WorldWideScience

Sample records for malaria molecular functional

  1. Molecular Vaccines for Malaria

    Science.gov (United States)

    2010-01-01

    Removing inhibitory plasm ids from the cock- with the radiation-attenuated sporozoite (RAS) vaccine36•37 (see tail restored the immunogenicity of the...relative increased in vitro growth inhibitory activity against homologous to the P. folciparum antigen expressing plasm ids alone, and none parasites...25nm and have a molecular weight of 14.8 kDa. (C) Transmission electron microscopy image of P4c-Mal nanoparticles at 242 OOOx. The sample was

  2. Genome-Wide Transcription and Functional Analyses Reveal Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major Malaria Vector Anopheles funestus Across Africa.

    Science.gov (United States)

    Riveron, Jacob M; Ibrahim, Sulaiman S; Mulamba, Charles; Djouaka, Rousseau; Irving, Helen; Wondji, Murielle J; Ishak, Intan H; Wondji, Charles S

    2017-06-07

    Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes ( CYP6P9a and CYP6P9b ) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies. Copyright © 2017 Riveron et al.

  3. Genome-Wide Transcription and Functional Analyses Reveal Heterogeneous Molecular Mechanisms Driving Pyrethroids Resistance in the Major Malaria Vector Anopheles funestus Across Africa

    Science.gov (United States)

    Riveron, Jacob M.; Ibrahim, Sulaiman S.; Mulamba, Charles; Djouaka, Rousseau; Irving, Helen; Wondji, Murielle J.; Ishak, Intan H.; Wondji, Charles S.

    2017-01-01

    Pyrethroid resistance in malaria vector, An. funestus is increasingly reported across Africa, threatening the sustainability of pyrethroid-based control interventions, including long lasting insecticidal nets (LLINs). Managing this problem requires understanding of the molecular basis of the resistance from different regions of the continent, to establish whether it is being driven by a single or independent selective events. Here, using a genome-wide transcription profiling of pyrethroid resistant populations from southern (Malawi), East (Uganda), and West Africa (Benin), we investigated the molecular basis of resistance, revealing strong differences between the different African regions. The duplicated cytochrome P450 genes (CYP6P9a and CYP6P9b) which were highly overexpressed in southern Africa are not the most upregulated in other regions, where other genes are more overexpressed, including GSTe2 in West (Benin) and CYP9K1 in East (Uganda). The lack of directional selection on both CYP6P9a and CYP6P9b in Uganda in contrast to southern Africa further supports the limited role of these genes outside southern Africa. However, other genes such as the P450 CYP9J11 are commonly overexpressed in all countries across Africa. Here, CYP9J11 is functionally characterized and shown to confer resistance to pyrethroids and moderate cross-resistance to carbamates (bendiocarb). The consistent overexpression of GSTe2 in Benin is coupled with a role of allelic variation at this gene as GAL4-UAS transgenic expression in Drosophila flies showed that the resistant 119F allele is highly efficient in conferring both DDT and permethrin resistance than the L119. The heterogeneity in the molecular basis of resistance and cross-resistance to insecticides in An. funestus populations throughout sub-Saharan African should be taken into account in designing resistance management strategies. PMID:28428243

  4. Molecular malaria diagnostics: A systematic review and meta-analysis.

    Science.gov (United States)

    Roth, Johanna M; Korevaar, Daniël A; Leeflang, Mariska M G; Mens, Pètra F

    2016-01-01

    Accurate diagnosis of malaria is essential for identification and subsequent treatment of the disease. Currently, microscopy and rapid diagnostic tests are the most commonly used diagnostics, next to treatment based on clinical signs only. These tests are easy to deploy, but have a relatively high detection limit. With declining prevalence in many areas, there is an increasing need for more sensitive diagnostics. Molecular tools may be a suitable alternative, although costs and technical requirements currently hamper their implementation in resource limited settings. A range of (near) point-of-care diagnostics is therefore under development, including simplifications in sample preparation, amplification and/or read-out of the test. Accuracy data, in combination with technical characteristics, are essential in determining which molecular test, if any, would be the most promising to be deployed. This review presents a comprehensive overview of the currently available molecular malaria diagnostics, ranging from well-known tests to platforms in early stages of evaluation, and systematically evaluates their published accuracy. No important difference in accuracy was found between the most commonly used PCR-based assays (conventional, nested and real-time PCR), with most of them having high sensitivity and specificity, implying that there are no reasons other than practical ones to choose one technique over the other. Loop-mediated isothermal amplification and other (novel) diagnostics appear to be highly accurate as well, with some offering potential to be used in resource-limited settings.

  5. Malaria.

    Science.gov (United States)

    Dupasquier, Isabelle

    1989-01-01

    Malaria, the greatest pandemia in the world, claims an estimated one million lives each year in Africa alone. While it may still be said that for the most part malaria is found in what is known as the world's poverty belt, cases are now frequently diagnosed in western countries. Due to resistant strains of malaria which have developed because of…

  6. Using rapid diagnostic tests as source of malaria parasite DNA for molecular analyses in the era of declining malaria prevalence

    DEFF Research Database (Denmark)

    Ishengoma, Deus S; Lwitiho, Sudi; Madebe, Rashid A

    2011-01-01

    was conducted to examine if sufficient DNA could be successfully extracted from malaria rapid diagnostic tests (RDTs), used and collected as part of routine case management services in health facilities, and thus forming the basis for molecular analyses, surveillance and quality control (QC) testing of RDTs....... continued molecular surveillance of malaria parasites is important to early identify emerging anti-malarial drug resistance, it is becoming increasingly difficult to obtain parasite samples from ongoing studies, such as routine drug efficacy trials. To explore other sources of parasite DNA, this study...

  7. Phylogenetic molecular function annotation

    International Nuclear Information System (INIS)

    Engelhardt, Barbara E; Jordan, Michael I; Repo, Susanna T; Brenner, Steven E

    2009-01-01

    It is now easier to discover thousands of protein sequences in a new microbial genome than it is to biochemically characterize the specific activity of a single protein of unknown function. The molecular functions of protein sequences have typically been predicted using homology-based computational methods, which rely on the principle that homologous proteins share a similar function. However, some protein families include groups of proteins with different molecular functions. A phylogenetic approach for predicting molecular function (sometimes called 'phylogenomics') is an effective means to predict protein molecular function. These methods incorporate functional evidence from all members of a family that have functional characterizations using the evolutionary history of the protein family to make robust predictions for the uncharacterized proteins. However, they are often difficult to apply on a genome-wide scale because of the time-consuming step of reconstructing the phylogenies of each protein to be annotated. Our automated approach for function annotation using phylogeny, the SIFTER (Statistical Inference of Function Through Evolutionary Relationships) methodology, uses a statistical graphical model to compute the probabilities of molecular functions for unannotated proteins. Our benchmark tests showed that SIFTER provides accurate functional predictions on various protein families, outperforming other available methods.

  8. Molecular identification of a malaria merozoite surface sheddase.

    Directory of Open Access Journals (Sweden)

    Philippa K Harris

    2005-11-01

    Full Text Available Proteolytic shedding of surface proteins during invasion by apicomplexan parasites is a widespread phenomenon, thought to represent a mechanism by which the parasites disengage adhesin-receptor complexes in order to gain entry into their host cell. Erythrocyte invasion by merozoites of the malaria parasite Plasmodium falciparum requires the shedding of ectodomain components of two essential surface proteins, called MSP1 and AMA1. Both are released by the same merozoite surface "sheddase," but the molecular identity and mode of action of this protease is unknown. Here we identify it as PfSUB2, an integral membrane subtilisin-like protease (subtilase. We show that PfSUB2 is stored in apical secretory organelles called micronemes. Upon merozoite release it is secreted onto the parasite surface and translocates to its posterior pole in an actin-dependent manner, a trafficking pattern predicted of the sheddase. Subtilase propeptides are usually selective inhibitors of their cognate protease, and the PfSUB2 propeptide is no exception; we show that recombinant PfSUB2 propeptide binds specifically to mature parasite-derived PfSUB2 and is a potent, selective inhibitor of MSP1 and AMA1 shedding, directly establishing PfSUB2 as the sheddase. PfSUB2 is a new potential target for drugs designed to prevent erythrocyte invasion by the malaria parasite.

  9. The role of research in molecular entomology in the fight against malaria vectors.

    Science.gov (United States)

    della Torre, A; Arca, B; Favia, G; Petrarca, V; Coluzzi, M

    2008-06-01

    The text summarizes the principal current fields of investigation and the recent achievements of the research groups presently contributing to the Molecular Entomology Cluster of the Italian Malaria Network. Particular emphasis is given to the researches with a more direct impact on the fight against malaria vectors.

  10. Molecular Evidence of Drug Resistance in Asymptomatic Malaria Infections, Myanmar, 2015.

    Science.gov (United States)

    Nyunt, Myat Htut; Shein, Thinzar; Zaw, Ni Ni; Han, Soe Soe; Muh, Fauzi; Lee, Seong-Kyun; Han, Jin-Hee; Thant, Kyaw Zin; Han, Eun-Taek; Kyaw, Myat Phone

    2017-03-01

    Artemisinin resistance containment in Myanmar was initiated in 2011 after artemisinin-resistant Plasmodium falciparum malaria was reported. Molecular evidence suggests that asymptomatic malaria infections harboring drug resistance genes are present among residents of the Myanmar artemisinin resistance containment zone. This evidence supports efforts to eliminate these hidden infections.

  11. Application of molecular methods for monitoring transmission stages of malaria parasites

    International Nuclear Information System (INIS)

    Babiker, Hamza A; Schneider, Petra

    2008-01-01

    Recent technical advances in malaria research have allowed specific detection of mRNA of genes that are expressed exclusively in sexual stages (gametocytes) of malaria parasites. The specificity and sensitivity of these techniques were validated on cultured laboratory clones of both human malaria parasites (Plasmodium falciparum) and rodent parasites (P. chabaudi). More recently, quantitative molecular techniques have been developed to quantify these sexual stages and used to monitor gametocyte dynamics and their transmission to mosquitoes. Molecular techniques showed that the infectious reservoir for malaria is larger than expected from previous microscopic studies; individual parasite genotypes within an infection can simultaneously produce infectious gametocytes; gametocyte production can be sustained for several months, and is modulated by environmental factors. The above techniques have empowered approaches for in-depth analysis of the biology of the transmission stages of the parasite and epidemiology of malaria transmission

  12. Malaria

    Science.gov (United States)

    ... less than the risk of catching this infection. Chloroquine has been the drug of choice for protecting against malaria. But because of resistance, it is now only suggested for use in areas where Plasmodium vivax , P. oval , and ...

  13. Malaria

    Science.gov (United States)

    ... bites you, the parasite can get into your blood. The parasite lays eggs, which develop into more parasites. They ... cells until you get very sick. Because the parasites live in the blood, malaria can also be spread through other ways. ...

  14. Dynamic alteration in splenic function during acute falciparum malaria

    International Nuclear Information System (INIS)

    Looareesuwan, S.; Ho, M.; Wattanagoon, Y.; White, N.J.; Warrell, D.A.; Bunnag, D.; Harinasuta, T.; Wyler, D.J.

    1987-01-01

    Plasmodium-infected erythrocytes lose their normal deformability and become susceptible to splenic filtration. In animal models, this is one mechanism of antimalarial defense. To assess the effect of acute falciparum malaria on splenic filtration, we measured the clearance of heated 51 Cr-labeled autologous erythrocytes in 25 patients with acute falciparum malaria and in 10 uninfected controls. Two groups of patients could be distinguished. Sixteen patients had splenomegaly, markedly accelerated clearance of the labeled erythrocytes (clearance half-time, 8.4 +/- 4.4 minutes [mean +/- SD] vs. 62.5 +/- 36.5 minutes in controls; P less than 0.001), and a lower mean hematocrit than did the patients without splenomegaly (P less than 0.001). In the nine patients without splenomegaly, clearance was normal. After institution of antimalarial chemotherapy, however, the clearance in this group accelerated to supernormal rates similar to those in the patients with splenomegaly, but without the development of detectable splenomegaly. Clearance was not significantly altered by treatment in the group with splenomegaly. Six weeks later, normal clearance rates were reestablished in most patients in both groups. We conclude that splenic clearance of labeled erythrocytes is enhanced in patients with malaria if splenomegaly is present and is enhanced only after treatment if splenomegaly is absent. Whether this enhanced splenic function applies to parasite-infected erythrocytes in patients with malaria and has any clinical benefit will require further studies

  15. Gene expression analysis reveals early changes in several molecular pathways in cerebral malaria-susceptible mice versus cerebral malaria-resistant mice

    Directory of Open Access Journals (Sweden)

    Grau Georges E

    2007-12-01

    Full Text Available Abstract Background Microarray analyses allow the identification and assessment of molecular signatures in whole tissues undergoing pathological processes. To better understand cerebral malaria pathogenesis, we investigated intra-cerebral gene-expression profiles in well-defined genetically cerebral malaria-resistant (CM-R and CM-susceptible (CM-S mice, upon infection by Plasmodium berghei ANKA (PbA. We investigated mouse transcriptional responses at early and late stages of infection by use of cDNA microarrays. Results Through a rigorous statistical approach with multiple testing corrections, we showed that PbA significantly altered brain gene expression in CM-R (BALB/c, and in CM-S (CBA/J and C57BL/6 mice, and that 327 genes discriminated between early and late infection stages, between mouse strains, and between CM-R and CM-S mice. We further identified 104, 56, 84 genes with significant differential expression between CM-R and CM-S mice on days 2, 5, and 7 respectively. The analysis of their functional annotation indicates that genes involved in metabolic energy pathways, the inflammatory response, and the neuroprotection/neurotoxicity balance play a major role in cerebral malaria pathogenesis. In addition, our data suggest that cerebral malaria and Alzheimer's disease may share some common mechanisms of pathogenesis, as illustrated by the accumulation of β-amyloid proteins in brains of CM-S mice, but not of CM-R mice. Conclusion Our microarray analysis highlighted marked changes in several molecular pathways in CM-S compared to CM-R mice, particularly at early stages of infection. This study revealed some promising areas for exploration that may both provide new insight into the knowledge of CM pathogenesis and the development of novel therapeutic strategies.

  16. Plasmodium strain determines dendritic cell function essential for survival from malaria.

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2007-07-01

    Full Text Available The severity of malaria can range from asymptomatic to lethal infections involving severe anaemia and cerebral disease. However, the molecular and cellular factors responsible for these differences in disease severity are poorly understood. Identifying the factors that mediate virulence will contribute to developing antiparasitic immune responses. Since immunity is initiated by dendritic cells (DCs, we compared their phenotype and function following infection with either a nonlethal or lethal strain of the rodent parasite, Plasmodium yoelii, to identify their contribution to disease severity. DCs from nonlethal infections were fully functional and capable of secreting cytokines and stimulating T cells. In contrast, DCs from lethal infections were not functional. We then transferred DCs from mice with nonlethal infections to mice given lethal infections and showed that these DCs mediated control of parasitemia and survival. IL-12 was necessary for survival. To our knowledge, our studies have shown for the first time that during a malaria infection, DC function is essential for survival. More importantly, the functions of these DCs are determined by the strain of parasite. Our studies may explain, in part, why natural malaria infections may have different outcomes.

  17. Biology, Bionomics and Molecular Biology of Anopheles sinensis Wiedemann 1828 (Diptera: Culicidae), Main Malaria Vector in China.

    Science.gov (United States)

    Feng, Xinyu; Zhang, Shaosen; Huang, Fang; Zhang, Li; Feng, Jun; Xia, Zhigui; Zhou, Hejun; Hu, Wei; Zhou, Shuisen

    2017-01-01

    China has set a goal to eliminate all malaria in the country by 2020, but it is unclear if current understanding of malaria vectors and transmission is sufficient to achieve this objective. Anopheles sinensis is the most widespread malaria vector specie in China, which is also responsible for vivax malaria outbreak in central China. We reviewed literature from 1954 to 2016 on An. sinensis with emphasis on biology, bionomics, and molecular biology. A total of 538 references were relevant and included. An. sienesis occurs in 29 Chinese provinces. Temperature can affect most life-history parameters. Most An. sinensis are zoophilic, but sometimes they are facultatively anthropophilic. Sporozoite analysis demonstrated An. sinensis efficacy on Plasmodium vivax transmission. An. sinensis was not stringently refractory to P. falciparum under experimental conditions, however, sporozoite was not found in salivary glands of field collected An. sinensis . The literature on An. sienesis biology and bionomics was abundant, but molecular studies, such as gene functions and mechanisms, were limited. Only 12 molecules (genes, proteins or enzymes) have been studied. In addition, there were considerable untapped omics resources for potential vector control tools. Existing information on An. sienesis could serve as a baseline for advanced research on biology, bionomics and genetics relevant to vector control strategies.

  18. The Molecular Epidemiology of Malaria in Western Kenya

    National Research Council Canada - National Science Library

    Amon, Joseph

    2002-01-01

    ...) Plasmodium falciparum growth dynamics. The first two research topics were examined in a cohort of 248 males recruited from three highly endemic villages in western Kenya where severe malaria anemia is common...

  19. The Malaria Vaccine Candidate GMZ2 Elicits Functional Antibodies in Individuals From Malaria Endemic and Non-Endemic Areas

    DEFF Research Database (Denmark)

    Jepsen, Micha Phill Grønholm; Jogdand, Prajakta S; Singh, Susheel K

    2013-01-01

    against Plasmodium falciparum. Results. We showed that the maximum level of immunoglobulin G (IgG) antibodies obtained by GMZ2 vaccination is independent of ethnicity, time under malaria-exposure, and vaccine dose and that GMZ2 elicits high levels of functionally active IgG antibodies. Both, malaria......-naive adults and malaria-exposed preschool children elicit vaccine-specific antibodies with broad inhibitory activity against geographically diverse P. falciparum isolates. Peptide-mapping studies of IgG subclass responses identified IgG3 against a peptide derived from MSP3 as the strongest predictor...

  20. Plasmodial Hsp70s are functionally adapted to the malaria parasite life cycle

    Directory of Open Access Journals (Sweden)

    Jude M Przyborski

    2015-06-01

    Full Text Available The human malaria parasite, Plasmodium falciparum, encodes a minimal complement of six heat shock protein 70s (PfHSP70s, some of which are highly expressed and are thought to play an important role in the survival and pathology of the parasite. In addition to canonical features of molecular chaperones, these HSP70s possess properties that reflect functional adaptation to a parasitic life style, including resistance to thermal insult during fever periods and host-parasite interactions. The parasite even exports an HSP70 to the host cell where it is likely to be involved in host cell modification. This review focuses on the features of the PfHSP70s, particularly with respect to their adaptation to the malaria parasite life cycle.

  1. malaria

    African Journals Online (AJOL)

    children who presented with malaria symptoms at the same clinic and tested positive or ... phagocytes immunity and induce anti-inflammatory immune response ...... treatment gap, Malawi will be ready to submit a validation request for virtual .... Conclusions. Vaccination and quarantine are the important disease preventive.

  2. Malaria

    Science.gov (United States)

    2011-06-01

    dividing and are far more noticeable than the small amount of clear cyto- plasm surrounding them (Figs 10.6a & 10.6b). Mature schizonts contain 8...edema Same as P. vivax 16 10 • Topics on The paThology of proTozoan and invasive arThropod diseases Figure 10.38 Transmission electron micrograph of...mesangiopathic glo- merulonephropathy caused by quartan malaria, deposition of immune complexes may be demonstrated by electron or immunofluorescence microscopy

  3. Molecular malaria diagnostics: A systematic review and meta-analysis

    NARCIS (Netherlands)

    Roth, Johanna M.; Korevaar, Daniël A.; Leeflang, Mariska M. G.; Mens, Pètra F.

    2016-01-01

    Accurate diagnosis of malaria is essential for identification and subsequent treatment of the disease. Currently, microscopy and rapid diagnostic tests are the most commonly used diagnostics, next to treatment based on clinical signs only. These tests are easy to deploy, but have a relatively high

  4. Molecular Epidemiology of Plasmodium falciparum Malaria Outbreak, Tumbes, Peru, 2010–2012

    Science.gov (United States)

    Okoth, Sheila Akinyi; Arrospide, Nancy; Gonzalez, Rommell V.; Sánchez, Juan F.; Macedo, Silvia; Conde, Silvia; Tapia, L. Lorena; Salas, Carola; Gamboa, Dionicia; Herrera, Yeni; Edgel, Kimberly A.; Udhayakumar, Venkatachalam; Lescano, Andrés G.

    2015-01-01

    During 2010–2012, an outbreak of 210 cases of malaria occurred in Tumbes, in the northern coast of Peru, where no Plasmodium falciparum malaria case had been reported since 2006. To identify the source of the parasite causing this outbreak, we conducted a molecular epidemiology investigation. Microsatellite typing showed an identical genotype in all 54 available isolates. This genotype was also identical to that of parasites isolated in 2010 in the Loreto region of the Peruvian Amazon and closely related to clonet B, a parasite lineage previously reported in the Amazon during 1998–2000. These findings are consistent with travel history of index case-patients. DNA sequencing revealed mutations in the Pfdhfr, Pfdhps, Pfcrt, and Pfmdr1 loci, which are strongly associated with resistance to chloroquine and sulfadoxine/pyrimethamine, and deletion of the Pfhrp2 gene. These results highlight the need for timely molecular epidemiology investigations to trace the parasite source during malaria reintroduction events. PMID:25897626

  5. Molecular Epidemiology of Plasmodium falciparum Malaria Outbreak, Tumbes, Peru, 2010-2012.

    Science.gov (United States)

    Baldeviano, G Christian; Okoth, Sheila Akinyi; Arrospide, Nancy; Gonzalez, Rommell V; Sánchez, Juan F; Macedo, Silvia; Conde, Silvia; Tapia, L Lorena; Salas, Carola; Gamboa, Dionicia; Herrera, Yeni; Edgel, Kimberly A; Udhayakumar, Venkatachalam; Lescano, Andrés G

    2015-05-01

    During 2010-2012, an outbreak of 210 cases of malaria occurred in Tumbes, in the northern coast of Peru, where no Plasmodium falciparum malaria case had been reported since 2006. To identify the source of the parasite causing this outbreak, we conducted a molecular epidemiology investigation. Microsatellite typing showed an identical genotype in all 54 available isolates. This genotype was also identical to that of parasites isolated in 2010 in the Loreto region of the Peruvian Amazon and closely related to clonet B, a parasite lineage previously reported in the Amazon during 1998-2000. These findings are consistent with travel history of index case-patients. DNA sequencing revealed mutations in the Pfdhfr, Pfdhps, Pfcrt, and Pfmdr1 loci, which are strongly associated with resistance to chloroquine and sulfadoxine/pyrimethamine, and deletion of the Pfhrp2 gene. These results highlight the need for timely molecular epidemiology investigations to trace the parasite source during malaria reintroduction events.

  6. Malaria and Chikungunya Detected Using Molecular Diagnostics Among Febrile Kenyan Children.

    Science.gov (United States)

    Waggoner, Jesse; Brichard, Julie; Mutuku, Francis; Ndenga, Bryson; Heath, Claire Jane; Mohamed-Hadley, Alisha; Sahoo, Malaya K; Vulule, John; Lefterova, Martina; Banaei, Niaz; Mukoko, Dunstan; Pinsky, Benjamin A; LaBeaud, A Desiree

    2017-01-01

    In sub-Saharan Africa, malaria is frequently overdiagnosed as the cause of an undifferentiated febrile illness, whereas arboviral illnesses are presumed to be underdiagnosed. Sera from 385 febrile Kenyan children, who presented to 1 of 4 clinical sites, were tested using microscopy and real-time molecular assays for dengue virus (DENV), chikungunya virus (CHIKV), malaria, and Leptospira . Malaria was the primary clinical diagnosis for 254 patients, and an arboviral infection (DENV or CHIKV) was the primary diagnosis for 93 patients. In total, 158 patients (41.0%) had malaria and 32 patients (8.3%) had CHIKV infections. Compared with real-time polymerase chain reaction, microscopy demonstrated a percent positive agreement of 49.7%. The percentage of malaria cases detected by microscopy varied significantly between clinical sites. Arboviral infections were the clinical diagnosis for patients on the Indian Ocean coast (91 of 238, 38.2%) significantly more often than patients in the Lake Victoria region (2 of 145, 1.4%; P < .001). However, detection of CHIKV infections was significantly higher in the Lake Victoria region (19 of 145 [13.1%] vs 13 of 239 [5.4%]; P = .012). The clinical diagnosis of patients with an acute febrile illness, even when aided by microscopy, remains inaccurate in malaria-endemic areas, contributing to inappropriate management decisions.

  7. Nuclear science fights malaria. Radiation and molecular techniques can play targeted roles

    International Nuclear Information System (INIS)

    Groth, Steffen; Khan, Baldip; Robinson, Alan; Hendrichs, Jorge

    2001-01-01

    Malaria is the most important insect transmitted disease. Globally there are 300 to 500 million clinical cases of malaria a year. They result in two million deaths per year (one every 30 seconds), more than 90% of which occur in sub-Saharan Africa. More than 90% of those affected are children less than five years old. The economic impact of the disease is felt disproportionately by poor families who may spend a fourth of their annual income on prevention and control measures. The causative agents are parasites of the genus Plasmodium and they are transmitted only by female mosquitoes of the genus Anopheles. Among key strategies to control malaria are the surveillance of anti-malarial drug efficacy through monitoring the levels of drug resistance, and the reduction of mosquito populations. Nuclear techniques can play important roles in these efforts to combat malaria. This article reports on IAEA activities associated with drug-resistant malaria and describes how molecular methods making use of radioactive isotopes can provide a great advantage in the diagnosis of resistance. The article further presents the IAEA's plans for initiating a research programme to assess the feasibility of developing the Sterile Insect Technique (SIT) as a complementary method to control the vector of malaria

  8. Correlation Between Haematological Parameters, Kidney Function Tests and Liver Function Tests in Plasmodium Falciparum and Vivax Malaria

    Directory of Open Access Journals (Sweden)

    Mitul Chhatriwala

    2017-12-01

    Full Text Available Abstract: Malaria remains a major cause of morbidity and mortality in India. Plasmodium falciparum remains the main culprit although cases with vivax malaria are on the rise. Severe malaria as defined by the WHO criteria has high rate of complications and mortality. In our study we recruited microscopy positive falciparum and vivax malaria patients. Haematological and biochemical laboratory investigations were carried out in recruited patients. Both parameters were found to be significantly derailed in falciparum cases as compared to vivax. A direct correlation has been observed between kidney function tests (serum creatinine,serum urea and direct bilirubin levels across all cases of malaria. Hence these parameters can be used to identify and monitor the progress of cases of severe malaria as significant proportion of patients fulfilled the criteria of severe malaria in the cohort.

