designing specific inhibitors for proteases makes them promising drug targets. Previously, combining a comparative genomics approach and a machine learning approach, we identified the complement of proteases (degradome in the malaria parasite Plasmodium falciparum and its sibling species 123, providing a catalog of targets for functional characterization and rational inhibitor design. Network analysis represents another route to revealing the role of proteins in the biology of parasites and we use this approach here to expand our understanding of the systems involving the proteases of P. falciparum. Results We investigated the roles of proteases in the parasite life cycle by constructing a network using protein-protein association data from the STRING database 4, and analyzing these data, in conjunction with the data from protein-protein interaction assays using the yeast 2-hybrid (Y2H system 5, blood stage microarray experiments 678, proteomics 9101112, literature text mining, and sequence homology analysis. Seventy-seven (77 out of 124 predicted proteases were associated with at least one other protein, constituting 2,431 protein-protein interactions (PPIs. These proteases appear to play diverse roles in metabolism, cell cycle regulation, invasion and infection. Their degrees of connectivity (i.e., connections to other proteins, range from one to 143. The largest protease-associated sub-network is the ubiquitin-proteasome system which is crucial for protein recycling and stress response. Proteases are also implicated in heat shock response, signal peptide

  16. Malaria parasite positivity among febrile neonates | Enyuma ...

    Background: Malaria, earlier considered rare in neonates, has been reported with increasing frequency in the last decade. Neonatal malaria diagnosis is challenging because the clinical features are non-specific, variable and also overlap with bacterial infection. Aim: To determine the prevalence of neonatal malaria and ...

  17. Mitosis in the Human Malaria Parasite Plasmodium falciparum ▿

    Gerald, Noel; Mahajan, Babita; Kumar, Sanjai

    2011-01-01

    Malaria is caused by intraerythrocytic protozoan parasites belonging to Plasmodium spp. (phylum Apicomplexa) that produce significant morbidity and mortality, mostly in developing countries. Plasmodium parasites have a complex life cycle that includes multiple stages in anopheline mosquito vectors and vertebrate hosts. During the life cycle, the parasites undergo several cycles of extreme population growth within a brief span, and this is critical for their continued transmission and a contri...

  18. An Unusual Prohibitin Regulates Malaria Parasite Mitochondrial Membrane Potential

    Joachim Michael Matz

    2018-04-01

    Full Text Available Summary: Proteins of the stomatin/prohibitin/flotillin/HfIK/C (SPFH family are membrane-anchored and perform diverse cellular functions in different organelles. Here, we investigate the SPFH proteins of the murine malaria model parasite Plasmodium berghei, the conserved prohibitin 1, prohibitin 2, and stomatin-like protein and an unusual prohibitin-like protein (PHBL. The SPFH proteins localize to the parasite mitochondrion. While the conserved family members could not be deleted from the Plasmodium genome, PHBL was successfully ablated, resulting in impaired parasite fitness and attenuated virulence in the mammalian host. Strikingly, PHBL-deficient parasites fail to colonize the Anopheles vector because of complete arrest during ookinete development in vivo. We show that this arrest correlates with depolarization of the mitochondrial membrane potential (ΔΨmt. Our results underline the importance of SPFH proteins in the regulation of core mitochondrial functions and suggest that fine-tuning of ΔΨmt in malarial parasites is critical for colonization of the definitive host. : Matz et al. present an experimental genetics study of an unusual prohibitin-like protein in the malaria parasite and find that it regulates mitochondrial membrane polarity. Ablation of this protein causes almost complete mitochondrial depolarization in the mosquito vector, which, in turn, leads to a block in malaria parasite transmission. Keywords: Plasmodium berghei, malaria, SPFH, prohibitin, stomatin-like protein, mitochondrion, membrane potential, ookinete, transmission

  19. Malaria

    ... bites you, the parasite can get into your blood. The parasite lays eggs, which develop into more parasites. They ... cells until you get very sick. Because the parasites live in the blood, malaria can also be spread through other ways. ...

  20. Toward forward genetic screens in malaria-causing parasites using the piggyBac transposon

    de Koning-Ward Tania F

    2011-03-01

    Full Text Available Abstract The ability to analyze gene function in malaria-causing Plasmodium parasites has received a boost with a recent paper in BMC Genomics that describes a genome-wide mutagenesis system in the rodent malaria species Plasmodium berghei using the transposon piggyBac. This advance holds promise for identifying and validating new targets for intervention against malaria. But further improvements are still needed for the full power of genome-wide molecular genetic screens to be utilized in this organism. See research article: http://www.biomedcentral.com/1471-2164/12/155

  1. Cytometric quantification of singlet oxygen in the human malaria parasite Plasmodium falciparum

    Butzloff, Sabine; Groves, Matthew R; Wrenger, Carsten; Müller, Ingrid B

    The malaria parasite Plasmodium falciparum proliferates within human erythrocytes and is thereby exposed to a variety of reactive oxygen species (ROS) such as hydrogen peroxide, hydroxyl radical, superoxide anion, and highly reactive singlet oxygen ((1)O(2)). While most ROS are already well studied

  2. Malaria and intestinal parasites in pregnant and non-pregnant women

    In sub-Sahara African countries, both malaria and intestinal helminth infections are endemic and co-infection commonly occurs. It is estimated that over a third of the world's population, mainly in the tropics and sub-tropics are infected with parasitic helminths and Plasmodium species thus often leading to co-infections.

  3. Host-parasite interactions and ecology of the malaria parasite-a bioinformatics approach.

    Izak, Dariusz; Klim, Joanna; Kaczanowski, Szymon

    2018-04-25

    Malaria remains one of the highest mortality infectious diseases. Malaria is caused by parasites from the genus Plasmodium. Most deaths are caused by infections involving Plasmodium falciparum, which has a complex life cycle. Malaria parasites are extremely well adapted for interactions with their host and their host's immune system and are able to suppress the human immune system, erase immunological memory and rapidly alter exposed antigens. Owing to this rapid evolution, parasites develop drug resistance and express novel forms of antigenic proteins that are not recognized by the host immune system. There is an emerging need for novel interventions, including novel drugs and vaccines. Designing novel therapies requires knowledge about host-parasite interactions, which is still limited. However, significant progress has recently been achieved in this field through the application of bioinformatics analysis of parasite genome sequences. In this review, we describe the main achievements in 'malarial' bioinformatics and provide examples of successful applications of protein sequence analysis. These examples include the prediction of protein functions based on homology and the prediction of protein surface localization via domain and motif analysis. Additionally, we describe PlasmoDB, a database that stores accumulated experimental data. This tool allows data mining of the stored information and will play an important role in the development of malaria science. Finally, we illustrate the application of bioinformatics in the development of population genetics research on malaria parasites, an approach referred to as reverse ecology.

  4. Insights on Heme Synthesis in the Malaria Parasite.

    Nagaraj, Viswanathan A; Padmanaban, Govindarajan

    2017-08-01

    The malaria parasite has a functional heme-biosynthetic pathway, although it can access host hemoglobin-heme. The heme pathway is dispensable for blood stages, but essential in the mosquito stages which do not acquire hemoglobin-heme. We propose that the blood stage parasites maintain a dynamic heme pool through multiple back-up mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Protocol for production of a genetic cross of the rodent malaria parasites.

    Pattaradilokrat, Sittiporn; Li, Jian; Su, Xin-zhuan

    2011-01-03

    Variation in response to antimalarial drugs and in pathogenicity of malaria parasites is of biologic and medical importance. Linkage mapping has led to successful identification of genes or loci underlying various traits in malaria parasites of rodents and humans. The malaria parasite Plasmodium yoelii is one of many malaria species isolated from wild African rodents and has been adapted to grow in laboratories. This species reproduces many of the biologic characteristics of the human malaria parasites; genetic markers such as microsatellite and amplified fragment length polymorphism (AFLP) markers have also been developed for the parasite. Thus, genetic studies in rodent malaria parasites can be performed to complement research on Plasmodium falciparum. Here, we demonstrate the techniques for producing a genetic cross in P. yoelii that were first pioneered by Drs. David Walliker, Richard Carter, and colleagues at the University of Edinburgh. Genetic crosses in P. yoelii and other rodent malaria parasites are conducted by infecting mice Mus musculus with an inoculum containing gametocytes of two genetically distinct clones that differ in phenotypes of interest and by allowing mosquitoes to feed on the infected mice 4 days after infection. The presence of male and female gametocytes in the mouse blood is microscopically confirmed before feeding. Within 48 hrs after feeding, in the midgut of the mosquito, the haploid gametocytes differentiate into male and female gametes, fertilize, and form a diploid zygote (Fig. 1). During development of a zygote into an ookinete, meiosis appears to occur. If the zygote is derived through cross-fertilization between gametes of the two genetically distinct parasites, genetic exchanges (chromosomal reassortment and cross-overs between the non-sister chromatids of a pair of homologous chromosomes; Fig. 2) may occur, resulting in recombination of genetic material at homologous loci. Each zygote undergoes two successive nuclear

  6. A review of mixed malaria species infections in anopheline mosquitoes

    Day Nicholas PJ

    2011-08-01

    Full Text Available Abstract Background In patients with malaria mixed species infections are common and under reported. In PCR studies conducted in Asia mixed infection rates often exceed 20%. In South-East Asia, approximately one third of patients treated for falciparum malaria experience a subsequent Plasmodium vivax infection with a time interval suggesting relapse. It is uncertain whether the two infections are acquired simultaneously or separately. To determine whether mixed species infections in humans are derived from mainly from simultaneous or separate mosquito inoculations the literature on malaria species infection in wild captured anopheline mosquitoes was reviewed. Methods The biomedical literature was searched for studies of malaria infection and species identification in trapped wild mosquitoes and artificially infected mosquitoes. The study location and year, collection methods, mosquito species, number of specimens, parasite stage examined (oocysts or sporozoites, and the methods of parasite detection and speciation were tabulated. The entomological results in South East Asia were compared with mixed infection rates documented in patients in clinical studies. Results In total 63 studies were identified. Individual anopheline mosquitoes were examined for different malaria species in 28 of these. There were 14 studies from Africa; four with species evaluations in individual captured mosquitoes (SEICM. One study, from Ghana, identified a single mixed infection. No mixed infections were identified in Central and South America (seven studies, two SEICM. 42 studies were conducted in Asia and Oceania (11 from Thailand; 27 SEICM. The proportion of anophelines infected with Plasmodium falciparum parasites only was 0.51% (95% CI: 0.44 to 0.57%, for P. vivax only was 0.26% (95% CI: 0.21 to 0.30%, and for mixed P. falciparum and P. vivax infections was 0.036% (95% CI: 0.016 to 0.056%. The proportion of mixed infections in mosquitoes was significantly higher

  7. Polyamine uptake by the intraerythrocytic malaria parasite, Plasmodium falciparum.

    Niemand, J; Louw, A I; Birkholtz, L; Kirk, K

    2012-09-01

    Polyamines and the enzymes involved in their biosynthesis are present at high levels in rapidly proliferating cells, including cancer cells and protozoan parasites. Inhibition of polyamine biosynthesis in asexual blood-stage malaria parasites causes cytostatic arrest of parasite development under in vitro conditions, but does not cure infections in vivo. This may be due to replenishment of the parasite's intracellular polyamine pool via salvage of exogenous polyamines from the host. However, the mechanism(s) of polyamine uptake by the intraerythrocytic parasite are not well understood. In this study, the uptake of the polyamines, putrescine and spermidine, into Plasmodium falciparum parasites functionally isolated from their host erythrocyte was investigated using radioisotope flux techniques. Both putrescine and spermidine were taken up into isolated parasites via a temperature-dependent process that showed cross-competition between different polyamines. There was also some inhibition of polyamine uptake by basic amino acids. Inhibition of polyamine biosynthesis led to an increase in the total amount of putrescine and spermidine taken up from the extracellular medium. The uptake of putrescine and spermidine by isolated parasites was independent of extracellular Na(+) but increased with increasing external pH. Uptake also showed a marked dependence on the parasite's membrane potential, decreasing with membrane depolarization and increasing with membrane hyperpolarization. The data are consistent with polyamines being taken up into the parasite via an electrogenic uptake process, energised by the parasite's inwardly negative membrane potential. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  8. Prevalence of Malaria Parasites in Hospitals of Portharcourt ...

    This investigation was conducted between March and July, 2010 in Portharcourt metropolis, Rivers State, Nigeria. The method of diagnosis utilised by the hospitals, clinics, and diagnostic laboratories was thick and thin method and malaria parasite was identified using standard criteria. In all the zones of the study, high ...

  9. Implications of malaria and intestinal parasitic co-infections among ...

    The prevalence of malaria and gastrointestinal parasitic infections in out-patients of Federal Medical Center (FMC) Owerri Specialist Hospital, was studied between the months of January and June 2004. A total of 1,200 patients made up of preschool children (400), school children (400) and adults (400) were enlisted for the ...

  10. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds

    Ginsburg, Hagai

    2015-10-31

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound.

  11. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds

    Ginsburg, Hagai; Abdel-Haleem, Alyaa M.

    2015-01-01

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound.

  12. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds.

    Ginsburg, Hagai; Abdel-Haleem, Alyaa M

    2016-01-01

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Prevalence of malaria parasites and anaemia in pregnant and non ...

    A study of the prevalence of Malaria parasites in pregnant women attending pre - natal care in Government hospitals in two major towns (Aba and Okigwe) in Southeast Ngeria was carried out.Blood was collected by vein puncture rom 500 pregnant women in different trimesters (300 from Aba and 200 from Okigwe) and 200 ...

  14. Prevalence of Malaria Parasites among Nnamdi Azikwe University ...

    The prevalence of malaria parasites and antimalarial drug of choice wereinvestigated among students of Nnamdi Azikiwe University, Awka, Anambra State between February and May, 2008. A total of 800 blood samples were randomly collected from students aged 17-31 years. Thick films were prepared and microscopic ...

  15. Mosquito transmission of the rodent malaria parasite Plasmodium chabaudi

    Spence Philip J

    2012-12-01

    Full Text Available Abstract Background Serial blood passage of Plasmodium increases virulence, whilst mosquito transmission inherently regulates parasite virulence within the mammalian host. It is, therefore, imperative that all aspects of experimental malaria research are studied in the context of the complete Plasmodium life cycle. Methods Plasmodium chabaudi chabaudi displays many characteristics associated with human Plasmodium infection of natural mosquito vectors and the mammalian host, and thus provides a unique opportunity to study the pathogenesis of malaria in a single infection setting. An optimized protocol that permits efficient and reproducible vector transmission of P. c. chabaudi via Anopheles stephensi was developed. Results and conclusions This protocol was utilized for mosquito transmission of genetically distinct P. c. chabaudi isolates, highlighting differential parasite virulence within the mosquito vector and the spectrum of host susceptibility to infection initiated via the natural route, mosquito bite. An apposite experimental system in which to delineate the pathogenesis of malaria is described in detail.

  16. Wild Anopheles funestus mosquito genotypes are permissive for infection with the rodent malaria parasite, Plasmodium berghei.

    Jiannong Xu

    Full Text Available Malaria parasites undergo complex developmental transitions within the mosquito vector. A commonly used laboratory model for studies of mosquito-malaria interaction is the rodent parasite, P. berghei. Anopheles funestus is a major malaria vector in sub-Saharan Africa but has received less attention than the sympatric species, Anopheles gambiae. The imminent completion of the A. funestus genome sequence will provide currently lacking molecular tools to describe malaria parasite interactions in this mosquito, but previous reports suggested that A. funestus is not permissive for P. berghei development.An A. funestus population was generated in the laboratory by capturing female wild mosquitoes in Mali, allowing them to oviposit, and rearing the eggs to adults. These F1 progeny of wild mosquitoes were allowed to feed on mice infected with a fluorescent P. berghei strain. Fluorescence microscopy was used to track parasite development inside the mosquito, salivary gland sporozoites were tested for infectivity to mice, and parasite development in A. funestus was compared to A. gambiae.P. berghei oocysts were detectable on A. funestus midguts by 7 days post-infection. By 18-20 days post-infection, sporozoites had invaded the median and distal lateral lobes of the salivary glands, and hemocoel sporozoites were observed in the hemolymph. Mosquitoes were capable of infecting mice via bite, demonstrating that A. funestus supports the complete life cycle of P. berghei. In a random sample of wild mosquito genotypes, A. funestus prevalence of infection and the characteristics of parasite development were similar to that observed in A. gambiae-P. berghei infections.The data presented in this study establish an experimental laboratory model for Plasmodium infection of A. funestus, an important vector of human malaria. Studying A. funestus-Plasmodium interactions is now feasible in a laboratory setting. This information lays the groundwork for exploitation of the

  17. African origin of the malaria parasite Plasmodium vivax.

    Liu, Weimin; Li, Yingying; Shaw, Katharina S; Learn, Gerald H; Plenderleith, Lindsey J; Malenke, Jordan A; Sundararaman, Sesh A; Ramirez, Miguel A; Crystal, Patricia A; Smith, Andrew G; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N; Speede, Sheri; Sanz, Crickette M; Morgan, David B; Gonder, Mary K; Kranzusch, Philip J; Walsh, Peter D; Georgiev, Alexander V; Muller, Martin N; Piel, Alex K; Stewart, Fiona A; Wilson, Michael L; Pusey, Anne E; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J; Nolder, Debbie; Hart, John A; Hart, Terese B; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F; Schneider, Bradley S; Wolfe, Nathan D; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L; Shaw, George M; Rayner, Julian C; Peeters, Martine; Hahn, Beatrice H; Sharp, Paul M

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa.

  18. African origin of the malaria parasite Plasmodium vivax

    Liu, Weimin; Li, Yingying; Shaw, Katharina S.; Learn, Gerald H.; Plenderleith, Lindsey J.; Malenke, Jordan A.; Sundararaman, Sesh A.; Ramirez, Miguel A.; Crystal, Patricia A.; Smith, Andrew G.; Bibollet-Ruche, Frederic; Ayouba, Ahidjo; Locatelli, Sabrina; Esteban, Amandine; Mouacha, Fatima; Guichet, Emilande; Butel, Christelle; Ahuka-Mundeke, Steve; Inogwabini, Bila-Isia; Ndjango, Jean-Bosco N.; Speede, Sheri; Sanz, Crickette M.; Morgan, David B.; Gonder, Mary K.; Kranzusch, Philip J.; Walsh, Peter D.; Georgiev, Alexander V.; Muller, Martin N.; Piel, Alex K.; Stewart, Fiona A.; Wilson, Michael L.; Pusey, Anne E.; Cui, Liwang; Wang, Zenglei; Färnert, Anna; Sutherland, Colin J.; Nolder, Debbie; Hart, John A.; Hart, Terese B.; Bertolani, Paco; Gillis, Amethyst; LeBreton, Matthew; Tafon, Babila; Kiyang, John; Djoko, Cyrille F.; Schneider, Bradley S.; Wolfe, Nathan D.; Mpoudi-Ngole, Eitel; Delaporte, Eric; Carter, Richard; Culleton, Richard L.; Shaw, George M.; Rayner, Julian C.; Peeters, Martine; Hahn, Beatrice H.; Sharp, Paul M.

    2014-01-01

    Plasmodium vivax is the leading cause of human malaria in Asia and Latin America but is absent from most of central Africa due to the near fixation of a mutation that inhibits the expression of its receptor, the Duffy antigen, on human erythrocytes. The emergence of this protective allele is not understood because P. vivax is believed to have originated in Asia. Here we show, using a non-invasive approach, that wild chimpanzees and gorillas throughout central Africa are endemically infected with parasites that are closely related to human P. vivax. Sequence analyses reveal that ape parasites lack host specificity and are much more diverse than human parasites, which form a monophyletic lineage within the ape parasite radiation. These findings indicate that human P. vivax is of African origin and likely selected for the Duffy-negative mutation. All extant human P. vivax parasites are derived from a single ancestor that escaped out of Africa. PMID:24557500

  19. Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria-Causing Plasmodium Parasites Based on Enzyme Activity Measurement

    Juul, Sissel; Nielsen, Christine Juul Fælled; Labouriau, Rodrigo

    2012-01-01

    detectable at the single-molecule level. Combined with a droplet microfluidics lab-on-a-chip platform, this design allowed for sensitive, specific, and quantitative detection of all human-malaria-causing Plasmodium species in single drops of unprocessed blood with a detection limit of less than one parasite....../μL. Moreover, the setup allowed for detection of Plasmodium parasites in noninvasive saliva samples from infected patients. During recent years malaria transmission has declined worldwide, and with this the number of patients with low-parasite density has increased. Consequently, the need for accurate...

  20. Investigating the evolution of apoptosis in malaria parasites: the importance of ecology

    Pollitt Laura C

    2010-11-01

    Full Text Available Abstract Apoptosis is a precisely regulated process of cell death which occurs widely in multicellular organisms and is essential for normal development and immune defences. In recent years, interest has grown in the occurrence of apoptosis in unicellular organisms. In particular, as apoptosis has been reported in a wide range of species, including protozoan malaria parasites and trypanosomes, it may provide a novel target for intervention. However, it is important to understand when and why parasites employ an apoptosis strategy before the likely long- and short-term success of such an intervention can be evaluated. The occurrence of apoptosis in unicellular parasites provides a challenge for evolutionary theory to explain as organisms are expected to have evolved to maximise their own proliferation, not death. One possible explanation is that protozoan parasites undergo apoptosis in order to gain a group benefit from controlling their density as this prevents premature vector mortality. However, experimental manipulations to examine the ultimate causes behind apoptosis in parasites are lacking. In this review, we focus on malaria parasites to outline how an evolutionary framework can help make predictions about the ecological circumstances under which apoptosis could evolve. We then highlight the ecological considerations that should be taken into account when designing evolutionary experiments involving markers of cell death, and we call for collaboration between researchers in different fields to identify and develop appropriate markers in reference to parasite ecology and to resolve debates on terminology.

  1. Stress and sex in malaria parasites: Why does commitment vary?

    Carter, Lucy M; Kafsack, Björn F C; Llinás, Manuel; Mideo, Nicole; Pollitt, Laura C; Reece, Sarah E

    2013-01-01

    For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial. We propose that evolutionary theory developed to explain variation in reproductive effort in multicellular organisms, provides a framework to understand gametocyte investment strategies. We examine why parasites adjust investment in gametocytes according to the impact of changing conditions on their in-host survival. We then outline experiments required to determine whether plasticity in gametocyte investment enables parasites to maintain fitness in a variable environment. Gametocytes are a target for anti-malarial transmission-blocking interventions so understanding plasticity in investment is central to maximizing the success of control measures in the face of parasite evolution.

  2. Prevalence of malaria parasites and Hepatitis-B virus in patients ...

    Malaria and Hepatitis-B virus (HBV) remain a threat to human health in many developing nations. Many regions with high malaria prevalence are also endemic for other infectious diseases which may predispose them to more of the malaria infection. Using thin and thick film preparations, malaria parasites were detected, ...

  3. Proteins involved in invasion of human red blood cells by malaria parasites

    Ewa Jaśkiewicz

    2010-11-01

    Full Text Available Malaria is a disease caused by parasites of Plasmodium species. It is responsible for around 1-2 million deaths annually, mainly children under the age of 5. It occurs mainly in tropical and subtropical areas.Malaria is caused by five Plasmodium species:[i] P. falciparum, P. malariae, P. vivax, P. knowlesi[/i] and [i]P. ovale[/i]. Mosquitoes spread the disease by biting humans. The malaria parasite has two stages of development: the human stage and the mosquito stage. The first stage occurs in the human body and is divided into two phases: the liver phase and the blood phase.The invasion of erythrocytes by [i]Plasmodium[/i] merozoites is a multistep process of specific protein interactions between the parasite and red blood cell. The first step is the reversible merozoite attachment to the erythrocyte followed by its apical reorientation, then formation of an irreversible “tight” junction and finally entry into the red cell in a parasitophorous vacuole.The blood phase is supported by a number of proteins produced by the parasite. The merozoite surface GPI-anchored proteins (MSP-1, 2, 4, 5, 8 and 10 assist in the process of recognition of susceptible erythrocytes, apical membrane antigen (AMA-1 may be directly responsible for apical reorientation of the merozoite and apical proteins which function in tight junction formation. These ligands are members of two families: Duffy binding-like (DBL and reticulocyte binding-like (RBL proteins. In [i]Plasmodium[/i] [i]falciparum[/i] the DBL family includes: EBA-175, EBA-140 (BAEBL, EBA-181 (JESEBL, EBA-165 (PEBL and EBL-1 ligands.To date, no effective antimalarial vaccine has been developed, but there are several studies for this purpose. Therefore, it is crucial to understand the molecular basis of host cells invasion by parasites. Major efforts are focused on developing a multiantigenic and multiepitope vaccine preventing all steps of [i]Plasmodium[/i] invasion.

  4. Comparative Genomics and Systems Biology of Malaria Parasites Plasmodium

    Cai, Hong; Zhou, Zhan; Gu, Jianying; Wang, Yufeng

    2013-01-01

    Malaria is a serious infectious disease that causes over one million deaths yearly. It is caused by a group of protozoan parasites in the genus Plasmodium. No effective vaccine is currently available and the elevated levels of resistance to drugs in use underscore the pressing need for novel antimalarial targets. In this review, we survey omics centered developments in Plasmodium biology, which have set the stage for a quantum leap in our understanding of the fundamental processes of the parasite life cycle and mechanisms of drug resistance and immune evasion. PMID:24298232

  5. Non-Genetic Determinants of Mosquito Competence for Malaria Parasites

    Lefèvre, Thierry; Vantaux, Amélie; Dabiré, Kounbobr R.; Mouline, Karine; Cohuet, Anna

    2013-01-01

    Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies. PMID:23818841

  6. Non-genetic determinants of mosquito competence for malaria parasites.

    Thierry Lefèvre

    Full Text Available Understanding how mosquito vectors and malaria parasites interact is of fundamental interest, and it also offers novel perspectives for disease control. Both the genetic and environmental contexts are known to affect the ability of mosquitoes to support malaria development and transmission, i.e., vector competence. Although the role of environment has long been recognized, much work has focused on host and parasite genetic effects. However, the last few years have seen a surge of studies revealing a great diversity of ways in which non-genetic factors can interfere with mosquito-Plasmodium interactions. Here, we review the current evidence for such environmentally mediated effects, including ambient temperature, mosquito diet, microbial gut flora, and infection history, and we identify additional factors previously overlooked in mosquito-Plasmodium interactions. We also discuss epidemiological implications, and the evolutionary consequences for vector immunity and parasite transmission strategies. Finally, we propose directions for further research and argue that an improved knowledge of non-genetic influences on mosquito-Plasmodium interactions could aid in implementing conventional malaria control measures and contribute to the design of novel strategies.

  7. The malaria parasite Plasmodium relictum in the endemic avifauna of eastern Cuba.

    Soares, Letícia; Marra, Peter; Gray, Lindsey; Ricklefs, Robert E

    2017-12-01

    Island populations are vulnerable to introduced pathogens, as evidenced by extinction or population decline of several endemic Hawaiian birds caused by the malaria parasite, Plasmodium relictum (order Haemosporida). We analyzed blood samples from 363 birds caught near Guantánamo Bay, Cuba, for the presence of haemosporidian infections. We characterized parasite lineages by determining nucleotide variation of the parasite's mitochondrial cyt b gene. Fifty-nine individuals were infected, and we identified 7 lineages of haemosporidian parasites. Fifty individuals were infected by 6 Haemoproteus sp. lineages, including a newly characterized lineage of Haem. (Parahaemoproteus) sp. CUH01. Nine individuals carried the P. relictum lineage GRW4, including 5 endemic Cuban Grassquits (Tiaris canorus) and 1 migratory Cape May Warbler (Setophaga tigrina). A sequence of the merozoite surface protein gene from one Cuban Grassquit infected with GRW4 matched that of the Hawaiian haplotype Pr9. Our results indicate that resident and migratory Cuban birds are infected with a malaria lineage that has severely affected populations of several endemic Hawaiian birds. We suggest GRW4 may be associated with the lack of several bird species on Cuba that are ubiquitous elsewhere in the West Indies. From the standpoint of avian conservation in the Caribbean Basin, it will be important to determine the distribution of haemosporidian parasites, especially P. relictum GRW4, in Cuba as well as the pathogenicity of this lineage in species that occur and are absent from Cuba. © 2017 Society for Conservation Biology.

  8. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    Otto, Thomas D.

    2014-09-09

    Plasmodium falciparum causes most human malaria deaths, having prehistorically evolved from parasites of African Great Apes. Here we explore the genomic basis of P. falciparum adaptation to human hosts by fully sequencing the genome of the closely related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete conservation of genomic synteny, but against this strikingly conserved background we observe major differences at loci involved in erythrocyte invasion. The organization of most virulence-associated multigene families, including the hypervariable var genes, is broadly conserved, but P. falciparum has a smaller subset of rif and stevor genes whose products are expressed on the infected erythrocyte surface. Genome-wide analysis identifies other loci under recent positive selection, but a limited number of changes at the host–parasite interface may have mediated host switching.

  9. Sex and death: the effects of innate immune factors on the sexual reproduction of malaria parasites.

    Ricardo S Ramiro

    2011-03-01

    Full Text Available Malaria parasites must undergo a round of sexual reproduction in the blood meal of a mosquito vector to be transmitted between hosts. Developing a transmission-blocking intervention to prevent parasites from mating is a major goal of biomedicine, but its effectiveness could be compromised if parasites can compensate by simply adjusting their sex allocation strategies. Recently, the application of evolutionary theory for sex allocation has been supported by experiments demonstrating that malaria parasites adjust their sex ratios in response to infection genetic diversity, precisely as predicted. Theory also predicts that parasites should adjust sex allocation in response to host immunity. Whilst data are supportive, the assumptions underlying this prediction - that host immune responses have differential effects on the mating ability of males and females - have not yet been tested. Here, we combine experimental work with theoretical models in order to investigate whether the development and fertility of male and female parasites is affected by innate immune factors and develop new theory to predict how parasites' sex allocation strategies should evolve in response to the observed effects. Specifically, we demonstrate that reactive nitrogen species impair gametogenesis of males only, but reduce the fertility of both male and female gametes. In contrast, tumour necrosis factor-α does not influence gametogenesis in either sex but impairs zygote development. Therefore, our experiments demonstrate that immune factors have complex effects on each sex, ranging from reducing the ability of gametocytes to develop into gametes, to affecting the viability of offspring. We incorporate these results into theory to predict how the evolutionary trajectories of parasite sex ratio strategies are shaped by sex differences in gamete production, fertility and offspring development. We show that medical interventions targeting offspring development are more likely

  10. Evidence-based annotation of the malaria parasite's genome using comparative expression profiling.

    Yingyao Zhou

    2008-02-01

    Full Text Available A fundamental problem in systems biology and whole genome sequence analysis is how to infer functions for the many uncharacterized proteins that are identified, whether they are conserved across organisms of different phyla or are phylum-specific. This problem is especially acute in pathogens, such as malaria parasites, where genetic and biochemical investigations are likely to be more difficult. Here we perform comparative expression analysis on Plasmodium parasite life cycle data derived from P. falciparum blood, sporozoite, zygote and ookinete stages, and P. yoelii mosquito oocyst and salivary gland sporozoites, blood and liver stages and show that type II fatty acid biosynthesis genes are upregulated in liver and insect stages relative to asexual blood stages. We also show that some universally uncharacterized genes with orthologs in Plasmodium species, Saccharomyces cerevisiae and humans show coordinated transcription patterns in large collections of human and yeast expression data and that the function of the uncharacterized genes can sometimes be predicted based on the expression patterns across these diverse organisms. We also use a comprehensive and unbiased literature mining method to predict which uncharacterized parasite-specific genes are likely to have roles in processes such as gliding motility, host-cell interactions, sporozoite stage, or rhoptry function. These analyses, together with protein-protein interaction data, provide probabilistic models that predict the function of 926 uncharacterized malaria genes and also suggest that malaria parasites may provide a simple model system for the study of some human processes. These data also provide a foundation for further studies of transcriptional regulation in malaria parasites.

  11. A comprehensive evaluation of rodent malaria parasite genomes and gene expression

    Otto, Thomas D

    2014-10-30

    Background: Rodent malaria parasites (RMP) are used extensively as models of human malaria. Draft RMP genomes have been published for Plasmodium yoelii, P. berghei ANKA (PbA) and P. chabaudi AS (PcAS). Although availability of these genomes made a significant impact on recent malaria research, these genomes were highly fragmented and were annotated with little manual curation. The fragmented nature of the genomes has hampered genome wide analysis of Plasmodium gene regulation and function. Results: We have greatly improved the genome assemblies of PbA and PcAS, newly sequenced the virulent parasite P. yoelii YM genome, sequenced additional RMP isolates/lines and have characterized genotypic diversity within RMP species. We have produced RNA-seq data and utilized it to improve gene-model prediction and to provide quantitative, genome-wide, data on gene expression. Comparison of the RMP genomes with the genome of the human malaria parasite P. falciparum and RNA-seq mapping permitted gene annotation at base-pair resolution. Full-length chromosomal annotation permitted a comprehensive classification of all subtelomeric multigene families including the `Plasmodium interspersed repeat genes\\' (pir). Phylogenetic classification of the pir family, combined with pir expression patterns, indicates functional diversification within this family. Conclusions: Complete RMP genomes, RNA-seq and genotypic diversity data are excellent and important resources for gene-function and post-genomic analyses and to better interrogate Plasmodium biology. Genotypic diversity between P. chabaudi isolates makes this species an excellent parasite to study genotype-phenotype relationships. The improved classification of multigene families will enhance studies on the role of (variant) exported proteins in virulence and immune evasion/modulation.

  12. Plasmodium species differentiation by non-expert on-line volunteers for remote malaria field diagnosis.

    Ortiz-Ruiz, Alejandra; Postigo, María; Gil-Casanova, Sara; Cuadrado, Daniel; Bautista, José M; Rubio, José Miguel; Luengo-Oroz, Miguel; Linares, María

    2018-01-30

    Routine field diagnosis of malaria is a considerable challenge in rural and low resources endemic areas mainly due to lack of personnel, training and sample processing capacity. In addition, differential diagnosis of Plasmodium species has a high level of misdiagnosis. Real time remote microscopical diagnosis through on-line crowdsourcing platforms could be converted into an agile network to support diagnosis-based treatment and malaria control in low resources areas. This study explores whether accurate Plasmodium species identification-a critical step during the diagnosis protocol in order to choose the appropriate medication-is possible through the information provided by non-trained on-line volunteers. 88 volunteers have performed a series of questionnaires over 110 images to differentiate species (Plasmodium falciparum, Plasmodium ovale, Plasmodium vivax, Plasmodium malariae, Plasmodium knowlesi) and parasite staging from thin blood smear images digitalized with a smartphone camera adapted to the ocular of a conventional light microscope. Visual cues evaluated in the surveys include texture and colour, parasite shape and red blood size. On-line volunteers are able to discriminate Plasmodium species (P. falciparum, P. malariae, P. vivax, P. ovale, P. knowlesi) and stages in thin-blood smears according to visual cues observed on digitalized images of parasitized red blood cells. Friendly textual descriptions of the visual cues and specialized malaria terminology is key for volunteers learning and efficiency. On-line volunteers with short-training are able to differentiate malaria parasite species and parasite stages from digitalized thin smears based on simple visual cues (shape, size, texture and colour). While the accuracy of a single on-line expert is far from perfect, a single parasite classification obtained by combining the opinions of multiple on-line volunteers over the same smear, could improve accuracy and reliability of Plasmodium species

  13. CHEMOTHERAPY, WITHIN-HOST ECOLOGY AND THE FITNESS OF DRUG-RESISTANT MALARIA PARASITES

    Huijben, Silvie; Nelson, William A.; Wargo, Andrew R.; Sim, Derek G.; Drew, Damien R.; Read, Andrew F.

    2010-01-01

    A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria mod...

  14. Motility precedes egress of malaria parasites from oocysts

    Klug, Dennis; Frischknecht, Friedrich

    2017-01-01

    Malaria is transmitted when an infected Anopheles mosquito deposits Plasmodium sporozoites in the skin during a bite. Sporozoites are formed within oocysts at the mosquito midgut wall and are released into the hemolymph, from where they invade the salivary glands and are subsequently transmitted to the vertebrate host. We found that a thrombospondin-repeat containing sporozoite-specific protein named thrombospondin-releated protein 1 (TRP1) is important for oocyst egress and salivary gland invasion, and hence for the transmission of malaria. We imaged the release of sporozoites from oocysts in situ, which was preceded by active motility. Parasites lacking TRP1 failed to migrate within oocysts and did not egress, suggesting that TRP1 is a vital component of the events that precede intra-oocyst motility and subsequently sporozoite egress and salivary gland invasion. DOI: http://dx.doi.org/10.7554/eLife.19157.001 PMID:28115054

  15. Targeting NAD+ metabolism in the human malaria parasite Plasmodium falciparum.

    Jessica K O'Hara

    Full Text Available Nicotinamide adenine dinucleotide (NAD+ is an essential metabolite utilized as a redox cofactor and enzyme substrate in numerous cellular processes. Elevated NAD+ levels have been observed in red blood cells infected with the malaria parasite Plasmodium falciparum, but little is known regarding how the parasite generates NAD+. Here, we employed a mass spectrometry-based metabolomic approach to confirm that P. falciparum lacks the ability to synthesize NAD+ de novo and is reliant on the uptake of exogenous niacin. We characterized several enzymes in the NAD+ pathway and demonstrate cytoplasmic localization for all except the parasite nicotinamidase, which concentrates in the nucleus. One of these enzymes, the P. falciparum nicotinate mononucleotide adenylyltransferase (PfNMNAT, is essential for NAD+ metabolism and is highly diverged from the human homolog, but genetically similar to bacterial NMNATs. Our results demonstrate the enzymatic activity of PfNMNAT in vitro and demonstrate its ability to genetically complement the closely related Escherichia coli NMNAT. Due to the similarity of PfNMNAT to the bacterial enzyme, we tested a panel of previously identified bacterial NMNAT inhibitors and synthesized and screened twenty new derivatives, which demonstrate a range of potency against live parasite culture. These results highlight the importance of the parasite NAD+ metabolic pathway and provide both novel therapeutic targets and promising lead antimalarial compounds.

  16. Signalling in malaria parasites – The MALSIG consortium#

    Doerig C.

    2009-09-01

    Full Text Available Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense and respond to the intra- and the extra-cellular environments are therefore key elements for the proliferation and transmission of Plasmodium, and therefore are, from a public health perspective, strategic targets in the fight against this deadly disease. The MALSIG consortium, which was initiated in February 2009, was designed with the primary objective to integrate research ongoing in Europe and India on i the properties of Plasmodium signalling molecules, and ii developmental processes occurring at various points of the parasite life cycle. On one hand, functional studies of individual genes and their products in Plasmodium falciparum (and in the technically more manageable rodent model Plasmodium berghei are providing information on parasite protein kinases and phosphatases, and of the molecules governing cyclic nucleotide metabolism and calcium signalling. On the other hand, cellular and molecular studies are elucidating key steps of parasite development such as merozoite invasion and egress in blood and liver parasite stages, control of DNA replication in asexual and sexual development, membrane dynamics and trafficking, production of gametocytes in the vertebrate host and further parasite development in the mosquito. This article, which synthetically reviews such signalling molecules and cellular processes, aims to provide a glimpse of the global frame in which the activities of the MALSIG consortium will develop over the next three years.

  17. Diversity, loss, and gain of malaria parasites in a globally invasive bird.

    Marzal, Alfonso; Ricklefs, Robert E; Valkiūnas, Gediminas; Albayrak, Tamer; Arriero, Elena; Bonneaud, Camille; Czirják, Gábor A; Ewen, John; Hellgren, Olof; Hořáková, Dita; Iezhova, Tatjana A; Jensen, Henrik; Križanauskienė, Asta; Lima, Marcos R; de Lope, Florentino; Magnussen, Eyðfinn; Martin, Lynn B; Møller, Anders P; Palinauskas, Vaidas; Pap, Péter L; Pérez-Tris, Javier; Sehgal, Ravinder N M; Soler, Manuel; Szöllosi, Eszter; Westerdahl, Helena; Zetindjiev, Pavel; Bensch, Staffan

    2011-01-01

    Invasive species can displace natives, and thus identifying the traits that make aliens successful is crucial for predicting and preventing biodiversity loss. Pathogens may play an important role in the invasive process, facilitating colonization of their hosts in new continents and islands. According to the Novel Weapon Hypothesis, colonizers may out-compete local native species by bringing with them novel pathogens to which native species are not adapted. In contrast, the Enemy Release Hypothesis suggests that flourishing colonizers are successful because they have left their pathogens behind. To assess the role of avian malaria and related haemosporidian parasites in the global spread of a common invasive bird, we examined the prevalence and genetic diversity of haemosporidian parasites (order Haemosporida, genera Plasmodium and Haemoproteus) infecting house sparrows (Passer domesticus). We sampled house sparrows (N = 1820) from 58 locations on 6 continents. All the samples were tested using PCR-based methods; blood films from the PCR-positive birds were examined microscopically to identify parasite species. The results show that haemosporidian parasites in the house sparrows' native range are replaced by species from local host-generalist parasite fauna in the alien environments of North and South America. Furthermore, sparrows in colonized regions displayed a lower diversity and prevalence of parasite infections. Because the house sparrow lost its native parasites when colonizing the American continents, the release from these natural enemies may have facilitated its invasion in the last two centuries. Our findings therefore reject the Novel Weapon Hypothesis and are concordant with the Enemy Release Hypothesis.

  18. Diversity, loss, and gain of malaria parasites in a globally invasive bird.

    Alfonso Marzal

    Full Text Available Invasive species can displace natives, and thus identifying the traits that make aliens successful is crucial for predicting and preventing biodiversity loss. Pathogens may play an important role in the invasive process, facilitating colonization of their hosts in new continents and islands. According to the Novel Weapon Hypothesis, colonizers may out-compete local native species by bringing with them novel pathogens to which native species are not adapted. In contrast, the Enemy Release Hypothesis suggests that flourishing colonizers are successful because they have left their pathogens behind. To assess the role of avian malaria and related haemosporidian parasites in the global spread of a common invasive bird, we examined the prevalence and genetic diversity of haemosporidian parasites (order Haemosporida, genera Plasmodium and Haemoproteus infecting house sparrows (Passer domesticus. We sampled house sparrows (N = 1820 from 58 locations on 6 continents. All the samples were tested using PCR-based methods; blood films from the PCR-positive birds were examined microscopically to identify parasite species. The results show that haemosporidian parasites in the house sparrows' native range are replaced by species from local host-generalist parasite fauna in the alien environments of North and South America. Furthermore, sparrows in colonized regions displayed a lower diversity and prevalence of parasite infections. Because the house sparrow lost its native parasites when colonizing the American continents, the release from these natural enemies may have facilitated its invasion in the last two centuries. Our findings therefore reject the Novel Weapon Hypothesis and are concordant with the Enemy Release Hypothesis.

  19. Application of molecular methods for monitoring transmission stages of malaria parasites

    Babiker, Hamza A; Schneider, Petra

    2008-01-01

    Recent technical advances in malaria research have allowed specific detection of mRNA of genes that are expressed exclusively in sexual stages (gametocytes) of malaria parasites. The specificity and sensitivity of these techniques were validated on cultured laboratory clones of both human malaria parasites (Plasmodium falciparum) and rodent parasites (P. chabaudi). More recently, quantitative molecular techniques have been developed to quantify these sexual stages and used to monitor gametocyte dynamics and their transmission to mosquitoes. Molecular techniques showed that the infectious reservoir for malaria is larger than expected from previous microscopic studies; individual parasite genotypes within an infection can simultaneously produce infectious gametocytes; gametocyte production can be sustained for several months, and is modulated by environmental factors. The above techniques have empowered approaches for in-depth analysis of the biology of the transmission stages of the parasite and epidemiology of malaria transmission

  20. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants.

    Claessens, Antoine; Affara, Muna; Assefa, Samuel A; Kwiatkowski, Dominic P; Conway, David J

    2017-01-24

    Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.

  1. Generation of genetically attenuated blood-stage malaria parasites; characterizing growth and virulence in a rodent model of malaria

    Lin, Jingwen

    2013-01-01

    Despite intense efforts over the past 50 years to develop a vaccine, there is currently no licensed malaria vaccine available. The limited success in inducing sufficient protection against malaria with subunit-vaccines has renewed an interest in whole-parasite vaccination strategies. While

  2. Emerging Functions of Transcription Factors in Malaria Parasite

    Renu Tuteja

    2011-01-01

    Full Text Available Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.

  3. Environmental Constraints Guide Migration of Malaria Parasites during Transmission

    Hellmann, Janina Kristin; Münter, Sylvia; Kudryashev, Mikhail; Schulz, Simon; Heiss, Kirsten; Müller, Ann-Kristin; Matuschewski, Kai; Spatz, Joachim P.; Schwarz, Ulrich S.; Frischknecht, Friedrich

    2011-01-01

    Migrating cells are guided in complex environments mainly by chemotaxis or structural cues presented by the surrounding tissue. During transmission of malaria, parasite motility in the skin is important for Plasmodium sporozoites to reach the blood circulation. Here we show that sporozoite migration varies in different skin environments the parasite encounters at the arbitrary sites of the mosquito bite. In order to systematically examine how sporozoite migration depends on the structure of the environment, we studied it in micro-fabricated obstacle arrays. The trajectories observed in vivo and in vitro closely resemble each other suggesting that structural constraints can be sufficient to guide Plasmodium sporozoites in complex environments. Sporozoite speed in different environments is optimized for migration and correlates with persistence length and dispersal. However, this correlation breaks down in mutant sporozoites that show adhesion impairment due to the lack of TRAP-like protein (TLP) on their surfaces. This may explain their delay in infecting the host. The flexibility of sporozoite adaption to different environments and a favorable speed for optimal dispersal ensures efficient host switching during malaria transmission. PMID:21698220

  4. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    Ryuma Matsubara

    Full Text Available The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  5. Parasites of mammals species abundance near zone Chernobyl

    Pen'kevich, V.A.

    2014-01-01

    In wildlife reserve parasitize various types of parasites: arachnids (mites) parasitic insects (horseflies, keds, mosquitoes, gnats, midges), helminths (trematodes, cestodes, nematodes and acanthocephalans) and parasitic protozoa. In quantity: 3 (beaver) to 25 species (wolf). (authors)

  6. Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes following Drug Treatment in Rodent Malaria

    Bell, Andrew S.; Huijben, Silvie; Paaijmans, Krijn P.; Sim, Derek G.; Chan, Brian H. K.; Nelson, William A.; Read, Andrew F.

    2012-01-01

    The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasm...

  7. Lineage-specific positive selection at the merozoite surface protein 1 (msp1 locus of Plasmodium vivax and related simian malaria parasites

    Kawai Satoru

    2010-02-01

    Full Text Available Abstract Background The 200 kDa merozoite surface protein 1 (MSP-1 of malaria parasites, a strong vaccine candidate, plays a key role during erythrocyte invasion and is a target of host protective immune response. Plasmodium vivax, the most widespread human malaria parasite, is closely related to parasites that infect Asian Old World monkeys, and has been considered to have become a parasite of man by host switch from a macaque malaria parasite. Several Asian monkey parasites have a range of natural hosts. The same parasite species shows different disease manifestations among host species. This suggests that host immune responses to P. vivax-related malaria parasites greatly differ among host species (albeit other factors. It is thus tempting to invoke that a major immune target parasite protein such as MSP-1 underwent unique evolution, depending on parasite species that exhibit difference in host range and host specificity. Results We performed comparative phylogenetic and population genetic analyses of the gene encoding MSP-1 (msp1 from P. vivax and nine P. vivax-related simian malaria parasites. The inferred phylogenetic tree of msp1 significantly differed from that of the mitochondrial genome, with a striking displacement of P. vivax from a position close to P. cynomolgi in the mitochondrial genome tree to an outlier of Asian monkey parasites. Importantly, positive selection was inferred for two ancestral branches, one leading to P. inui and P. hylobati and the other leading to P. vivax, P. fieldi and P. cynomolgi. This ancestral positive selection was estimated to have occurred three to six million years ago, coinciding with the period of radiation of Asian macaques. Comparisons of msp1 polymorphisms between P. vivax, P. inui and P. cynomolgi revealed that while some positively selected amino acid sites or regions are shared by these parasites, amino acid changes greatly differ, suggesting that diversifying selection is acting species

  8. Using rapid diagnostic tests as source of malaria parasite DNA for molecular analyses in the era of declining malaria prevalence

    Ishengoma, Deus S; Lwitiho, Sudi; Madebe, Rashid A

    2011-01-01

    was conducted to examine if sufficient DNA could be successfully extracted from malaria rapid diagnostic tests (RDTs), used and collected as part of routine case management services in health facilities, and thus forming the basis for molecular analyses, surveillance and quality control (QC) testing of RDTs....... continued molecular surveillance of malaria parasites is important to early identify emerging anti-malarial drug resistance, it is becoming increasingly difficult to obtain parasite samples from ongoing studies, such as routine drug efficacy trials. To explore other sources of parasite DNA, this study...

  9. Malaria vector species in Colombia: a review

    James Montoya-Lerma

    2011-08-01

    Full Text Available Here we present a comprehensive review of the literature on the vectorial importance of the major Anopheles malaria vectors in Colombia. We provide basic information on the geographical distribution, altitudinal range, immature habitats, adult behaviour, feeding preferences and anthropophily, endophily and infectivity rates. We additionally review information on the life cycle, longevity and population fluctuation of Colombian Anopheles species. Emphasis was placed on the primary vectors that have been epidemiologically incriminated in malaria transmission: Anopheles darlingi, Anopheles albimanus and Anopheles nuneztovari. The role of a selection of local, regional or secondary vectors (e.g., Anopheles pseudopunctipennis and Anopheles neivai is also discussed. We highlight the importance of combining biological, morphological and molecular data for the correct taxonomical determination of a given species, particularly for members of the species complexes. We likewise emphasise the importance of studying the bionomics of primary and secondary vectors along with an examination of the local conditions affecting the transmission of malaria. The presence and spread of the major vectors and the emergence of secondary species capable of transmitting human Plasmodia are of great interest. When selecting control measures, the anopheline diversity in the region must be considered. Variation in macroclimate conditions over a species' geographical range must be well understood and targeted to plan effective control measures based on the population dynamics of the local Anopheles species.

  10. Parasite density and the spectrum of clinical illness in falciparum malaria

    Ali, H.; Mahmood, T.; Ahmed, N.

    2008-01-01

    To determine the impact of percentage parasitemia and clinical features on morbidity and mortality in patients with P. falciparum malaria. Seventy-six adult patients of smear positive P. falciparum malaria were selected for the study. Parasite density was estimated on thin blood film and expressed as percentage of red blood cells parasitized. Patients were divided into three groups on the basis of parasite density. The data was analyzed on SPSS version 12. Results were expressed as percentages, mean and standard deviations. P-value 10%. Comparative analysis of the groups showed that pallor, impaired consciousness, jaundice or malarial hepatitis, thrombocytopenia, acute renal failure, DIC, and mortality were all strongly associated with the density of Plasmodium falciparum malaria (p=0.001). Parasite density was not related to age, gender and hepatosplenomegaly. High parasite density was associated with severe clinical illness, complications and mortality. Parasite counts of > 5% may be considered as hyperparasitaemia in this population of the world. (author)

  11. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite

    Kenthirapalan, S.; Waters, A.P.; Matuschewski, K.; Kooij, T.W.A.

    2016-01-01

    Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of

  12. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    Ramaprasad, Abhinay; Pain, Arnab; Ravasi, Timothy

    2012-01-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable

  13. Parasite threshold associated with clinical malaria in areas of different transmission intensities in north eastern Tanzania

    Mmbando, Bruno P; Lusingu, John P; Vestergaard, Lasse S

    2009-01-01

    BACKGROUND: In Sub-Sahara Africa, malaria due to Plasmodium falciparum is the main cause of ill health. Evaluation of malaria interventions, such as drugs and vaccines depends on clinical definition of the disease, which is still a challenge due to lack of distinct malaria specific clinical...... features. Parasite threshold is used in definition of clinical malaria in evaluation of interventions. This however, is likely to be influenced by other factors such as transmission intensity as well as individual level of immunity against malaria. METHODS: This paper describes step function and dose...... response model with threshold parameter as a tool for estimation of parasite threshold for onset of malaria fever in highlands (low transmission) and lowlands (high transmission intensity) strata. These models were fitted using logistic regression stratified by strata and age groups (0-1, 2-3, 4-5, 6...

  14. Prospective identification of malaria parasite genes under balancing selection.

    Kevin K A Tetteh

    Full Text Available Endemic human pathogens are subject to strong immune selection, and interrogation of pathogen genome variation for signatures of balancing selection can identify important target antigens. Several major antigen genes in the malaria parasite Plasmodium falciparum have shown such signatures in polymorphism-versus-divergence indices (comparing with the chimpanzee parasite P. reichenowi, and in allele frequency based indices.To compare methods for prospective identification of genes under balancing selection, 26 additional genes known or predicted to encode surface-exposed proteins of the invasive blood stage merozoite were first sequenced from a panel of 14 independent P. falciparum cultured lines and P. reichenowi. Six genes at the positive extremes of one or both of the Hudson-Kreitman-Aguade (HKA and McDonald-Kreitman (MK indices were identified. Allele frequency based analysis was then performed on a Gambian P. falciparum population sample for these six genes and three others as controls. Tajima's D (TjD index was most highly positive for the msp3/6-like PF10_0348 (TjD = 1.96 as well as the positive control ama1 antigen gene (TjD = 1.22. Across the genes there was a strong correlation between population TjD values and the relative HKA indices (whether derived from the population or the panel of cultured laboratory isolates, but no correlation with the MK indices.Although few individual parasite genes show significant evidence of balancing selection, analysis of population genomic and comparative sequence data with the HKA and TjD indices should discriminate those that do, and thereby identify likely targets of immunity.

  15. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Kriti Tyagi

    Full Text Available The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites.Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively.Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1 showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3 showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs for human erythrocyte receptors. However, the third protein (PkTRAg67.1 utilized the additional but different human erythrocyte receptor(s as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite.Recognition and sharing of human erythrocyte receptor(s by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  16. Recognition of Human Erythrocyte Receptors by the Tryptophan-Rich Antigens of Monkey Malaria Parasite Plasmodium knowlesi.

    Tyagi, Kriti; Gupta, Deepali; Saini, Ekta; Choudhary, Shilpa; Jamwal, Abhishek; Alam, Mohd Shoeb; Zeeshan, Mohammad; Tyagi, Rupesh K; Sharma, Yagya D

    2015-01-01

    The monkey malaria parasite Plasmodium knowlesi also infect humans. There is a lack of information on the molecular mechanisms that take place between this simian parasite and its heterologous human host erythrocytes leading to this zoonotic disease. Therefore, we investigated here the binding ability of P. knowlesi tryptophan-rich antigens (PkTRAgs) to the human erythrocytes and sharing of the erythrocyte receptors between them as well as with other commonly occurring human malaria parasites. Six PkTRAgs were cloned and expressed in E.coli as well as in mammalian CHO-K1 cell to determine their human erythrocyte binding activity by cell-ELISA, and in-vitro rosetting assay, respectively. Three of six PkTRAgs (PkTRAg38.3, PkTRAg40.1, and PkTRAg67.1) showed binding to human erythrocytes. Two of them (PkTRAg40.1 and PkTRAg38.3) showed cross-competition with each other as well as with the previously described P.vivax tryptophan-rich antigens (PvTRAgs) for human erythrocyte receptors. However, the third protein (PkTRAg67.1) utilized the additional but different human erythrocyte receptor(s) as it did not cross-compete for erythrocyte binding with either of these two PkTRAgs as well as with any of the PvTRAgs. These three PkTRAgs also inhibited the P.falciparum parasite growth in in-vitro culture, further indicating the sharing of human erythrocyte receptors by these parasite species and the biological significance of this receptor-ligand interaction between heterologous host and simian parasite. Recognition and sharing of human erythrocyte receptor(s) by PkTRAgs with human parasite ligands could be part of the strategy adopted by the monkey malaria parasite to establish inside the heterologous human host.

  17. The fitness of drug-resistant malaria parasites in a rodent model: multiplicity of infection

    Huijben, Silvie; Sim, Derek G.; Nelson, William, A.; Read, Andrew F.

    2011-01-01

    Malaria infections normally consist of more than one clonally-replicating lineage. Within-host interactions between sensitive and resistant parasites can have profound effects on the evolution of drug resistance. Here, using the Plasmodium chabaudi mouse malaria model, we ask whether the costs and benefits of resistance are affected by the number of co-infecting strains competing with a resistant clone. We found strong competitive suppression of resistant parasites in untreated infections and...

  18. Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals

    Böhme, Ulrike; Otto, Thomas D.; Cotton, James A.; Steinbiss, Sascha; Sanders, Mandy; Oyola, Samuel O.; Nicot, Antoine; Gandon, Sylvain; Patra, Kailash P.; Herd, Colin; Bushell, Ellen; Modrzynska, Katarzyna K.; Billker, Oliver; Vinetz, Joseph M.; Rivero, Ana; Newbold, Chris I.; Berriman, Matthew

    2018-01-01

    Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum. We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum. PMID:29500236

  19. Proteomic identification of host and parasite biomarkers in saliva from patients with uncomplicated Plasmodium falciparum malaria

    Huang Honglei

    2012-05-01

    Full Text Available Abstract Background Malaria cases attributed to Plasmodium falciparum account for approximately 600,000 deaths yearly, mainly in African children. The gold standard method to diagnose malaria requires the visualization of the parasite in blood. The role of non-invasive diagnostic methods to diagnose malaria remains unclear. Methods A protocol was optimized to deplete highly abundant proteins from saliva to improve the dynamic range of the proteins identified and assess their suitability as candidate biomarkers of malaria infection. A starch-based amylase depletion strategy was used in combination with four different lectins to deplete glycoproteins (Concanavalin A and Aleuria aurantia for N-linked glycoproteins; jacalin and peanut agglutinin for O-linked glycoproteins. A proteomic analysis of depleted saliva samples was performed in 17 children with fever and a positive–malaria slide and compared with that of 17 malaria-negative children with fever. Results The proteomic signature of malaria-positive patients revealed a strong up-regulation of erythrocyte-derived and inflammatory proteins. Three P. falciparum proteins, PFL0480w, PF08_0054 and PFI0875w, were identified in malaria patients and not in controls. Aleuria aurantia and jacalin showed the best results for parasite protein identification. Conclusions This study shows that saliva is a suitable clinical specimen for biomarker discovery. Parasite proteins and several potential biomarkers were identified in patients with malaria but not in patients with other causes of fever. The diagnostic performance of these markers should be addressed prospectively.

  20. An essential malaria protein defines the architecture of blood-stage and transmission-stage parasites.

    Absalon, Sabrina; Robbins, Jonathan A; Dvorin, Jeffrey D

    2016-04-28

    Blood-stage replication of the human malaria parasite Plasmodium falciparum occurs via schizogony, wherein daughter parasites are formed by a specialized cytokinesis known as segmentation. Here we identify a parasite protein, which we name P. falciparum Merozoite Organizing Protein (PfMOP), as essential for cytokinesis of blood-stage parasites. We show that, following PfMOP knockdown, parasites undergo incomplete segmentation resulting in a residual agglomerate of partially divided cells. While organelles develop normally, the structural scaffold of daughter parasites, the inner membrane complex (IMC), fails to form in this agglomerate causing flawed segmentation. In PfMOP-deficient gametocytes, the IMC formation defect causes maturation arrest with aberrant morphology and death. Our results provide insight into the mechanisms of replication and maturation of malaria parasites.

  1. Heritability of the human infectious reservoir of malaria parasites.

    Yaye Ramatoulaye Lawaly

    Full Text Available BACKGROUND: Studies on human genetic factors associated with malaria have hitherto concentrated on their role in susceptibility to and protection from disease. In contrast, virtually no attention has been paid to the role of human genetics in eliciting the production of parasite transmission stages, the gametocytes, and thus enhancing the spread of disease. METHODS AND FINDINGS: We analysed four longitudinal family-based cohort studies from Senegal and Thailand followed for 2-8 years and evaluated the relative impact of the human genetic and non-genetic factors on gametocyte production in infections of Plasmodium falciparum or P. vivax. Prevalence and density of gametocyte carriage were evaluated in asymptomatic and symptomatic infections by examination of Giemsa-stained blood smears and/or RT-PCR (for falciparum in one site. A significant human genetic contribution was found to be associated with gametocyte prevalence in asymptomatic P. falciparum infections. By contrast, there was no heritability associated with the production of gametocytes for P. falciparum or P. vivax symptomatic infections. Sickle cell mutation, HbS, was associated with increased gametocyte prevalence but its contribution was small. CONCLUSIONS: The existence of a significant human genetic contribution to gametocyte prevalence in asymptomatic infections suggests that candidate gene and genome wide association approaches may be usefully applied to explore the underlying human genetics. Prospective epidemiological studies will provide an opportunity to generate novel and perhaps more epidemiologically pertinent gametocyte data with which similar analyses can be performed and the role of human genetics in parasite transmission ascertained.

  2. A Network Approach to Analyzing Highly Recombinant Malaria Parasite Genes

    Larremore, Daniel B.; Clauset, Aaron; Buckee, Caroline O.

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences. PMID:24130474

  3. A network approach to analyzing highly recombinant malaria parasite genes.

    Larremore, Daniel B; Clauset, Aaron; Buckee, Caroline O

    2013-01-01

    The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs), and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα) domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  4. A network approach to analyzing highly recombinant malaria parasite genes.

    Daniel B Larremore

    Full Text Available The var genes of the human malaria parasite Plasmodium falciparum present a challenge to population geneticists due to their extreme diversity, which is generated by high rates of recombination. These genes encode a primary antigen protein called PfEMP1, which is expressed on the surface of infected red blood cells and elicits protective immune responses. Var gene sequences are characterized by pronounced mosaicism, precluding the use of traditional phylogenetic tools that require bifurcating tree-like evolutionary relationships. We present a new method that identifies highly variable regions (HVRs, and then maps each HVR to a complex network in which each sequence is a node and two nodes are linked if they share an exact match of significant length. Here, networks of var genes that recombine freely are expected to have a uniformly random structure, but constraints on recombination will produce network communities that we identify using a stochastic block model. We validate this method on synthetic data, showing that it correctly recovers populations of constrained recombination, before applying it to the Duffy Binding Like-α (DBLα domain of var genes. We find nine HVRs whose network communities map in distinctive ways to known DBLα classifications and clinical phenotypes. We show that the recombinational constraints of some HVRs are correlated, while others are independent. These findings suggest that this micromodular structuring facilitates independent evolutionary trajectories of neighboring mosaic regions, allowing the parasite to retain protein function while generating enormous sequence diversity. Our approach therefore offers a rigorous method for analyzing evolutionary constraints in var genes, and is also flexible enough to be easily applied more generally to any highly recombinant sequences.

  5. A central role for P48/45 in malaria parasite male gamete fertility.

    Dijk, M.R. van; Janse, C.J.; Thompson, J.; Waters, A.P.; Braks, J.A.M.; Dodemont, H.J.; Stunnenberg, H.G.; Gemert, G.J.A. van; Sauerwein, R.W.; Eling, W.M.C.

    2001-01-01

    Fertilization and zygote development are obligate features of the malaria parasite life cycle and occur during parasite transmission to mosquitoes. The surface protein PFS48/45 is expressed by male and female gametes of Plasmodium falciparum and PFS48/45 antibodies prevent zygote development and

  6. Methodology and application of flow cytometry for investigation of human malaria parasites.

    Grimberg, Brian T

    2011-03-31

    Historically, examinations of the inhibition of malaria parasite growth/invasion, whether using drugs or antibodies, have relied on the use of microscopy or radioactive hypoxanthine uptake. These are considered gold standards for measuring the effectiveness of antimalarial treatments, however, these methods have well known shortcomings. With the advent of flow cytometry coupled with the use of fluorescent DNA stains allowed for increased speed, reproducibility, and qualitative estimates of the effectiveness of antibodies and drugs to limit malaria parasite growth which addresses the challenges of traditional techniques. Because materials and machines available to research facilities are so varied, different methods have been developed to investigate malaria parasites by flow cytometry. This review is intended to serve as a reference guide for advanced users and importantly, as a primer for new users, to support expanded use and improvements to malaria flow cytometry, particularly in endemic countries. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Plasmodial Hsp70s are functionally adapted to the malaria parasite life cycle

    Jude M Przyborski

    2015-06-01

    Full Text Available The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s, some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host-parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle.

  8. The conserved clag multigene family of malaria parasites: essential roles in host-pathogen interaction.

    Gupta, Ankit; Thiruvengadam, Girija; Desai, Sanjay A

    2015-01-01

    The clag multigene family is strictly conserved in malaria parasites, but absent from neighboring genera of protozoan parasites. Early research pointed to roles in merozoite invasion and infected cell cytoadherence, but more recent studies have implicated channel-mediated uptake of ions and nutrients from host plasma. Here, we review the current understanding of this gene family, which appears to be central to host-parasite interactions and an important therapeutic target. Published by Elsevier Ltd.

  9. Malaria parasite carriage and risk determinants in a rural population: a malariometric survey in Rwanda.

    Kateera, Fredrick; Mens, Petra F; Hakizimana, Emmanuel; Ingabire, Chantal M; Muragijemariya, Liberata; Karinda, Parfait; Grobusch, Martin P; Mutesa, Leon; van Vugt, Michèle

    2015-01-21

    Based on routine health facility case data, Rwanda has achieved a significant malaria burden reduction in the past ten years. However, community-based malaria parasitaemia burden and reasons for continued residual infections, despite a high coverage of control interventions, have yet to be characterized. Measurement of malaria parasitaemia rates and evaluation of associated risk factors among asymptomatic household members in a rural community in Rwanda were conducted. A malariometric household survey was conducted between June and November 2013, involving 12,965 persons living in 3,989 households located in 35 villages in a sector in eastern Rwanda. Screening for malaria parasite carriage and collection of demographic, socio-economic, house structural features, and prior fever management data, were performed. Logistic regression models with adjustment for within- and between-households clustering were used to assess malaria parasitaemia risk determinants. Overall, malaria parasitaemia was found in 652 (5%) individuals, with 518 (13%) of households having at least one parasitaemic member. High malaria parasite carriage risk was associated with being male, child or adolescent (age group 4-15), reported history of fever and living in a household with multiple occupants. A malaria parasite carriage risk-protective effect was associated with living in households of, higher socio-economic status, where the head of household was educated and where the house floor or walls were made of cement/bricks rather than mud/earth/wood materials. Parasitaemia cases were found to significantly cluster in the Gikundamvura area that neighbours marshlands. Overall, Ruhuha Sector can be classified as hypo-endemic, albeit with a particular 'cell of villages' posing a higher risk for malaria parasitaemia than others. Efforts to further reduce transmission and eventually eliminate malaria locally should focus on investments in programmes that improve house structure features (that limit

  10. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi

    Assefa, Samuel

    2015-10-06

    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (F) = 0.21, with 9,293 SNPs having fixed differences of F = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean F values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima\\'s D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima\\'s D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.

  11. Population genomic structure and adaptation in the zoonotic malaria parasite Plasmodium knowlesi

    Assefa, Samuel; Lim, Caeul; Preston, Mark D.; Duffy, Craig W.; Nair, Mridul; Adroub, Sabir; Kadir, Khamisah A.; Goldberg, Jonathan M.; Neafsey, Daniel E.; Divis, Paul; Clark, Taane G.; Duraisingh, Manoj T.; Conway, David J.; Pain, Arnab; Singh, Balbir

    2015-01-01

    Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (F) = 0.21, with 9,293 SNPs having fixed differences of F = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean F values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = -1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.

  12. Aspidosperma (Apocynaceae plant cytotoxicity and activity towards malaria parasites. Part I: Aspidosperma nitidum (Benth used as a remedy to treat fever and malaria in the Amazon

    Julia Penna Coutinho

    2013-12-01

    Full Text Available Infusions of Aspidosperma nitidum (Apocynaceae wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials.

  13. Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology

    Andrea Loddo

    2018-02-01

    Full Text Available Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.

  14. Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.

    Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel

    2018-02-08

    Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.

  15. Long- and short-term selective forces on malaria parasite genomes

    Nygaard, Sanne

    2010-09-09

    Plasmodium parasites, the causal agents of malaria, result in more than 1 million deaths annually. Plasmodium are unicellular eukaryotes with small ~23 Mb genomes encoding ~5200 protein-coding genes. The protein-coding genes comprise about half of these genomes. Although evolutionary processes have a significant impact on malaria control, the selective pressures within Plasmodium genomes are poorly understood, particularly in the non-protein-coding portion of the genome. We use evolutionary methods to describe selective processes in both the coding and non-coding regions of these genomes. Based on genome alignments of seven Plasmodium species, we show that protein-coding, intergenic and intronic regions are all subject to purifying selection and we identify 670 conserved non-genic elements. We then use genome-wide polymorphism data from P. falciparum to describe short-term selective processes in this species and identify some candidate genes for balancing (diversifying) selection. Our analyses suggest that there are many functional elements in the non-genic regions of these genomes and that adaptive evolution has occurred more frequently in the protein-coding regions of the genome. © 2010 Nygaard et al.

  16. The invasive shrub Prosopis juliflora enhances the malaria parasite transmission capacity of Anopheles mosquitoes: a habitat manipulation experiment.

    Muller, Gunter C; Junnila, Amy; Traore, Mohamad M; Traore, Sekou F; Doumbia, Seydou; Sissoko, Fatoumata; Dembele, Seydou M; Schlein, Yosef; Arheart, Kristopher L; Revay, Edita E; Kravchenko, Vasiliy D; Witt, Arne; Beier, John C

    2017-07-05

    A neglected aspect of alien invasive plant species is their influence on mosquito vector ecology and malaria transmission. Invasive plants that are highly attractive to Anopheles mosquitoes provide them with sugar that is critical to their survival. The effect on Anopheles mosquito populations was examined through a habitat manipulation experiment that removed the flowering branches of highly attractive Prosopis juliflora from selected villages in Mali, West Africa. Nine villages in the Bandiagara district of Mali were selected, six with flowering Prosopis juliflora, and three without. CDC-UV light traps were used to monitor their Anopheles spp. vector populations, and recorded their species composition, population size, age structure, and sugar feeding status. After 8 days, all of the flowering branches were removed from three villages and trap catches were analysed again. Villages where flowering branches of the invasive shrub Prosopis juliflora were removed experienced a threefold drop in the older more dangerous Anopheles females. Population density dropped by 69.4% and the species composition shifted from being a mix of three species of the Anopheles gambiae complex to one dominated by Anopheles coluzzii. The proportion of sugar fed females dropped from 73 to 15% and males from 77 to 10%. This study demonstrates how an invasive plant shrub promotes the malaria parasite transmission capacity of African malaria vector mosquitoes. Proper management of invasive plants could potentially reduce mosquito populations and malaria transmission.

  17. Exo-erythrocytic development of avian malaria and related haemosporidian parasites.

    Valkiūnas, Gediminas; Iezhova, Tatjana A

    2017-03-03

    Avian malaria parasites (Plasmodium spp.) and related haemosporidians (Haemosporida) are responsible for diseases which can be severe and even lethal in avian hosts. These parasites cause not only blood pathology, but also damage various organs due to extensive exo-erythrocytic development all over the body, which is not the case during Plasmodium infections in mammals. However, exo-erythrocytic development (tissue merogony or schizogony) remains the most poorly investigated part of life cycle in all groups of wildlife haemosporidian parasites. In spite of remarkable progress in studies of genetic diversity, ecology and evolutionary biology of avian haemosporidians during the past 20 years, there is not much progress in understanding patterns of exo-erythrocytic development in these parasites. The purpose of this review is to overview the main information on exo-erythrocytic development of avian Plasmodium species and related haemosporidian parasites as a baseline for assisting academic and veterinary medicine researchers in morphological identification of these parasites using tissue stages, and to define future research priorities in this field of avian malariology. The data were considered from peer-reviewed articles and histological material that was accessed in zoological collections in museums of Australia, Europe and the USA. Articles describing tissue stages of avian haemosporidians were included from 1908 to the present. Histological preparations of various organs infected with the exo-erythrocytic stages of different haemosporidian parasites were examined. In all, 229 published articles were included in this review. Exo-erythrocytic stages of avian Plasmodium, Fallisia, Haemoproteus, Leucocytozoon, and Akiba species were analysed, compared and illustrated. Morphological characters of tissue stages that can be used for diagnostic purposes were specified. Recent molecular studies combined with histological research show that avian haemosporidians are more

  18. A scalable pipeline for highly effective genetic modification of a malaria parasite

    Pfander, Claudia

    2011-10-23

    In malaria parasites, the systematic experimental validation of drug and vaccine targets by reverse genetics is constrained by the inefficiency of homologous recombination and by the difficulty of manipulating adenine and thymine (A+T)-rich DNA of most Plasmodium species in Escherichia coli. We overcame these roadblocks by creating a high-integrity library of Plasmodium berghei genomic DNA (>77% A+T content) in a bacteriophage N15-based vector that can be modified efficiently using the lambda Red method of recombineering. We built a pipeline for generating P. berghei genetic modification vectors at genome scale in serial liquid cultures on 96-well plates. Vectors have long homology arms, which increase recombination frequency up to tenfold over conventional designs. The feasibility of efficient genetic modification at scale will stimulate collaborative, genome-wide knockout and tagging programs for P. berghei. © 2011 Nature America, Inc. All rights reserved.

  19. A scalable pipeline for highly effective genetic modification of a malaria parasite

    Pfander, Claudia; Anar, Burcu; Schwach, Frank; Otto, Thomas D.; Brochet, Mathieu; Volkmann, Katrin; Quail, Michael A.; Pain, Arnab; Rosen, Barry; Skarnes, William; Rayner, Julian C.; Billker, Oliver

    2011-01-01

    In malaria parasites, the systematic experimental validation of drug and vaccine targets by reverse genetics is constrained by the inefficiency of homologous recombination and by the difficulty of manipulating adenine and thymine (A+T)-rich DNA of most Plasmodium species in Escherichia coli. We overcame these roadblocks by creating a high-integrity library of Plasmodium berghei genomic DNA (>77% A+T content) in a bacteriophage N15-based vector that can be modified efficiently using the lambda Red method of recombineering. We built a pipeline for generating P. berghei genetic modification vectors at genome scale in serial liquid cultures on 96-well plates. Vectors have long homology arms, which increase recombination frequency up to tenfold over conventional designs. The feasibility of efficient genetic modification at scale will stimulate collaborative, genome-wide knockout and tagging programs for P. berghei. © 2011 Nature America, Inc. All rights reserved.

  20. Diverse sampling of East African haemosporidians reveals chiropteran origin of malaria parasites in primates and rodents.

    Lutz, Holly L; Patterson, Bruce D; Kerbis Peterhans, Julian C; Stanley, William T; Webala, Paul W; Gnoske, Thomas P; Hackett, Shannon J; Stanhope, Michael J

    2016-06-01

    Phylogenies of parasites provide hypotheses on the history of their movements between hosts, leading to important insights regarding the processes of host switching that underlie modern-day epidemics. Haemosporidian (malaria) parasites lack a well resolved phylogeny, which has impeded the study of evolutionary processes associated with host-switching in this group. Here we present a novel phylogenetic hypothesis that suggests bats served as the ancestral hosts of malaria parasites in primates and rodents. Expanding upon current taxon sampling of Afrotropical bat and bird parasites, we find strong support for all major nodes in the haemosporidian tree using both Bayesian and maximum likelihood approaches. Our analyses support a single transition of haemosporidian parasites from saurian to chiropteran hosts, and do not support a monophyletic relationship between Plasmodium parasites of birds and mammals. We find, for the first time, that Hepatocystis and Plasmodium parasites of mammals represent reciprocally monophyletic evolutionary lineages. These results highlight the importance of broad taxonomic sampling when analyzing phylogenetic relationships, and have important implications for our understanding of key host switching events in the history of malaria parasite evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Rapid identification of genes controlling virulence and immunity in malaria parasites

    Abkallo, Hussein M.

    2017-07-13

    Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites.

  2. Species-specific escape of Plasmodium sporozoites from oocysts of avian, rodent, and human malarial parasites.

    Orfano, Alessandra S; Nacif-Pimenta, Rafael; Duarte, Ana P M; Villegas, Luis M; Rodrigues, Nilton B; Pinto, Luciana C; Campos, Keillen M M; Pinilla, Yudi T; Chaves, Bárbara; Barbosa Guerra, Maria G V; Monteiro, Wuelton M; Smith, Ryan C; Molina-Cruz, Alvaro; Lacerda, Marcus V G; Secundino, Nágila F C; Jacobs-Lorena, Marcelo; Barillas-Mury, Carolina; Pimenta, Paulo F P

    2016-08-02

    Malaria is transmitted when an infected mosquito delivers Plasmodium sporozoites into a vertebrate host. There are many species of Plasmodium and, in general, the infection is host-specific. For example, Plasmodium gallinaceum is an avian parasite, while Plasmodium berghei infects mice. These two parasites have been extensively used as experimental models of malaria transmission. Plasmodium falciparum and Plasmodium vivax are the most important agents of human malaria, a life-threatening disease of global importance. To complete their life cycle, Plasmodium parasites must traverse the mosquito midgut and form an oocyst that will divide continuously. Mature oocysts release thousands of sporozoites into the mosquito haemolymph that must reach the salivary gland to infect a new vertebrate host. The current understanding of the biology of oocyst formation and sporozoite release is mostly based on experimental infections with P. berghei, and the conclusions are generalized to other Plasmodium species that infect humans without further morphological analyses. Here, it is described the microanatomy of sporozoite escape from oocysts of four Plasmodium species: the two laboratory models, P. gallinaceum and P. berghei, and the two main species that cause malaria in humans, P. vivax and P. falciparum. It was found that sporozoites have species-specific mechanisms of escape from the oocyst. The two model species of Plasmodium had a common mechanism, in which the oocyst wall breaks down before sporozoites emerge. In contrast, P. vivax and P. falciparum sporozoites show a dynamic escape mechanism from the oocyst via polarized propulsion. This study demonstrated that Plasmodium species do not share a common mechanism of sporozoite escape, as previously thought, but show complex and species-specific mechanisms. In addition, the knowledge of this phenomenon in human Plasmodium can facilitate transmission-blocking studies and not those ones only based on the murine and avian models.

  3. Communal prevalence of malaria parasite and evaluation of Long ...

    This study investigates the prevalence of malaria and evaluates Long Lasting Insecticide Nets (LLINs) utilization for malaria control in Ikenne LGA, Ogun State, Nigeria. A cross-sectional survey was conducted in five major communities in Ikenne Local Government Area (LGA) namely: Ilisan, Ikenne, Iperu, Ogere and Irolu.

  4. Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control.

    Lefevre, Thierry; Ohm, Johanna; Dabiré, Kounbobr R; Cohuet, Anna; Choisy, Marc; Thomas, Matthew B; Cator, Lauren

    2018-04-01

    Evaluating the risk of emergence and transmission of vector-borne diseases requires knowledge of the genetic and environmental contributions to pathogen transmission traits. Compared to the significant effort devoted to understanding the biology of malaria transmission from vertebrate hosts to mosquito vectors, the strategies that malaria parasites have evolved to maximize transmission from vectors to vertebrate hosts have been largely overlooked. While determinants of infection success within the mosquito host have recently received attention, the causes of variability for other key transmission traits of malaria, namely the duration of parasite development and its virulence within the vector, as well as its ability to alter mosquito behavior, remain largely unknown. This important gap in our knowledge needs to be bridged in order to obtain an integrative view of the ecology and evolution of malaria transmission strategies. Associations between transmission traits also need to be characterized, as they trade-offs and constraints could have important implications for understanding the evolution of parasite transmission. Finally, theoretical studies are required to evaluate how genetic and environmental influences on parasite transmission traits can shape malaria dynamics and evolution in response to disease control.

  5. Prevalence and associated determinants of malaria parasites among Kenyan children.

    Sultana, Marufa; Sheikh, Nurnabi; Mahumud, Rashidul Alam; Jahir, Tania; Islam, Ziaul; Sarker, Abdur Razzaque

    2017-01-01

    Approximately 80% of deaths attributed to malaria worldwide occurred mainly in Africa in 2015. Kenya is one of the major malaria endemic countries, making malaria the leading public health concern in this country. This study intended to document the prevalence of malaria and determine associated factors including socioeconomic status among children aged 6 months to 14 years in Kenya. This study analyzed the secondary data extracted from the 2015 Kenya Malaria Indicator Survey (KMIS), a cross-sectional country representative survey. Associations of demographic, socioeconomic, community-based, and behavioral factors with the prevalence of malaria in children were analyzed using multivariable logistic regression analysis. Data from 7040 children aged 6 months to 14 years were analyzed. The prevalence of malaria showed an upward trend in terms of age, with the highest prevalence among children aged 11-14 years. Prevalence was also higher among rural children (10.16%) compared to urban children (2.93%), as well as poor children (11.05%) compared to rich children (3.23%). The likelihood of having malaria was higher among children aged 10-14 years (AOR = 4.47, 95% CI = 3.33, 6.02; P level of the household head (AOR = 1.15, 95% CI = 1.08, 2.25; P knowledge in practice to control the malaria burden in Kenya. Furthermore, this study suggests that improving the information available through the mass media and introducing behavior change communication and intervention program specifically for those of poor socioeconomic status will help to reduce malaria cases.

  6. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  7. Within-host competition does not select for virulence in malaria parasites; studies with Plasmodium yoelii.

    Hussein M Abkallo

    2015-02-01

    Full Text Available In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii.

  8. Nanomimics of host cell membranes block invasion and expose invasive malaria parasites.

    Najer, Adrian; Wu, Dalin; Bieri, Andrej; Brand, Françoise; Palivan, Cornelia G; Beck, Hans-Peter; Meier, Wolfgang

    2014-12-23

    The fight against most infectious diseases, including malaria, is often hampered by the emergence of drug resistance and lack or limited efficacies of vaccines. Therefore, new drugs, vaccines, or other strategies to control these diseases are needed. Here, we present an innovative nanotechnological strategy in which the nanostructure itself represents the active substance with no necessity to release compounds to attain therapeutic effect and which might act in a drug- and vaccine-like dual function. Invasion of Plasmodium falciparum parasites into red blood cells was selected as a biological model for the initial validation of this approach. Stable nanomimics-polymersomes presenting receptors required for parasite attachment to host cells-were designed to efficiently interrupt the life cycle of the parasite by inhibiting invasion. A simple way to build nanomimics without postformation modifications was established. First, a block copolymer of the receptor with a hydrophobic polymer was synthesized and then mixed with a polymersome-forming block copolymer. The resulting nanomimics bound parasite-derived ligands involved in the initial attachment to host cells and they efficiently blocked reinvasion of malaria parasites after their egress from host cells in vitro. They exhibited efficacies of more than 2 orders of magnitude higher than the soluble form of the receptor, which can be explained by multivalent interactions of several receptors on one nanomimic with multiple ligands on the infective parasite. In the future, our strategy might offer interesting treatment options for severe malaria or a way to modulate the immune response.

  9. Disrupting Mosquito Reproduction and Parasite Development for Malaria Control.

    Lauren M Childs

    2016-12-01

    Full Text Available The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.

  10. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts

    Otto, Thomas D.; Rayner, Julian C.; Bö hme, Ulrike; Pain, Arnab; Spottiswoode, Natasha; Sanders, Mandy; Quail, Michael; Ollomo, Benjamin; Renaud, Franç ois; Thomas, Alan W.; Prugnolle, Franck; Conway, David J.; Newbold, Chris; Berriman, Matthew

    2014-01-01

    related chimpanzee parasite species P. reichenowi, and obtaining partial sequence data from a more distantly related chimpanzee parasite (P. gaboni). The close relationship between P. reichenowi and P. falciparum is emphasized by almost complete

  11. Evaluation of a novel magneto-optical method for the detection of malaria parasites.

    Agnes Orbán

    Full Text Available Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO method which allows high-sensitivity detection of malaria pigment (hemozoin crystals in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as ∼ 40 parasites per microliter of blood (0.0008% parasitemia at the ring stage and less than 10 parasites/µL (0.0002% parasitemia in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/µL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs.

  12. Long- and short-term selective forces on malaria parasite genomes

    Nygaard, Sanne; Braunstein, Alexander; Malsen, Gareth

    2010-01-01

    Plasmodium parasites, the causal agents of malaria, result in more than 1 million deaths annually. Plasmodium are unicellular eukaryotes with small ~23 Mb genomes encoding ~5200 protein-coding genes. The protein-coding genes comprise about half of these genomes. Although evolutionary processes ha...

  13. Protein export marks the early phase of gametocytogenesis of the human malaria parasite Plasmodium falciparum.

    Silvestrini, F.; Lasonder, E.; Olivieri, A.; Camarda, G.; Schaijk, B.C.L. van; Sanchez, M.; Younis Younis, S.; Sauerwein, R.W.; Alano, P.

    2010-01-01

    Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent

  14. The structural basis for CD36 binding by the malaria parasite

    Hsieh, Fu-Lien; Turner, Louise; Bolla, Jani Reddy

    2016-01-01

    CD36 is a scavenger receptor involved in fatty acid metabolism, innate immunity and angiogenesis. It interacts with lipoprotein particles and facilitates uptake of long chain fatty acids. It is also the most common target of the PfEMP1 proteins of the malaria parasite, Plasmodium falciparum...

  15. Direct and indirect immunosuppression by a malaria parasite in its mosquito vector

    Boëte, C.H.J.J.; Paul, R.E.L.; Koëlla, J.C.

    2004-01-01

    Malaria parasites develop as oocysts within the haemocoel of their mosquito vector during a period that is longer than the average lifespan of many of their vectors. How can they escape from the mosquito's immune responses during their long development? Whereas older oocysts might camouflage

  16. Variation in apoptosis mechanisms employed by malaria parasites: the roles of inducers, dose dependence and parasite stages

    Matthews Holly

    2012-08-01

    Full Text Available Abstract Background Plasmodium berghei ookinetes exhibit an apoptotic phenotype when developing within the mosquito midgut lumen or when cultured in vitro. Markers of apoptosis increase when they are exposed to nitric oxide or reactive oxygen species but high concentrations of hydrogen peroxide cause death without observable signs of apoptosis. Chloroquine and other drugs have been used to induce apoptosis in erythrocytic stages of Plasmodium falciparum and to formulate a putative pathway involving cysteine protease activation and mitochondrial membrane permeabilization; initiated, at least in the case of chloroquine, after its accumulation in the digestive vacuole causes leakage of the vacuole contents. The lack of a digestive vacuole in ookinetes prompted the investigation of the effect of chloroquine and staurosporine on this stage of the life cycle. Finally, the suggestion that apoptosis may have evolved as a strategy employed by ookinetes to increase the fitness of surviving parasites was explored by determining whether increasing the ecological triggers parasite density and nutrient depletion induced apoptosis. Methods Ookinetes were grown in culture then either exposed to hydrogen peroxide, chloroquine or staurosporine, or incubated at different densities and in different media. The proportion of ookinetes displaying positive markers for apoptosis in treated samples was compared with controls and results were analyzed using analysis of variance followed by a Turkey’s test, or a Kruskal-Wallis test as appropriate. Results Hydrogen peroxide below 50 μM triggered apoptosis but cell membranes were rapidly compromised by higher concentrations, and the mode of death could not be defined. Both chloroquine and staurosporine cause a significant increase in ookinetes with condensed chromatin, caspase-like activity and, in the case of chloroquine, phosphatidylserine translocation and DNA fragmentation (not investigated for staurosporine. However

  17. Virulence of a malaria parasite, Plasmodium mexicanum, for its sand fly vectors, Lutzomyia vexator and Lutzomyia stewarti (Diptera: Psychodidae).

    Schall, Jos J

    2011-11-01

    Evolutionary theory predicts that virulence of parasites for mobile vector insects will be low for natural parasite-host associations that have coevolved. I determined virulence of the malaria parasite of lizards, Plasmodium mexicanum, for its vectors, two species of sand fly (Diptera: Psychodidae), Lutzomyia vexator (Coquillett 1907) and Lutzomyia stewarti (Mangabeira Fo & Galindo 1944), by measuring several life history traits. Developmental rate from egg to eclosion differed for the two species when noninfected. For both sand fly species, developmental rate for each stage (egg to larval hatching, larval period, pupal period) and life span were not altered by infection. Infected sand flies, however, produced fewer eggs. This reduction in fecundity may be a result of lower quality of the blood meal taken from infected lizards (lower concentration of hemoglobin). This report is the first measure of virulence of Plasmodium for an insect vector other than a mosquito and concords with both expectations of theory and previous studies on natural parasite-host associations that revealed low virulence.

  18. Malaria and blood transfusion: major issues of blood safety in malaria-endemic countries and strategies for mitigating the risk of Plasmodium parasites.

    Abdullah, Saleh; Karunamoorthi, Kaliyaperumal

    2016-01-01

    Malaria inflicts humankind over centuries, and it remains as a major threat to both clinical medicine and public health worldwide. Though hemotherapy is a life-sustaining modality, it continues to be a possible source of disease transmission. Hence, hemovigilance is a matter of grave concern in the malaria-prone third-world countries. In order to pursue an effective research on hemovigilance, a comprehensive search has been conducted by using the premier academic-scientific databases, WHO documents, and English-language search engines. One hundred two appropriate articles were chosen for data extraction, with a particular reference to emerging pathogens transmitted through blood transfusion, specifically malaria. Blood donation screening is done through microscopic examination and immunological assays to improve the safety of blood products by detection major blood-borne pathogens, viz., HIV, HBV, HCV, syphilis, and malarial parasites. Transfusion therapy significantly dwindles the preventable morbidity and mortality attributed to various illnesses and diseases, particularly AIDS, tuberculosis, and malaria. Examination of thick and thin blood smears are performed to detect positivity and to identify the Plasmodium species, respectively. However, all of these existing diagnostic tools have their own limitations in terms of sensitivity, specificity, cost-effectiveness, and lack of resources and skilled personnel. Globally, despite the mandate need of screening blood and its components according to the blood-establishment protocols, it is seldom practiced in the low-income/poverty-stricken settings. In addition, each and every single phase of transfusion chain carries sizable inherent risks from donors to recipients. Interestingly, opportunities also lie ahead to enhance the safety of blood-supply chain and patients. It can be achieved through sustainable blood-management strategies like (1) appropriate usage of precise diagnostic tools/techniques, (2) promoting

  19. Defining the protein interaction network of human malaria parasite Plasmodium falciparum

    Ramaprasad, Abhinay

    2012-02-01

    Malaria, caused by the protozoan parasite Plasmodium falciparum, affects around 225. million people yearly and a huge international effort is directed towards combating this grave threat to world health and economic development. Considerable advances have been made in malaria research triggered by the sequencing of its genome in 2002, followed by several high-throughput studies defining the malaria transcriptome and proteome. A protein-protein interaction (PPI) network seeks to trace the dynamic interactions between proteins, thereby elucidating their local and global functional relationships. Experimentally derived PPI network from high-throughput methods such as yeast two hybrid (Y2H) screens are inherently noisy, but combining these independent datasets by computational methods tends to give a greater accuracy and coverage. This review aims to discuss the computational approaches used till date to construct a malaria protein interaction network and to catalog the functional predictions and biological inferences made from analysis of the PPI network. © 2011 Elsevier Inc.

  20. Lysophosphatidylcholine Regulates Sexual Stage Differentiation in the Human Malaria Parasite Plasmodium falciparum.

    Brancucci, Nicolas M B; Gerdt, Joseph P; Wang, ChengQi; De Niz, Mariana; Philip, Nisha; Adapa, Swamy R; Zhang, Min; Hitz, Eva; Niederwieser, Igor; Boltryk, Sylwia D; Laffitte, Marie-Claude; Clark, Martha A; Grüring, Christof; Ravel, Deepali; Blancke Soares, Alexandra; Demas, Allison; Bopp, Selina; Rubio-Ruiz, Belén; Conejo-Garcia, Ana; Wirth, Dyann F; Gendaszewska-Darmach, Edyta; Duraisingh, Manoj T; Adams, John H; Voss, Till S; Waters, Andrew P; Jiang, Rays H Y; Clardy, Jon; Marti, Matthias

    2017-12-14

    Transmission represents a population bottleneck in the Plasmodium life cycle and a key intervention target of ongoing efforts to eradicate malaria. Sexual differentiation is essential for this process, as only sexual parasites, called gametocytes, are infective to the mosquito vector. Gametocyte production rates vary depending on environmental conditions, but external stimuli remain obscure. Here, we show that the host-derived lipid lysophosphatidylcholine (LysoPC) controls P. falciparum cell fate by repressing parasite sexual differentiation. We demonstrate that exogenous LysoPC drives biosynthesis of the essential membrane component phosphatidylcholine. LysoPC restriction induces a compensatory response, linking parasite metabolism to the activation of sexual-stage-specific transcription and gametocyte formation. Our results reveal that malaria parasites can sense and process host-derived physiological signals to regulate differentiation. These data close a critical knowledge gap in parasite biology and introduce a major component of the sexual differentiation pathway in Plasmodium that may provide new approaches for blocking malaria transmission. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. PCR detection of malaria parasites in desiccated Anopheles mosquitoes is uninhibited by storage time and temperature

    Rider Mark A

    2012-06-01

    Full Text Available Abstract Background Reliable methods to preserve mosquito vectors for malaria studies are necessary for detecting Plasmodium parasites. In field settings, however, maintaining a cold chain of storage from the time of collection until laboratory processing, or accessing other reliable means of sample preservation is often logistically impractical or cost prohibitive. As the Plasmodium infection rate of Anopheles mosquitoes is a central component of the entomological inoculation rate and other indicators of transmission intensity, storage conditions that affect pathogen detection may bias malaria surveillance indicators. This study investigated the effect of storage time and temperature on the ability to detect Plasmodium parasites in desiccated Anopheles mosquitoes by real-time polymerase chain reaction (PCR. Methods Laboratory-infected Anopheles stephensi mosquitoes were chloroform-killed and stored over desiccant for 0, 1, 3, and 6 months while being held at four different temperatures: 28, 37, -20 and -80°C. The detection of Plasmodium DNA was evaluated by real-time PCR amplification of a 111 base pair region of block 4 of the merozoite surface protein. Results Varying the storage time and temperature of desiccated mosquitoes did not impact the sensitivity of parasite detection. A two-way factorial analysis of variance suggested that storage time and temperature were not associated with a loss in the ability to detect parasites. Storage of samples at 28°C resulted in a significant increase in the ability to detect parasite DNA, though no other positive associations were observed between the experimental storage treatments and PCR amplification. Conclusions Cold chain maintenance of desiccated mosquito samples is not necessary for real-time PCR detection of parasite DNA. Though field-collected mosquitoes may be subjected to variable conditions prior to molecular processing, the storage of samples over an inexpensive and logistically

  2. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae.

    Gloria Volohonsky

    2017-01-01

    Full Text Available Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1 is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites.

  3. Parasite-based malaria diagnosis: are health systems in Uganda equipped enough to implement the policy?

    Kyabayinze, Daniel J; Achan, Jane; Nakanjako, Damalie; Mpeka, Betty; Mawejje, Henry; Mugizi, Rukaaka; Kalyango, Joan N; D'Alessandro, Umberto; Talisuna, Ambrose; Jean-Pierre, Van geertruyden

    2012-08-24

    Malaria case management is a key strategy for malaria control. Effective coverage of parasite-based malaria diagnosis (PMD) remains limited in malaria endemic countries. This study assessed the health system's capacity to absorb PMD at primary health care facilities in Uganda. In a cross sectional survey, using multi-stage cluster sampling, lower level health facilities (LLHF) in 11 districts in Uganda were assessed for 1) tools, 2) skills, 3) staff and infrastructure, and 4) structures, systems and roles necessary for the implementing of PMD. Tools for PMD (microscopy and/or RDTs) were available at 30 (24%) of the 125 LLHF. All LLHF had patient registers and 15% had functional in-patient facilities. Three months' long stock-out periods were reported for oral and parenteral quinine at 39% and 47% of LLHF respectively. Out of 131 health workers interviewed, 86 (66%) were nursing assistants; 56 (43%) had received on-job training on malaria case management and 47 (36%) had adequate knowledge in malaria case management. Overall, only 18% (131/730) Ministry of Health approved staff positions were filled by qualified personnel and 12% were recruited or transferred within six months preceding the survey. Of 186 patients that received referrals from LLHF, 130(70%) had received pre-referral anti-malarial drugs, none received pre-referral rectal artesunate and 35% had been referred due to poor response to antimalarial drugs. Primary health care facilities had inadequate human and infrastructural capacity to effectively implement universal parasite-based malaria diagnosis. The priority capacity building needs identified were: 1) recruitment and retention of qualified staff, 2) comprehensive training of health workers in fever management, 3) malaria diagnosis quality control systems and 4) strengthening of supply chain, stock management and referral systems.

  4. Detection of malaria parasites by microscopy and rapid diagnostic ...

    The effectiveness of Rapid Diagnostic Test Kit (RDT) was compared with microscopy for the evaluation of malaria infection in children and pregnant women attending two selected health facilities in Lagos State, south-western, Nigeria. A total of 482 patients comprising 252 pregnant women (mean age: 26.86±4.46 years) ...

  5. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite.

    Elizabeth S Zuccala

    Full Text Available Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction - the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.

  6. Comparative gene expression profiling of P. falciparum malaria parasites exposed to three different histone deacetylase inhibitors.

    Katherine T Andrews

    Full Text Available Histone deacetylase (HDAC inhibitors are being intensively pursued as potential new drugs for a range of diseases, including malaria. HDAC inhibitors are also important tools for the study of epigenetic mechanisms, transcriptional control, and other important cellular processes. In this study the effects of three structurally related antimalarial HDAC inhibitors on P. falciparum malaria parasite gene expression were compared. The three hydroxamate-based compounds, trichostatin A (TSA, suberoylanilide hydroxamic acid (SAHA; Vorinostat® and a 2-aminosuberic acid derivative (2-ASA-9, all caused profound transcriptional effects, with ~2-21% of genes having >2-fold altered expression following 2 h exposure to the compounds. Only two genes, alpha tubulin II and a hydrolase, were up-regulated by all three compounds after 2 h exposure in all biological replicates examined. The transcriptional changes observed after 2 h exposure to HDAC inhibitors were found to be largely transitory, with only 1-5% of genes being regulated after removing the compounds and culturing for a further 2 h. Despite some structural similarity, the three inhibitors caused quite diverse transcriptional effects, possibly reflecting subtle differences in mode of action or cellular distribution. This dataset represents an important contribution to our understanding of how HDAC inhibitors act on malaria parasites and identifies alpha tubulin II as a potential transcriptional marker of HDAC inhibition in malaria parasites that may be able to be exploited for future development of HDAC inhibitors as new antimalarial agents.

  7. Submicroscopic malaria parasite carriage: how reproducible are polymerase chain reaction-based methods?

    Daniela Camargos Costa

    2014-02-01

    Full Text Available The polymerase chain reaction (PCR-based methods for the diagnosis of malaria infection are expected to accurately identify submicroscopic parasite carriers. Although a significant number of PCR protocols have been described, few studies have addressed the performance of PCR amplification in cases of field samples with submicroscopic malaria infection. Here, the reproducibility of two well-established PCR protocols (nested-PCR and real-time PCR for the Plasmodium 18 small subunit rRNA gene were evaluated in a panel of 34 blood field samples from individuals that are potential reservoirs of malaria infection, but were negative for malaria by optical microscopy. Regardless of the PCR protocol, a large variation between the PCR replicates was observed, leading to alternating positive and negative results in 38% (13 out of 34 of the samples. These findings were quite different from those obtained from the microscopy-positive patients or the unexposed individuals; the diagnosis of these individuals could be confirmed based on the high reproducibility and specificity of the PCR-based protocols. The limitation of PCR amplification was restricted to the field samples with very low levels of parasitaemia because titrations of the DNA templates were able to detect < 3 parasites/µL in the blood. In conclusion, conventional PCR protocols require careful interpretation in cases of submicroscopic malaria infection, as inconsistent and false-negative results can occur.

  8. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; pKenya after introduction of the artemether-lumefantrine is important in refining the spread of drug resistant strains and malaria transmission for more effective control and eventual elimination of malaria in Kenya. Copyright © 2015. Published by Elsevier B.V.

  9. Lysine acetylation in sexual stage malaria parasites is a target for antimalarial small molecules.

    Trenholme, Katharine; Marek, Linda; Duffy, Sandra; Pradel, Gabriele; Fisher, Gillian; Hansen, Finn K; Skinner-Adams, Tina S; Butterworth, Alice; Ngwa, Che Julius; Moecking, Jonas; Goodman, Christopher D; McFadden, Geoffrey I; Sumanadasa, Subathdrage D M; Fairlie, David P; Avery, Vicky M; Kurz, Thomas; Andrews, Katherine T

    2014-07-01

    Therapies to prevent transmission of malaria parasites to the mosquito vector are a vital part of the global malaria elimination agenda. Primaquine is currently the only drug with such activity; however, its use is limited by side effects. The development of transmission-blocking strategies requires an understanding of sexual stage malaria parasite (gametocyte) biology and the identification of new drug leads. Lysine acetylation is an important posttranslational modification involved in regulating eukaryotic gene expression and other essential processes. Interfering with this process with histone deacetylase (HDAC) inhibitors is a validated strategy for cancer and other diseases, including asexual stage malaria parasites. Here we confirm the expression of at least one HDAC protein in Plasmodium falciparum gametocytes and show that histone and nonhistone protein acetylation occurs in this life cycle stage. The activity of the canonical HDAC inhibitors trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; Vorinostat) and a panel of novel HDAC inhibitors on early/late-stage gametocytes and on gamete formation was examined. Several compounds displayed early/late-stage gametocytocidal activity, with TSA being the most potent (50% inhibitory concentration, 70 to 90 nM). In contrast, no inhibitory activity was observed in P. falciparum gametocyte exflagellation experiments. Gametocytocidal HDAC inhibitors caused hyperacetylation of gametocyte histones, consistent with a mode of action targeting HDAC activity. Our data identify HDAC inhibitors as being among a limited number of compounds that target both asexual and sexual stage malaria parasites, making them a potential new starting point for gametocytocidal drug leads and valuable tools for dissecting gametocyte biology. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  10. Severe malaria is associated with parasite binding to endothelial protein C receptor

    Turner, Louise; Lavstsen, Thomas; Berger, Sanne S

    2013-01-01

    Sequestration of Plasmodium falciparum-infected erythrocytes in host blood vessels is a key triggering event in the pathogenesis of severe childhood malaria, which is responsible for about one million deaths every year. Sequestration is mediated by specific interactions between members of the P....... falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining. Severe childhood malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DCs) 8 and 13 (ref. 3), but the endothelial receptor for parasites expressing these proteins...

  11. Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages

    Jessica L. Miller

    2014-04-01

    Full Text Available Mosquito-transmitted malaria parasites infect hepatocytes and asymptomatically replicate as liver stages. Using RNA sequencing, we show that a rodent malaria liver-stage infection stimulates a robust innate immune response including type I interferon (IFN and IFNγ pathways. Liver-stage infection is suppressed by these infection-engendered innate responses. This suppression was abrogated in mice deficient in IFNγ, the type I IFN α/β receptor (IFNAR, and interferon regulatory factor 3. Natural killer and CD49b+CD3+ natural killer T (NKT cells increased in the liver after a primary infection, and CD1d-restricted NKT cells, which secrete IFNγ, were critical in reducing liver-stage burden of a secondary infection. Lack of IFNAR signaling abrogated the increase in NKT cell numbers in the liver, showing a link between type I IFN signaling, cell recruitment, and subsequent parasite elimination. Our findings demonstrate innate immune sensing of malaria parasite liver-stage infection and that the ensuing innate responses can eliminate the parasite.

  12. Gametogenesis in malaria parasites is mediated by the cGMP-dependent protein kinase.

    Louisa McRobert

    2008-06-01

    Full Text Available Malaria parasite transmission requires differentiation of male and female gametocytes into gametes within a mosquito following a blood meal. A mosquito-derived molecule, xanthurenic acid (XA, can trigger gametogenesis, but the signalling events controlling this process in the human malaria parasite Plasmodium falciparum remain unknown. A role for cGMP was revealed by our observation that zaprinast (an inhibitor of phosphodiesterases that hydrolyse cGMP stimulates gametogenesis in the absence of XA. Using cGMP-dependent protein kinase (PKG inhibitors in conjunction with transgenic parasites expressing an inhibitor-insensitive mutant PKG enzyme, we demonstrate that PKG is essential for XA- and zaprinast-induced gametogenesis. Furthermore, we show that intracellular calcium (Ca2+ is required for differentiation and acts downstream of or in parallel with PKG activation. This work defines a key role for PKG in gametogenesis, elucidates the hierarchy of signalling events governing this process in P. falciparum, and demonstrates the feasibility of selective inhibition of a crucial regulator of the malaria parasite life cycle.

  13. Malaria diagnosis by PCR revealed differential distribution of mono and mixed species infections by Plasmodium falciparum and P. vivax in India.

    Siwal, Nisha; Singh, Upasana Shyamsunder; Dash, Manoswini; Kar, Sonalika; Rani, Swati; Rawal, Charu; Singh, Rajkumar; Anvikar, Anupkumar R; Pande, Veena; Das, Aparup

    2018-01-01

    Malaria is a vector-borne infectious disease, caused by five different species of the genus Plasmodium, and is endemic to many tropical and sub-tropical countries of the globe. At present, malaria diagnosis at the primary health care level in India is conducted by either microscopy or rapid diagnostic test (RDT). In recent years, molecular diagnosis (by PCR assay), has emerged as the most sensitive method for malaria diagnosis. India is highly endemic to malaria and shoulders the burden of two major malaria parasites, Plasmodium falciparum and P. vivax. Previous studies using PCR diagnostic assay had unraveled several interesting facts on distribution of malaria parasites in India. However, these studies had several limitations from small sample size to limited geographical areas of sampling. In order to mitigate these limitations, we have collected finger-prick blood samples from 2,333 malaria symptomatic individuals in nine states from 11 geographic locations, covering almost the entire malaria endemic regions of India and performed all the three diagnostic tests (microscopy, RDT and PCR assay) and also have conducted comparative assessment on the performance of the three diagnostic tests. Since PCR assay turned out to be highly sensitive (827 malaria positive cases) among the three types of tests, we have utilized data from PCR diagnostic assay for analyses and inferences. The results indicate varied distributional prevalence of P. vivax and P. falciparum according to locations in India, and also the mixed species infection due to these two species. The proportion of P. falciparum to P. vivax was found to be 49:51, and percentage of mixed species infections due to these two parasites was found to be 13% of total infections. Considering India is set for malaria elimination by 2030, the present malaria epidemiological information is of high importance.

  14. Intravenous artesunate reduces parasite clearance time, duration of intensive care, and hospital treatment in patients with severe malaria in Europe

    Kurth, Florian; Develoux, Michel; Mechain, Matthieu

    2015-01-01

    Intravenous artesunate improves survival in severe malaria, but clinical trial data from nonendemic countries are scarce. The TropNet severe malaria database was analyzed to compare outcomes of artesunate vs quinine treatment. Artesunate reduced parasite clearance time and duration of intensive...

  15. How Many Parasites Species a Frog Might Have? Determinants of Parasite Diversity in South American Anurans.

    Karla Magalhães Campião

    Full Text Available There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR. We also test whether parasite diversity is related to hosts' phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts' phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts' clade diversification suggests it is strongly influenced by ecological and contemporary constrains.

  16. The impact of HIV-1 on the malaria parasite biomass in adults in sub-Saharan Africa contributes to the emergence of antimalarial drug resistance

    J.P. van Geertruyden (Jean Pierre); J. Menten (Joris); R. Colebunders (Robert); E.L. Korenromp (Eline); U. D'Alessandro (Umberto)

    2008-01-01

    textabstractBackground. HIV-related immune-suppression increases the risk of malaria (infection, disease and treatment failure) and probably the circulating parasite biomass, favoring the emergence of drug resistance parasites. Methods. The additional malaria parasite biomass related to HIV-1

  17. (macro- Evolutionary ecology of parasite diversity: From determinants of parasite species richness to host diversification

    Serge Morand

    2015-04-01

    Full Text Available The present review summarized the factors or determinants that may explain parasite diversity among host species and the consequences of this parasite diversity on the evolution of host-life history traits. As host–parasite interactions are asymmetrical exploited–exploiter relationships, ecological and epidemiological theories produce hypotheses to find the potential determinants of parasite species richness, while life-history theory helps for testing potential consequences on parasite diversity on the evolution of hosts. This review referred only to studies that have specifically controlled or took into account phylogenetic information illustrated with parasites of mammals. Several points needing more investigation were identified with a special emphasis to develop the metabolic theory of epidemiology.

  18. Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian malaria parasite.

    Palinauskas, Vaidas; Žiegytė, Rita; Iezhova, Tatjana A; Ilgūnas, Mikas; Bernotienė, Rasa; Valkiūnas, Gediminas

    2016-10-01

    Plasmodium elongatum causes severe avian malaria and is distributed worldwide. This parasite is of particular importance due to its ability to develop and cause lethal malaria not only in natural hosts, but also in non-adapted endemic birds such as the brown kiwi and different species of penguins. Information on vectors of this infection is available but is contradictory. PCR-based analysis indicated the possible existence of a cluster of closely related P. elongatum lineages which might differ in their ability to develop in certain mosquitoes and birds. This experimental study provides information about molecular and morphological characterisation of a virulent P. elongatum strain (lineage pERIRUB01) isolated from a naturally infected European robin, Erithacus rubecula. Phylogenetic analysis based on partial cytochrome b gene sequences showed that this parasite lineage is closely related to P. elongatum (lineage pGRW6). Blood stages of both parasite lineages are indistinguishable, indicating that they belong to the same species. Both pathogens develop in experimentally infected canaries, Serinus canaria, causing death of the hosts. In both these lineages, trophozoites and erythrocytic meronts develop in polychromatic erythrocytes and erythroblasts, gametocytes parasitize mature erythrocytes, exoerythrocytic stages develop in cells of the erythrocytic series in bone marrow and are occasionally reported in spleen and liver. Massive infestation of bone marrow cells is the main reason for bird mortality. We report here on syncytium-like remnants of tissue meronts, which slip out of the bone marrow into the peripheral circulation, providing evidence that the syncytia can be a template for PCR amplification. This finding contributes to better understanding positive PCR amplifications in birds when parasitemia is invisible and improved diagnostics of abortive haemosporidian infections. Sporogony of P. elongatum (pERIRUB01) completes the cycle and sporozoites develop in

  19. GAMBARAN PENGGUNAAN RAPID DIAGNOSTIC TEST PARASIT MALARIA DI DESA PASIRMUKTI KECAMATAN CINEAM KABUPATEN TASIKMALAYA

    Hubullah Fuadzy

    2013-12-01

    Full Text Available Abstract. High mobility amongst mining workers, demanding officer of Cineam Public Health Center can perform rapid diagnosis to the workers. Nowadays, many techniques are developed to detect the early transmission of malaria, begins from the clinical to the molecular, one of that techniques are Rapid Diagnostic Tests (RDTs. This research has been conducted in the village of Pasirmukti district Cineam, Tasikmalaya in 2012. Objective of this paper is description RDT utilities as rapid diagnosing efforts on families who have family members as mine worker malaria endemic areas. Inclusion criteria for this study were family who have and do not have family members were working as workers in malaria-endemic areas at 2011 or 2012. Respondents were willing to participate in this study would be taken for examination RDT. Respondents were willing to participate in this study amounted to 256 people, and 5 of them positive Plasmodium malaria based on RDTs screening. Respondents who positive for malaria on RDTs test were 4 women with lower education background and work as a housewife, then a men with a background of secondary school education and are currently still as student. RDT is one of the malaria parasite tools which suitable for use in the Pasirmukti Village district Cineam - Tasikmalaya. However, keep in mind on how to storage and use in order to avoid errors both false-positive and false negatives test results.   Keywords: rapid diagnostic tests, malaria, Tasikmalaya Abstrak. Mobilitas yang tinggi penduduk Cineam  menuju wilayah pertambangan emas diluar pulau Jawa, menuntut tenaga kesehatan di Puskesmas Cineam dapat melakukan diagnosa dini penyakit malaria terhadap para pekerja tambang tersebut. Saat ini, banyak dikembangkan teknik untuk mendeteksi penularan penyakit malaria secara dini, mulai dari yang bersifat klinis hingga molekuler, diantaranya adalah Rapid Diagnostic Tests (RDTs. Untuk mengetahui gambaran pemanfaatan RDT di Cineam perlu

  20. A new morphologically distinct avian malaria parasite that fails detection by established polymerase chain reaction-based protocols for amplification of the cytochrome B gene.

    Zehtindjiev, Pavel; Križanauskienė, Asta; Bensch, Staffan; Palinauskas, Vaidas; Asghar, Muhammad; Dimitrov, Dimitar; Scebba, Sergio; Valkiūnas, Gediminas

    2012-06-01

    Plasmodium polymorphum n. sp. (Haemosporida, Plasmodiidae) was found in the skylark, Alauda arvensis (Passeriformes: Alaudidae), during autumnal migration in southern Italy. This organism is illustrated and described based on the morphology of its blood stages. The most distinctive feature of this malaria parasite is the clear preference of its blood stages (trophozoites, meronts, and gametocytes) for immature red blood cells, including erythroblasts. Based on preference of erythrocytic meronts for immature red blood cells, P. polymorphum is most similar to species of the subgenus Huffia . This parasite can be readily distinguished from all other bird malaria parasites, including Plasmodium ( Huffia ) spp., due to preferential development and maturation of its gametocytes in immature red blood cells, a unique character for avian Plasmodium spp. In addition, the margins of nuclei in blood stages of P. polymorphum are markedly smooth and distinct; this is also a distinct diagnostic feature of this parasite. Plasmodium polymorphum has been recorded only in the skylark; it is probably a rare parasite, whose host range and geographical distribution remain unclear. Microscopic examination detected a light infection of Plasmodium relictum (lineage GRW11, parasitemia of 50-fold higher than that of P. relictum and several different primers were tested, we suggest that the failure to amplify P. polymorphum is a more complex problem than why co-infections are commonly overlooked in PCR-based studies. We suggest possible explanations of these results and call for additional research on evolution of mitochondrial genome of hemosporidian parasites.

  1. Rare species of fungi parasiting on algae. II. Parasites of Desmidiaceae

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available Investigations carried out on the Desmidiaceae revealed the following species of fungi parasitizing on desmids: Myzocytium megastomum, Lagenidium closterii, Ancylistes closterii and Rhizophydium globosum. Legenidium closterii is new in Poland. It is the first information of this species as a parasite on the algae from the genus Tetmemorus. Figures of sporangia of Rhizophydium globosum on Euastrum ansatum, Cosmarium botrytis, C. pseudamoenum and a resting spore on Staurastrum punctulatum are the first graphic documentation of this species.