  9. rhf and dft study of the molecular properties of the malaria drug

    African Journals Online (AJOL)

    USER

    The molecular geometries of the common malaria drug Proguanil in gas phase, water and Ethanol have been studied using ab- initio Quantum Chemical calculations at the Restricted Hartree-Fock ... In this research article; we provide a ..... through Emeritus Professor scheme (Grant ... “Synthesis and biological properties of.

  10. Assessment Of Renal Function In Malaria Patients In Minna, North ...

    African Journals Online (AJOL)

    Data obtained were analyzed using one-way analysis of variance to compare variation among malaria patients and individuals without malaria, Duncan multiple range test to compare variation among means, and correlation matrix to evaluate correlation between the parameters measured. Proteinuria in malaria cases ...

  11. Comparison of molecular tests for the diagnosis of malaria in Honduras.

    Science.gov (United States)

    Fontecha, Gustavo A; Mendoza, Meisy; Banegas, Engels; Poorak, Mitra; De Oliveira, Alexandre M; Mancero, Tamara; Udhayakumar, Venkatachalam; Lucchi, Naomi W; Mejia, Rosa E

    2012-04-18

    Honduras is a tropical country with more than 70% of its population living at risk of being infected with either Plasmodium vivax or Plasmodium falciparum. Laboratory diagnosis is a very important factor for adequate treatment and management of malaria. In Honduras, malaria is diagnosed by both, microscopy and rapid diagnostic tests and to date, no molecular methods have been implemented for routine diagnosis. However, since mixed infections, and asymptomatic and low-parasitaemic cases are difficult to detect by light microscopy alone, identifying appropriate molecular tools for diagnostic applications in Honduras deserves further study. The present study investigated the utility of different molecular tests for the diagnosis of malaria in Honduras. A total of 138 blood samples collected as part of a clinical trial to assess the efficacy of chloroquine were used: 69 microscopically confirmed P. falciparum positive samples obtained on the day of enrollment and 69 follow-up samples obtained 28 days after chloroquine treatment and shown to be malaria negative by microscopy. Sensitivity and specificity of microscopy was compared to an 18 s ribosomal RNA gene-based nested PCR, two single-PCR reactions designed to detect Plasmodium falciparum infections, one single-PCR to detect Plasmodium vivax infections, and one multiplex one-step PCR reaction to detect both parasite species. Of the 69 microscopically positive P. falciparum samples, 68 were confirmed to be P. falciparum-positive by two of the molecular tests used. The one sample not detected as P. falciparum by any of the molecular tests was shown to be P. vivax-positive by a reference molecular test indicating a misdiagnosis by microscopy. The reference molecular test detected five cases of P. vivax/P. falciparum mixed infections, which were not recognized by microscopy as mixed infections. Only two of these mixed infections were recognized by a multiplex test while a P. vivax-specific polymerase chain reaction (PCR

  12. A field-deployable mobile molecular diagnostic system for malaria at the point of need.

    Science.gov (United States)

    Choi, Gihoon; Song, Daniel; Shrestha, Sony; Miao, Jun; Cui, Liwang; Guan, Weihua

    2016-11-01

    In response to the urgent need of a field-deployable and highly sensitive malaria diagnosis, we developed a standalone, "sample-in-answer-out" molecular diagnostic system (AnyMDx) to enable quantitative molecular analysis of blood-borne malaria in low resource areas. The system consists of a durable battery-powered analyzer and a disposable microfluidic compact disc loaded with reagents ready for use. A low power thermal module and a novel fluorescence-sensing module are integrated into the analyzer for real-time monitoring of loop-mediated isothermal nucleic acid amplification (LAMP) of target parasite DNA. With 10 μL of raw blood sample, the AnyMDx system automates the nucleic acid sample preparation and subsequent LAMP and real-time detection. Under laboratory conditions with whole-blood samples spiked with cultured Plasmodium falciparum, we achieved a detection limit of ∼0.6 parasite per μL, much lower than those for the conventional microscopy and rapid diagnostic tests (∼50-100 parasites per μL). The turnaround time from sample to answer is less than 40 minutes. The AnyMDx is user-friendly requiring minimal technological training. The analyzer and the disposable reagent compact discs are cost-effective, making AnyMDx a potential tool for malaria molecular diagnosis under field settings for malaria elimination.

  13. Molecular biological approaches to the study of vectors in relation to malaria control

    Directory of Open Access Journals (Sweden)

    J. M. Crampton

    1992-01-01

    Full Text Available To a large extent, control of malaria vectors relies on the elimination of breeding sites and the application of chemical agents. There are increasing problems associated with the use of synthetic insecticides for vector control, including the evolution of resistance, the high cost of developing and registering new insecticides and an awareness of pollution from insecticide residues. These factors have stimulated interest in the application of molecular biology to the study of mosquito vectors of malaria; focussing primarily on two aspects. First, the improvement of existing control measures through the development of simplified DNA probe systems suitable for identification of vectors of malaria. The development of synthetic, non-radioactive DNA probes suitable for identification of species in the Anopheles gambiae complex is described with the aim of defining a simplified methodology wich is suitable for entomologist in the field. The second aspect to be considered is the development of completely novel strategies through the development of completely novel strategies through the genetic manipulation of insect vectors of malaria in order to alter their ability to transmit the disease. The major requirements for producing transgenic mosquitoes are outlined together with the progress wich has been made to date and discussed in relation to the prospects which this type of approach has for the future control of malaria.

  14. Clinical and molecular surveillance of drug resistant vivax malaria in Myanmar (2009-2016).

    Science.gov (United States)

    Nyunt, Myat Htut; Han, Jin-Hee; Wang, Bo; Aye, Khin Myo; Aye, Kyin Hla; Lee, Seong-Kyun; Htut, Ye; Kyaw, Myat Phone; Han, Kay Thwe; Han, Eun-Taek

    2017-03-16

    One of the major challenges for control and elimination of malaria is ongoing spread and emergence of drug resistance. While epidemiology and surveillance of the drug resistance in falciparum malaria is being explored globally, there are few studies on drug resistance vivax malaria. To assess the spread of drug-resistant vivax malaria in Myanmar, a multisite, prospective, longitudinal study with retrospective analysis of previous therapeutic efficacy studies, was conducted. A total of 906 from nine study sites were included in retrospective analysis and 208 from three study sites in prospective study. Uncomplicated vivax mono-infected patients were recruited and monitored with longitudinal follow-up until day 28 after treatment with chloroquine. Amplification and sequence analysis of molecular markers, such as mutations in pvcrt-O, pvmdr1, pvdhps and pvdhfr, were done in day-0 samples in prospective study. Clinical failure cases were found only in Kawthaung, southern Myanmar and western Myanmar sites within 2009-2016. Chloroquine resistance markers, pvcrt-O 'AAG' insertion and pvmdr1 mutation (Y976F) showed higher mutant rate in southern and central Myanmar than western site: 66.7, 72.7 vs 48.3% and 26.7, 17.0 vs 1.7%, respectively. A similar pattern of significantly higher mutant rate of antifolate resistance markers, pvdhps (S382A, K512M, A553G) and pvdhfr (F57L/I, S58R, T61M, S117T/N) were noted. Although clinical failure rate was low, widespread distribution of chloroquine and antifolate resistance molecular makers alert to the emergence and spread of drug resistance vivax malaria in Myanmar. Proper strategy and action plan to eliminate and contain the resistant strain strengthened together with clinical and molecular surveillance on drug resistance vivax is recommended.

  15. Liver function assessment in malaria, typhoid and malaria-typhoid co-infection in Aba, Abia State, Nigeria.

    Science.gov (United States)

    Enemchukwu, B N; Ibe, C C; Udedi, S C; Iroha, A; Ubaoji, K I; Ogundapo, S S

    2014-06-01

    Malaria and typhoid fever are among the most endemic diseases in the tropics and are associated with poverty and underdevelopment with significant morbidity and mortality. Both diseases can lead to liver damage if not properly treated. The liver function assessment was therefore conducted on (90) volunteer patients; comprising (30) patients with malaria only, (30) with typhoid only and (30) with malaria-typhoid co-infection randomly selected from Abia State University Teaching Hospital, Aba, Abia State, Nigeria and (20) healthy individuals were used as control. Blood samples collected from these subjects were screened for malaria parasite and Staphylococcus typhi using standard methods. Mean serum levels of ALP (112.55±84.23), AST (31.33±12.80), ALT (23.10±11.84), TB (19.43±5.02), CB (5.91±3.03) and ALP (116.69±48.68), AST (28.33±11.72), ALT (22.8±5.94), TB (19.31±5.84),CB (5.60±2.50) were obtained for those subjects with malaria and typhoid respectively and subjects with malaria-typhoid co-infection recorded the following; ALP (134.33±56.62), AST (33.97±8.43), ALT (24.40±4.37),TB (21.27±2.96),CB (6.58±3.10) while the control subjects had mean serum levels ofALP (71.05±18.18), AST (16.65±7.45), ALT (13.85±6.09), TB (10.05±4.85) and CB (3.00±1.67). These mean values were subjected to a statistical test using students t-test which revealed a significant increase (p<0.05).The results suggest that malaria, typhoid and malaria-typhoid co-infection can elevate ALP, AST, ALT, TB and CB serum levels and can lead to liver damage if not properly treated.

  16. Molecular calculations with B functions

    International Nuclear Information System (INIS)

    Steinborn, E.O.; Homeier, H.H.H.; Ema, I.; Lopez, R.; Ramirez, G.

    2000-01-01

    A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules

  17. Functional profiles of orphan membrane transporters in the life cycle of the malaria parasite

    NARCIS (Netherlands)

    Kenthirapalan, S.; Waters, A.P.; Matuschewski, K.; Kooij, T.W.A.

    2016-01-01

    Assigning function to orphan membrane transport proteins and prioritizing candidates for detailed biochemical characterization remain fundamental challenges and are particularly important for medically relevant pathogens, such as malaria parasites. Here we present a comprehensive genetic analysis of

  18. Molecular mechanisms of NCAM function

    DEFF Research Database (Denmark)

    Hinsby, Anders M; Berezin, Vladimir; Bock, Elisabeth

    2004-01-01

    receptor that responds to both homophilic and heterophilic cues, as well as a mediator of cell-cell adhesion. This review describes NCAM function at the molecular level. We discuss recent models for extracellular ligand-interactions of NCAM, and the intracellular signaling cascade that follows to define...

  19. Clinical and molecular surveillance of artemisinin resistant falciparum malaria in Myanmar (2009-2013).

    Science.gov (United States)

    Nyunt, Myat Htut; Soe, Myat Thu; Myint, Hla Win; Oo, Htet Wai; Aye, Moe Moe; Han, Soe Soe; Zaw, Ni Ni; Cho, Cho; Aung, Phyo Zaw; Kyaw, Khin Thiri; Aye, Thin Thin; San, Naychi Aung; Ortega, Leonard; Thimasarn, Krongthong; Bustos, Maria Dorina G; Galit, Sherwin; Hoque, Mohammad Rafiul; Ringwald, Pascal; Han, Eun-Taek; Kyaw, Myat Phone

    2017-08-14

    Emergence of artemisinin-resistant malaria in Southeast Asian countries threatens the global control of malaria. Although K13 kelch propeller has been assessed for artemisinin resistance molecular marker, most of the mutations need to be validated. In this study, artemisinin resistance was assessed by clinical and molecular analysis, including k13 and recently reported markers, pfarps10, pffd and pfmdr2. A prospective cohort study in 1160 uncomplicated falciparum patients was conducted after treatment with artemisinin-based combination therapy (ACT), in 6 sentinel sites in Myanmar from 2009 to 2013. Therapeutic efficacy of ACT was assessed by longitudinal follow ups. Molecular markers analysis was done on all available day 0 samples. True recrudescence treatment failures cases and day 3 parasite positivity were detected at only the southern Myanmar sites. Day 3 positive and k13 mutants with higher prevalence of underlying genetic foci predisposing to become k13 mutant were detected only in southern Myanmar since 2009 and comparatively fewer mutations of pfarps10, pffd, and pfmdr2 were observed in western Myanmar. K13 mutations, V127M of pfarps10, D193Y of pffd, and T448I of pfmdr2 were significantly associated with day 3 positivity (OR: 6.48, 3.88, 2.88, and 2.52, respectively). Apart from k13, pfarps10, pffd and pfmdr2 are also useful for molecular surveillance of artemisinin resistance especially where k13 mutation has not been reported. Appropriate action to eliminate the resistant parasites and surveillance on artemisinin resistance should be strengthened in Myanmar. Trial registration This study was registered with ClinicalTrials.gov, identifier NCT02792816.

  20. Acute Malaria Induces PD1+CTLA4+ Effector T Cells with Cell-Extrinsic Suppressor Function.

    Directory of Open Access Journals (Sweden)

    Maria Sophia Mackroth

    2016-11-01

    Full Text Available In acute Plasmodium falciparum (P. falciparum malaria, the pro- and anti-inflammatory immune pathways must be delicately balanced so that the parasitemia is controlled without inducing immunopathology. An important mechanism to fine-tune T cell responses in the periphery is the induction of coinhibitory receptors such as CTLA4 and PD1. However, their role in acute infections such as P. falciparum malaria remains poorly understood. To test whether coinhibitory receptors modulate CD4+ T cell functions in malaria, blood samples were obtained from patients with acute P. falciparum malaria treated in Germany. Flow cytometric analysis showed a more frequent expression of CTLA4 and PD1 on CD4+ T cells of malaria patients than of healthy control subjects. In vitro stimulation with P. falciparum-infected red blood cells revealed a distinct population of PD1+CTLA4+CD4+ T cells that simultaneously produced IFNγ and IL10. This antigen-specific cytokine production was enhanced by blocking PD1/PDL1 and CTLA4. PD1+CTLA4+CD4+ T cells were further isolated based on surface expression of PD1 and their inhibitory function investigated in-vitro. Isolated PD1+CTLA4+CD4+ T cells suppressed the proliferation of the total CD4+ population in response to anti-CD3/28 and plasmodial antigens in a cell-extrinsic manner. The response to other specific antigens was not suppressed. Thus, acute P. falciparum malaria induces P. falciparum-specific PD1+CTLA4+CD4+ Teffector cells that coproduce IFNγ and IL10, and inhibit other CD4+ T cells. Transient induction of regulatory Teffector cells may be an important mechanism that controls T cell responses and might prevent severe inflammation in patients with malaria and potentially other acute infections.

  1. Molecular markers of anti-malarial drug resistance in Central, West and East African children with severe malaria

    OpenAIRE

    Nguetse, Christian N.; Adegnika, Ayola Akim; Agbenyega, Tsiri; Ogutu, Bernhards R.; Krishna, Sanjeev; Kremsner, Peter G.; Velavan, Thirumalaisamy P.

    2017-01-01

    BACKGROUND: The Plasmodium falciparum multidrug resistance 1 (PfMDR1), P. falciparum Ca(2+)-ATPase (PfATP6) and Kelch-13 propeller domain (PfK13) loci are molecular markers of parasite susceptibility to anti-malarial drugs. Their frequency distributions were determined in the isolates collected from children with severe malaria originating from three African countries. METHODS: Samples from 287 children with severe malaria [(Gabon: n = 114); (Ghana: n = 89); (Kenya: n = 84)] were genotyped fo...

  2. Emerging Functions of Transcription Factors in Malaria Parasite

    Directory of Open Access Journals (Sweden)

    Renu Tuteja

    2011-01-01

    Full Text Available Transcription is a process by which the genetic information stored in DNA is converted into mRNA by enzymes known as RNA polymerase. Bacteria use only one RNA polymerase to transcribe all of its genes while eukaryotes contain three RNA polymerases to transcribe the variety of eukaryotic genes. RNA polymerase also requires other factors/proteins to produce the transcript. These factors generally termed as transcription factors (TFs are either associated directly with RNA polymerase or add in building the actual transcription apparatus. TFs are the most common tools that our cells use to control gene expression. Plasmodium falciparum is responsible for causing the most lethal form of malaria in humans. It shows most of its characteristics common to eukaryotic transcription but it is assumed that mechanisms of transcriptional control in P. falciparum somehow differ from those of other eukaryotes. In this article we describe the studies on the main TFs such as myb protein, high mobility group protein and ApiA2 family proteins from malaria parasite. These studies show that these TFs are slowly emerging to have defined roles in the regulation of gene expression in the parasite.

  3. Molecular definition of multiple sites of antibody inhibition of malaria transmission-blocking vaccine antigen Pfs25.

    Science.gov (United States)

    Scally, Stephen W; McLeod, Brandon; Bosch, Alexandre; Miura, Kazutoyo; Liang, Qi; Carroll, Sean; Reponen, Sini; Nguyen, Ngan; Giladi, Eldar; Rämisch, Sebastian; Yusibov, Vidadi; Bradley, Allan; Lemiale, Franck; Schief, William R; Emerling, Daniel; Kellam, Paul; King, C Richter; Julien, Jean-Philippe

    2017-11-16

    The Plasmodium falciparum Pfs25 protein (Pfs25) is a leading malaria transmission-blocking vaccine antigen. Pfs25 vaccination is intended to elicit antibodies that inhibit parasite development when ingested by Anopheles mosquitoes during blood meals. The Pfs25 three-dimensional structure has remained elusive, hampering a molecular understanding of its function and limiting immunogen design. We report six crystal structures of Pfs25 in complex with antibodies elicited by immunization via Pfs25 virus-like particles in human immunoglobulin loci transgenic mice. Our structural findings reveal the fine specificities associated with two distinct immunogenic sites on Pfs25. Importantly, one of these sites broadly overlaps with the epitope of the well-known 4B7 mouse antibody, which can be targeted simultaneously by antibodies that target a non-overlapping site to additively increase parasite inhibition. Our molecular characterization of inhibitory antibodies informs on the natural disposition of Pfs25 on the surface of ookinetes and provides the structural blueprints to design next-generation immunogens.

  4. Molecular Investigation into a Malaria Outbreak in Cusco, Peru: Plasmodium falciparum BV1 Lineage is Linked to a Second Outbreak in Recent Times

    Science.gov (United States)

    Okoth, Sheila Akinyi; Chenet, Stella M.; Arrospide, Nancy; Gutierrez, Sonia; Cabezas, Cesar; Matta, Jose Antonio; Udhayakumar, Venkatachalam

    2016-01-01

    In November 2013, a Plasmodium falciparum malaria outbreak of 11 cases occurred in Cusco, southern Peru, where falciparum malaria had not been reported since 1946. Although initial microscopic diagnosis reported only Plasmodium vivax infection in each of the specimens, subsequent examination by the national reference laboratory confirmed P. falciparum infection in all samples. Molecular typing of four available isolates revealed identity as the B-variant (BV1) strain that was responsible for a malaria outbreak in Tumbes, northern Peru, between 2010 and 2012. The P. falciparum BV1 strain is multidrug resistant, can escape detection by PfHRP2-based rapid diagnostic tests, and has contributed to two malaria outbreaks in Peru. This investigation highlights the importance of accurate species diagnosis given the potential for P. falciparum to be reintroduced to regions where it may have been absent. Similar molecular epidemiological investigations can track the probable source(s) of outbreak parasite strains for malaria surveillance and control purposes. PMID:26483121

  5. Outbreak of human malaria caused by Plasmodium simium in the Atlantic Forest in Rio de Janeiro: a molecular epidemiological investigation.

    Science.gov (United States)

    Brasil, Patrícia; Zalis, Mariano Gustavo; de Pina-Costa, Anielle; Siqueira, Andre Machado; Júnior, Cesare Bianco; Silva, Sidnei; Areas, André Luiz Lisboa; Pelajo-Machado, Marcelo; de Alvarenga, Denise Anete Madureira; da Silva Santelli, Ana Carolina Faria; Albuquerque, Hermano Gomes; Cravo, Pedro; Santos de Abreu, Filipe Vieira; Peterka, Cassio Leonel; Zanini, Graziela Maria; Suárez Mutis, Martha Cecilia; Pissinatti, Alcides; Lourenço-de-Oliveira, Ricardo; de Brito, Cristiana Ferreira Alves; de Fátima Ferreira-da-Cruz, Maria; Culleton, Richard; Daniel-Ribeiro, Cláudio Tadeu

    2017-10-01

    Malaria was eliminated from southern and southeastern Brazil over 50 years ago. However, an increasing number of autochthonous episodes attributed to Plasmodium vivax have recently been reported from the Atlantic Forest region of Rio de Janeiro state. As the P vivax-like non-human primate malaria parasite species Plasmodium simium is locally enzootic, we performed a molecular epidemiological investigation to determine whether zoonotic malaria transmission is occurring. We examined blood samples from patients presenting with signs or symptoms suggestive of malaria as well as from local howler monkeys by microscopy and PCR. Samples were included from individuals if they had a history of travel to or resided in areas within the Rio de Janeiro Atlantic Forest, but not if they had malaria prophylaxis, blood transfusion or tissue or organ transplantation, or had travelled to known malaria endemic areas in the preceding year. Additionally, we developed a molecular assay based on sequencing of the parasite mitochondrial genome to distinguish between P vivax and P simium, and applied this assay to 33 cases from outbreaks that occurred in 2015, and 2016. A total of 49 autochthonous malaria cases were reported in 2015-16. Most patients were male, with a mean age of 44 years (SD 14·6), and 82% lived in urban areas of Rio de Janeiro state and had visited the Atlantic Forest for leisure or work-related activities. 33 cases were used for mitochondrial DNA sequencing. The assay was successfully performed for 28 samples, and all were shown to be P simium, indicative of zoonotic transmission of this species to human beings in this region. Sequencing of the whole mitochondrial genome of three of these cases showed that P simium is most closely related to P vivax parasites from South America. The malaria outbreaks in this region were caused by P simium, previously considered to be a monkey-specific malaria parasite, related to but distinct from P vivax, and which has never

  6. Towards a molecular understanding of the apicomplexan actin motor: on a road to novel targets for malaria remedies?

    Energy Technology Data Exchange (ETDEWEB)

    Kumpula, Esa-Pekka [University of Oulu, PO Box 3000, 90014 Oulu (Finland); Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg (Germany); German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg (Germany); Kursula, Inari, E-mail: inari.kursula@helmholtz-hzi.de [University of Oulu, PO Box 3000, 90014 Oulu (Finland); Helmholtz Centre for Infection Research, Notkestrasse 85, 22607 Hamburg (Germany); German Electron Synchrotron, Notkestrasse 85, 22607 Hamburg (Germany); University of Bergen, Jonas Lies vei 91, 5009 Bergen (Norway)

    2015-04-16

    In this review, current structural understanding of the apicomplexan glideosome and actin regulation is described. Apicomplexan parasites are the causative agents of notorious human and animal diseases that give rise to considerable human suffering and economic losses worldwide. The most prominent parasites of this phylum are the malaria-causing Plasmodium species, which are widespread in tropical and subtropical regions, and Toxoplasma gondii, which infects one third of the world’s population. These parasites share a common form of gliding motility which relies on an actin–myosin motor. The components of this motor and the actin-regulatory proteins in Apicomplexa have unique features compared with all other eukaryotes. This, together with the crucial roles of these proteins, makes them attractive targets for structure-based drug design. In recent years, several structures of glideosome components, in particular of actins and actin regulators from apicomplexan parasites, have been determined, which will hopefully soon allow the creation of a complete molecular picture of the parasite actin–myosin motor and its regulatory machinery. Here, current knowledge of the function of this motor is reviewed from a structural perspective.

  7. Intrinsic work function of molecular films

    International Nuclear Information System (INIS)

    Ivančo, Ján

    2012-01-01

    The electronic properties of molecular films are analysed with the consideration of the molecular orientation. The study demonstrates that surfaces of electroactive oligomeric molecular films can be classified—analogously to the elemental surfaces—by their intrinsic work functions. The intrinsic work function of molecular films is correlated with their ionisation energies; again, the behaviour is analogous to the correlation existing between the first ionisation energy of elements and the work function of the corresponding elemental surfaces. The proposed intrinsic work-function concept suggests that the mechanism for the energy-level alignment at the interfaces associated with molecular films is virtually controlled by work functions of materials brought into the contact. - Highlights: ► Molecular films exhibit their own (intrinsic) work function. ► Intrinsic work function is correlated with ionisation energy of molecular films. ► Intrinsic work function determines dipole at interface with a particular surface. ► Surface vacuum-level change upon film growth does not relate to interfacial dipole.

  8. Country-wide surveillance of molecular markers of antimalarial drug resistance in Senegal by use of positive Malaria Rapid Diagnostic Tests

    DEFF Research Database (Denmark)

    Ndiaye, Magatte; Sow, Doudou; Nag, Sidsel

    2017-01-01

    of drug resistance. Therefore, surveillance of drug resistance in the malaria parasites is essential. The objective of this pilot study was to test the feasibility of routinely sampled malaria rapid diagnostic tests (RDTs) at a national scale to assess the temporal changes in the molecular profiles...... of antimalarial drug resistance markers of Plasmodium falciparum parasites. Overall, 9,549 positive malaria RDTs were collected from 14 health facilities across the country. A limited random set of RDTs were analyzed regarding Pfcrt gene polymorphisms at codon 72-76. Overall, a high but varied prevalence (> 50...

  9. RESEARCH ARTICLE Molecular cloning and functional ...

    Indian Academy of Sciences (India)

    Navya

    2016-11-25

    Nov 25, 2016 ... Molecular cloning and functional characterization of two novel ... Currently, many variants of HMW-GSs have been cloned from bread wheat .... SDS sedimentation tests were conducted using the methods described by Gao et ...

  10. Molecular evidence for historical presence of knock-down resistance in Anopheles albimanus, a key malaria vector in Latin America.