  2. Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin.

    Khan, Sameena; Sharma, Arvind; Belrhali, Hassan; Yogavel, Manickam; Sharma, Amit

    2014-06-01

    Malaria parasites inevitably develop drug resistance to anti-malarials over time. Hence the immediacy for discovering new chemical scaffolds to include in combination malaria drug therapy. The desirable attributes of new chemotherapeutic agents currently include activity against both liver and blood stage malaria parasites. One such recently discovered compound called cladosporin abrogates parasite growth via inhibition of Plasmodium falciparum lysyl-tRNA synthetase (PfKRS), an enzyme central to protein translation. Here, we present crystal structure of ternary PfKRS-lysine-cladosporin (PfKRS-K-C) complex that reveals cladosporin's remarkable ability to mimic the natural substrate adenosine and thereby colonize PfKRS active site. The isocoumarin fragment of cladosporin sandwiches between critical adenine-recognizing residues while its pyran ring fits snugly in the ribose-recognizing cavity. PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin. Such derivatives may be useful against additional human pathogens that retain high conservation in cladosporin chelating residues within their lysyl-tRNA synthetase.

  3. Molecular Genetic Analysis of Parasite Survival in P. falciparum Malaria.

    1991-03-15

    conducting research utilizing recombinant DNA technology , the investigator(s) adhered to current guidelines promulgated by the National Institute of Health...oligonucleotides unrelated to the conserved elements of Plasmodium falciparum were used (lane marked random oligo). Furthermore, extracts prepared...once with Ix Trager’s buffer. The following steps were carried out on ice. Erythrocytes were lysed in 0.05% saponin (19). The released parasites were

  4. Membrane-Wrapping Contributions to Malaria Parasite Invasion of the Human Erythrocyte

    Dasgupta, Sabyasachi; Auth, Thorsten; Gov, Nir S.; Satchwell, Timothy J.; Hanssen, Eric; Zuccala, Elizabeth S.; Riglar, David T.; Toye, Ashley M.; Betz, Timo; Baum, Jake; Gompper, Gerhard

    2014-01-01

    The blood stage malaria parasite, the merozoite, has a small window of opportunity during which it must successfully target and invade a human erythrocyte. The process of invasion is nonetheless remarkably rapid. To date, mechanistic models of invasion have focused predominantly on the parasite actomyosin motor contribution to the energetics of entry. Here, we have conducted a numerical analysis using dimensions for an archetypal merozoite to predict the respective contributions of the host-parasite interactions to invasion, in particular the role of membrane wrapping. Our theoretical modeling demonstrates that erythrocyte membrane wrapping alone, as a function of merozoite adhesive and shape properties, is sufficient to entirely account for the first key step of the invasion process, that of merozoite reorientation to its apex and tight adhesive linkage between the two cells. Next, parasite-induced reorganization of the erythrocyte cytoskeleton and release of parasite-derived membrane can also account for a considerable energetic portion of actual invasion itself, through membrane wrapping. Thus, contrary to the prevailing dogma, wrapping by the erythrocyte combined with parasite-derived membrane release can markedly reduce the expected contributions of the merozoite actomyosin motor to invasion. We therefore propose that invasion is a balance between parasite and host cell contributions, evolved toward maximal efficient use of biophysical forces between the two cells. PMID:24988340

  5. Patterns of Infection and Patterns of Evolution: How a Malaria Parasite Brought "Monkeys and Man" Closer Together in the 1960s.

    Mason Dentinger, Rachel

    2016-04-01

    In 1960, American parasitologist Don Eyles was unexpectedly infected with a malariaparasite isolated from a macaque. He and his supervisor, G. Robert Coatney of the National Institutes of Health, had started this series of experiments with the assumption that humans were not susceptible to "monkey malaria." The revelation that a mosquito carrying a macaque parasite could infect a human raised a whole range of public health and biological questions. This paper follows Coatney's team of parasitologists and their subjects: from the human to the nonhuman; from the American laboratory to the forests of Malaysia; and between the domains of medical research and natural history. In the course of this research, Coatney and his colleagues inverted Koch's postulate, by which animal subjects are used to identify and understand human parasites. In contrast, Coatney's experimental protocol used human subjects to identify and understand monkey parasites. In so doing, the team repeatedly followed malaria parasites across the purported boundary separating monkeys and humans, a practical experience that created a sense of biological symmetry between these separate species. Ultimately, this led Coatney and his colleagues make evolutionary inferences, concluding "that monkeys and man are more closely related than some of us wish to admit." In following monkeys, men, and malaria across biological, geographical, and disciplinary boundaries, this paper offers a new historical narrative, demonstrating that the pursuit of public health agendas can fuel the expansion of evolutionary knowledge.

  6. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation

    Amélie eVantaux

    2015-08-01

    Full Text Available Previous studies have shown that Plasmodium parasites can manipulate mosquito feeding behaviours such as motivation and avidity to feed on vertebrate hosts, in ways that increase the probability of parasite transmission. These studies, however, have been mainly carried out on non-natural and/or laboratory based model systems and hence may not reflect what occurs in the field. We now need to move closer to the natural setting, if we are to fully capture the ecological and evolutionary consequences of these parasite-induced behavioral changes. As part of this effort, we conducted a series of experiments to investigate the long and short-range behavioural responses to human stimuli in the mosquito Anopheles coluzzii during different stages of infection with sympatric field isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. First, we used a dual-port olfactometer designed to take advantage of the whole body odor to gauge mosquito long-range host-seeking behaviors. Second, we used a locomotor activity monitor system to assess mosquito short-range behaviors. Compared to control uninfected mosquitoes, P. falciparum infection had no significant effect neither on long-range nor on short-range behaviors both at the immature and mature stages. This study, using a natural mosquito-malaria parasite association, indicates that manipulation of vector behavior may not be a general phenomenon. We speculate that the observed contrasting phenotypes with model systems might result from coevolution of the human parasite and its natural vector. Future experiments, using other sympatric malaria mosquito populations or species are required to test this hypothesis. In conclusion, our results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions to accurately predict the epidemiological, ecological and evolutionary consequences of parasite manipulation of vector

  7. Factors contributing to delay in parasite clearance in uncomplicated falciparum malaria in children

    Sijuade Abayomi

    2010-02-01

    Full Text Available Abstract Background Drug resistance in Plasmodium falciparum is common in many endemic and other settings but there is no clear recommendation on when to change therapy when there is delay in parasite clearance after initiation of therapy in African children. Methods The factors contributing to delay in parasite clearance, defined as a clearance time > 2 d, in falciparum malaria were characterized in 2,752 prospectively studied children treated with anti-malarial drugs between 1996 and 2008. Results 1,237 of 2,752 children (45% had delay in parasite clearance. Overall 211 children (17% with delay in clearance subsequently failed therapy and they constituted 72% of those who had drug failure, i.e., 211 of 291 children. The following were independent risk factors for delay in parasite clearance at enrolment: age less than or equal to 2 years (Adjusted odds ratio [AOR] = 2.13, 95% confidence interval [CI]1.44-3.15, P 50,000/ul (AOR = 2.21, 95% CI = 1.77-2.75, P 20000/μl a day after treatment began, were independent risk factors for delay in clearance. Non-artemisinin monotherapies were associated with delay in clearance and treatment failures, and in those treated with chloroquine or amodiaquine, with pfmdr 1/pfcrt mutants. Delay in clearance significantly increased gametocyte carriage (P Conclusion Delay in parasite clearance is multifactorial, is related to drug resistance and treatment failure in uncomplicated malaria and has implications for malaria control efforts in sub-Saharan Africa.

  8. SPECIES COMPOSITION OF MALARIAL MOSQUITOES KHARKIV REGION. NATURAL FACTORS OF MALARIA TRANSMISSION

    Gazzawi - Rogozinа L. V.

    2015-05-01

    Full Text Available Introduction. This article describes the species composition of the dominant Anopheles mosquitoes in the Kharkiv region, the season of their possible effective infection, as well as ongoing anti-malaria activities . Key words: malaria , mosquitoes, p . Anopheles, epidemiology, census, hydraulic events. Material & methods. The analysis of entomological and meteorological situation in Ukraine and in the Kharkiv region according to data of the Ukrainian Center of control and monitoring of diseases of the Ministry of Health of Ukraine and Kharkiv regional laboratory center. Collection of material (imaginal and larval was carried out on the territory of natural and artificial water bodies of Kharkiv region in the period 2013 - 2014. When collecting the material used conventional accounting methods mosquito populations. On the territory of the region under study, we have found 30 species of mosquitoes three genera: Anopheles, Culex, Aedes. Results & discussion. Epidemiological role of each species of mosquitoes depends on several conditions. Dangerous vector species can only be found in large numbers, a significant percentage of individuals in a population that feeds on the blood of man, having a sufficiently long season activity and a sufficient number of females surviving to age possible maturation of sporozoites in their body. In Ukraine, the major carriers - Anopheles maculipennis, An. m. messeae, An. m. atroparvus, An. claviger, An. plumbeus, An. hyrcanus. Mosquito species registered in the territory of the Kharkiv region are susceptible to currently known types of human malaria parasites . Moreover, the dominant species in terms of urban landscapes are An.maculipennis and An.messeae . These species possess all the qualities necessary to be considered dangerous malaria vector control. They are well infected with the three main types of human parasites. In the study area , in terms of urban landscapes, gonoaktivnye females occurs within 3

  9. A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches.

    Martinsen, Ellen S; Perkins, Susan L; Schall, Jos J

    2008-04-01

    Phylogenetic analysis of genomic data allows insights into the evolutionary history of pathogens, especially the events leading to host switching and diversification, as well as alterations of the life cycle (life-history traits). Hundreds, perhaps thousands, of malaria parasite species exploit squamate reptiles, birds, and mammals as vertebrate hosts as well as many genera of dipteran vectors, but the evolutionary and ecological events that led to this diversification and success remain unresolved. For a century, systematic parasitologists classified malaria parasites into genera based on morphology, life cycle, and vertebrate and insect host taxa. Molecular systematic studies based on single genes challenged the phylogenetic significance of these characters, but several significant nodes were not well supported. We recovered the first well resolved large phylogeny of Plasmodium and related haemosporidian parasites using sequence data for four genes from the parasites' three genomes by combining all data, correcting for variable rates of substitution by gene and site, and using both Bayesian and maximum parsimony analyses. Major clades are associated with vector shifts into different dipteran families, with other characters used in traditional parasitological studies, such as morphology and life-history traits, having variable phylogenetic significance. The common parasites of birds now placed into the genus Haemoproteus are found in two divergent clades, and the genus Plasmodium is paraphyletic with respect to Hepatocystis, a group of species with very different life history and morphology. The Plasmodium of mammal hosts form a well supported clade (including Plasmodium falciparum, the most important human malaria parasite), and this clade is associated with specialization to Anopheles mosquito vectors. The Plasmodium of birds and squamate reptiles all fall within a single clade, with evidence for repeated switching between birds and squamate hosts.

  10. Rare species of fungi parasiting on algae I. Parasites of Spirogyra and Mougeotia

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available Investigations carried out on the genus Spirogyra Link and Mougeotia Agardh revealed the following species of fungi parasiting in the Spirogyra and Mougeotia cells: Olpidium endogenum, Blyttiomyces helicus, B. spinulosus, Micromyces zygogonii and Rhizophydium ampullaceum. First information on B. helicus as parasitic on algae is presented.

  11. Cytoplasmic free Ca2+ is essential for multiple steps in malaria parasite egress from infected erythrocytes

    Glushakova Svetlana

    2013-01-01

    Full Text Available Abstract Background Egress of Plasmodium falciparum, from erythrocytes at the end of its asexual cycle and subsequent parasite invasion into new host cells, is responsible for parasite dissemination in the human body. The egress pathway is emerging as a coordinated multistep programme that extends in time for tens of minutes, ending with rapid parasite extrusion from erythrocytes. While the Ca2+ regulation of the invasion of P. falciparum in erythrocytes is well established, the role of Ca2+ in parasite egress is poorly understood. This study analysed the involvement of cytoplasmic free Ca2+ in infected erythrocytes during the multistep egress programme of malaria parasites. Methods Live-cell fluorescence microscopy was used to image parasite egress from infected erythrocytes, assessing the effect of drugs modulating Ca2+ homeostasis on the egress programme. Results A steady increase in cytoplasmic free Ca2+ is found to precede parasite egress. This increase is independent of extracellular Ca2+ for at least the last two hours of the cycle, but is dependent upon Ca2+ release from internal stores. Intracellular BAPTA chelation of Ca2+ within the last 45 minutes of the cycle inhibits egress prior to parasitophorous vacuole swelling and erythrocyte membrane poration, two characteristic morphological transformations preceding parasite egress. Inhibitors of the parasite endoplasmic reticulum (ER Ca2+-ATPase accelerate parasite egress, indicating that Ca2+ stores within the ER are sufficient in supporting egress. Markedly accelerated egress of apparently viable parasites was achieved in mature schizonts using Ca2+ ionophore A23187. Ionophore treatment overcomes the BAPTA-induced block of parasite egress, confirming that free Ca2+ is essential in egress initiation. Ionophore treatment of immature schizonts had an adverse effect inducing parasitophorous vacuole swelling and killing the parasites within the host cell. Conclusions The parasite egress

  12. Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species.

    Ansari, Hifzur Rahman; Templeton, Thomas J; Subudhi, Amit Kumar; Ramaprasad, Abhinay; Tang, Jianxia; Lu, Feng; Naeem, Raeece; Hashish, Yasmeen; Oguike, Mary C; Benavente, Ernest Diez; Clark, Taane G; Sutherland, Colin J; Barnwell, John W; Culleton, Richard; Cao, Jun; Pain, Arnab

    2016-10-01

    Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species

    Ansari, Hifzur Rahman; Templeton, Thomas J.; Subudhi, Amit; Ramaprasad, Abhinay; Tang, Jianxia; Lu, Feng; Naeem, Raeece; Hashish, Yasmeen; Oguike, Mary C.; Benavente, Ernest Diez; Clark, Taane G.; Sutherland, Colin J.; Barnwell, John W.; Culleton, Richard; Cao, Jun; Pain, Arnab

    2016-01-01

    Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status.

  14. Genome-scale comparison of expanded gene families in Plasmodium ovale wallikeri and Plasmodium ovale curtisi with Plasmodium malariae and with other Plasmodium species

    Ansari, Hifzur Rahman

    2016-07-05

    Malaria in humans is caused by six species of Plasmodium parasites, of which the nuclear genome sequences for the two Plasmodium ovale spp., P. ovale curtisi and P. ovale wallikeri, and Plasmodium malariae have not yet been analyzed. Here we present an analysis of the nuclear genome sequences of these three parasites, and describe gene family expansions therein. Plasmodium ovale curtisi and P. ovale wallikeri are genetically distinct but morphologically indistinguishable and have sympatric ranges through the tropics of Africa, Asia and Oceania. Both P. ovale spp. show expansion of the surfin variant gene family, and an amplification of the Plasmodium interspersed repeat (pir) superfamily which results in an approximately 30% increase in genome size. For comparison, we have also analyzed the draft nuclear genome of P. malariae, a malaria parasite causing mild malaria symptoms with a quartan life cycle, long-term chronic infections, and wide geographic distribution. Plasmodium malariae shows only a moderate level of expansion of pir genes, and unique expansions of a highly diverged transmembrane protein family with over 550 members and the gamete P25/27 gene family. The observed diversity in the P. ovale wallikeri and P. ovale curtisi surface antigens, combined with their phylogenetic separation, supports consideration that the two parasites be given species status.

  15. Changes in lipid composition during sexual development of the malaria parasite Plasmodium falciparum.

    Tran, Phuong N; Brown, Simon H J; Rug, Melanie; Ridgway, Melanie C; Mitchell, Todd W; Maier, Alexander G

    2016-02-06

    The development of differentiated sexual stages (gametocytes) within human red blood cells is essential for the propagation of the malaria parasite, since only mature gametocytes will survive in the mosquito's midgut. Hence gametocytogenesis is a pre-requisite for transmission of the disease. Physiological changes involved in sexual differentiation are still enigmatic. In particular the lipid metabolism-despite being central to cellular regulation and development-is not well explored. Here the lipid profiles of red blood cells infected with the five different sexual stages of Plasmodium falciparum were analysed by mass spectrometry and compared to those from uninfected and asexual trophozoite infected erythrocytes. Fundamental differences between erythrocytes infected with the different parasite stages were revealed. In mature gametocytes many lipids that decrease in the trophozoite and early gametocyte infected red blood cells are regained. In particular, regulators of membrane fluidity, cholesterol and sphingomyelin, increased significantly during gametocyte maturation. Neutral lipids (serving mainly as caloriometric reserves) increased from 3 % of total lipids in uninfected to 27 % in stage V gametocyte infected red blood cells. The major membrane lipid class (phospholipids) decreased during gametocyte development. The lipid profiles of infected erythrocytes are characteristic for the particular parasite life cycle and maturity stages of gametocytes. The obtained lipid profiles are crucial in revealing the lipid metabolism of malaria parasites and identifying targets to interfere with this deadly disease.

  16. Malaria parasite evasion of classical complement pathway attack

    Larsen, Mads Delbo; Ditlev, Sisse; Olmos, Rafael Bayarri

    2017-01-01

    of the protective antibodies that are gradually acquired in response to P. falciparum-IEs. Although this response is dominated by IgG1 and IgG3, complement-mediated attack following activation of the classical pathway does not appear to be a major effector mechanism. We hypothesized that this is related to the knob...... is that the knob-restricted expression of PfEMP1 on the IE surface may serve as a hitherto unappreciated immune evasion mechanism employed by P. falciparum parasites....

  17. Microbial hara-kiri: Exploiting lysosomal cell death in malaria parasites

    Jun-Hong Ch’ng

    2015-01-01

    Full Text Available The antimalarial drug chloroquine (CQ has been sidelined in the fight against falciparum malaria due to wide-spread CQ resistance. Replacement drugs like sulfadoxine, pyrimethamine and mefloquine have also since been surpassed with the evolution of multi-drug resistant parasites. Even the currently recommended artemisinin-based combination therapies show signs of compromise due to the recent spread of artemisinin delayed-clearance parasites. Though there have been promising breakthroughs in the pursuit of new effective antimalarials, the development and strategic deployment of such novel chemical entities takes time. We therefore argue that there is a crucial need to re-examine the usefulness of ‘outdated’ drugs like chloroquine, and explore if they might be effective alternative therapies in the interim. We suggest that a novel parasite cell death (pCD pathway may be exploited through the reformulation of CQ to address this need.

  18. Transformation of the rodent malaria parasite Plasmodium chabaudi and generation of a stable fluorescent line PcGFPCON

    Reece Sarah E

    2008-09-01

    Full Text Available Abstract Background The rodent malaria parasite Plasmodium chabaudi has proven of great value in the analysis of fundamental aspects of host-parasite-vector interactions implicated in disease pathology and parasite evolutionary ecology. However, the lack of gene modification technologies for this model has precluded more direct functional studies. Methods The development of in vitro culture methods to yield P. chabaudi schizonts for transfection and conditions for genetic modification of this rodent malaria model are reported. Results Independent P. chabaudi gene-integrant lines that constitutively express high levels of green fluorescent protein throughout their life cycle have been generated. Conclusion Genetic modification of P. chabaudi is now possible. The production of genetically distinct reference lines offers substantial advances to our understanding of malaria parasite biology, especially interactions with the immune system during chronic infection.

  19. Effectiveness of Gamma Rays in Attenuating Rodent Malaria Parasites of Plasmodium berghei in Blood of Mice

    Syaifudin, M.; Darlina; Rahardjo, T.; Tetriana, D.; Nurhayati, S.; Surniyantoro, H.N.E.; Kisnanto, T.

    2013-01-01

    Malaria is a major public health problem in Indonesia. Therefore, an effective vaccine against this disease is actively being sought by using gamma rays to attenuate the parasites. However, the safety and efficacy of the resulting vaccine are dependent on the precise irradiation dose. The aim of this research was to determine the exact time when the parasites are attenuated by gamma ray exposure. Mice blood containing Plasmodium berghei of 5,0 X 10 7 parasites/ml was irradiated with gamma rays at doses of 0, 150, 175 and 200 Gy (doses rate of 380 Gy/h) and then was injected intraperitoneally to mice at 0, 1, 2, 3, and 4 h post irradiation. The parasitemia (parasite density) in mouse blood was observed starting with day 2 and repeated every 2-4 days up to 28 days. The survival of the mice was also observed during the experiment. The results showed that the pre-patent period advanced with exposing infected blood to 150 and 175 Gy irradiations, suggesting some degree of attenuation. The amount of radiation required to render the parasites non-viable is about 175 Gy for an inoculum of a number of parasites, but a delay of 4 h resulted in the death of parasites. There was no difference in the infectivity of irradiated parasite injected 1 h and 2 h post irradiation in terms of parasitemia and the survival of mouse. For a dose of 200 Gy which was injected 2 h post irradiation, no parasitemia was found in the blood and animals which died after times varying from 1 to 4 weeks. We concluded that irradiated parasites should be injected into the host within 1 h after irradiation. (author)

  20. Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites.

    Bour, Tania; Mahmoudi, Nassira; Kapps, Delphine; Thiberge, Sabine; Bargieri, Daniel; Ménard, Robert; Frugier, Magali

    2016-04-26

    The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology.

  1. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda.

    Kateera, Fredrick; Nsobya, Sam L; Tukwasibwe, Stephen; Mens, Petra F; Hakizimana, Emmanuel; Grobusch, Martin P; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele

    2016-04-26

    Malaria remains a public health challenge in sub-Saharan Africa with Plasmodium falciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity-a characteristic that has yet to be studied in Rwanda. Characterizing P. falciparum molecular epidemiology in an area is needed for a better understand of malaria transmission and to inform choice of malaria control strategies. In this health-facility based survey, malaria case clinical profiles and parasite densities as well as parasite genetic diversity were compared among P. falciparum-infected patients identified at two sites of different malaria transmission intensities in Rwanda. Data on demographics and clinical features and finger-prick blood samples for microscopy and parasite genotyping were collected(.) Nested PCR was used to genotype msp-2 alleles of FC27 and 3D7. Patients' variables of age group, sex, fever (both by patient report and by measured tympanic temperatures), parasite density, and bed net use were found differentially distributed between the higher endemic (Ruhuha) and lower endemic (Mubuga) sites. Overall multiplicity of P. falciparum infection (MOI) was 1.73 but with mean MOI found to vary significantly between 2.13 at Ruhuha and 1.29 at Mubuga (p < 0.0001). At Ruhuha, expected heterozygosity (EH) for FC27 and 3D7 alleles were 0.62 and 0.49, respectively, whilst at Mubuga, EH for FC27 and 3D7 were 0.26 and 0.28, respectively. In this study, a higher geometrical mean parasite counts, more polyclonal infections, higher MOI, and higher allelic frequency were observed at the higher malaria-endemic (Ruhuha) compared to the lower malaria-endemic (Mubuga) area. These differences in malaria risk and MOI should be considered when choosing setting-specific malaria control strategies, assessing p. falciparum associated parameters such as drug resistance, immunity and impact of used

  2. The Strategy to Survive Primary Malaria Infection: An Experimental Study on Behavioural Changes in Parasitized Birds.

    Andrey Mukhin

    Full Text Available Avian malaria parasites (Haemosporida, Plasmodium are of cosmopolitan distribution, and they have a significant impact on vertebrate host fitness. Experimental studies show that high parasitemia often develops during primary malaria infections. However, field studies only occasionally reveal high parasitemia in free-living birds sampled using the traditional methods of mist-netting or trapping, and light chronic infections predominate. The reason for this discrepancy between field observation and experimental data remains insufficiently understood. Since mist-netting is a passive capture method, two main parameters determine its success in sampling infected birds in wildlife, i. e. the presence of parasitized birds at a study site and their mobility. In other words, the trapping probability depends on the survival rate of birds and their locomotor activity during infection. Here we test (1 the mortality rate of wild birds infected with Plasmodium relictum (the lineage pSGS1, (2 the changes in their behaviour during presence of an aerial predator, and (3 the changes in their locomotor activity at the stage of high primary parasitemia.We show that some behavioural features which might affect a bird's survival during a predator attack (time of reaction, speed of flush flight and take off angle did not change significantly during primary infection. However, the locomotor activity of infected birds was almost halved compared to control (non-infected birds during the peak of parasitemia. We report (1 the markedly reduced mobility and (2 the 20% mortality rate caused by P. relictum and conclude that these factors are responsible for the underrepresentation of birds in mist nets and traps during the stage of high primary parasitemia in wildlife. This study indicates that the widespread parasite, P. relictum (pSGS1 influences the behaviour of birds during primary parasitemia. Experimental studies combined with field observations are needed to better

  3. The Strategy to Survive Primary Malaria Infection: An Experimental Study on Behavioural Changes in Parasitized Birds

    Mukhin, Andrey; Palinauskas, Vaidas; Platonova, Elena; Kobylkov, Dmitry; Vakoliuk, Irina; Valkiūnas, Gediminas

    2016-01-01

    Avian malaria parasites (Haemosporida, Plasmodium) are of cosmopolitan distribution, and they have a significant impact on vertebrate host fitness. Experimental studies show that high parasitemia often develops during primary malaria infections. However, field studies only occasionally reveal high parasitemia in free-living birds sampled using the traditional methods of mist-netting or trapping, and light chronic infections predominate. The reason for this discrepancy between field observation and experimental data remains insufficiently understood. Since mist-netting is a passive capture method, two main parameters determine its success in sampling infected birds in wildlife, i. e. the presence of parasitized birds at a study site and their mobility. In other words, the trapping probability depends on the survival rate of birds and their locomotor activity during infection. Here we test (1) the mortality rate of wild birds infected with Plasmodium relictum (the lineage pSGS1), (2) the changes in their behaviour during presence of an aerial predator, and (3) the changes in their locomotor activity at the stage of high primary parasitemia.We show that some behavioural features which might affect a bird's survival during a predator attack (time of reaction, speed of flush flight and take off angle) did not change significantly during primary infection. However, the locomotor activity of infected birds was almost halved compared to control (non-infected) birds during the peak of parasitemia. We report (1) the markedly reduced mobility and (2) the 20% mortality rate caused by P. relictum and conclude that these factors are responsible for the underrepresentation of birds in mist nets and traps during the stage of high primary parasitemia in wildlife. This study indicates that the widespread parasite, P. relictum (pSGS1) influences the behaviour of birds during primary parasitemia. Experimental studies combined with field observations are needed to better understand the

  4. Pengembangan Mikroskop Dengan Mikrokontroler dan Cahaya Monokromatik Untuk Mendeteksi Parasit Malaria

    Ida Susanti

    2017-10-01

    Full Text Available Malaria still become one of major health burden in Indonesia especially in remote areas of east Indonesia. Golden standard of malaria parasite detection is still microscopic technique using polychromatic light source whether from halogen or natural light source. A microscopic technique has a lot of benefits but still have weaknesses, such as time-consuming and bias on the reading by microscopist, because of artifact in the image. Aims of this study were to designed malaria parasites detection tool that is robust, fast, convenient and clear by minimizing artifact on the slide. Design of this study was laboratory experimental which modified simple microscope into an automatic microscope with table movement and webcam recording using a microcontroller and monochromatic light source. The wavelength of the light sources was 402nm(blue, 532 nm (green and 650 nm (red, the intensity of each source differed. The reading of the slide image was conducted by two certified microscopists, who read 60 images of a thick and thin slide with three different live stage of Plasmodium falciparum live, which wearing, trophozoite and schizont. This study showed that modification of microscope was succeeded with automatic movement and webcam recording, process time in one step movement and recording approximately 10 seconds or 17minutes for 100 fields of view as confirmation process. The monochromatic light source has proven to give a clear and contrast field of view when the intensities were higher than 40 mW and the certified microscopist able to identified Plasmodium falciparum parasites. Data analysis of microscopist reading used nonparametric statistic Friedman by SPSS showed that correlation between images using monochromatic and polychromatic lights have meaningless differences in a thick and thin slide. However, hemozoin as a marker of Plasmodium falciparum parasite was less detected by monochromatic light used in this study.

  5. Rare species of fungi parasiting on algae. III.

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995 parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  6. Rare species of fungi parasiting on algae. III.

    Joanna Z. Kadłubowska

    2014-01-01

    The investigations csrried out on algae revealed the following species of fungi from the order of Chytridialis Hawksworth et al. (1995) parasitizing on algae: Rhizophydium subgulosum, R. ganlosporum, R. planctonicum, Entophlyctis rhizina and Harpochytrium hedinii. These species arc new to Poland. The figure of resting spore of Entophlyctis rhizina is the fint graphic documentation of this species.

  7. Hamatological parameters and malaria parasite infection among pregnant women in Northwest Nigeria

    Anigo Kola Matthew

    2013-02-01

    Full Text Available Objective: To evaluate some hematological and anthropometric parameters, malaria infection at different trimesters in pregnancy. Methods: Fifty pregnant women (6 in first trimester, 28 in second trimester and 16 in third trimester between ages of 15-40 years with ten age-matched non-pregnant women used as control were enrolled in the study. Consent were obtained from the subjects after which semi-structured questionnaires were administered to obtain data on demographic and socio-economic variables, reproductive and medical history. Anthropometric variables, and hematology were carried out using standard procedures. Results: Anthropometric characteristics showed no significant difference in weight, height and BMI when compared with non-pregnant control. Hematological values indicated higher values for non-pregnant women but not statistically significant. Prevalence of malaria infection in pregnant women showed that 40% of pregnant women examined were infected compared to 30% non-pregnant with those with first pregnancy (primagravid recording the highest infection (47.62% with pregnant women within age 15-18 years least infected (16.7%. Pregnant women in the third trimester had the highest (50% malaria infection and there was increase in prevalence with increase education status and those with first pregnancy (primagravid recorded the highest infection (47.62%. Treatment used when infected showed 36.8% and 42.9% used malaria drug and both drug/herbs respectively. Conclusions: Higher prevalence rate of malaria infection in pregnant women with the highest prevalence recorded in those with first conception (primigravidae. There is a need for continuous monitoring of hematological parameters and malaria parasite infection for better outcome of pregnancy.

  8. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    Chen, Lili; He, Zhengxiang; Qin, Li; Li, Qinyan; Shi, Xibao; Zhao, Siting; Chen, Ling; Zhong, Nanshan; Chen, Xiaoping

    2011-01-01

    Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC) model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL) staining and decreased Ki-67 expression in tumors. Through natural killer (NK) cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+) T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria parasite may provide a novel strategy or therapeutic vaccine vector for anti-lung cancer

  9. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity.

    Lili Chen

    Full Text Available BACKGROUND: Lung cancer is the most common malignancy in humans and its high fatality means that no effective treatment is available. Developing new therapeutic strategies for lung cancer is urgently needed. Malaria has been reported to stimulate host immune responses, which are believed to be efficacious for combating some clinical cancers. This study is aimed to provide evidence that malaria parasite infection is therapeutic for lung cancer. METHODOLOGY/PRINCIPAL FINDINGS: Antitumor effect of malaria infection was examined in both subcutaneously and intravenously implanted murine Lewis lung cancer (LLC model. The results showed that malaria infection inhibited LLC growth and metastasis and prolonged the survival of tumor-bearing mice. Histological analysis of tumors from mice infected with malaria revealed that angiogenesis was inhibited, which correlated with increased terminal deoxynucleotidyl transferase-mediated (TUNEL staining and decreased Ki-67 expression in tumors. Through natural killer (NK cell cytotoxicity activity, cytokine assays, enzyme-linked immunospot assay, lymphocyte proliferation, and flow cytometry, we demonstrated that malaria infection provided anti-tumor effects by inducing both a potent anti-tumor innate immune response, including the secretion of IFN-γ and TNF-α and the activation of NK cells as well as adaptive anti-tumor immunity with increasing tumor-specific T-cell proliferation and cytolytic activity of CD8(+ T cells. Notably, tumor-bearing mice infected with the parasite developed long-lasting and effective tumor-specific immunity. Consequently, we found that malaria parasite infection could enhance the immune response of lung cancer DNA vaccine pcDNA3.1-hMUC1 and the combination produced a synergistic antitumor effect. CONCLUSIONS/SIGNIFICANCE: Malaria infection significantly suppresses LLC growth via induction of innate and adaptive antitumor responses in a mouse model. These data suggest that the malaria

  10. A large proportion of asymptomatic Plasmodium infections with low and sub-microscopic parasite densities in the low transmission setting of Temotu Province, Solomon Islands: challenges for malaria diagnostics in an elimination setting

    Harris Ivor

    2010-09-01

    Full Text Available Abstract Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR and rapid diagnostic tests (RDTs. The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%, indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162 compared to P. falciparum (36/118. The malaria RDT detected the 12 microscopy and

  11. A comprehensive evaluation of rodent malaria parasite genomes and gene expression

    Otto, Thomas D; Bö hme, Ulrike; Jackson, Andrew P; Hunt, Martin; Franke-Fayard, Blandine; Hoeijmakers, Wieteke A M; Religa, Agnieszka A; Robertson, Lauren; Sanders, Mandy; Ogun, Solabomi A; Cunningham, Deirdre; Erhart, Annette; Billker, Oliver; Khan, Shahid M; Stunnenberg, Hendrik G; Langhorne, Jean; Holder, Anthony A; Waters, Andrew P; Newbold, Chris I; Pain, Arnab; Berriman, Matthew; Janse, Chris J

    2014-01-01

    Plasmodium biology. Genotypic diversity between P. chabaudi isolates makes this species an excellent parasite to study genotype-phenotype relationships. The improved classification of multigene families will enhance studies on the role of (variant) exported

  12. Discovery of HDAC inhibitors with potent activity against multiple malaria parasite life cycle stages.

    Hansen, Finn K; Sumanadasa, Subathdrage D M; Stenzel, Katharina; Duffy, Sandra; Meister, Stephan; Marek, Linda; Schmetter, Rebekka; Kuna, Krystina; Hamacher, Alexandra; Mordmüller, Benjamin; Kassack, Matthias U; Winzeler, Elizabeth A; Avery, Vicky M; Andrews, Katherine T; Kurz, Thomas

    2014-07-23

    In this work we investigated the antiplasmodial activity of a series of HDAC inhibitors containing an alkoxyamide connecting-unit linker region. HDAC inhibitor 1a (LMK235), previously shown to be a novel and specific inhibitor of human HDAC4 and 5, was used as a starting point to rapidly construct a mini-library of HDAC inhibitors using a straightforward solid-phase supported synthesis. Several of these novel HDAC inhibitors were found to have potent in vitro activity against asexual stage Plasmodium falciparum malaria parasites. Representative compounds were shown to hyperacetylate P. falciparum histones and to inhibit deacetylase activity of recombinant PfHDAC1 and P. falciparum nuclear extracts. All compounds were also screened in vitro for activity against Plasmodium berghei exo-erythrocytic stages and selected compounds were further tested against late stage (IV and V) P. falciparum gametocytes. Of note, some compounds showed nanomolar activity against all three life cycle stages tested (asexual, exo-erythrocytic and gametocyte stages) and several compounds displayed significantly increased parasite selectivity compared to the reference HDAC inhibitor suberoylanilide hydroxamic acid (SAHA). These data suggest that it may be possible to develop HDAC inhibitors that target multiple malaria parasite life cycle stages. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Phylogenetic profiles of all membrane transport proteins of the malaria parasite highlight new drug targets

    January Weiner 3rd

    2016-08-01

    Full Text Available In order to combat the on-going malaria epidemic, discovery of new drug targets remains vital. Proteins that are essential to survival and specific to malaria parasites are key candidates. To survive within host cells, the parasites need to acquire nutrients and dispose of waste products across multiple membranes. Additionally, like all eukaryotes, they must redistribute ions and organic molecules between their various internal membrane bound compartments. Membrane transport proteins mediate all of these processes and are considered important mediators of drug resistance as well as drug targets in their own right. Recently, using advanced experimental genetic approaches and streamlined life cycle profiling, we generated a large collection of Plasmodium berghei gene deletion mutants and assigned essential gene functions, highlighting potential targets for prophylactic, therapeutic, and transmission-blocking anti-malarial drugs. Here, we present a comprehensive orthology assignment of all Plasmodium falciparum putative membrane transport proteins and provide a detailed overview of the associated essential gene functions obtained through experimental genetics studies in human and murine model parasites. Furthermore, we discuss the phylogeny of selected potential drug targets identified in our functional screen. We extensively discuss the results in the context of the functional assignments obtained using gene targeting available to date.

  14. Does Magnetic Field Affect Malaria Parasite Replication in Human Red Blood Cells?

    Chanturiya, Alexandr N.; Glushakova, Svetlana; Yin, Dan; Zimmerberg, Joshua

    2004-01-01

    Digestion of red blood cell (RBC) hemoglobin by the malaria parasite results in the formation of paramagnetic hemazoin crystals inside the parasite body. A number of reports suggest that magnetic field interaction with hamazoin crystals significantly reduces the number of infected cells in culture, and thus magnetic field can be used to combat malaria. We studies the effects of magnetic filed on the Plasmodium falciparum asexual life cycle inside RBCs under various experimental conditions. No effect was found during prolonged exposure of infected RBCs to constant magnetic fields up to 6000 Gauss. Infected RBCs were also exposed, under temperature-controlled conditions, to oscillating magnetic fields with frequencies in the range of 500-20000 kHz, and field strength 30-600 Gauss. This exposure often changed the proportion of different parasite stages in treated culture compared to controls. However, no significant effect on parasitemia was observed in treated cultures. This result indicates that the magnetic field effect on Plasmodium falciparum is negligible, or that hypothetical negative and positive effects on different stages within one 48-hour compensate each other.

  15. Leukocyte profiles for western fence lizards, Sceloporus occidentalis, naturally infected by the malaria parasite Plasmodium mexicanum.

    Motz, Victoria L; Lewis, William D; Vardo-Zalik, Anne M

    2014-10-01

    Plasmodium mexicanum is a malaria parasite that naturally infects the western fence lizard, Sceloporus occidentalis , in northern California. We set out to determine whether lizards naturally infected with this malaria parasite have different leukocyte profiles, indicating an immune response to infection. We used 29 naturally infected western fence lizards paired with uninfected lizards based on sex, snout-to-vent length, tail status, and the presence-absence of ectoparasites such as ticks and mites, as well as the presence-absence of another hemoparasite, Schellackia occidentalis. Complete white blood cell (WBC) counts were conducted on blood smears stained with Giemsa, and the proportion of granulocytes per microliter of blood was estimated using the Avian Leukopet method. The abundance of each WBC class (lymphocytes, monocytes, heterophils, eosinophils, and basophils) in infected and uninfected lizards was compared to determine whether leukocyte densities varied with infection status. We found that the numbers of WBCs and lymphocytes per microliter of blood significantly differed (P lizard's immune response to increase the levels of circulating WBCs, but what effect this has on the biology of the parasite remains unclear.

  16. Socially-parasitic Myrmica species (Hymenoptera, Formicidae) of Himalaya, with the description of a new species.

    Bharti, Himender; Radchenko, Alexander; Sasi, Sishal

    2016-01-01

    A new socially-parasitic species, Myrmica latra sp. n. is described based on a queen and male from Indian Himalaya. Its queen differs from other species by the distinctly narrower petiole and postpetiole, blunt and non-divergent propodeal spines, and a darker body colour. The taxonomic position of the three known Himalayan socially-parasitic Myrmica species is discussed, and Myrmica ereptrix Bolton 1988 is transferred to the smythiesii species-group. It is supposed that Myrmica nefaria Bharti 2012 is a temporary social parasite, but Myrmica ereptrix and Myrmica latra sp. n. are permanent social parasites, and a key for their identification is provided.

  17. Vitamin B6-Dependent Enzymes in the Human Malaria Parasite Plasmodium falciparum: A Druggable Target?

    Thales Kronenberger

    2014-01-01

    Full Text Available Malaria is a deadly infectious disease which affects millions of people each year in tropical regions. There is no effective vaccine available and the treatment is based on drugs which are currently facing an emergence of drug resistance and in this sense the search for new drug targets is indispensable. It is well established that vitamin biosynthetic pathways, such as the vitamin B6 de novo synthesis present in Plasmodium, are excellent drug targets. The active form of vitamin B6, pyridoxal 5-phosphate, is, besides its antioxidative properties, a cofactor for a variety of essential enzymes present in the malaria parasite which includes the ornithine decarboxylase (ODC, synthesis of polyamines, the aspartate aminotransferase (AspAT, involved in the protein biosynthesis, and the serine hydroxymethyltransferase (SHMT, a key enzyme within the folate metabolism.

  18. No Evidence of Delayed Parasite Clearance after Oral Artesunate Treatment of Uncomplicated Falciparum Malaria in Mali

    Maiga, Amelia W.; Fofana, Bakary; Sagara, Issaka; Dembele, Demba; Dara, Antoine; Traore, Oumar Bila; Toure, Sekou; Sanogo, Kassim; Dama, Souleymane; Sidibe, Bakary; Kone, Aminatou; Thera, Mahamadou A.; Plowe, Christopher V.; Doumbo, Ogobara K.; Djimde, Abdoulaye A.

    2012-01-01

    Plasmodium falciparum resistance to artemisinins by delayed parasite clearance is present in Southeast Asia. Scant data on parasite clearance after artemisinins are available from Africa, where transmission is high, burden is greatest, and artemisinin use is being scaled up. Children 1–10 years of age with uncomplicated malaria were treated with 7 days of artesunate and followed for 28 days. Blood smears were done every 8 hours until negative by light microscopy. Results were compared with a similar study conducted in the same village in 2002–2004. The polymerase chain reaction-corrected cure rate was 100%, identical to 2002–2004. By 24 hours after treatment initiation, 37.0% of participants had cleared parasitemia, compared with 31.9% in 2002–2004 (P = 0.5). The median parasite clearance time was 32 hours. Only one participant still had parasites at 48 hours and no participant presented parasitemia at 72 hours. Artesunate was highly efficacious, with no evidence of delayed parasite clearance. We provide baseline surveillance data for the emergence or dissemination of P. falciparum resistance in sub-Saharan Africa. PMID:22764287

  19. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite.

    Katja Müller

    Full Text Available Malaria is a vector-borne infectious disease caused by unicellular, obligate intracellular parasites of the genus Plasmodium. During host switch the malaria parasite employs specialized latent stages that colonize the new host environment. Previous work has established that gametocytes, sexually differentiated stages that are taken up by the mosquito vector, control expression of genes required for mosquito colonization by translational repression. Sexual parasite development is controlled by a DEAD-box RNA helicase of the DDX6 family, termed DOZI. Latency of sporozoites, the transmission stage injected during an infectious blood meal, is controlled by the eIF2alpha kinase IK2, a general inhibitor of protein synthesis. Whether RNA-binding proteins participate in translational regulation in sporozoites remains to be studied. Here, we investigated the roles of two RNA-binding proteins of the Puf-family, Plasmodium Puf1 and Puf2, during sporozoite stage conversion. Our data reveal that, in the rodent malaria parasite P. berghei, Puf2 participates in the regulation of IK2 and inhibits premature sporozoite transformation. Inside mosquito salivary glands puf2⁻ sporozoites transform over time to round forms resembling early intra-hepatic stages. As a result, mutant parasites display strong defects in initiating a malaria infection. In contrast, Puf1 is dispensable in vivo throughout the entire Plasmodium life cycle. Our findings support the notion of a central role for Puf2 in parasite latency during switch between the insect and mammalian hosts.

  20. Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential

    Krungkrai, Sudaratana R; Krungkrai, Jerapan

    2011-01-01

    Plasmodium falciparum (P. falciparum) is responsible for the majority of life-threatening cases of human malaria, causing 1.5-2.7 million annual deaths. The global emergence of drug-resistant malaria parasites necessitates identification and characterization of novel drug targets and their potential inhibitors. We identified the carbonic anhydrase (CA) genes in P. falciparum. The pfCA gene encodes anα-carbonic anhydrase, a Zn2+-metalloenzme, possessing catalytic properties distinct from that of the human host CA enzyme. The amino acid sequence of the pfCA enzyme is different from the analogous protozoan and human enzymes. A library of aromatic/heterocyclic sulfonamides possessing a large diversity of scaffolds were found to be very good inhibitors for the malarial enzyme at moderate-low micromolar and submicromolar inhibitions. The structure of the groups substituting the aromatic-ureido- or aromatic-azomethine fragment of the molecule and the length of the parent sulfonamide were critical parameters for the inhibitory properties of the sulfonamides. One derivative, that is, 4- (3, 4-dichlorophenylureido)thioureido-benzenesulfonamide (compound 10) was the most effective in vitro Plasmodium falciparum CA inhibitor, and was also the most effective antimalarial compound on the in vitro P. falciparum growth inhibition. The compound 10 was also effective in vivo antimalarial agent in mice infected with Plasmodium berghei, an animal model of drug testing for human malaria infection. It is therefore concluded that the sulphonamide inhibitors targeting the parasite CA may have potential for the development of novel therapies against human malaria. PMID:23569766

  1. Molecular cloning of a K+ channel from the malaria parasite Plasmodium falciparum

    Ellekvist, Peter; Ricke, Christina Høier; Litman, Thomas

    2004-01-01

    In most living cells, K(+) channels are important for the generation of the membrane potential and for volume regulation. The parasite Plasmodium falciparum, which causes malignant malaria, must be able to deal with large variations in the ambient K(+) concentration: it is exposed to high...... concentrations of K(+) when inside the erythrocyte and low concentrations when in plasma. In the recently published genome of P. falciparum, we have identified a gene, pfkch1, encoding a potential K(+) channel, which to some extent resembles the big-conductance (BK) K(+) channel. We have cloned the approximately...

  2. Do the mitochondria of malaria parasites behave like the phoenix after return in the mosquito? Regeneration of degenerated mitochondria is required for successful Plasmodium infection.

    Bongaerts, G.P.A.

    2005-01-01

    Mitochondria are energy generators in eukaryotic organisms like man and the pathogenic malaria parasites, the Plasmodium spp. From the moment a mosquito-mediated malaria infection occurs in man the parasite multiplies profusely, but eventually the oxygen supply becomes the limiting factor in this

  3. Rare species of fungi parasitizing on algae. IV

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available The following parasites of the genera Spirogyra Link, Mougeotia Agardh and Oedogonium Link are desribed: Myzocyutium irregulare, Woroninu glomerata, Harpochytrium tenuissimum, Woronina polycystis, Chytridium acuminatu, Myzocytium irregulare and Chytridumm acuminatum are new to Poland. Also, the first information on Woronina polycystis as a parasite on algae is presented. The figure of cystosori in a cell of Mougeotia mysorensis is the first graphic documentation of this species.

  4. Synergistic Malaria Parasite Killing by Two Types of Plasmodial Surface Anion Channel Inhibitors.

    Margaret Pain

    Full Text Available Malaria parasites increase their host erythrocyte's permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel's structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing.

  5. Resistance of a rodent malaria parasite to a thymidylate synthase inhibitor induces an apoptotic parasite death and imposes a huge cost of fitness.

    Muregi, Francis W; Ohta, Isao; Masato, Uchijima; Kino, Hideto; Ishih, Akira

    2011-01-01

    The greatest impediment to effective malaria control is drug resistance in Plasmodium falciparum, and thus understanding how resistance impacts on the parasite's fitness and pathogenicity may aid in malaria control strategy. To generate resistance, P. berghei NK65 was subjected to 5-fluoroorotate (FOA, an inhibitor of thymidylate synthase, TS) pressure in mice. After 15 generations of drug pressure, the 2% DT (the delay time for proliferation of parasites to 2% parasitaemia, relative to untreated wild-type controls) reduced from 8 days to 4, equalling the controls. Drug sensitivity studies confirmed that FOA-resistance was stable. During serial passaging in the absence of drug, resistant parasite maintained low growth rates (parasitaemia, 15.5%±2.9, 7 dpi) relative to the wild-type (45.6%±8.4), translating into resistance cost of fitness of 66.0%. The resistant parasite showed an apoptosis-like death, as confirmed by light and transmission electron microscopy and corroborated by oligonucleosomal DNA fragmentation. The resistant parasite was less fit than the wild-type, which implies that in the absence of drug pressure in the field, the wild-type alleles may expand and allow drugs withdrawn due to resistance to be reintroduced. FOA resistance led to depleted dTTP pools, causing thymineless parasite death via apoptosis. This supports the tenet that unicellular eukaryotes, like metazoans, also undergo apoptosis. This is the first report where resistance to a chemical stimulus and not the stimulus itself is shown to induce apoptosis in a unicellular parasite. This finding is relevant in cancer therapy, since thymineless cell death induced by resistance to TS-inhibitors can further be optimized via inhibition of pyrimidine salvage enzymes, thus providing a synergistic impact. We conclude that since apoptosis is a process that can be pharmacologically modulated, the parasite's apoptotic machinery may be exploited as a novel drug target in malaria and other protozoan

  6. Introduced cryptic species of parasites exhibit different invasion pathways.

    Miura, Osamu; Torchin, Mark E; Kuris, Armand M; Hechinger, Ryan F; Chiba, Satoshi

    2006-12-26

    Sometimes infectious agents invade and become established in new geographic regions. Others may be introduced yet never become established because of the absence of suitable hosts in the new region. This phenomenon may be particularly true for the many parasites with complex life cycles, where various life stages require different host species. Homogenization of the world's biota through human-mediated invasions may reunite hosts and parasites, resulting in disease outbreaks in novel regions. Here we use molecular genetics to differentiate invasion pathways for two digenean trematode parasites and their exotic host, the Asian mud snail, Batillaria attramentaria. All of the snail haplotypes found in introduced populations in North America were identical to haplotypes common in the areas of Japan that provided oysters for cultivation in North America, supporting the hypothesis that the snails were introduced from Japan with seed oysters. Two cryptic trematode species were introduced to North American populations in high frequencies. We found a marked reduction of genetic variation in one of these species, suggesting it experienced a bottleneck or founder event comparable to that of the host snail. In contrast, no genetic variation was lost in the other parasite species. We hypothesize that this parasite was and is dispersed naturally by migratory shorebirds and was able to establish only after the host snail, B. attramentaria, was introduced to North America. Evaluation of the nature of invasion pathways and postinvasion consequences will aid mitigation of spreading diseases of humans, livestock, and wildlife in an increasingly globalized world.

  7. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

    Rao, Pavitra N.

    2016-06-14

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  8. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission

    Glennon, Elizabeth K. K.; Adams, L. Garry; Hicks, Derrick R.; Dehesh, Katayoon; Luckhart, Shirley

    2016-01-01

    Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation. PMID:27001761

  9. The Plasmodium PHIST and RESA-Like Protein Families of Human and Rodent Malaria Parasites

    Moreira, Cristina K.; Naissant, Bernina; Coppi, Alida; Bennett, Brandy L.; Aime, Elena; Franke-Fayard, Blandine; Janse, Chris J.; Coppens, Isabelle; Sinnis, Photini; Templeton, Thomas J.

    2016-01-01

    The phist gene family has members identified across the Plasmodium genus, defined by the presence of a domain of roughly 150 amino acids having conserved aromatic residues and an all alpha-helical structure. The family is highly amplified in P. falciparum, with 65 predicted genes in the genome of the 3D7 isolate. In contrast, in the rodent malaria parasite P. berghei 3 genes are identified, one of which is an apparent pseudogene. Transcripts of the P. berghei phist genes are predominant in schizonts, whereas in P. falciparum transcript profiles span different asexual blood stages and gametocytes. We pursued targeted disruption of P. berghei phist genes in order to characterize a simplistic model for the expanded phist gene repertoire in P. falciparum. Unsuccessful attempts to disrupt P. berghei PBANKA_114540 suggest that this phist gene is essential, while knockout of phist PBANKA_122900 shows an apparent normal progression and non-essential function throughout the life cycle. Epitope-tagging of P. falciparum and P. berghei phist genes confirmed protein export to the erythrocyte cytoplasm and localization with a punctate pattern. Three P. berghei PEXEL/HT-positive exported proteins exhibit at least partial co-localization, in support of a common vesicular compartment in the cytoplasm of erythrocytes infected with rodent malaria parasites. PMID:27022937

  10. Translational repression of the cpw-wpc gene family in the malaria parasite Plasmodium

    Rao, Pavitra N.; Santos, Jorge M.; Pain, Arnab; Templeton, Thomas J.; Mair, Gunnar R.

    2016-01-01

    The technical challenges of working with the sexual stages of the malaria parasite Plasmodium have hindered the characterization of sexual stage antigens in the quest for a successful malaria transmission-blocking vaccine. One such predicted and largely uncharacterized group of sexual stage candidate antigens is the CPW-WPC family of proteins. CPW-WPC proteins are named for a characteristic domain that contains two conserved motifs, CPxxW and WPC. Conserved across Apicomplexa, this family is also present earlier in the Alveolata in the free-living, non-parasitophorous, photosynthetic chromerids, Chromera and Vitrella. In P. falciparum and P. berghei blood stage parasites the transcripts of all nine cpw-wpc genes have been detected in gametocytes. RNA immunoprecipitation followed by reverse transcriptase-PCR reveals all P. berghei cpw-wpc transcripts to be bound by the translational repressors DOZI and CITH, and thus are likely under translational control prior to transmission from the rodent host to the mosquito vector in P. berghei. The GFP tagging of two endogenous P. berghei genes confirmed translational silencing in the gametocyte and translation in ookinetes. Establishing a luciferase transgene assay we show that the 3′ untranslated region of PF3D7_1331400 controls protein expression of this reporter in P. falciparum gametocytes. Our analyses suggest that cpw-wpc genes are translationally silenced in gametocytes across Plasmodium spp. and activated during ookinete formation and thus may have a role in transmission to the mosquito.

  11. cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Ghania Ramdani

    2015-05-01

    Full Text Available Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites.

  12. Depletion of Plasmodium berghei Plasmoredoxin Reveals a Non-Essential Role for Life Cycle Progression of the Malaria Parasite

    Buchholz, Kathrin; Rahlfs, Stefan; Schirmer, R. Heiner; Becker, Katja; Matuschewski, Kai

    2008-01-01

    Proliferation of the pathogenic Plasmodium asexual blood stages in host erythrocytes requires an exquisite capacity to protect the malaria parasite against oxidative stress. This function is achieved by a complex antioxidant defence system composed of redox-active proteins and low MW antioxidants. Here, we disrupted the P. berghei plasmoredoxin gene that encodes a parasite-specific 22 kDa member of the thioredoxin superfamily. The successful generation of plasmoredoxin knockout mutants in the...

  13. Use of buffy coat thick films in detecting malaria parasites in patients with negative conventional thick films.

    Duangdee, Chatnapa; Tangpukdee, Noppadon; Krudsood, Srivicha; Wilairatana, Polrat

    2012-04-01

    To determine the frequency of malaria parasite detection from the buffy coat blood films by using capillary tube in falciparum malaria patients with negative conventional thick films. Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study. The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases, Bangkok, Thailand for 28 day. Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia, then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film. The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients (27.8%) with asexual forms of Plasmodium falciparum. The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8% of patients whose conventional thick films show negative parasitemia.

  14. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    Moon, Robert W.; Sharaf, Hazem; Hastings, Claire H.; Ho, Yung Shwen; Nair, Mridul; Rchiad, ‍ Zineb; Knuepfer, Ellen; Ramaprasad, Abhinay; Mohring, Franziska; Amir, Amirah; Yusuf, Noor A.; Hall, Joanna; Almond, Neil; Lau, Yee Ling; Pain, Arnab; Blackman, Michael J.; Holder, Anthony A.

    2016-01-01

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  15. Normocyte-binding protein required for human erythrocyte invasion by the zoonotic malaria parasitePlasmodium knowlesi

    Moon, Robert W.

    2016-06-15

    The dominant cause of malaria in Malaysia is now Plasmodium knowlesi, a zoonotic parasite of cynomolgus macaque monkeys found throughout South East Asia. Comparative genomic analysis of parasites adapted to in vitro growth in either cynomolgus or human RBCs identified a genomic deletion that includes the gene encoding normocyte-binding protein Xa (NBPXa) in parasites growing in cynomolgus RBCs but not in human RBCs. Experimental deletion of the NBPXa gene in parasites adapted to growth in human RBCs (which retain the ability to grow in cynomolgus RBCs) restricted them to cynomolgus RBCs, demonstrating that this gene is selectively required for parasite multiplication and growth in human RBCs. NBPXa-null parasites could bind to human RBCs, but invasion of these cells was severely impaired. Therefore, NBPXa is identified as a key mediator of P. knowlesi human infection and may be a target for vaccine development against this emerging pathogen.

  16. A plant-like proton-pump partnership in the malaria parasite

    Allen, R.J.W.; Saliba, K.J.; Zissis, S.; Kirk, K.