    Science.gov (United States)

    Lol, Juan C; Castellanos, María E; Liebman, Kelly A; Lenhart, Audrey; Pennington, Pamela M; Padilla, Norma R

    2013-09-18

    Anopheles albimanus is a key malaria vector in the northern neotropics. Current vector control measures in the region are based on mass distributions of long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) with pyrethroids. Resistance to pyrethroid insecticides can be mediated by increased esterase and/or multi-function oxidase activity and/or mutations in the voltage-gated sodium channel gene. The aim of this work was to characterize the homologous kdr region of the voltage-gated sodium channel gene in An. albimanus and to conduct a preliminary retrospective analysis of field samples collected in the 1990's, coinciding with a time of intense pyrethroid application related to agricultural and public health insect control in the region. Degenerate primers were designed to amplify the homologous kdr region in a pyrethroid-susceptible laboratory strain (Sanarate) of An. albimanus. Subsequently, a more specific primer pair was used to amplify and sequence the region that contains the 1014 codon associated with pyrethroid resistance in other Anopheles spp. (L1014F, L1014S or L1014C). Direct sequencing of the PCR products confirmed the presence of the susceptible kdr allele in the Sanarate strain (L1014) and the presence of homozygous-resistant kdr alleles in field-collected individuals from Mexico (L1014F), Nicaragua (L1014C) and Costa Rica (L1014C). For the first time, the kdr region in An. albimanus is described. Furthermore, molecular evidence suggests the presence of kdr-type resistance in field-collected An. albimanus in Mesoamerica in the 1990s. Further research is needed to conclusively determine an association between the genotypes and resistant phenotypes, and to what extent they may compromise current vector control efforts.

  11. A DNA aptamer recognising a malaria protein biomarker can function as part of a DNA origami assembly

    Science.gov (United States)

    Godonoga, Maia; Lin, Ting-Yu; Oshima, Azusa; Sumitomo, Koji; Tang, Marco S. L.; Cheung, Yee-Wai; Kinghorn, Andrew B.; Dirkzwager, Roderick M.; Zhou, Cunshan; Kuzuya, Akinori; Tanner, Julian A.; Heddle, Jonathan G.

    2016-01-01

    DNA aptamers have potential for disease diagnosis and as therapeutics, particularly when interfaced with programmable molecular technology. Here we have combined DNA aptamers specific for the malaria biomarker Plasmodium falciparum lactate dehydrogenase (PfLDH) with a DNA origami scaffold. Twelve aptamers that recognise PfLDH were integrated into a rectangular DNA origami and atomic force microscopy demonstrated that the incorporated aptamers preserve their ability to specifically bind target protein. Captured PfLDH retained enzymatic activity and protein-aptamer binding was observed dynamically using high-speed AFM. This work demonstrates the ability of DNA aptamers to recognise a malaria biomarker whilst being integrated within a supramolecular DNA scaffold, opening new possibilities for malaria diagnostic approaches based on DNA nanotechnology. PMID:26891622

  12. Evaluation of Renal Function in Pregnant Women with Malaria: A Case-Control Study in a Mesoendemic Area

    Directory of Open Access Journals (Sweden)

    Justice Afrifa

    2017-01-01

    Full Text Available Background. Malaria is known to have devastating effects on mortality in tropical and subtropical regions with the effect being magnified in people with weakened immunity such as those in pregnancy. We assessed the effect of malaria on renal function of pregnant women receiving antenatal care in a mesoendemic area of Ghana. Methodology. A case-control study that enrolled a total of 100 pregnant women (50 with confirmed gestational malaria as cases and 50 without malaria as controls. Sociodemographic characteristics, obstetric history (obtained with a questionnaire, urea, creatinine, sodium, and potassium were analyzed using a chemistry automated analyzer. Results. Plasma urea and creatinine were significantly increased (P=0.0003 and P<0.0001, resp. among cases compared to the controls. Also the levels of urea (P=0.033, creatinine (P=0.032, and parasitaemia (0.016 were significantly increased with increasing gestational age. Conclusion. Malaria has a significant impact on renal function (most importantly, urea and creatinine and is also significantly associated with increasing gestational age among our study participants.

  13. Molecular and Functional Neuroscience in Immunity.

    Science.gov (United States)

    Pavlov, Valentin A; Chavan, Sangeeta S; Tracey, Kevin J

    2018-04-26

    The nervous system regulates immunity and inflammation. The molecular detection of pathogen fragments, cytokines, and other immune molecules by sensory neurons generates immunoregulatory responses through efferent autonomic neuron signaling. The functional organization of this neural control is based on principles of reflex regulation. Reflexes involving the vagus nerve and other nerves have been therapeutically explored in models of inflammatory and autoimmune conditions, and recently in clinical settings. The brain integrates neuro-immune communication, and brain function is altered in diseases characterized by peripheral immune dysregulation and inflammation. Here we review the anatomical and molecular basis of the neural interface with immunity, focusing on peripheral neural control of immune functions and the role of the brain in the model of the immunological homunculus. Clinical advances stemming from this knowledge within the framework of bioelectronic medicine are also briefly outlined.

  14. Connotation and category of functional-molecular imaging

    International Nuclear Information System (INIS)

    Li Tianran; Tian Jiahe

    2007-01-01

    Function and molecular lmaging represent medical imaging' s direction. The review article introduce function and molecular's concept and category and its characteristic. Comparing with traditionary classics radiology, function and molecular imaging have many features, such as micro-mount and specificity and quantitative. There are many technology about function and molecular imaging. Function and molecular imaging is important ingredient of modern medical and play a considerable role. (authors)

  15. Molecular evidence of malaria and zoonotic diseases among rapid diagnostic test-negative febrile patients in low-transmission season, Mali

    DEFF Research Database (Denmark)

    Touré, Mahamoudou; Petersen, Pelle T; Bathily, Sidy N'd

    2017-01-01

    From November to December 2012 in Sélingué-Mali, blood samples from 88 febrile patients who tested negative by malaria Paracheck (®) rapid diagnostic tests (RDTs) were used to assess the presence of sub-RDT Plasmodium falciparum as well as Borrelia, Coxiella burnetii, and Babesia applying molecular...... tools. Plasmodium sp. was present among 57 (60.2%) of the 88 malaria RDT-negative patients, whereas the prevalence of Borrelia, C. burnetii, and Babesia were 3.4% (N = 3), 1.1% (N = 1), and 0.0%, respectively. The additional diagnostic use of polymerase chain reaction (PCR) identified a high proportion...

  16. Discontinuous approximate molecular electronic wave-functions

    International Nuclear Information System (INIS)

    Stuebing, E.W.; Weare, J.H.; Parr, R.G.

    1977-01-01

    Following Kohn, Schlosser and Marcus and Weare and Parr an energy functional is defined for a molecular problem which is stationary in the neighborhood of the exact solution and permits the use of trial functions that are discontinuous. The functional differs from the functional of the standard Rayleigh--Ritz method in the replacement of the usual kinetic energy operators circumflex T(μ) with operators circumflex T'(μ) = circumflex T(μ) + circumflex I(μ) generates contributions from surfaces of nonsmooth behavior. If one uses the nabla PSI . nabla PSI way of writing the usual kinetic energy contributions, one must add surface integrals of the product of the average of nabla PSI and the change of PSI across surfaces of discontinuity. Various calculations are carried out for the hydrogen molecule-ion and the hydrogen molecule. It is shown that ab initio calculations on molecules can be carried out quite generally with a basis of atomic orbitals exactly obeying the zero-differential overlap (ZDO) condition, and a firm basis is thereby provided for theories of molecular electronic structure invoking the ZDO aoproximation. It is demonstrated that a valence bond theory employing orbitals exactly obeying ZDO can provide an adequate account of chemical bonding, and several suggestions are made regarding molecular orbital methods

  17. Mannose-binding lectin is a disease modifier in clinical malaria and may function as opsonin for Plasmodium falciparum-infected erythrocytes

    DEFF Research Database (Denmark)

    Garred, Peter; Nielsen, Morten A; Kurtzhals, Jørgen

    2003-01-01

    Variant alleles in the mannose-binding lectin (MBL) gene (mbl2) causing low levels of functional MBL are associated with susceptibility to different infections and are common in areas where malaria is endemic. Therefore, we investigated whether MBL variant alleles in 551 children from Ghana were...... associated with the occurrence and outcome parameters of Plasmodium falciparum malaria and asked whether MBL may function as an opsonin for P. falciparum. No difference in MBL genotype frequency was observed between infected and noninfected children or between children with cerebral malaria and/or severe...... malarial anemia and children with uncomplicated malaria. However, patients with complicated malaria who were homozygous for MBL variant alleles had significantly higher parasite counts and lower blood glucose levels than their MBL-competent counterparts. Distinct calcium-dependent binding of MBL...

  18. Molecular cloning of a K+ channel from the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Ricke, Christina Høier; Litman, Thomas

    2004-01-01

    In most living cells, K(+) channels are important for the generation of the membrane potential and for volume regulation. The parasite Plasmodium falciparum, which causes malignant malaria, must be able to deal with large variations in the ambient K(+) concentration: it is exposed to high...... concentrations of K(+) when inside the erythrocyte and low concentrations when in plasma. In the recently published genome of P. falciparum, we have identified a gene, pfkch1, encoding a potential K(+) channel, which to some extent resembles the big-conductance (BK) K(+) channel. We have cloned the approximately...

  19. Molecular identification of a myosuppressin receptor from the malaria mosquito Anopheles gambiae

    DEFF Research Database (Denmark)

    Schöller, Susanne; Belmont, Martin; Cazzamali, Giuseppe

    2005-01-01

    The insect myosuppressins (X1DVX2HX3FLRFamide) are neuropeptides that generally block insect muscle activities. We have used the genomic sequence information from the malaria mosquito Anopheles gambiae Genome Project to clone a G protein-coupled receptor that was closely related to the two...... previously cloned and characterized myosuppressin receptors from Drosophila [Proc. Natl. Acad. Sci. USA 100 (2003) 9808]. The mosquito receptor cDNA was expressed in Chinese hamster ovary cells and was found to be activated by low concentrations of Anopheles myosuppressin (TDVDHVFLRFamide; EC50, 1.6 x 10...... identification of a mosquito neuropeptide receptor....

  20. Cranked cluster wave function for molecular states

    International Nuclear Information System (INIS)

    Horiuchi, Hisashi; Yabana, Kazuhiro; Wada, Takahiro.

    1986-01-01

    Construction of the cranked cluster wave function is discussed by focussing on three problems; the self-consistency between the potential and the density distribution, the properties of the rotational angular frequency which is strongly influenced by the inter-cluster Pauli principle and by the parity projection, and the spin alignment along the rotation axis with the resulting structure-change of the molecular state. (author)

  1. Comparison of functional assays used in the clinical development of a placental malaria vaccine

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Heno, Kristine Klysner; Adams, Yvonne

    2017-01-01

    BACKGROUND: Malaria in pregnancy is associated with significant morbidity in pregnant women and their offspring. Plasmodium falciparum infected erythrocytes (IE) express VAR2CSA that mediates binding to chondroitin sulphate A (CSA) in the placenta. Two VAR2CSA-based vaccines for placental malaria...

  2. Molecular designing of nanoparticles and functional materials

    Directory of Open Access Journals (Sweden)

    Ignjatović Nenad L.

    2017-01-01

    Full Text Available The interdisciplinary research team implemented the program titled “Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them” (MODENAFUNA, between 2011 and 2016, gaining new knowledge significant to the further improvement of nanomaterials and nanotechnologies. It gathered under its umbrella six main interrelated topics pertaining to the design and control of morphological and physicochemical properties of nanoparticles and functional material based on them using new methods of synthesis and processing: 1 inorganic nanoparticles, 2 cathode materials for lithium-ion batteries, 3 functional ceramics with improved electrical and optical properties, 4 full density nanostructured calcium phosphate and functionally-graded materials, 5 nano-calcium phosphate in bone tissue engineering and 6 biodegradable micro- and nano-particles for the controlled delivery of medicaments. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45004: Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them

  3. Molecular excited states from the SCAN functional

    Science.gov (United States)

    Tozer, David J.; Peach, Michael J. G.

    2018-06-01

    The performance of the strongly constrained and appropriately normed (SCAN) meta-generalised gradient approximation exchange-correlation functional is investigated for the calculation of time-dependent density-functional theory molecular excitation energies of local, charge-transfer and Rydberg character, together with the excited ? potential energy curve in H2. The SCAN results frequently resemble those obtained using a global hybrid functional, with either a standard or increased fraction of exact orbital exchange. For local excitations, SCAN can exhibit significant triplet instability problems, resulting in imaginary triplet excitation energies for a number of cases. The Tamm-Dancoff approximation offers a simple approach to improve the situation, but the excitation energies are still significantly underestimated. Understanding the origin of these (near)-triplet instabilities may provide useful insight into future functional development.

  4. Molecular characterization of larval peripheral thermosensory responses of the malaria vector mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Chao Liu

    Full Text Available Thermosensation provides vital inputs for the malaria vector mosquito, Anopheles gambiae which utilizes heat-sensitivity within a broad spectrum of behaviors, most notably, the localization of human hosts for blood feeding. In this study, we examine thermosensory behaviors in larval-stage An. gambiae, which as a result of their obligate aquatic habitats and importance for vectorial capacity, represents an opportunistic target for vector control as part of the global campaign to eliminate malaria. As is the case for adults, immature mosquitoes respond differentially to a diverse array of external heat stimuli. In addition, larvae exhibit a striking phenotypic plasticity in thermal-driven behaviors that are established by temperature at which embryonic development occurs. Within this spectrum, RNAi-directed gene-silencing studies provide evidence for the essential role of the Transient Receptor Potential sub-family A1 (TRPA1 channel in mediating larval thermal-induced locomotion and thermal preference within a discrete upper range of ambient temperatures.

  5. Malaria cerebral Cerebral malaria

    Directory of Open Access Journals (Sweden)

    Carlos Hugo Zapata Zapata

    2003-03-01

    Full Text Available La malaria Cerebral (MC es la complicación más frecuente de la malaria por P. falciparum; aproximadamente el 90% de las personas que la han padecido se recuperan completamente sin secuelas neurológicas. Aún no se conoce con claridad su patogénesis pero se han postulado cuatro hipótesis o mecanismos posibles: 1 citoadherencia y secuestro de glóbulos rojos parasitados en la microvasculatura cerebral; 2 formación de rosetas y aglutinación de glóbulos rojos parasitados; 3 producción de citoquinas y activación de segundos mensajeros y, 4 apertura de la barrera hematoencefálica. Sin embargo, queda un interrogante sin resolver aún: ¿qué proceso se lleva a cabo para que el parásito, desde el espacio microvascular, pueda interferir transitoriamente con la función cerebral? Recientemente se ha utilizado el precursor de la proteína b-Amiloide como un marcador de daño neuronal en MC; este precursor será de gran ayuda en futuras investigaciones realizadas en nuestro medio que aporten información para comprender la patogénesis de la MC. Is the most common complication of P. falciparum malaria; nearly 90% of people who have suffered CM can recover without neurological problems. Currently there are four hypotheses that explain pathogenesis of CM: cytoadherence and sequestering of parasitized red blood cells to cerebral capillaries; rosette formation and parasitized red blood cells agglutination; production of cytokines and activation of second messengers and opening of the blood-brain barrier. However the main question remains to be answered; how the host-parasite interaction in the vascular space interferes transiently with cerebral function? Recently, the beta amyloid precursor peptide has been employed as marker of neural injury in CM. It is expected that the beta amyloid precursor peptide will help to understand the pathogenesis of CM in complicated patients of endemic areas of Colombia.

  6. The Plasmodium falciparum erythrocyte invasion ligand Pfrh4 as a target of functional and protective human antibodies against malaria.

    Directory of Open Access Journals (Sweden)

    Linda Reiling

    Full Text Available BACKGROUND: Acquired antibodies are important in human immunity to malaria, but key targets remain largely unknown. Plasmodium falciparum reticulocyte-binding-homologue-4 (PfRh4 is important for invasion of human erythrocytes and may therefore be a target of protective immunity. METHODS: IgG and IgG subclass-specific responses against different regions of PfRh4 were determined in a longitudinal cohort of 206 children in Papua New Guinea (PNG. Human PfRh4 antibodies were tested for functional invasion-inhibitory activity, and expression of PfRh4 by P. falciparum isolates and sequence polymorphisms were determined. RESULTS: Antibodies to PfRh4 were acquired by children exposed to P. falciparum malaria, were predominantly comprised of IgG1 and IgG3 subclasses, and were associated with increasing age and active parasitemia. High levels of antibodies, particularly IgG3, were strongly predictive of protection against clinical malaria and high-density parasitemia. Human affinity-purified antibodies to the binding region of PfRh4 effectively inhibited erythrocyte invasion by P. falciparum merozoites and antibody levels in protected children were at functionally-active concentrations. Although expression of PfRh4 can vary, PfRh4 protein was expressed by most isolates derived from the cohort and showed limited sequence polymorphism. CONCLUSIONS: Evidence suggests that PfRh4 is a target of antibodies that contribute to protective immunity to malaria by inhibiting erythrocyte invasion and preventing high density parasitemia. These findings advance our understanding of the targets and mechanisms of human immunity and evaluating the potential of PfRh4 as a component of candidate malaria vaccines.

  7. Multiple essential functions of Plasmodium falciparum actin-1 during malaria blood-stage development.

    Science.gov (United States)

    Das, Sujaan; Lemgruber, Leandro; Tay, Chwen L; Baum, Jake; Meissner, Markus

    2017-08-15

    The phylum Apicomplexa includes intracellular parasites causing immense global disease burden, the deadliest of them being the human malaria parasite Plasmodium falciparum, which invades and replicates within erythrocytes. The cytoskeletal protein actin is well conserved within apicomplexans but divergent from mammalian actins, and was primarily reported to function during host cell invasion. However, novel invasion mechanisms have been described for several apicomplexans, and specific functions of the acto-myosin system are being reinvestigated. Of the two actin genes in P. falciparum, actin-1 (pfact1) is ubiquitously expressed in all life-cycle stages and is thought to be required for erythrocyte invasion, although its functions during parasite development are unknown, and definitive in vivo characterisation during invasion is lacking. Here we have used a conditional Cre-lox system to investigate the functions of PfACT1 during P. falciparum blood-stage development and host cell invasion. We demonstrate that PfACT1 is crucially required for segregation of the plastid-like organelle, the apicoplast, and for efficient daughter cell separation during the final stages of cytokinesis. Surprisingly, we observe that egress from the host cell is not an actin-dependent process. Finally, we show that parasites lacking PfACT1 are capable of microneme secretion, attachment and formation of a junction with the erythrocyte, but are incapable of host cell invasion. This study provides important mechanistic insights into the definitive essential functions of PfACT1 in P. falciparum, which are not only of biological interest, but owing to functional divergence from mammalian actins, could also form the basis for the development of novel therapeutics against apicomplexans.

  8. Malaria Parasite CLAG3, a Protein Linked to Nutrient Channels, Participates in High Molecular Weight Membrane-Associated Complexes in the Infected Erythrocyte.

    Directory of Open Access Journals (Sweden)

    Kayvan Zainabadi

    Full Text Available Malaria infected erythrocytes show increased permeability to a number of solutes important for parasite growth as mediated by the Plasmodial Surface Anion Channel (PSAC. The P. falciparum clag3 genes have recently been identified as key determinants of PSAC, though exactly how they contribute to channel function and whether additional host/parasite proteins are required remain unknown. To begin to answer these questions, I have taken a biochemical approach. Here I have used an epitope-tagged CLAG3 parasite to perform co-immunoprecipitation experiments using membrane fractions of infected erythrocytes. Native PAGE and mass spectrometry studies reveal that CLAG3 participate in at least three different high molecular weight complexes: a ~720kDa complex consisting of CLAG3, RHOPH2 and RHOPH3; a ~620kDa complex consisting of CLAG3 and RHOPH2; and a ~480kDa complex composed solely of CLAG3. Importantly, these complexes can be found throughout the parasite lifecycle but are absent in untransfected controls. Extracellular biotin labeling and protease susceptibility studies localize the 480kDa complex to the erythrocyte membrane. This complex, likely composed of a homo-oligomer of 160kDa CLAG3, may represent a functional subunit, possibly the pore, of PSAC.

  9. Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library.

    Science.gov (United States)

    Sugiura, Nobuo; Clausen, Thomas Mandel; Shioiri, Tatsumasa; Gustavsson, Tobias; Watanabe, Hideto; Salanti, Ali

    2016-12-01

    Placental malaria, a serious infection caused by the parasite Plasmodium falciparum, is characterized by the selective accumulation of infected erythrocytes (IEs) in the placentas of the pregnant women. Placental adherence is mediated by the malarial VAR2CSA protein, which interacts with chondroitin sulfate (CS) proteoglycans present in the placental tissue. CS is a linear acidic polysaccharide composed of repeating disaccharide units of D-glucuronic acid and N-acetyl-D-galactosamine that are modified by sulfate groups at different positions. Previous reports have shown that placental-adhering IEs were associated with an unusually low sulfated form of chondroitin sulfate A (CSA) and that a partially sulfated dodecasaccharide is the minimal motif for the interaction. However, the fine molecular structure of this CS chain remains unclear. In this study, we have characterized the CS chain that interacts with a recombinant minimal CS-binding region of VAR2CSA (rVAR2) using a CS library of various defined lengths and sulfate compositions. The CS library was chemo-enzymatically synthesized with bacterial chondroitin polymerase and recombinant CS sulfotransferases. We found that C-4 sulfation of the N-acetyl-D-galactosamine residue is critical for supporting rVAR2 binding, whereas no other sulfate modifications showed effects. Interaction of rVAR2 with CS is highly correlated with the degree of C-4 sulfation and CS chain length. We confirmed that the minimum structure binding to rVAR2 is a tri-sulfated CSA dodecasaccharide, and found that a highly sulfated CSA eicosasaccharide is a more potent inhibitor of rVAR2 binding than the dodecasaccharides. These results suggest that CSA derivatives may potentially serve as targets in therapeutic strategies against placental malaria.

  10. Molecular typing of bacteria of the genus Asaia in malaria vector Anopheles arabiensis Patton, 1905

    Directory of Open Access Journals (Sweden)

    S. Epis

    2012-08-01

    Full Text Available The acetic acid bacterium Asaia spp. was successfully detected in Anopheles arabiensis Patton, 1905, one of the major vector of human malaria in Sub-Saharan Africa. A collection of 45 Asaia isolates in cellfree media was established from 20 individuals collected from the field in Burkina Faso. 16S rRNA universal polymerase chain reaction (PCR and specific qPCR, for the detection of Asaia spp. were performed in order to reveal the presence of different bacterial taxa associated with this insect. The isolates were typed by internal transcribed spacer-PCR, BOX-PCR, and randomly amplified polymorphic DNA-PCR, proved the presence of different Asaia in A. arabiensis.

  11. Functional molecular markers for crop improvement.

    Science.gov (United States)

    Kage, Udaykumar; Kumar, Arun; Dhokane, Dhananjay; Karre, Shailesh; Kushalappa, Ajjamada C

    2016-10-01

    A tremendous decline in cultivable land and resources and a huge increase in food demand calls for immediate attention to crop improvement. Though molecular plant breeding serves as a viable solution and is considered as "foundation for twenty-first century crop improvement", a major stumbling block for crop improvement is the availability of a limited functional gene pool for cereal crops. Advancement in the next generation sequencing (NGS) technologies integrated with tools like metabolomics, proteomics and association mapping studies have facilitated the identification of candidate genes, their allelic variants and opened new avenues to accelerate crop improvement through development and use of functional molecular markers (FMMs). The FMMs are developed from the sequence polymorphisms present within functional gene(s) which are associated with phenotypic trait variations. Since FMMs obviate the problems associated with random DNA markers, these are considered as "the holy grail" of plant breeders who employ targeted marker assisted selections (MAS) for crop improvement. This review article attempts to consider the current resources and novel methods such as metabolomics, proteomics and association studies for the identification of candidate genes and their validation through virus-induced gene silencing (VIGS) for the development of FMMs. A number of examples where the FMMs have been developed and used for the improvement of cereal crops for agronomic, food quality, disease resistance and abiotic stress tolerance traits have been considered.

  12. About Malaria

    Science.gov (United States)

    ... Emergency Consultations, and General Public. Contact Us About Malaria Recommend on Facebook Tweet Share Compartir Malaria is ... from sub-Saharan Africa and South Asia. About Malaria Topics FAQs Frequently Asked Question, Incubation period, uncomplicated & ...

  13. Metal-molecular assembly for functional materials

    CERN Document Server

    Matsuo, Yutaka; Negishi, Yuichi; Yoshizawa, Michito; Uemura, Takashi; Takaya, Hikaru; Takeuchi, Masayuki; Yoshimoto, Soichiro

    2013-01-01

    This book focuses on modern coordination chemistry, covering porous coordination polymers, metalloproteins, metallopeptides, nanoclusters, nanocapsules, aligned polymers, and fullerenes. As well, it deals with applications to electronic devices and surface characterization. These wide-ranging topics are integrally described from the perspectives of dimensionality (one-, two-, and three-dimension), new materials design, synthesis, molecular assembly, function and application. The nine chapters making up this book have been authored by scientists who are at the cutting edge of research in this p

  14. Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings.

    Science.gov (United States)

    Britton, Sumudu; Cheng, Qin; McCarthy, James S

    2016-02-16

    As malaria transmission continues to decrease, an increasing number of countries will enter pre-elimination and elimination. To interrupt transmission, changes in control strategies are likely to require more accurate identification of all carriers of Plasmodium parasites, both symptomatic and asymptomatic, using diagnostic tools that are highly sensitive, high throughput and with fast turnaround times preferably performed in local health service settings. Currently available immunochromatographic lateral flow rapid diagnostic tests and field microscopy are unlikely to consistently detect infections at parasite densities less than 100 parasites/µL making them insufficiently sensitive for detecting all carriers. Molecular diagnostic platforms, such as PCR and LAMP, are currently available in reference laboratories, but at a cost both financially and in turnaround time. This review describes the recent progress in developing molecular diagnostic tools in terms of their capacity for high throughput and potential for performance in non-reference laboratories for malaria elimination.

  15. Malaria in pregnant women living in areas of low transmission on the southeast Brazilian Coast: molecular diagnosis and humoural immunity profile

    Directory of Open Access Journals (Sweden)

    Angélica Domingues Hristov

    2014-12-01

    Full Text Available Studies on autochthonous malaria in low-transmission areas in Brazil have acquired epidemiological relevance because they suggest continued transmission in what remains of the Atlantic Forest. In the southeastern portion of the state of São Paulo, outbreaks in the municipality of Juquitiba have been the focus of studies on the prevalence of Plasmodium, including asymptomatic cases. Data on the occurrence of the disease or the presence of antiplasmodial antibodies in pregnant women from this region have not previously been described. Although Plasmodium falciparum in pregnant women has been widely addressed in the literature, the interaction of Plasmodium vivax and Plasmodium malariae with this cohort has been poorly explored to date. We monitored the circulation of Plasmodium in pregnant women in health facilities located in Juquitiba using thick blood film and molecular protocols, as well as immunological assays, to evaluate humoural immune parameters. Through real-time and nested polymerase chain reaction, P. vivax and P. malariae were detected for the first time in pregnant women, with a positivity of 5.6%. Immunoassays revealed the presence of IgG antibodies: 44% for ELISA-Pv, 38.4% for SD-Bioline-Pv and 18.4% for indirect immunofluorescence assay-Pm. The high prevalence of antibodies showed significant exposure of this population to Plasmodium. In regions with similar profiles, testing for a malaria diagnosis might be indicated in prenatal care.

  16. Molecular Taxonomy of Anopheles (Nyssorhynchus) benarrochi (Diptera: Culicidae) and Malaria Epidemiology in Southern Amazonian Peru

    Science.gov (United States)

    Conn, Jan E.; Moreno, Marta; Saavedra, Marlon; Bickersmith, Sara A.; Knoll, Elisabeth; Fernandez, Roberto; Vera, Hubert; Burrus, Roxanne G.; Lescano, Andres G.; Sanchez, Juan Francisco; Rivera, Esteban; Vinetz, Joseph M.

    2013-01-01

    Anopheline specimens were collected in 2011 by human landing catch, Shannon and CDC traps from the malaria endemic localities of Santa Rosa and San Pedro in Madre de Dios Department, Peru. Most specimens were either Anopheles (Nyssorhynchus) benarrochi B or An. (Nys.) rangeli, confirmed by polymerase chain reaction-restriction fragment length polymorphism-internal transcribed spacer 2 (PCR-RFLP-ITS2) and, for selected individuals, ITS2 sequences. A few specimens from Lupuna, Loreto Department, northern Amazonian Peru, were also identified as An. benarrochi B. A statistical parsimony network using ITS2 sequences confirmed that all Peruvian An. benarrochi B analyzed were identical to those in GenBank from Putumayo, southern Colombia. Sequences of the mtDNA COI BOLD region of specimens from all three Peruvian localities were connected using a statistical parsimony network, although there were multiple mutation steps between northern and southern Peruvian sequences. A Bayesian inference of concatenated Peruvian sequences of ITS2+COI detected a single clade with very high support for all An. benarrochi B except one individual from Lupuna that was excluded. No samples were positive for Plasmodium by CytB-PCR. PMID:23243107

  17. Differential induction of functional IgG using the Plasmodium falciparum placental malaria vaccine candidate VAR2CSA

    DEFF Research Database (Denmark)

    Pinto, Vera V; Ditlev, Sisse B; Jensen, Kamilla E

    2011-01-01

    In Plasmodium falciparum malaria endemic areas placental malaria (PM) is an important complication of malaria. The recurrence of malaria in primigravidae women irrespective of acquired protection during childhood is caused by the interaction between the parasite-expressed VAR2CSA antigen and chon...

  18. Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian malaria parasite.

    Science.gov (United States)

    Palinauskas, Vaidas; Žiegytė, Rita; Iezhova, Tatjana A; Ilgūnas, Mikas; Bernotienė, Rasa; Valkiūnas, Gediminas

    2016-10-01

    Plasmodium elongatum causes severe avian malaria and is distributed worldwide. This parasite is of particular importance due to its ability to develop and cause lethal malaria not only in natural hosts, but also in non-adapted endemic birds such as the brown kiwi and different species of penguins. Information on vectors of this infection is available but is contradictory. PCR-based analysis indicated the possible existence of a cluster of closely related P. elongatum lineages which might differ in their ability to develop in certain mosquitoes and birds. This experimental study provides information about molecular and morphological characterisation of a virulent P. elongatum strain (lineage pERIRUB01) isolated from a naturally infected European robin, Erithacus rubecula. Phylogenetic analysis based on partial cytochrome b gene sequences showed that this parasite lineage is closely related to P. elongatum (lineage pGRW6). Blood stages of both parasite lineages are indistinguishable, indicating that they belong to the same species. Both pathogens develop in experimentally infected canaries, Serinus canaria, causing death of the hosts. In both these lineages, trophozoites and erythrocytic meronts develop in polychromatic erythrocytes and erythroblasts, gametocytes parasitize mature erythrocytes, exoerythrocytic stages develop in cells of the erythrocytic series in bone marrow and are occasionally reported in spleen and liver. Massive infestation of bone marrow cells is the main reason for bird mortality. We report here on syncytium-like remnants of tissue meronts, which slip out of the bone marrow into the peripheral circulation, providing evidence that the syncytia can be a template for PCR amplification. This finding contributes to better understanding positive PCR amplifications in birds when parasitemia is invisible and improved diagnostics of abortive haemosporidian infections. Sporogony of P. elongatum (pERIRUB01) completes the cycle and sporozoites develop in

  19. Molecular Epidemiology of Epidemic Severe Malaria Caused by Plasmodium vivax in the State of Amazonas, Brazil

    Science.gov (United States)

    2005-01-01

    Suarez, C.F., Florez, C., del Portillo, H.A.; Andrade, L.E. Direct Submission to NCBI gene bank. Submitted 03-JAN-1997. Laboratorio de Biologia Molecular...Departamento de Biologia , Universidad Nacional de Colombia, Ciudad Universitaria, Santa Fe de Bogota, D.C., Colombia. Nardin, E.H.; Zavala, F

  20. The influence of viscosity on the functioning of molecular motors

    NARCIS (Netherlands)

    Klok, Martin; Janssen, Leon P.B.M.; Browne, Wesley R.; Feringa, Ben L.

    2009-01-01

    Light driven molecular motors based on sterically overcrowded alkenes achieve repetitive unidirectional rotation through a sequential series of photochemical and thermal steps. The influence of highly viscous environments on the functioning of unidirectional light driven molecular motors is

  1. Malaria diagnosis from pooled blood samples: comparative analysis of real-time PCR, nested PCR and immunoassay as a platform for the molecular and serological diagnosis of malaria on a large-scale

    Directory of Open Access Journals (Sweden)

    Giselle FMC Lima

    2011-09-01

    Full Text Available Malaria diagnoses has traditionally been made using thick blood smears, but more sensitive and faster techniques are required to process large numbers of samples in clinical and epidemiological studies and in blood donor screening. Here, we evaluated molecular and serological tools to build a screening platform for pooled samples aimed at reducing both the time and the cost of these diagnoses. Positive and negative samples were analysed in individual and pooled experiments using real-time polymerase chain reaction (PCR, nested PCR and an immunochromatographic test. For the individual tests, 46/49 samples were positive by real-time PCR, 46/49 were positive by nested PCR and 32/46 were positive by immunochromatographic test. For the assays performed using pooled samples, 13/15 samples were positive by real-time PCR and nested PCR and 11/15 were positive by immunochromatographic test. These molecular methods demonstrated sensitivity and specificity for both the individual and pooled samples. Due to the advantages of the real-time PCR, such as the fast processing and the closed system, this method should be indicated as the first choice for use in large-scale diagnosis and the nested PCR should be used for species differentiation. However, additional field isolates should be tested to confirm the results achieved using cultured parasites and the serological test should only be adopted as a complementary method for malaria diagnosis.

  2. Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria

    NARCIS (Netherlands)

    Price, Ric N.; Uhlemann, Anne-Catrin; van Vugt, Michele; Brockman, Al; Hutagalung, Robert; Nair, Shalini; Nash, Denae; Singhasivanon, Pratap; Anderson, Tim J. C.; Krishna, Sanjeev; White, Nicholas J.; Nosten, François

    2006-01-01

    Our study examined the relative contributions of host, pharmacokinetic, and parasitological factors in determining the therapeutic response to artemether-lumefantrine (AL). On the northwest border of Thailand, patients with uncomplicated Plasmodium falciparum malaria were enrolled in prospective

  3. Molecular Detection of Plasmodium malariae/Plasmodium brasilianum in Non-Human Primates in Captivity in Costa Rica.

    Science.gov (United States)

    Fuentes-Ramírez, Alicia; Jiménez-Soto, Mauricio; Castro, Ruth; Romero-Zuñiga, Juan José; Dolz, Gaby

    2017-01-01

    One hundred and fifty-two blood samples of non-human primates of thirteen rescue centers in Costa Rica were analyzed to determine the presence of species of Plasmodium using thick blood smears, semi-nested multiplex polymerase chain reaction (SnM-PCR) for species differentiation, cloning and sequencing for confirmation. Using thick blood smears, two samples were determined to contain the Plasmodium malariae parasite, with SnM-PCR, a total of five (3.3%) samples were positive to P. malariae, cloning and sequencing confirmed both smear samples as P. malariae. One sample amplified a larger and conserved region of 18S rDNA for the genus Plasmodium and sequencing confirmed the results obtained microscopically and through SnM-PCR tests. Sequencing and construction of a phylogenetic tree of this sample revealed that the P. malariae/P. brasilianum parasite (GenBank KU999995) found in a howler monkey (Alouatta palliata) is identical to that recently reported in humans in Costa Rica. The SnM-PCR detected P. malariae/P. brasilianum parasite in different non-human primate species in captivity and in various regions of the southern Atlantic and Pacific coast of Costa Rica. The similarity of the sequences of parasites found in humans and a monkey suggests that monkeys may be acting as reservoirs of P.malariae/P. brasilianum, for which reason it is important, to include them in control and eradication programs.

  4. Malaria Research

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Malaria Go to Information for Researchers ► Credit: NIAID Colorized ... for the disease. Why Is the Study of Malaria a Priority for NIAID? Roughly 3.2 billion ...

  5. Molecular catalysts structure and functional design

    CERN Document Server

    Gade, Lutz H

    2014-01-01

    Highlighting the key aspects and latest advances in the rapidly developing field of molecular catalysis, this book covers new strategies to investigate reaction mechanisms, the enhancement of the catalysts' selectivity and efficiency, as well as the rational design of well-defined molecular catalysts. The interdisciplinary author team with an excellent reputation within the community discusses experimental and theoretical studies, along with examples of improved catalysts, and their application in organic synthesis, biocatalysis, and supported organometallic catalysis. As a result, readers wil

  6. Functional Molecular Junctions Derived from Double Self-Assembled Monolayers.

    Science.gov (United States)

    Seo, Sohyeon; Hwang, Eunhee; Cho, Yunhee; Lee, Junghyun; Lee, Hyoyoung

    2017-09-25

    Information processing using molecular junctions is becoming more important as devices are miniaturized to the nanoscale. Herein, we report functional molecular junctions derived from double self-assembled monolayers (SAMs) intercalated between soft graphene electrodes. Newly assembled molecular junctions are fabricated by placing a molecular SAM/(top) electrode on another molecular SAM/(bottom) electrode by using a contact-assembly technique. Double SAMs can provide tunneling conjugation across the van der Waals gap between the terminals of each monolayer and exhibit new electrical functions. Robust contact-assembled molecular junctions can act as platforms for the development of equivalent contact molecular junctions between top and bottom electrodes, which can be applied independently to different kinds of molecules to enhance either the structural complexity or the assembly properties of molecules. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Architectonics: Design of Molecular Architecture for Functional Applications.

    Science.gov (United States)

    Avinash, M B; Govindaraju, Thimmaiah

    2018-02-20

    The term architectonics has its roots in the architectural and philosophical (as early as 1600s) literature that refers to "the theory of structure" and "the structure of theory", respectively. The concept of architectonics has been adapted to advance the field of molecular self-assembly and termed as molecular architectonics. In essence, the methodology of organizing molecular units in the required and controlled configurations to develop advanced functional systems for materials and biological applications comprises the field of molecular architectonics. This concept of designing noncovalent systems enables to focus on different functional aspects of designer molecules for biological and nonbiological applications and also strengthens our efforts toward the mastery over the art of controlled molecular self-assemblies. Programming complex molecular interactions and assemblies for specific functions has been one of the most challenging tasks in the modern era. Meticulously ordered molecular assemblies can impart remarkable developments in several areas spanning energy, health, and environment. For example, the well-defined nano-, micro-, and macroarchitectures of functional molecules with specific molecular ordering possess potential applications in flexible electronics, photovoltaics, photonic crystals, microreactors, sensors, drug delivery, biomedicine, and superhydrophobic coatings, among others. The functional molecular architectures having unparalleled properties are widely evident in various designs of Nature. By drawing inspirations from Nature, intended molecular architectures can be designed and developed to harvest various functions, as there is an inexhaustible resource and scope. In this Account, we present exquisite designer molecules developed by our group and others with an objective to master the art of molecular recognition and self-assembly for functional applications. We demonstrate the tailor-ability of molecular self-assemblies by employing

  8. Liquid ammonia: Molecular correlation functions from x-ray diffraction

    International Nuclear Information System (INIS)

    Narten, A.H.

    1977-01-01

    For nearly spherical molecules the x-ray scattering from liquids yields structure and correlation functions for molecular centers. The distribution of electron density in an ammonia molecular is very nearly spherical, and orientational correlation between molecules in the liquid is not ''seen'' by x rays. Structure and correlation functions for molecular centers (nitrogen atoms) are derived from x-ray data on liquid NH 3 at 4 degreeC and tabulated. They provide a sensitive test for future work on a molecular theory of liquid ammonia

  9. Engaging with Molecular Form to Understand Function

    Science.gov (United States)

    Barber, Nicola C.; Stark, Louisa A.

    2014-01-01

    Cells are bustling factories with diverse and prolific arrays of molecular machinery. Remarkably, this machinery self-organizes to carry out the complex biochemical activities characteristic of life. When Watson and Crick published the structure of DNA, they noted that DNA base pairing creates a double-stranded form that provides a means of…

  10. Toward forward genetic screens in malaria-causing parasites using the piggyBac transposon

    Directory of Open Access Journals (Sweden)

    de Koning-Ward Tania F

    2011-03-01

    Full Text Available Abstract The ability to analyze gene function in malaria-causing Plasmodium parasites has received a boost with a recent paper in BMC Genomics that describes a genome-wide mutagenesis system in the rodent malaria species Plasmodium berghei using the transposon piggyBac. This advance holds promise for identifying and validating new targets for intervention against malaria. But further improvements are still needed for the full power of genome-wide molecular genetic screens to be utilized in this organism. See research article: http://www.biomedcentral.com/1471-2164/12/155

  11. Visualizing functional motions of membrane transporters with molecular dynamics simulations.

    Science.gov (United States)

    Shaikh, Saher A; Li, Jing; Enkavi, Giray; Wen, Po-Chao; Huang, Zhijian; Tajkhorshid, Emad

    2013-01-29

    Computational modeling and molecular simulation techniques have become an integral part of modern molecular research. Various areas of molecular sciences continue to benefit from, indeed rely on, the unparalleled spatial and temporal resolutions offered by these technologies, to provide a more complete picture of the molecular problems at hand. Because of the continuous development of more efficient algorithms harvesting ever-expanding computational resources, and the emergence of more advanced and novel theories and methodologies, the scope of computational studies has expanded significantly over the past decade, now including much larger molecular systems and far more complex molecular phenomena. Among the various computer modeling techniques, the application of molecular dynamics (MD) simulation and related techniques has particularly drawn attention in biomolecular research, because of the ability of the method to describe the dynamical nature of the molecular systems and thereby to provide a more realistic representation, which is often needed for understanding fundamental molecular properties. The method has proven to be remarkably successful in capturing molecular events and structural transitions highly relevant to the function and/or physicochemical properties of biomolecular systems. Herein, after a brief introduction to the method of MD, we use a number of membrane transport proteins studied in our laboratory as examples to showcase the scope and applicability of the method and its power in characterizing molecular motions of various magnitudes and time scales that are involved in the function of this important class of membrane proteins.

  12. A comparative molecular survey of malaria prevalence among Eastern chimpanzee populations in Issa Valley (Tanzania) and Kalinzu (Uganda)

    Czech Academy of Sciences Publication Activity Database

    Mapua, M. I.; Petrželková, Klára Judita; Burgunder, J.; Dadáková, E.; Brožová, K.; Hrazdilová, K.; Stewart, F. A.; Piel, A. K.; Vallo, P.; Fuehrer, H.-P.; Hashimoto, C.; Modrý, David; Qablan, M. A.

    2016-01-01

    Roč. 15, AUG 19 (2016), č. článku 423. ISSN 1475-2875 Institutional support: RVO:60077344 Keywords : Malaria * Pan troglodytes schweinfurthii * Plasmodium spp. * Laverania * Cyt-b gene Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.715, year: 2016

  13. Culture adaptation of malaria parasites selects for convergent loss-of-function mutants.

    Science.gov (United States)

    Claessens, Antoine; Affara, Muna; Assefa, Samuel A; Kwiatkowski, Dominic P; Conway, David J

    2017-01-24

    Cultured human pathogens may differ significantly from source populations. To investigate the genetic basis of laboratory adaptation in malaria parasites, clinical Plasmodium falciparum isolates were sampled from patients and cultured in vitro for up to three months. Genome sequence analysis was performed on multiple culture time point samples from six monoclonal isolates, and single nucleotide polymorphism (SNP) variants emerging over time were detected. Out of a total of five positively selected SNPs, four represented nonsense mutations resulting in stop codons, three of these in a single ApiAP2 transcription factor gene, and one in SRPK1. To survey further for nonsense mutants associated with culture, genome sequences of eleven long-term laboratory-adapted parasite strains were examined, revealing four independently acquired nonsense mutations in two other ApiAP2 genes, and five in Epac. No mutants of these genes exist in a large database of parasite sequences from uncultured clinical samples. This implicates putative master regulator genes in which multiple independent stop codon mutations have convergently led to culture adaptation, affecting most laboratory lines of P. falciparum. Understanding the adaptive processes should guide development of experimental models, which could include targeted gene disruption to adapt fastidious malaria parasite species to culture.

  14. Molecular-Scale Electronics: From Concept to Function.

    Science.gov (United States)

    Xiang, Dong; Wang, Xiaolong; Jia, Chuancheng; Lee, Takhee; Guo, Xuefeng

    2016-04-13

    Creating functional electrical circuits using individual or ensemble molecules, often termed as "molecular-scale electronics", not only meets the increasing technical demands of the miniaturization of traditional Si-based electronic devices, but also provides an ideal window of exploring the intrinsic properties of materials at the molecular level. This Review covers the major advances with the most general applicability and emphasizes new insights into the development of efficient platform methodologies for building reliable molecular electronic devices with desired functionalities through the combination of programmed bottom-up self-assembly and sophisticated top-down device fabrication. First, we summarize a number of different approaches of forming molecular-scale junctions and discuss various experimental techniques for examining these nanoscale circuits in details. We then give a full introduction of characterization techniques and theoretical simulations for molecular electronics. Third, we highlight the major contributions and new concepts of integrating molecular functionalities into electrical circuits. Finally, we provide a critical discussion of limitations and main challenges that still exist for the development of molecular electronics. These analyses should be valuable for deeply understanding charge transport through molecular junctions, the device fabrication process, and the roadmap for future practical molecular electronics.

  15. Molecular transport calculations with Wannier Functions

    DEFF Research Database (Denmark)

    Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel

    2005-01-01

    We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane...

  16. Synthesis, Crystal Structure, Density Function Theory, Molecular ...

    African Journals Online (AJOL)

    Tropical Journal of Pharmaceutical Research February 2016; 15 (2): 385-392 ... tested for its antimicrobial activities and computational studies including density function test (DFT) and docking ... agonists [4], selective dopamine D3 and D4 ...

  17. Application of a qPCR assay in the investigation of susceptibility to malaria infection of the M and S molecular forms of An. gambiae s.s. in Cameroon.

    Directory of Open Access Journals (Sweden)

    Anne Boissière

    Full Text Available Plasmodium falciparum is the causative agent of malaria, a disease that kills almost one million persons each year, mainly in sub-Saharan Africa. P. falciparum is transmitted to the human host by the bite of an Anopheles female mosquito, and Anopheles gambiae sensus stricto is the most tremendous malaria vector in Africa, widespread throughout the afro-tropical belt. An. gambiae s.s. is subdivided into two distinct molecular forms, namely M and S forms. The two molecular forms are morphologically identical but they are distinct genetically, and differ by their distribution and their ecological preferences. The epidemiological importance of the two molecular forms in malaria transmission has been poorly investigated so far and gave distinct results in different areas. We have developed a real-time quantitative PCR (qPCR assay, and used it to detect P. falciparum at the oocyst stage in wild An. gambiae s.s. mosquitoes experimentally infected with natural isolates of parasites. Mosquitoes were collected at immature stages in sympatric and allopatric breeding sites and further infected at the adult stage. We next measured the infection prevalence and intensity in female mosquitoes using the qPCR assay and correlated the infection success with the mosquito molecular forms. Our results revealed different prevalence of infection between the M and S molecular forms of An. gambiae s.s. in Cameroon, for both sympatric and allopatric populations of mosquitoes. However, no difference in the infection intensity was observed. Thus, the distribution of the molecular forms of An. gambiae s.s. may impact on the malaria epidemiology, and it will be important to monitor the efficiency of malaria control interventions on the two M and S forms.

  18. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    DEFF Research Database (Denmark)

    Brown, Alan; Turner, Louise; Christoffersen, Stig

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria....... The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from......, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLß domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1...

  19. Molecular mechanisms of androgen receptor functions

    NARCIS (Netherlands)

    K. Steketee (Karine)

    2007-01-01

    textabstractThe androgens testosterone (T) and dihydrotestosterone (DHT) are steroid hormones, which are necessary for development and maintenance of the functions of the male sex organs, including the prostate. Androgens also play an important role in benign abnormalities of the prostate and in the

  20. Molecular Detection of Malaria at Delivery Reveals a High Frequency of Submicroscopic Infections and Associated Placental Damage in Pregnant Women from Northwest Colombia

    Science.gov (United States)

    Arango, Eliana M.; Samuel, Roshini; Agudelo, Olga M.; Carmona-Fonseca, Jaime; Maestre, Amanda; Yanow, Stephanie K.

    2013-01-01

    Plasmodium infection in pregnancy causes substantial maternal and infant morbidity and mortality. In Colombia, both P. falciparum and P. vivax are endemic, but the impact of either species on pregnancy is largely unknown in this country. A cross-sectional study was carried out with 96 pregnant women who delivered at their local hospital. Maternal, placental, and cord blood were tested for malaria infection by microscopy and real-time quantitative polymerase chain reaction (qPCR). A high frequency of infection was detected by qPCR (45%). These infections had low concentrations of parasite DNA, and 79% were submicroscopic. Submicroscopic infections were associated with placental villitis and intervillitis. In conclusion, the overall frequency of Plasmodium infection at delivery in Colombia is much higher than previously reported. These data prompt a re-examination of the local epidemiology of malaria using molecular diagnostics to establish the clinical relevance of submicroscopic infections during pregnancy as well as their consequences for mothers and newborns. PMID:23716408

  1. Plasmodium subtilisin-like protease 1 (SUB1): insights into the active-site structure, specificity and function of a pan-malaria drug target.

    Science.gov (United States)

    Withers-Martinez, Chrislaine; Suarez, Catherine; Fulle, Simone; Kher, Samir; Penzo, Maria; Ebejer, Jean-Paul; Koussis, Kostas; Hackett, Fiona; Jirgensons, Aigars; Finn, Paul; Blackman, Michael J

    2012-05-15

    Release of the malaria merozoite from its host erythrocyte (egress) and invasion of a fresh cell are crucial steps in the life cycle of the malaria pathogen. Subtilisin-like protease 1 (SUB1) is a parasite serine protease implicated in both processes. In the most dangerous human malarial species, Plasmodium falciparum, SUB1 has previously been shown to have several parasite-derived substrates, proteolytic cleavage of which is important both for egress and maturation of the merozoite surface to enable invasion. Here we have used molecular modelling, existing knowledge of SUB1 substrates, and recombinant expression and characterisation of additional Plasmodium SUB1 orthologues, to examine the active site architecture and substrate specificity of P. falciparum SUB1 and its orthologues from the two other major human malaria pathogens Plasmodium vivax and Plasmodium knowlesi, as well as from the rodent malaria species, Plasmodium berghei. Our results reveal a number of unusual features of the SUB1 substrate binding cleft, including a requirement to interact with both prime and non-prime side residues of the substrate recognition motif. Cleavage of conserved parasite substrates is mediated by SUB1 in all parasite species examined, and the importance of this is supported by evidence for species-specific co-evolution of protease and substrates. Two peptidyl alpha-ketoamides based on an authentic PfSUB1 substrate inhibit all SUB1 orthologues examined, with inhibitory potency enhanced by the presence of a carboxyl moiety designed to introduce prime side interactions with the protease. Our findings demonstrate that it should be possible to develop 'pan-reactive' drug-like compounds that inhibit SUB1 in all three major human malaria pathogens, enabling production of broad-spectrum antimalarial drugs targeting SUB1. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  2. Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination.

    Science.gov (United States)

    Recht, Judith; Siqueira, André M; Monteiro, Wuelton M; Herrera, Sonia M; Herrera, Sócrates; Lacerda, Marcus V G

    2017-07-04

    In spite of significant progress towards malaria control and elimination achieved in South America in the 2000s, this mosquito-transmitted tropical disease remains an important public health concern in the region. Most malaria cases in South America come from Amazon rain forest areas in northern countries, where more than half of malaria is caused by Plasmodium vivax, while Plasmodium falciparum malaria incidence has decreased in recent years. This review discusses current malaria data, policies and challenges in four South American Amazon countries: Brazil, Colombia, Peru and the Bolivarian Republic of Venezuela. Challenges to continuing efforts to further decrease malaria incidence in this region include: a significant increase in malaria cases in recent years in Venezuela, evidence of submicroscopic and asymptomatic infections, peri-urban malaria, gold mining-related malaria, malaria in pregnancy, glucose-6-phosphate dehydrogenase (G6PD) deficiency and primaquine use, and possible under-detection of Plasmodium malariae. Some of these challenges underscore the need to implement appropriate tools and procedures in specific regions, such as a field-compatible molecular malaria test, a P. malariae-specific test, malaria diagnosis and appropriate treatment as part of regular antenatal care visits, G6PD test before primaquine administration for P. vivax cases (with weekly primaquine regimen for G6PD deficient individuals), single low dose of primaquine for P. falciparum malaria in Colombia, and national and regional efforts to contain malaria spread in Venezuela urgently needed especially in mining areas. Joint efforts and commitment towards malaria control and elimination should be strategized based on examples of successful regional malaria fighting initiatives, such as PAMAFRO and RAVREDA/AMI.