    2001-01-01

    Full text: The 'intraerythrocytic' form of the human malaria parasite. Plasmodium falciparum contains an acidic 'digestive vacuole' which is believed to be the main site of haemoglobin degradation, and the major site of action of many antimalarial drugs. The mechanism/s by which this organelle is acidified have not been investigated. In plant cells, the internal acidic vacuole has on its membrane two types of H + -pumps which contribute to the generation of an acidic pH: a vacuolar-type H + -ATPase (V-H + -ATPase) and a vacuolar H + -pyrophosphatase (V-H + -PPase). The presence of a V-H + -ATPase on the digestive vacuole membrane of P. falciparum has been demonstrated by immuno-electron microscopy (J. Biol. Chem. (2000) 275: 34353-34358) but its functional activity on this organelle has not been demonstrated. Two V-H + -PPase genes have been shown to be expressed in the intraerythrocytic stage of the P. falciparum parasite (Mol. Biochem. Parasitol. (2001) 114: 183-195); however, immunological methods failed to detect either on the parasite digestive vacuole. In this study we use a combination of NMR spectroscopy and fluorescence techniques to show that (i) P. falciparum contains low levels of pyrophosphate, and (ii) that both ATP and pyrophosphate are able to energise the acidification of the parasite's digestive vacuole. We propose that, like many plant cells the digestive vacuole of P. falciparum parasites has, on its membrane, a V-H + -PPase as well as a V-H + -ATPaSe, and that both pumps contribute to the pH regulation of this organelle

  17. A plant-like proton-pump partnership in the malaria parasite

    Allen, R J.W.; Saliba, K J; Zissis, S; Kirk, K [Australian National University, ACT (Australia)

    2001-07-01

    Full text: The 'intraerythrocytic' form of the human malaria parasite. Plasmodium falciparum contains an acidic 'digestive vacuole' which is believed to be the main site of haemoglobin degradation, and the major site of action of many antimalarial drugs. The mechanism/s by which this organelle is acidified have not been investigated. In plant cells, the internal acidic vacuole has on its membrane two types of H{sup +}-pumps which contribute to the generation of an acidic pH: a vacuolar-type H{sup +}-ATPase (V-H{sup +}-ATPase) and a vacuolar H{sup +}-pyrophosphatase (V-H{sup +}-PPase). The presence of a V-H{sup +}-ATPase on the digestive vacuole membrane of P. falciparum has been demonstrated by immuno-electron microscopy (J. Biol. Chem. (2000) 275: 34353-34358) but its functional activity on this organelle has not been demonstrated. Two V-H{sup +}-PPase genes have been shown to be expressed in the intraerythrocytic stage of the P. falciparum parasite (Mol. Biochem. Parasitol. (2001) 114: 183-195); however, immunological methods failed to detect either on the parasite digestive vacuole. In this study we use a combination of NMR spectroscopy and fluorescence techniques to show that (i) P. falciparum contains low levels of pyrophosphate, and (ii) that both ATP and pyrophosphate are able to energise the acidification of the parasite's digestive vacuole. We propose that, like many plant cells the digestive vacuole of P. falciparum parasites has, on its membrane, a V-H{sup +}-PPase as well as a V-H{sup +}-ATPaSe, and that both pumps contribute to the pH regulation of this organelle.

  18. The Cytoplasmic Prolyl-tRNA Synthetase of the Malaria Parasite is a Dual-Stage Target for Drug Development

    Herman, Jonathan D.; Pepper, Lauren R.; Cortese, Joseph F.; Estiu, Guillermina; Galinsky, Kevin; Zuzarte-Luis, Vanessa; Derbyshire, Emily R.; Ribacke, Ulf; Lukens, Amanda K.; Santos, Sofia A.; Patel, Vishal; Clish, Clary B.; Sullivan, William J.; Zhou, Huihao; Bopp, Selina E.; Schimmel, Paul; Lindquist, Susan; Clardy, Jon; Mota, Maria M.; Keller, Tracy L.; Whitman, Malcolm; Wiest, Olaf; Wirth, Dyann F.; Mazitschek, Ralph

    2015-01-01

    The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for the development of the next-generation of antimalarial drugs. Using an integrated chemogenomics approach that combined drug-resistance selection, whole genome sequencing and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivatives such as halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the P. berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is highly active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses, and represents a promising lead for the development of dual-stage next generation antimalarials. PMID:25995223

  19. Host scavenger receptor SR-BI plays a dual role in the establishment of malaria parasite liver infection

    Rodrigues, Cristina D.; Hannus, Michael; Prudencio, Miguel; Martin, Cecilie; Goncalves, Ligia A.; Portugal, Silvia; Epiphanio, Sabrina; Akinc, Akin; Hadwiger, Philipp; Jahn-Hofmann, Kerstin; Roehl, Ingo; van Gemert, Geert-Jan; Franetich, Jean-Francois; Luty, Adrian J. F.; Sauerwein, Robert; Mazier, Dominique; Koteliansky, Victor; Vornlocher, Hans-Peter; Echeverri, Christophe J.; Mota, Maria M.

    2008-01-01

    An obligatory step of malaria parasite infection is Plasmodium sporozoite invasion of host hepatocytes, and host lipoprotein clearance pathways have been linked to Plasmodium liver infection. By using RNA interference to screen lipoprotein-related host factors, we show here that the class B, type I

  20. Do the mitochondria of malaria parasites behave like the phoenix after return in the mosquito? Regeneration of degenerated mitochondria is required for successful Plasmodium infection.

    Bongaerts, Ger

    2005-01-01

    Mitochondria are energy generators in eukaryotic organisms like man and the pathogenic malaria parasites, the Plasmodium spp. From the moment a mosquito-mediated malaria infection occurs in man the parasite multiplies profusely, but eventually the oxygen supply becomes the limiting factor in this process. Consequently, the parasite will increasingly generate energy (and lactic acid) from sugar fermentation. Simultaneously, the cristate structure of Plasmodium mitochondria degenerates and becomes acristate. The degenerated acristate mitochondria of mammalian Plasmodium parasites seem to be able to revitalise by transforming to cristate mitochondria inside the oxygen-rich mosquito, like the rebirth of the old phoenix. In this way the infectivity of the parasite is revitalised.

  1. The Clp Chaperones and Proteases of the Human Malaria Parasite Plasmodium falciparum

    Bakkouri, Majida El; Pow, Andre; Mulichak, Anne; Cheung, Kevin L.Y.; Artz, Jennifer D.; Amani, Mehrnaz; Fell, Stuart; de Koning-Ward, Tania F.; Goodman, C. Dean; McFadden, Geoffrey I.; Ortega, Joaquin; Hui, Raymond; Houry, Walid A. (McMaster U.); (Melbourne); (Toronto); (Deakin); (HWMRI)

    2015-02-09

    The Clp chaperones and proteases play an important role in protein homeostasis in the cell. They are highly conserved across prokaryotes and found also in the mitochondria of eukaryotes and the chloroplasts of plants. They function mainly in the disaggregation, unfolding and degradation of native as well as misfolded proteins. Here, we provide a comprehensive analysis of the Clp chaperones and proteases in the human malaria parasite Plasmodium falciparum. The parasite contains four Clp ATPases, which we term PfClpB1, PfClpB2, PfClpC and PfClpM. One PfClpP, the proteolytic subunit, and one PfClpR, which is an inactive version of the protease, were also identified. Expression of all Clp chaperones and proteases was confirmed in blood-stage parasites. The proteins were localized to the apicoplast, a non-photosynthetic organelle that accommodates several important metabolic pathways in P. falciparum, with the exception of PfClpB2 (also known as Hsp101), which was found in the parasitophorous vacuole. Both PfClpP and PfClpR form mostly homoheptameric rings as observed by size-exclusion chromatography, analytical ultracentrifugation and electron microscopy. The X-ray structure of PfClpP showed the protein as a compacted tetradecamer similar to that observed for Streptococcus pneumoniae and Mycobacterium tuberculosis ClpPs. Our data suggest the presence of a ClpCRP complex in the apicoplast of P. falciparum.

  2. Differential perpetuation of malaria species among Amazonian Yanomami Amerindians.

    Laserson, K F; Wypij, D; Petralanda, I; Spielman, A; Maguire, J H

    1999-05-01

    To determine whether malaria perpetuates within isolated Amerindian villages in the Venezuelan Amazon, we surveyed malaria infection and disease among 1,311 Yanomami in three communities during a 16-month period. Plasmodium vivax was generally present in each of these small, isolated villages; asymptomatic infection was frequent, and clinical disease was most evident among children less than five years of age (odds ratio [OR] = 6.3, 95% confidence interval [CI] = 1.4-29.2) and among persons experiencing parasitemias > or = 1,000 parasites/mm3 of blood (OR = 45.0, 95% CI = 5.5-370.7). Plasmodium falciparum, in contrast, was less prevalent, except during an abrupt outbreak in which 72 infections resulted in symptoms in all age groups and at all levels of parasitemia, and occasionally were life-threatening. The observed endemic pattern of P. vivax infection may derive from the capacity of this pathogen to relapse, while the epidemic pattern of P. falciparum infection may reflect occasional introductions of strains carried by immigrants or residents of distant villages and the subsequent disappearance of this non-relapsing pathogen.

  3. Depletion of Plasmodium berghei plasmoredoxin reveals a non-essential role for life cycle progression of the malaria parasite.

    Buchholz, Kathrin; Rahlfs, Stefan; Schirmer, R Heiner; Becker, Katja; Matuschewski, Kai

    2008-06-25

    Proliferation of the pathogenic Plasmodium asexual blood stages in host erythrocytes requires an exquisite capacity to protect the malaria parasite against oxidative stress. This function is achieved by a complex antioxidant defence system composed of redox-active proteins and low MW antioxidants. Here, we disrupted the P. berghei plasmoredoxin gene that encodes a parasite-specific 22 kDa member of the thioredoxin superfamily. The successful generation of plasmoredoxin knockout mutants in the rodent model malaria parasite and phenotypic analysis during life cycle progression revealed a non-vital role in vivo. Our findings suggest that plasmoredoxin fulfils a specialized and dispensable role for Plasmodium and highlights the need for target validation to inform drug development strategies.

  4. Common dietary flavonoids inhibit the growth of the intraerythrocytic malaria parasite

    Saliba Kevin J

    2008-06-01

    Full Text Available Abstract Background Flavonoids are abundant plant phenolic compounds. More than 6000 have been identified to date, and some have been shown to possess antiparasitic activity. Here we investigate the effects of a range of common dietary flavonoids on the growth of two strains of the human malaria parasite Plasmodium falciparum. Findings A chloroquine-sensitive (3D7 and a chloroquine-resistant (7G8 strain of P. falciparum were tested for in vitro susceptibility to a range of individual dietary flavonoids and flavonoid combinations. Parasite susceptibility was measured in 96-well plates over 96 h using a previously described [3H]hypoxanthine incorporation assay. Of the eleven flavonoids tested, eight showed antiplasmodial activity against the 3D7 strain (with IC50 values between 11 and 66 μM, and all showed activity against the 7G8 strain (with IC50 values between 12 and 76 μM. The most active compound against both strains was luteolin, with IC50 values of 11 ± 1 μM and 12 ± 1 μM for 3D7 and 7G8, respectively. Luteolin was found to prevent the progression of parasite growth beyond the young trophozoite stage, and did not affect parasite susceptibility to the antimalarial drugs chloroquine or artemisinin. Combining low concentrations of flavonoids was found to produce an apparent additive antiplasmodial effect. Conclusion Certain common dietary flavonoids inhibit the intraerythrocytic growth of the 3D7 and 7G8 strains of P. falciparum. Flavonoid combinations warrant further investigation as antiplasmodial agents.

  5. Expression, characterization, and cellular localization of knowpains, papain-like cysteine proteases of the Plasmodium knowlesi malaria parasite.

    Rajesh Prasad

    Full Text Available Papain-like cysteine proteases of malaria parasites degrade haemoglobin in an acidic food vacuole to provide amino acids for intraerythrocytic parasites. These proteases are potential drug targets because their inhibitors block parasite development, and efforts are underway to develop chemotherapeutic inhibitors of these proteases as the treatments for malaria. Plasmodium knowlesi has recently been shown to be an important human pathogen in parts of Asia. We report expression and characterization of three P. knowlesi papain-like proteases, termed knowpains (KP2-4. Recombinant knowpains were produced using a bacterial expression system, and tested for various biochemical properties. Antibodies against recombinant knowpains were generated and used to determine their cellular localization in parasites. Inhibitory effects of the cysteine protease inhibitor E64 were assessed on P. knowlesi culture to validate drug target potential of knowpains. All three knowpains were present in the food vacuole, active in acidic pH, and capable of degrading haemoglobin at the food vacuolar pH (≈5.5, suggesting roles in haemoglobin degradation. The proteases showed absolute (KP2 and KP3 to moderate (KP4 preference for peptide substrates containing leucine at the P2 position; KP4 preferred arginine at the P2 position. While the three knowpains appear to have redundant roles in haemoglobin degradation, KP4 may also have a role in degradation of erythrocyte cytoskeleton during merozoite egress, as it displayed broad substrate specificity and was primarily localized at the parasite periphery. Importantly, E64 blocked erythrocytic development of P. knowlesi, with enlargement of food vacuoles, indicating inhibition of haemoglobin hydrolysis and supporting the potential for inhibition of knowpains as a strategy for the treatment of malaria. Functional expression and characterization of knowpains should enable simultaneous screening of available cysteine protease

  6. Congenital malaria in China.

    Zhi-Yong Tao

    2014-03-01

    Full Text Available BACKGROUND: Congenital malaria, in which infants are directly infected with malaria parasites from their mother prior to or during birth, is a potentially life-threatening condition that occurs at relatively low rates in malaria-endemic regions. It is recognized as a serious problem in Plasmodium falciparum-endemic sub-Saharan Africa, where recent data suggests that it is more common than previously believed. In such regions where malaria transmission is high, neonates may be protected from disease caused by congenital malaria through the transfer of maternal antibodies against the parasite. However, in low P. vivax-endemic regions, immunity to vivax malaria is low; thus, there is the likelihood that congenital vivax malaria poses a more significant threat to newborn health. Malaria had previously been a major parasitic disease in China, and congenital malaria case reports in Chinese offer valuable information for understanding the risks posed by congenital malaria to neonatal health. As most of the literature documenting congenital malaria cases in China are written in Chinese and therefore are not easily accessible to the global malaria research community, we have undertaken an extensive review of the Chinese literature on this subject. METHODS/PRINCIPAL FINDINGS: Here, we reviewed congenital malaria cases from three major searchable Chinese journal databases, concentrating on data from 1915 through 2011. Following extensive screening, a total of 104 cases of congenital malaria were identified. These cases were distributed mainly in the eastern, central, and southern regions of China, as well as in the low-lying region of southwest China. The dominant species was P. vivax (92.50%, reflecting the malaria parasite species distribution in China. The leading clinical presentation was fever, and other clinical presentations were anaemia, jaundice, paleness, diarrhoea, vomiting, and general weakness. With the exception of two cases, all patients

  7. Malaria, desnutrición y parasitosis intestinal en los niños colombianos: interrelaciones interrrelations between malaria, malnutrition and intestinal parasitism in colombian children

    Jaime Carmona Fonseca

    2004-09-01

    . lamblia (20%; 9 el estrés oxidativo se ha encontrado en los pacientes adultos de Turbo con malaria no complicada, ya sea vivax o falciparum, sin diferencia por especie. This paper reviews Colombian data as well as Grupo Malaria (Universidad de Antioquia findings on the relationship between malaria, malnutrition and immune response, observed in children (4-11 year old of Turbo, El Bagre and Zaragoza. These results and interpretations articulate with other studies about such relationships, including intestinal parasites. Emphasis is made on the association of malaria, intestinal parasites and malnutrition (chronic malnutrition, vitamin A deficit, that is explored through its articulation with the immune system. Clinical application (individual and epidemiological (collective recommendations are formulated towards vitamin A supplementation and use of wide spectrum antihelmintic therapy. In Turbo and El Bagre-Zaragoza: 1 malaria frequency during 1996-2000 registered annual parasite indexes of 39 (Turbo and 156 (El Bagre- Zaragoza; 2 chronic malnutrition risk (height/ age index was 63% in children aged 3-11; 3 anemia was observed in 26% of malaric children and in 17% of the non-malaric ones; 4 retinol was low (<0,3 µg/ml in 65% of children with malaria and in 35% of children without malaria; 5 apoprotein A-1 values were abnormally low in non-malaric children but they were lower in malaric children; 6 interleukin 10 levels were significantly higher in 96% of the malaric children (4-9 year old when compared to non-malaric children and to normal values; 7 total and specific anti-Plasmodium IgE and TNF-α were abnormally high in children of both municipalities; 8 among healthy teachers and nursing students aged 18-44, intestinal parasites were observed in 97%, while intestinal pathogenic parasites were detected in 42%. In 5 year old children of Turbo presence of pathogenic intestinal parasites was detected in 30-35%, with predominance of G. lamblia (20%; 9 oxidative stress was

  8. Bioinformatics approaches to malaria

    Hansen, Daniel Aaen

    Malaria is a life threatening disease found in tropical and subtropical regions of the world. Each year it kills 781 000 individuals; most of them are children under the age of five in sub-Saharan Africa. The most severe form of malaria in humans is caused by the parasite Plasmodium falciparum......, which is the subject of the first part of this thesis. The PfEMP1 protein which is encoded by the highly variablevargene family is important in the pathogenesis and immune evasion of malaria parasites. We analyzed and classified these genes based on the upstream sequence in seven......Plasmodium falciparumclones. We show that the amount of nucleotide diversity is just as big within each clone as it is between the clones. DNA methylation is an important epigenetic mark in many eukaryotic species. We are studying DNA methylation in the malaria parasitePlasmodium falciparum. The work is still in progress...

  9. Using remote sensing and modeling techniques to investigate the annual parasite incidence of malaria in Loreto, Peru

    Mousam, Aneela; Maggioni, Viviana; Delamater, Paul L.; Quispe, Antonio M.

    2017-10-01

    Between 2001 and 2010 significant progress was made towards reducing the number of malaria cases in Peru; however, the country saw an increase between 2011 and 2015. This work attempts to uncover the associations among various climatic and environmental variables and the annual malaria parasite incidence in the Peruvian region of Loreto. A Multilevel Mixed-effects Poisson Regression model is employed, focusing on the 2009-2013 period, when trends in malaria incidence shifted from decreasing to increasing. The results indicate that variations in elevation (β = 0.78; 95% confidence interval (CI), 0.75-0.81), soil moisture (β = 0.0021; 95% CI, 0.0019-0.0022), rainfall (β = 0.59; 95% CI, 0.56-0.61), and normalized difference vegetation index (β = 2.13; 95% CI, 1.83-2.43) is associated with higher annual parasite incidence, whereas an increase in temperature (β = -0.0043; 95% CI, - 0.0044- 0.0041) is associated with a lower annual parasite incidence. The results from this study are particularly useful for healthcare workers in Loreto and have the potential of being integrated within malaria elimination plans.

  10. Experimental evaluation of the relationship between lethal or non-lethal virulence and transmission success in malaria parasite infections

    Nithiuthai S

    2004-09-01

    Full Text Available Abstract Background Evolutionary theory suggests that the selection pressure on parasites to maximize their transmission determines their optimal host exploitation strategies and thus their virulence. Establishing the adaptive basis to parasite life history traits has important consequences for predicting parasite responses to public health interventions. In this study we examine the extent to which malaria parasites conform to the predicted adaptive trade-off between transmission and virulence, as defined by mortality. The majority of natural infections, however, result in sub-lethal virulent effects (e.g. anaemia and are often composed of many strains. Both sub-lethal effects and pathogen population structure have been theoretically shown to have important consequences for virulence evolution. Thus, we additionally examine the relationship between anaemia and transmission in single and mixed clone infections. Results Whereas there was a trade-off between transmission success and virulence as defined by host mortality, contradictory clone-specific patterns occurred when defining virulence by anaemia. A negative relationship between anaemia and transmission success was found for one of the parasite clones, whereas there was no relationship for the other. Notably the two parasite clones also differed in a transmission phenotype (gametocyte sex ratio that has previously been shown to respond adaptively to a changing blood environment. In addition, as predicted by evolutionary theory, mixed infections resulted in increased anaemia. The increased anaemia was, however, not correlated with any discernable parasite trait (e.g. parasite density or with increased transmission. Conclusions We found some evidence supporting the hypothesis that there is an adaptive basis correlating virulence (as defined by host mortality and transmission success in malaria parasites. This confirms the validity of applying evolutionary virulence theory to biomedical

  11. Prevalence of malaria and typhoid co-infections in University of ...

    Mixed infection of malaria caused by Plasmodium species and typhoid fever caused by Salmonella species is often observed in areas where malaria is endemic, and the infection with Salmonella species has been considered by some medical and non-medical personnels to be associated with the malaria parasite infection ...

  12. Autophagy-related Atg8 localizes to the apicoplast of the human malaria parasite Plasmodium falciparum.

    Kei Kitamura

    Full Text Available Autophagy is a membrane-mediated degradation process, which is governed by sequential functions of Atg proteins. Although Atg proteins are highly conserved in eukaryotes, protozoa possess only a partial set of Atg proteins. Nonetheless, almost all protozoa have the complete factors belonging to the Atg8 conjugation system, namely, Atg3, Atg4, Atg7, and Atg8. Here, we report the biochemical properties and subcellular localization of the Atg8 protein of the human malaria parasite Plasmodium falciparum (PfAtg8. PfAtg8 is expressed during intra-erythrocytic development and associates with membranes likely as a lipid-conjugated form. Fluorescence microscopy and immunoelectron microscopy show that PfAtg8 localizes to the apicoplast, a four membrane-bound non-photosynthetic plastid. Autophagosome-like structures are not observed in the erythrocytic stages. These data suggest that, although Plasmodium parasites have lost most Atg proteins during evolution, they use the Atg8 conjugation system for the unique organelle, the apicoplast.

  13. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. The past, present and future use of epidemiological intelligence to plan malaria vector control and parasite prevention in Uganda.

    Talisuna, Ambrose O; Noor, Abdisalan M; Okui, Albert P; Snow, Robert W

    2015-04-15

    An important prelude to developing strategies to control infectious diseases is a detailed epidemiological evidence platform to target cost-effective interventions and define resource needs. A review of published and un-published reports of malaria vector control and parasite prevention in Uganda was conducted for the period 1900-2013. The objective was to provide a perspective as to how epidemiological intelligence was used to design malaria control before and during the global malaria eradication programme (GMEP) and to contrast this with the evidence generated in support of the Roll Back Malaria (RBM) initiative from 1998 to date. During the GMEP era, comprehensive investigations were undertaken on the effectiveness of vector and parasite control such as indoor residual house-spraying (IRS) and mass drug administration (MDA) at different sites in Uganda. Nationwide malariometric surveys were undertaken between 1964 and 1967 to provide a profile of risk, epidemiology and seasonality leading to an evidence-based national cartography of risk to characterize the diversity of malaria transmission in Uganda. At the launch of the RBM initiative in the late 1990s, an equivalent level of evidence was lacking. There was no contemporary national evidence-base for the likely impact of insecticide-treated nets (ITN), no new malariometric data, no new national cartography of malaria risk or any evidence of tailored intervention delivery based on variations in the ecology of malaria risk in Uganda. Despite millions of dollars of overseas development assistance over the last ten years in ITN, and more recently the resurrection of the use of IRS, the epidemiological impact of vector control remains uncertain due to an absence of nationwide basic parasite and vector-based field studies. Readily available epidemiological data should become the future business model to maximize malaria funding from 2015. Over the next five to ten years, accountability, impact analysis, financial

  15. Structural and functional insights into the malaria parasite moving junction complex.

    Brigitte Vulliez-Le Normand

    Full Text Available Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1 and its receptor, the Rhoptry Neck Protein (RON complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.

  16. Systematic analysis of FKBP inducible degradation domain tagging strategies for the human malaria parasite Plasmodium falciparum.

    Mauro Ferreira de Azevedo

    Full Text Available Targeted regulation of protein levels is an important tool to gain insights into the role of proteins essential to cell function and development. In recent years, a method based on mutated forms of the human FKBP12 has been established and used to great effect in various cell types to explore protein function. The mutated FKBP protein, referred to as destabilization domain (DD tag when fused with a native protein at the N- or C-terminus targets the protein for proteosomal degradation. Regulated expression is achieved via addition of a compound, Shld-1, that stabilizes the protein and prevents degradation. A limited number of studies have used this system to provide powerful insight into protein function in the human malaria parasite Plasmodium falciparum. In order to better understand the DD inducible system in P. falciparum, we studied the effect of Shld-1 on parasite growth, demonstrating that although development is not impaired, it is delayed, requiring the appropriate controls for phenotype interpretation. We explored the quantified regulation of reporter Green Fluorescent Protein (GFP and luciferase constructs fused to three DD variants in parasite cells either via transient or stable transfection. The regulation obtained with the original FKBP derived DD domain was compared to two triple mutants DD24 and DD29, which had been described to provide better regulation for C-terminal tagging in other cell types. When cloned to the C-terminal of reporter proteins, DD24 provided the strongest regulation allowing reporter activity to be reduced to lower levels than DD and to restore the activity of stabilised proteins to higher levels than DD29. Importantly, DD24 has not previously been applied to regulate proteins in P. falciparum. The possibility of regulating an exported protein was addressed by targeting the Ring-Infected Erythrocyte Surface Antigen (RESA at its C-terminus. The tagged protein demonstrated an important modulation of its

  17. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites.

    Amambua-Ngwa, Alfred; Tetteh, Kevin K A; Manske, Magnus; Gomez-Escobar, Natalia; Stewart, Lindsay B; Deerhake, M Elizabeth; Cheeseman, Ian H; Newbold, Christopher I; Holder, Anthony A; Knuepfer, Ellen; Janha, Omar; Jallow, Muminatou; Campino, Susana; Macinnis, Bronwyn; Kwiatkowski, Dominic P; Conway, David J

    2012-01-01

    Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now

  18. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites.

    Alfred Amambua-Ngwa

    Full Text Available Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3, and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%, indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing

  19. Population genomics diversity of Plasmodium falciparum in malaria ...

    Background: Plasmodium falciparum, the most dangerous malaria parasite species to ... tigen for subunit malaria vaccine.10 It comprises highly ... were also prepared for Giemsa staining as described by ... parasites with different alleles at a given locus and ranges ..... surface protein 1, immune evasion and vaccines against.

  20. Review Article: Morphological Changes in Malaria | Buhari | African ...

    Malaria remains a global health problem. Several organs of the body are affected by the Plasmodium species which parasitized erythrocytes. The small blood vessels of all the major organs of the body are usually filled with parasitized red cells and this represents the major morphological changes seen in malaria.

  1. Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite Plasmodium falciparum.

    Hallée, Stéphanie; Thériault, Catherine; Gagnon, Dominic; Kehrer, Jessica; Frischknecht, Friedrich; Mair, Gunnar R; Richard, Dave

    2018-03-26

    Compared with other eukaryotic cell types, malaria parasites appear to possess a more rudimentary Golgi apparatus being composed of dispersed, unstacked cis and trans-cisternae. Despite playing a central role in the secretory pathway of the parasite, few Plasmodium Golgi resident proteins have been characterised. We had previously identified a new Golgi resident protein of unknown function, which we had named Golgi Protein 1, and now show that it forms a complex with a previously uncharacterised transmembrane protein (Golgi Protein 2, GP2). The Golgi Protein complex localises to the cis-Golgi throughout the erythrocytic cycle and potentially also during the mosquito stages. Analysis of parasite strains where GP1 expression is conditionally repressed and/or the GP2 gene is inactivated reveals that though the Golgi protein complex is not essential at any stage of the parasite life cycle, it is important for optimal asexual development in the blood stages. © 2018 John Wiley & Sons Ltd.

  2. Manual blood exchange transfusion does not significantly contribute to parasite clearance in artesunate-treated individuals with imported severe Plasmodium falciparum malaria

    Kreeftmeijer-Vegter, Annemarie R.; Melo, Mariana de Mendonça; de Vries, Peter J.; Koelewijn, Rob; van Hellemond, Jaap J.; van Genderen, Perry J. J.

    2013-01-01

    Exchange transfusion (ET) has remained a controversial adjunct therapy for the treatment of severe malaria. In order to assess the relative contribution of ET to parasite clearance in severe malaria, all patients receiving ET as an adjunct treatment to parenteral quinine or to artesunate were

  3. Manual blood exchange transfusion does not significantly contribute to parasite clearance in artesunate-treated individuals with imported severe Plasmodium falciparum malaria

    A.R. Kreeftmeijer-Vegter (Annemarie); M.M. de Melo (Mariana ); P.J. de Vries (Peter); R. Koelewijn (Rob); J.J. van Hellemond (Jaap); P.J.J. van Genderen (Perry)

    2013-01-01

    textabstractBackground: Exchange transfusion (ET) has remained a controversial adjunct therapy for the treatment of severe malaria. In order to assess the relative contribution of ET to parasite clearance in severe malaria, all patients receiving ET as an adjunct treatment to parenteral quinine or

  4. High-Throughput Testing of Antibody-Dependent Binding Inhibition of Placental Malaria Parasites

    Nielsen, Morten A; Salanti, Ali

    2015-01-01

    The particular virulence of Plasmodium falciparum manifests in diverse severe malaria syndromes as cerebral malaria, severe anemia and placental malaria. The cause of both the severity and the diversity of infection outcome, is the ability of the infected erythrocyte (IE) to bind a range......-throughput assay used in the preclinical and clinical development of a VAR2CSA based vaccine against placental malaria....

  5. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi

    Matusop Asmad

    2008-03-01

    Full Text Available Abstract Background A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit. Methods Three different ecological sites in the forest, farm and longhouse in the Kapit district were selected for the study. Mosquitoes were collected by human landing collection at all sites and at the forest also by monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites. Results and Discussions Over an 11-month period, a total of 2,504 Anopheles mosquitoes comprising 12 species were caught; 1,035 at the farm, 774 at the forest and 425 at the longhouse. Anopheles latens (62.3% and Anopheles watsonii (30.6% were the predominant species caught in the forested ecotypes, while in the farm Anopheles donaldi (49.9% and An. latens (35.6% predominated. In the long house, An. latens (29.6% and An. donaldi (22.8% were the major Anopheline species. However, An. latens was the only mosquito positive for sporozoites and it was found to be attracted to both human and monkey hosts. In monkey-baited net traps, it preferred to bite monkeys at the canopy level than at ground level. An. latens was found biting early as 18.00 hours. Conclusion Anopheles latens is the main vector for P. knowlesi malaria parasites in the Kapit District of Sarawak, Malaysian Borneo. The study underscores the relationship between ecology, abundance and bionomics of anopheline fauna. The simio-anthropophagic and acrodendrophilic behaviour of An. latens makes it an efficient vector for the transmission of P. knowlesi parasites to both human and monkey hosts.

  6. Bionomics of Anopheles latens in Kapit, Sarawak, Malaysian Borneo in relation to the transmission of zoonotic simian malaria parasite Plasmodium knowlesi

    Tan, Cheong H; Vythilingam, Indra; Matusop, Asmad; Chan, Seng T; Singh, Balbir

    2008-01-01

    Background A large focus of human infections with Plasmodium knowlesi, a simian parasite naturally found in long-tailed and pig-tailed macaques was discovered in the Kapit Division of Sarawak, Malaysian Borneo. A study was initiated to identify the vectors of malaria, to elucidate where transmission is taking place and to understand the bionomics of the vectors in Kapit. Methods Three different ecological sites in the forest, farm and longhouse in the Kapit district were selected for the study. Mosquitoes were collected by human landing collection at all sites and at the forest also by monkey-baited-traps situated on three different levels. All mosquitoes were identified and salivary glands and midguts of anopheline mosquitoes were dissected to determine the presence of malaria parasites. Results and Discussions Over an 11-month period, a total of 2,504 Anopheles mosquitoes comprising 12 species were caught; 1,035 at the farm, 774 at the forest and 425 at the longhouse. Anopheles latens (62.3%) and Anopheles watsonii (30.6%) were the predominant species caught in the forested ecotypes, while in the farm Anopheles donaldi (49.9%) and An. latens (35.6%) predominated. In the long house, An. latens (29.6%) and An. donaldi (22.8%) were the major Anopheline species. However, An. latens was the only mosquito positive for sporozoites and it was found to be attracted to both human and monkey hosts. In monkey-baited net traps, it preferred to bite monkeys at the canopy level than at ground level. An. latens was found biting early as 18.00 hours. Conclusion Anopheles latens is the main vector for P. knowlesi malaria parasites in the Kapit District of Sarawak, Malaysian Borneo. The study underscores the relationship between ecology, abundance and bionomics of anopheline fauna. The simio-anthropophagic and acrodendrophilic behaviour of An. latens makes it an efficient vector for the transmission of P. knowlesi parasites to both human and monkey hosts. PMID:18377652

  7. Towards A Malaria Vaccine?

    B S GARG

    1990-12-01

    Full Text Available The last few years have seen a marked change in the understanding of malaria mmunology.We have very little knowledge on immunity of Malaria based on experiments in humanbeings due to ethical reasons. Whatsoever our knowledge exists at present is based onexperimentas in mice and monkey. However it is clear that it is sporzoite or merozoitewhich is directly exposed to our immune system in the life cycle of Malaria parasite. On thebasis of human experiments we can draw inference that immunity to malaria is species.specific (on cross immunity, stage specific and strain specific as well acquired in the response to surface antigen and relapsed antigen although the parasite also demonstrates escape machanism to immune system.So the host system kills or elimi nate the parasite by means of (a Antbody to extracell~ular form of parasite with the help of mechanism of Block invasion, Agglutination or opsonization and/or (b Cellular machanism-either by phago-cytosis of parasite or by antibody dependent cellular cytotoxicity ABCC (? or by effects of mediators like tumor necrosis fJ.ctor (TNF in cerebaral malaria or crisis forming factor as found in sudan or by possible role of lysis mechanism.However, inspite of all these theories the parasite has been able to invade the immunesystem by virtue of its intracellular development stage specificity, sequestration in capillaries and also by its unusual characteristics of antigenic diversity and antigenic variation.

  8. A novel ENU-mutation in ankyrin-1 disrupts malaria parasite maturation in red blood cells of mice.

    Andreas Greth

    Full Text Available The blood stage of the plasmodium parasite life cycle is responsible for the clinical symptoms of malaria. Epidemiological studies have identified coincidental malarial endemicity and multiple red blood cell (RBC disorders. Many RBC disorders result from mutations in genes encoding cytoskeletal proteins and these are associated with increased protection against malarial infections. However the mechanisms underpinning these genetic, host responses remain obscure. We have performed an N-ethyl-N-nitrosourea (ENU mutagenesis screen and have identified a novel dominant (haploinsufficient mutation in the Ank-1 gene (Ank1(MRI23420 of mice displaying hereditary spherocytosis (HS. Female mice, heterozygous for the Ank-1 mutation showed increased survival to infection by Plasmodium chabaudi adami DS with a concomitant 30% decrease in parasitemia compared to wild-type, isogenic mice (wt. A comparative in vivo red cell invasion and parasite growth assay showed a RBC-autonomous effect characterised by decreased proportion of infected heterozygous RBCs. Within approximately 6-8 hours post-invasion, TUNEL staining of intraerythrocytic parasites, showed a significant increase in dead parasites in heterozygotes. This was especially notable at the ring and trophozoite stages in the blood of infected heterozygous mutant mice compared to wt (p<0.05. We conclude that increased malaria resistance due to ankyrin-1 deficiency is caused by the intraerythrocytic death of P. chabaudi parasites.

  9. Plasmodium cysteine repeat modular proteins 1-4: complex proteins with roles throughout the malaria parasite life cycle.

    Thompson, Joanne; Fernandez-Reyes, Delmiro; Sharling, Lisa; Moore, Sally G; Eling, Wijnand M; Kyes, Sue A; Newbold, Christopher I; Kafatos, Fotis C; Janse, Chris J; Waters, Andrew P

    2007-06-01

    The Cysteine Repeat Modular Proteins (PCRMP1-4) of Plasmodium, are encoded by a small gene family that is conserved in malaria and other Apicomplexan parasites. They are very large, predicted surface proteins with multipass transmembrane domains containing motifs that are conserved within families of cysteine-rich, predicted surface proteins in a range of unicellular eukaryotes, and a unique combination of protein-binding motifs, including a >100 kDa cysteine-rich modular region, an epidermal growth factor-like domain and a Kringle domain. PCRMP1 and 2 are expressed in life cycle stages in both the mosquito and vertebrate. They colocalize with PfEMP1 (P. falciparum Erythrocyte Membrane Antigen-1) during its export from P. falciparum blood-stage parasites and are exposed on the surface of haemolymph- and salivary gland-sporozoites in the mosquito, consistent with a role in host tissue targeting and invasion. Gene disruption of pcrmp1 and 2 in the rodent malaria model, P. berghei, demonstrated that both are essential for transmission of the parasite from the mosquito to the mouse and has established their discrete and important roles in sporozoite targeting to the mosquito salivary gland. The unprecedented expression pattern and structural features of the PCRMPs thus suggest a variety of roles mediating host-parasite interactions throughout the parasite life cycle.

  10. Malaria rapid diagnostic tests: Plasmodium falciparum infections with high parasite densities may generate false positive Plasmodium vivax pLDH lines

    van Esbroeck Marjan

    2010-07-01

    Full Text Available Abstract Background Most malaria rapid diagnostic tests (RDTs detect Plasmodium falciparum and an antigen common to the four species. Plasmodium vivax-specific RDTs target P. vivax-specific parasite lactate dehydrogenase (Pv-pLDH. Previous observations of false positive Pv-pLDH test lines in P. falciparum samples incited to the present study, which assessed P. vivax-specific RDTs for the occurrence of false positive Pv-pLDH lines in P. falciparum samples. Methods Nine P. vivax-specific RDTs were tested with 85 P. falciparum samples of high (≥2% parasite density. Mixed P. falciparum/P. vivax infections were ruled out by real-time PCR. The RDTs included two-band (detecting Pv-pLDH, three-band (detecting P. falciparum-antigen and Pv-pLDH and four-band RDTs (detecting P. falciparum, Pv-pLDH and pan-pLDH. Results False positive Pv-pLDH lines were observed in 6/9 RDTs (including two- three- and four-band RDTs. They occurred in the individual RDT brands at frequencies ranging from 8.2% to 29.1%. For 19/85 samples, at least two RDT brands generated a false positive Pv-pLDH line. Sixteen of 85 (18.8% false positive lines were of medium or strong line intensity. There was no significant relation between false positive results and parasite density or geographic origin of the samples. Conclusion False positive Pv-pLDH lines in P. falciparum samples with high parasite density occurred in 6/9 P. vivax-specific RDTs. This is of concern as P. falciparum and P. vivax are co-circulating in many regions. The diagnosis of life-threatening P. falciparum malaria may be missed (two-band Pv-pLDH RDT, or the patient may be treated incorrectly with primaquine (three- or four-band RDTs.

  11. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  12. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    Brown, Alan; Turner, Louise; Christoffersen, Stig

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria....... The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from......, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLß domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1...

  13. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits.

    Helena Westerdahl

    Full Text Available Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load and infection status (infected or not. It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.

  14. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits.

    Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke

    2013-01-01

    Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.

  15. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum

    Trelle, Morten Beck; Salcedo-Amaya, Adriana M; Cohen, Adrian

    2009-01-01

    Post-translational modifications (PTMs) of histone tails play a key role in epigenetic regulation of gene expression in a range of organisms from yeast to human, however, little is known about histone proteins from the parasite that causes malaria in humans, Plasmodium falciparum. We characterize...... comprehensive map of histone modifications in Plasmodium falciparum and highlight the utility of tandem MS for detailed analysis of peptides containing multiple PTMs....

  16. Protein kinase C-dependent signaling controls the midgut epithelial barrier to malaria parasite infection in anopheline mosquitoes.

    Nazzy Pakpour

    Full Text Available Anopheline mosquitoes are the primary vectors of parasites in the genus Plasmodium, the causative agents of malaria. Malaria parasites undergo a series of complex transformations upon ingestion by the mosquito host. During this process, the physical barrier of the midgut epithelium, along with innate immune defenses, functionally restrict parasite development. Although these defenses have been studied for some time, the regulatory factors that control them are poorly understood. The protein kinase C (PKC gene family consists of serine/threonine kinases that serve as central signaling molecules and regulators of a broad spectrum of cellular processes including epithelial barrier function and immunity. Indeed, PKCs are highly conserved, ranging from 7 isoforms in Drosophila to 16 isoforms in mammals, yet none have been identified in mosquitoes. Despite conservation of the PKC gene family and their potential as targets for transmission-blocking strategies for malaria, no direct connections between PKCs, the mosquito immune response or epithelial barrier integrity are known. Here, we identify and characterize six PKC gene family members--PKCδ, PKCε, PKCζ, PKD, PKN, and an indeterminate conventional PKC--in Anopheles gambiae and Anopheles stephensi. Sequence and phylogenetic analyses of the anopheline PKCs support most subfamily assignments. All six PKCs are expressed in the midgut epithelia of A. gambiae and A. stephensi post-blood feeding, indicating availability for signaling in a tissue that is critical for malaria parasite development. Although inhibition of PKC enzymatic activity decreased NF-κB-regulated anti-microbial peptide expression in mosquito cells in vitro, PKC inhibition had no effect on expression of a panel of immune genes in the midgut epithelium in vivo. PKC inhibition did, however, significantly increase midgut barrier integrity and decrease development of P. falciparum oocysts in A. stephensi, suggesting that PKC

  17. Factors contributing to the development of anaemia in Plasmodium falciparum malaria: what about drug-resistant parasites?

    Quashie, Neils Ben; Akanmori, Bartholomew D; Ofori-Adjei, David

    2006-01-01

    implicated in its pathogenesis. Since resolution of malaria restores erythropoiesis, we hypothesized that drug-resistant strains of Plasmodium falciparum would increase the risk of severe anaemia developing from initially uncomplicated malaria. Using both in vivo and in vitro drug-sensitivity tests we...... compared the prevalence of drug-resistant malaria between severe malarial anaemia SA and non-anaemic malaria NAM patients. Assessment of treatment outcome using the WHO in vivo criteria showed no significant difference in parasite resistance between the two groups. The mean parasite clearance time was also......-treatment blood levels of chloroquine did not differ much between the two groups. Findings from this study could not therefore implicate drug-resistant parasites in the pathogenesis of severe malarial anaemia....

  18. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum

    Jones, Michael W.M.; Dearnley, Megan K.; Riessen, Grant A. van; Abbey, Brian; Putkunz, Corey T.; Junker, Mark D.; Vine, David J.; McNulty, Ian; Nugent, Keith A.; Peele, Andrew G.; Tilley, Leann

    2014-01-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. - Highlights: • Phase-diverse coherent X-ray diffraction microscopy provides high-resolution and high-contrast images of intact biological samples. • Rapid nanoscale resolution imaging is demonstrated at orders of magnitude lower dose than previously possible. • Phase-diverse coherent X-ray diffraction microscopy is a robust technique for rapid, quantitative, and correlative X-ray phase imaging

  19. Rapid, low dose X-ray diffractive imaging of the malaria parasite Plasmodium falciparum

    Jones, Michael W.M., E-mail: michael.jones@latrobe.edu.au [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Dearnley, Megan K. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia); Riessen, Grant A. van [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Abbey, Brian [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Melbourne Centre for Nanofabrication, Victoria 3168 (Australia); Putkunz, Corey T. [ARC Centre of Excellence for Coherent X-Ray Science, School of Physics, The University of Melbourne, Victoria 3010 (Australia); Junker, Mark D. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Vine, David J. [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); McNulty, Ian [Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439 (United States); Centre for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Nugent, Keith A. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Peele, Andrew G. [ARC Centre of Excellence for Coherent X-Ray Science, Department of Physics, La Trobe University, Victoria 3086 (Australia); Australian Synchrotron, 800 Blackburn Road, Clayton 3168 (Australia); Tilley, Leann [ARC Centre of Excellence for Coherent X-Ray Science, Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Victoria 3010 (Australia)

    2014-08-01

    Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application. - Highlights: • Phase-diverse coherent X-ray diffraction microscopy provides high-resolution and high-contrast images of intact biological samples. • Rapid nanoscale resolution imaging is demonstrated at orders of magnitude lower dose than previously possible. • Phase-diverse coherent X-ray diffraction microscopy is a robust technique for rapid, quantitative, and correlative X-ray phase imaging.

  20. Antisense long noncoding RNAs regulate var gene activation in the malaria parasite Plasmodium falciparum.

    Amit-Avraham, Inbar; Pozner, Guy; Eshar, Shiri; Fastman, Yair; Kolevzon, Netanel; Yavin, Eylon; Dzikowski, Ron

    2015-03-03

    The virulence of Plasmodium falciparum, the causative agent of the deadliest form of human malaria, is attributed to its ability to evade human immunity through antigenic variation. These parasites alternate between expression of variable antigens, encoded by members of a multicopy gene family named var. Immune evasion through antigenic variation depends on tight regulation of var gene expression, ensuring that only a single var gene is expressed at a time while the rest of the family is maintained transcriptionally silent. Understanding how a single gene is chosen for activation is critical for understanding mutually exclusive expression but remains a mystery. Here, we show that antisense long noncoding RNAs (lncRNAs) initiating from var introns are associated with the single active var gene at the time in the cell cycle when the single var upstream promoter is active. We demonstrate that these antisense transcripts are incorporated into chromatin, and that expression of these antisense lncRNAs in trans triggers activation of a silent var gene in a sequence- and dose-dependent manner. On the other hand, interference with these lncRNAs using complement peptide nucleic acid molecules down-regulated the active var gene, erased the epigenetic memory, and induced expression switching. Altogether, our data provide evidence that these antisense lncRNAs play a key role in regulating var gene activation and mutually exclusive expression.

  1. Identification of pre-erythrocytic malaria antigens that target hepatocytes for killing in vivo and contribute to protection elicited by whole-parasite vaccination.

    Lin Chen

    Full Text Available Pre-erythrocytic malaria vaccines, including those based on whole-parasite approaches, have shown protective efficacy in animal and human studies. However few pre-erythocytic antigens other than the immunodominant circumsporozoite protein (CSP have been studied in depth with the goal of developing potent subunit malaria vaccines that are suited for use in endemic areas. Here we describe a novel technique to identify pre-erythrocytic malaria antigens that contribute to protection elicited by whole-parasite vaccination in the mouse model. Our approach combines immunization with genetically attenuated parasites and challenge with DNA plasmids encoding for potential protective pre-erythrocytic malaria antigens as luciferase fusions by hydrodynamic tail vein injection. After optimizing the technique, we first showed that immunization with Pyfabb/f-, a P. yoelii genetically attenuated parasite, induces killing of CSP-presenting hepatocytes. Depletion of CD8+ but not CD4+ T cells diminished the killing of CSP-expressing hepatocytes, indicating that killing is CD8+ T cell-dependent. Finally we showed that the use of heterologous prime/boost immunization strategies that use genetically attenuated parasites and DNA vaccines enabled the characterization of a novel pre-erythrocytic antigen, Tmp21, as a contributor to Pyfabb/f- induced protection. This technique will be valuable for identification of potentially protective liver stage antigens and has the potential to contribute to the understanding of immunity elicited by whole parasite vaccination, as well as the development of effective subunit malaria vaccines.

  2. Malaria.

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  3. Initial characterization of the Pf-Int recombinase from the malaria parasite Plasmodium falciparum.

    Mehdi Ghorbal

    Full Text Available Genetic variation is an essential means of evolution and adaptation in many organisms in response to environmental change. Certain DNA alterations can be carried out by site-specific recombinases (SSRs that fall into two families: the serine and the tyrosine recombinases. SSRs are seldom found in eukaryotes. A gene homologous to a tyrosine site-specific recombinase has been identified in the genome of Plasmodium falciparum. The sequence is highly conserved among five other members of Plasmodia.The predicted open reading frame encodes for a ∼57 kDa protein containing a C-terminal domain including the putative tyrosine recombinase conserved active site residues R-H-R-(H/W-Y. The N-terminus has the typical alpha-helical bundle and potentially a mixed alpha-beta domain resembling that of λ-Int. Pf-Int mRNA is expressed differentially during the P. falciparum erythrocytic life stages, peaking in the schizont stage. Recombinant Pf-Int and affinity chromatography of DNA from genomic or synthetic origin were used to identify potential DNA targets after sequencing or micro-array hybridization. Interestingly, the sequences captured also included highly variable subtelomeric genes such as var, rif, and stevor sequences. Electrophoretic mobility shift assays with DNA were carried out to verify Pf-Int/DNA binding. Finally, Pf-Int knock-out parasites were created in order to investigate the biological role of Pf-Int.Our data identify for the first time a malaria parasite gene with structural and functional features of recombinases. Pf-Int may bind to and alter DNA, either in a sequence specific or in a non-specific fashion, and may contribute to programmed or random DNA rearrangements. Pf-Int is the first molecular player identified with a potential role in genome plasticity in this pathogen. Finally, Pf-Int knock-out parasite is viable showing no detectable impact on blood stage development, which is compatible with such function.

  4. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress.

    Christine R Collins

    2013-05-01

    Full Text Available The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV. Eventually, in a tightly regulated process called egress, proteins of the PV and intracellular merozoite surface are modified by an essential parasite serine protease called PfSUB1, whilst the enclosing PV and erythrocyte membranes rupture, releasing merozoites to invade fresh erythrocytes. Inhibition of the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG prevents egress, but the underlying mechanism is unknown. Here we show that PfPKG activity is required for PfSUB1 discharge into the PV, as well as for release of distinct merozoite organelles called micronemes. Stimulation of PfPKG by inhibiting parasite phosphodiesterase activity induces premature PfSUB1 discharge and egress of developmentally immature, non-invasive parasites. Our findings identify the signalling pathway that regulates PfSUB1 function and egress, and raise the possibility of targeting PfPKG or parasite phosphodiesterases in therapeutic approaches to dysregulate critical protease-mediated steps in the parasite life cycle.

  5. Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites.

    Brandon K Sack

    2015-05-01

    Full Text Available Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine.

  6. Spleen-dependent regulation of antigenic variation in malaria parasites: Plasmodium knowlesi SICAvar expression profiles in splenic and asplenic hosts.

    Stacey A Lapp

    Full Text Available Antigenic variation by malaria parasites was first described in Plasmodium knowlesi, which infects humans and macaque monkeys, and subsequently in P. falciparum, the most virulent human parasite. The schizont-infected cell agglutination (SICA variant proteins encoded by the SICAvar multigene family in P. knowlesi, and Erythrocyte Membrane Protein-1 (EMP-1 antigens encoded by the var multigene family in P. falciparum, are expressed at the surface of infected erythrocytes, are associated with virulence, and serve as determinants of naturally acquired immunity. A parental P. knowlesi clone, Pk1(A+, and a related progeny clone, Pk1(B+1+, derived by an in vivo induced variant antigen switch, were defined by the expression of distinct SICA variant protein doublets of 210/190 and 205/200 kDa, respectively. Passage of SICA[+] infected erythrocytes through splenectomized rhesus monkeys results in the SICA[-] phenotype, defined by the lack of surface expression and agglutination with variant specific antisera.We have investigated SICAvar RNA and protein expression in Pk1(A+, Pk1(B+1+, and SICA[-] parasites. The Pk1(A+ and Pk1(B+1+ parasites express different distinct SICAvar transcript and protein repertoires. By comparison, SICA[-] parasites are characterized by a vast reduction in SICAvar RNA expression, the lack of full-length SICAvar transcript signals on northern blots, and correspondingly, the absence of any SICA protein detected by mass spectrometry.SICA protein expression may be under transcriptional as well as post-transcriptional control, and we show for the first time that the spleen, an organ central to blood-stage immunity in malaria, exerts an influence on these processes. Furthermore, proteomics has enabled the first in-depth characterization of SICA[+] protein phenotypes and we show that the in vivo switch from Pk1(A+ to Pk1(B+1+ parasites resulted in a complete change in SICA profiles. These results emphasize the importance of studying

  7. Competitive release and facilitation of drug-resistant parasites after therapeutic chemotherapy in a rodent malaria model

    Wargo, A.R.; Huijben, S.; De Roode, J. C.; Shepherd, J.; Read, A.F.

    2007-01-01

    Malaria infections frequently consist of mixtures of drug-resistant and drug-sensitive parasites. If crowding occurs, where clonal population densities are suppressed by the presence of coinfecting clones, removal of susceptible clones by drug treatment could allow resistant clones to expand into the newly vacated niche space within a host. Theoretical models show that, if such competitive release occurs, it can be a potent contributor to the strength of selection, greatly accelerating the rate at which resistance spreads in a population. A variety of correlational field data suggest that competitive release could occur in human malaria populations, but direct evidence cannot be ethically obtained from human infections. Here we show competitive release after pyrimethamine curative chemotherapy of acute infections of the rodent malaria Plasmodium chabaudi in laboratory mice. The expansion of resistant parasite numbers after treatment resulted in enhanced transmission-stage densities. After the elimination or near-elimination of sensitive parasites, the number of resistant parasites increased beyond that achieved when a competitor had never been present. Thus, a substantial competitive release occurred, markedly elevating the fitness advantages of drug resistance above those arising from survival alone. This finding may explain the rapid spread of drug resistance and the subsequently brief useful lifespans of some antimalarial drugs. In a second experiment, where subcurative chemotherapy was administered, the resistant clone was only partly released from competitive suppression and experienced a restriction in the size of its expansion after treatment. This finding raises the prospect of harnessing in-host ecology to slow the spread of drug resistance. ?? 2007 by The National Academy of Sciences of the USA.

  8. Using green fluorescent malaria parasites to screen for permissive vector mosquitoes

    Martin Beatrice

    2006-03-01

    Full Text Available Abstract Background The Plasmodium species that infect rodents, particularly Plasmodium berghei and Plasmodium yoelii, are useful to investigate host-parasite interactions. The mosquito species that act as vectors of human plasmodia in South East Asia, Africa and South America show different susceptibilities to infection by rodent Plasmodium species. P. berghei and P. yoelii infect both Anopheles gambiae and Anopheles stephensi, which are found mainly in Africa and Asia, respectively. However, it was reported that P. yoelii can infect the South American mosquito, Anopheles albimanus, while P. berghei cannot. Methods P. berghei lines that express the green fluorescent protein were used to screen for mosquitoes that are susceptible to infection by P. berghei. Live mosquitoes were examined and screened for the presence of a fluorescent signal in the abdomen. Infected mosquitoes were then examined by time-lapse microscopy to reveal the dynamic behaviour of sporozoites in haemolymph and extracted salivary glands. Results A single fluorescent oocyst can be detected in live mosquitoes and P. berghei can infect A. albimanus. As in other mosquitoes, P. berghei sporozoites can float through the haemolymph and invade A. albimanus salivary glands and they are infectious in mice after subcutaneous injection. Conclusion Fluorescent Plasmodium parasites can be used to rapidly screen susceptible mosquitoes. These results open the way to develop a laboratory model in countries where importation of A. gambiae and A. stephensi is not allowed.

  9. Faktor Risiko Penularan Malaria Di Jawa Barat (Kajian Epidemiologi Tentang Vektor, Parasit Plasmodium, dan Lingkungan Sebagai Faktor Risiko Kesakitan Malaria

    Lukman Hakim

    2013-02-01

    Full Text Available Abstract. Since the territory is divided with the province of Banten, in West Java there are five regencies that defined as malaria endemie area, there are Ciamis, Tasikmalaya, Garut, Cianjur and Sukabumi. Sufferer, concentrated in southern coastal areas (Indonesian Ocean starting from the beach of Kalipucang at Ciamis up to coast of Cikakak at Sukabumi which borders the province of Banten and also mountain and plantations areas. Malaria morbidity incidence risk factors is differ in each of these endemie areas. In general is the presence of malaria patients without symptoms who can be a source of infection that so difficult to know its existence. Still the number of standing water that can become mosqui­to breeding places of Anopheles spp, such as fish pond, small puddle on the rivers ide, shrimp pond, mangrove forests that potentially at the beginning of the rainy season, the fields during rice that potential when the rice gro wing and the river that potential in the dry season. The existence of high population mobility and also the number of vegetation in the surrounding residential population and the existence of cattle are placed close to settle­ments.Key Words : West Java Province, malaria endemie areas, malaria patients without symp­toms, Anopheles spp.

  10. Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium

    Christina Faust

    2015-12-01

    Full Text Available Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi, in Southeast Asia highlights the permeability of species barriers in Plasmodium. Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence–absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.

  11. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity.

    Luque, J L; Poulin, R

    2007-06-01

    Although research on parasite biodiversity has intensified recently, there are signs that parasites remain an underestimated component of total biodiversity in many regions of the planet. To identify geographical hotspots of parasite diversity, we performed qualitative and quantitative analyses of the parasite-host associations in fishes from Latin America and the Caribbean, a region that includes known hotspots of plant and animal biodiversity. The database included 10,904 metazoan parasite-host associations involving 1660 fish species. The number of host species with at least 1 parasite record was less than 10% of the total known fish species in the majority of countries. Associations involving adult endoparasites in actinopterygian fish hosts dominated the database. Across the whole region, no significant difference in parasite species richness was detected between marine and freshwater fishes. As a rule, host body size and study effort (number of studies per fish species) were good predictors of parasite species richness. Some interesting patterns emerged when we included only the regions with highest fish species biodiversity and study effort (Brazil, Mexico and the Caribbean Islands). Independently of differences in study effort or host body sizes, Mexico stands out as a hotspot of parasite diversity for freshwater fishes, as does Brasil for marine fishes. However, among 57 marine fish species common to all 3 regions, populations from the Caribbean consistently harboured more parasite species. These differences may reflect true biological patterns, or regional discrepancies in study effort and local priorities for fish parasitology research.

  12. Prolonged antigen presentation is required for optimal CD8+ T cell responses against malaria liver stage parasites.

    Ian A Cockburn

    2010-05-01

    Full Text Available Immunization with irradiated sporozoites is currently the most effective vaccination strategy against liver stages of malaria parasites, yet the mechanisms underpinning the success of this approach are unknown. Here we show that the complete development of protective CD8+ T cell responses requires prolonged antigen presentation. Using TCR transgenic cells specific for the malaria circumsporozoite protein, a leading vaccine candidate, we found that sporozoite antigen persists for over 8 weeks after immunization--a remarkable finding since irradiated sporozoites are incapable of replication and do not differentiate beyond early liver stages. Persisting antigen was detected in lymphoid organs and depends on the presence of CD11c+ cells. Prolonged antigen presentation enhanced the magnitude of the CD8+ T cell response in a number of ways. Firstly, reducing the time primed CD8+ T cells were exposed to antigen in vivo severely reduced the final size of the developing memory population. Secondly, fully developed memory cells expanded in previously immunized mice but not when transferred to naïve animals. Finally, persisting antigen was able to prime naïve cells, including recent thymic emigrants, to become functional effector cells capable of eliminating parasites in the liver. Together these data show that the optimal development of protective CD8+ T cell immunity against malaria liver stages is dependent upon the prolonged presentation of sporozoite-derived antigen.

  13. HIV impairs opsonic phagocytic clearance of pregnancy-associated malaria parasites.

    Jessica Keen

    2007-05-01

    Full Text Available BACKGROUND: Primigravid (PG women are at risk for pregnancy-associated malaria (PAM. Multigravid (MG women acquire protection against PAM; however, HIV infection impairs this protective response. Protection against PAM is associated with the production of IgG specific for variant surface antigens (VSA-PAM expressed by chondroitin sulfate A (CSA-adhering parasitized erythrocytes (PEs. We hypothesized that VSA-PAM-specific IgG confers protection by promoting opsonic phagocytosis of PAM isolates and that HIV infection impairs this response. METHODS AND FINDINGS: We assessed the ability of VSA-PAM-specific IgG to promote opsonic phagocytosis of CSA-adhering PEs and the impact of HIV infection on this process. Opsonic phagocytosis assays were performed using the CSA-adherent parasite line CS2 and human and murine macrophages. CS2 PEs were opsonized with plasma or purified IgG subclasses from HIV-negative or HIV-infected PG and MG Kenyan women or sympatric men. Levels of IgG subclasses specific for VSA-PAM were compared in HIV-negative and HIV-infected women by flow cytometry. Plasma from HIV-negative MG women, but not PG women or men, promoted the opsonic phagocytosis of CSA-binding PEs (p < 0.001. This function depended on VSA-PAM-specific plasma IgG1 and IgG3. HIV-infected MG women had significantly lower plasma opsonizing activity (median phagocytic index 46 [interquartile range (IQR 18-195] versus 251 [IQR 93-397], p = 0.006 and levels of VSA-PAM-specific IgG1 (mean fluorescence intensity [MFI] 13 [IQR 11-20] versus 30 [IQR 23-41], p < 0.001 and IgG3 (MFI 17 [IQR 14-23] versus 28 [IQR 23-37], p < 0.001 than their HIV-negative MG counterparts. CONCLUSIONS: Opsonic phagocytosis may represent a novel correlate of protection against PAM. HIV infection may increase the susceptibility of multigravid women to PAM by impairing this clearance mechanism.

  14. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images

    Sivaramakrishnan Rajaraman

    2018-04-01

    Full Text Available Malaria is a blood disease caused by the Plasmodium parasites transmitted through the bite of female Anopheles mosquito. Microscopists commonly examine thick and thin blood smears to diagnose disease and compute parasitemia. However, their accuracy depends on smear quality and expertise in classifying and counting parasitized and uninfected cells. Such an examination could be arduous for large-scale diagnoses resulting in poor quality. State-of-the-art image-analysis based computer-aided diagnosis (CADx methods using machine learning (ML techniques, applied to microscopic images of the smears using hand-engineered features demand expertise in analyzing morphological, textural, and positional variations of the region of interest (ROI. In contrast, Convolutional Neural Networks (CNN, a class of deep learning (DL models promise highly scalable and superior results with end-to-end feature extraction and classification. Automated malaria screening using DL techniques could, therefore, serve as an effective diagnostic aid. In this study, we evaluate the performance of pre-trained CNN based DL models as feature extractors toward classifying parasitized and uninfected cells to aid in improved disease screening. We experimentally determine the optimal model layers for feature extraction from the underlying data. Statistical validation of the results demonstrates the use of pre-trained CNNs as a promising tool for feature extraction for this purpose.

  15. Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum.

    Archna P Gupta

    2013-02-01

    Full Text Available Epigenetic mechanisms are emerging as one of the major factors of the dynamics of gene expression in the human malaria parasite, Plasmodium falciparum. To elucidate the role of chromatin remodeling in transcriptional regulation associated with the progression of the P. falciparum intraerythrocytic development cycle (IDC, we mapped the temporal pattern of chromosomal association with histone H3 and H4 modifications using ChIP-on-chip. Here, we have generated a broad integrative epigenomic map of twelve histone modifications during the P. falciparum IDC including H4K5ac, H4K8ac, H4K12ac, H4K16ac, H3K9ac, H3K14ac, H3K56ac, H4K20me1, H4K20me3, H3K4me3, H3K79me3 and H4R3me2. While some modifications were found to be associated with the vast majority of the genome and their occupancy was constant, others showed more specific and highly dynamic distribution. Importantly, eight modifications displaying tight correlations with transcript levels showed differential affinity to distinct genomic regions with H4K8ac occupying predominantly promoter regions while others occurred at the 5' ends of coding sequences. The promoter occupancy of H4K8ac remained unchanged when ectopically inserted at a different locus, indicating the presence of specific DNA elements that recruit histone modifying enzymes regardless of their broad chromatin environment. In addition, we showed the presence of multivalent domains on the genome carrying more than one histone mark, highlighting the importance of combinatorial effects on transcription. Overall, our work portrays a substantial association between chromosomal locations of various epigenetic markers, transcriptional activity and global stage-specific transitions in the epigenome.

  16. Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum.

    Gupta, Archna P; Chin, Wai Hoe; Zhu, Lei; Mok, Sachel; Luah, Yen-Hoon; Lim, Eng-How; Bozdech, Zbynek

    2013-02-01

    Epigenetic mechanisms are emerging as one of the major factors of the dynamics of gene expression in the human malaria parasite, Plasmodium falciparum. To elucidate the role of chromatin remodeling in transcriptional regulation associated with the progression of the P. falciparum intraerythrocytic development cycle (IDC), we mapped the temporal pattern of chromosomal association with histone H3 and H4 modifications using ChIP-on-chip. Here, we have generated a broad integrative epigenomic map of twelve histone modifications during the P. falciparum IDC including H4K5ac, H4K8ac, H4K12ac, H4K16ac, H3K9ac, H3K14ac, H3K56ac, H4K20me1, H4K20me3, H3K4me3, H3K79me3 and H4R3me2. While some modifications were found to be associated with the vast majority of the genome and their occupancy was constant, others showed more specific and highly dynamic distribution. Importantly, eight modifications displaying tight correlations with transcript levels showed differential affinity to distinct genomic regions with H4K8ac occupying predominantly promoter regions while others occurred at the 5' ends of coding sequences. The promoter occupancy of H4K8ac remained unchanged when ectopically inserted at a different locus, indicating the presence of specific DNA elements that recruit histone modifying enzymes regardless of their broad chromatin environment. In addition, we showed the presence of multivalent domains on the genome carrying more than one histone mark, highlighting the importance of combinatorial effects on transcription. Overall, our work portrays a substantial association between chromosomal locations of various epigenetic markers, transcriptional activity and global stage-specific transitions in the epigenome.

  17. Quantitative Seq-LGS: Genome-Wide Identification of Genetic Drivers of Multiple Phenotypes in Malaria Parasites

    Abkallo, Hussein M.

    2016-10-01

    Identifying the genetic determinants of phenotypes that impact on disease severity is of fundamental importance for the design of new interventions against malaria. Traditionally, such discovery has relied on labor-intensive approaches that require significant investments of time and resources. By combining Linkage Group Selection (LGS), quantitative whole genome population sequencing and a novel mathematical modeling approach (qSeq-LGS), we simultaneously identified multiple genes underlying two distinct phenotypes, identifying novel alleles for growth rate and strain specific immunity (SSI), while removing the need for traditionally required steps such as cloning, individual progeny phenotyping and marker generation. The detection of novel variants, verified by experimental phenotyping methods, demonstrates the remarkable potential of this approach for the identification of genes controlling selectable phenotypes in malaria and other apicomplexan parasites for which experimental genetic crosses are amenable.

  18. Inhibition of protein synthesis and malaria parasite development by drug targeting of methionyl-tRNA synthetases.

    Hussain, Tahir; Yogavel, Manickam; Sharma, Amit

    2015-04-01

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRS(cyt) and PfMRS(api). Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRS(cyt)) or proteobacteria/primitive bacteria (PfMRS(api)). We show that PfMRS(cyt) localizes in parasite cytoplasm, while PfMRS(api) localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several "hit" compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with (35)S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Variation of parasite load and immune parameters in two species of New Zealand shore crabs.

    Dittmer, Jessica; Koehler, Anson V; Richard, Freddie-Jeanne; Poulin, Robert; Sicard, Mathieu

    2011-09-01

    While parasites are likely to encounter several potential intermediate hosts in natural communities, a parasite's actual range of compatible hosts is limited by numerous biological factors ranging from behaviour to immunology. In crustaceans, two major components of immunity are haemocytes and the prophenoloxidase system involved in the melanisation of foreign particles. Here, we analysed metazoan parasite prevalence and loads in the two sympatric crab species Hemigrapsus crenulatus and Macrophthalmus hirtipes at two sites. In parallel, we analysed the variation in haemocyte concentration and amount of circulating phenoloxidase (PO) in the haemolymph of the same individuals in an attempt to (a) explain differences in parasite prevalence and loads in the two species at two sites and (b) assess the impact of parasites on these immune parameters. M. hirtipes harboured more parasites but also exhibited higher haemocyte concentrations than H. crenulatus independent of the study site. Thus, higher investment in haemocyte production for M. hirtipes does not seem to result in higher resistance to parasites. Analyses of variation in immune parameters for the two crab species between the two sites that differed in parasite prevalence showed common trends. (a) In general, haemocyte concentrations were higher at the site experiencing higher parasitic pressure while circulating PO activity was lower and (b) haemocyte concentrations were influenced by microphallid trematode metacercariae in individuals from the site with higher parasitic pressure. We suggest that the higher haemocyte concentrations observed in both crab species exposed to higher parasitic pressure may represent an adaptive response to the impact of parasites on this immune parameter.

  20. Evaluation of the utility value of three diagnostic methods in the detection of malaria parasites in endemic area.

    Ugah, Uchenna Iyioku; Alo, Moses Nnaemeka; Owolabi, Jacob Oluwabusuyi; Okata-Nwali, Oluchi DivineGift; Ekejindu, Ifeoma Mercy; Ibeh, Nancy; Elom, Michael Okpara

    2017-05-06

    Malaria is a debilitating disease with high morbidity and mortality in Africa, commonly caused by different species of the genus Plasmodium in humans. Misdiagnosis is a major challenge in endemic areas because of other disease complications and technical expertise of the medical laboratory staff. Microscopic method using Giemsa-stained blood film has been the mainstay of diagnosis of malaria. However, since 1993 when rapid diagnostic test (RDT) kits were introduced, they have proved to be effective in the diagnosis of malaria. This study was aimed at comparing the accuracy of microscopy and RDTs in the diagnosis of malaria using nested PCR as the reference standard. Four hundred and twenty (420) venous blood specimens were collected from patients attending different General Hospitals in Ebonyi State with clinical symptoms of malaria. The samples were tested with Giemsa-stained microscopy and three RDTs. Fifty specimens were randomly selected for molecular analysis. Using different diagnostic methods, the prevalence of malaria among the subjects studied was 25.95% as detected by microscopy, prevalence found among the RDTs was 22.90, 15.20 and 54.80% for Carestart, SD Bioline PF and SD Bioline PF/PV, respectively. Molecular assay yielded a prevalence of 32%. The major specie identified was Plasmodium falciparum; there was co-infection of P. falciparum with Plasmodium malariae and Plasmodium ovale. The sensitivity and specificity of microscopy was 50.00 and 70.59% while that of the RDTs were (25.00 and 85.29%), (25.00 and 94.12%) and (68.75 and 52.94%) for Carestart, SD Bioline PF and SD Bioline PF/PV, respectively. Cohen's kappa coefficient was used to measure the level of agreement of the methods with nested PCR. Microscopy showed a moderate measure of agreement (k = 0.491), Carestart showed a good measure of agreement (k = 0.611), SD Bioline PF showed a fair measure of agreement (k = 0.226) while SD Bioline PF/PV showed a poor measure of agreement (k = 0

  1. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    Thais C de Oliveira

    2017-07-01

    Full Text Available The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax.We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences, Peru (PER, n = 23, Colombia (COL, n = 31, and Mexico (MEX, n = 19.We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4 as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092. Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically

  2. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax.

    de Oliveira, Thais C; Rodrigues, Priscila T; Menezes, Maria José; Gonçalves-Lopes, Raquel M; Bastos, Melissa S; Lima, Nathália F; Barbosa, Susana; Gerber, Alexandra L; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R; Alves, João Marcelo P; Ferreira, Marcelo U

    2017-07-01

    The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10-4 and 6.2 × 10-4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites

  3. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax

    de Oliveira, Thais C.; Rodrigues, Priscila T.; Menezes, Maria José; Gonçalves-Lopes, Raquel M.; Bastos, Melissa S.; Lima, Nathália F.; Barbosa, Susana; Gerber, Alexandra L.; Loss de Morais, Guilherme; Berná, Luisa; Phelan, Jody; Robello, Carlos; de Vasconcelos, Ana Tereza R.

    2017-01-01

    Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between

  4. A subset of group A-like var genes encodes the malaria parasite ligands for binding to human brain endothelial cells

    Claessens, Antoine; Adams, Yvonne; Ghumra, Ashfaq

    2012-01-01

    Cerebral malaria is the most deadly manifestation of infection with Plasmodium falciparum. The pathology of cerebral malaria is characterized by the accumulation of infected erythrocytes (IEs) in the microvasculature of the brain caused by parasite adhesins on the surface of IEs binding to human...... receptors on microvascular endothelial cells. The parasite and host molecules involved in this interaction are unknown. We selected three P. falciparum strains (HB3, 3D7, and IT/FCR3) for binding to a human brain endothelial cell line (HBEC-5i). The whole transcriptome of isogenic pairs of selected.......029) but not by antibodies from controls with uncomplicated malaria (Mann-Whitney test, P = 0.58). This work describes a binding phenotype for virulence-associated group A P. falciparum erythrocyte membrane protein 1 variants and identifies targets for interventions to treat or prevent cerebral malaria....

  5. The Plasmodium falciparum pseudoprotease SERA5 regulates the kinetics and efficiency of malaria parasite egress from host erythrocytes.

    Christine R Collins

    2017-07-01

    Full Text Available Egress of the malaria parasite Plasmodium falciparum from its host red blood cell is a rapid, highly regulated event that is essential for maintenance and completion of the parasite life cycle. Egress is protease-dependent and is temporally associated with extensive proteolytic modification of parasite proteins, including a family of papain-like proteins called SERA that are expressed in the parasite parasitophorous vacuole. Previous work has shown that the most abundant SERA, SERA5, plays an important but non-enzymatic role in asexual blood stages. SERA5 is extensively proteolytically processed by a parasite serine protease called SUB1 as well as an unidentified cysteine protease just prior to egress. However, neither the function of SERA5 nor the role of its processing is known. Here we show that conditional disruption of the SERA5 gene, or of both the SERA5 and related SERA4 genes simultaneously, results in a dramatic egress and replication defect characterised by premature host cell rupture and the failure of daughter merozoites to efficiently disseminate, instead being transiently retained within residual bounding membranes. SERA5 is not required for poration (permeabilization or vesiculation of the host cell membrane at egress, but the premature rupture phenotype requires the activity of a parasite or host cell cysteine protease. Complementation of SERA5 null parasites by ectopic expression of wild-type SERA5 reversed the egress defect, whereas expression of a SERA5 mutant refractory to processing failed to rescue the phenotype. Our findings implicate SERA5 as an important regulator of the kinetics and efficiency of egress and suggest that proteolytic modification is required for SERA5 function. In addition, our study reveals that efficient egress requires tight control of the timing of membrane rupture.

  6. Do parasitic trematode cercariae demonstrate a preference for susceptible host species?

    Brittany F Sears

    Full Text Available Many parasites are motile and exhibit behavioural preferences for certain host species. Because hosts can vary in their susceptibility to infections, parasites might benefit from preferentially detecting and infecting the most susceptible host, but this mechanistic hypothesis for host-choice has rarely been tested. We evaluated whether cercariae (larval trematode parasites prefer the most susceptible host species by simultaneously presenting cercariae with four species of tadpole hosts. Cercariae consistently preferred hosts in the following order: Anaxyrus ( = Bufo terrestris (southern toad, Hyla squirella (squirrel tree frog, Lithobates ( = Rana sphenocephala (southern leopard frog, and Osteopilus septentrionalis (Cuban tree frog. These host species varied in susceptibility to cercariae in an order similar to their attractiveness with a correlation that approached significance. Host attractiveness to parasites also varied consistently and significantly among individuals within a host species. If heritable, this individual-level host variation would represent the raw material upon which selection could act, which could promote a Red Queen "arms race" between host cues and parasite detection of those cues. If, in general, motile parasites prefer to infect the most susceptible host species, this phenomenon could explain aggregated distributions of parasites among hosts and contribute to parasite transmission rates and the evolution of virulence. Parasite preferences for hosts belie the common assumption of disease models that parasites seek and infect hosts at random.

  7. Malaria parasite carriage and risk determinants in a rural population: a malariometric survey in Rwanda

    Kateera, Fredrick; Mens, Petra F.; Hakizimana, Emmanuel; Ingabire, Chantal M.; Muragijemariya, Liberata; Karinda, Parfait; Grobusch, Martin P.; Mutesa, Leon; van Vugt, Michèle

    2015-01-01

    Based on routine health facility case data, Rwanda has achieved a significant malaria burden reduction in the past ten years. However, community-based malaria parasitaemia burden and reasons for continued residual infections, despite a high coverage of control interventions, have yet to be

  8. MALARIA AND HIV IN ADULTS: When The Parasite runs into The Virus

    Emanuele Focà

    2012-01-01

    Full Text Available

    Malaria and HIV/AIDS are among the principal causes of morbidity and mortality worldwide, particularly in resource-limited settings such as sub-Saharan Africa. Despite the international community’s efforts to reduce incidence and prevalence of these diseases, they remain a global public health problem. Clinical manifestations of malaria may be more severe in HIV infected patients, which have higher risks of severe malaria and malaria related death. Co-infected pregnant women, children and international travelers from non-malaria endemic countries are at higher risk of clinical complications. However, there is a paucity and conflicting data regarding malaria and HIV co-infection, particularly on how HIV infection can modify the response to antimalarial drugs and about drug-interactions between antiretroviral agents and artemisinin-based combined regimens. Moreover, consulting HIV-infected international travelers and physicians specialized in HIV care and travel medicine should prescribe an adequate chemoprophylaxis in patients travelling towards malaria endemic areas and pay attention on interactions between antiretrovirals and antimalarial prophylaxis drugs in order to prevent clinical complications of this co-infection.

    This review aims to evaluate the available international literature on malaria and HIV co-infection in adults providing a critical comprehensive review of nowadays knowledge.

  9. MALARIA AND HIV IN ADULTS: When The Parasite runs into The Virus

    Emanuele Focà

    2012-05-01

    Full Text Available Malaria and HIV/AIDS are among the principal causes of morbidity and mortality worldwide, particularly in resource-limited settings such as sub-Saharan Africa. Despite the international community’s efforts to reduce incidence and prevalence of these diseases, they remain a global public health problem. Clinical manifestations of malaria may be more severe in HIV infected patients, which have higher risks of severe malaria and malaria related death. Co-infected pregnant women, children and international travelers from non-malaria endemic countries are at higher risk of clinical complications. However, there is a paucity and conflicting data regarding malaria and HIV co-infection, particularly on how HIV infection can modify the response to antimalarial drugs and about drug-interactions between antiretroviral agents and artemisinin-based combined regimens. Moreover, consulting HIV-infected international travelers and physicians specialized in HIV care and travel medicine should prescribe an adequate chemoprophylaxis in patients travelling towards malaria endemic areas and pay attention on interactions between antiretrovirals and antimalarial prophylaxis drugs in order to prevent clinical complications of this co-infection. This review aims to evaluate the available international literature on malaria and HIV co-infection in adults providing a critical comprehensive review of nowadays knowledge.

  10. Malaria Transmission Risk Factor In West Java (Epidemiology Study About Vector, Plasmodium parasite and Environmental Risk Factors For Malaria Cases

    Lukman Hakim

    2010-06-01

    Full Text Available Since the territory is divided with the province of Banten, in West Java there are five regencies that defined as malaria endemic area, there are Ciamis, Tasikmalaya, Garut, Cianjur and Sukabumi. Sufferer, concentrated in southern coastal areas (Indonesian Ocean starting from the beach of Kalipucang at Ciamis up to coast of Cikakak at Sukabumi which borders the province of Banten and also mountain and plantations areas. Malaria morbidity incidence risk factors is differ in each of these endemic areas. In general is the presence of malaria patients without symptoms who can be a source of infection that so difficult to know its existence. Still the number of standing water that can become mosqui-to breeding places of Anopheles spp, such as fish pond, small puddle on the riverside, shrimp pond, mangrove forests that potentially at the beginning of the rainy season, the fields during rice that potential when the rice growing and the river that potential in the dry season. The existence of high population mobility and also the number of vegetation in the surrounding residential population and the existence of cattle are placed close to settle-ments.

  11. Short-Term Changes in Anemia and Malaria Parasite Prevalence in Children under 5 Years during One Year of Repeated Cross-Sectional Surveys in Rural Malawi

    Kabaghe, Alinune N.; Chipeta, Michael G.; Terlouw, Dianne J.; McCann, Robert S.; van Vugt, Michèle; Grobusch, Martin P.; Takken, Willem; Phiri, Kamija S.

    2017-01-01

    Abstract. In stable transmission areas, malaria is the leading cause of anemia in children. Anemia in children is proposed as an added sensitive indicator for community changes in malaria prevalence. We report short-term temporal variations of malaria and anemia prevalence in rural Malawian children. Data from five repeated cross-sectional surveys conducted over 1 year in rural communities in Chikwawa District, Malawi, were analyzed. Different households were sampled per survey; all children, 6–59 months, in sampled household were tested for malaria parasitemia and hemoglobin levels using malaria rapid diagnostic tests (mRDT) and Hemocue 301, respectively. Malaria symptoms, recent treatment (2 weeks) for malaria, anthropometric measurements, and sociodemographic details were recorded. In total, 894 children were included from 1,377 households. The prevalences of mRDT positive and anemia (Hb anemia and parasite prevalence varied differently. Overall, unadjusted and adjusted relative risks of anemia in mRDT-positive children were 1.31 (95% CI: 1.09–1.57) and 1.36 (1.13–1.63), respectively. Changes in anemia prevalence differed with short-term changes in malaria prevalence, although malaria is an important factor in anemia. PMID:28820717

  12. Plasmodium vivax Malaria in Cambodia

    Siv, Sovannaroth; Roca-Feltrer, Arantxa; Vinjamuri, Seshu Babu; Bouth, Denis Mey; Lek, Dysoley; Rashid, Mohammad Abdur; By, Ngau Peng; Popovici, Jean; Huy, Rekol; Menard, Didier

    2016-01-01

    The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. falciparum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. falciparum elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed. PMID:27708187

  13. Natural variation in long-term memory formation among Nasonia parasitic wasp species

    Hoedjes, K.M.; Smid, H.M.

    2014-01-01

    Closely related species of parasitic wasps can differ substantially in memory dynamics. In this study we demonstrate differences in the number of conditioning trials required to form long-term memory between the closely related parasitic wasp species Nasonia vitripennis and Nasonia giraulti

  14. Menoctone Resistance in Malaria Parasites Is Conferred by M133I Mutations in Cytochrome b That Are Transmissible through Mosquitoes.

    Blake, Lynn D; Johnson, Myles E; Siegel, Sasha V; McQueen, Adonis; Iyamu, Iredia D; Shaikh, Abdul Kadar; Shultis, Michael W; Manetsch, Roman; Kyle, Dennis E

    2017-08-01

    Malaria-related mortality has slowly decreased over the past decade; however, eradication of malaria requires the development of new antimalarial chemotherapies that target liver stages of the parasite and combat the emergence of drug resistance. The diminishing arsenal of anti-liver-stage compounds sparked our interest in reviving the old and previously abandoned compound menoctone. In support of these studies, we developed a new convergent synthesis method that was facile, required fewer steps, produced better yields, and utilized less expensive reagents than the previously published method. Menoctone proved to be highly potent against liver stages of Plasmodium berghei (50 percent inhibitory concentration [IC 50 ] = 0.41 nM) and erythrocytic stages of Plasmodium falciparum (113 nM). We selected for resistance to menoctone and found M133I mutations in cytochrome b of both P. falciparum and P. berghei The same mutation has been observed previously in atovaquone resistance, and we confirmed cross-resistance between menoctone and atovaquone in vitro (for P. falciparum ) and in vivo (for P. berghei ). Finally, we assessed the transmission potential of menoctone-resistant P. berghei and found that the M133I mutant parasites were readily transmitted from mouse to mosquitoes and back to mice. In each step, the M133I mutation in cytochrome b , inducing menoctone resistance, was confirmed. In summary, this study is the first to show the mechanism of resistance to menoctone and that menoctone and atovaquone resistance is transmissible through mosquitoes. Copyright © 2017 American Society for Microbiology.

  15. Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasite Plasmodium falciparum

    Krungkrai, Sudaratana R.; Tokuoka, Keiji; Kusakari, Yukiko; Inoue, Tsuyoshi; Adachi, Hiroaki; Matsumura, Hiroyoshi; Takano, Kazufumi; Murakami, Satoshi; Mori, Yusuke; Kai, Yasushi; Krungkrai, Jerapan; Horii, Toshihiro

    2006-01-01

    Orotidine 5′-monophosphate decarboxylase of human malaria parasite P. falciparum was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation. Orotidine 5′-monophosphate (OMP) decarboxylase (OMPDC; EC 4.1.1.23) catalyzes the final step in the de novo synthesis of uridine 5′-monophosphate (UMP) and defects in the enzyme are lethal in the malaria parasite Plasmodium falciparum. Active recombinant P. falciparum OMPDC (PfOMPDC) was crystallized by the seeding method in a hanging drop using PEG 3000 as a precipitant. A complete set of diffraction data from a native crystal was collected to 2.7 Å resolution at 100 K using synchrotron radiation at the Swiss Light Source. The crystal exhibits trigonal symmetry (space group R3), with hexagonal unit-cell parameters a = b = 201.81, c = 44.03 Å. With a dimer in the asymmetric unit, the solvent content is 46% (V M = 2.3 Å 3 Da −1 )

  16. Functional characterization of malaria parasites deficient in the K+ channel Kch2

    Ellekvist, Peter; Mlambo, Godfree; Kumar, Nirbhay

    2017-01-01

    parasite P. berghei, the functional significance of K+ channel homologue PbKch2 was studied using targeted gene knock-out. The knockout parasites were characterized in a mouse model in terms of growth-kinetics and infectivity in the mosquito vector. Furthermore, using a tracer-uptake technique with 86Rb...... of forming oocysts in female Anopheles stephensi mosquitoes. 86Rb+ uptake in Kch2-deficient blood-stage P. berghei parasites (Kch2-null) did not differ from that of wild-type (WT) parasites. About two-thirds of the 86Rb+ uptake in WT and in Kch2-null parasites could be inhibited by K+ channel blockers...... and could be inferred to the presence of functional Kch1 in Kch2 knockout parasites. Kch2 is therefore not required for transport of K+ in P. berghei and is not essential to mosquito-stage sporogonic development of the parasite....

  17. Malaria

    ... less than the risk of catching this infection. Chloroquine has been the drug of choice for protecting against malaria. But because of resistance, it is now only suggested for use in areas where Plasmodium vivax , P. oval , and ...

  18. Challenges of DHS and MIS to capture the entire pattern of malaria parasite risk and intervention effects in countries with different ecological zones: the case of Cameroon.

    Massoda Tonye, Salomon G; Kouambeng, Celestin; Wounang, Romain; Vounatsou, Penelope

    2018-04-06

    In 2011, the demographic and health survey (DHS) in Cameroon was combined with the multiple indicator cluster survey. Malaria parasitological data were collected, but the survey period did not overlap with the high malaria transmission season. A malaria indicator survey (MIS) was also conducted during the same year, within the malaria peak transmission season. This study compares estimates of the geographical distribution of malaria parasite risk and of the effects of interventions obtained from the DHS and MIS survey data. Bayesian geostatistical models were applied on DHS and MIS data to obtain georeferenced estimates of the malaria parasite prevalence and to assess the effects of interventions. Climatic predictors were retrieved from satellite sources. Geostatistical variable selection was used to identify the most important climatic predictors and indicators of malaria interventions. The overall observed malaria parasite risk among children was 33 and 30% in the DHS and MIS data, respectively. Both datasets identified the Normalized Difference Vegetation Index and the altitude as important predictors of the geographical distribution of the disease. However, MIS selected additional climatic factors as important disease predictors. The magnitude of the estimated malaria parasite risk at national level was similar in both surveys. Nevertheless, DHS estimates lower risk in the North and Coastal areas. MIS did not find any important intervention effects, although DHS revealed that the proportion of population with an insecticide-treated nets access in their household was statistically important. An important negative relationship between malaria parasitaemia and socioeconomic factors, such as the level of mother's education, place of residence and the household welfare were captured by both surveys. Timing of the malaria survey influences estimates of the geographical distribution of disease risk, especially in settings with seasonal transmission. In countries with

  19. Long- and short-term selective forces on malaria parasite genomes

    Nygaard, Sanne; Braunstein, Alexander; Malsen, Gareth; Van Dongen, Stijn; Gardner, Paul P.; Krogh, Anders; Otto, Thomas D.; Pain, Arnab; Berriman, Matthew; McAuliffe, Jon; Dermitzakis, Emmanouil T.; Jeffares, Daniel C.

    2010-01-01

    of these genomes. Although evolutionary processes have a significant impact on malaria control, the selective pressures within Plasmodium genomes are poorly understood, particularly in the non-protein-coding portion of the genome. We use evolutionary methods

  20. Rapid identification of genes controlling virulence and immunity in malaria parasites

    Abkallo, Hussein M.; Martinelli, Axel; Inoue, Megumi; Ramaprasad, Abhinay; Xangsayarath, Phonepadith; Gitaka, Jesse; Tang, Jianxia; Yahata, Kazuhide; Zoungrana, Augustin; Mitaka, Hayato; Acharjee, Arita; Datta, Partha P.; Hunt, Paul; Carter, Richard; Kaneko, Osamu; Mustonen, Ville; Illingworth, Christopher J. R.; Pain, Arnab; Culleton, Richard

    2017-01-01

    Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic

  1. The Impact of Cooperative Social Organization on Reducing the Prevalence of Malaria and Intestinal Parasite Infections in Awramba, a Rural Community in South Gondar, Ethiopia

    Gebeyehu Yihenew

    2014-01-01

    Full Text Available Introduction. Parasitic diseases are the major causes of human health problem in Ethiopia. The high prevalence of parasitic infections is closely correlated with poverty, poor environmental hygiene, and impoverished health services. Objective. The study was conducted to assess the impact of health-conscious Awramba cooperative community and its neighboring communities on the prevalence of parasitic infections in South Gondar, Ethiopia. Methods. Single stool specimens were collected from 392 individuals from Awramba and the neighboring communities. Specimens were examined microscopically for the presence of parasites using microscopy. Questionnaire was administered to determine the knowledge attitude and practice (KAP of study participants. Results. Of the total 392 study participants examined, 58(14.8% were positive for malaria and 173 (44.1% for intestinal parasites. The prevalence of malaria in Awramba community (5.1% was less than that in neighboring communities (24.5%. The prevalence of parasitic infections in Awramba (18.8% was less than that of the neighboring communities (69.4%. Conclusion. This study showed that good household and environmental hygiene, good toilet construction and usage, and proper utilization of ITN in Awramba cooperative community have significantly contributed to the reduction of the burden of parasitic infections. Thus, the positive achievement in reducing parasitic infections in Awramba cooperative community could be used as a model for affordable health intervention in the neighboring communities, in particular, and the whole country in general.

  2. Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum

    Winograd, E.; Greenan, J.R.T.; Sherman, I.W.

    1987-01-01

    Erythrocytes infected with a knobby variant of Plasmodium falciparum selectively bind IgG autoantibodies in normal human serum. Quantification of membrane-bound IgG, by use of 125 I-labeled protein A, revealed that erythrocytes infected with the knobby variant bound 30 times more protein A than did noninfected erythrocytes; infection with a knobless variant resulted in less than a 2-fold difference compared with noninfected erythrocytes. IgG binding to knobby erythrocytes appeared to be related to parasite development, since binding of 125 I-labeled protein A to cells bearing young trophozoites (less than 20 hr after parasite invasion) was similar to binding to uninfected erythrocytes. By immunoelectron microscopy, the membrane-bound IgG on erythrocytes infected with the knobby variant was found to be preferentially associated with the protuberances (knobs) of the plasma membrane. The removal of aged or senescent erythrocytes from the peripheral circulation is reported to involve the binding of specific antibodies to an antigen (senescent antigen) related to the major erythrocyte membrane protein band 3. Since affinity-purified autoantibodies against band 3 specifically bound to the plasma membrane of erythrocytes infected with the knobby variant of P. falciparum, it is clear that the malaria parasite induces expression of senescent antigen

  3. Avian malaria in Hawaiian forest birds: Infection and population impacts across species and elevations

    Samuel, Michael D.; Woodworth, Bethany L.; Atkinson, Carter T.; Hart, P. J.; LaPointe, Dennis

    2015-01-01

    Wildlife diseases can present significant threats to ecological systems and biological diversity, as well as domestic animal and human health. However, determining the dynamics of wildlife diseases and understanding the impact on host populations is a significant challenge. In Hawai‘i, there is ample circumstantial evidence that introduced avian malaria (Plasmodium relictum) has played an important role in the decline and extinction of many native forest birds. However, few studies have attempted to estimate disease transmission and mortality, survival, and individual species impacts in this distinctive ecosystem. We combined multi-state capture-recapture (longitudinal) models with cumulative age-prevalence (cross-sectional) models to evaluate these patterns in Apapane, Hawai‘i Amakihi, and Iiwi in low-, mid-, and high-elevation forests on the island of Hawai‘i based on four longitudinal studies of 3–7 years in length. We found species-specific patterns of malaria prevalence, transmission, and mortality rates that varied among elevations, likely in response to ecological factors that drive mosquito abundance. Malaria infection was highest at low elevations, moderate at mid elevations, and limited in high-elevation forests. Infection rates were highest for Iiwi and Apapane, likely contributing to the absence of these species in low-elevation forests. Adult malaria fatality rates were highest for Iiwi, intermediate for Amakihi at mid and high elevations, and lower for Apapane; low-elevation Amakihi had the lowest malaria fatality, providing strong evidence of malaria tolerance in this low-elevation population. Our study indicates that hatch-year birds may have greater malaria infection and/or fatality rates than adults. Our study also found that mosquitoes prefer feeding on Amakihi rather than Apapane, but Apapane are likely a more important reservoir for malaria transmission to mosquitoes. Our approach, based on host abundance and infection rates, may be an

  4. Fish population studies using parasites from the Southeastern Pacific Ocean: considering host population changes and species body size as sources of variability of parasite communities.

    George-Nascimento, Mario; Oliva, Marcelo

    2015-01-01

    Research using parasites in fish population studies in the South Eastern Pacific (SEP) is summarized. There are 27 such studies (snapshots mainly) in single host species sampled at different geographic localities and at somewhat similar times. They have been devoted mainly to economically important species, though others on coastal and intertidal fish or on less- or non-commercial species provide insights on scales of temporal and spatial variation of parasite infracommunities. Later, we assess whether the probability of harbouring parasites depends on the host species body size. Our results indicate that a stronger tool for fish population studies may be developed under regular (long term) scrutiny of parasite communities, especially of small fish host species, due to their larger variability in richness, abundance and total biomass, than in large fish species. Finally, it might also be necessary to consider the effects of fishing on parasite communities as well as the natural oscillations (coupled or not) of host and parasite populations.

  5. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  6. The origin of malarial parasites in orangutans.

    M Andreína Pacheco

    Full Text Available BACKGROUND: Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans. METHODOLOGY/PRINCIPAL FINDINGS: We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA and two antigens: merozoite surface protein 1 42 kDa (MSP-1(42 and circumsporozoite protein gene (CSP were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-1(42 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite and P. hylobati (a gibbon parasite suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-1(42 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites. CONCLUSION: The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host

  7. Plasmodium Cysteine Repeat Modular Proteins 3 and 4 are essential for malaria parasite transmission from the mosquito to the host

    Mota Maria M

    2011-03-01

    Full Text Available Abstract Background The Plasmodium Cysteine Repeat Modular Proteins (PCRMP are a family of four conserved proteins of malaria parasites, that contain a number of motifs implicated in host-parasite interactions. Analysis of mutants of the rodent parasite Plasmodium berghei lacking expression of PCRMP1 or 2 showed that these proteins are essential for targeting of P. berghei sporozoites to the mosquito salivary gland and, hence, for transmission from the mosquito to the mouse. Methods In this work, the role of the remaining PCRMP family members, PCRMP3 and 4, has been investigated throughout the Plasmodium life cycle by generation and analysis of P. berghei gene deletion mutants, Δpcrmp3 and Δpcrmp4. The role of PCRMP members during the transmission and hepatic stages of the Plasmodium lifecycle has been evaluated by light- and electron microscopy and by analysis of liver stage development in HEPG2 cells in vitro and by infecting mice with mutant sporozoites. In addition, mice were immunized with live Δpcrmp3 and Δpcrmp4 sporozoites to evaluate their immunization potential as a genetically-attenuated parasite-based vaccine. Results Disruption of pcrmp3 and pcrmp4 in P. berghei revealed that they are also essential for transmission of the parasite through the mosquito vector, although acting in a distinct way to pbcrmp1 and 2. Mutants lacking expression of PCRMP3 or PCRMP4 show normal blood stage development and oocyst formation in the mosquito and develop into morphologically normal sporozoites, but these have a defect in egress from oocysts and do not enter the salivary glands. Sporozoites extracted from oocysts perform gliding motility and invade and infect hepatocytes but do not undergo further development and proliferation. Furthermore, the study shows that immunization with Δcrmp3 and Δcrmp4 sporozoites does not confer protective immunity upon subsequent challenge. Conclusions PCRMP3 and 4 play multiple roles during the Plasmodium life

  8. Parasites

    2010-05-06

    In this podcast, a listener wants to know what to do if he thinks he has a parasite or parasitic disease.  Created: 5/6/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/6/2010.

  9. A few good reasons why species-area relationships do not work for parasites.

    Strona, Giovanni; Fattorini, Simone

    2014-01-01

    Several studies failed to find strong relationships between the biological and ecological features of a host and the number of parasite species it harbours. In particular, host body size and geographical range are generally only weak predictors of parasite species richness, especially when host phylogeny and sampling effort are taken into account. These results, however, have been recently challenged by a meta-analytic study that suggested a prominent role of host body size and range extent in determining parasite species richness (species-area relationships). Here we argue that, in general, results from meta-analyses should not discourage researchers from investigating the reasons for the lack of clear patterns, thus proposing a few tentative explanations to the fact that species-area relationships are infrequent or at least difficult to be detected in most host-parasite systems. The peculiar structure of host-parasite networks, the enemy release hypothesis, the possible discrepancy between host and parasite ranges, and the evolutionary tendency of parasites towards specialization may explain why the observed patterns often do not fit those predicted by species-area relationships.

  10. Gametocytes of the Malaria Parasite Plasmodium falciparum Interact With and Stimulate Bone Marrow Mesenchymal Cells to Secrete Angiogenetic Factors

    Valeria Messina

    2018-03-01

    Full Text Available The gametocytes of Plasmodium falciparum, responsible for the transmission of this malaria parasite from humans to mosquitoes, accumulate and mature preferentially in the human bone marrow. In the 10 day long sexual development of P. falciparum, the immature gametocytes reach and localize in the extravascular compartment of this organ, in contact with several bone marrow stroma cell types, prior to traversing the endothelial lining and re-entering in circulation at maturity. To investigate the host parasite interplay underlying this still obscure process, we developed an in vitro tridimensional co-culture system in a Matrigel scaffold with P. falciparum gametocytes and self-assembling spheroids of human bone marrow mesenchymal cells (hBM-MSCs. Here we show that this co-culture system sustains the full maturation of the gametocytes and that the immature, but not the mature, gametocytes adhere to hBM-MSCs via trypsin-sensitive parasite ligands exposed on the erythrocyte surface. Analysis of a time course of gametocytogenesis in the co-culture system revealed that gametocyte maturation is accompanied by the parasite induced stimulation of hBM-MSCs to secrete a panel of 14 cytokines and growth factors, 13 of which have been described to play a role in angiogenesis. Functional in vitro assays on human bone marrow endothelial cells showed that supernatants from the gametocyte mesenchymal cell co-culture system enhance ability of endothelial cells to form vascular tubes. These results altogether suggest that the interplay between immature gametocytes and hBM-MSCs may induce functional and structural alterations in the endothelial lining of the human bone marrow hosting the P. falciparum transmission stages.

  11. Detection of the Malaria causing Plasmodium Parasite in Saliva from Infected Patients using Topoisomerase I Activity as a Biomarker

    Hede, Marianne Smedegaard; Fjelstrup, Søren; Lötsch, Felix

    2018-01-01

    that may be adapted for low-resource settings. Moreover, we demonstrate the exploitation of this assay for detection of malaria in saliva. The setup relies on pump-free microfluidics enabled extraction combined with a DNA sensor substrate that is converted to a single-stranded DNA circle specifically...... (HRP) and addition of 3,3',5,5'-Tetramethylbenzidine that was converted to a blue colored product by HRP. The assay was directly quantitative, specific for Plasmodium parasites, and allowed detection of Plasmodium infection in a single drop of saliva from 35 out of 35 infected individuals tested....... The results could be determined directly by the naked eye and documented by quantifying the color intensity using a standard paper scanner....

  12. A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton

    Juan Nunez-Iglesias

    2018-02-01

    Full Text Available We present Skan (Skeleton analysis, a Python library for the analysis of the skeleton structures of objects. It was inspired by the “analyse skeletons” plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan’s measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions.

  13. A new Python library to analyse skeleton images confirms malaria parasite remodelling of the red blood cell membrane skeleton.

    Nunez-Iglesias, Juan; Blanch, Adam J; Looker, Oliver; Dixon, Matthew W; Tilley, Leann

    2018-01-01

    We present Skan (Skeleton analysis), a Python library for the analysis of the skeleton structures of objects. It was inspired by the "analyse skeletons" plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API) allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan's measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM)-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions.

  14. Predicting what helminth parasites a fish species should have using Parasite Co-occurrence Modeler (PaCo)

    Strona, Giovanni; Lafferty, Kevin D.

    2013-01-01

    Fish pathologists are often interested in which parasites would likely be present in a particular host. Parasite Co-occurrence Modeler (PaCo) is a tool for identifying a list of parasites known from fish species that are similar ecologically, phylogenetically, and geographically to the host of interest. PaCo uses data from FishBase (maximum length, growth rate, life span, age at maturity, trophic level, phylogeny, and biogeography) to estimate compatibility between a target host and parasite species–genera from the major helminth groups (Acanthocephala, Cestoda, Monogenea, Nematoda, and Trematoda). Users can include any combination of host attributes in a model. These unique features make PaCo an innovative tool for addressing both theoretical and applied questions in parasitology. In addition to predicting the occurrence of parasites, PaCo can be used to investigate how host characteristics shape parasite communities. To test the performance of the PaCo algorithm, we created 12,400 parasite lists by applying any possible combination of model parameters (248) to 50 fish hosts. We then measured the relative importance of each parameter by assessing their frequency in the best models for each host. Host phylogeny and host geography were identified as the most important factors, with both present in 88% of the best models. Habitat (64%) was identified in more than half of the best models. Among ecological parameters, trophic level (41%) was the most relevant while life span (34%), growth rate (32%), maximum length (28%), and age at maturity (20%) were less commonly linked to best models. PaCo is free to use at www.purl.oclc.org/fishpest.

  15. malaria

    children who presented with malaria symptoms at the same clinic and tested positive or ... phagocytes immunity and induce anti-inflammatory immune response ...... treatment gap, Malawi will be ready to submit a validation request for virtual .... Conclusions. Vaccination and quarantine are the important disease preventive.

  16. Abundance, biting behaviour and parous rate of anopheline mosquito species in relation to malaria incidence in gold-mining areas of southern Venezuela.

    Moreno, J E; Rubio-Palis, Y; Páez, E; Pérez, E; Sánchez, V

    2007-12-01

    A longitudinal entomological and epidemiological study was conducted in five localities of southern Venezuela between January 1999 and April 2000 to determine the abundance, biting behaviour and parity of anopheline mosquitoes (Diptera: Culicidae) in relation to climate variables and malaria incidence. A total of 3685 female anopheline mosquitoes, representing six species, were collected. The most abundant species were Anopheles marajoara Galvão & Damasceno (60.7%) and Anopheles darlingi Root (35.1%), which together represented 95.8% of the total anophelines collected. Abundance and species distribution varied by locality. Malaria prevalence varied from 12.5 to 21.4 cases per 1000 population. Transmission occurred throughout the year; the annual parasite index (API) for the study period was 813.0 cases per 1000 population, with a range of 71.6-2492 per 1000 population, depending on locality. Plasmodium vivax (Grassi & Feletti) (Coccidia: Plasmodiidae) accounted for 78.6% of cases, Plasmodium falciparum (Welch) for 21.4% and mixed infections (Pv+Pf) for 0.05) between mosquito abundance and rainfall. Correlations between malaria incidence by parasite species and mosquito abundance were not significant (P > 0.05). Monthly parous rates were similar for An. marajoara and An. darlingi throughout the year, with two peaks that coincided with the dry-rainy transition period and the period of less rain. Peaks in the incidence of malaria cases were observed 1 month after major peaks in biting rates of parous anophelines. Anopheles darlingi engages in biting activity throughout the night, with two minor peaks at 23.00-00.00 hours and 03.00-04.00 hours. Anopheles marajoara has a different pattern, with a biting peak at 19.00-21.00 hours and 76.6% of biting occurring before midnight. Although both vectors bite indoors and outdoors, they showed a highly significant (P < 0.01) degree of exophagic behaviour. The present study constitutes the first effort to characterize the

  17. Trans-acting GC-rich non-coding RNA at var expression site modulates gene counting in malaria parasite.

    Guizetti, Julien; Barcons-Simon, Anna; Scherf, Artur

    2016-11-16

    Monoallelic expression of the var multigene family enables immune evasion of the malaria parasite Plasmodium falciparum in its human host. At a given time only a single member of the 60-member var gene family is expressed at a discrete perinuclear region called the 'var expression site'. However, the mechanism of var gene counting remains ill-defined. We hypothesize that activation factors associating specifically with the expression site play a key role in this process. Here, we investigate the role of a GC-rich non-coding RNA (ncRNA) gene family composed of 15 highly homologous members. GC-rich genes are positioned adjacent to var genes in chromosome-central gene clusters but are absent near subtelomeric var genes. Fluorescence in situ hybridization demonstrates that GC-rich ncRNA localizes to the perinuclear expression site of central and subtelomeric var genes in trans. Importantly, overexpression of distinct GC-rich ncRNA members disrupts the gene counting process at the single cell level and results in activation of a specific subset of var genes in distinct clones. We identify the first trans-acting factor targeted to the elusive perinuclear var expression site and open up new avenues to investigate ncRNA function in antigenic variation of malaria and other protozoan pathogens. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system

    Molina-Cruz, A.; Garver, L.S.; Alabaster, A.; Bangiolo, L.; Haile, A.; Winikor, J.; Ortega, C.; Schaijk, B.C.L. van; Sauerwein, R.W.; Taylor-Salmon, E.; Barillas-Mury, C.

    2013-01-01

    Plasmodium falciparum transmission by Anopheles gambiae mosquitoes is remarkably efficient, resulting in a very high prevalence of human malaria infection in sub-Saharan Africa. A combination of genetic mapping, linkage group selection, and functional genomics was used to identify Pfs47 as a P.

  19. Host social organization and mating system shape parasite transmission opportunities in three European bat species.

    van Schaik, J; Kerth, G

    2017-02-01

    For non-mobile parasites living on social hosts, infection dynamics are strongly influenced by host life history and social system. We explore the impact of host social systems on parasite population dynamics by comparing the infection intensity and transmission opportunities of three mite species of the genus Spinturnix across their three European bat hosts (Myotis daubentonii, Myotis myotis, Myotis nattereri) during the bats' autumn mating season. Mites mainly reproduce in host maternity colonies in summer, but as these colonies are closed, opportunities for inter-colony transmission are limited to host interactions during the autumn mating season. The three investigated hosts differ considerably in their social system, most notably in maternity colony size, mating system, and degree of male summer aggregation. We observed marked differences in parasite infection during the autumn mating period between the species, closely mirroring the predictions made based on the social systems of the hosts. Increased host aggregation sizes in summer yielded higher overall parasite prevalence and intensity, both in male and female hosts. Moreover, parasite levels in male hosts differentially increased throughout the autumn mating season in concordance with the degree of contact with female hosts afforded by the different mating systems of the hosts. Critically, the observed host-specific differences have important consequences for parasite population structure and will thus affect the coevolutionary dynamics between the interacting species. Therefore, in order to accurately characterize host-parasite dynamics in hosts with complex social systems, a holistic approach that investigates parasite infection and transmission across all periods is warranted.

  20. The functional domain of GCS1-based gamete fusion resides in the amino terminus in plant and parasite species.

    Toshiyuki Mori

    Full Text Available Fertilization is one of the most important processes in all organisms utilizing sexual reproduction. In a previous study, we succeeded in identifying a novel male gametic transmembrane protein GCS1 (GENERATIVE CELL SPECIFIC 1, also called HAP2 (HAPLESS 2 in the male-sterile Arabidopsis thaliana mutants, as a factor critical to gamete fusion in flowering plants. Interestingly, GCS1 is highly conserved among various eukaryotes covering plants, protists and invertebrates. Of these organisms, Chlamydomonas (green alga and Plasmodium (malaria parasite GCS1s similarly show male gametic expression and gamete fusion function. Since it is generally believed that protein factors controlling gamete fusion have rapidly evolved and different organisms utilize species-specific gamete fusion factors, GCS1 may be an ancient fertilization factor derived from the common ancestor of those organisms above. And therefore, its molecular structure and function are important to understanding the common molecular mechanics of eukaryotic fertilization. In this study, we tried to detect the central functional domain(s of GCS1, using complementation assay of Arabidopsis GCS1 mutant lines expressing modified GCS1. As a result, the positively-charged C-terminal sequence of this protein is dispensable for gamete fusion, while the highly conserved N-terminal domain is critical to GCS1 function. In addition, in vitro fertilization assay of Plasmodium berghei (mouse malaria parasite knock-in lines expressing partly truncated GCS1 showed similar results. Those findings above indicate that the extracellular N-terminus alone is sufficient for GCS1-based gamete fusion.

  1. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts.

    Thomas S Churcher

    2017-01-01

    Full Text Available Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP, and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials.

  2. Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

    Hunt, Paul

    2010-09-16

    Background: Classical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum.Results: A lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (IlluminaSolexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme.Conclusions: This integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations. 2010 Hunt et al; licensee BioMed Central Ltd.

  3. Impact on malaria parasite multiplication rates in infected volunteers of the protein-in-adjuvant vaccine AMA1-C1/Alhydrogel+CPG 7909.

    Christopher J A Duncan

    Full Text Available Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria.In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes.A significant correlation was observed between parasite multiplication rate in 48 hours (PMR and both vaccine-induced growth-inhibitory activity (Pearson r = -0.93 [95% CI: -1.0, -0.27] P = 0.02 and AMA1 antibody titres in the vaccine group (Pearson r = -0.93 [95% CI: -0.99, -0.25] P = 0.02. However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70. Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5-9], control group median 9 days [range 7-9].Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers.ClinicalTrials.gov [NCT00984763].

  4. Climate driven range divergence among host species affects range-wide patterns of parasitism

    Richard E. Feldman

    2017-01-01

    Full Text Available Species interactions like parasitism influence the outcome of climate-driven shifts in species ranges. For some host species, parasitism can only occur in that part of its range that overlaps with a second host species. Thus, predicting future parasitism may depend on how the ranges of the two hosts change in relation to each other. In this study, we tested whether the climate driven species range shift of Odocoileus virginianus (white-tailed deer accounts for predicted changes in parasitism of two other species from the family Cervidae, Alces alces (moose and Rangifer tarandus (caribou, in North America. We used MaxEnt models to predict the recent (2000 and future (2050 ranges (probabilities of occurrence of the cervids and a parasite Parelaphostrongylus tenuis (brainworm taking into account range shifts of the parasite’s intermediate gastropod hosts. Our models predicted that range overlap between A. alces/R. tarandus and P. tenuis will decrease between 2000 and 2050, an outcome that reflects decreased overlap between A. alces/R. tarandus and O. virginianus and not the parasites, themselves. Geographically, our models predicted increasing potential occurrence of P. tenuis where A. alces/R. tarandus are likely to decline, but minimal spatial overlap where A. alces/R. tarandus are likely to increase. Thus, parasitism may exacerbate climate-mediated southern contraction of A. alces and R. tarandus ranges but will have limited influence on northward range expansion. Our results suggest that the spatial dynamics of one host species may be the driving force behind future rates of parasitism for another host species.

  5. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    The diversity of fish parasite life history strategies makes these species sensitive bioindicators of aquatic ecosystem health. While monoxenous (single-host) species may persist in highly perturbed, extreme environments, this is not necessarily true for heteroxenous (multiple-host) species. As many parasites possess complex life cycles and are transmitted through a chain of host species, their dependency on the latter to complete their life cycles renders them sensitive to perturbed environments. In the present study, parasite communities of grey mullet Liza aurata and Liza ramada (Mugilidae) were investigated at two Mediterranean coastal sites in northern Israel: the highly polluted Kishon Harbor (KH) and the relatively unspoiled reference site, Ma'agan Michael (MM). Both are estuarine sites in which grey mullet are one of the most common fish species. The results indicate that fish at the polluted site had significantly less trematode metacercariae than fish at the reference site. Heteroxenous gut helminths were completely absent at the polluted sampling site. Consequently, KH fish displayed lower mean parasite species richness. At the same time, KH fish mean monoxenous parasite richness was higher, although the prevalence of different monoxenous taxa was variable. Copepods had an increased prevalence while monogenean prevalence was significantly reduced at the polluted site. This variability may be attributed to the differential susceptibility of the parasites to the toxicity of different pollutants, their concentration, the exposure time and possible synergistic effects. In this study, we used the cumulative species curve model that extrapolates "true" species richness of a given habitat as a function of increasing sample size. We considered the heteroxenous and monoxenous species separately for each site, and comparison of curves yielded significant results. It is proposed to employ this approach, originally developed for estimating the "true" parasite

  6. Structural analysis of malaria-parasite lysyl-tRNA synthetase provides a platform for drug development.

    Khan, Sameena; Garg, Ankur; Camacho, Noelia; Van Rooyen, Jason; Kumar Pole, Anil; Belrhali, Hassan; Ribas de Pouplana, Lluis; Sharma, Vinay; Sharma, Amit

    2013-05-01

    Aminoacyl-tRNA synthetases are essential enzymes that transmit information from the genetic code to proteins in cells and are targets for antipathogen drug development. Elucidation of the crystal structure of cytoplasmic lysyl-tRNA synthetase from the malaria parasite Plasmodium falciparum (PfLysRS) has allowed direct comparison with human LysRS. The authors' data suggest that PfLysRS is dimeric in solution, whereas the human counterpart can also adopt tetrameric forms. It is shown for the first time that PfLysRS is capable of synthesizing the signalling molecule Ap4a (diadenosine tetraphosphate) using ATP as a substrate. The PfLysRS crystal structure is in the apo form, such that binding to ATP will require rotameric changes in four conserved residues. Differences in the active-site regions of parasite and human LysRSs suggest the possibility of exploiting PfLysRS for selective inhibition. These investigations on PfLysRS further validate malarial LysRSs as attractive antimalarial targets and provide new structural space for the development of inhibitors that target pathogen LysRSs selectively.

  7. Prospects and Pitfalls of Pregnancy-Associated Malaria Vaccination Based on the Natural Immune Response to Plasmodium falciparum VAR2CSA-Expressing Parasites

    Elizabeth G. Kane

    2011-01-01

    Full Text Available Pregnancy-associated malaria, a manifestation of severe malaria, is the cause of up to 200,000 infant deaths a year, through the effects of placental insufficiency leading to growth restriction and preterm delivery. Development of a vaccine is one strategy for control. Plasmodium falciparum-infected red blood cells accumulate in the placenta through specific binding of pregnancy-associated parasite variants that express the VAR2CSA antigen to chondroitin sulphate A on the surface of syncytiotrophoblast cells. Parasite accumulation, accompanied by an inflammatory infiltrate, disrupts the cytokine balance of pregnancy with the potential to cause placental damage and compromise foetal growth. Multigravid women develop immunity towards VAR2CSA-expressing parasites in a gravidity-dependent manner which prevents unfavourable pregnancy outcomes. Although current vaccine design, targeting VAR2CSA antigens, has succeeded in inducing antibodies artificially, this candidate may not provide protection during the first trimester and may only protect those women living in areas endemic for malaria. It is concluded that while insufficient information about placental-parasite interactions is presently available to produce an effective vaccine, incremental progress is being made towards achieving this goal.