  3. Neurotrophin Propeptides: Biological Functions and Molecular Mechanisms.

    Science.gov (United States)

    Rafieva, Lola M; Gasanov, Eugene V

    2016-01-01

    Neurotrophins constitute a family of growth factors that play a key role in the regulation of the development and function of the central and peripheral nervous systems. A common feature of all the neurotrophins is their synthesis in cells as long precursors (pre-pro-neurotrophins) that contain an N-terminal signal peptide, a following propeptide and the mature neurotrophin. Although the signal peptide functions have been well studied, the role of neurotrophin propeptides is not so clear. Here, we briefly summarize the biochemistry of neurotrophin propeptides, including their role as folding-assistants for the mature factor and their role in processing and in secretion of neurotrophins. In the main part of the review we summarize our current state of knowledge of the biological activity of neurotrophin propeptides, their possible mechanisms of action, and their potential influence on the activity of the mature neurotrophins.

  4. A yeast expression system for functional and pharmacological studies of the malaria parasite Ca2+/H+ antiporter

    Directory of Open Access Journals (Sweden)

    Salcedo-Sora J

    2012-08-01

    Full Text Available Abstract Background Calcium (Ca2+ signalling is fundamental for host cell invasion, motility, in vivo synchronicity and sexual differentiation of the malaria parasite. Consequently, cytoplasmic free Ca2+ is tightly regulated through the co-ordinated action of primary and secondary Ca2+ transporters. Identifying selective inhibitors of Ca2+ transporters is key towards understanding their physiological role as well as having therapeutic potential, therefore screening systems to facilitate the search for potential inhibitors are a priority. Here, the methodology for the expression of a Calcium membrane transporter that can be scaled to high throughputs in yeast is presented. Methods The Plasmodium falciparum Ca2+/H+ antiporter (PfCHA was expressed in the yeast Saccharomyces cerevisiae and its activity monitored by the bioluminescence from apoaequorin triggered by divalent cations, such as calcium, magnesium and manganese. Results Bioluminescence assays demonstrated that PfCHA effectively suppressed induced cytoplasmic peaks of Ca2+, Mg2+ and Mn2+ in yeast mutants lacking the homologue yeast antiporter Vcx1p. In the scalable format of 96-well culture plates pharmacological assays with a cation antiporter inhibitor allowed the measurement of inhibition of the Ca2+ transport activity of PfCHA conveniently translated to the familiar concept of fractional inhibitory concentrations. Furthermore, the cytolocalization of this antiporter in the yeast cells showed that whilst PfCHA seems to locate to the mitochondrion of P. falciparum, in yeast PfCHA is sorted to the vacuole. This facilitates the real-time Ca2+-loading assays for further functional and pharmacological studies. Discussion The functional expression of PfCHA in S. cerevisiae and luminescence-based detection of cytoplasmic cations as presented here offer a tractable system that facilitates functional and pharmacological studies in a high-throughput format. PfCHA is shown to behave as a divalent

  5. Malaria Matters

    Centers for Disease Control (CDC) Podcasts

    2008-04-18

    This podcast gives an overview of malaria, including prevention and treatment, and what CDC is doing to help control and prevent malaria globally.  Created: 4/18/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 4/18/2008.

  6. Molecular markers of neuropsychological functioning and Alzheimer's disease.

    Science.gov (United States)

    Edwards, Melissa; Balldin, Valerie Hobson; Hall, James; O'Bryant, Sid

    2015-03-01

    The current project sought to examine molecular markers of neuropsychological functioning among elders with and without Alzheimer's disease (AD) and determine the predictive ability of combined molecular markers and select neuropsychological tests in detecting disease presence. Data were analyzed from 300 participants (n = 150, AD and n = 150, controls) enrolled in the Texas Alzheimer's Research and Care Consortium. Linear regression models were created to examine the link between the top five molecular markers from our AD blood profile and neuropsychological test scores. Logistical regressions were used to predict AD presence using serum biomarkers in combination with select neuropsychological measures. Using the neuropsychological test with the least amount of variance overlap with the molecular markers, the combined neuropsychological test and molecular markers was highly accurate in detecting AD presence. This work provides the foundation for the generation of a point-of-care device that can be used to screen for AD.

  7. Dangerous liaisons: Molecular basis for a syndemic relationship between Kaposi’s sarcoma and P. falciparum malaria

    Directory of Open Access Journals (Sweden)

    Katelyn L. Conant

    2013-03-01

    Full Text Available The most severe manifestations of malaria (caused by P. falciparum occur as a direct result of parasitemia following invasion of erythrocytes by post-liver blood-stage merozoites, and during subsequent cyto-adherence of infected erythrocytes to the vascular endothelium. However, the disproportionate epidemiologic clustering of severe malaria with aggressive forms of endemic diseases such as Kaposi’s sarcoma, a neoplasm that is etiologically linked to infection with Kaposi’s sarcoma-associated herpesvirus [KSHV], underscores the significance of previously unexplored co-pathogenetic interactions that have the potential to modify the overall disease burden in co-infected individuals. Based on recent studies of the mechanisms that P. falciparum and KSHV have evolved to interact with their mutual human host, several new perspectives are emerging that highlight a surprising convergence of biological themes potentially underlying their associated co-morbidities. Against this background, ongoing studies are rapidly constructing a fascinating new paradigm in which the major host receptors that control parasite invasion (Basigin/CD147 and cyto-adherence (CD36 are, surprisingly, also important targets for exploitation by KSHV. In this article, we consider the major pathobiological implications of the co-option of Basigin/CD147 and CD36 signaling pathways by both P. falciparum and KSHV, not only as essential host factors for parasite persistence but also as important mediators of the pro-angiogenic phenotype within the virus-infected endothelial microenvironment. Consequently, the triangulation of interactions between P. falciparum, KSHV, and their mutual human host articulates a syndemic relationship that points to a conceptual framework for prevalence of aggressive forms of Kaposi’s sarcoma in malaria endemic areas, with implications for the possibility of dual-use therapies against these debilitating infections in resource-limited parts of the

  8. Cytoskeleton Molecular Motors: Structures and Their Functions in Neuron.

    Science.gov (United States)

    Xiao, Qingpin; Hu, Xiaohui; Wei, Zhiyi; Tam, Kin Yip

    2016-01-01

    Cells make use of molecular motors to transport small molecules, macromolecules and cellular organelles to target region to execute biological functions, which is utmost important for polarized cells, such as neurons. In particular, cytoskeleton motors play fundamental roles in neuron polarization, extension, shape and neurotransmission. Cytoskeleton motors comprise of myosin, kinesin and cytoplasmic dynein. F-actin filaments act as myosin track, while kinesin and cytoplasmic dynein move on microtubules. Cytoskeleton motors work together to build a highly polarized and regulated system in neuronal cells via different molecular mechanisms and functional regulations. This review discusses the structures and working mechanisms of the cytoskeleton motors in neurons.

  9. Structural and functional insights into the malaria parasite moving junction complex.

    Directory of Open Access Journals (Sweden)

    Brigitte Vulliez-Le Normand

    Full Text Available Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1 and its receptor, the Rhoptry Neck Protein (RON complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.

  10. Molecular markers of resistance to amodiaquine plus sulfadoxine-pyrimethamine in an area with seasonal malaria chemoprevention in south central Niger.

    Science.gov (United States)

    Grais, Rebecca F; Laminou, Ibrahim M; Woi-Messe, Lynda; Makarimi, Rockyath; Bouriema, Seidou H; Langendorf, Celine; Amambua-Ngwa, Alfred; D'Alessandro, Umberto; Guérin, Philippe J; Fandeur, Thierry; Sibley, Carol H

    2018-02-27

    In Niger, malaria transmission is markedly seasonal with most of the disease burden occurring in children during the rainy season. Seasonal malaria chemoprevention (SMC) with amodiaquine plus sulfadoxine-pyrimethamine (AQ + SP) is recommended in the country to be administered monthly just before and during the rainy season. Moreover, clinical decisions on use of SP for intermittent preventive treatment in pregnancy (IPTp) now depend upon the validated molecular markers for SP resistance in Plasmodium falciparum observed in the local parasite population. However, little is known about molecular markers of resistance for either SP or AQ in the south of Niger. To address this question, clinical samples which met clinical and biological criteria, were collected in Gabi, Madarounfa district, Maradi region, Niger in 2011-2012 (before SMC implementation). Molecular markers of resistance to pyrimethamine (pfdhfr), sulfadoxine (pfdhps) and amodiaquine (pfmdr1) were assessed by DNA sequencing. Prior to SMC implementation, the samples showed a high proportion of clinical samples that carried the pfdhfr 51I/59R/108N haplotype associated with resistance to pyrimethamine and pfdhps 436A/F/H and 437G mutations associated with reduced susceptibility to sulfadoxine. In contrast mutations in codons 581G, and 613S in the pfdhps gene, and in pfmdr1, 86Y, 184Y, 1042D and 1246Y associated with resistance to amodiaquine, were less frequently observed. Importantly, pfdhfr I164L and pfdhps K540E mutations shown to be the most clinically relevant markers for high level clinical resistance to SP were not detected in Gabi. Although parasites with genotypes associated with the highest levels of resistance to AQ + SP are not yet common in this setting, their importance for deployment of SMC and IPTp dictates that monitoring of these markers of resistance should accompany these interventions. This study also highlights the parasite heterogeneity within a small spatial area and the need to

  11. Profiling MHC II immunopeptidome of blood-stage malaria reveals that cDC1 control the functionality of parasite-specific CD4 T cells.

    Science.gov (United States)

    Draheim, Marion; Wlodarczyk, Myriam F; Crozat, Karine; Saliou, Jean-Michel; Alayi, Tchilabalo Dilezitoko; Tomavo, Stanislas; Hassan, Ali; Salvioni, Anna; Demarta-Gatsi, Claudia; Sidney, John; Sette, Alessandro; Dalod, Marc; Berry, Antoine; Silvie, Olivier; Blanchard, Nicolas

    2017-11-01

    In malaria, CD4 Th1 and T follicular helper (T FH ) cells are important for controlling parasite growth, but Th1 cells also contribute to immunopathology. Moreover, various regulatory CD4 T-cell subsets are critical to hamper pathology. Yet the antigen-presenting cells controlling Th functionality, as well as the antigens recognized by CD4 T cells, are largely unknown. Here, we characterize the MHC II immunopeptidome presented by DC during blood-stage malaria in mice. We establish the immunodominance hierarchy of 14 MHC II ligands derived from conserved parasite proteins. Immunodominance is shaped differently whether blood stage is preceded or not by liver stage, but the same ETRAMP-specific dominant response develops in both contexts. In naïve mice and at the onset of cerebral malaria, CD8α + dendritic cells (cDC1) are superior to other DC subsets for MHC II presentation of the ETRAMP epitope. Using in vivo depletion of cDC1, we show that cDC1 promote parasite-specific Th1 cells and inhibit the development of IL-10 + CD4 T cells. This work profiles the P. berghei blood-stage MHC II immunopeptidome, highlights the potency of cDC1 to present malaria antigens on MHC II, and reveals a major role for cDC1 in regulating malaria-specific CD4 T-cell responses. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Functional characterization of Plasmodium berghei PSOP25 during ookinete development and as a malaria transmission-blocking vaccine candidate.

    Science.gov (United States)

    Zheng, Wenqi; Liu, Fei; He, Yiwen; Liu, Qingyang; Humphreys, Gregory B; Tsuboi, Takafumi; Fan, Qi; Luo, Enjie; Cao, Yaming; Cui, Liwang

    2017-01-05

    Plasmodium ookinete surface proteins as post-fertilization target antigens are potential malaria transmission-blocking vaccine (TBV) candidates. Putative secreted ookinete protein 25 (PSOP25) is a highly conserved ookinete surface protein, and has been shown to be a promising novel TBV target. Here, we further investigated the TBV activities of the full-length recombinant PSOP25 (rPSOP25) protein in Plasmodium berghei, and characterized the potential functions of PSOP25 during the P. berghei life-cycle. We expressed the full-length P. berghei PSOP25 protein in a prokaryotic expression system, and developed polyclonal mouse antisera and a monoclonal antibody (mAb) against the recombinant protein. Indirect immunofluorescence assay (IFA) and Western blot were used to test the specificity of antibodies. The transmission-blocking (TB) activities of antibodies were evaluated by the in vitro ookinete conversion assay and by direct mosquito feeding assay (DFA). Finally, the function of PSOP25 during Plasmodium development was studied by deleting the psop25 gene. Both polyclonal mouse antisera and anti-rPSOP25 mAb recognized the PSOP25 proteins in the parasites, and IFA showed the preferential expression of PSOP25 on the surface of zygotes, retorts and mature ookinetes. In vitro, these antibodies significantly inhibited ookinetes formation in an antibody concentration-dependent manner. In DFA, mice immunized with the rPSOP25 and those receiving passive transfer of the anti-rPSOP25 mAb reduced the prevalence of mosquito infection by 31.2 and 26.1%, and oocyst density by 66.3 and 63.3%, respectively. Genetic knockout of the psop25 gene did not have a detectable impact on the asexual growth of P. berghei, but significantly affected the maturation of ookinetes and the formation of midgut oocysts. The full-length rPSOP25 could elicit strong antibody response in mice. Polyclonal and monoclonal antibodies against PSOP25 could effectively block the formation of ookinetes in vitro

  13. Efficient molecular density functional theory using generalized spherical harmonics expansions.

    Science.gov (United States)

    Ding, Lu; Levesque, Maximilien; Borgis, Daniel; Belloni, Luc

    2017-09-07

    We show that generalized spherical harmonics are well suited for representing the space and orientation molecular density in the resolution of the molecular density functional theory. We consider the common system made of a rigid solute of arbitrary complexity immersed in a molecular solvent, both represented by molecules with interacting atomic sites and classical force fields. The molecular solvent density ρ(r,Ω) around the solute is a function of the position r≡(x,y,z) and of the three Euler angles Ω≡(θ,ϕ,ψ) describing the solvent orientation. The standard density functional, equivalent to the hypernetted-chain closure for the solute-solvent correlations in the liquid theory, is minimized with respect to ρ(r,Ω). The up-to-now very expensive angular convolution products are advantageously replaced by simple products between projections onto generalized spherical harmonics. The dramatic gain in speed of resolution enables to explore in a systematic way molecular solutes of up to nanometric sizes in arbitrary solvents and to calculate their solvation free energy and associated microscopic solvent structure in at most a few minutes. We finally illustrate the formalism by tackling the solvation of molecules of various complexities in water.

  14. Efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine for the treatment of uncomplicated falciparum malaria: revisiting molecular markers in an area of emerging AQ and SP resistance in Mali

    Directory of Open Access Journals (Sweden)

    Wele Mamadou

    2009-02-01

    Full Text Available Abstract Background To update the National Malaria Control Programme of Mali on the efficacy of chloroquine, amodiaquine and sulphadoxine-pyrimethamine in the treatment of uncomplicated falciparum malaria. Methods During the malaria transmission seasons of 2002 and 2003, 455 children – between six and 59 months of age, with uncomplicated malaria in Kolle, Mali, were randomly assigned to one of three treatment arms. In vivo outcomes were assessed using WHO standard protocols. Genotyping of msp1, msp2 and CA1 polymorphisms were used to distinguish reinfection from recrudescent parasites (molecular correction. Results Day 28 adequate clinical and parasitological responses (ACPR were 14.1%, 62.3% and 88.9% in 2002 and 18.2%, 60% and 85.2% in 2003 for chloroquine, amodiaquine and sulphadoxine-pyrimethamine, respectively. After molecular correction, ACPRs (cACPR were 63.2%, 88.5% and 98.0% in 2002 and 75.5%, 85.2% and 96.6% in 2003 for CQ, AQ and SP, respectively. Amodiaquine was the most effective on fever. Amodiaquine therapy selected molecular markers for chloroquine resistance, while in the sulphadoxine-pyrimethamine arm the level of dhfr triple mutant and dhfr/dhps quadruple mutant increased from 31.5% and 3.8% in 2002 to 42.9% and 8.9% in 2003, respectively. No infection with dhps 540E was found. Conclusion In this study, treatment with sulphadoxine-pyrimethamine emerged as the most efficacious on uncomplicated falciparum malaria followed by amodiaquine. The study demonstrated that sulphadoxine-pyrimethamine and amodiaquine were appropriate partner drugs that could be associated with artemisinin derivatives in an artemisinin-based combination therapy.

  15. Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey Saimiri sciureus, a non-human primate model for malaria research.

    Science.gov (United States)

    Riccio, Evelyn K P; Pratt-Riccio, Lilian R; Bianco-Júnior, Cesare; Sanchez, Violette; Totino, Paulo R R; Carvalho, Leonardo J M; Daniel-Ribeiro, Cláudio Tadeu

    2015-04-18

    The neotropical, non-human primates (NHP) of the genus Saimiri and Aotus are recommended by the World Health Organization as experimental models for the study of human malaria because these animals can be infected with the same Plasmodium that cause malaria in humans. However, one limitation is the lack of immunological tools to assess the immune response in these models. The present study focuses on the development and comparative use of molecular and immunological methods to evaluate the cellular immune response in Saimiri sciureus. Blood samples were obtained from nineteen uninfected Saimiri. Peripheral blood mononuclear cells (PBMC) from these animals and splenocytes from one splenectomized animal were cultured for 6, 12, 18, 24, 48, 72 and 96 hrs in the presence of phorbol-12-myristate-13-acetate and ionomycin. The cytokine levels in the supernatant were detected using human and NHP cytometric bead array Th1/Th2 cytokine kits, the Bio-Plex Pro Human Cytokine Th1/Th2 Assay, enzyme-linked immunosorbent assay, enzyme-linked immunospot assays and intracellular cytokine secretion assays. Cytokine gene expression was examined through TaqMan® Gene Expression Real-Time PCR using predesigned human gene-specific primers and probes or primers and probes designed based on published S. sciureus cytokine sequences. The use of five assays based on monoclonal antibodies specific for human cytokines facilitated the detection of IL-2, IL-4 and/or IFN-γ. TaqMan array plates facilitated the detection of 12 of the 28 cytokines assayed. However, only seven cytokines (IL-1A, IL-2, IL-10, IL-12B, IL-17, IFN-β, and TNF) presented relative expression levels of at least 70% of the gene expression observed in human PBMC. The use of primers and probes specific for S. sciureus cytokines facilitated the detection of transcripts that showed relative expression below the threshold of 70%. The most efficient evaluation of cytokine gene expression, in PBMC and splenocytes, was observed

  16. Malaria prophylaxis

    African Journals Online (AJOL)

    Malaria D:lay still be contracted despite good cOD:lpliance with ... true that prophylaxis is always better than no prophy- laxis, nor is ... If used during pregnancy, a folic acid supplement ... include folate deficiency, agranulocytosis, illegaloblastic.

  17. Both functional LTbeta receptor and TNF receptor 2 are required for the development of experimental cerebral malaria.

    Directory of Open Access Journals (Sweden)

    Dieudonnée Togbe

    Full Text Available BACKGROUND: TNF-related lymphotoxin alpha (LTalpha is essential for the development of Plasmodium berghei ANKA (PbA-induced experimental cerebral malaria (ECM. The pathway involved has been attributed to TNFR2. Here we show a second arm of LTalpha-signaling essential for ECM development through LTbeta-R, receptor of LTalpha1beta2 heterotrimer. METHODOLOGY/PRINCIPAL FINDINGS: LTbetaR deficient mice did not develop the neurological signs seen in PbA induced ECM but died at three weeks with high parasitaemia and severe anemia like LTalphabeta deficient mice. Resistance of LTalphabeta or LTbetaR deficient mice correlated with unaltered cerebral microcirculation and absence of ischemia, as documented by magnetic resonance imaging and angiography, associated with lack of microvascular obstruction, while wild-type mice developed distinct microvascular pathology. Recruitment and activation of perforin(+ CD8(+ T cells, and their ICAM-1 expression were clearly attenuated in the brain of resistant mice. An essential contribution of LIGHT, another LTbetaR ligand, could be excluded, as LIGHT deficient mice rapidly succumbed to ECM. CONCLUSIONS/SIGNIFICANCE: LTbetaR expressed on radioresistant resident stromal, probably endothelial cells, rather than hematopoietic cells, are essential for the development of ECM, as assessed by hematopoietic reconstitution experiment. Therefore, the data suggest that both functional LTbetaR and TNFR2 signaling are required and non-redundant for the development of microvascular pathology resulting in fatal ECM.

  18. Malaria Surveillance - United States, 2015.

    Science.gov (United States)

    Mace, Kimberly E; Arguin, Paul M; Tan, Kathrine R

    2018-05-04

    polymorphisms associated with resistance to pyrimethamine were identified in 132 (86.3%), to sulfadoxine in 112 (73.7%), to chloroquine in 48 (31.4%), to mefloquine in six (4.3%), and to artemisinin in one (https://www.cdc.gov/malaria/travelers/drugs.html). Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient's age and medical history, the likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Health care providers should consult the CDC Guidelines for Treatment of Malaria in the United States and contact the CDC's Malaria Hotline for case management advice when needed. Malaria treatment recommendations are available online (https://www.cdc.gov/malaria/diagnosis_treatment) and from the Malaria Hotline (770-488-7788 or toll-free at 855-856-4713). Persons submitting malaria case reports (care providers, laboratories, and state and local public health officials) should provide complete information because incomplete reporting compromises case investigations and efforts to prevent infections and examine trends in malaria cases. Compliance with recommended malaria prevention strategies is low among U.S. travelers visiting friends and relatives. Evidence-based prevention strategies that effectively target travelers who are visiting friends and relatives need to be developed and implemented to reduce the numbers of imported malaria cases in the United States. Molecular surveillance of antimalarial drug resistance markers (https://www.cdc.gov/malaria/features/ars.html) has enabled CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and internationally. More samples are needed to improve the completeness of antimalarial drug resistance marker analysis; therefore, CDC requests that blood specimens be submitted for all cases diagnosed in the United States.

  19. Influence of functional groups on charge transport in molecular junctions

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Jones, Glenn; Thygesen, Kristian Sommer

    2008-01-01

    Using density functional theory (DFT), we analyze the influence of five classes of functional groups, as exemplified by NO2, OCH3, CH3, CCl3, and I, on the transport properties of a 1,4-benzenedithiolate (BDT) and 1,4-benzenediamine (BDA) molecular junction with gold electrodes. Our analysis...... demonstrates how ideas from functional group chemistry may be used to engineer a molecule's transport properties, as was shown experimentally and using a semiempirical model for BDA [Nano Lett. 7, 502 (2007)]. In particular, we show that the qualitative change in conductance due to a given functional group can...... be predicted from its known electronic effect (whether it is sigma/pi donating/withdrawing). However, the influence of functional groups on a molecule's conductance is very weak, as was also found in the BDA experiments. The calculated DFT conductances for the BDA species are five times larger than...

  20. Anopheles (Kerteszia cruzii (DIPTERA: CULICIDAE IN PERIDOMICILIARY AREA DURING ASYMPTOMATIC MALARIA TRANSMISSION IN THE ATLANTIC FOREST: MOLECULAR IDENTIFICATION OF BLOOD-MEAL SOURCES INDICATES HUMANS AS PRIMARY INTERMEDIATE HOSTS

    Directory of Open Access Journals (Sweden)

    Karin Kirchgatter

    2014-09-01

    Full Text Available Anopheles (Kerteszia cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker. cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen.

  1. Anopheles (Kerteszia) cruzii (Diptera: Culicidae) in peridomiciliary area during asymptomatic malaria transmission in the Atlantic Forest: molecular identification of blood-meal sources indicates humans as primary intermediate hosts.

    Science.gov (United States)

    Kirchgatter, Karin; Tubaki, Rosa Maria; Malafronte, Rosely dos Santos; Alves, Isabel Cristina; Lima, Giselle Fernandes Maciel de Castro; Guimarães, Lilian de Oliveira; Zampaulo, Robson de Almeida; Wunderlich, Gerhard

    2014-01-01

    Anopheles (Kerteszia) cruzii has been implicated as the primary vector of human and simian malarias out of the Brazilian Amazon and specifically in the Atlantic Forest regions. The presence of asymptomatic human cases, parasite-positive wild monkeys and the similarity between the parasites infecting them support the discussion whether these infections can be considered as a zoonosis. Although many aspects of the biology of An. cruzii have already been addressed, studies conducted during outbreaks of malaria transmission, aiming at the analysis of blood feeding and infectivity, are missing in the Atlantic Forest. This study was conducted in the location of Palestina, Juquitiba, where annually the majority of autochthonous human cases are notified in the Atlantic Forest of the state of São Paulo. Peridomiciliary sites were selected for collection of mosquitoes in a perimeter of up to 100 m around the residences of human malaria cases. The mosquitoes were analyzed with the purpose of molecular identification of blood-meal sources and to examine the prevalence of Plasmodium. A total of 13,441 females of An. (Ker.) cruzii were collected. The minimum infection rate was calculated at 0.03% and 0.01%, respectively, for P. vivax and P. malariae and only human blood was detected in the blood-fed mosquitoes analyzed. This data reinforce the hypothesis that asymptomatic human carriers are the main source of anopheline infection in the peridomiciliary area, making the probability of zoonotic transmission less likely to happen.

  2. Malaria chemotherapy.

    Science.gov (United States)

    Winstanley, Peter; Ward, Stephen

    2006-01-01

    Most malaria control strategies today depend on safe and effective drugs, as they have done for decades. But sensitivity to chloroquine, hitherto the workhorse of malaria chemotherapy, has rapidly declined throughout the tropics since the 1980s, and this drug is now useless in many high-transmission areas. New options for resource-constrained governments are few, and there is growing evidence that the burden from malaria has been increasing, as has malaria mortality in Africa. In this chapter, we have tried to outline the main pharmacological properties of current drugs, and their therapeutic uses and limitations. We have summarised the ways in which these drugs are employed, both in the formal health sector and in self-medication. We have briefly touched on the limitations of current drug development, but have tried to pick out a few promising drugs that are under development. Given that Plasmodium falciparum is the organism that kills, and that has developed multi-drug resistance, we have tended to focus upon it. Similarly, given that around 90% of global mortality from malaria occurs in Africa, there is the tendency to dwell on this continent. We give no apology for placing our emphasis upon the use of antimalarial drugs in endemic populations rather than their use for prophylaxis in travellers.