  8. Malaria

    2011-06-01

    dividing and are far more noticeable than the small amount of clear cyto- plasm surrounding them (Figs 10.6a & 10.6b). Mature schizonts contain 8...edema Same as P. vivax 16 10 • Topics on The paThology of proTozoan and invasive arThropod diseases Figure 10.38 Transmission electron micrograph of...mesangiopathic glo- merulonephropathy caused by quartan malaria, deposition of immune complexes may be demonstrated by electron or immunofluorescence microscopy

  9. Identification and characterization of a liver stage-specific promoter region of the malaria parasite Plasmodium.

    Susanne Helm

    Full Text Available During the blood meal of a Plasmodium-infected mosquito, 10 to 100 parasites are inoculated into the skin and a proportion of these migrate via the bloodstream to the liver where they infect hepatocytes. The Plasmodium liver stage, despite its clinical silence, represents a highly promising target for antimalarial drug and vaccine approaches. Successfully invaded parasites undergo a massive proliferation in hepatocytes, producing thousands of merozoites that are transported into a blood vessel to infect red blood cells. To successfully develop from the liver stage into infective merozoites, a tight regulation of gene expression is needed. Although this is a very interesting aspect in the biology of Plasmodium, little is known about gene regulation in Plasmodium parasites in general and in the liver stage in particular. We have functionally analyzed a novel promoter region of the rodent parasite Plasmodium berghei that is exclusively active during the liver stage of the parasite. To prove stage-specific activity of the promoter, GFP and luciferase reporter assays have been successfully established, allowing both qualitative and accurate quantitative analysis. To further characterize the promoter region, the transcription start site was mapped by rapid amplification of cDNA ends (5'-RACE. Using promoter truncation experiments and site-directed mutagenesis within potential transcription factor binding sites, we suggest that the minimal promoter contains more than one binding site for the recently identified parasite-specific ApiAP2 transcription factors. The identification of a liver stage-specific promoter in P. berghei confirms that the parasite is able to tightly regulate gene expression during its life cycle. The identified promoter region might now be used to study the biology of the Plasmodium liver stage, which has thus far proven problematic on a molecular level. Stage-specific expression of dominant-negative mutant proteins and

  10. Bionomics of Anopheline species and malaria transmission dynamics along an altitudinal transect in Western Cameroon

    Toto Jean-Claude

    2010-05-01

    Full Text Available Abstract Background Highland areas of Africa are mostly malaria hypoendemic, due to climate which is not appropriate for anophelines development and their reproductive fitness. In view of designing a malaria control strategy in Western Cameroon highlands, baseline data on anopheline species bionomics were collected. Methods Longitudinal entomological surveys were conducted in three localities at different altitudinal levels. Mosquitoes were captured when landing on human volunteers and by pyrethrum spray catches. Sampled Anopheles were tested for the presence of Plasmodium circumsporozoite proteins and their blood meal origin with ELISA. Entomological parameters of malaria epidemiology were assessed using Mac Donald's formula. Results Anopheline species diversity and density decreased globally from lowland to highland. The most aggressive species along the altitudinal transect was Anopheles gambiae s.s. of S molecular form, followed in the lowland and on the plateau by An. funestus, but uphill by An. hancocki. An. gambiae and An. ziemanni exhibited similar seasonal biting patterns at the different levels, whereas different features were observed for An. funestus. Only indoor resting species could be captured uphill; it is therefore likely that endophilic behaviour is necessary for anophelines to climb above a certain threshold. Of the ten species collected along the transect, only An. gambiae and An. funestus were responsible for malaria transmission, with entomological inoculation rates (EIR of 90.5, 62.8 and zero infective bites/human/year in the lowland, on the plateau and uphill respectively. The duration of gonotrophic cycle was consistently one day shorter for An. gambiae as compared to An. funestus at equal altitude. Altitudinal climate variations had no effect on the survivorship and the subsequent life expectancy of the adult stage of these malaria vectors, but most probably on aquatic stages. On the contrary increasing altitude

  11. Effect of HIV and malaria parasites co-infection on immune-hematological profiles among patients attending anti-retroviral treatment (ART clinic in Infectious Disease Hospital Kano, Nigeria.

    Feyisayo Ebenezer Jegede

    Full Text Available Human immunodeficiency virus (HIV and malaria co-infection may present worse health outcomes in the tropics. Information on HIV/malaria co-infection effect on immune-hematological profiles is critical for patient care and there is a paucity of such data in Nigeria.To evaluate immune-hematological profiles among HIV infected patients compared to HIV/malaria co-infected for ART management improvement.This was a cross sectional study conducted at Infectious Disease Hospital, Kano. A total of 761 consenting adults attending ART clinic were randomly selected and recruited between June and December 2015. Participants' characteristics and clinical details including two previous CD4 counts were collected. Venous blood sample (4ml was collected in EDTA tube for malaria parasite diagnosis by rapid test and confirmed with microscopy. Hematological profiles were analyzed by Sysmex XP-300 and CD4 count by Cyflow cytometry. Data was analyzed with SPSS 22.0 using Chi-Square test for association between HIV/malaria parasites co-infection with age groups, gender, ART, cotrimoxazole and usage of treated bed nets. Mean hematological profiles by HIV/malaria co-infection and HIV only were compared using independent t-test and mean CD4 count tested by mixed design repeated measures ANOVA. Statistical significant difference at probability of <0.05 was considered for all variables.Of the 761 HIV infected, 64% were females, with a mean age of ± (SD 37.30 (10.4 years. Prevalence of HIV/malaria co-infection was 27.7% with Plasmodium falciparum specie accounting for 99.1%. No statistical significant difference was observed between HIV/malaria co-infection in association to age (p = 0.498 and gender (p = 0.789. A significantly (p = 0.026 higher prevalence (35.2% of co-infection was observed among non-ART patients compared to (26% ART patients. Prevalence of co-infection was significantly lower (20.0% among cotrimoxazole users compared to those not on cotrimoxazole (37

  12. Experimental studies on the ecology and evolution of drug-resistant malaria parasites

    Huijben, Silvie

    2010-01-01

    Drug resistance is a serious problem in health care in general, and in malaria treatment in particular, rendering many of our previously considered ‘wonder drugs’ useless. Recently, large sums of money have been allocated for the continuous development of new drugs to replace the failing ones. We seem to be one step behind the evolution of antimalarial resistance; is it possible to get one step ahead? Are interventions which slow down the evolution and spread of drug-resistant ...

  13. Gammaherpesvirus Co-infection with Malaria Suppresses Anti-parasitic Humoral Immunity.

    Caline G Matar

    2015-05-01

    Full Text Available Immunity to non-cerebral severe malaria is estimated to occur within 1-2 infections in areas of endemic transmission for Plasmodium falciparum. Yet, nearly 20% of infected children die annually as a result of severe malaria. Multiple risk factors are postulated to exacerbate malarial disease, one being co-infections with other pathogens. Children living in Sub-Saharan Africa are seropositive for Epstein Barr Virus (EBV by the age of 6 months. This timing overlaps with the waning of protective maternal antibodies and susceptibility to primary Plasmodium infection. However, the impact of acute EBV infection on the generation of anti-malarial immunity is unknown. Using well established mouse models of infection, we show here that acute, but not latent murine gammaherpesvirus 68 (MHV68 infection suppresses the anti-malarial humoral response to a secondary malaria infection. Importantly, this resulted in the transformation of a non-lethal P. yoelii XNL infection into a lethal one; an outcome that is correlated with a defect in the maintenance of germinal center B cells and T follicular helper (Tfh cells in the spleen. Furthermore, we have identified the MHV68 M2 protein as an important virus encoded protein that can: (i suppress anti-MHV68 humoral responses during acute MHV68 infection; and (ii plays a critical role in the observed suppression of anti-malarial humoral responses in the setting of co-infection. Notably, co-infection with an M2-null mutant MHV68 eliminates lethality of P. yoelii XNL. Collectively, our data demonstrates that an acute gammaherpesvirus infection can negatively impact the development of an anti-malarial immune response. This suggests that acute infection with EBV should be investigated as a risk factor for non-cerebral severe malaria in young children living in areas endemic for Plasmodium transmission.

  14. Cross-species infection trials reveal cryptic parasite varieties and a putative polymorphism shared among host species.

    Luijckx, Pepijn; Duneau, David; Andras, Jason P; Ebert, Dieter

    2014-02-01

    A parasite's host range can have important consequences for ecological and evolutionary processes but can be difficult to infer. Successful infection depends on the outcome of multiple steps and only some steps of the infection process may be critical in determining a parasites host range. To test this hypothesis, we investigated the host range of the bacterium Pasteuria ramosa, a Daphnia parasite, and determined the parasites success in different stages of the infection process. Multiple genotypes of Daphnia pulex, Daphnia longispina and Daphnia magna were tested with four Pasteuria genotypes using infection trials and an assay that determines the ability of the parasite to attach to the hosts esophagus. We find that attachment is not specific to host species but is specific to host genotype. This may suggest that alleles on the locus controlling attachment are shared among different host species that diverged 100 million year. However, in our trials, Pasteuria was never able to reproduce in nonnative host species, suggesting that Pasteuria infecting different host species are different varieties, each with a narrow host range. Our approach highlights the explanatory power of dissecting the steps of the infection process and resolves potentially conflicting reports on parasite host ranges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  15. Parasite species of the endangered Iberian wolf (Canis lupus signatus and a sympatric widespread carnivore

    Ana Figueiredo

    2016-08-01

    Full Text Available Parasites have a profound impact on wildlife population dynamics. However, until some years ago, studies on the occurrence and prevalence of wildlife parasites were neglected comparatively with the studies on humans and domestic animals. In this study, we determined the parasite prevalence of two sympatric wild canids: the endangered Iberian wolf (Canis lupus signatus and the widespread red fox (Vulpes vulpes, in central Portugal. From November 2014 to July 2015, fresh fecal samples from both species were collected monthly in several transects distributed throughout the study area. All samples were submitted to several coprological techniques. In total, 6 helminth parasites (Crenosoma vulpis, Angiostrongylus vasorum, Toxocara canis, Trichuris vulpis, Ancylostomatidae, Toxascaris leonina, and a protozoa (Balantidium coli were identified based on size and morphology. The red fox was infected by seven different parasites while the Iberian wolf was infected by four. All parasites present in wolf were also present in the red fox. C. vulpis had the higher prevalence in red fox, while Ancylostomatidae were the most prevalent parasites in wolf. To our knowledge, this is the first study in this isolated subpopulation of the Iberian wolf. Our results show that both carnivores carry parasites that are of concern as they are pathogenic to humans and other wild and domestic animals. We suggest that surveillance programs must also include monitoring protocols of wildlife; particularly endangered species.

  16. Parasite prevalence in Worthen’s Sparrow (Spizella wortheni: Mexican endemic and endangered species

    Ricardo Canales-del-Castillo

    2017-10-01

    Full Text Available The Worthen’s sparrow is an endemic bird of the Mexican Plateau that due to its limited distribution and population size is considered to be endangered, both nationally and globally. In general, species at risk have been, at least historically, under population size and genetic diversity reductions, which are factors that can act together to increase infections risk and susceptibility. Therefore, with the purpose to determine such propensity in this species, we analyzed the intestinal parasitic infection through fecal samples from 11 individuals, and hemoparasites, hematocrit and differential leukocyte quantification from one sample. Results indicated that 91% of the samples had one parasite taxon, with genus Cryptosporidium showing the highest prevalence (64%, followed by Eimeria (55%, and Ascaridia (9%. However, mean values of oocysts/eggs per gram indicated a low parasitic infection. We found no blood parasites, and the white blood cell counts were among reference values for other sparrow species.

  17. Dual stage synthesis and crucial role of cytoadherence-linked asexual gene 9 in the surface expression of malaria parasite var proteins

    Goel, Suchi; Valiyaveettil, Manojkumar; Achur, Rajeshwara N

    2010-01-01

    adherence. However, how CLAG9 influences this process remains unknown. In this study, we show that CLAG9 interacts with VAR2CSA, a PfEMP1 that mediates IRBC adherence to chondroitin 4-sulfate in the placenta. Importantly, our results show that the adherent parasites synthesize CLAG9 at two stages--the early......Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family members mediate the adherence of parasite-infected red blood cells (IRBCs) to various host receptors. A previous study has shown that the parasite protein, cytoadherence-linked asexual gene 9 (CLAG9), is also essential for IRBC...... within the parasite. Based on these findings, we propose that CLAG9 plays a critical role in the trafficking of PfEMP1s onto the IRBC surface. These results have important implications for the development of therapeutics for cerebral, placental, and other cytoadherence-associated malaria illnesses....

  18. Effects of intra- and interpatch host density on egg parasitism by three species of Trichogramma.

    Grieshop, Matthew J; Flinn, Paul W; Nechols, James R

    2010-01-01

    Host-foraging responses to different intra- and interpatch densities were used to assess three Trichogramma spp. (Hymenoptera: Trichogrammatidae) Trichogramma deion Pinto and Oatman, T. ostriniae Pang and Chen, and T. pretiosum Riley - as potential biological control agents for the Indian meal moth, Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Single naïve females were allowed 6 h to forage in Plexiglas arenas with four different spatial arrangements of host eggs, nine single-egg patches), nine four-egg patches, 36 single-egg patches, and 36 four-egg patches. No significant differences were found among species in the number of patches parasitized. As expected, all three species parasitized the most eggs in the 36 four-egg patch treatment and the least in the nine single-egg patch treatment. T. deion parasitized significantly more eggs than T. pretiosum on the nine four-egg patches. T. ostriniae parasitized significantly more patches when intrapatch density was greater, regardless of interpatch density. In contrast, T. deion only parasitized more patches at the greater intrapatch density when the interpatch density was low. Patch density had no effect on T. pretiosum. The spatial pattern of parasitism was more aggregated for T. deion and T. ostriniae in the 36 four-egg patches treatment compared to the 36 single-egg patches treatment. Therefore, intrapatch density was more important than interpatch density for T. ostriniae, and potentially for T. deion, but not for T. pretiosum. T. deion may be the best candidate for augmentative biological control because it parasitized either slightly or significantly more eggs than the other two species in all four treatments. Furthermore, the pattern of parasitism by T. deion in the 36 four-egg patches treatment was the most aggregated among the three species, suggesting a more thorough searching pattern. In contrast, T. pretiosum had the least aggregated pattern of parasitism and therefore may have used a more

  19. COMPARISON OF A GENUS-SPECIFIC CONVENTIONAL PCR AND A SPECIES-SPECIFIC NESTED-PCR FOR MALARIA DIAGNOSIS USING FTA COLLECTED SAMPLES FROM KINGDOM OF SAUDI ARABIA.

    Al-Harthi, Saeed A

    2015-12-01

    Molecular tools are increasingly accepted as the most sensitive and reliable techniques for malaria diagnosis and epidemiological surveys. Also, collection of finger prick blood spots onto filter papers is the most simple and affordable method for samples preservation and posterior molecular analysis, especially in rural endemic regions where malaria remains a major health problem. Two malaria molecular diagnostic tests, a Plasmodium genus-specific conventional PCR and a Plasmodium species-specific Nested PCR, were evaluated using DNA templates prepared from Whatman-FTA cards' dry blood spots using both, Methanol-fixation/Heat-extraction and FTA commercial purification kit. A total of 121 blood samples were collected from six Saudi south-western endemic districts both, as thick and thin films for routine microscopic screening and onto FTA cards for molecular studies. Out of the 121 samples, 75 were P. falciparum positive by at least one technique. No other species of Plasmodium were detected. P. falciparum parasites were identified in 69/75 (92%) samples by microscopic screening in health care centers. P. genus-specific PCR was able to amplify P. falciparum DNA in 41/75 (55%) and 59/75 (79%) samples using Methanol-fixation/Heat-extraction and FTA purification kit, respectively. P. species-specific Nested PCR revealed 68/75 (91%) and 75/75 (100%) positive samples using DNA templates were isolated by Methanol-fixation/Heat- extraction and FTA purification methods, respectively. The species-specific Nested PCR applied to Whatman-FTA preserved and processed blood samples represents the best alternative to classical microscopy for malaria diagnosis, particularly in epidemiological screening.

  20. Protozoan parasites of four species of wild anurans from a local zoo in Malaysia.

    Mohammad, K N; Badrul, M M; Mohamad, N; Zainal-Abidin, A H

    2013-12-01

    The parasitic protozoan fauna in sixty-six anurans comprising of Duttaphrynus melanostictus, Phrynoidis juxtaspera, Hylarana erythraea and Polypedates leucomystax collected from Zoo Negara Malaysia was investigated. The distribution and prevalence rate of parasitic species in the digestive tract and blood were examined. Seven species of intestinal protozoa (Opalina ranarum, Cepedea dimidiata, Nycthetorus cordiformis, Entamoeba ranarum, Iodamoeba butschlii, Endamoeba blattae, and Tritrichomonas sp.) and two species of blood protozoa (Lankesterella sp. and Trypanosoma sp.) were recorded. Opalina ranarum was the most common protozoan found in the rectum and intestine (prevalence rate: 34.8%) infecting all host species, with P. juxtaspera heavily infected with the parasite, whereas Tritrichomonas sp. was the least prevalent intestinal species infecting only D. melanostictus. Both Lankesterella sp. and Trypanosoma sp. were found in the blood of H. erythraea.

  1. Estimation of the species richness of fish parasite fauna: an ecological approach

    Ieshko Evgeny Pavlovich

    2012-12-01

    Full Text Available We studied the biological diversity of the parasite fauna in pike from four habitats found in northern lakes of Karelia. The curves of the expected species richness versus sampling effort (the number of examined specimens dependency were plotted. A universal approach to the description of the new species replenishment dynamics is proposed – including finding (through combinatorial analysis the median value between the fastest and the slowest paths of the species richness growth followed by approximation using logistic function . Our analysis showed that the leading ecological factors controlling the formation of the parasite species richness in a specific waterbody are the richness of infracommunities and the age composition of the host sample. The sample of 15 host specimens contains at least 80% of all species in the parasite community.

  2. Discussion to several tapeworm species from the families Hymenolepididae, Anoplocephalidae and Davaineidae parasitizing rodents and man

    František Tenora

    2004-01-01

    Full Text Available With the more recent knowledge, the hypothesis by Joyeux and Baer (1929 is consulted: “... most of rarer species of tapeworms occurring in man are probably parasites of other mammals, specially of Rodentia .....“. In connection with that, the host specificity in several species from the families Hymenolepididae, Anoplocephalidae and Davaineidae is discussed. So far parasites of rodents are concerned, they are the species Rodentolepis straminea, R. fraterna, Hymenolepis diminuta, H. pseudodiminuta, H. hibernia and Inermicapsifer arvicanthidis. So far parasites of man are concerned, they are the species Rodentolepis nana, Hymenolepis flavopunctata and Inermicapsifer madagascariensis. Attention is drawn also to discrepancies in the opinions published on the views of hosts’ specificity or of zoogeographical distribution of several species from the family Davaineidae.

  3. The ten-thousand year fever: rethinking human and wild primate malarias

    Cormier, Loretta A

    2011-01-01

    ... relationships between culture and environment that shape the trajectory of a parasite. She argues against the entrenched distinction between human and non-human malarias, using ethnoprimatology to develop a new understanding of cross-species exchange...

  4. Ecological multiplex interactions determine the role of species for parasite spread amplification.

    Stella, Massimo; Selakovic, Sanja; Antonioni, Alberto; Andreazzi, Cecilia

    2018-04-23

    Despite their potential interplay, multiple routes of many disease transmissions are often investigated separately. As an unifying framework for understanding parasite spread through interdependent transmission paths, we present the 'ecomultiplex' model, where the multiple transmission paths among a diverse community of interacting hosts are represented as a spatially explicit multiplex network. We adopt this framework for designing and testing potential control strategies for T. cruzi spread in two empirical host communities. We show that the ecomultiplex model is an efficient and low data-demanding method to identify which species enhances parasite spread and should thus be a target for control strategies. We also find that the interplay between predator-prey and host-parasite interactions leads to a phenomenon of parasite amplification, in which top predators facilitate T. cruzi spread, offering a mechanistic interpretation of previous empirical findings. Our approach can provide novel insights in understanding and controlling parasite spreading in real-world complex systems. © 2018, Stella et al.

  5. Exploring the diversity and distribution of neotropical avian malaria parasites--a molecular survey from Southeast Brazil.

    Gustavo A Lacorte

    Full Text Available Southeast Brazil is a neotropical region composed of a mosaic of different tropical habitats and mountain chains, which allowed for the formation of bird-rich communities with distinct ecological niches. Although this region has the potential to harbor a remarkable variety of avian parasites, there is a lack of information about the diversity of malarial parasites. We used molecular approaches to characterize the lineage diversity of Plasmodium and Haemoproteus in bird communities from three different habitats in southeast Brazil based on the prevalence, richness and composition of lineages. We observed an overall prevalence of 35.3%, with a local prevalence ranging from 17.2% to 54.8%. Moreover, no significant association between prevalence and habitat type could be verified (p>0.05. We identified 89 Plasmodium and 22 Haemoproteus lineages, with 86% of them described for the first time here, including an unusual infection of a non-columbiform host by a Haemoproteus (Haemoproteus parasite. The composition analyses of the parasite communities showed that the lineage composition from Brazilian savannah and tropical dry forest was similar, but it was different from the lineage composition of Atlantic rainforest, reflecting the greater likeness of the former habitats with respect to seasonality and forest density. No significant effects of habitat type on lineage richness were observed based on GLM analyses. We also found that sites whose samples had a greater diversity of bird species showed a greater diversity of parasite lineages, providing evidence that areas with high bird richness also have high parasite richness. Our findings point to the importance of the neotropical region (southeast Brazil as a major reservoir of new haemosporidian lineages.

  6. INTESTINAL PARASITES AND MALARIA IN MUSI BANYU ASIN AND OGAN KOMERING ULU REGENCIES, SOUTH SUMATRA

    W. Patrick Carney

    2012-09-01

    Full Text Available Pada bulan Mei 1973 diadakan survey tinja dan darah di lima desa di Sumatra Selatan untuk mengetahui aspek-aspek penyakit parasit pada penduduk asli dan para transmigran yang datang antara tahun 1935 dan 1955. Desa-desa Tanjung Kerang, Simpang Langkap dan Biuku di Kabupaten Musi Banyu Asin yang terletak di sebelah barat laut kota Palembang merupakan daerah hutan-ladang-huma dan perkebunan karet rakyat dikelilingi oleh rawa-rawa, yang di diami oleh penduduk asli. Desa-desa Sidomulyo dan Tanjung Raya di Kabupaten Ogan Komering Ulu, terletak di sebelah tenggara' kota Palembang, adalah tempat transmigrasi yang merupakan daerah persawahan." Dari 358 orang yang diperiksa tinjanya yang terdiri dari 193 laki-laki dan 165 wanita, di keiemukan 97 per cent terinfeksi oleh sedikitnya satu macam parasit, 87 per cent oleh 2 macam parasit atau lebih dan 55 per cent oleh 3 macam parasit atau lebih. Telur-telur cacing yang di temukan antara lain ialah: Trichuris trichiura. (83 per cent, Ascaris lumbricoides (78 per cent dan cacing tambang (59 per cent. Enterobius vermicularis (1 per cent dan Strongyloides stercoralis (0,3 per cent jarang di jumpai. Entamoeba coli (29 per cent merupakan parasit protozoa yang biasa di temukan. Jumlah rata-rata protozoa yang ada dalam usus ialah: Entamoeba histofytica (4 per cent, Entamoeba hartmanni (1 per cent, Endolimax nona (5 per cent, Iodamoeba butschlii (5 per cent, Giardia lamblia (3 per cent dan Chilomastbc mesnili (4 per cent. Distribusi dari parasit usus hampir sama di antara golongan laki-laki dan wanita; meskipun tanah memegang peranan yang sama dalam pemindahan cacing-cacing, tetapi A. lumbricoides dan T. trichiura lebih banyak di jumpai pada wanita, sedangkan cacing tambang lebih banyak pada laki-laki. Prevalensi parasit usus menurut golongan umur adalah sebagai berikut: A. lumbricoides lebih banyak pada golongan muda, T. trichiura merata pada semua golongan umur, tetapi yang terbanyak pada golongan umur antara 30

  7. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells.

    Draheim, Marion; Wlodarczyk, Myriam F; Crozat, Karine; Saliou, Jean-Michel; Alayi, Tchilabalo Dilezitoko; Tomavo, Stanislas; Hassan, Ali; Salvioni, Anna; Demarta-Gatsi, Claudia; Sidney, John; Sette, Alessandro; Dalod, Marc; Berry, Antoine; Silvie, Olivier; Blanchard, Nicolas

    2017-11-01

    In malaria, CD4 Th1 and T follicular helper (T FH ) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α + dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10 + CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  8. Plasmodium chabaudi chabaudi malaria parasites can develop stable resistance to atovaquone with a mutation in the cytochrome b gene

    Alves Ana C

    2010-05-01

    Full Text Available Abstract Background Plasmodium falciparum, has developed resistance to many of the drugs in use. The recommended treatment policy is now to use drug combinations. The atovaquone-proguanil (AP drug combination, is one of the treatment and prophylaxis options. Atovaquone (ATQ exerts its action by inhibiting plasmodial mitochondria electron transport at the level of the cytochrome bc1 complex. Plasmodium falciparum in vitro resistance to ATQ has been associated with specific point mutations in the region spanning codons 271-284 of the cytochrome b gene. ATQ -resistant Plasmodium yoelii and Plasmodium berghei lines have been obtained and resistant lines have amino acid mutations in their CYT b protein sequences. Plasmodium chabaudi model for studying drug-responses and drug-resistance selection is a very useful rodent malaria model but no ATQ resistant parasites have been reported so far. The aim of this study was to determine the ATQ sensitivity of the P. chabaudi clones, to select a resistant parasite line and to perform genotypic characterization of the cytb gene of these clones. Methods To select for ATQ resistance, Plasmodium. chabaudi chabaudi clones were exposed to gradually increasing concentrations of ATQ during several consecutive passages in mice. Plasmodium chabaudi cytb gene was amplified and sequenced. Results ATQ resistance was selected from the clone AS-3CQ. In order to confirm whether an heritable genetic mutation underlies the response of AS-ATQ to ATQ, the stability of the drug resistance phenotype in this clone was evaluated by measuring drug responses after (i multiple blood passages in the absence of the drug, (ii freeze/thawing of parasites in liquid nitrogen and (iii transmission through a mosquito host, Anopheles stephensi. ATQ resistance phenotype of the drug-selected parasite clone kept unaltered. Therefore, ATQ resistance in clone AS-ATQ is genetically encoded. The Minimum Curative Dose of AS-ATQ showed a six

  9. Discrimination of the Social Parasite Ectatomma parasiticum by Its Host Sibling Species (E. tuberculatum

    Renée Fénéron

    2013-01-01

    Full Text Available Among social parasites, workerless inquilines entirely depend on their host for survival and reproduction. They are usually close phylogenetic relatives of their host, which raises important questions about their evolutionary history and mechanisms of speciation at play. Here we present new findings on Ectatomma parasiticum, the only inquiline ant described in the Ectatomminae subfamily. Field data confirmed its rarity and local distribution in a facultative polygynous population of E. tuberculatum in Mexico. Genetic analyses demonstrated that the parasite is a sibling species of its host, from which it may have diverged recently. Polygyny is suggested to have favored the evolution of social parasite by sympatric speciation. Nevertheless, host workers from this population were able to discriminate parasites from their conspecifics. They treated the parasitic queens either as individuals of interest or as intruders, depending on their colonial origin, probably because of the peculiar chemical profile of the parasites and/or their reproductive status. We suggest that E. parasiticum could have conserved from its host sibling species the queen-specific substances that produce attracting and settling effect on workers, which, in return, would increase the probability to be detected. This hypothesis could explain the imperfect social integration of the parasite into host colonies.

  10. A cyclic GMP signalling module that regulates gliding motility in a malaria parasite.

    Robert W Moon

    2009-09-01

    Full Text Available The ookinete is a motile stage in the malaria life cycle which forms in the mosquito blood meal from the zygote. Ookinetes use an acto-myosin motor to glide towards and penetrate the midgut wall to establish infection in the vector. The regulation of gliding motility is poorly understood. Through genetic interaction studies we here describe a signalling module that identifies guanosine 3', 5'-cyclic monophosphate (cGMP as an important second messenger regulating ookinete differentiation and motility. In ookinetes lacking the cyclic nucleotide degrading phosphodiesterase delta (PDEdelta, unregulated signalling through cGMP results in rounding up of the normally banana-shaped cells. This phenotype is suppressed in a double mutant additionally lacking guanylyl cyclase beta (GCbeta, showing that in ookinetes GCbeta is an important source for cGMP, and that PDEdelta is the relevant cGMP degrading enzyme. Inhibition of the cGMP-dependent protein kinase, PKG, blocks gliding, whereas enhanced signalling through cGMP restores normal gliding speed in a mutant lacking calcium dependent protein kinase 3, suggesting at least a partial overlap between calcium and cGMP dependent pathways. These data demonstrate an important function for signalling through cGMP, and most likely PKG, in dynamically regulating ookinete gliding during the transmission of malaria to the mosquito.

  11. Robust inducible Cre recombinase activity in the human malaria parasite Plasmodium falciparum enables efficient gene deletion within a single asexual erythrocytic growth cycle.

    Collins, Christine R; Das, Sujaan; Wong, Eleanor H; Andenmatten, Nicole; Stallmach, Robert; Hackett, Fiona; Herman, Jean-Paul; Müller, Sylke; Meissner, Markus; Blackman, Michael J

    2013-05-01

    Asexual blood stages of the malaria parasite, which cause all the pathology associated with malaria, can readily be genetically modified by homologous recombination, enabling the functional study of parasite genes that are not essential in this part of the life cycle. However, no widely applicable method for conditional mutagenesis of essential asexual blood-stage malarial genes is available, hindering their functional analysis. We report the application of the DiCre conditional recombinase system to Plasmodium falciparum, the causative agent of the most dangerous form of malaria. We show that DiCre can be used to obtain rapid, highly regulated site-specific recombination in P. falciparum, capable of excising loxP-flanked sequences from a genomic locus with close to 100% efficiency within the time-span of a single erythrocytic growth cycle. DiCre-mediated deletion of the SERA5 3' UTR failed to reduce expression of the gene due to the existence of alternative cryptic polyadenylation sites within the modified locus. However, we successfully used the system to recycle the most widely used drug resistance marker for P. falciparum, human dihydrofolate reductase, in the process producing constitutively DiCre-expressing P. falciparum clones that have broad utility for the functional analysis of essential asexual blood-stage parasite genes. © 2013 John Wiley & Sons Ltd.

  12. Protein kinase a dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite.

    Kerstin Leykauf

    2010-06-01

    Full Text Available Apicomplexan parasites are obligate intracellular parasites that infect a variety of hosts, causing significant diseases in livestock and humans. The invasive forms of the parasites invade their host cells by gliding motility, an active process driven by parasite adhesion proteins and molecular motors. A crucial point during host cell invasion is the formation of a ring-shaped area of intimate contact between the parasite and the host known as a tight junction. As the invasive zoite propels itself into the host-cell, the junction moves down the length of the parasite. This process must be tightly regulated and signalling is likely to play a role in this event. One crucial protein for tight-junction formation is the apical membrane antigen 1 (AMA1. Here we have investigated the phosphorylation status of this key player in the invasion process in the human malaria parasite Plasmodium falciparum. We show that the cytoplasmic tail of P. falciparum AMA1 is phosphorylated at serine 610. We provide evidence that the enzyme responsible for serine 610 phosphorylation is the cAMP regulated protein kinase A (PfPKA. Importantly, mutation of AMA1 serine 610 to alanine abrogates phosphorylation of AMA1 in vivo and dramatically impedes invasion. In addition to shedding unexpected new light on AMA1 function, this work represents the first time PKA has been implicated in merozoite invasion.

  13. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants.

    Linjian Jiang

    Full Text Available Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.

  14. Profiling mRNAs of two Cuscuta species reveals possible candidate transcripts shared by parasitic plants.

    Jiang, Linjian; Wijeratne, Asela J; Wijeratne, Saranga; Fraga, Martina; Meulia, Tea; Doohan, Doug; Li, Zhaohu; Qu, Feng

    2013-01-01

    Dodders are among the most important parasitic plants that cause serious yield losses in crop plants. In this report, we sought to unveil the genetic basis of dodder parasitism by profiling the trancriptomes of Cuscuta pentagona and C. suaveolens, two of the most common dodder species using a next-generation RNA sequencing platform. De novo assembly of the sequence reads resulted in more than 46,000 isotigs and contigs (collectively referred to as expressed sequence tags or ESTs) for each species, with more than half of them predicted to encode proteins that share significant sequence similarities with known proteins of non-parasitic plants. Comparing our datasets with transcriptomes of 12 other fully sequenced plant species confirmed a close evolutionary relationship between dodder and tomato. Using a rigorous set of filtering parameters, we were able to identify seven pairs of ESTs that appear to be shared exclusively by parasitic plants, thus providing targets for tailored management approaches. In addition, we also discovered ESTs with sequences similarities to known plant viruses, including cryptic viruses, in the dodder sequence assemblies. Together this study represents the first comprehensive transcriptome profiling of parasitic plants in the Cuscuta genus, and is expected to contribute to our understanding of the molecular mechanisms of parasitic plant-host plant interactions.

  15. Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe.

    Susanne H Sheehy

    Full Text Available Controlled human malaria infection (CHMI studies have become a routine tool to evaluate efficacy of candidate anti-malarial drugs and vaccines. To date, CHMI trials have mostly been conducted using the bite of infected mosquitoes, restricting the number of trial sites that can perform CHMI studies. Aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge provide a potentially more accurate, reproducible and practical alternative, allowing a known number of sporozoites to be administered simply by injection.We sought to assess the infectivity of PfSPZ Challenge administered in different dosing regimens to malaria-naive healthy adults (n = 18. Six participants received 2,500 sporozoites intradermally (ID, six received 2,500 sporozoites intramuscularly (IM and six received 25,000 sporozoites IM.Five out of six participants receiving 2,500 sporozoites ID, 3/6 participants receiving 2,500 sporozoites IM and 6/6 participants receiving 25,000 sporozoites IM were successfully infected. The median time to diagnosis was 13.2, 17.8 and 12.7 days for 2,500 sporozoites ID, 2,500 sporozoites IM and 25,000 sporozoites IM respectively (Kaplan Meier method; p = 0.024 log rank test.2,500 sporozoites ID and 25,000 sporozoites IM have similar infectivities. Given the dose response in infectivity seen with IM administration, further work should evaluate increasing doses of PfSPZ Challenge IM to identify a dosing regimen that reliably infects 100% of participants.ClinicalTrials.gov NCT01465048.

  16. Parasites of the raccoon dog – an invading species

    Al-Sabi, Mohammad Nafi Solaiman; Hammer, A. S.; Chriél, Mariann

    2012-01-01

    Invasive species have a marked negative influence on the biodiversity of ecosystems and may contribute to the transmission of diseases. During the 1920s until 1950s, thousands of Raccoon dogs were deliberately introduces to the eastern European countries from the Far East, in order to enrich...... the wild with this new valuable fur animal. The Raccoon dog is considered the most successful invading mammal in Europe, and in the last 20 years, it has invaded the western part of Denmark, namely Jutland. The Danish ministry of Environment reacted to the new threat by deciding to eradicate this species...... species were isolated from both hosts; however, foxes harboured more helminth species per infected animal (average 3,1 helminth species/fox) than raccoon dogs (average 1,7 helminth species/raccoon dog). Prevalences of nematodes (Uncinaria stenocephala, Toxocara canis and Toxascaris leonine) and cestodes...

  17. MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors

    Jayaseelan Murugaiyan

    2017-05-01

    Full Text Available Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors.

  18. MALDI-TOF MS Profiling-Advances in Species Identification of Pests, Parasites, and Vectors.

    Murugaiyan, Jayaseelan; Roesler, Uwe

    2017-01-01

    Invertebrate pests and parasites of humans, animals, and plants continue to cause serious diseases and remain as a high treat to agricultural productivity and storage. The rapid and accurate species identification of the pests and parasites are needed for understanding epidemiology, monitoring outbreaks, and designing control measures. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling has emerged as a rapid, cost effective, and high throughput technique of microbial species identification in modern diagnostic laboratories. The development of soft ionization techniques and the release of commercial pattern matching software platforms has resulted in the exponential growth of applications in higher organisms including parasitology. The present review discusses the proof-of-principle experiments and various methods of MALDI MS profiling in rapid species identification of both laboratory and field isolates of pests, parasites and vectors.

  19. HIGH-THROUGHPUT IDENTIFICATION OF THE PREDOMINANT MALARIA PARASITE CLONE IN COMPLEX BLOOD STAGE INFECTIONS USING A MULTI-SNP MOLECULAR HAPLOTYPING ASSAY

    COLE-TOBIAN, JENNIFER L.; ZIMMERMAN, PETER A.; KING, CHRISTOPHER L.

    2013-01-01

    Individuals living in malaria endemic areas are often infected with multiple parasite clones. Currently used single nucleotide polymorphism (SNP) genotyping methods for malaria parasites are cumbersome; furthermore, few methods currently exist that can rapidly determine the most abundant clone in these complex infections. Here we describe an oligonucleotide ligation assay (OLA) to distinguish SNPs in the Plasmodium vivax Duffy binding protein gene (Pvdbp) at 14 polymorphic residues simultaneously. Allele abundance is determined by the highest mean fluorescent intensity of each allele. Using mixtures of plasmids encoding known haplotypes of the Pvdbp, single clones of P. vivax parasites from infected Aotus monkeys, and well-defined mixed infections from field samples, we were able to identify the predominant Pvdbp genotype with > 93% accuracy when the dominant clone is twice as abundant as a lesser genotype and > 97% of the time if the ratio was 5:1 or greater. Thus, the OLA can accurately, reproducibly, and rapidly determine the predominant parasite haplotype in complex blood stage infections. PMID:17255222

  20. A Novel ‘Gene Insertion/Marker Out’ (GIMO) Method for Transgene Expression and Gene Complementation in Rodent Malaria Parasites

    Sajid, Mohammed; Chevalley-Maurel, Séverine; Ramesar, Jai; Klop, Onny; Franke-Fayard, Blandine M. D.; Janse, Chris J.; Khan, Shahid M.

    2011-01-01

    Research on the biology of malaria parasites has greatly benefited from the application of reverse genetic technologies, in particular through the analysis of gene deletion mutants and studies on transgenic parasites that express heterologous or mutated proteins. However, transfection in Plasmodium is limited by the paucity of drug-selectable markers that hampers subsequent genetic modification of the same mutant. We report the development of a novel ‘gene insertion/marker out’ (GIMO) method for two rodent malaria parasites, which uses negative selection to rapidly generate transgenic mutants ready for subsequent modifications. We have created reference mother lines for both P. berghei ANKA and P. yoelii 17XNL that serve as recipient parasites for GIMO-transfection. Compared to existing protocols GIMO-transfection greatly simplifies and speeds up the generation of mutants expressing heterologous proteins, free of drug-resistance genes, and requires far fewer laboratory animals. In addition we demonstrate that GIMO-transfection is also a simple and fast method for genetic complementation of mutants with a gene deletion or mutation. The implementation of GIMO-transfection procedures should greatly enhance Plasmodium reverse-genetic research. PMID:22216235

  1. Encapsulation of metalloporphyrins improves their capacity to block the viability of the human malaria parasite Plasmodium falciparum.

    Alves, Eduardo; Iglesias, Bernardo A; Deda, Daiana K; Budu, Alexandre; Matias, Tiago A; Bueno, Vânia B; Maluf, Fernando V; Guido, Rafael V C; Oliva, Glaucius; Catalani, Luiz H; Araki, Koiti; Garcia, Celia R S

    2015-02-01

    Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified. RBCs infected with synchronized P. falciparum incubated for 48 h showed a toxic effect over a micromolar range. Strikingly, the IC50 of encapsulated metalloporphyrins reached nanomolar concentrations, where Zn-PPIX showed the best antimalarial effect, with an IC50=330 nM. This value is an 80-fold increase in the antimalarial activity compared to the antimalarial effect of non-encapsulated Zn-PPIX. These findings reveal that the incubation of P. falciparum infected-RBCs with 20 μM Zn-PPIX reduced the size of hemozoin crystal by 34%, whereas a 28% reduction was noticed with chloroquine, confirming the importance of heme detoxification pathway in drug therapy. In this study, synthetic metalloporphyrins were tested as therapeutics that target Plasmodium falciparum. The IC50 of encapsulated metalloporphyrins was found to be in the nanomolar concentration range, with encapsulated Zn-PPIX showing an 80-fold increase in its antimalarial activity compared to the non-encapsulated form. Copyright © 2015. Published by Elsevier Inc.

  2. Differential water mite parasitism, phenoloxidase activity, and resistance to mites are unrelated across pairs of related damselfly species.

    Julia J Mlynarek

    Full Text Available Related host species often demonstrate differences in prevalence and/or intensity of infection by particular parasite species, as well as different levels of resistance to those parasites. The mechanisms underlying this interspecific variation in parasitism and resistance expression are not well understood. Surprisingly, few researchers have assessed relations between actual levels of parasitism and resistance to parasites seen in nature across multiple host species. The main goal of this study was to determine whether interspecific variation in resistance against ectoparasitic larval water mites either was predictive of interspecific variation in parasitism for ten closely related species of damselflies (grouped into five "species pairs", or was predicted by interspecific variation in a commonly used measure of innate immunity (total Phenoloxidase or potential PO activity. Two of five species pairs had interspecific differences in proportions of individuals resisting larval Arrenurus water mites, only one of five species pairs had species differences in prevalence of larval Arrenurus water mites, and another two of five species pairs showed species differences in mean PO activity. Within the two species pairs where species differed in proportion of individuals resisting mites the species with the higher proportion did not have correspondingly higher PO activity levels. Furthermore, the proportion of individuals resisting mites mirrored prevalence of parasitism in only one species pair. There was no interspecific variation in median intensity of mite infestation within any species pair. We conclude that a species' relative ability to resist particular parasites does not explain interspecific variation in parasitism within species pairs and that neither resistance nor parasitism is reflected by interspecific variation in total PO or potential PO activity.

  3. New records of Microbotryum species parasitizing Caryophyllaceae from Ukraine

    Kyrylo G. Savchenko

    2013-12-01

    Full Text Available Four records of smut fungi belonging to the genus Microbotryum Lév.are reported. Two species were found on new hosts, namely M. dianthorum on Dianthus borbasii and D. pseudoserotinus and M. superbum on D. stenocalyx. Microbotryum lagerhemii on Lychnis viscaria is a new species for Ukraine.

  4. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans.

    Sellers, Andrew J; Ruiz, Gregory M; Leung, Brian; Torchin, Mark E

    2015-01-01

    Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans) has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite abundance was negatively

  5. Regional Variation in Parasite Species Richness and Abundance in the Introduced Range of the Invasive Lionfish, Pterois volitans.

    Andrew J Sellers

    Full Text Available Parasites can play an important role in biological invasions. While introduced species often lose parasites from their native range, they can also accumulate novel parasites in their new range. The accumulation of parasites by introduced species likely varies spatially, and more parasites may shift to new hosts where parasite diversity is high. Considering that parasitism and disease are generally more prevalent at lower latitudes, the accumulation of parasites by introduced hosts may be greater in tropical regions. The Indo-Pacific lionfish (Pterois volitans has become widely distributed across the Western Atlantic. In this study, we compared parasitism across thirteen locations in four regions, spanning seventeen degrees of latitude in the lionfish's introduced range to examine potential spatial variation in parasitism. In addition, as an initial step to explore how indirect effects of parasitism might influence interactions between lionfish and ecologically similar native hosts, we also compared parasitism in lionfish and two co-occurring native fish species, the graysby grouper, Cephalopholis cruentata, and the lizardfish, Synodus intermedius, in the southernmost region, Panama. Our results show that accumulation of native parasites on lionfish varies across broad spatial scales, and that colonization by ectoparasites was highest in Panama, relative to the other study sites. Endoparasite richness and abundance, on the other hand, were highest in Belize where lionfish were infected by twice as many endoparasite species as lionfish in other regions. The prevalence of all but two parasite species infecting lionfish was below 25%, and we did not detect an association between parasite abundance and host condition, suggesting a limited direct effect of parasites on lionfish, even where parasitism was highest. Further, parasite species richness and abundance were significantly higher in both native fishes compared to lionfish, and parasite

  6. Molecular responses of Lotus japonicus to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica.

    Hiraoka, Yukihiro; Ueda, Hiroaki; Sugimoto, Yukihiro

    2009-01-01

    Lotus japonicus genes responsive to parasitism by the compatible species Orobanche aegyptiaca and the incompatible species Striga hermonthica were isolated by using the suppression subtractive hybridization (SSH) strategy. O. aegyptiaca and S. hermonthica parasitism specifically induced the expression of genes involved in jasmonic acid (JA) biosynthesis and phytoalexin biosynthesis, respectively. Nodulation-related genes were almost exclusively found among the Orobanche-induced genes. Temporal gene expression analyses revealed that 19 out of the 48 Orobanche-induced genes and 5 out of the 48 Striga-induced genes were up-regulated at 1 dai. Four genes, including putative trypsin protease inhibitor genes, exhibited systemic up-regulation in the host plant parasitized by O. aegyptiaca. On the other hand, S. hermonthica attachment did not induce systemic gene expression.

  7. Natural antibody responses to Plasmodium falciparum MSP3 and GLURP(R0) antigens are associated with low parasite densities in malaria patients living in the Central Region of Ghana

    Amoah, L. E.; Nuvor, S. V.; Obboh, E. K.

    2017-01-01

    Background: Plasmodium falciparum genetic diversity and multiplicity of infection (MOI) are parasite features that have been suggested to influence the acquisition of protective immunity against malaria. This study sought to assess the relationship between MOI and parasite density (PD) in malaria...... and adults diagnosed with uncomplicated P. falciparum malaria. Microscopy was used to estimate P. falciparum parasite density and polymerase chain reaction (PCR) amplification of the polymorphic regions of msp1 (PF3D7-0930300) and msp2 (PF3D7-0206800) was used for parasite genotyping and MOI determination....... The geometric mean (GM) for MOI determined by both msp1 and msp2 genotyping was 1.3 for the entire population and was generally higher in children than in adults. Seropositivity was estimated at 67 and 63% for GLURP(R0) and MSP3 antibodies, respectively, and antibody titers were negatively correlated...

  8. Asexual populations of the human malaria parasite, Plasmodium falciparum, use a two-step genomic strategy to acquire accurate, beneficial DNA amplifications.

    Jennifer L Guler

    Full Text Available Malaria drug resistance contributes to up to a million annual deaths. Judicious deployment of new antimalarials and vaccines could benefit from an understanding of early molecular events that promote the evolution of parasites. Continuous in vitro challenge of Plasmodium falciparum parasites with a novel dihydroorotate dehydrogenase (DHODH inhibitor reproducibly selected for resistant parasites. Genome-wide analysis of independently-derived resistant clones revealed a two-step strategy to evolutionary success. Some haploid blood-stage parasites first survive antimalarial pressure through fortuitous DNA duplications that always included the DHODH gene. Independently-selected parasites had different sized amplification units but they were always flanked by distant A/T tracks. Higher level amplification and resistance was attained using a second, more efficient and more accurate, mechanism for head-to-tail expansion of the founder unit. This second homology-based process could faithfully tune DNA copy numbers in either direction, always retaining the unique DNA amplification sequence from the original A/T-mediated duplication for that parasite line. Pseudo-polyploidy at relevant genomic loci sets the stage for gaining additional mutations at the locus of interest. Overall, we reveal a population-based genomic strategy for mutagenesis that operates in human stages of P. falciparum to efficiently yield resistance-causing genetic changes at the correct locus in a successful parasite. Importantly, these founding events arise with precision; no other new amplifications are seen in the resistant haploid blood stage parasite. This minimizes the need for meiotic genetic cleansing that can only occur in sexual stage development of the parasite in mosquitoes.

  9. Malaria case clinical profiles and Plasmodium falciparum parasite genetic diversity: a cross sectional survey at two sites of different malaria transmission intensities in Rwanda

    Kateera, Fredrick; Nsobya, Sam L.; Tukwasibwe, Stephen; Mens, Petra F.; Hakizimana, Emmanuel; Grobusch, Martin P.; Mutesa, Leon; Kumar, Nirbhay; van Vugt, Michele

    2016-01-01

    Malaria remains a public health challenge in sub-Saharan Africa with Plasmodium falciparum being the principal cause of malaria disease morbidity and mortality. Plasmodium falciparum virulence is attributed, in part, to its population-level genetic diversity-a characteristic that has yet to be

  10. Introduced species: domestic mammals are more significant transmitters of parasites to native mammals than are feral mammals.

    Landaeta-Aqueveque, Carlos; Henríquez, Analía; Cattan, Pedro E

    2014-03-01

    The study of parasitism related to biological invasion has focused on attributes and impacts of parasites as invaders and the impact of introduced hosts on endemic parasitism. Thus, there is currently no study of the attributes of hosts which influence the invasiveness of parasites. We aimed to determine whether the degree of domestication of introduced mammalian species - feral introduced mammals, livestock or pets, hereafter 'D' - is important in the spillover of introduced parasites. The literature on introduced parasites of mammals in Chile was reviewed. We designed an index for estimating the relevance of the introduced host species to parasite spillover and determined whether the D of introduced mammals predicted this index. A total of 223 introduced parasite species were found. Our results indicate that domestic mammals have a higher number of introduced parasites and spillover parasites, and the index indicates that these mammals, particularly pets, are more relevant introducers than introduced feral mammals. Further analyses indicated that the higher impact is due to higher parasite richness, a longer time since introduction and wider dispersal, as well as how these mammals are maintained. The greater relevance of domestic mammals is important given that they are basically the same species distributed worldwide and can become the main transmitters of parasites to native mammals elsewhere. This finding also underlines the feasibility of management in order to reduce the transmission of parasites to native fauna through anti-parasitic treatment of domestic mammals, animal-ownership education and the prevention of importing new parasite species. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  11. Conditions Promoting Mycorrhizal Parasitism Are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    Friede, Martina; Unger, Stephan; Hellmann, Christine; Beyschlag, Wolfram

    2016-01-01

    Interactions of plants with arbuscular mycorrhizal fungi (AMF) may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD) of a plant and in consequence may play an important role in plant-plant interactions. In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic. Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant control over

  12. Conditions Promoting Mycorrhizal Parasitism are of Minor Importance for Competitive Interactions in Two Differentially Mycotrophic Species

    Martina Friede

    2016-09-01

    Full Text Available Interactions of plants with arbuscular mycorrhizal fungi (AMF may range along a broad continuum from strong mutualism to parasitism, with mycorrhizal benefits received by the plant being determined by climatic and edaphic conditions affecting the balance between carbon costs vs. nutritional benefits. Thus, environmental conditions promoting either parasitism or mutualism can influence the mycorrhizal growth dependency (MGD of a plant and in consequence may play an important role in plant-plant interactions.In a multifactorial field experiment we aimed at disentangling the effects of environmental and edaphic conditions, namely the availability of light, phosphorus and nitrogen, and the implications for competitive interactions between Hieracium pilosella and Corynephorus canescens for the outcome of the AMF symbiosis. Both species were planted in single, intraspecific and interspecific combinations using a target-neighbor approach with six treatments distributed along a gradient simulating conditions for the interaction between plants and AMF ranking from mutualistic to parasitic.Across all treatments we found mycorrhizal association of H. pilosella being consistently mutualistic, while pronounced parasitism was observed in C. canescens, indicating that environmental and edaphic conditions did not markedly affect the cost:benefit ratio of the mycorrhizal symbiosis in both species. Competitive interactions between both species were strongly affected by AMF, with the impact of AMF on competition being modulated by colonization. Biomass in both species was lowest when grown in interspecific competition, with colonization being increased in the less mycotrophic C. canescens, while decreased in the obligate mycotrophic H. pilosella. Although parasitism-promoting conditions negatively affected MGD in C. canescens, these effects were small as compared to growth decreases related to increased colonization levels in this species. Thus, the lack of plant

  13. A synoptic overview of golden jackal parasites reveals high diversity of species.

    Gherman, Călin Mircea; Mihalca, Andrei Daniel

    2017-09-15

    The golden jackal (Canis aureus) is a species under significant and fast geographic expansion. Various parasites are known from golden jackals across their geographic range, and certain groups can be spread during their expansion, increasing the risk of cross-infection with other carnivores or even humans. The current list of the golden jackal parasites includes 194 species and was compiled on the basis of an extensive literature search published from historical times until April 2017, and is shown herein in synoptic tables followed by critical comments of the various findings. This large variety of parasites is related to the extensive geographic range, territorial mobility and a very unselective diet. The vast majority of these parasites are shared with domestic dogs or cats. The zoonotic potential is the most important aspect of species reported in the golden jackal, some of them, such as Echinococcus spp., hookworms, Toxocara spp., or Trichinella spp., having a great public health impact. Our review brings overwhelming evidence on the importance of Canis aureus as a wild reservoir of human and animal parasites.

  14. Biodiversity can help prevent malaria outbreaks in tropical forests.

    Gabriel Zorello Laporta

    Full Text Available BACKGROUND: Plasmodium vivax is a widely distributed, neglected parasite that can cause malaria and death in tropical areas. It is associated with an estimated 80-300 million cases of malaria worldwide. Brazilian tropical rain forests encompass host- and vector-rich communities, in which two hypothetical mechanisms could play a role in the dynamics of malaria transmission. The first mechanism is the dilution effect caused by presence of wild warm-blooded animals, which can act as dead-end hosts to Plasmodium parasites. The second is diffuse mosquito vector competition, in which vector and non-vector mosquito species compete for blood feeding upon a defensive host. Considering that the World Health Organization Malaria Eradication Research Agenda calls for novel strategies to eliminate malaria transmission locally, we used mathematical modeling to assess those two mechanisms in a pristine tropical rain forest, where the primary vector is present but malaria is absent. METHODOLOGY/PRINCIPAL FINDINGS: The Ross-Macdonald model and a biodiversity-oriented model were parameterized using newly collected data and data from the literature. The basic reproduction number ([Formula: see text] estimated employing Ross-Macdonald model indicated that malaria cases occur in the study location. However, no malaria cases have been reported since 1980. In contrast, the biodiversity-oriented model corroborated the absence of malaria transmission. In addition, the diffuse competition mechanism was negatively correlated with the risk of malaria transmission, which suggests a protective effect provided by the forest ecosystem. There is a non-linear, unimodal correlation between the mechanism of dead-end transmission of parasites and the risk of malaria transmission, suggesting a protective effect only under certain circumstances (e.g., a high abundance of wild warm-blooded animals. CONCLUSIONS/SIGNIFICANCE: To achieve biological conservation and to eliminate

  15. Do the venous blood samples replicate malaria parasite densities found in capillary blood? A field study performed in naturally-infected asymptomatic children in Cameroon.

    Sandeu, Maurice M; Bayibéki, Albert N; Tchioffo, Majoline T; Abate, Luc; Gimonneau, Geoffrey; Awono-Ambéné, Parfait H; Nsango, Sandrine E; Diallo, Diadier; Berry, Antoine; Texier, Gaétan; Morlais, Isabelle

    2017-08-17

    The measure of new drug- or vaccine-based approaches for malaria control is based on direct membrane feeding assays (DMFAs) where gametocyte-infected blood samples are offered to mosquitoes through an artificial feeder system. Gametocyte donors are identified by the microscopic detection and quantification of malaria blood stages on blood films prepared using either capillary or venous blood. However, parasites are known to sequester in the microvasculature and this phenomenon may alter accurate detection of parasites in blood films. The blood source may then impact the success of mosquito feeding experiments and investigations are needed for the implementation of DMFAs under natural conditions. Thick blood smears were prepared from blood obtained from asymptomatic children attending primary schools in the vicinity of Mfou (Cameroon) over four transmission seasons. Parasite densities were determined microscopically from capillary and venous blood for 137 naturally-infected gametocyte carriers. The effect of the blood source on gametocyte and asexual stage densities was then assessed by fitting cumulative link mixed models (CLMM). DMFAs were performed to compare the infectiousness of gametocytes from the different blood sources to mosquitoes. Prevalence of Plasmodium falciparum asexual stages among asymptomatic children aged from 4 to 15 years was 51.8% (2116/4087). The overall prevalence of P. falciparum gametocyte carriage was 8.9% and varied from one school to another. No difference in the density of gametocyte and asexual stages was found between capillary and venous blood. Attempts to perform DMFAs with capillary blood failed. Plasmodium falciparum malaria parasite densities do not differ between capillary and venous blood in asymptomatic subjects for both gametocyte and trophozoite stages. This finding suggests that the blood source should not interfere with transmission efficiency in DMFAs.

  16. Adoption of parasitic Maculinea alcon caterpillars (Lepidoptera : Lycaenidae) by three Myrmica ant species

    Als, Thomas Damm; Nash, David Richard; Boomsma, J. J.

    2001-01-01

    Maculinea butterflies are parasites of Myrmica ant nests. The Alcon blue, Maculinea alcon, is unusual in that it parasitizes the nests of several Myrmica species, using M. rubra, M. ruginodis and M. scabrinodis as hosts in different parts of Europe. In Denmark it uses M. rubra and M. ruginodis....... alcon from three populations differing in their host use to laboratory nests of all three recorded host ant species collected from each of the M. alcon populations. We measured the attractiveness of the caterpillars to their host ants as the time taken for them to be adopted by each ant colony....... Caterpillars from all populations took longer to be adopted to M. scabrinodis nests than to nests of the other two ant species. Adoption times to M. rubra and M. ruginodis colonies differed: caterpillars from each of the two populations that used a single host species were adopted most quickly by that species...

  17. Lys48 ubiquitination during the intraerythrocytic cycle of the rodent malaria parasite, Plasmodium chabaudi.

    González-López, Lorena; Carballar-Lejarazú, Rebeca; Arrevillaga Boni, Gerardo; Cortés-Martínez, Leticia; Cázares-Raga, Febe Elena; Trujillo-Ocampo, Abel; Rodríguez, Mario H; James, Anthony A; Hernández-Hernández, Fidel de la Cruz

    2017-01-01

    Ubiquitination tags proteins for different functions within the cell. One of the most abundant and studied ubiquitin modification is the Lys48 polyubiquitin chain that modifies proteins for their destruction by proteasome. In Plasmodium is proposed that post-translational regulation is fundamental for parasite development during its complex life-cycle; thus, the objective of this work was to analyze the ubiquitination during Plasmodium chabaudi intraerythrocytic stages. Ubiquitinated proteins were detected during intraerythrocytic stages of Plasmodium chabaudi by immunofluorescent microscopy, bidimensional electrophoresis (2-DE) combined with immunoblotting and mass spectrometry. All the studied stages presented protein ubiquitination and Lys48 polyubiquitination with more abundance during the schizont stage. Three ubiquitinated proteins were identified for rings, five for trophozoites and twenty for schizonts. Only proteins detected with a specific anti- Lys48 polyubiquitin antibody were selected for Mass Spectrometry analysis and two of these identified proteins were selected in order to detect the specific amino acid residues where ubiquitin is placed. Ubiquitinated proteins during the ring and trophozoite stages were related with the invasion process and in schizont proteins were related with nucleic acid metabolism, glycolysis and protein biosynthesis. Most of the ubiquitin detection was during the schizont stage and the Lys48 polyubiquitination during this stage was related to proteins that are expected to be abundant during the trophozoite stage. The evidence that these Lys48 polyubiquitinated proteins are tagged for destruction by the proteasome complex suggests that this type of post-translational modification is important in the regulation of protein abundance during the life-cycle and may also contribute to the parasite cell-cycle progression.

  18. Characterisation and expression of a PP1 serine/threonine protein phosphatase (PfPP1 from the malaria parasite, Plasmodium falciparum: demonstration of its essential role using RNA interference

    Musiyenko Alla

    2002-04-01

    Full Text Available Abstract Background Reversible protein phosphorylation is relatively unexplored in the intracellular protozoa of the Apicomplexa family that includes the genus Plasmodium, to which belong the causative agents of malaria. Members of the PP1 family represent the most highly conserved protein phosphatase sequences in phylogeny and play essential regulatory roles in various cellular pathways. Previous evidence suggested a PP1-like activity in Plasmodium falciparum, not yet identified at the molecular level. Results We have identified a PP1 catalytic subunit from P. falciparum and named it PfPP1. The predicted primary structure of the 304-amino acid long protein was highly similar to PP1 sequences of other species, and showed conservation of all the signature motifs. The purified recombinant protein exhibited potent phosphatase activity in vitro. Its sensitivity to specific phosphatase inhibitors was characteristic of the PP1 class. The authenticity of the PfPP1 cDNA was further confirmed by mutational analysis of strategic amino acid residues important in catalysis. The protein was expressed in all erythrocytic stages of the parasite. Abrogation of PP1 expression by synthetic short interfering RNA (siRNA led to inhibition of parasite DNA synthesis. Conclusions The high sequence similarity of PfPP1 with other PP1 members suggests conservation of function. Phenotypic gene knockdown studies using siRNA confirmed its essential role in the parasite. Detailed studies of PfPP1 and its regulation may unravel the role of reversible protein phosphorylation in the signalling pathways of the parasite, including glucose metabolism and parasitic cell division. The use of siRNA could be an important tool in the functional analysis of Apicomplexan genes.

  19. Antibody reactivities to glutamate-rich peptides of Plasmodium falciparum parasites in humans from areas of different malaria endemicity

    Jakobsen, P H; Theander, T G; Hviid, L

    1996-01-01

    Synthetic P. falciparum peptides were evaluated as tools in epidemiological investigations of malaria. Plasma IgM and IgG antibody reactivities against synthetic peptides covering sequences of glutamate-rich protein (GLURP) and acidic-basic repeat antigen (ABRA) were measured by ELISA...... in individuals from malaria-endemic areas of Sudan, Indonesia and The Gambia to study antibody responses to these peptides in donors living in areas of different malaria endemicity. IgG and IgM reactivities to the peptides increased with malaria endemicity, although there were no differences in reactivities...... tested were shortlived in most patients. In Gambian children with malaria, IgM reactivities but not IgG antibody reactivities against the ABRA peptide were higher in those with mild malaria than in those with severe malaria. The peptides may be useful in future epidemiological studies, especially...

  20. Molecular convergence of the parasitic plant species Cuscuta reflexa and Phelipanche aegyptiaca.

    Rehker, Jan; Lachnit, Magdalena; Kaldenhoff, Ralf

    2012-08-01

    The parasitic plant species Cuscuta reflexa and Phelipanche aegyptiaca have independently developed parasitism, the former parasitizing on shoots and the latter attaching to roots. Regardless of these differences, the two species use similar organs, termed haustoria, to attach to the host plant. In this study, we show that this morphological similarity can be extended to the molecular level. An attAGP-promoter from Solanum lycopersicum, which is activated by Cuscuta infections, was also induced after infection by P. aegyptiaca. Furthermore, we show by validation of transcriptome sequencing data that the Phelipanche orthologue of a haustorium-specific Cuscuta gene, which codes for a cysteine proteinase, was activated in the early stages of Phelipanche invasion. Inhibition of the Phelipanche cysteine proteinase was achieved by 35S- or attAGP-promoter-driven expression of its intrinsic inhibitory polypeptide. A reduction in P. aegyptiaca infection rates during experiments in flower pots and in an in vitro polybag system in comparison to controls was recorded.

  1. A yeast expression system for functional and pharmacological studies of the malaria parasite Ca2+/H+ antiporter

    Salcedo-Sora J

    2012-08-01

    Full Text Available Abstract Background Calcium (Ca2+ signalling is fundamental for host cell invasion, motility, in vivo synchronicity and sexual differentiation of the malaria parasite. Consequently, cytoplasmic free Ca2+ is tightly regulated through the co-ordinated action of primary and secondary Ca2+ transporters. Identifying selective inhibitors of Ca2+ transporters is key towards understanding their physiological role as well as having therapeutic potential, therefore screening systems to facilitate the search for potential inhibitors are a priority. Here, the methodology for the expression of a Calcium membrane transporter that can be scaled to high throughputs in yeast is presented. Methods The Plasmodium falciparum Ca2+/H+ antiporter (PfCHA was expressed in the yeast Saccharomyces cerevisiae and its activity monitored by the bioluminescence from apoaequorin triggered by divalent cations, such as calcium, magnesium and manganese. Results Bioluminescence assays demonstrated that PfCHA effectively suppressed induced cytoplasmic peaks of Ca2+, Mg2+ and Mn2+ in yeast mutants lacking the homologue yeast antiporter Vcx1p. In the scalable format of 96-well culture plates pharmacological assays with a cation antiporter inhibitor allowed the measurement of inhibition of the Ca2+ transport activity of PfCHA conveniently translated to the familiar concept of fractional inhibitory concentrations. Furthermore, the cytolocalization of this antiporter in the yeast cells showed that whilst PfCHA seems to locate to the mitochondrion of P. falciparum, in yeast PfCHA is sorted to the vacuole. This facilitates the real-time Ca2+-loading assays for further functional and pharmacological studies. Discussion The functional expression of PfCHA in S. cerevisiae and luminescence-based detection of cytoplasmic cations as presented here offer a tractable system that facilitates functional and pharmacological studies in a high-throughput format. PfCHA is shown to behave as a divalent

  2. Ectoparasites as numerical dominant species in parasite community of Trachelyopterus striatulus (Siluriformes: Auchenipteridae) from Guandu River, southeastern Brazil.

    Mesquita, R L B; Azevedo, R K; Abdallah, V D; Luque, J L

    2011-08-01

    Sixty specimens of singing catfish Trachelyopterus striatulus (Steindachner, 1877) (Siluriformes: Auchenipteridae) collected from Guandu River (22º 48' 32" S and 43º 37' 35" W), in the state of Rio de Janeiro, Brazil from October 2006 to March 2009, were necropsied to study their parasites. From the 60 specimens of T. striatulus examined 57 were parasitised by at least one parasite species. The majority of the parasite specimens collected were monogeneans followed by Nematoda, Digenea and Hirudinea. Cosmetocleithrum sp. was the numerically predominant species with highest prevalence and abundance. The parasites of T. striatulus showed the typical pattern of aggregated distribution. No parasite species showed significant correlation between the body total length of the host and their abundance. The mean parasite species richness was not correlated with the host's total body length and sex. Values of the Brillouin index of diversity had a mean of H = 0.083 ± 0.136.

  3. The Malaria Parasite Cyclin H Homolog PfCyc1 Is Required for Efficient Cytokinesis in Blood-Stage Plasmodium falciparum.

    Robbins, Jonathan A; Absalon, Sabrina; Streva, Vincent A; Dvorin, Jeffrey D

    2017-06-13

    All well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs), and these protein kinase complexes are viable drug targets. The regulatory control of the Plasmodium falciparum cell division cycle remains poorly understood, and the roles of the various CDKs and cyclins remain unclear. The P. falciparum genome contains multiple CDKs, but surprisingly, it does not contain any sequence-identifiable G 1 -, S-, or M-phase cyclins. We demonstrate that P. falciparum Cyc1 (PfCyc1) complements a G 1 cyclin-depleted Saccharomyces cerevisiae strain and confirm that other identified malaria parasite cyclins do not complement this strain. PfCyc1, which has the highest sequence similarity to the conserved cyclin H, cannot complement a temperature-sensitive yeast cyclin H mutant. Coimmunoprecipitation of PfCyc1 from P. falciparum parasites identifies PfMAT1 and PfMRK as specific interaction partners and does not identify PfPK5 or other CDKs. We then generate an endogenous conditional allele of PfCyc1 in blood-stage P. falciparum using a destabilization domain (DD) approach and find that PfCyc1 is essential for blood-stage proliferation. PfCyc1 knockdown does not impede nuclear division, but it prevents proper cytokinesis. Thus, we demonstrate that PfCyc1 has a functional divergence from bioinformatic predictions, suggesting that the malaria parasite cell division cycle has evolved to use evolutionarily conserved proteins in functionally novel ways. IMPORTANCE Human infection by the eukaryotic parasite Plasmodium falciparum causes malaria. Most well-studied eukaryotic cell cycles are driven by cyclins, which activate cyclin-dependent kinases (CDKs) to promote essential cell division processes. Remarkably, there are no identifiable cyclins that are predicted to control the cell cycle in the malaria parasite genome. Thus, our knowledge regarding the basic mechanisms of the malaria parasite cell cycle remains unsatisfactory. We

  4. Parasites and pathogens of ticks ( Rhipicephalus species Acari ...

    The interaction of ticks with its environment as well as its natural hosts predisposes it to acquiring pathogens that could pose animal and human health risks. Identifying these pathogens could alert dog owners and others to reassess the predisposing factors and ensure control. The aim of the study was to identify the species ...

  5. Parasites of the Giant Panda: A Risk Factor in the Conservation of a Species.

    Wang, Tao; Xie, Yue; Zheng, Youle; Wang, Chengdong; Li, Desheng; Koehler, Anson V; Gasser, Robin B

    2018-01-01

    The giant panda, with an estimated population size of 2239 in the world (in 2015), is a global symbol of wildlife conservation that is threatened by habitat loss, poor reproduction and limited resistance to some infectious diseases. Of these factors, some diseases caused by parasites are considered as the foremost threat to its conservation. However, there is surprisingly little published information on the parasites of the giant panda, most of which has been disseminated in the Chinese literature. Herein, we review all peer-reviewed publications (in English or Chinese language) and governmental documents for information on parasites of the giant pandas, with an emphasis on the intestinal nematode Baylisascaris schroederi (McIntosh, 1939) as it dominates published literature. The purpose of this chapter is to: (i) review the parasites recorded in the giant panda and describe what is known about their biology; (ii) discuss key aspects of the pathogenesis, diagnosis, treatment and control of key parasites that are reported to cause clinical problems and (iii) conclude by making some suggestions for future research. This chapter shows that we are only just 'scratching the surface' when it comes to parasites and parasitological research of the giant panda. Clearly, there needs to be a concerted research effort to support the conservation of this iconic species. © 2018 Elsevier Ltd All rights reserved.

  6. Association between serum transferrin receptor levels and malaria ...

    user

    ... and malaria is common in sub-Saharan Africa, and is a complex phenomenon. ... iron status and malaria incidence among children in a high malaria ... seasonally as cash crops. ... Children were followed for presence of malaria parasites by.

  7. Temporal effects on host-parasite associations in four naturalized goby species living in sympatry

    Ondračková, Markéta; Valová, Zdenka; Hudcová, Iveta; Michálková, Veronika; Šimková, A.; Borcherding, J.; Jurajda, Pavel

    2015-01-01

    Roč. 746, č. 1 (2015), s. 233-243 ISSN 0018-8158 R&D Projects: GA ČR(CZ) GAP505/12/2569 Institutional support: RVO:68081766 Keywords : Fish * Gobiidae * Non-native species * Parasite * Rhine Subject RIV: EG - Zoology Impact factor: 2.051, year: 2015

  8. Malaria problem in Afghanistan: malaria scanning results of the Turkish medical aid group after the war.

    Oner, Yaşar Ali; Okutan, Salih Erkan; Artinyan, Elizabeth; Kocazeybek, Bekir

    2005-04-01

    Malaria is a parasitic infection caused by Plasmodium species and it is especially seen in tropical and subtropical areas. We aimed to evaluate the effects of the infection in Afghanistan, which is an endemic place for malaria and had severe socio-economical lost after the war. We also compared these data with the ones that were recorded before the war. Blood samples were taken from 376 malaria suspected patients who come to the health center, established by the medical group of Istanbul Medical Faculty in 2002, Afghanistan. Blood samples were screened using the OPTIMAL Rapid Malaria Test and Giemsa staining method. In 95 (25.3%) patients diagnosis was malaria. In 65 patients (17.3%) the agent of the infection was P. falciparum and in 30 patients (8%) agents were other Plasmodium species.

  9. Host range, host ecology, and distribution of more than 11800 fish parasite species

    Strona, Giovanni; Palomares, Maria Lourdes D.; Bailly, Nicholas; Galli, Paolo; Lafferty, Kevin D.

    2013-01-01

    Our data set includes 38 008 fish parasite records (for Acanthocephala, Cestoda, Monogenea, Nematoda, Trematoda) compiled from the scientific literature, Internet databases, and museum collections paired to the corresponding host ecological, biogeographical, and phylogenetic traits (maximum length, growth rate, life span, age at maturity, trophic level, habitat preference, geographical range size, taxonomy). The data focus on host features, because specific parasite traits are not consistently available across records. For this reason, the data set is intended as a flexible resource able to extend the principles of ecological niche modeling to the host–parasite system, providing researchers with the data to model parasite niches based on their distribution in host species and the associated host features. In this sense, the database offers a framework for testing general ecological, biogeographical, and phylogenetic hypotheses based on the identification of hosts as parasite habitat. Potential applications of the data set are, for example, the investigation of species–area relationships or the taxonomic distribution of host-specificity. The provided host–parasite list is that currently used by Fish Parasite Ecology Software Tool (FishPEST, http://purl.oclc.org/fishpest), which is a website that allows researchers to model several aspects of the relationships between fish parasites and their hosts. The database is intended for researchers who wish to have more freedom to analyze the database than currently possible with FishPEST. However, for readers who have not seen FishPEST, we recommend using this as a starting point for interacting with the database.

  10. Rickettsia species in human-parasitizing ticks in Greece.

    Papa, Anna; Xanthopoulou, Kyriaki; Kotriotsiou, Tzimoula; Papaioakim, Miltiadis; Sotiraki, Smaragda; Chaligiannis, Ilias; Maltezos, Efstratios

    2016-05-01

    Ticks serve as vectors and reservoirs for a variety of bacterial, viral and protozoan pathogens affecting humans and animals. Unusual increased tick aggressiveness was observed in 2008-2009 in northeastern Greece. The aim of the study was to check ticks removed from persons during 2009 for infection with Rickettsia species. A total of 159 ticks were removed from 147 persons who sought medical advice in a hospital. Tick identification was performed morphologically using taxonomic keys. DNA was extracted from each individual tick and a PCR assay targeting the rickettsial outer membrane protein A gene of Rickettsia spp. was applied. Most of the adult ticks (132/153, 86.3%) were Rhipicephalus sanguineus. Rickettsiae were detected in 23 of the 153 (15.0%) adult ticks. Five Rickettsiae species were identified: R. aeschlimannii, R. africae (n=6), R. massilae (4), R. monacensis (1), and Candidatus R. barbariae (1). To our knowledge, this is the first report of R. africae, R. monacensis, and Candidatus R. barbariae in Greece. Several Rickettsia species were identified in ticks removed from humans in Greece, including those that are prevalent in northern and southern latitudes. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites.

    Hunt, Paul; Afonso, Ana; Creasey, Alison; Culleton, Richard; Sidhu, Amar Bir Singh; Logan, John; Valderramos, Stephanie G; McNae, Iain; Cheesman, Sandra; do Rosario, Virgilio; Carter, Richard; Fidock, David A; Cravo, Pedro

    2007-07-01

    Artemisinin- and artesunate-resistant Plasmodium chabaudi mutants, AS-ART and AS-ATN, were previously selected from chloroquine-resistant clones AS-30CQ and AS-15CQ respectively. Now, a genetic cross between AS-ART and the artemisinin-sensitive clone AJ has been analysed by Linkage Group Selection. A genetic linkage group on chromosome 2 was selected under artemisinin treatment. Within this locus, we identified two different mutations in a gene encoding a deubiquitinating enzyme. A distinct mutation occurred in each of the clones AS-30CQ and AS-ATN, relative to their respective progenitors in the AS lineage. The mutations occurred independently in different clones under drug selection with chloroquine (high concentration) or artesunate. Each mutation maps to a critical residue in a homologous human deubiquitinating protein structure. Although one mutation could theoretically account for the resistance of AS-ATN to artemisinin derivates, the other cannot account solely for the resistance of AS-ART, relative to the responses of its sensitive progenitor AS-30CQ. Two lines of Plasmodium falciparum with decreased susceptibility to artemisinin were also selected. Their drug-response phenotype was not genetically stable. No mutations in the UBP-1 gene encoding the P. falciparum orthologue of the deubiquitinating enzyme were observed. The possible significance of these mutations in parasite responses to chloroquine or artemisinin is discussed.

  12. Mosquito Vectors and the Globalization of Plasmodium falciparum Malaria.

    Molina-Cruz, Alvaro; Zilversmit, Martine M; Neafsey, Daniel E; Hartl, Daniel L; Barillas-Mury, Carolina

    2016-11-23

    Plasmodium falciparum malaria remains a devastating public health problem. Recent discoveries have shed light on the origin and evolution of Plasmodium parasites and their interactions with their vertebrate and mosquito hosts. P. falciparum malaria originated in Africa from a single horizontal transfer between an infected gorilla and a human, and became global as the result of human migration. Today, P. falciparum malaria is transmitted worldwide by more than 70 different anopheline mosquito species. Recent studies indicate that the mosquito immune system can be a barrier to malaria transmission and that the P. falciparum Pfs47 gene allows the parasite to evade mosquito immune detection. Here, we review the origin and globalization of P. falciparum and integrate this history with analysis of the biology, evolution, and dispersal of the main mosquito vectors. This new perspective broadens our understanding of P. falciparum population structure and the dispersal of important parasite genetic traits.

  13. 1H NMR metabonomics indicates continued metabolic changes and sexual dimorphism post-parasite clearance in self-limiting murine malaria model.

    Arjun Sengupta

    Full Text Available Malaria, a mosquito-borne disease caused by Plasmodium spp. is considered to be a global threat, specifically for the developing countries. In human subjects considerable information exists regarding post-malarial physiology. However, most murine malarial models are lethal, and most studies deal with acute phases occurring as disease progresses. Much less is known regarding physiological status post-parasite clearance. We have assessed the physiological changes at the organ levels using (1H NMR based metabonomics in a non lethal self-clearing murine malarial model of P. chabaudi parasites and Balb/C, far beyond the parasite clearance point. The results showed distinct metabolic states between uninfected and infected mice at the peak parasitemia, as well as three weeks post-parasite clearance. Our data also suggests that the response at the peak infection as well as recovery exhibited distinct sexual dimorphism. Specifically, we observed accumulation of acetylcholine in the brain metabolic profile of both the sexes. This might have important implication in understanding the pathophysiology of the post malarial neurological syndromes. In addition, the female liver showed high levels of glucose, dimethylglycine, methylacetoacetate and histidine after three weeks post-parasite clearance, while the males showed accumulation of branched chain amino acids, lysine, glutamine and bile acids.

  14. Parasitization of commercially available parasitoid species against the lettuce aphid, Nasonovia ribisnigri (Hemiptera: Aphididae).

    Shrestha, G; Skovgård, H; Enkegaard, A

    2014-12-01

    The lettuce aphid, Nasonovia ribisnigri (Mosley), is an economically important pest of lettuce worldwide. Little documentation exists for the control efficacy of aphid parasitoids against N. ribisnigri. This laboratory study evaluated three commercially available parasitoid species: Aphidius colemani (Viereck), Lysiphlebus testaceipes (Cresson), and Aphelinus abdominalis (Dalman) for their mortality impact on N. ribisnigri. The green peach aphid Myzus persicae (Sulzer) was included as a reference aphid. The study showed that A. abdominalis successfully parasitized 39 and 13% of the offered N. ribisnigri and M. persicae, respectively, within a 24-h exposure period. In contrast, none of the lettuce aphids exposed to Ap. colemani or L. testaceipes were successfully parasitized, whereas 60 and 3.5% of M. persicae, respectively, were successfully parasitized within a 6-h exposure period. Lettuce aphid mortality due to incomplete parasitization was 26 and 31% when exposed to Ap. colemani and L. testaceipes, respectively, with corresponding values for M. persicae being 5 and 10%, respectively. Mortality as a result of incomplete parasitization when aphids were exposed to A. abdominalis was low for both aphid species. The total mortality inflicted by A. abdominalis within a 24-h exposure period was 51% for the lettuce aphids and significantly less (19%) for green peach aphids. In contrast, Ap. colemani inflicted a higher mortality in M. persicae (65%) compared with N. ribisnigri (26%) within a 6-h exposure period. L. testaceipes caused a greater mortality in N. ribisnigri as compared with M. persicae. This study concludes that A. abdominalis has the potential to be used against N. ribisnigri in inoculative biocontrol programs as compared with the other parasitoid species based on successful parasitization.

  15. Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region.

    Echeverry, Diego F; Nair, Shalini; Osorio, Lyda; Menon, Sanjay; Murillo, Claribel; Anderson, Tim J C

    2013-01-07

    Resistance to chloroquine and antifolate drugs has evolved independently in South America, suggesting that genotype - phenotype studies aimed at understanding the genetic basis of resistance to these and other drugs should be conducted in this continent. This research was conducted to better understand the population structure of Colombian Plasmodium falciparum in preparation for such studies. A set of 384 SNPs were genotyped in blood spot DNA samples from 447 P. falciparum infected subjects collected over a ten year period from four provinces of the Colombian Pacific coast to evaluate clonality, population structure and linkage disequilibrium (LD). Most infections (81%) contained a single predominant clone. These clustered into 136 multilocus genotypes (MLGs), with 32% of MLGs recovered from multiple (2 - 28) independent subjects. We observed extremely low genotypic richness (R = 0.42) and long persistence of MLGs through time (median = 537 days, range = 1 - 2,997 days). There was a high probability (>5%) of sampling parasites from the same MLG in different subjects within 28 days, suggesting caution is needed when using genotyping methods to assess treatment success in clinical drug trials. Panmixia was rejected as four well differentiated subpopulations (FST = 0.084 - 0.279) were identified. These occurred sympatrically but varied in frequency within the four provinces. Linkage disequilibrium (LD) decayed more rapidly (r2 = 0.17 for markers Colombian populations have several advantages for association studies, because multiple clone infections are uncommon and LD decays over the scale of one or a few genes. However, the extensive population structure and low genotype richness will need to be accounted for when designing and analyzing association studies.

  16. Long term persistence of clonal malaria parasite Plasmodium falciparum lineages in the Colombian Pacific region

    Echeverry Diego F

    2013-01-01

    Full Text Available Abstract Background Resistance to chloroquine and antifolate drugs has evolved independently in South America, suggesting that genotype - phenotype studies aimed at understanding the genetic basis of resistance to these and other drugs should be conducted in this continent. This research was conducted to better understand the population structure of Colombian Plasmodium falciparum in preparation for such studies. Results A set of 384 SNPs were genotyped in blood spot DNA samples from 447 P. falciparum infected subjects collected over a ten year period from four provinces of the Colombian Pacific coast to evaluate clonality, population structure and linkage disequilibrium (LD. Most infections (81% contained a single predominant clone. These clustered into 136 multilocus genotypes (MLGs, with 32% of MLGs recovered from multiple (2 – 28 independent subjects. We observed extremely low genotypic richness (R = 0.42 and long persistence of MLGs through time (median = 537 days, range = 1 – 2,997 days. There was a high probability (>5% of sampling parasites from the same MLG in different subjects within 28 days, suggesting caution is needed when using genotyping methods to assess treatment success in clinical drug trials. Panmixia was rejected as four well differentiated subpopulations (FST = 0.084 - 0.279 were identified. These occurred sympatrically but varied in frequency within the four provinces. Linkage disequilibrium (LD decayed more rapidly (r2 = 0.17 for markers Conclusions We conclude that Colombian populations have several advantages for association studies, because multiple clone infections are uncommon and LD decays over the scale of one or a few genes. However, the extensive population structure and low genotype richness will need to be accounted for when designing and analyzing association studies.

  17. Choosing a Drug to Prevent Malaria

    ... Malaria About Malaria FAQs Fast Facts Disease Biology Ecology Human Factors Sickle Cell Mosquitoes Parasites Where Malaria ... medicines, also consider the possibility of drug-drug interactions with other medicines that the person might be ...

  18. Alien species of fish parasites in the coastal lakes and lagoons of the southern Baltic

    Jolanta Morozińska-Gogol

    2009-03-01

    Full Text Available Alien species are now found all over the world. New fish parasites have been unintentionally introduced with infected alien fish imported for aquaculture or have sometimes spread with their intermediate invertebrate hosts transported in the ballast waters of ships. Four alien fish parasites have been recorded in Polish coastal lakes and lagoons, all parasitising eels. Three were introduced with the final host - the Japanese eel - introduced for aquaculture (Anguillicola crassus, Pseudodactylogyrus anguillae and Pseudodactylogyrus bini and one (Paratenuisentis ambiguus with its sole intermediate host (Gammarus tigrinus.

  19. Malaria in Africa: vector species' niche models and relative risk maps.

    Alexander Moffett

    2007-09-01

    Full Text Available A central theoretical goal of epidemiology is the construction of spatial models of disease prevalence and risk, including maps for the potential spread of infectious disease. We provide three continent-wide maps representing the relative risk of malaria in Africa based on ecological niche models of vector species and risk analysis at a spatial resolution of 1 arc-minute (9 185 275 cells of approximately 4 sq km. Using a maximum entropy method we construct niche models for 10 malaria vector species based on species occurrence records since 1980, 19 climatic variables, altitude, and land cover data (in 14 classes. For seven vectors (Anopheles coustani, A. funestus, A. melas, A. merus, A. moucheti, A. nili, and A. paludis these are the first published niche models. We predict that Central Africa has poor habitat for both A. arabiensis and A. gambiae, and that A. quadriannulatus and A. arabiensis have restricted habitats in Southern Africa as claimed by field experts in criticism of previous models. The results of the niche models are incorporated into three relative risk models which assume different ecological interactions between vector species. The "additive" model assumes no interaction; the "minimax" model assumes maximum relative risk due to any vector in a cell; and the "competitive exclusion" model assumes the relative risk that arises from the most suitable vector for a cell. All models include variable anthrophilicity of vectors and spatial variation in human population density. Relative risk maps are produced from these models. All models predict that human population density is the critical factor determining malaria risk. Our method of constructing relative risk maps is equally general. We discuss the limits of the relative risk maps reported here, and the additional data that are required for their improvement. The protocol developed here can be used for any other vector-borne disease.

  20. Infection by Haemoproteus parasites in four species of frigatebirds and the description of a new species of Haemoproteus (Haemosporida: Haemoproteidae)

    Merino, Santiago; Hennicke, Janos; Martinez, Javier; Ludynia, Katrin; Torres, Roxana; Work, Thierry M.; Stroud, Stedson; Masello, Juan F.; Quillfeldt, Petra

    2012-01-01

    Among seabirds, the fregatids stand out with a high prevalence of blood parasites. Four of 5 species in this family have been found to be infected with Haemoproteus; however, complete species descriptions with molecular phylogeny are lacking. Seventy-five samples from 4 species of frigatebirds, i.e., Fregata andrewsi, Fregata minor, Fregata magnificens, and Fregata aquila, were screened for infections caused by species of Haemoproteus. Four different parasite haplotypes were found infecting frigatebirds based on the sequencing of a fragment of the cytochrome b gene. Two haplotypes belong to the subgenus Parahaemoproteus, and the other 2 correspond to haplotypes within the subgenus Haemoproteus. The more prevalent and cosmopolitan Parahaemoproteus haplotype (FregPHae1) was phylogenetically grouped with other Haemoproteus parasites infecting non-passerine birds, but it could not be detected from the single sample from F. aquila. The other Parahaemoproteus haplotype (FregPHae2) was not phylogenetically clustered with parasites infecting non-passerine birds, and it was sequenced from a single (1 each) F. andrewsi and F. minor. Blood smears from F. andrewsi infected only by FregPHae1 haplotype showed sufficient gametocytes to allow description of a new species, Haemoproteus valkiūnasi sp. nov. In contrast to Haemoproteus iwa, the only previously known blood parasite infecting frigatebirds and described from F. minor from Galapagos Islands, parasites from F. andrewsi (1) are shorter with no contact of gametocyte with host cell membrane, (2) have fewer pigment granules, and (3) have wider microgametocytes, with a smaller host nuclear displacement. In contrast, patent single infections corresponding to the cosmopolitan haplotype of the subgenus Haemoproteus (FregHae1) were also found in samples from 1 F. andrewsi, 1 F. minor, and 1 F. aquila. In all these cases, the number of microgametocytes was very low, resembling H. iwa, which lacks microgametocytes in the original

  1. Melatonin-Induced Temporal Up-Regulation of Gene Expression Related to Ubiquitin/Proteasome System (UPS in the Human Malaria Parasite Plasmodium falciparum

    Fernanda C. Koyama

    2014-12-01

    Full Text Available There is an increasing understanding that melatonin and the ubiquitin/ proteasome system (UPS interact to regulate multiple cellular functions. Post-translational modifications such as ubiquitination are important modulators of signaling processes, cell cycle and many other cellular functions. Previously, we reported a melatonin-induced upregulation of gene expression related to ubiquitin/proteasome system (UPS in Plasmodium falciparum, the human malaria parasite, and that P. falciparum protein kinase 7 influences this process. This implies a role of melatonin, an indolamine, in modulating intraerythrocytic development of the parasite. In this report we demonstrate by qPCR analysis, that melatonin induces gene upregulation in nine out of fourteen genes of the UPS, consisting of the same set of genes previously reported, between 4 to 5 h after melatonin treatment. We demonstrate that melatonin causes a temporally controlled gene expression of UPS members.

  2. Social Parasites

    Lopez, Miguel A.; Nguyen, HoangKim T.; Oberholzer, Michael; Hill, Kent L.

    2011-01-01

    Summary of recent advances Protozoan parasites cause tremendous human suffering worldwide, but strategies for therapeutic intervention are limited. Recent studies illustrate that the paradigm of microbes as social organisms can be brought to bear on questions about parasite biology, transmission and pathogenesis. This review discusses recent work demonstrating adaptation of social behaviors by parasitic protozoa that cause African sleeping sickness and malaria. The recognition of social behavior and cell-cell communication as a ubiquitous property of bacteria has transformed our view of microbiology, but protozoan parasites have not generally been considered in this context. Works discussed illustrate the potential for concepts of sociomicrobiology to provide insight into parasite biology and should stimulate new approaches for thinking about parasites and parasite-host interactions. PMID:22020108

  3. The guanylhydrazone CNI-1493: an inhibitor with dual activity against malaria-inhibition of host cell pro-inflammatory cytokine release and parasitic deoxyhypusine synthase.

    Specht, Sabine; Sarite, Salem Ramadan; Hauber, Ilona; Hauber, Joachim; Görbig, Ulf F; Meier, Chris; Bevec, Dorian; Hoerauf, Achim; Kaiser, Annette

    2008-05-01

    Malaria is still a major cause of death in the tropics. There is an urgent need for new anti-malarial drugs because drug-resistant plasmodia frequently occur. Over recent years, we elucidated the biosynthesis of hypusine, a novel amino acid contained in eukaryotic initiation factor 5A (eIF-5A) in Plasmodium. Hypusine biosynthesis involves catalysis of deoxyhypusine synthase (DHS) in the first step of post-translational modification. In a screen for new inhibitors of purified plasmodium DHS, CNI-1493, a novel selective pro-inflammatory cytokine inhibitor used in clinical phase II for the treatment of Crohn's disease, inhibited the enzyme of the parasite 3-fold at a concentration of 2 microM. In vitro experiments with 200 microM CNI-1493 in Plasmodium-infected erythrocytes, which lack nuclei and DHS protein, showed a parasite clearance within 2 days. This can presumably be attributed to an anti-proliferating effect because of the inhibition of DHS by the parasite. The determined IC50 of CNI-1493 was 135.79 microM after 72 h. In vivo application of this substance in Plasmodium berghei ANKA-infected C57BL/6 mice significantly reduced parasitemia after dosage of 1 mg/kg or 4 mg/kg/body weight and prevented death of mice with cerebral malaria. This effect was paralleled by a decrease in serum TNF levels of the mice. We suggest that the new mechanism of CNI-1493 is caused by a decrease in modified eIF-5A biosynthesis with a downstream effect on the TNF synthesis of the host. From the current data, we consider CNI-1493 to be a promising drug for anti-malarial therapy because of its combined action, i.e., the decrease in eIF-5A biosynthesis of the parasite and host cell TNF biosynthesis.

  4. Malaria Parasite CLAG3, a Protein Linked to Nutrient Channels, Participates in High Molecular Weight Membrane-Associated Complexes in the Infected Erythrocyte.

    Kayvan Zainabadi

    Full Text Available Malaria infected erythrocytes show increased permeability to a number of solutes important for parasite growth as mediated by the Plasmodial Surface Anion Channel (PSAC. The P. falciparum clag3 genes have recently been identified as key determinants of PSAC, though exactly how they contribute to channel function and whether additional host/parasite proteins are required remain unknown. To begin to answer these questions, I have taken a biochemical approach. Here I have used an epitope-tagged CLAG3 parasite to perform co-immunoprecipitation experiments using membrane fractions of infected erythrocytes. Native PAGE and mass spectrometry studies reveal that CLAG3 participate in at least three different high molecular weight complexes: a ~720kDa complex consisting of CLAG3, RHOPH2 and RHOPH3; a ~620kDa complex consisting of CLAG3 and RHOPH2; and a ~480kDa complex composed solely of CLAG3. Importantly, these complexes can be found throughout the parasite lifecycle but are absent in untransfected controls. Extracellular biotin labeling and protease susceptibility studies localize the 480kDa complex to the erythrocyte membrane. This complex, likely composed of a homo-oligomer of 160kDa CLAG3, may represent a functional subunit, possibly the pore, of PSAC.

  5. Malaria Surveillance - United States, 2015.

    Mace, Kimberly E; Arguin, Paul M; Tan, Kathrine R

    2018-05-04

    Malaria in humans is caused by intraerythrocytic protozoa of the genus Plasmodium. These parasites are transmitted by the bite of an infective female Anopheles species mosquito. The majority of malaria infections in the United States occur among persons who have traveled to regions with ongoing malaria transmission. However, malaria is occasionally acquired by persons who have not traveled out of the country through exposure to infected blood products, congenital transmission, laboratory exposure, or local mosquitoborne transmission. Malaria surveillance in the United States is conducted to provide information on its occurrence (e.g., temporal, geographic, and demographic), guide prevention and treatment recommendations for travelers and patients, and facilitate transmission control measures if locally acquired cases are identified. This report summarizes confirmed malaria cases in persons with onset of illness in 2015 and summarizes trends in previous years. Malaria cases diagnosed by blood film microscopy, polymerase chain reaction, or rapid diagnostic tests are reported to local and state health departments by health care providers or laboratory staff members. Case investigations are conducted by local and state health departments, and reports are transmitted to CDC through the National Malaria Surveillance System (NMSS), the National Notifiable Diseases Surveillance System (NNDSS), or direct CDC consultations. CDC reference laboratories provide diagnostic assistance and conduct antimalarial drug resistance marker testing on blood samples submitted by health care providers or local or state health departments. This report summarizes data from the integration of all NMSS and NNDSS cases, CDC reference laboratory reports, and CDC clinical consultations. CDC received reports of 1,517 confirmed malaria cases, including one congenital case, with an onset of symptoms in 2015 among persons who received their diagnoses in the United States. Although the number of

  6. Global phylogeographic limits of Hawaii's avian malaria

    Beadell, J.S.; Ishtiaq, F.; Covas, R.; Melo, M.; Warren, B.H.; Atkinson, C.T.; Bensch, S.; Graves, G.R.; Jhala, Y.V.; Peirce, M.A.; Rahmani, A.R.; Fonseca, D.M.; Fleischer, R.C.

    2006-01-01

    The introduction of avian malaria (Plasmodium relictum) to Hawaii has provided a model system for studying the influence of exotic disease on naive host populations. Little is known, however, about the origin or the genetic variation of Hawaii's malaria and traditional classification methods have confounded attempts to place the parasite within a global ecological and evolutionary context. Using fragments of the parasite mitochondrial gene cytochrome b and the nuclear gene dihydrofolate reductase-thymidylate synthase obtained from a global survey of greater than 13 000 avian samples, we show that Hawaii's avian malaria, which can cause high mortality and is a major limiting factor for many species of native passerines, represents just one of the numerous lineages composing the morphological parasite species. The single parasite lineage detected in Hawaii exhibits a broad host distribution worldwide and is dominant on several other remote oceanic islands, including Bermuda and Moorea, French Polynesia. The rarity of this lineage in the continental New World and the restriction of closely related lineages to the Old World suggest limitations to the transmission of reproductively isolated parasite groups within the morphological species. ?? 2006 The Royal Society.

  7. Use of the polymerase chain reaction to directly detect malaria parasites in blood samples from the Venezuelan Amazon.

    Laserson, K F; Petralanda, I; Hamlin, D M; Almera, R; Fuentes, M; Carrasquel, A; Barker, R H

    1994-02-01

    We have examined the reproducibility, sensitivity, and specificity of detecting Plasmodium falciparum using the polymerase chain reaction (PCR) and the species-specific probe pPF14 under field conditions in the Venezuelan Amazon. Up to eight samples were field collected from each of 48 consenting Amerindians presenting with symptoms of malaria. Sample processing and analysis was performed at the Centro Amazonico para la Investigacion y Control de Enfermedades Tropicales Simon Bolivar. A total of 229 samples from 48 patients were analyzed by PCR methods using four different P. falciparum-specific probes. One P. vivax-specific probe and by conventional microscopy. Samples in which results from PCR and microscopy differed were reanalyzed at a higher sensitivity by microscopy. Results suggest that microscopy-negative, PCR-positive samples are true positives, and that microscopy-positive and PCR-negative samples are true negatives. The sensitivity of the DNA probe/PCR method was 78% and its specificity was 97%. The positive predictive value of the PCR method was 88%, and the negative predictive value was 95%. Through the analysis of multiple blood samples from each individual, the DNA probe/PCR methodology was found to have an inherent reproducibility that was highly statistically significant.

  8. Molecular inference of sources and spreading patterns of Plasmodium falciparum malaria parasites in internally displaced persons settlements in Myanmar-China border area.

    Lo, Eugenia; Zhou, Guofa; Oo, Winny; Lee, Ming-Chieh; Baum, Elisabeth; Felgner, Philip L; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun

    2015-07-01

    In Myanmar, civil unrest and establishment of internally displaced persons (IDP) settlement along the Myanmar-China border have impacted malaria transmission. The growing IDP populations raise deep concerns about health impact on local communities. Microsatellite markers were used to examine the source and spreading patterns of Plasmodium falciparum between IDP settlement and surrounding villages in Myanmar along the China border. Genotypic structure of P. falciparum was compared over the past three years from the same area and the demographic history was inferred to determine the source of recent infections. In addition, we examined if border migration is a factor of P. falciparum infections in China by determining gene flow patterns across borders. Compared to local community, the IDP samples showed a reduced and consistently lower genetic diversity over the past three years. A strong signature of genetic bottleneck was detected in the IDP samples. P. falciparum infections from the border regions in China were genetically similar to Myanmar and parasite gene flow was not constrained by geographical distance. Reduced genetic diversity of P. falciparum suggested intense malaria control within the IDP settlement. Human movement was a key factor to the spread of malaria both locally in Myanmar and across the international border. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Modelling spatial relationship between climatic conditions and annual parasite incidence of malaria in southern part of Sistan&Balouchistan Province of Iran using spatial statistic models

    Mansour Halimi

    2014-02-01

    Full Text Available Objective: To model spatial relationship between climatic conditions and annual parasite incidence (API of malaria in southern part of Sistan&Balouchistan Province of Iran using spatial statistic models . Methods: A geographical weighted regression model was applied for predicting API by 3 climatic factors in order to model the spatial API of malaria in Sistan&Baluchistan Province of Iran. Results: The results indicated that most important climatic factor for explaining API in Sistan&Baluchistan was annual rainfall being of more importance in southern part of study area such as Chabahar, and Nikshar. The temperature and relative humidity are of the second and third priority respectively. The importance of these two climatic factors is higher in northern part of the studied region. The spatial autocorrelation (Moran ’s I for standard residual of applied geographical weighted regression model is -0.022 which indicated no spatial patterns. Conclusions: This model explained only 0.51 of API spatial variation (R2=0.51. Thus, the nonclimatic factors such as socioeconomic, lifestyle and the neighborhood position of this province with Afghanistan, and Pakistan also should be considered in epidemiological survey of malaria in Sistan&Baluchistan.

  10. Babesia spp. in European wild ruminant species: parasite diversity and risk factors for infection

    Michel , Adam O; Mathis , Alexander; Ryser-Degiorgis , Marie-Pierre

    2014-01-01

    International audience; Babesia are tick-borne parasites that are increasingly considered as a threat to animal and public health. We aimed to assess the role of European free-ranging wild ruminants as maintenance mammalian hosts for Babesia species and to determine risk factors for infection. EDTA blood was collected from 222 roe deer (Capreolus c. capreolus), 231 red deer (Cervus e. elaphus), 267 Alpine chamois (Rupicapra r. rupicapra) and 264 Alpine ibex (Capra i. ibex) from all over Switz...

  11. Prevalence of and risk factors for malaria, filariasis, and intestinal parasites as single infections or co-infections in different settlements of Gabon, Central Africa.

    M'bondoukwé, Noé Patrick; Kendjo, Eric; Mawili-Mboumba, Denise Patricia; Koumba Lengongo, Jeanne Vanessa; Offouga Mbouoronde, Christelle; Nkoghe, Dieudonné; Touré, Fousseyni; Bouyou-Akotet, Marielle Karine

    2018-01-30

    Malaria, filariasis, and intestinal parasitic infections (IPIs) are common and frequently overlap in developing countries. The prevalence and predictors of these infections were investigated in three different settlements (rural, semi-urban, and urban) of Gabon. During cross-sectional surveys performed from September 2013 to June 2014, 451 individuals were interviewed. In addition, blood and stool samples were analysed for the presence of Plasmodium, filarial roundworm, intestinal protozoan, and helminth infections. Intestinal parasitic infections (61.1%), including intestinal protozoa (56.7%) and soil-transmitted helminths (STHs) (22.2%), predominated, whereas Plasmodium falciparum (18.8%), Loa loa (4.7%), and Mansonella perstans (1.1%) were less prevalent. Filariasis and STHs were mainly found in rural settlements, whereas a higher plasmodial infection prevalence rate was observed in the periurban area. The most common IPI was blastocystosis (48.6%), followed by ascaridiasis (13.7%), trichuriasis (11.8%), amoebiasis (9.3%), giardiasis (4.8%), and strongyloidiasis (3.7%). Hookworm was detected in one adult from rural Dienga. Adults had a higher prevalence of Blastocystis hominis and STHs, whereas Giardia duodenalis was more frequently observed among children aged below 5 years (P < 0.01). The polyparasitism rate was 41.5%, with 7.0% Plasmodium-IPIs and 1.8% Plasmodium-STH co-infections. The multivariate analysis showed that living in a suburban area, belonging to the age group of 5-15 years, having none or a secondary education, or having an open body water close to home were significant risk factors for malaria (P ≤ 0.01). For STH infections, identified risk factors were drinking untreated water and living in a rural area (P ≤ 0.04). No significant predictors were identified for IPIs and malaria-IPI co-infection. This study reports a high prevalence of IPIs and intestinal protozoa, but a low rate of malaria-IPI co-infections in the study sites

  12. Sexual imprinting misguides species recognition in a facultative interspecific brood parasite.

    Sorenson, Michael D; Hauber, Mark E; Derrickson, Scott R

    2010-10-22

    Sexual reproduction relies on the recognition of conspecifics for breeding. Most experiments in birds have implicated a critical role for early social learning in directing subsequent courtship behaviours and mating decisions. This classical view of avian sexual imprinting is challenged, however, by studies of megapodes and obligate brood parasites, species in which reliable recognition is achieved despite the lack of early experience with conspecifics. By rearing males with either conspecific or heterospecific brood mates, we experimentally tested the effect of early social experience on the association preferences and courtship behaviours of two sympatrically breeding ducks. We predicted that redheads (Aythya americana), which are facultative interspecific brood parasites, would show a diminished effect of early social environment on subsequent courtship preferences when compared with their host and congener, the canvasback (Aythya valisineria). Contrary to expectations, cross-fostered males of both species courted heterospecific females and preferred them in spatial association tests, whereas control males courted and associated with conspecific females. These results imply that ontogenetic constraints on species recognition may be a general impediment to the initial evolution of interspecific brood parasitism in birds. Under more natural conditions, a variety of mechanisms may mitigate or counteract the effects of early imprinting for redheads reared in canvasback broods.

  13. Ecology and diagnosis of introduced avian malaria in Hawaiian forest birds

    Atkinson, Carter T.

    2005-01-01

    Avian malaria is a disease caused by species of protozoan parasites (Plasmodium) that infect birds. Related species commonly infect reptiles, birds and mammals in tropical and temperate regions of the world. Transmitted by mosquitoes, the parasites spend part of their lives in the red blood cells of birds (Figure 1). Avian malaria is common in continental areas, but is absent from the most isolated island archipelagos where mosquitoes do not naturally occur. More than 40 different species of avian Plasmodium have been described, but only one, P. relictum, has been introduced to the Hawaiian Islands. Because they evolved without natural exposure to avian malaria, native Hawaiian honeycreepers are extremely susceptible to this disease. Malaria currently limits the geographic distribution of native species, has population level impacts on survivorship, and is limiting the recovery of threatened and endangered species of forest birds.

  14. Cross-species comparison of parasite richness, prevalence, and intensity in a native compared to two invasive brachyuran crabs

    Goedknegt, M.A.; Havermans, J.; Waser, A.M.; Luttikhuizen, P.C.; Velilla, E.; Camphuysen, C.J.; Van der Meer, J.; Thieltges, D.W.

    2017-01-01

    An introduced species’ invasion success may be facilitated by the release of natural enemies, like parasites, which may provide an invader with a competitive advantage over native species (enemy release hypothesis). Lower parasite infection levels in introduced versus native populations have

  15. Description of the first cryptic avian malaria parasite, Plasmodium homocircumflexum n. sp., with experimental data on its virulence and development in avian hosts and mosquitoes.

    Palinauskas, Vaidas; Žiegytė, Rita; Ilgūnas, Mikas; Iezhova, Tatjana A; Bernotienė, Rasa; Bolshakov, Casimir; Valkiūnas, Gediminas

    2015-01-01

    For over 100 years studies on avian haemosporidian parasite species have relied on similarities in their morphology to establish a species concept. Some exceptional cases have also included information about the life cycle and sporogonic development. More than 50 avian Plasmodium spp. have now been described. However, PCR-based studies show a much broader diversity of haemosporidian parasites, indicating the possible existence of a diverse group of cryptic species. In the present study, using both similarity and phylogenetic species definition concepts, we believe that we report the first characterised cryptic speciation case of an avian Plasmodium parasite. We used sequence information on the mitochondrial cytochrome b gene and constructed phylogenies of identified Plasmodium spp. to define their position in the phylogenetic tree. After analysis of blood stages, the morphology of the parasite was shown to be identical to Plasmodium circumflexum. However, the geographic distribution of the new parasite, the phylogenetic information, as well as patterns of development of infection, indicate that this parasite differs from P. circumflexum. Plasmodium homocircumflexum n. sp. was described based on information about genetic differences from described lineages, phylogenetic position and biological characters. This parasite develops parasitemia in experimentally infected birds - the domestic canary Serinus canaria domestica, siskin Carduelis spinus and crossbill Loxia curvirostra. Anaemia caused by high parasitemia, as well as cerebral paralysis caused by exoerythrocytic stages in the brain, are the main reasons for mortality. Exoerythrocytic stages also form in other organs (heart, kidneys, liver, lungs, spleen, intestines and pectoral muscles). DNA amplification was unsuccessful from faecal samples of heavily infected birds. The sporogonic development initiates, but is abortive, at the oocyst stage in two common European mosquito species, Culex pipiens pipiens (forms

  16. Genome content analysis yields new insights into the relationship between the human malaria parasite Plasmodium falciparum and its anopheline vectors.

    Oppenheim, Sara J; Rosenfeld, Jeffrey A; DeSalle, Rob

    2017-02-27

    The persistent and growing gap between the availability of sequenced genomes and the ability to assign functions to sequenced genes led us to explore ways to maximize the information content of automated annotation for studies of anopheline mosquitos. Specifically, we use genome content analysis of a large number of previously sequenced anopheline mosquitos to follow the loss and gain of protein families over the evolutionary history of this group. The importance of this endeavor lies in the potential for comparative genomic studies between Anopheles and closely related non-vector species to reveal ancestral genome content dynamics involved in vector competence. In addition, comparisons within Anopheles could identify genome content changes responsible for variation in the vectorial capacity of this family of important parasite vectors. The competence and capacity of P. falciparum vectors do not appear to be phylogenetically constrained within the Anophelinae. Instead, using ancestral reconstruction methods, we suggest that a previously unexamined component of vector biology, anopheline nucleotide metabolism, may contribute to the unique status of anophelines as P. falciparum vectors. While the fitness effects of nucleotide co-option by P. falciparum parasites on their anopheline hosts are not yet known, our results suggest that anopheline genome content may be responding to selection pressure from P. falciparum. Whether this response is defensive, in an attempt to redress improper nucleotide balance resulting from P. falciparum infection, or perhaps symbiotic, resulting from an as-yet-unknown mutualism between anophelines and P. falciparum, is an open question that deserves further study. Clearly, there is a wealth of functional information to be gained from detailed manual genome annotation, yet the rapid increase in the number of available sequences means that most researchers will not have the time or resources to manually annotate all the sequence data they

  17. Quantitative Seq-LGS: Genome-Wide Identification of Genetic Drivers of Multiple Phenotypes in Malaria Parasites

    Abkallo, Hussein M.; Martinelli, Axel; Inoue, Megumi; Ramaprasad, Abhinay; Xangsayarath, Phonepadith; Gitaka, Jesse; Tang, Jianxia; Yahata, Kazuhide; Zoungrana, Augustin; Mitaka, Hayato; Hunt, Paul; Carter, Richard; Kaneko, Osamu; Mustonen, Ville; Illingworth, Christopher J.R.; Pain, Arnab; Culleton, Richard

    2016-01-01

    Identifying the genetic determinants of phenotypes that impact on disease severity is of fundamental importance for the design of new interventions against malaria. Traditionally, such discovery has relied on labor-intensive approaches that require

  18. Effect of acanthocephalan parasites on hiding behaviour in two species of shore crabs.

    Latham, A D M; Poulin, R

    2002-12-01

    The effect of acanthocephalan parasites (Profilicollis spp.) on the hiding behaviour during low tide of two species of shore crabs (intermediate hosts), Macrophthalmus hirtipes (Brachyura: Ocypodidae) and Hemigrapsus crenulatus (Brachyura: Grapsidae), was examined at Blueskin Bay, South Island, New Zealand. Exposed M. hirtipes were found to have significantly higher infection levels than did hidden conspecifics. This pattern was not observed for H. crenulatus. Mean cystacanth numbers were found to be considerably higher in M. hirtipes than H. crenulatus. Crabs exposed at low tide are at a greater risk of predation by definitive shorebird hosts than are hidden conspecifics. Preferential manipulation of one intermediate host species over another could influence diversity within ecosystems.

  19. Vector movement underlies avian malaria at upper elevation in Hawaii: implications for transmission of human malaria.

    Freed, Leonard A; Cann, Rebecca L

    2013-11-01

    With climate warming, malaria in humans and birds at upper elevations is an emerging infectious disease because development of the parasite in the mosquito vector and vector life history are both temperature dependent. An enhanced-mosquito-movement model from climate warming predicts increased transmission of malaria at upper elevation sites that are too cool for parasite development in the mosquito vector. We evaluate this model with avian malaria (Plasmodium relictum) at 1,900-m elevation on the Island of Hawaii, with air temperatures too low for sporogony in the vector (Culex quinquefasciatus). On a well-defined site over a 14-year period, 10 of 14 species of native and introduced birds became infected, several epizootics occurred, and the increase in prevalence was driven more by resident species than by mobile species that could have acquired their infections at lower elevations. Greater movement of infectious mosquitoes from lower elevations now permits avian malaria to spread at 1,900 m in Hawaii, in advance of climate warming at that elevation. The increase in malaria at upper elevations due to dispersal of infectious mosquitoes is a real alternative to temperature for the increased incidence of human malaria in tropical highlands.

  20. CASE STUDY: Mexico — Fighting malaria without DDT | IDRC ...

    2010-12-23

    Dec 23, 2010 ... ... spraying techniques, Mexico has dramatically reduced malaria transmission. ... and the parasite, community perceptions of malaria, statistical analyses, and ... epidemiology, informatics, entomology, and the social sciences.

  1. A re-assessment of gene-tag classification approaches for describing var gene expression patterns during human Plasmodium falciparum malaria parasite infections.

    Githinji, George; Bull, Peter C

    2017-01-01

    PfEMP1 are variant parasite antigens that are inserted on the surface of Plasmodium falciparum infected erythrocytes (IE). Through interactions with various host molecules, PfEMP1 mediate IE sequestration in tissues and play a key role in the pathology of severe malaria. PfEMP1 is encoded by a diverse multi-gene family called var . Previous studies have shown that that expression of specific subsets of var genes are associated with low levels of host immunity and severe malaria. However, in most clinical studies to date, full-length var gene sequences were unavailable and various approaches have been used to make comparisons between var gene expression profiles in different parasite isolates using limited information. Several studies have relied on the classification of a 300 - 500 base-pair "DBLα tag" region in the DBLα domain located at the 5' end of most var genes. We assessed the relationship between various DBLα tag classification methods, and sequence features that are only fully assessable through full-length var gene sequences. We compared these different sequence features in full-length var gene from six fully sequenced laboratory isolates. These comparisons show that despite a long history of recombination,   DBLα sequence tag classification can provide functional information on important features of full-length var genes. Notably, a specific subset of DBLα tags previously defined as "group A-like" is associated with CIDRα1 domains proposed to bind to endothelial protein C receptor. This analysis helps to bring together different sources of data that have been used to assess var gene expression in clinical parasite isolates.