  3. Molecular and functional definition of the developing human striatum.

    Science.gov (United States)

    Onorati, Marco; Castiglioni, Valentina; Biasci, Daniele; Cesana, Elisabetta; Menon, Ramesh; Vuono, Romina; Talpo, Francesca; Laguna Goya, Rocio; Lyons, Paul A; Bulfamante, Gaetano P; Muzio, Luca; Martino, Gianvito; Toselli, Mauro; Farina, Cinthia; Barker, Roger A; Biella, Gerardo; Cattaneo, Elena

    2014-12-01

    The complexity of the human brain derives from the intricate interplay of molecular instructions during development. Here we systematically investigated gene expression changes in the prenatal human striatum and cerebral cortex during development from post-conception weeks 2 to 20. We identified tissue-specific gene coexpression networks, differentially expressed genes and a minimal set of bimodal genes, including those encoding transcription factors, that distinguished striatal from neocortical identities. Unexpected differences from mouse striatal development were discovered. We monitored 36 determinants at the protein level, revealing regional domains of expression and their refinement, during striatal development. We electrophysiologically profiled human striatal neurons differentiated in vitro and determined their refined molecular and functional properties. These results provide a resource and opportunity to gain global understanding of how transcriptional and functional processes converge to specify human striatal and neocortical neurons during development.

  4. The Host Genetic Diversity in Malaria Infection

    Directory of Open Access Journals (Sweden)

    Vitor R. R. de Mendonça

    2012-01-01

    Full Text Available Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment.

  5. Serum levels of DDT and liver function of malaria control personnel

    African Journals Online (AJOL)

    1991-03-16

    Mar 16, 1991 ... a carcinogen in animal models,7 no such effects have been. Research ... found in people with excessive exposure to DDT, such as pesticide-factory workers.8 However, impaired liver function,9 ... of cement dwellings, which were treated with a different DDT ..... Men with intensive occupational exposure to.

  6. A parity function for studying the molecular electronic structure

    DEFF Research Database (Denmark)

    Schmider, Hartmut

    1996-01-01

    Sections through the molecular Wigner function with zero momentum variable are shown to provide important information about the off-diagonal regions of the spinless one-particle reduced density matrix. Since these regions are characteristic for the bonding situation in molecules, the sections...... are qualitatively even more affected by the presence of chemical bonds than a complementary projection, the reciprocal form factor. In this paper we discuss, on the grounds of a variety of examples, how this rather simple function may aid the understanding of the chemical bond on a one-particle level. (C) 1996...

  7. Total Correlation Function Integrals and Isothermal Compressibilities from Molecular Simulations

    DEFF Research Database (Denmark)

    Wedberg, Rasmus; Peters, Günther H.j.; Abildskov, Jens

    2008-01-01

    Generation of thermodynamic data, here compressed liquid density and isothermal compressibility data, using molecular dynamics simulations is investigated. Five normal alkane systems are simulated at three different state points. We compare two main approaches to isothermal compressibilities: (1...... in approximately the same amount of time. This suggests that computation of total correlation function integrals is a route to isothermal compressibility, as accurate and fast as well-established benchmark techniques. A crucial step is the integration of the radial distribution function. To obtain sensible results...

  8. On the nodal structure of atomic and molecular Wigner functions

    International Nuclear Information System (INIS)

    Dahl, J.P.; Schmider, H.

    1996-01-01

    In previous work on the phase-space representation of quantum mechanics, we have presented detailed pictures of the electronic one-particle reduced Wigner function for atoms and small molecules. In this communication, we focus upon the nodal structure of the function. On the basis of the simplest systems, we present an expression which relates the oscillatory decay of the Wigner function solely to the dot product of the position and momentum vector, if both arguments are large. We then demonstrate the regular behavior of nodal patterns for the larger systems. For the molecular systems, an argument analogous to the open-quotes bond-oscillatory principleclose quotes for momentum densities links the nuclear framework to an additional oscillatory term in momenta parallel to bonds. It is shown that these are visible in the Wigner function in terms of characteristic nodes

  9. Functional characterization of malaria parasites deficient in the K+ channel Kch2

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Mlambo, Godfree; Kumar, Nirbhay

    2017-01-01

    parasite P. berghei, the functional significance of K+ channel homologue PbKch2 was studied using targeted gene knock-out. The knockout parasites were characterized in a mouse model in terms of growth-kinetics and infectivity in the mosquito vector. Furthermore, using a tracer-uptake technique with 86Rb...... of forming oocysts in female Anopheles stephensi mosquitoes. 86Rb+ uptake in Kch2-deficient blood-stage P. berghei parasites (Kch2-null) did not differ from that of wild-type (WT) parasites. About two-thirds of the 86Rb+ uptake in WT and in Kch2-null parasites could be inhibited by K+ channel blockers...... and could be inferred to the presence of functional Kch1 in Kch2 knockout parasites. Kch2 is therefore not required for transport of K+ in P. berghei and is not essential to mosquito-stage sporogonic development of the parasite....

  10. Primer reporte de un caso importado de Malaria por Plasmodium ovale curtisi en Paraguay, confirmado por diagnóstico molecular

    Directory of Open Access Journals (Sweden)

    Florencia del Puerto

    2015-04-01

    Full Text Available En países donde el Plasmodium ovale no es común, los microscopistas tienden a identificarlo de manera errónea como Plasmodium vivax. En este trabajo reportamos la identificación de la especie P. ovale curtisi por el método de PCR múltiple semianidada (SnM-PCR y la secuenciación de la subunidad pequeña del gen del ARN 18S, en un paciente paraguayo de 44 años de edad que vino en el 2.013 de Guinea Ecuatorial, África Occidental, a quien se le diagnosticó una infección por P. vivax por microscopía convencional. El empleo de métodos moleculares para la identificación de casos importados de infección con especies del género Plasmodium es uno de los objetivos principales en el control y la prevención de la malaria en Paraguay, teniendo en cuenta que el país se encuentra en fase de pre-eliminación de la enfermedad.

  11. COPRED: prediction of fold, GO molecular function and functional residues at the domain level.

    Science.gov (United States)

    López, Daniel; Pazos, Florencio

    2013-07-15

    Only recently the first resources devoted to the functional annotation of proteins at the domain level started to appear. The next step is to develop specific methodologies for predicting function at the domain level based on these resources, and to implement them in web servers to be used by the community. In this work, we present COPRED, a web server for the concomitant prediction of fold, molecular function and functional sites at the domain level, based on a methodology for domain molecular function prediction and a resource of domain functional annotations previously developed and benchmarked. COPRED can be freely accessed at http://csbg.cnb.csic.es/copred. The interface works in all standard web browsers. WebGL (natively supported by most browsers) is required for the in-line preview and manipulation of protein 3D structures. The website includes a detailed help section and usage examples. pazos@cnb.csic.es.

  12. The usefulness of twenty-four molecular markers in predicting treatment outcome with combination therapy of amodiaquine plus sulphadoxine-pyrimethamine against falciparum malaria in Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Reeder John C

    2008-04-01

    Full Text Available Abstract Background In Papua New Guinea (PNG, combination therapy with amodiaquine (AQ or chloroquine (CQ plus sulphadoxine-pyrimethamine (SP was introduced as first-line treatment against uncomplicated malaria in 2000. Methods We assessed in vivo treatment failure rates with AQ+SP in two different areas in PNG and twenty-four molecular drug resistance markers of Plasmodium falciparum were characterized in pre-treatment samples. The aim of the study was to investigate the association between infecting genotype and treatment response in order to identify useful predictors of treatment failure with AQ+SP. Results In 2004, Day-28 treatment failure rates for AQ+SP were 29% in the Karimui and 19% in the South Wosera area, respectively. The strongest independent predictors for treatment failure with AQ+SP were pfmdr1 N86Y (OR = 7.87, p pfdhps A437G (OR = 3.44, p pfcrt K76T, A220S, N326D, and I356L did not help to increase the predictive value, the most likely reason being that these mutations reached almost fixed levels. Though mutations in SP related markers pfdhfr S108N and C59R were not associated with treatment failure, they increased the predictive value of pfdhps A437G. The difference in treatment failure rate in the two sites was reflected in the corresponding genetic profile of the parasite populations, with significant differences seen in the allele frequencies of mutant pfmdr1 N86Y, pfmdr1 Y184F, pfcrt A220S, and pfdhps A437G. Conclusion The study provides evidence for high levels of resistance to the combination regimen of AQ+SP in PNG and indicates which of the many molecular markers analysed are useful for the monitoring of parasite resistance to combinations with AQ+SP.

  13. Molecular Motions in Functional Self-Assembled Nanostructures

    Directory of Open Access Journals (Sweden)

    Jean-Marc Saiter

    2013-01-01

    Full Text Available The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted.

  14. PREFACE: International Symposium on Molecular Conductors: Novel Functions of Molecular Conductors under Extreme Conditions (ISMC 2008)

    Science.gov (United States)

    Takahashi, Toshihiro; Suzumura, Yoshikazu

    2008-02-01

    The International Symposium on Molecular Conductors 2008 (ISMC2008) was held as the second international symposium of the project entitled `Novel Functions of Molecular Conductors under Extreme Conditions', which was supported by the Grant-in-aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Science and Technology in Japan. The project lasted from September 2003 to March 2008, and was completed by this symposium held at Okazaki Conference Center, Institute for Molecular Science, Okazaki, Japan (23-25 July 2008), which about 100 scientists attended. During the symposium, five project teams gave summary talks and exciting talks were given on the topics developed recently not only by the members of the project but also by other scientists including invited speakers from abroad, who are doing active research on molecular conductors. It is expected that papers presented in the symposium will give valuable hints for the next step in the research of this field. Therefore the organizers of this symposium decided to publish this proceedings in order to demonstrate these activities, not only for the local community of the project, but also for the broad society of international scientists who are interested in molecular conductors. The editors, who are also the organizers of this symposium, believe that this proceedings provides a significant and relevant contribution to the field of molecular conductors since it is the first time we have published such a proceedings as an electronic journal. We note that all papers published in this volume of Journal of Physics: Conference Series have been peer reviewed by expert referees. Editors made every effort to satisfy the criterion of a proceedings journal published by IOP Publishing. Toshihiro Takahashi and Yoshikazu Suzumura Editors: Toshihiro Takahashi (Gakushuin University) (Chairman) Kazushi Kanoda (University of Tokyo) Seiichi Kagoshima (University of Tokyo) Takehiko Mori (Tokyo

  15. Kompliceret malaria

    DEFF Research Database (Denmark)

    Rønn, A M; Bygbjerg, Ib Christian; Jacobsen, E

    1989-01-01

    An increasing number of cases of malaria, imported to Denmark, are caused by Plasmodium falciparum and severe and complicated cases are more often seen. In the Department of Infectious Diseases, Rigshospitalet, 23 out of 32 cases, hospitalized from 1.1-30.6.1988, i.e. 72%, were caused by P...

  16. Biomarkers of Aging: From Function to Molecular Biology

    Directory of Open Access Journals (Sweden)

    Karl-Heinz Wagner

    2016-06-01

    Full Text Available Aging is a major risk factor for most chronic diseases and functional impairments. Within a homogeneous age sample there is a considerable variation in the extent of disease and functional impairment risk, revealing a need for valid biomarkers to aid in characterizing the complex aging processes. The identification of biomarkers is further complicated by the diversity of biological living situations, lifestyle activities and medical treatments. Thus, there has been no identification of a single biomarker or gold standard tool that can monitor successful or healthy aging. Within this short review the current knowledge of putative biomarkers is presented, focusing on their application to the major physiological mechanisms affected by the aging process including physical capability, nutritional status, body composition, endocrine and immune function. This review emphasizes molecular and DNA-based biomarkers, as well as recent advances in other biomarkers such as microRNAs, bilirubin or advanced glycation end products.

  17. Malaria and Tropical Travel

    Centers for Disease Control (CDC) Podcasts

    Malaria is a serious mosquito-borne disease that can lead to death. This podcast discusses malaria risk when traveling to tropical areas, as well as how to protect yourself and your family from malaria infection.

  18. The density functional theory and the charged fluid molecular dynamics

    International Nuclear Information System (INIS)

    Hansen, J.P.; Zerah, G.

    1993-01-01

    Car and Parrinello had the idea of combining the density functional theory (Hohenberg, Kohn and Sham) to the 'molecular dynamics' numerical modelling method, in order to simulate metallic or co-valent solids and liquids from the first principles. The objective of this paper is to present a simplified version of this method ab initio, applicable to classical and quantal charged systems. The method is illustrated with recent results on charged colloidal suspensions and highly correlated electron-proton plasmas. 1 fig., 21 refs

  19. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Complex basis functions for molecular resonances: Methodology and applications

    Science.gov (United States)

    White, Alec; McCurdy, C. William; Head-Gordon, Martin

    The computation of positions and widths of metastable electronic states is a challenge for molecular electronic structure theory because, in addition to the difficulty of the many-body problem, such states obey scattering boundary conditions. These resonances cannot be addressed with naïve application of traditional bound state electronic structure theory. Non-Hermitian electronic structure methods employing complex basis functions is one way that we may rigorously treat resonances within the framework of traditional electronic structure theory. In this talk, I will discuss our recent work in this area including the methodological extension from single determinant SCF-based approaches to highly correlated levels of wavefunction-based theory such as equation of motion coupled cluster and many-body perturbation theory. These approaches provide a hierarchy of theoretical methods for the computation of positions and widths of molecular resonances. Within this framework, we may also examine properties of resonances including the dependence of these parameters on molecular geometry. Some applications of these methods to temporary anions and dianions will also be discussed.

  1. Functional Annotation of Ion Channel Structures by Molecular Simulation.

    Science.gov (United States)

    Trick, Jemma L; Chelvaniththilan, Sivapalan; Klesse, Gianni; Aryal, Prafulla; Wallace, E Jayne; Tucker, Stephen J; Sansom, Mark S P

    2016-12-06

    Ion channels play key roles in cell membranes, and recent advances are yielding an increasing number of structures. However, their functional relevance is often unclear and better tools are required for their functional annotation. In sub-nanometer pores such as ion channels, hydrophobic gating has been shown to promote dewetting to produce a functionally closed (i.e., non-conductive) state. Using the serotonin receptor (5-HT 3 R) structure as an example, we demonstrate the use of molecular dynamics to aid the functional annotation of channel structures via simulation of the behavior of water within the pore. Three increasingly complex simulation analyses are described: water equilibrium densities; single-ion free-energy profiles; and computational electrophysiology. All three approaches correctly predict the 5-HT 3 R crystal structure to represent a functionally closed (i.e., non-conductive) state. We also illustrate the application of water equilibrium density simulations to annotate different conformational states of a glycine receptor. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Functional and molecular neuroimaging of menopause and hormone replacement therapy

    DEFF Research Database (Denmark)

    Comasco, Erika; Frøkjær, Vibe; Sundström-Poromaa, Inger

    2014-01-01

    The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuat......The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone...... fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. The present review summarizes the findings of thirty-five studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri......-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal variations on the brain....

  3. DMPD: Molecular mechanisms of the anti-inflammatory functions of interferons. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18086388 Molecular mechanisms of the anti-inflammatory functions of interferons. Ko....csml) Show Molecular mechanisms of the anti-inflammatory functions of interferons. PubmedID 18086388 Title ...Molecular mechanisms of the anti-inflammatory functions of interferons. Authors K

  4. The Structural, Functional and Molecular Organization of the Brainstem

    Directory of Open Access Journals (Sweden)

    Rudolf eNieuwenhuys

    2011-06-01

    Full Text Available According to Wilhelm His (1891, 1893 the brainstem consists of two longitudinal zones, the dorsal alar plate (sensory in nature and the ventral basal plate (motor in nature. Johnston and Herrick indicated that both plates can be subdivided into separate somatic and visceral zones, distinguishing somatosensory and viscerosensory zones within the alar plate, and visceromotor and somatomotor zones within the basal plate. To test the validity of this ‘four-functional-zones’ concept, I developed a topological procedure, surveying the spatial relationships of the various cell masses in the brainstem in a single figure. Brainstems of 16 different anamniote species were analyzed, and revealed that the brainstems are clearly divisible into four morphological zones, which correspond largely with the functional zones of Johnston and Herrick. Exceptions include (1 the magnocellular vestibular nucleus situated in the viscerosensory zone; (2 the basal plate containing a number of evidently non-motor centres (superior and inferior olives. Nevertheless the ‘functional zonal model’ has explanatory value. Thus, it is possible to interpret certain brain specializations related to particular behavioural profiles, as ‘local hypertrophies’ of one or two functional columns. Recent developmental molecular studies on brains of birds and mammals confirmed the presence of longitudinal zones, and also showed molecularly defined transverse bands or neuromeres throughout development. The intersecting boundaries of the longitudinal zones and the transverse bands appeared to delimit radially arranged histogenetic domains. Because neuromeres have been observed in embryonic and larval stages of numerous anamniote species, it may be hypothesized that the brainstems of all vertebrates share a basic organizational plan, in which intersecting longitudinal and transverse zones form fundamental histogenetic and genoarchitectonic units.

  5. Molecular and Functional Characterization of Broccoli EMBRYONIC FLOWER 2 Genes

    Science.gov (United States)

    Chen, Long-Fang O.; Lin, Chun-Hung; Lai, Ying-Mi; Huang, Jia-Yuan; Sung, Zinmay Renee

    2012-01-01

    Polycomb group (PcG) proteins regulate major developmental processes in Arabidopsis. EMBRYONIC FLOWER 2 (EMF2), the VEFS domain-containing PcG gene, regulates diverse genetic pathways and is required for vegetative development and plant survival. Despite widespread EMF2-like sequences in plants, little is known about their function other than in Arabidopsis and rice. To study the role of EMF2 in broccoli (Brassica oleracea var. italica cv. Elegance) development, we identified two broccoli EMF2 (BoEMF2) genes with sequence homology to and a similar gene expression pattern to that in Arabidopsis (AtEMF2). Reducing their expression in broccoli resulted in aberrant phenotypes and gene expression patterns. BoEMF2 regulates genes involved in diverse developmental and stress programs similar to AtEMF2 in Arabidopsis. However, BoEMF2 differs from AtEMF2 in the regulation of flower organ identity, cell proliferation and elongation, and death-related genes, which may explain the distinct phenotypes. The expression of BoEMF2.1 in the Arabidopsis emf2 mutant (Rescued emf2) partially rescued the mutant phenotype and restored the gene expression pattern to that of the wild type. Many EMF2-mediated molecular and developmental functions are conserved in broccoli and Arabidopsis. Furthermore, the restored gene expression pattern in Rescued emf2 provides insights into the molecular basis of PcG-mediated growth and development. PMID:22537758

  6. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions.

    Science.gov (United States)

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-02-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells.

  7. Active case detection, treatment of falciparum malaria with combined chloroquine and sulphadoxine/pyrimethamine and vivax malaria with chloroquine and molecular markers of anti-malarial resistance in the Republic of Vanuatu

    Directory of Open Access Journals (Sweden)

    Rogers William O

    2010-04-01

    Full Text Available Abstract Background Chloroquine-resistant Plasmodium falciparum was first described in the Republic of Vanuatu in the early 1980s. In 1991, the Vanuatu Ministry of Health instituted new treatment guidelines for uncomplicated P. falciparum infection consisting of chloroquine/sulphadoxine-pyrimethamine combination therapy. Chloroquine remains the recommended treatment for Plasmodium vivax. Methods In 2005, cross-sectional blood surveys at 45 sites on Malo Island were conducted and 4,060 adults and children screened for malaria. Of those screened, 203 volunteer study subjects without malaria at the time of screening were followed for 13 weeks to observe peak seasonal incidence of infection. Another 54 subjects with malaria were followed over a 28-day period to determine efficacy of anti-malarial therapy; chloroquine alone for P. vivax and chloroquine/sulphadoxine-pyrimethamine for P. falciparum infections. Results The overall prevalence of parasitaemia by mass blood screening was 6%, equally divided between P. falciparum and P. vivax. Twenty percent and 23% of participants with patent P. vivax and P. falciparum parasitaemia, respectively, were febrile at the time of screening. In the incidence study cohort, after 2,303 person-weeks of follow-up, the incidence density of malaria was 1.3 cases per person-year with P. vivax predominating. Among individuals participating in the clinical trial, the 28-day chloroquine P. vivax cure rate was 100%. The 28-day chloroquine/sulphadoxine-pyrimethamine P. falciparum cure rate was 97%. The single treatment failure, confirmed by merozoite surface protein-2 genotyping, was classified as a day 28 late parasitological treatment failure. All P. falciparum isolates carried the Thr-76 pfcrt mutant allele and the double Asn-108 + Arg-59 dhfr mutant alleles. Dhps mutant alleles were not detected in the study sample. Conclusion Peak seasonal malaria prevalence on Malo Island reached hypoendemic levels during the study

  8. EDITORIAL: Design and function of molecular and bioelectronics devices

    Science.gov (United States)

    Krstic, Predrag; Forzani, Erica; Tao, Nongjian; Korkin, Anatoli

    2007-10-01

    Further rapid progress of electronics, in particular the increase of computer power and breakthroughs in sensor technology for industrial, medical diagnostics and environmental applications, strongly depends on the scaling of electronic devices, ultimately to the size of molecules. Design of controllable molecular-scale devices may resolve the problem of energy dissipation at the nanoscale and take advantage of molecular self-assembly in the so-called bottom-up approach. This special issue of Nanotechnology is devoted to a better understanding of the function and design of molecular-scale devices that are relevant to future electronics and sensor technology. Papers contained in this special issue are selected from the symposium Nano and Giga Challenges in Electronics and Photonics: From Atoms to Materials to Devices to System Architecture (12-16 March, 2007, Phoenix, Arizona, USA), as well as from original and novel scientific contributions of invited world-renown researchers. It addresses both theoretical and experimental achievements in the fields of molecular and bioelectronics, chemical and biosensors at the molecular level, including carbon nanotubes, novel nanostructures, as well as related research areas and industrial applications. The conference series Nano and Giga Challenges in Electronics and Photonics was launched as a truly interdisciplinary forum to bridge scientists and engineers to work across boundaries in the design of future information technologies, from atoms to materials to devices to system architecture. Following the first two successful meetings in Moscow, Russia (NGCM2002) and Krakow, Poland (NGCM2004), the third Nano and Giga Forum (NGC2007) was held in 2007 hosted by Arizona State University. Besides this special issue of Nanotechnology, two other collections (in the journal Solid State Electronics and the tutorial book in the series Nanostructure Science and Technology Springer) have published additional selected and invited papers

  9. Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library

    DEFF Research Database (Denmark)

    Sugiura, Nobuo; Clausen, Thomas Mandel; Shioiri, Tatsuasa

    2016-01-01

    with chondroitin sulfate (CS) proteoglycans present in the placental tissue. CS is a linear acidic polysaccharide composed of repeating disaccharide units of d-glucuronic acid and N-acetyl-d-galactosamine that are modified by sulfate groups at different positions. Previous reports have shown that placental......-adhering IEs were associated with an unusually low sulfated form of chondroitin sulfate A (CSA) and that a partially sulfated dodecasaccharide is the minimal motif for the interaction. However, the fine molecular structure of this CS chain remains unclear. In this study, we have characterized the CS chain...... that interacts with a recombinant minimal CS-binding region of VAR2CSA (rVAR2) using a CS library of various defined lengths and sulfate compositions. The CS library was chemo-enzymatically synthesized with bacterial chondroitin polymerase and recombinant CS sulfotransferases. We found that C-4 sulfation...

  10. Molecular Features of Wheat Endosperm Arabinoxylan Inclusion in Functional Bread

    Science.gov (United States)

    Li, Weili; Hu, Hui; Wang, Qi; Brennan, Charles J.

    2013-01-01

    Arabinoxylan (AX) is a major dietary fibre component found in a variety of cereals. Numerous health benefits of arabinoxylans have been reported to be associated with their solubility and molecular features. The current study reports the development of a functional bread using a combination of AX-enriched material (AEM) and optimal commercial endoxylanase. The total AX content of bread was increased to 8.2 g per 100 g available carbohydrates. The extractability of AX in breads with and without endoxylanase was determined. The results demonstrate that water-extractable AX (WE-AX) increased progressively through the bread making process. The application of endoxylanase also increased WE-AX content. The presence of 360 ppm of endoxylanase had positive effects on the bread characteristics in terms of bread volume and firmness by converting the water unextractable (WU)-AX to WE-AX. In addition, the molecular weight (Mw) distribution of the WE-AX of bread with and without endoxylanase was characterized by size-exclusion chromatography. The results show that as the portion of WE-AX increased, the amount of high Mw WE-AX (higher than 100 kDa) decreased, whereas the amount of low Mw WE-AX (lower than 100 kDa) increased from 33.2% to 44.2% through the baking process. The low Mw WE-AX further increased to 75.5% with the application of the optimal endoxylanase (360 ppm). PMID:28239111

  11. Molecular Features of Wheat Endosperm Arabinoxylan Inclusion in Functional Bread

    Directory of Open Access Journals (Sweden)

    Weili Li

    2013-06-01

    Full Text Available Arabinoxylan (AX is a major dietary fibre component found in a variety of cereals. Numerous health benefits of arabinoxylans have been reported to be associated with their solubility and molecular features. The current study reports the development of a functional bread using a combination of AX-enriched material (AEM and optimal commercial endoxylanase. The total AX content of bread was increased to 8.2 g per 100 g available carbohydrates. The extractability of AX in breads with and without endoxylanase was determined. The results demonstrate that water-extractable AX (WE-AX increased progressively through the bread making process. The application of endoxylanase also increased WE-AX content. The presence of 360 ppm of endoxylanase had positive effects on the bread characteristics in terms of bread volume and firmness by converting the water unextractable (WU-AX to WE-AX. In addition, the molecular weight (Mw distribution of the WE-AX of bread with and without endoxylanase was characterized by size-exclusion chromatography. The results show that as the portion of WE-AX increased, the amount of high Mw WE-AX (higher than 100 kDa decreased, whereas the amount of low Mw WE-AX (lower than 100 kDa increased from 33.2% to 44.2% through the baking process. The low Mw WE-AX further increased to 75.5% with the application of the optimal endoxylanase (360 ppm.

  12. Recent molecular approaches to understanding astrocyte function in vivo

    Directory of Open Access Journals (Sweden)

    David eDavila

    2013-12-01

    Full Text Available Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes - with an emphasis on astrocyte signaling - in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions.

  13. A Hybrid Imperative and Functional Molecular Mechanics Application

    Directory of Open Access Journals (Sweden)

    Thomas Deboni

    1996-01-01

    Full Text Available Molecular mechanics applications model the interactions among large ensembles of discrete particles. They are used where probabilistic methods are inadequate, such as drug chemistry. This methodology is difficult to parallelize with good performance, due to its poor locality, uneven partitions, and dynamic behavior. Imperative programs have been written that attempt this on shared and distributed memory machines. Given such a program, the computational kernel can be rewritten in Sisal, a functional programming language, and integrated with the rest of the imperative program under the Sisal Foreign Language Interface. This allows minimal effort and maximal return from parallelization work, and leaves the work appropriate to imperative implementation in its original form. We describe such an effort, focusing on the parts of the application that are appropriate for Sisal implementation, the specifics of mixed-language programming, and the complex performance behavior of the resulting hybrid code.

  14. Molecular structures from density functional calculations with simulated annealing

    International Nuclear Information System (INIS)

    Jones, R.O.

    1991-01-01

    The geometrical structure of any aggregate of atoms is one of its basic properties and, in principle, straightforward to predict. One chooses a structure, determines the total energy E of the system of electrons and ions, and repeats the calculation for all possible geometries. The ground state structure is that with the lowest energy. A quantum mechanical calculation of the exact wave function Ψ would lead to the total energy, but this is practicable only in very small molecules. Furthermore, the number of local minima in the energy surface increases dramatically with increasing molecular size. While traditional ab initio methods have had many impressive successes, the difficulties have meant that they have focused on systems with relatively few local minima, or have used experiments or experience to limit the range of geometries studied. On the other hand, calculations for much larger molecules and extended systems are often forced to use simplifying assumptions about the interatomic forces that limit their predictive capability. The approach described here avoids both of these extremes: Total energies of predictive value are calculated without using semi-empirical force laws, and the problem of multiple minima in the energy surface is addressed. The density functional formalism, with a local density approximation for the exchange-correlation energy, allows one to calculate the total energy for a given geometry in an efficient, if approximate, manner. Calculations for heavier elements are not significantly more difficult than for those in the first row and provide an ideal way to study bonding trends. When coupled with finite-temperature molecular dynamics, this formalism can avoid many of the energetically unfavorable minima in the energy surface. We show here that the method leads to surprising and exciting results. (orig.)

  15. Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study.

    Science.gov (United States)

    Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S

    2015-01-16

    Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.

  16. Exploring the diversity and distribution of neotropical avian malaria parasites--a molecular survey from Southeast Brazil.

    Directory of Open Access Journals (Sweden)

    Gustavo A Lacorte

    Full Text Available Southeast Brazil is a neotropical region composed of a mosaic of different tropical habitats and mountain chains, which allowed for the formation of bird-rich communities with distinct ecological niches. Although this region has the potential to harbor a remarkable variety of avian parasites, there is a lack of information about the diversity of malarial parasites. We used molecular approaches to characterize the lineage diversity of Plasmodium and Haemoproteus in bird communities from three different habitats in southeast Brazil based on the prevalence, richness and composition of lineages. We observed an overall prevalence of 35.3%, with a local prevalence ranging from 17.2% to 54.8%. Moreover, no significant association between prevalence and habitat type could be verified (p>0.05. We identified 89 Plasmodium and 22 Haemoproteus lineages, with 86% of them described for the first time here, including an unusual infection of a non-columbiform host by a Haemoproteus (Haemoproteus parasite. The composition analyses of the parasite communities showed that the lineage composition from Brazilian savannah and tropical dry forest was similar, but it was different from the lineage composition of Atlantic rainforest, reflecting the greater likeness of the former habitats with respect to seasonality and forest density. No significant effects of habitat type on lineage richness were observed based on GLM analyses. We also found that sites whose samples had a greater diversity of bird species showed a greater diversity of parasite lineages, providing evidence that areas with high bird richness also have high parasite richness. Our findings point to the importance of the neotropical region (southeast Brazil as a major reservoir of new haemosporidian lineages.

  17. Identification, characterisation, and function of adipokinetic hormones and receptor in the African malaria mosquito, "Anopheles Gambiae" (Diptera)

    OpenAIRE

    Kaufmann, Christian; Betschart, Bruno

    2007-01-01

    En utilisant la bioinformatique et la biologie moléculaire, nous avons pu identifier chez le principal vecteur africain de la malaria, le moustique, Anopheles gambiae deux hormones adipokinétiques (AKHs): l'octapeptide, Anoga-AKH-I (pQLTFTPAWa) et le décapeptide, Anoga-AKH-II, (pQVTFSRDWNAa). La fonction principale des AKHs est d’induire une hyperlipémie (effet d’adipokinétique), ainsi qu’une hypertrehalosémie et une hyperprolinémie. En tant que membres de la famille des AKH, les deux neurope...

  18. Towards refactoring the Molecular Function Ontology with a UML profile for function modeling.

    Science.gov (United States)

    Burek, Patryk; Loebe, Frank; Herre, Heinrich

    2017-10-04

    Gene Ontology (GO) is the largest resource for cataloging gene products. This resource grows steadily and, naturally, this growth raises issues regarding the structure of the ontology. Moreover, modeling and refactoring large ontologies such as GO is generally far from being simple, as a whole as well as when focusing on certain aspects or fragments. It seems that human-friendly graphical modeling languages such as the Unified Modeling Language (UML) could be helpful in connection with these tasks. We investigate the use of UML for making the structural organization of the Molecular Function Ontology (MFO), a sub-ontology of GO, more explicit. More precisely, we present a UML dialect, called the Function Modeling Language (FueL), which is suited for capturing functions in an ontologically founded way. FueL is equipped, among other features, with language elements that arise from studying patterns of subsumption between functions. We show how to use this UML dialect for capturing the structure of molecular functions. Furthermore, we propose and discuss some refactoring options concerning fragments of MFO. FueL enables the systematic, graphical representation of functions and their interrelations, including making information explicit that is currently either implicit in MFO or is mainly captured in textual descriptions. Moreover, the considered subsumption patterns lend themselves to the methodical analysis of refactoring options with respect to MFO. On this basis we argue that the approach can increase the comprehensibility of the structure of MFO for humans and can support communication, for example, during revision and further development.

  19. Functional and molecular neuroimaging of menopause and hormone replacement therapy

    Directory of Open Access Journals (Sweden)

    Erika eComasco

    2014-12-01

    Full Text Available The level of gonadal hormones to which the female brain is exposed considerably changes across the menopausal transition, which in turn, is likely to be of great relevance for neurodegenerative diseases and psychiatric disorders. However, the neurobiological consequences of these hormone fluctuations and of hormone replacement therapy in the menopause have only begun to be understood. This review summarizes the findings of thirty-four studies of human brain function, including functional magnetic resonance imaging, positron and single-photon computed emission tomography studies, in peri- and postmenopausal women treated with estrogen, or estrogen-progestagen replacement therapy. Seven studies using gonadotropin-releasing hormone agonist intervention as a model of hormonal withdrawal are also included. Cognitive paradigms are employed by the majority of studies evaluating the effect of unopposed estrogen or estrogen-progestagen treatment on peri- and postmenopausal women’s brain. In randomized-controlled trials, estrogen treatment enhances activation of fronto-cingulate regions during cognitive functioning, though in many cases no difference in cognitive performance was present. Progestagens seems to counteract the effects of estrogens. Findings on cognitive functioning during acute ovarian hormone withdrawal suggest a decrease in activation of the inferior frontal gyrus, thus essentially corroborating the findings in postmenopausal women. Studies of the cholinergic and serotonergic systems indicate these systems as biological mediators of hormonal influences on the brain. More, hormonal replacement appears to increase cerebral blood flow in cortical regions. On the other hand, studies on emotion processing in postmenopausal women are lacking. These results call for well-powered randomized-controlled multi-modal prospective neuroimaging studies as well as investigation on the related molecular mechanisms of effects of menopausal hormonal

  20. Molecular recognition on a cavitand-functionalized silicon surface.

    Science.gov (United States)

    Biavardi, Elisa; Favazza, Maria; Motta, Alessandro; Fragalà, Ignazio L; Massera, Chiara; Prodi, Luca; Montalti, Marco; Melegari, Monica; Condorelli, Guglielmo G; Dalcanale, Enrico

    2009-06-03

    A Si(100) surface featuring molecular recognition properties was obtained by covalent functionalization with a tetraphosphonate cavitand (Tiiii), able to complex positively charged species. Tiiii cavitand was grafted onto the Si by photochemical hydrosilylation together with 1-octene as a spatial spectator. The recognition properties of the Si-Tiiii surface were demonstrated through two independent analytical techniques, namely XPS and fluorescence spectroscopy, during the course of reversible complexation-guest exchange-decomplexation cycles with specifically designed ammonium and pyridinium salts. Control experiments employing a Si(100) surface functionalized with a structurally similar, but complexation inactive, tetrathiophosphonate cavitand (TSiiii) demonstrated no recognition events. This provides evidence for the complexation properties of the Si-Tiiii surface, ruling out the possibility of nonspecific interactions between the substrate and the guests. The residual Si-O(-) terminations on the surface replace the guests' original counterions, thus stabilizing the complex ion pairs. These results represent a further step toward the control of self-assembly of complex supramolecular architectures on surfaces.

  1. Genetic, functional and molecular features of glucocorticoid receptor binding.

    Directory of Open Access Journals (Sweden)

    Francesca Luca

    Full Text Available Glucocorticoids (GCs are key mediators of stress response and are widely used as pharmacological agents to treat immune diseases, such as asthma and inflammatory bowel disease, and certain types of cancer. GCs act mainly by activating the GC receptor (GR, which interacts with other transcription factors to regulate gene expression. Here, we combined different functional genomics approaches to gain molecular insights into the mechanisms of action of GC. By profiling the transcriptional response to GC over time in 4 Yoruba (YRI and 4 Tuscans (TSI lymphoblastoid cell lines (LCLs, we suggest that the transcriptional response to GC is variable not only in time, but also in direction (positive or negative depending on the presence of specific interacting transcription factors. Accordingly, when we performed ChIP-seq for GR and NF-κB in two YRI LCLs treated with GC or with vehicle control, we observed that features of GR binding sites differ for up- and down-regulated genes. Finally, we show that eQTLs that affect expression patterns only in the presence of GC are 1.9-fold more likely to occur in GR binding sites, compared to eQTLs that affect expression only in its absence. Our results indicate that genetic variation at GR and interacting transcription factors binding sites influences variability in gene expression, and attest to the power of combining different functional genomic approaches.

  2. Structure-Function Based Molecular Relationships in Ewing's Sarcoma

    Science.gov (United States)

    2015-01-01

    Ewing's Sarcoma Oncogene (ews) on chromosome 22q12 is encoding a ubiquitously expressed RNA-binding protein (EWS) with unknown function that is target of tumor-specific chromosomal translocations in Ewing's sarcoma family of tumors. A model of transcription complex was proposed in which the heterodimer Rpb4/7 binds to EAD, connecting it to Core RNA Pol II. The DNA-binding domain, provided by EFP, is bound to the promoter. Rpb4/7 binds RNA, stabilizing the transcription complex. The complex Rpb4/7 can stabilize the preinitiation complexes by converting the conformation of RNA Pol II. EWS may change its conformation, so that NTD becomes accessible. Two different mechanisms of interaction between EWS and RNA Pol II are proposed: (I) an intermolecular EWS-EWS interaction between two molecules, pushing conformation from “closed” to “open” state, or (II) an intramolecular interaction inside the molecule of EWS, pushing conformation of the molecule from “closed” to “open” state. The modified forms of EWS may interact with Pol II subunits hsRpb5 and hsRpb7. The EWS and EFPs binding partners are described schematically in a model, an attempt to link the transcription with the splicing. The proposed model helps to understand the functional molecular interactions in cancer, to find new partners and ways to treat cancer. PMID:25688366

  3. Functioning and nonfunctioning thyroid adenomas involve different molecular pathogenetic mechanisms.

    Science.gov (United States)

    Tonacchera, M; Vitti, P; Agretti, P; Ceccarini, G; Perri, A; Cavaliere, R; Mazzi, B; Naccarato, A G; Viacava, P; Miccoli, P; Pinchera, A; Chiovato, L

    1999-11-01

    The molecular biology of follicular cell growth in thyroid nodules is still poorly understood. Because gain-of-function (activating) mutations of the thyroid-stimulating hormone receptor (TShR) and/or Gs alpha genes may confer TSh-independent growth advantage to neoplastic thyroid cells, we searched for somatic mutations of these genes in a series of hyperfunctioning and nonfunctioning follicular thyroid adenomas specifically selected for their homogeneous gross anatomy (single nodule in an otherwise normal thyroid gland). TShR gene mutations were identified by direct sequencing of exons 9 and 10 of the TShR gene in genomic DNA obtained from surgical specimens. Codons 201 and 227 of the Gs alpha gene were also analyzed. At histology, all hyperfunctioning nodules and 13 of 15 nonfunctioning nodules were diagnosed as follicular adenomas. Two nonfunctioning thyroid nodules, although showing a prevalent microfollicular pattern of growth, had histological features indicating malignant transformation (a minimally invasive follicular carcinoma and a focal papillary carcinoma). Activating mutations of the TShR gene were found in 12 of 15 hyperfunctioning follicular thyroid adenomas. In one hyperfunctioning adenoma, which was negative for TShR mutations, a mutation in codon 227 of the Gs alpha gene was identified. At variance with hyperfunctioning thyroid adenomas, no mutation of the TShR or Gs alpha genes was detected in nonfunctioning thyroid nodules. In conclusion, our findings clearly define a different molecular pathogenetic mechanism in hyperfunctioning and nonfunctioning follicular thyroid adenomas. Activation of the cAMP cascade, which leads to proliferation but maintains differentiation of follicular thyroid cells, typically occurs in hyperfunctioning thyroid adenomas. Oncogenes other than the TShR and Gs alpha genes are probably involved in nonfunctioning follicular adenomas.

  4. POLYANA-A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

    Science.gov (United States)

    Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios

    2015-12-01

    We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.

  5. A comparative molecular survey of malaria prevalence among Eastern chimpanzee populations in Issa Valley (Tanzania) and Kalinzu (Uganda)

    Czech Academy of Sciences Publication Activity Database

    Mapua, M. I.; Petrželková, Klára Judita; Burgunder, J.; Dadáková, E.; Brožová, K.; Hrazdilová, K.; Stewart, F. A.; Piel, A. K.; Vallo, Peter; Fuehrer, H.-P.; Hashimoto, C.; Modrý, D.; Qablan, M. A.

    2016-01-01

    Roč. 15, č. 423 (2016), s. 423 ISSN 1475-2875 Institutional support: RVO:68081766 Keywords : Cyt-b gene * Laverania * Malaria * Pan troglodytes schweinfurthii * Plasmodium spp Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 2.715, year: 2016

  6. PD-1 Dependent Exhaustion of CD8+ T Cells Drives Chronic Malaria

    Directory of Open Access Journals (Sweden)

    Joshua M. Horne-Debets

    2013-12-01

    Full Text Available Malaria is a highly prevalent disease caused by infection by Plasmodium spp., which infect hepatocytes and erythrocytes. Blood-stage infections cause devastating symptoms and can persist for years. Antibodies and CD4+ T cells are thought to protect against blood-stage infections. However, there has been considerable difficulty in developing an efficacious malaria vaccine, highlighting our incomplete understanding of immunity against this disease. Here, we used an experimental rodent malaria model to show that PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells. Furthermore, in contrast to widely held views, parasite-specific CD8+ T cells are required to control both acute and chronic blood-stage disease even when parasite-specific antibodies and CD4+ T cells are present. Our findings provide a molecular explanation for chronic malaria that will be relevant to future malaria-vaccine design and may need consideration when vaccine development for other infections is problematic.

  7. Malaria Surveillance - United States, 2014.

    Science.gov (United States)

    Mace, Kimberly E; Arguin, Paul M

    2017-05-26

    . Less than 1.0% of patients were infected with two species. The infecting species was unreported or undetermined in 11.7% of cases. CDC provided diagnostic assistance for 14.2% of confirmed cases and tested 12.0% of P. falciparum specimens for antimalarial resistance markers. Of patients who reported purpose of travel, 57.5% were visiting friends and relatives (VFR). Among U.S. residents for whom information on chemoprophylaxis use and travel region was known, 7.8% reported that they initiated and adhered to a chemoprophylaxis drug regimen recommended by CDC for the regions to which they had traveled. Thirty-two cases were among pregnant women, none of whom had adhered to chemoprophylaxis. Among all reported cases, 17.0% were classified as severe illness, and five persons with malaria died. CDC received 137 P. falciparum-positive samples for the detection of antimalarial resistance markers (although some loci for chloroquine and mefloquine were untestable for up to nine samples). Of the 137 samples tested, 131 (95.6%) had genetic polymorphisms associated with pyrimethamine drug resistance, 96 (70.0%) with sulfadoxine resistance, 77 (57.5%) with chloroquine resistance, three (2.3%) with mefloquine drug resistance, one (html). Malaria infections can be fatal if not diagnosed and treated promptly with antimalarial medications appropriate for the patient's age and medical history, likely country of malaria acquisition, and previous use of antimalarial chemoprophylaxis. Recent molecular laboratory advances have enabled CDC to identify and conduct molecular surveillance of antimalarial drug resistance markers (https://www.cdc.gov/malaria/features/ars.html) and improve the ability of CDC to track, guide treatment, and manage drug resistance in malaria parasites both domestically and globally. For this effort to be successful, specimens should be submitted for all cases diagnosed in the United States. Clinicians should consult CDC Guidelines for Treatment of Malaria in the

  8. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  9. Si Functionalization With Dye Molecular as Light-Harvesting Material

    International Nuclear Information System (INIS)

    Nurul Aqidah Mohd Sinin; Mohd Adib Ibrahim; Mohd Asri Mat Teridi; Norasikin Ahmad Ludin; Suhaila Sepeai; Kamaruzzaman Sopian

    2015-01-01

    The surface plays an important role in thin silicon solar cells, especially with regard to the surface state and interface electronic properties that influence the electron and hole to recombine. In order to keep the recombination loss at a tolerable minimum and avoid an unacceptably large efficiency loss when moving towards thinner silicon materials, the surface must be electronically well passivated. Passivation is the most significant step for the functionalization of silicon. In this study, Si functionalization with a dye molecule might increase the absorption of light that acts as light-harvesting material on the silicon surface. Two types of dye molecular were used; DiL (λ_p_e_a_k = 549 nm) and DiO (λ_p_e_a_k = 484 nm). Both dyes were deposited using a spin-coating technique. These dye layers on the silicon surface were characterized using a Kelvin probe (KP) and photoluminescence (PL) spectroscopy. A different mechanism of slow charge trapping and detrapping was observed using KP measurement. A lifetime decay was observed that indicated a slow process of charge detrapping, owing to light trapping inside the dye/ SiNW interface, with a slow process for an equilibrium to establish between the surface states and the space charge region. An average lifetime of the entire fluorescence decay process was recorded at about 1.24 ns (DiO) and 0.22 ns (DiL), using PL spectroscopy. We show conclusively that these two types of dye can be used as light absorbers, in order to improve the surface properties of the silicon. (author)

  10. Molecularly imprinted hydrogels as functional active packaging materials.

    Science.gov (United States)

    Benito-Peña, Elena; González-Vallejo, Victoria; Rico-Yuste, Alberto; Barbosa-Pereira, Letricia; Cruz, José Manuel; Bilbao, Ainhoa; Alvarez-Lorenzo, Carmen; Moreno-Bondi, María Cruz

    2016-01-01

    This paper describes the synthesis of novel molecularly imprinted hydrogels (MIHs) for the natural antioxidant ferulic acid (FA), and their application as packaging materials to prevent lipid oxidation of butter. A library of MIHs was synthesized using a synthetic surrogate of FA, 3-(4-hydroxy-3-methoxyphenyl)propionic acid (HFA), as template molecule, ethyleneglycol dimethacrylate (EDMA) as cross-linker, and 1-allylpiperazine (1-ALPP) or 2-(dimethylamino)ethyl methacrylate (DMAEMA), in combination with 2-hydroxyethyl methacrylate (HEMA) as functional monomers, at different molar concentrations. The DMAEMA/HEMA-based MIHs showed the greatest FA loading capacity, while the 1-ALLP/HEMA-based polymers exhibited the highest imprinting effect. During cold storage, FA-loaded MIHs protected butter from oxidation and led to TBARs values that were approximately half those of butter stored without protection and 25% less than those recorded for butter covered with hydrogels without FA, potentially extending the shelf life of butter. Active packaging is a new field of application for MIHs with great potential in the food industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Commercialized non-Camellia tea: traditional function and molecular identification

    Directory of Open Access Journals (Sweden)

    Ping Long

    2014-06-01

    Full Text Available Non-Camellia tea is a part of the colorful Chinese tea culture, and is also widely used as beverage and medicine in folk for disease prevention and treatment. In this study, 37 samples were collected, including 33 kinds of non-Camellia teas and 4 kinds of teas (Camellia. Traditional functions of non-Camellia teas were investigated. Furthermore, non-Camellia teas of original plants were characterized and identified by molecular methods. Four candidate regions (rbcL, matK, ITS2, psbA-trnH were amplified by polymerase chain reaction. In addition, DNA barcodes were used for the first time to discriminate the commercial non-Camellia tea and their adulterants, and to evaluate their safety. This study showed that BLASTN and the relevant phylogenetic tree are efficient tools for identification of the commercial non-Camellia tea and their adulterants. However, some sequences from original plants have not been found and there is a limitation of sequence number of original plants in GenBank. Submitting more original plant sequences to the GenBank will be helpful for evaluating the safety of non-Camellia teas.

  12. Long-term impact of childhood malaria infection on school performance among school children in a malaria endemic area along the Thai-Myanmar border.

    Science.gov (United States)

    Vorasan, Nutchavadee; Pan-Ngum, Wirichada; Jittamala, Podjanee; Maneeboonyang, Wanchai; Rukmanee, Prasert; Lawpoolsri, Saranath

    2015-10-09

    Children represent a high-risk group for malaria worldwide. Among people in Thailand who have malaria during childhood, some may have multiple malaria attacks during their lifetime. Malaria may affect neurological cognition in children, resulting in short-term impairment of memory and language functions. However, little is known regarding the long-term effects of malaria infection on cognitive function. This study examines the long-term impact of malaria infection on school performance among school children living in a malaria-endemic area along the Thai-Myanmar border. A retrospective cohort study was conducted among school children aged 6-17 years in a primary-secondary school of a sub-district of Ratchaburi Province, Thailand. History of childhood malaria infection was obtained from the medical records of the sole malaria clinic in the area. School performance was assessed by using scores for the subjects Thai Language and Mathematics in 2014. Other variables, such as demographic characteristics, perinatal history, nutritional status, and emotional intelligence, were also documented. A total of 457 students were included, 135 (30 %) of whom had a history of uncomplicated malaria infection. About half of the malaria-infected children had suffered infection before the age of four years. The mean scores for both Mathematics and Thai Language decreased in relation to the increasing number of malaria attacks. Most students had their last malaria episode more than two years previously. The mean scores were not associated with duration since the last malaria attack. The association between malaria infection and school performance was not significant after adjusting for potential confounders, including gender, school absenteeism over a semester term, and emotional intelligence. This study characterizes the long-term consequences of uncomplicated malaria disease during childhood. School performance was not associated with a history of malaria infection, considering that

  13. Malaria entomological profile in Tanzania from 1950 to 2010: a ...

    African Journals Online (AJOL)

    2011-12-10

    Dec 10, 2011 ... malaria transmission dynamics, vector biology, ecology, behaviour and ... control achieved by ITNs, as this may vary with the molecular ..... with multilocus protein electrophoresis (11.3%) and cytogenetic analysis together with PCR (2%). ... the mosquito host is one of the principal components in malaria ...

  14. Annual Frequency of Malaria Attack in Different Haemoglobin ...

    African Journals Online (AJOL)

    GREG F. FOMBO

    believed to be due to the enzyme deficiency advantage against fatal malaria. However, the mechanism of this .... Fluorescence was produced due to the reduction of NADP+ to. NADPH. ... Presence of fluorescence indicated normal cells while weak fluorescence ..... Molecular Monitoring of Malaria Vaccine Trial. Trends in.

  15. MOLECULAR GASTRONOMY IN FUNCTION OF SCIENTIFIC IMPLEMENTATION IN PRACTICE

    Directory of Open Access Journals (Sweden)

    Ivanovic Slobodan

    2011-12-01

    Full Text Available Modern culinary direction - molecular gastronomy is very complex, and the relative youth of that direction affects the ignorance of the matter by a large number of professionals and the general public. It is precisely this lack of matter which causes a number of disagreements between chefs and scientists, while there is a number of related debates about aspects of molecular gastronomy, especially in connection with a change in its gastronomic cuisine. The main focus of disagreement lies in the name of ''molecular'', which mostly leads to a misunderstanding, because of the identification with something microscopic. A very common mistake is to address this branch of gastronomy as a style of cooking, which she doesn't represent. The second mistake is naming its practical application of molecular cooking, molecular cuisine. Molecular gastronomy is a scientific discipline that studies food and asks questions and gives answers so far unanswered questions about gastronomy. Simply put, molecular gastronomy can be understood as a process of application of science in everyday cooking, and the application of molecular gastronomy in the kitchen. Modern man with his awareness made some chefs to reconsider the adoption of these radical ideas to accomplish the fusion of science and gastronomy. This idea is established as a full hit, because today the best restaurants in the world, the vast majority of those who have seen the benefits of these two joints before incompatible branches of human activity. As a culinary direction it quickly spread to Western Europe and North America, and it later spread to other parts of the world, but Croatia and neighboring countries are not one of them. Molecular gastronomy shows the trends of further progress, and in the future molecular gastronomy will be more prevalent and popular.

  16. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria

    DEFF Research Database (Denmark)

    Clausen, Thomas M; Christoffersen, Stig; Dahlbäck, Madeleine

    2012-01-01

    Malaria is a major global health problem. Pregnant women are susceptible to infection regardless of previously acquired immunity. Placental malaria is caused by parasites capable of sequestering in the placenta. This is mediated by VAR2CSA, a parasite antigen that interacts with chondroitin sulfa...