  2. Spatial and spatio-temporal analysis of malaria in the state of Acre, western Amazon, Brazil

    Leonardo Augusto Kohara Melchior

    2016-11-01

    Full Text Available Since 2005, the State of Acre, western Amazon, Brazil, has reported the highest annual parasite incidence (API of malaria among the Brazilian states. This study examines malaria incidence in Acre using spatial and spatio-temporal analysis based on an ecological time series study analyzing malaria cases and deaths for the time period 1992- 2014 and using secondary data. API indexes were calculated by age, sex, parasite species, ratio of Plasmodium vivax to P. falciparum malaria, malaria mortality rate and case fatality rate. SaTScan was used to detect spatial and spatio-temporal clusters of malaria cases and data were represented in the form of choropleth maps. A high-risk cluster of malaria was detected in Vale do Juruá and three low-risk clusters in Vale do Acre for both parasite species. Those younger than 19 years of age and females showed a high incidence of malaria in Vale do Juruá, but working-age males were the most affected in Vale do Acre. The malaria mortality rate showed a decreasing trend across the state, while the case fatality rate increased only in the micro-region of Rio Branco during the study period. We conclude that malaria is a focal disease in Acre showing different spatial and spatio-temporal patterns of cases and deaths that vary by age, sex, and parasite species. Malaria incidence is thought to be influenced by factors related to regional characteristics; therefore, appropriate disease and vector control strategies must be implemented at each locality.

  3. In vitro activity of the beta-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum.

    Di Giorgio, C; Delmas, F; Ollivier, E; Elias, R; Balansard, G; Timon-David, P

    2004-01-01

    Harmane, harmine, and harmaline were investigated for their in vitro antileishmanial activity toward parasites of the species Leishmania infantum. Harmane and Harmine displayed a moderate antiproliferative activity toward human monocytes and exerted a weak antileishmanial activity toward both the promastigote and the amastigote forms of the parasite. Their mechanism of action on the promastigote form of the parasite involved interactions with DNA metabolism leading to an accumulation of parasites in the S-G(2)M phases of the cell-cycle. Harmaline, at the contrary, was deprived from toxicity toward human cells and Leishmania promastigotes, however it exerted a strong antileishmanial activity toward the intracellular amastigote form of the parasite. This property was shown to partly result from the capacity of the molecule to prevent parasite internalization within macrophages by inhibiting Leishmania PKC activity.

  4. A Simple Key for Identifying the Sibling Species of the Malaria Vector Anopheles gambiae (Giles Complex by Polytene Chromosome Cytogenetics

    Music Temitope OBEMBE

    2018-03-01

    Full Text Available It has been established that Anopheles gambiae complex sibling species are the major Plasmodium malaria vectors in Africa; however, not all the sibling species transmit the infection. Easier molecular methods, PCR-based assays, have been developed to distinguish the several members of the A. gambiae complex. However, malaria vector research in less developed countries, particularly sub-Saharan Africa, is being hampered by the lack of PCR facilities in laboratories and the cost of carrying out the assay within lack of funding. Hence, the present study was designed to develop a simple identification key, based on an affordable method of polytene chromosome cytotaxonomy, for identifying the major P. falciparum vectors. The Identification Key was successfully used to identify two members of the A. gambiae complex, A. gambiae sensu stricto and A. arabiensis, which are the most potent malaria vectors in Africa; even so, it could not be used to establish the infective and the refractory strains.

  5. Size, time, and asynchrony matter: the species-area relationship for parasites of freshwater fishes.

    Zelmer, Derek A

    2014-10-01

    The tendency to attribute species-area relationships to "island biogeography" effectively bypasses the examination of specific mechanisms that act to structure parasite communities. Positive covariation between fish size and infrapopulation richness should not be examined within the typical extinction-based paradigm, but rather should be addressed from the standpoint of differences in colonization potential among individual hosts. Although most mechanisms producing the aforementioned pattern constitute some variation of passive sampling, the deterministic aspects of the accumulation of parasite individuals by fish hosts makes untenable the suggestion that infracommunities of freshwater fishes are stochastic assemblages. At the component community level, application of extinction-dependent mechanisms might be appropriate, given sufficient time for colonization, but these structuring forces likely act indirectly through their effects on the host community to increase the probability of parasite persistence. At all levels, the passive sampling hypothesis is a relevant null model. The tendency for mechanisms that produce species-area relationships to produce nested subset patterns means that for most systems, the passive sampling hypothesis can be addressed through the application of appropriate null models of nested subset structure.

  6. Increasing Incidence of Plasmodium knowlesi Malaria following Control of P. falciparum and P. vivax Malaria in Sabah, Malaysia

    William, Timothy; Rahman, Hasan A.; Jelip, Jenarun; Ibrahim, Mohammad Y.; Menon, Jayaram; Grigg, Matthew J.; Yeo, Tsin W.; Anstey, Nicholas M.; Barber, Bridget E.

    2013-01-01

    Background The simian parasite Plasmodium knowlesi is a common cause of human malaria in Malaysian Borneo and threatens the prospect of malaria elimination. However, little is known about the emergence of P. knowlesi, particularly in Sabah. We reviewed Sabah Department of Health records to investigate the trend of each malaria species over time. Methods Reporting of microscopy-diagnosed malaria cases in Sabah is mandatory. We reviewed all available Department of Health malaria notification records from 1992–2011. Notifications of P. malariae and P. knowlesi were considered as a single group due to microscopic near-identity. Results From 1992–2011 total malaria notifications decreased dramatically, with P. falciparum peaking at 33,153 in 1994 and decreasing 55-fold to 605 in 2011, and P. vivax peaking at 15,857 in 1995 and decreasing 25-fold to 628 in 2011. Notifications of P. malariae/P. knowlesi also demonstrated a peak in the mid-1990s (614 in 1994) before decreasing to ≈100/year in the late 1990s/early 2000s. However, P. malariae/P. knowlesi notifications increased >10-fold between 2004 (n = 59) and 2011 (n = 703). In 1992 P. falciparum, P. vivax and P. malariae/P. knowlesi monoinfections accounted for 70%, 24% and 1% respectively of malaria notifications, compared to 30%, 31% and 35% in 2011. The increase in P. malariae/P. knowlesi notifications occurred state-wide, appearing to have begun in the southwest and progressed north-easterly. Conclusions A significant recent increase has occurred in P. knowlesi notifications following reduced transmission of the human Plasmodium species, and this trend threatens malaria elimination. Determination of transmission dynamics and risk factors for knowlesi malaria is required to guide measures to control this rising incidence. PMID:23359830

  7. The sixth mass coextinction: are most endangered species parasites and mutualists?

    Dunn, Robert R; Harris, Nyeema C; Colwell, Robert K; Koh, Lian Pin; Sodhi, Navjot S

    2009-09-07

    The effects of species declines and extinction on biotic interactions remain poorly understood. The loss of a species is expected to result in the loss of other species that depend on it (coextinction), leading to cascading effects across trophic levels. Such effects are likely to be most severe in mutualistic and parasitic interactions. Indeed, models suggest that coextinction may be the most common form of biodiversity loss. Paradoxically, few historical or contemporary coextinction events have actually been recorded. We review the current knowledge of coextinction by: (i) considering plausible explanations for the discrepancy between predicted and observed coextinction rates; (ii) exploring the potential consequences of coextinctions; (iii) discussing the interactions and synergies between coextinction and other drivers of species loss, particularly climate change; and (iv) suggesting the way forward for understanding the phenomenon of coextinction, which may well be the most insidious threat to global biodiversity.

  8. Expression, Purification and Characterization of GMZ2'.10C, a Complex Disulphide-Bonded Fusion Protein Vaccine Candidate against the Asexual and Sexual Life-Stages of the Malaria-Causing Plasmodium falciparum Parasite

    Mistarz, U.H.; Singh, S.K; Nguyen, T.; Roeffen, W.; Lissau, C.; Madsen, S.M.; Vrang, A.; Tiendrebeogo, R.W.; Kana, I.H.; Sauerwein, R.W.; Theisen, M.; Rand, K.D.

    2017-01-01

    PURPOSE: Production and characterization of a chimeric fusion protein (GMZ2'.10C) which combines epitopes of key malaria parasite antigens: glutamate-rich protein (GLURP), merozoite surface protein 3 (MSP3), and the highly disulphide bonded Pfs48/45 (10C). GMZ2'.10C is a potential candidate for a

  9. Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A

    Ricke, C H; Staalsoe, T; Koram, K

    2000-01-01

    -associated malaria (PAM) in endemic areas is concentrated in the first few pregnancies, indicating that protective immunity to PAM is a function of parity. The placenta is often heavily infected in PAM, and placental parasites show a striking preference for chondroitin sulfate A (CSA) as an adhesion receptor. Plasma...

  10. In-Silico detection of chokepoints enzymes in four plasmodium species

    Of the over 156 species of Plasmodium that infect vertebrates, only four infect man: Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale and Plasmodium malariae. Other species infect other animals including birds, reptiles and rodents. The rodent malaria parasites are Plasmodium berghei, Plasmodium yoelii, ...

  11. Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae.

    Kamdem, Colince; Tene Fossog, Billy; Simard, Frédéric; Etouna, Joachim; Ndo, Cyrille; Kengne, Pierre; Boussès, Philippe; Etoa, François-Xavier; Awono-Ambene, Parfait; Fontenille, Didier; Antonio-Nkondjio, Christophe; Besansky, Nora J; Costantini, Carlo

    2012-01-01

    Anthropogenic habitat disturbance is a prime cause in the current trend of the Earth's reduction in biodiversity. Here we show that the human footprint on the Central African rainforest, which is resulting in deforestation and growth of densely populated urban agglomerates, is associated to ecological divergence and cryptic speciation leading to adaptive radiation within the major malaria mosquito Anopheles gambiae. In southern Cameroon, the frequency of two molecular forms--M and S--among which reproductive isolation is strong but still incomplete, was correlated to an index of urbanisation extracted from remotely sensed data, expressed as the proportion of built-up surface in each sampling unit. The two forms markedly segregated along an urbanisation gradient forming a bimodal cline of ∼6-km width: the S form was exclusive to the rural habitat, whereas only the M form was present in the core of densely urbanised settings, co-occurring at times in the same polluted larval habitats of the southern house mosquito Culex quinquefasciatus--a species association that was not historically recorded before. Our results indicate that when humans create novel habitats and ecological heterogeneities, they can provide evolutionary opportunities for rapid adaptive niche shifts associated with lineage divergence, whose consequences upon malaria transmission might be significant.

  12. Heterologous Infection of Pregnant Mice Induces Low Birth Weight and Modifies Offspring Susceptibility to Malaria.

    Ankur Sharma

    Full Text Available Pregnancy malaria (PM is associated with poor pregnancy outcomes, and can arise due to relapse, recrudescence or a re-infection with heterologous parasites. We have used the Plasmodium chabaudi model of pregnancy malaria in C57BL/6 mice to examine recrudescence and heterologous infection using CB and AS parasite strains. After an initial course of patent parasitemia and first recrudescence, CB but not AS parasites were observed to recrudesce again in most animals that became pregnant. Pregnancy exacerbated heterologous CB infection of AS-experienced mice, leading to mortality and impaired post-natal growth of pups. Parasites were detected in placental blood without evidence of sequestration, unlike P. falciparum but similar to other malaria species that infect pregnant women. Inflammatory cytokine levels were elevated in pregnant females during malaria, and associated with intensity of infection and with poor outcomes. Pups born to dams during heterologous infection were more resistant to malaria infections at 6-7 weeks of age, compared to pups born to malaria-experienced but uninfected dams or to malaria-naïve dams. In summary, our mouse model reproduces several features of human PM, including recrudescences, heterologous infections, poor pregnancy outcomes associated with inflammatory cytokines, and modulation of offspring susceptibility to malaria. This model should be further studied to explore mechanisms underlying PM pathogenesis.

  13. In vivo approaches reveal a key role for DCs in CD4+ T cell activation and parasite clearance during the acute phase of experimental blood-stage malaria.

    Henrique Borges da Silva

    2015-02-01

    Full Text Available Dendritic cells (DCs are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip, with Plasmodium chabaudi AS (Pc parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.

  14. In vivo approaches reveal a key role for DCs in CD4+ T cell activation and parasite clearance during the acute phase of experimental blood-stage malaria.

    Borges da Silva, Henrique; Fonseca, Raíssa; Cassado, Alexandra Dos Anjos; Machado de Salles, Érika; de Menezes, Maria Nogueira; Langhorne, Jean; Perez, Katia Regina; Cuccovia, Iolanda Midea; Ryffel, Bernhard; Barreto, Vasco M; Marinho, Cláudio Romero Farias; Boscardin, Silvia Beatriz; Álvarez, José Maria; D'Império-Lima, Maria Regina; Tadokoro, Carlos Eduardo

    2015-02-01

    Dendritic cells (DCs) are phagocytes that are highly specialized for antigen presentation. Heterogeneous populations of macrophages and DCs form a phagocyte network inside the red pulp (RP) of the spleen, which is a major site for the control of blood-borne infections such as malaria. However, the dynamics of splenic DCs during Plasmodium infections are poorly understood, limiting our knowledge regarding their protective role in malaria. Here, we used in vivo experimental approaches that enabled us to deplete or visualize DCs in order to clarify these issues. To elucidate the roles of DCs and marginal zone macrophages in the protection against blood-stage malaria, we infected DTx (diphtheria toxin)-treated C57BL/6.CD11c-DTR mice, as well as C57BL/6 mice treated with low doses of clodronate liposomes (ClLip), with Plasmodium chabaudi AS (Pc) parasites. The first evidence suggesting that DCs could contribute directly to parasite clearance was an early effect of the DTx treatment, but not of the ClLip treatment, in parasitemia control. DCs were also required for CD4+ T cell responses during infection. The phagocytosis of infected red blood cells (iRBCs) by splenic DCs was analyzed by confocal intravital microscopy, as well as by flow cytometry and immunofluorescence, at three distinct phases of Pc malaria: at the first encounter, at pre-crisis concomitant with parasitemia growth and at crisis when the parasitemia decline coincides with spleen closure. In vivo and ex vivo imaging of the spleen revealed that DCs actively phagocytize iRBCs and interact with CD4+ T cells both in T cell-rich areas and in the RP. Subcapsular RP DCs were highly efficient in the recognition and capture of iRBCs during pre-crisis, while complete DC maturation was only achieved during crisis. These findings indicate that, beyond their classical role in antigen presentation, DCs also contribute to the direct elimination of iRBCs during acute Plasmodium infection.

  15. Description and identification of four species of plant parasitic nematodes associated with grassland, fruit trees and maize in Romania.

    Badi, M; Geraert, E

    2002-01-01

    Three species of plant parasitic nematodes present in two romanian soil samples were described and identified in the present study. The species belong to order tylenchida and to taxonomical families Tylenchidae (Basiria aberrans) and Belonolaimidae (Tylenchorhynchus georgiensis and Merlinius brevidens). The identification of the present specimens was based on the classical taxonomy, following morphological and morphometrical characters in the species specific identification keys.

  16. Neglected Parasitic Infections: Toxocariasis

    This podcast is an overview of the Clinician Outreach and Communication Activity (COCA) Call: Neglected Parasitic Infections in the United States. Neglected Parasitic Infections are a group of diseases that afflict vulnerable populations and are often not well studied or diagnosed. A subject matter expert from CDC's Division of Parasitic Diseases and Malaria describes the epidemiology, diagnosis, and treatment of toxocariasis.

  17. Species-specific ant brain manipulation by a specialized fungal parasite.

    de Bekker, Charissa; Quevillon, Lauren E; Smith, Philip B; Fleming, Kimberly R; Ghosh, Debashis; Patterson, Andrew D; Hughes, David P

    2014-08-29

    A compelling demonstration of adaptation by natural selection is the ability of parasites to manipulate host behavior. One dramatic example involves fungal species from the genus Ophiocordyceps that control their ant hosts by inducing a biting behavior. Intensive sampling across the globe of ants that died after being manipulated by Ophiocordyceps suggests that this phenomenon is highly species-specific. We advance our understanding of this system by reconstructing host manipulation by Ophiocordyceps parasites under controlled laboratory conditions and combining this with field observations of infection rates and a metabolomics survey. We report on a newly discovered species of Ophiocordyceps unilateralis sensu lato from North America that we use to address the species-specificity of Ophiocordyceps-induced manipulation of ant behavior. We show that the fungus can kill all ant species tested, but only manipulates the behavior of those it infects in nature. To investigate if this could be explained at the molecular level, we used ex vivo culturing assays to measure the metabolites that are secreted by the fungus to mediate fungus-ant tissue interactions. We show the fungus reacts heterogeneously to brains of different ant species by secreting a different array of metabolites. By determining which ion peaks are significantly enriched when the fungus is grown alongside brains of its naturally occurring host, we discovered candidate compounds that could be involved in behavioral manipulation by O. unilateralis s.l.. Two of these candidates are known to be involved in neurological diseases and cancer. The integrative work presented here shows that ant brain manipulation by O. unilateralis s.l. is species-specific seemingly because the fungus produces a specific array of compounds as a reaction to the presence of the host brain it has evolved to manipulate. These studies have resulted in the discovery of candidate compounds involved in establishing behavioral manipulation

  18. UK malaria treatment guidelines 2016.

    Lalloo, David G; Shingadia, Delane; Bell, David J; Beeching, Nicholas J; Whitty, Christopher J M; Chiodini, Peter L

    2016-06-01

    1.Malaria is the tropical disease most commonly imported into the UK, with 1300-1800 cases reported each year, and 2-11 deaths. 2. Approximately three quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. 3. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other species of plasmodium: Plasmodium ovale, Plasmodium malariae or Plasmodium knowlesi. 4. Mixed infections with more than one species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. 5. There are no typical clinical features of malaria; even fever is not invariably present. Malaria in children (and sometimes in adults) may present with misleading symptoms such as gastrointestinal features, sore throat or lower respiratory complaints. 6. A diagnosis of malaria must always be sought in a feverish or sick child or adult who has visited malaria-endemic areas. Specific country information on malaria can be found at http://travelhealthpro.org.uk/. P. falciparum infection rarely presents more than six months after exposure but presentation of other species can occur more than a year after exposure. 7. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until more than one blood specimen has been examined. Other travel related infections, especially viral haemorrhagic fevers, should also be considered. 8. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites. P. falciparum and P. vivax (depending upon the product) malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens. RDTs for other Plasmodium species are not as reliable. 9

  19. Habitat suitability of Anopheles vector species and association with human malaria in the Atlantic Forest in south-eastern Brazil.

    Laporta, Gabriel Zorello; Ramos, Daniel Garkauskas; Ribeiro, Milton Cezar; Sallum, Maria Anice Mureb

    2011-08-01

    Every year, autochthonous cases of Plasmodium vivax malaria occur in low-endemicity areas of Vale do Ribeira in the south-eastern part of the Atlantic Forest, state of São Paulo, where Anopheles cruzii and Anopheles bellator are considered the primary vectors. However, other species in the subgenus Nyssorhynchus of Anopheles (e.g., Anopheles marajoara) are abundant and may participate in the dynamics of malarial transmission in that region. The objectives of the present study were to assess the spatial distribution of An. cruzii, An. bellator and An. marajoara and to associate the presence of these species with malaria cases in the municipalities of the Vale do Ribeira. Potential habitat suitability modelling was applied to determine both the spatial distribution of An. cruzii, An. bellator and An. marajoara and to establish the density of each species. Poisson regression was utilized to associate malaria cases with estimated vector densities. As a result, An. cruzii was correlated with the forested slopes of the Serra do Mar, An. bellator with the coastal plain and An. marajoara with the deforested areas. Moreover, both An. marajoara and An. cruzii were positively associated with malaria cases. Considering that An. marajoara was demonstrated to be a primary vector of human Plasmodium in the rural areas of the state of Amapá, more attention should be given to the species in the deforested areas of the Atlantic Forest, where it might be a secondary vector.

  20. Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways

    Allman, Erik L.; Painter, Heather J.; Samra, Jasmeet; Carrasquilla, Manuela

    2016-01-01

    The threat of widespread drug resistance to frontline antimalarials has renewed the urgency for identifying inexpensive chemotherapeutic compounds that are effective against Plasmodium falciparum, the parasite species responsible for the greatest number of malaria-related deaths worldwide. To aid in the fight against malaria, a recent extensive screening campaign has generated thousands of lead compounds with low micromolar activity against blood stage parasites. A subset of these leads has been compiled by the Medicines for Malaria Venture (MMV) into a collection of structurally diverse compounds known as the MMV Malaria Box. Currently, little is known regarding the activity of these Malaria Box compounds on parasite metabolism during intraerythrocytic development, and a majority of the targets for these drugs have yet to be defined. Here we interrogated the in vitro metabolic effects of 189 drugs (including 169 of the drug-like compounds from the Malaria Box) using ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS). The resulting metabolic fingerprints provide information on the parasite biochemical pathways affected by pharmacologic intervention and offer a critical blueprint for selecting and advancing lead compounds as next-generation antimalarial drugs. Our results reveal several major classes of metabolic disruption, which allow us to predict the mode of action (MoA) for many of the Malaria Box compounds. We anticipate that future combination therapies will be greatly informed by these results, allowing for the selection of appropriate drug combinations that simultaneously target multiple metabolic pathways, with the aim of eliminating malaria and forestalling the expansion of drug-resistant parasites in the field. PMID:27572391

  1. BIOLOGY OF HUMAN MALARIA PLASMODIA INCLUDING PLASMODIUM KNOWLESI

    Spinello Antinori

    2012-03-01

    Full Text Available Malaria is a vector-borne infection caused by unicellular parasite of the genus Plasmodium. Plasmodia are obligate intracellular parasites that in humans after a clinically silent replication phase in the liver are able to infect and replicate within the erythrocytes. Four species (P.falciparum, P.malariae, P.ovale and P.vivax are traditionally recognized as responsible of natural infection in human beings but the recent upsurge of P.knowlesi malaria in South-East Asia has led clinicians to consider it as the fifth human malaria parasite. Recent studies in wild-living apes in Africa have revealed that P.falciparum, the most deadly form of human malaria, is not only human-host restricted as previously believed and its phylogenetic lineage is much more complex with new species identified in gorilla, bonobo and chimpanzee. Although less impressive, new data on biology of P.malariae, P.ovale and P.vivax are also emerging and will be briefly discussed in this review.

  2. PfeIK1, a eukaryotic initiation factor 2α kinase of the human malaria parasite Plasmodium falciparum, regulates stress-response to amino-acid starvation

    Ranford-Cartwright Lisa

    2009-05-01

    Full Text Available Abstract Background Post-transcriptional control of gene expression is suspected to play an important role in malaria parasites. In yeast and metazoans, part of the stress response is mediated through phosphorylation of eukaryotic translation initiation factor 2α (eIF2α, which results in the selective translation of mRNAs encoding stress-response proteins. Methods The impact of starvation on the phosphorylation state of PfeIF2α was examined. Bioinformatic methods were used to identify plasmodial eIF2α kinases. The activity of one of these, PfeIK1, was investigated using recombinant protein with non-physiological substrates and recombinant PfeIF2α. Reverse genetic techniques were used to disrupt the pfeik1 gene. Results The data demonstrate that the Plasmodium falciparum eIF2α orthologue is phosphorylated in response to starvation, and provide bioinformatic evidence for the presence of three eIF2α kinases in P. falciparum, only one of which (PfPK4 had been described previously. Evidence is provided that one of the novel eIF2α kinases, PfeIK1, is able to phosphorylate the P. falciparum eIF2α orthologue in vitro. PfeIK1 is not required for asexual or sexual development of the parasite, as shown by the ability of pfeik1- parasites to develop into sporozoites. However, eIF2α phosphorylation in response to starvation is abolished in pfeik1- asexual parasites Conclusion This study strongly suggests that a mechanism for versatile regulation of translation by several kinases with a similar catalytic domain but distinct regulatory domains, is conserved in P. falciparum.

  3. Quantitative analysis of Plasmodium ookinete motion in three dimensions suggests a critical role for cell shape in the biomechanics of malaria parasite gliding motility.

    Kan, Andrey; Tan, Yan-Hong; Angrisano, Fiona; Hanssen, Eric; Rogers, Kelly L; Whitehead, Lachlan; Mollard, Vanessa P; Cozijnsen, Anton; Delves, Michael J; Crawford, Simon; Sinden, Robert E; McFadden, Geoffrey I; Leckie, Christopher; Bailey, James; Baum, Jake

    2014-05-01

    Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our

  4. Parasites and vectors carry no passport: how to fund cross-border and regional efforts to achieve malaria elimination

    Gueye Cara

    2012-10-01

    Full Text Available Abstract Background Tremendous progress has been made in the last ten years in reducing morbidity and mortality caused by malaria, in part because of increases in global funding for malaria control and elimination. Today, many countries are striving for malaria elimination. However, a major challenge is the neglect of cross-border and regional initiatives in malaria control and elimination. This paper seeks to better understand Global Fund support for multi-country initiatives. Methods Documents and proposals were extracted and reviewed from two main sources, the Global Fund website and Aidspan.org. Documents and reports from the Global Fund Technical Review Panel, Board, and Secretariat documents such as guidelines and proposal templates were reviewed to establish the type of policies enacted and guidance provided from the Global Fund on multi-country initiatives and applications. From reviewing this information, the researchers created 29 variables according to eight dimensions to use in a review of Round 10 applications. All Round 10 multi-country applications (for HIV, malaria and tuberculosis and all malaria multi-country applications (6 from Rounds 1 – 10 were extracted from the Global Fund website. A blind review was conducted of Round 10 applications using the 29 variables as a framework, followed by a review of four of the six successful malaria multi-country grant applications from Rounds 1 – 10. Findings During Rounds 3 – 10 of the Global Fund, only 5.8% of grants submitted were for multi-country initiatives. Out of 83 multi-country proposals submitted, 25.3% were approved by the Technical Review Panel (TRP for funding, compared to 44.9% of single-country applications. The majority of approved multi-country applications were for HIV (76.2%, followed by malaria (19.0%, then tuberculosis (4.8%. TRP recommendations resulted in improvements to application forms, although guidance was generally vague. The in-depth review of Round 10

  5. Population genomics diversity of Plasmodium falciparum in malaria ...

    Background: Plasmodium falciparum, the most dangerous malaria parasite species to humans remains an important public health concern in Okelele, a rural community in Ilorin, Kwara State, Nigeria. There is however little information about the genetic diversity of Plasmodium falciparum in Nigeria. Objective: To determine ...

  6. Treatment failure among patients on self medication for malaria ...

    Methods: One hundred and four patients who said they were not cured after home management of malaria were studied. Giemsa stained blood smears were examined qualitatively and quantitatively using thin and thick films to confirm specie and determine parasite density. Nine symptoms (fever, headache, loss of appetite, ...

  7. Differential attractiveness of humans to the African malaria vector Anopheles gambiae Giles : effects of host characteristics and parasite infection

    Mukabana, W.R.

    2002-01-01

    The results of a series of studies designed to understand the principal factors that determine the differential attractiveness of humans to the malaria vector Anopheles

  8. Antibody reactivities to glutamate-rich peptides of Plasmodium falciparum parasites in humans from areas of different malaria endemicity

    Jakobsen, P.H.; Theander, T.G.; Hvid, L

    1996-01-01

    Synthetic P. falciparum peptides were evaluated as tools in epidemiological investigations of malaria. Plasma IgM and IgG antibody reactivities against synthetic peptides covering sequences of glutamate-rich protein (GLURP) and acidic-basic repeat antigen (ABRA) were measured by ELISA...

  9. Ecology and conservation biology of avian malaria

    LaPointe, Dennis A.; Atkinson, Carter T.; Samuel, Michael D.

    2012-01-01

    Avian malaria is a worldwide mosquito-borne disease caused by Plasmodium parasites. These parasites occur in many avian species but primarily affect passerine birds that have not evolved with the parasite. Host pathogenicity, fitness, and population impacts are poorly understood. In contrast to continental species, introduced avian malaria poses a substantial threat to naive birds on Hawaii, the Galapagos, and other archipelagoes. In Hawaii, transmission is maintained by susceptible native birds, competence and abundance of mosquitoes, and a disease reservoir of chronically infected native birds. Although vector habitat and avian communities determine the geographic distribution of disease, climate drives transmission patterns ranging from continuous high infection in warm lowland forests, seasonal infection in midelevation forests, and disease-free refugia in cool high-elevation forests. Global warming is expected to increase the occurrence, distribution, and intensity of avian malaria across this elevational gradient and threaten high-elevation refugia, which is the key to survival of many susceptible Hawaiian birds. Increased temperatures may have already increased global avian malaria prevalence and contributed to an emergence of disease in New Zealand.

  10. Malaria transmission in Tripura: Disease distribution & determinants.

    Dev, Vas; Adak, Tridibes; Singh, Om P; Nanda, Nutan; Baidya, Bimal K

    2015-12-01

    Malaria is a major public health problem in Tripura and focal disease outbreaks are of frequent occurrence. The state is co-endemic for both Plasmodium falciparum and P. vivax and transmission is perennial and persistent. The present study was aimed to review data on disease distribution to prioritize high-risk districts, and to study seasonal prevalence of disease vectors and their bionomical characteristics to help formulate vector species-specific interventions for malaria control. Data on malaria morbidity in the State were reviewed retrospectively (2008-2012) for understanding disease distribution and transmission dynamics. Cross-sectional mass blood surveys were conducted in malaria endemic villages of South Tripura district to ascertain the prevalence of malaria and proportions of parasite species. Mosquito collections were made in human dwellings of malaria endemic villages aiming at vector incrimination and to study relative abundance, resting and feeding preferences, and their present susceptibility status to DDT. The study showed that malaria was widely prevalent and P. falciparum was the predominant infection (>90%), the remaining were P. vivax cases. The disease distribution, however, was uneven with large concentration of cases in districts of South Tripura and Dhalai coinciding with vast forest cover and tribal populations. Both Anopheles minimus s.s. and An. baimaii were recorded to be prevalent and observed to be highly anthropophagic and susceptible to DDT. Of these, An. minimus was incriminated (sporozoite infection rate 4.92%), and its bionomical characteristics revealed this species to be largely indoor resting and endophagic. For effective control of malaria in the state, it is recommended that diseases surveillance should be robust, and vector control interventions including DDT spray coverage, mass distribution of insecticide-treated nets/ long-lasting insecticidal nets should be intensified prioritizing population groups most at risk to

  11. Early gametocytes of the malaria parasite Plasmodium falciparum specifically remodel the adhesive properties of infected erythrocyte surface

    Tibúrcio, Marta; Silvestrini, Francesco; Bertuccini, Lucia

    2013-01-01

    to ultrastructurally and biochemically analyse parasite-induced modifications on the red blood cell surface and to measure their functional consequences on adhesion to human endothelial cells. This work revealed that stage I gametocytes are able to deform the infected erythrocytes like asexual parasites, but do...... not modify its surface with adhesive 'knob' structures and associated proteins. Reduced levels of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesins are exposed on the red blood cell surface bythese parasites, and the expression of the var gene family, which encodes 50-60 variants of PfEMP1......In Plasmodium falciparum infections the parasite transmission stages, the gametocytes, mature in 10 days sequestered in internal organs. Recent studies suggest that cell mechanical properties rather than adhesive interactions play a role in sequestration during gametocyte maturation. It remains...

  12. Parasite prevalence and community diversity in sympatric and allopatric populations of two woodrat species (Sigmodontinae: Neotoma) in central California.

    Bechtel, Molly J; Teglas, Michael B; Murphy, Peter J; Matocq, Marjorie D

    2015-04-01

    Patterns of host-parasite association may vary across the landscape in part because of host and parasite diversity, divergence, local ecology, or interactions among these factors. In central coastal California, we quantified parasite prevalence, infection intensity, and diversity in two sister species of woodrats (Neotoma fuscipes and Neotoma macrotis) where the species co-occur (sympatry) and where each species exists alone (allopatry). In feces from 50 adults we identified seven taxa: the protozoans Eimeria, Giardia, and Cryptosporidium, the nematodes Trichuris, Aspicularis, and Eucoleus, and a cestode in the family Anoplocephalidae. Gastrointestinal parasite infection intensity and diversity were higher in males than in females, a difference that was most pronounced in the more aggressive N. fuscipes. Both species had lower infection intensity in sympatry than in allopatry and in sympatry the two species did not differ in infection intensity in total but did maintain distinct parasite communities. Taken together, our findings suggest that host evolutionary differences, including perhaps species-specific patterns of aggressive behavior, as well as local ecology, influence the likelihood of infection by these endoparasite taxa.

  13. Occurrence of neoxanthin and lutein epoxide cycle in parasitic Cuscuta species.

    Kruk, Jerzy; Szymańska, Renata

    2008-01-01

    In the present study, xanthophyll composition of eight parasitic Cuscuta species under different light conditions was investigated. Neoxanthin was not detected in four of the eight species examined, while in others it occurred at the level of several percent of total xanthophylls. In C. gronovii and C. lupuliformis it was additionally found that the neoxanthin content was considerably stimulated by strong light. In dark-adapted plants, lutein epoxide level amounted to 10-22% of total xanthophylls in only three species, the highest being for C. lupuliformis, while in others it was below 3%, indicating that the lutein epoxide cycle is limited to only certain Cuscuta species. The obtained data also indicate that the presence of the lutein epoxide cycle and of neoxanthin is independent and variable among the Cuscuta species. The xanthophyll cycle carotenoids violaxanthin, antheraxanthin and zeaxanthin were identified in all the examined species and occurred at the level found in other higher plants. The xanthophyll and lutein epoxide cycle pigments showed typical response to high light stress. The obtained results also suggest that the ability of higher plants to synthesize lutein epoxide probably does not depend on the substrate specificity of zeaxanthin epoxidase but on the availability of lutein for the enzyme.

  14. Diversity within diversity: Parasite species richness in poison frogs assessed by transcriptomics.

    Santos, Juan C; Tarvin, Rebecca D; O'Connell, Lauren A; Blackburn, David C; Coloma, Luis A

    2018-08-01

    Symbionts (e.g., endoparasites and commensals) play an integral role in their host's ecology, yet in many cases their diversity is likely underestimated. Although endoparasites are traditionally characterized using morphology, sequences of conserved genes, and shotgun metagenomics, host transcriptomes constitute an underused resource to identify these organisms' diversity. By isolating non-host transcripts from host transcriptomes, individual host tissues can now simultaneously reveal their endoparasite species richness (i.e., number of different taxa) and provide insights into parasite gene expression. These approaches can be used in host taxa whose endoparasites are mostly unknown, such as those of tropical amphibians. Here, we focus on the poison frogs (Dendrobatidae) as hosts, which are a Neotropical clade known for their bright coloration and defensive alkaloids. These toxins are an effective protection against vertebrate predators (e.g., snakes and birds), bacteria, and skin-biting ectoparasites (e.g., mosquitoes); however, little is known about their deterrence against eukaryotic endoparasites. With de novo transcriptomes of dendrobatids, we developed a bioinformatics pipeline for endoparasite identification that uses host annotated RNA-seq data and set of a priori parasite taxonomic terms, which are used to mine for specific endoparasites. We found a large community of helminths and protozoans that were mostly restricted to the digestive tract and a few systemic parasites (e.g., Trypanosoma). Contrary to our expectations, all dendrobatid frogs regardless of the presence of alkaloid defenses have endoparasites, with their highest species richness located in the frog digestive tract. Some of these organisms (e.g., roundworms) might prove to be generalists, as they were not found to be co-diversifying with their frog hosts. We propose that endoparasites may escape poison frogs' chemical defenses by colonizing tissues with fewer alkaloids than the frog's skin

  15. Informed decision-making before changing to RDT: a comparison of microscopy, rapid diagnostic test and molecular techniques for the diagnosis and identification of malaria parasites in Kassala, eastern Sudan.

    Osman, Mamoun M M; Nour, Bakri Y M; Sedig, Mohamed F; De Bes, Laura; Babikir, Adil M; Mohamedani, Ahmed A; Mens, Petra F

    2010-12-01

    Rapid diagnostic tests (RDTs) are promoted for the diagnosis of malaria in many countries. The question arises whether laboratories where the current method of diagnosis is microscopy should also switch to RDT. This problem was studied in Kassala, Sudan where the issue of switching to RDT is under discussion. Two hundred and three blood samples were collected from febrile patients suspected of having malaria. These were subsequently analysed with microscopy, RDT (SD Bioline P.f/P.v) and PCR for the detection and identification of Plasmodium parasites. Malaria parasites were detected in 36 blood samples when examined microscopically, 54 (26.6%) samples were found positive for malaria parasites by RDT, and 44 samples were positive by PCR. Further analysis showed that the RDT used in our study resulted in a relatively high number of false positive samples. When microscopy was compared with PCR, an agreement of 96.1% and k = 0.88 (sensitivity 85.7% and specificity 100%) was found. However, when RDT was compared with PCR, an agreement of only 81.2 and k = 0.48 (sensitivity 69% and specificity 84%) was found. PCR has proven to be one of the most specific and sensitive diagnostic methods, particularly for malaria cases with low parasitaemia. However, this technique has limitations in its routine use under resource-limited conditions, such as our study location. At present, based on these results, microscopy remains the best option for routine diagnosis of malaria in Kassala, eastern Sudan. © 2010 Blackwell Publishing Ltd.

  16. Morphological and molecular characteristics of a new species of Pasteuria parasitic on Meloidogyne ardenensis.

    Bishop, Alistair H; Gowen, Simon R; Pembroke, Barbara; Trotter, James R

    2007-09-01

    A species of the hyper-parasitic bacterium Pasteuria was isolated from the root-knot nematode Meloidogyne ardenensis infecting the roots of ash (Fraxinus excelsior). It is morphologically different from some other Pasteuria pathogens of nematodes in that the spores lack a basal ring on the ventral side of the spore and have a unique clumping nature. Transmission electron microscopy (TEM) showed that the clumps of spores are not random aggregates but result from the disintegration of the suicide cells of the thalli. Sporulation within each vegetative mycelium was shown to be asynchronous. In addition to the novel morphological features 16S rRNA sequence analysis showed this to be a new species of Pasteuria which we have called P. hartismeri. Spores of P. hartismeri attach to juveniles of root-knot nematodes infecting a wide range of plants such as mint (Meloidogyne hapla), rye grass (unidentified Meloidogyne sp.) and potato (Meloidogyne fallax).

  17. SAM domain-dependent activity of PfTKL3, an essential tyrosine kinase-like kinase of the human malaria parasite Plasmodium falciparum.

    Abdi, Abdirahman; Eschenlauer, Sylvain; Reininger, Luc; Doerig, Christian

    2010-10-01

    Over the last decade, several protein kinases inhibitors have reached the market for cancer chemotherapy. The kinomes of pathogens represent potentially attractive targets in infectious diseases. The functions of the majority of protein kinases of Plasmodium falciparum, the parasitic protist responsible for the most virulent form of human malaria, remain unknown. Here we present a thorough characterisation of PfTKL3 (PF13_0258), an enzyme that belongs to the tyrosine kinase-like kinase (TKL) group. We demonstrate by reverse genetics that PfTKL3 is essential for asexual parasite proliferation in human erythrocytes. PfTKL3 is expressed in both asexual and gametocytes stages, and in the latter the protein co-localises with cytoskeleton microtubules. Recombinant PfTKL3 displays in vitro autophosphorylation activity and is able to phosphorylate exogenous substrates, and both activities are dramatically dependent on the presence of an N-terminal "sterile alpha-motif" domain. This study identifies PfTKL3 as a validated drug target amenable to high-throughput screening.

  18. Major Burden of Severe Anemia from Non-Falciparum Malaria Species in Southern Papua: A Hospital-Based Surveillance Study

    Douglas, Nicholas M.; Lampah, Daniel A.; Kenangalem, Enny; Simpson, Julie A.; Poespoprodjo, Jeanne R.; Sugiarto, Paulus; Anstey, Nicholas M.; Price, Ric N.

    2013-01-01

    Background The burden of anemia attributable to non-falciparum malarias in regions with Plasmodium co-endemicity is poorly documented. We compared the hematological profile of patients with and without malaria in southern Papua, Indonesia. Methods and Findings Clinical and laboratory data were linked for all patients presenting to a referral hospital between April 2004 and December 2012. Data were available on patient demographics, malaria diagnosis, hemoglobin concentration, and clinical outcome, but other potential causes of anemia could not be identified reliably. Of 922,120 patient episodes (837,989 as outpatients and 84,131 as inpatients), a total of 219,845 (23.8%) were associated with a hemoglobin measurement, of whom 67,696 (30.8%) had malaria. Patients with P. malariae infection had the lowest hemoglobin concentration (n = 1,608, mean = 8.93 [95% CI 8.81–9.06]), followed by those with mixed species infections (n = 8,645, mean = 9.22 [95% CI 9.16–9.28]), P. falciparum (n = 37,554, mean = 9.47 [95% CI 9.44–9.50]), and P. vivax (n = 19,858, mean = 9.53 [95% CI 9.49–9.57]); p-value for all comparisons anemia (hemoglobin anemia (adjusted odds ratio [AOR] 3.25 [95% CI 2.99–3.54]); AORs for severe anaemia associated with P. falciparum, P. vivax, and P. malariae were 2.11 (95% CI 2.00–2.23), 1.87 (95% CI 1.74–2.01), and 2.18 (95% CI 1.76–2.67), respectively, panemia was attributable to non-falciparum infections compared with 15.1% (95% CI 13.9%–16.3%) for P. falciparum monoinfections. Patients with severe anemia had an increased risk of death (AOR = 5.80 [95% CI 5.17–6.50]; panemia in early infancy, mixed P. vivax/P. falciparum infections are associated with a greater hematological impairment than either species alone, and in adulthood P. malariae, although rare, is associated with the lowest hemoglobin concentration. These findings highlight the public health importance of integrated genus-wide malaria

  19. A novel tetratricopeptide repeat (TPR containing PP5 serine/threonine protein phosphatase in the malaria parasite, Plasmodium falciparum

    Adams Brian

    2001-11-01

    Full Text Available Abstract Background The malarial parasite, Plasmodium falciparum (Pf, is responsible for nearly 2 million deaths worldwide. However, the mechanisms of cellular signaling in the parasite remain largely unknown. Recent discovery of a few protein kinases and phosphatases point to a thriving reversible phosphorylation system in the parasite, although their function and regulation need to be determined. Results We provide biochemical and sequence evidence for a protein serine/threonine phosphatase type PP5 in Plasmodium falciparum, and named it PfPP5. The 594-amino acid polypeptide was encoded by a 1785 nucleotide long intronless gene in the parasite. The recombinant protein, expressed in bacteria, was indistinguishable from native PfPP5. Sequencing comparison indicated that the extra-long N-terminus of PfPP5 outside the catalytic core contained four tetratricopeptide repeats (TPRs, compared to three such repeats in other PP5 phosphatases. The PfPP5 N-terminus was required for stimulation of the phosphatase activity by polyunsaturated fatty acids. Co-immunoprecipitation demonstrated an interaction between native PfPP5 and Pf heat shock protein 90 (hsp90. PfPP5 was expressed in all the asexual erythrocytic stages of the parasite, and was moderately sensitive to okadaic acid. Conclusions This is the first example of a TPR-domain protein in the Apicomplexa family of parasites. Since TPR domains play important roles in protein-protein interaction, especially relevant to the regulation of PP5 phosphatases, PfPP5 is destined to have a definitive role in parasitic growth and signaling pathways. This is exemplified by the interaction between PfPP5 and the cognate chaperone hsp90.

  20. Gastrointestinal parasitic infection in diverse species of domestic ruminants inhabiting tribal rural areas of southern Rajasthan, India.

    Choubisa, S L; Jaroli, V J

    2013-10-01

    A total of 415 adult domesticated ruminants, 130 cattle (Bos taurus), 108 buffaloes (Bubalus bubalis), 94 goats (Capra hircus) and 83 sheep (Ovis aries) inhabiting tribal rural areas of southern Rajasthan, India were investigated for evidence of gastrointestinal protozoan and helminthic infections. In southern Rajasthan humid ecosystem is predominant and has number of perennial freshwater bodies. Fresh faecal samples of these animals were examined microscopically by direct wet smear with saline and 1 % Lugol's iodine and formalin ether concentration. Of these 296 (71.32 %) were found to be infected with different species of gastrointestinal parasites. The highest (93.84 %) prevalence of these parasitic infections was found in cattle followed by goats (82.97 %), sheep (55.42 %) and buffaloes (46.29 %). Except cattle no other ruminants revealed protozoan infection. A total 8 species of gastrointestinal parasites were encountered. Among these parasites Fasciola hepatica was the commonest (15.18 %) followed by Haemonchus contortus (11.32 %), Ancylostoma duodenale (10.36 %), Trichuris trichiura (9.15 %), Amphistome species (7.95 %), Moniezia expansa (6.98 %), Strongyloides stercoralis (4.57 %) and Balantidium coli (3.37 %). The prevalence rate of these parasitic infections also varied seasonally. The highest prevalence rate was found in rainy season (84.21 %) followed by winter (73.9 %) and summer (52.8 %). The possible causes for variation in prevalence of parasitic infections are also discussed.

  1. HUBUNGAN ANOPHELES BARBIROSTRIS DENGAN MALARIA

    Krisna Iryani

    2013-03-01

    Full Text Available Malaria is a disease caused by intercellular obligate protozoa genus of Plasmodium which is a parasite carried by female Anopheles mosquito. One of them is Anopheles barbirostris. Research in several places already proved that Anopheles barbirostris acts as a vector of malaria. One case that occurred in Cineam district, Tasikmalaya regency showed that Anopheles barbirostris is suspected as vector of malaria. This is proven through a research on the relationship between Anopheles barbirostris with malaria. Data was taken from the larvae and adult mosquitoes captured around Cineam village, Tasikmalaya. The observation was done in the open field and laboratory. Data and identification by pictorial key for female Anopheles showed that the population of Anopheles barbirostris was always a dominant population compared to another Anopheles species. Because of the breeding ponds and the resting places were around the village, it is suspected that they mainly bit humans. The result of the observation in laboratory showed the life cycle of Anopheles barbirostris are around 20-27 days, and the longevity of 20 days. Morphological identification of Anopheles barbirostris by pictorial key for female Anopheles showed that there is no any significant difference. This research showed that Anopheles barbirostris was suspected as vector of malaria in Cineam village, Tasikmalaya.

  2. Neglected Parasitic Infections: Toxocariasis

    2012-01-05

    This podcast is an overview of the Clinician Outreach and Communication Activity (COCA) Call: Neglected Parasitic Infections in the United States. Neglected Parasitic Infections are a group of diseases that afflict vulnerable populations and are often not well studied or diagnosed. A subject matter expert from CDC's Division of Parasitic Diseases and Malaria describes the epidemiology, diagnosis, and treatment of toxocariasis.  Created: 1/5/2012 by Center for Global Health, Division of Parasitic Diseases and Malaria (DPDM); Emergency Risk Communication Branch (ERCB)/Joint Information Center (JIC), Office of Public Health Preparedness and Response (OPHPR).   Date Released: 1/9/2012.

  3. Malaria and Agriculture in Kenya

    Nancy Minogue

    die every day from malaria, conventional efforts to control the disease have not worked. Malaria parasites are .... and other animals. Mosquito nets. Provide insecticide-treated bednets to groups at high risk for malaria, namely young children and pregnant women, through partnerships with nongovernmental organizations ...

  4. Anatomical confirmation of root parasitism in Brazilian Agalinis Raf. species (Scrophulariaceae

    Samira Ismael Elias

    2001-09-01

    Full Text Available Agalinis Raf. consists approximately of 60 species, 14 of which occur in Brazil. The genus presents predominantly american distribution and the Brazilian species appears mainly in high areas of Minas Gerais. The North-American species are refered as hemiparasites, but there is no anatomical data about it in relation to the Brazilian species. Anatomical studies were conducted to verify whether the Agalinis species from Brazil were root parasites or not. The eight species analysed were presented haustoria which varied in shape, arrangement and size. They were generally elliptic or globose structures and mostly were tightly sticked to other roots in a solitary or clustered manner. The seriate sections of haustoria showed that there was a xylem connection between them and the roots in which they were attached. This fact has confirmed for the first time the occurrence of parasitism in the Brazilian species of Agalinis.Agalinis Raf. (Scrophulariaceae consiste de aproximadamente 60 espécies, das quais 14 ocorrem no Brasil. O gênero apresenta distribuição predominantemente americana, e as espécies brasileiras ocorrem principalmente em áreas de altitude de Minas Gerais. As espécies Norte-Americanas de Agalinis são referidas como hemiparasitas, mas não há dados anatômicos sobre este fato em relação às espécies brasileiras. Neste sentido, este trabalho apresenta estudos anatômicos com a finalidade de verificar se as espécies de Agalinis do Brasil são parasitas ou não. As oito espécies analisadas aqui apresentam haustórios que variam em forma, arranjo e tamanho. Geralmente são estruturas elípticas ou globosas e na maioria das vezes encontram-se firmemente aderidas a outras raízes de maneira solitária ou agrupada. Os cortes seriados dos haustórios revelam que há uma conexão xilemática entre eles e as raízes às quais estão conectados. Este fato confirma pela primeira vez a ocorrência de parasitismo nas espécies brasileiras de

  5. A new species of Moennigia (Trichostrongylina: Molineidae) a parasite of Chaetophractus spp. (Xenarthra: Dasypodidae) from Argentina.

    Ezquiaga, María C; Navone, Graciela T

    2014-08-01

    Moennigia celinae n. sp. collected from the small intestine of Chaetophractus vellerosus and Chaetophractus villosus (Xenarthra, Dasypodidae) from Argentina is herein described. This new species belongs to the genus Moennigia because it possesses a short uterus with few eggs, atrophied distal branch of the ovejector, vulva near the anus, and a conical tail. The new species has a synlophe with 17 symmetrical ridges and slight ventro-dorsal orientation. The spicule length:body length ratio is similar to that of the other species parasitic of Dasypodidae; however, Moennigia celinae n. sp. differs from Moennigia pintoi and Moennigia lutzi because the latter lack a gubernaculum, and from Moennigia complexus, Moennigia moennigi, Moennigia filamentosus, Moennigia intrusa, Moennigia littlei, Moennigia pulchra and Moennigia dessetae by the latter having very complex spicules with 2 or 3 points at the distal extremity. Moreover, Moennigia celinae n. sp. differs from Moennigia virilis by the length and shape of its spicules. Moennigia celinae n. sp. can be distinguished from Moennigia travassosi by the shape of the dorsal ray of the caudal bursa. Moennigia celinae n. sp. resembles Moennigia pseudopulchra but the gubernaculum of the latter is V-shaped. This is the second report of a species of Moennigia in Argentina and the first for the genus Chaetophractus.

  6. Species spectrum, diversity profile and infection indices of helminth parasite fauna of Chirruh snowtrout, Schizothorax esocinus (Heckel) in lake ecosystems of Kashmir Himalayas-Do similarity and host-parasite associations arise?

    Zargar, U R; Chishti, M Z; Yousuf, A R; Ahmad, Fayaz

    2013-09-01

    In order to assess the species richness and diversity profile of helminth parasite fauna in an endemic fish, an investigation was carried out in two urban and two rural lakes of Kashmir. Overall nine species of helminth parasites were observed in four lakes. Of these three were autogenic and six were allogenic. Heteroxenous parasite species were more in number than monoxenous species. Results showed significant differences in heteroxenous / monoxenous ratio between different lakes. Core species (Prevalence > 20) were only found in hypertrophic lake (Anchar Lake). Overall, majority of helminth species were either secondary or satellite species. Prevalence of some helminth parasites showed significant differences in different lakes. In addition mean intensity showed significant differences between autogenic and allogenic parasites (P Diversity indices showed significant variation between different lakes. Maximum helminth species per host was in Anchar Lake. Finally we concluded that helminth parasite fauna showed significant differences in species richness and infection indices between different lakes. Diversity profile was higher in Anchar Lake in comparison to other three lakes. The results clearly show that environmental features of lake ecosystems have got an impact on distribution pattern of helminth parasites in S. esocinus. We suggest comparative parasitological study should be taken between different species of fish in order to have a clear picture regarding the species composition of helminth species in this region. Also we need to characterize the species spectrum of parasitic worms in fish of freshwater bodies of this region as well as other similar type of climatic zones because parasite fauna is an integral part of the inventory of biodiversity and as possible regulators of host populations in aquatic ecosystems.

  7. Controlled Human Malaria Infection: Applications, Advances, and Challenges.

    Stanisic, Danielle I; McCarthy, James S; Good, Michael F

    2018-01-01

    Controlled human malaria infection (CHMI) entails deliberate infection with malaria parasites either by mosquito bite or by direct injection of sporozoites or parasitized erythrocytes. When required, the resulting blood-stage infection is curtailed by the administration of antimalarial drugs. Inducing a malaria infection via inoculation with infected blood was first used as a treatment (malariotherapy) for neurosyphilis in Europe and the United States in the early 1900s. More recently, CHMI has been applied to the fields of malaria vaccine and drug development, where it is used to evaluate products in well-controlled early-phase proof-of-concept clinical studies, thus facilitating progression of only the most promising candidates for further evaluation in areas where malaria is endemic. Controlled infections have also been used to immunize against malaria infection. Historically, CHMI studies have been restricted by the need for access to insectaries housing infected mosquitoes or suitable malaria-infected individuals. Evaluation of vaccine and drug candidates has been constrained in these studies by the availability of a limited number of Plasmodium falciparum isolates. Recent advances have included cryopreservation of sporozoites, the manufacture of well-characterized and genetically distinct cultured malaria cell banks for blood-stage infection, and the availability of Plasmodium vivax -specific reagents. These advances will help to accelerate malaria vaccine and drug development by making the reagents for CHMI more widely accessible and also enabling a more rigorous evaluation with multiple parasite strains and species. Here we discuss the different applications of CHMI, recent advances in the use of CHMI, and ongoing challenges for consideration. Copyright © 2017 American Society for Microbiology.

  8. Development of lymphatic filarial parasite Wuchereria bancrofti (Spirurida: Onchocercidae) in mosquito species (Diptera: Culicidae) fed artificially on microfilaremic blood.

    Paily, K P; Hoti, S L; Balaraman, K

    2006-11-01

    The efficiency of laboratory colonies of mosquitoes such as Anopheles stephensi Liston, Aedes aegypti (L.) Liverpool strain, Ae. aegypti wild type, Aedes albopictus (Skuse), Culex tritaeniorhynchus Giles, Culex sitiens Wiedemann, and Armigeres subalbatus Coquillett in supporting the development of Wuchereria bancrofti (Cobbold) (Spirurida: Onchocercidae) microfilariae to infective larvae was investigated. The mosquitoes were fed on heparinized microfilaremic human blood by using a membrane-feeding unit with Parafilm as membrane. The rate of infection, parasite development, and parasite burden were compared with that in the known vector mosquito Culex quinquefasciatus Say. Cx. quinquefasciatus showed the highest percentage of infection, followed by Ae. aegypti Liverpool strain and An. stephensi. The rate of development of the parasite was more or less similar in all the three species, and infective larvae were found on day 13. When the larvae were harvested on day 17, Cx. quinquefasciatus yielded the highest numbers, followed by Ae. aegypti Liverpool strain and An. stephensi. The percentage of infection was low, and the development was slow in Cx. tritaeniorhynchus compared with the other susceptible species. The parasite developed to second-stage larvae only by day 22 and to infective larvae by day 28. When 2-wk-old Cx. tritaeniorhynchus were fed on microfilaremic blood, they could develop the parasite to infective larvae by day 13 postfeeding. All other species of mosquitoes tested were found to be refractory to parasite development. It is shown that Cx. quinquefasciatus is the most suitable mosquito host for the production of infective larvae. However, Ae. aegypti Liverpool strain, which is commonly used for Brugia malayi filarial parasite, also can be used for generation of W. bancrofti infective larvae to circumvent the problem of maintaining two mosquito species.

  9. Parasites of domestic and wild animals in South Africa. XLIV. Fleas (Insecta : Siphonaptera : Pulicidae collected from 15 carnivore species

    I.G. Horak

    2004-11-01

    Full Text Available Fleas were collected from 61 wild carnivores belonging to 13 species in various nature reserves and on farms, two feral domestic cats in a nature reserve and a domestic dog in the city of Johannesburg. Eleven flea species, including two subspecies of one of these, belonging to six genera were recovered. Amongst these only Ctenocephalides felis felis and Ctenocephalides felis strongylus are considered specific parasites of carnivores. The remaining ten species normally infest the prey animals of the various carnivores.

  10. Differential Sharing of Chemical Cues by Social Parasites Versus Social Mutualists in a Three-Species Symbiosis.

    Emery, Virginia J; Tsutsui, Neil D

    2016-04-01

    Chemical recognition systems are crucial for maintaining the unity of social insect colonies. It has been proposed that colonies form a common chemical signature, called the gestalt odor, which is used to distinguish colony members and non-members. This chemical integration is achieved actively through social interactions such as trophallaxis and allogrooming, or passively such as through exposure to common nest material. When colonies are infiltrated by social parasites, the intruders often use some form of chemical mimicry. However, it is not always clear how this chemical mimicry is accomplished. Here, we used a three-species nesting symbiosis to test the differences in chemical integration of mutualistic (parabiotic) and parasitic ant species. We found that the parasite (Solenopsis picea) obtains chemical cues from both of the two parabiotic host ant species. However, the two parabiotic species (Crematogaster levior and Camponotus femoratus) maintain species-specific cues, and do not acquire compounds from the other species. Our findings suggest that there is a fundamental difference in how social mutualists and social parasites use chemicals to integrate themselves into colonies.

  11. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes.

    Papa, Francesco; Windbichler, Nikolai; Waterhouse, Robert M; Cagnetti, Alessia; D'Amato, Rocco; Persampieri, Tania; Lawniczak, Mara K N; Nolan, Tony; Papathanos, Philippos Aris

    2017-09-01

    Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues. © 2017 Papa et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Babesia spp. in European wild ruminant species: parasite diversity and risk factors for infection.

    Michel, Adam O; Mathis, Alexander; Ryser-Degiorgis, Marie-Pierre

    2014-06-13

    Babesia are tick-borne parasites th