  17. Malaria Treatment (United States)

    Science.gov (United States)

    ... Providers, Emergency Consultations, and General Public. Contact Us Malaria Treatment (United States) Recommend on Facebook Tweet Share Compartir Treatment of Malaria: Guidelines For Clinicians (United States) Download PDF version ...

  18. Malaria and Travelers

    Science.gov (United States)

    ... Providers, Emergency Consultations, and General Public. Contact Us Malaria and Travelers for U.S. Residents Recommend on Facebook ... may be at risk for infection. Determine if malaria transmission occurs at the destinations Obtain a detailed ...

  19. STATUS HEMATOLOGI PENDERITA MALARIA SEREBRAL

    Directory of Open Access Journals (Sweden)

    Nurhayati Nurhayati

    2009-05-01

    Full Text Available AbstrakMalaria masih merupakan masalah kesehatan masyarakat dunia. Berdasarkan klasifikasi klinis, malaria dibedakan atas malaria berat dan malaria tanpa komplikasi. Malaria serebral merupakan komplikasi terberat dari malaria falsiparum.Telah dilakukan penelitian seksi silang terhadap penderita malaria falciparum yang dirawat inap di Bangsal Penyakit Dalam RS. Perjan. Dr. M. Djamil Padang dari bulan Juni 2002 sampai Juni 2006. Pada penelitian ini didapatkan jumlah sampel sebanyak 60 orang, terdiri dari 16 orang penderita malaria serebral dan 44 orang penderita malaria tanpa komplikasi.Data penelitian menunjukan terdapat perbedaan bermakna nilai hematokrit (p<0,05 dan jumlah leukosit (p<0,05 antara penderita malaria serebral dengan penderita malaria tanpa komplikasi. Dan terdapat korelasi positif antara nilai hemoglobin dengan hematokrit (r=0,864; p<0,05 pada penderita malaria falsiparum.Kata kunci: malaria serebral, malaria tanpa komplikasi, malaria falsiparumAbstract Malaria is still a problem of health of world society. Based on the clinical classification, are distinguished on severe malaria and uncomplicated malaria. Cerebral malaria is the worst complication of falciparum malaria. Cross section of the research done at the Hospital Dr. M. Djamil Padang againts medical record of malaria patients who are hospitalized in the Internal Medicine from June 2002 until June 2004. In this study, a total sample of 60 people, consisting of 16 cerebral malaria and 44 uncomplicated malaria. Data showed there were significant differences for hematocrit values (p <0.05 and total leukocytes values (p <0.05 between cerebral malaria and uncomplicated malaria patients. There is a positive correlation between hemoglobin with hematocrit values (r = 0.864; p <0.05 of falciparum malaria patients. Keywords: cerebral malaria, uncomplicated malaria, falciparum malaria

  20. The HLA-B landscape of Africa: Signatures of pathogen-driven selection and molecular identification of candidate alleles to malaria protection

    Czech Academy of Sciences Publication Activity Database

    Sanchez-Mazas, A.; Černý, V.; Di, D.; Buhler, S.; Podgorná, Eliška; Chevallier, E.; Brunet, L.; Weber, S.; Kervaire, B.; Testi, M.; Andreani, M.; Tiercy, J.-M.; Villard, J.; Nunes, J. M.

    2017-01-01

    Roč. 26, č. 22 (2017), s. 6238-6252 ISSN 0962-1083 R&D Projects: GA ČR GA13-37998S Institutional support: RVO:67985912 Keywords : African populations * geographic patterns * HLA polymorphism and disease associations * human population genetics * malaria protection * pathogen-driven selection Subject RIV: AC - Archeology, Anthropology, Ethnology OBOR OECD: Archaeology Impact factor: 6.086, year: 2016

  1. Molecular inference of sources and spreading patterns of Plasmodium falciparum malaria parasites in internally displaced persons settlements in Myanmar-China border area.

    Science.gov (United States)

    Lo, Eugenia; Zhou, Guofa; Oo, Winny; Lee, Ming-Chieh; Baum, Elisabeth; Felgner, Philip L; Yang, Zhaoqing; Cui, Liwang; Yan, Guiyun

    2015-07-01

    In Myanmar, civil unrest and establishment of internally displaced persons (IDP) settlement along the Myanmar-China border have impacted malaria transmission. The growing IDP populations raise deep concerns about health impact on local communities. Microsatellite markers were used to examine the source and spreading patterns of Plasmodium falciparum between IDP settlement and surrounding villages in Myanmar along the China border. Genotypic structure of P. falciparum was compared over the past three years from the same area and the demographic history was inferred to determine the source of recent infections. In addition, we examined if border migration is a factor of P. falciparum infections in China by determining gene flow patterns across borders. Compared to local community, the IDP samples showed a reduced and consistently lower genetic diversity over the past three years. A strong signature of genetic bottleneck was detected in the IDP samples. P. falciparum infections from the border regions in China were genetically similar to Myanmar and parasite gene flow was not constrained by geographical distance. Reduced genetic diversity of P. falciparum suggested intense malaria control within the IDP settlement. Human movement was a key factor to the spread of malaria both locally in Myanmar and across the international border. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Micro-/nanostructured multicomponent molecular materials: design, assembly, and functionality.

    Science.gov (United States)

    Yan, Dongpeng

    2015-03-23

    Molecule-based micro-/nanomaterials have attracted considerable attention because their properties can vary greatly from the corresponding macro-sized bulk systems. Recently, the construction of multicomponent molecular solids based on crystal engineering principles has emerged as a promising alternative way to develop micro-/nanomaterials. Unlike single-component materials, the resulting multicomponent systems offer the advantages of tunable composition, and adjustable molecular arrangement, and intermolecular interactions within their solid states. The study of these materials also supplies insight into how the crystal structure, molecular components, and micro-/nanoscale effects can influence the performance of molecular materials. In this review, we describe recent advances and current directions in the assembly and applications of crystalline multicomponent micro-/nanostructures. Firstly, the design strategies for multicomponent systems based on molecular recognition and crystal engineering principles are introduced. Attention is then focused on the methods of fabrication of low-dimensional multicomponent micro-/nanostructures. Their new applications are also outlined. Finally, we briefly discuss perspectives for the further development of these molecular crystalline micro-/nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Screening disrupted molecular functions and pathways associated with clear cell renal cell carcinoma using Gibbs sampling.

    Science.gov (United States)

    Nan, Ning; Chen, Qi; Wang, Yu; Zhai, Xu; Yang, Chuan-Ce; Cao, Bin; Chong, Tie

    2017-10-01

    To explore the disturbed molecular functions and pathways in clear cell renal cell carcinoma (ccRCC) using Gibbs sampling. Gene expression data of ccRCC samples and adjacent non-tumor renal tissues were recruited from public available database. Then, molecular functions of expression changed genes in ccRCC were classed to Gene Ontology (GO) project, and these molecular functions were converted into Markov chains. Markov chain Monte Carlo (MCMC) algorithm was implemented to perform posterior inference and identify probability distributions of molecular functions in Gibbs sampling. Differentially expressed molecular functions were selected under posterior value more than 0.95, and genes with the appeared times in differentially expressed molecular functions ≥5 were defined as pivotal genes. Functional analysis was employed to explore the pathways of pivotal genes and their strongly co-regulated genes. In this work, we obtained 396 molecular functions, and 13 of them were differentially expressed. Oxidoreductase activity showed the highest posterior value. Gene composition analysis identified 79 pivotal genes, and survival analysis indicated that these pivotal genes could be used as a strong independent predictor of poor prognosis in patients with ccRCC. Pathway analysis identified one pivotal pathway - oxidative phosphorylation. We identified the differentially expressed molecular functions and pivotal pathway in ccRCC using Gibbs sampling. The results could be considered as potential signatures for early detection and therapy of ccRCC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The CD14+CD16+ inflammatory monocyte subset displays increased mitochondrial activity and effector function during acute Plasmodium vivax malaria.

    Directory of Open Access Journals (Sweden)

    Lis R V Antonelli

    2014-09-01

    Full Text Available Infection with Plasmodium vivax results in strong activation of monocytes, which are important components of both the systemic inflammatory response and parasite control. The overall goal of this study was to define the role of monocytes during P. vivax malaria. Here, we demonstrate that P. vivax-infected patients display significant increase in circulating monocytes, which were defined as CD14(+CD16- (classical, CD14(+CD16(+ (inflammatory, and CD14loCD16(+ (patrolling cells. While the classical and inflammatory monocytes were found to be the primary source of pro-inflammatory cytokines, the CD16(+ cells, in particular the CD14(+CD16(+ monocytes, expressed the highest levels of activation markers, which included chemokine receptors and adhesion molecules. Morphologically, CD14(+ were distinguished from CD14lo monocytes by displaying larger and more active mitochondria. CD14(+CD16(+ monocytes were more efficient in phagocytizing P. vivax-infected reticulocytes, which induced them to produce high levels of intracellular TNF-α and reactive oxygen species. Importantly, antibodies specific for ICAM-1, PECAM-1 or LFA-1 efficiently blocked the phagocytosis of infected reticulocytes by monocytes. Hence, our results provide key information on the mechanism by which CD14(+CD16(+ cells control parasite burden, supporting the hypothesis that they play a role in resistance to P. vivax infection.

  5. Malaria in Children.

    Science.gov (United States)

    Cohee, Lauren M; Laufer, Miriam K

    2017-08-01

    Malaria is a leading cause of morbidity and mortality in endemic areas, leading to an estimated 438,000 deaths in 2015. Malaria is also an important health threat to travelers to endemic countries and should be considered in evaluation of any traveler returning from a malaria-endemic area who develops fever. Considering the diagnosis of malaria in patients with potential exposure is critical. Prompt provision of effective treatment limits the complications of malaria and can be life-saving. Understanding Plasmodium species variation, epidemiology, and drug-resistance patterns in the geographic area where infection was acquired is important for determining treatment choices. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Malaria og graviditet

    DEFF Research Database (Denmark)

    Hoffmann, A L; Rønn, A M; Langhoff-Roos, J

    1992-01-01

    In regions where malaria is endemism, the disease is a recognised cause of complications of pregnancy such as spontaneous abortion, premature delivery, intrauterine growth retardation and foetal death. Malaria is seldom seen in pregnant women in Denmark but, during the past two years, the authors...... the patients but also their practitioners were unaware that malaria can occur several years after exposure. Three out of the four patients had employed malaria prophylaxis. As resistance to malarial prophylactics in current use is increasing steadily, chemoprophylaxis should be supplemented by mechanical...... protection against malaria and insect repellents. As a rule, malaria is treated with chloroquine. In cases of Falciparum malaria in whom chloroquine resistance is suspected, treatment with mefloquine may be employed although this should only be employed in cases of dire necessity in pregnant patients during...

  7. Tuning the deposition of molecular graphene nanoribbons by surface functionalization

    Science.gov (United States)

    Konnerth, R.; Cervetti, C.; Narita, A.; Feng, X.; Müllen, K.; Hoyer, A.; Burghard, M.; Kern, K.; Dressel, M.; Bogani, L.

    2015-07-01

    We show that individual, isolated graphene nanoribbons, created with a molecular synthetic approach, can be assembled on functionalised wafer surfaces treated with silanes. The use of surface groups with different hydrophobicities allows tuning the density of the ribbons and assessing the products of the polymerisation process.

  8. Molecular and functional aspects of menstruation in the macaque.

    Science.gov (United States)

    Brenner, Robert M; Slayden, Ov D

    2012-12-01

    Much of our understanding of the molecular control of menstruation arises from laboratory models that experimentally recapitulate some, but not all, aspects of uterine bleeding observed in women. These models include: in vitro culture of endometrial explants or isolated endometrial cells, transplantation of human endometrial tissue into immunodeficient mice and the induction of endometrial breakdown in appropriately pretreated mice. Each of these models has contributed to our understanding of molecular and cellular mechanisms of menstruation, but nonhuman primates, especially macaques, are the animal model of choice for evaluating therapies for menstrual disorders. In this chapter we review some basic aspects of menstruation, with special emphasis on the macaque model and its relevance to the clinical issues of irregular and heavy menstrual bleeding (HMB).

  9. C5a enhances dysregulated inflammatory and angiogenic responses to malaria in vitro: potential implications for placental malaria.

    Directory of Open Access Journals (Sweden)

    Andrea Conroy

    Full Text Available Placental malaria (PM is a leading cause of maternal and infant mortality. Although the accumulation of parasitized erythrocytes (PEs and monocytes within the placenta is thought to contribute to the pathophysiology of PM, the molecular mechanisms underlying PM remain unclear. Based on the hypothesis that excessive complement activation may contribute to PM, in particular generation of the potent inflammatory peptide C5a, we investigated the role of C5a in the pathogenesis of PM in vitro and in vivo.Using primary human monocytes, the interaction between C5a and malaria in vitro was assessed. CSA- and CD36-binding PEs induced activation of C5 in the presence of human serum. Plasmodium falciparum GPI (pfGPI enhanced C5a receptor expression (CD88 on monocytes, and the co-incubation of monocytes with C5a and pfGPI resulted in the synergistic induction of cytokines (IL-6, TNF, IL-1beta, and IL-10, chemokines (IL-8, MCP-1, MIP1alpha, MIP1beta and the anti-angiogenic factor sFlt-1 in a time and dose-dependent manner. This dysregulated response was abrogated by C5a receptor blockade. To assess the potential role of C5a in PM, C5a plasma levels were measured in malaria-exposed primigravid women in western Kenya. Compared to pregnant women without malaria, C5a levels were significantly elevated in women with PM.These results suggest that C5a may contribute to the pathogenesis of PM by inducing dysregulated inflammatory and angiogenic responses that impair placental function.

  10. Sickle cell protection from malaria.

    Science.gov (United States)

    Eridani, Sandro

    2011-10-19

    A linkage between presence of Sickle Haemoglobin (HbS) and protection from malaria infection and clinical manifestations in certain areas was suspected from early observations and progressively elucidated by more recent studies. Research has confirmed the abovementioned connection, but also clarified how such protection may be abolished by coexistence of sickle cell trait (HbS trait) and alpha thalassemia, which may explain the relatively low incidence of HbS trait in the Mediterranean. The mechanisms of such protective effect are now being investigated: factors of genetic, molecular and immunological nature are prominent. As for genetic factors attention is given to the role of the red blood cell (RBC) membrane complement regulatory proteins as polymorphisms of these components seem to be associated with resistance to severe malaria; genetic ligands like the Duffy group blood antigen, necessary for erythrocytic invasion, and human protein CD36, a major receptor for P. falciparum-infected RBC's, are also under scrutiny: attention is focused also on plasmodium erythrocyte-binding antigens, which bind to RBC surface components. Genome-wide linkage and association studies are now carried out too, in order to identify genes associated with malaria resistance. Only a minor role is attributed to intravascular sickling, phagocytosis and haemolysis, while specific molecular mechanisms are the object of intensive research: among these a decisive role is played by a biochemical sequence, involving activation of haeme oxygenase (HMO-1), whose effect appears mediated by carbon monoxide (CO). A central role in protection from malaria is also played by immunological factors, which may stimulate antibody production to plasmodium antigens in the early years of life; the role of agents like pathogenic CD8 T-cells has been suggested while the effects of molecular actions on the immunity mechanism are presently investigated. It thus appears that protection from malaria can be

  11. Use of Capillary Blood Samples Leads to Higher Parasitemia Estimates and Higher Diagnostic Sensitivity of Microscopic and Molecular Diagnostics of Malaria than Venous Blood Samples.

    Science.gov (United States)

    Mischlinger, Johannes; Pitzinger, Paul; Veletzky, Luzia; Groger, Mirjam; Zoleko-Manego, Rella; Adegnika, Ayola A; Agnandji, Selidji T; Lell, Bertrand; Kremsner, Peter G; Tannich, Egbert; Mombo-Ngoma, Ghyslain; Mordmüller, Benjamin; Ramharter, Michael

    2018-05-25

    Diagnosis of malaria is usually based on samples of peripheral blood. However, it is unclear whether capillary (CAP) or venous (VEN) blood samples provide better diagnostic performance. Quantitative differences of parasitemia between CAP and VEN blood and diagnostic performance characteristics were investigated. Patients were recruited between September 2015 and February 2016 in Gabon. Light microscopy and qPCR quantified parasitemia of paired CAP and VEN samples, whose preparation followed the exact same methodology. CAP and VEN performance characteristics using microscopy were evaluated against a qPCR gold-standard. Microscopy revealed a median (IQR) parasites/L of 495 (853,243) in CAP and 429 (524,074) in VEN samples manifesting in a +16.6% (p=0.04) higher CAPparasitemia compared with VENparasitemia. Concordantly, qPCR demonstrated that -0.278 (p=0.006) cycles were required for signal detection in CAP samples. CAPsensitivity of microscopy relative to the gold-standard was 81.5% (77.485.6%) versus VENsensitivity of 73.4% (68.878.1%), while CAPspecificity and VENspecificity were 91%. CAPsensitivity and VENsensitivity dropped to 63.3% and 45.9%, respectively for a sub-population of low-level parasitemias while specificities were 92%. CAP sampling leads to higher parasitemias compared to VEN sampling and improves diagnostic sensitivity. These findings may have important implications for routine diagnostics, research and elimination campaigns of malaria.

  12. HIGH-THROUGHPUT IDENTIFICATION OF THE PREDOMINANT MALARIA PARASITE CLONE IN COMPLEX BLOOD STAGE INFECTIONS USING A MULTI-SNP MOLECULAR HAPLOTYPING ASSAY

    Science.gov (United States)

    COLE-TOBIAN, JENNIFER L.; ZIMMERMAN, PETER A.; KING, CHRISTOPHER L.

    2013-01-01

    Individuals living in malaria endemic areas are often infected with multiple parasite clones. Currently used single nucleotide polymorphism (SNP) genotyping methods for malaria parasites are cumbersome; furthermore, few methods currently exist that can rapidly determine the most abundant clone in these complex infections. Here we describe an oligonucleotide ligation assay (OLA) to distinguish SNPs in the Plasmodium vivax Duffy binding protein gene (Pvdbp) at 14 polymorphic residues simultaneously. Allele abundance is determined by the highest mean fluorescent intensity of each allele. Using mixtures of plasmids encoding known haplotypes of the Pvdbp, single clones of P. vivax parasites from infected Aotus monkeys, and well-defined mixed infections from field samples, we were able to identify the predominant Pvdbp genotype with > 93% accuracy when the dominant clone is twice as abundant as a lesser genotype and > 97% of the time if the ratio was 5:1 or greater. Thus, the OLA can accurately, reproducibly, and rapidly determine the predominant parasite haplotype in complex blood stage infections. PMID:17255222

  13. Application of numerical methods to the determination of molecular wave functions

    International Nuclear Information System (INIS)

    Douady, Jerome

    1969-01-01

    A simplified SCF Method is developed. The wave function of molecular systems and spin densities in the case of free radicals are computed from geometrical data. This method, including at the beginning a delocalization of electrons over all the molecular system, two methods which clear out bonding and anti-bonding interactions have been studied and programmed: a) overlap population analysis, b) localisation of molecular orbitals. These methods have been carried out in the case of organic compounds and free radicals. (author) [fr

  14. Bio-functions and molecular carbohydrate structure association study in forage with different source origins revealed using non-destructive vibrational molecular spectroscopy techniques.

    Science.gov (United States)

    Ji, Cuiying; Zhang, Xuewei; Yan, Xiaogang; Mostafizar Rahman, M; Prates, Luciana L; Yu, Peiqiang

    2017-08-05

    The objectives of this study were to: 1) investigate forage carbohydrate molecular structure profiles; 2) bio-functions in terms of CHO rumen degradation characteristics and hourly effective degradation ratio of N to OM (HED N/OM ), and 3) quantify interactive association between molecular structures, bio-functions and nutrient availability. The vibrational molecular spectroscopy was applied to investigate the structure feature on a molecular basis. Two sourced-origin alfalfa forages were used as modeled forages. The results showed that the carbohydrate molecular structure profiles were highly linked to the bio-functions in terms of rumen degradation characteristics and hourly effective degradation ratio. The molecular spectroscopic technique can be used to detect forage carbohydrate structure features on a molecular basis and can be used to study interactive association between forage molecular structure and bio-functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Signalling in malaria parasites. The MALSIG consortium.

    NARCIS (Netherlands)

    Doerig, C.; Baker, D.; Billker, O.; Blackman, M.J.; Chitnis, C.; Dhar Kumar, S.; Heussler, V.; Holder, A.A.; Kocken, C.; Krishna, S.; Langsley, G.; Lasonder, E.; Menard, R.; Meissner, M.; Pradel, G.; Ranford-Cartwright, L.; Sharma, A.; Sharma, P.; Tardieux, T.; Tatu, U.; Alano, P.

    2009-01-01

    Depending on their developmental stage in the life cycle, malaria parasites develop within or outside host cells, and in extremely diverse contexts such as the vertebrate liver and blood circulation, or the insect midgut and hemocoel. Cellular and molecular mechanisms enabling the parasite to sense

  16. Density functional theory, comparative vibrational spectroscopic studies, highest occupied molecular orbital and lowest unoccupied molecular orbital analysis of Linezolid

    Science.gov (United States)

    Rajalakshmi, K.; Gunasekaran, S.; Kumaresan, S.

    2015-06-01

    The Fourier transform infrared spectra and Fourier transform Raman spectra of Linezolid have been recorded in the regions 4,000-400 and 4,000-100 cm-1, respectively. Utilizing the observed Fourier transform infrared spectra and Fourier transform Raman spectra data, a complete vibrational assignment and analysis of the fundamental modes of the compound have been carried out. The optimum molecular geometry, harmonic vibrational frequencies, infrared intensities and Raman scattering activities, have been calculated by density functional theory with 6-31G(d,p), 6-311G(d,p) and M06-2X/6-31G(d,p) levels. The difference between the observed and scaled wavenumber values of most of the fundamentals is very small. A detailed interpretation of the infrared and Raman spectra of Linezolid is reported. Mulliken's net charges have also been calculated. Ultraviolet-visible spectrum of the title molecule has also been calculated using time-dependent density functional method. Besides, molecular electrostatic potential, highest occupied molecular orbital and lowest unoccupied molecular orbital analysis and several thermodynamic properties have been performed by the density functional theoretical method.

  17. Malaria drives T cells to exhaustion

    Directory of Open Access Journals (Sweden)

    Michelle N Wykes

    2014-05-01

    Full Text Available Malaria is a significant global burden but after >30 years of effort there is no vaccine on the market. While the complex life cycle of the parasite presents several challenges, many years of research have also identified several mechanisms of immune evasion by Plasmodium spp.. Recent research on malaria, has investigated the Programmed cell death-1 (PD-1 pathway which mediates exhaustion of T cells, characterized by poor effector functions and recall responses and in some cases loss of the cells by apoptosis. Such studies have shown exhaustion of CD4+ T cells and an unappreciated role for CD8+ T cells in promoting sterile immunity against blood stage malaria. This is because PD-1 mediates up to a 95% reduction in numbers and functional capacity of parasite-specific CD8+ T cells, thus masking their role in protection. The role of T cell exhaustion during malaria provides an explanation for the absence of sterile immunity following the clearance of acute disease which will be relevant to future malaria-vaccine design and suggests the need for novel therapeutic solutions. This review will thus examine the role of PD-1-mediated T cell exhaustion in preventing lasting immunity against malaria.

  18. Congenital malaria in China.

    Directory of Open Access Journals (Sweden)

    Zhi-Yong Tao

    2014-03-01

    Full Text Available BACKGROUND: Congenital malaria, in which infants are directly infected with malaria parasites from their mother prior to or during birth, is a potentially life-threatening condition that occurs at relatively low rates in malaria-endemic regions. It is recognized as a serious problem in Plasmodium falciparum-endemic sub-Saharan Africa, where recent data suggests that it is more common than previously believed. In such regions where malaria transmission is high, neonates may be protected from disease caused by congenital malaria through the transfer of maternal antibodies against the parasite. However, in low P. vivax-endemic regions, immunity to vivax malaria is low; thus, there is the likelihood that congenital vivax malaria poses a more significant threat to newborn health. Malaria had previously been a major parasitic disease in China, and congenital malaria case reports in Chinese offer valuable information for understanding the risks posed by congenital malaria to neonatal health. As most of the literature documenting congenital malaria cases in China are written in Chinese and therefore are not easily accessible to the global malaria research community, we have undertaken an extensive review of the Chinese literature on this subject. METHODS/PRINCIPAL FINDINGS: Here, we reviewed congenital malaria cases from three major searchable Chinese journal databases, concentrating on data from 1915 through 2011. Following extensive screening, a total of 104 cases of congenital malaria were identified. These cases were distributed mainly in the eastern, central, and southern regions of China, as well as in the low-lying region of southwest China. The dominant species was P. vivax (92.50%, reflecting the malaria parasite species distribution in China. The leading clinical presentation was fever, and other clinical presentations were anaemia, jaundice, paleness, diarrhoea, vomiting, and general weakness. With the exception of two cases, all patients

  19. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  20. Molecular-beam epitaxial growth and ion-beam analysis systems for functional materials research

    International Nuclear Information System (INIS)

    Takeshita, H.; Aoki, Y.; Yamamoto, S.; Naramoto, H.

    1992-01-01

    Experimental systems for molecular beam epitaxial growth and ion beam analysis have been designed and constructed for the research of inorganic functional materials such as thin films and superlattices. (author)

  1. TLR receptors in laryngeal carcinoma - immunophenotypic, molecular and functional studies.

    Directory of Open Access Journals (Sweden)

    Mirosław Szczepański

    2011-04-01

    Full Text Available Toll-like receptors (TLRs have been shown to play crucial role in the recognition of unicellular pathogens. We have shown the expression of three TLRs on tumor cells of human laryngeal carcinoma by means of immunohistochemistry. In the current study we searched presence of TLR1-10 on protein and molecular level in larynx carcinoma cell lines and the impact of respective TLR ligands on TLR expression. Larynx carcinoma cell lines have been used. Cell were subjected to immunocytochemistry. RNA isolated from the cells was tested by RT-PCR. Cells were cultured in the presence of respective TLR ligands. Cells than were harvested and subjected to flow cytometry, using anti TLR1-10 Moabs. The cells were evaluated of membrane and cytoplasmic cell staining. TLR reactivity varied in individual cell lines. RT-PCR allowed to show mRNA for all TLRs tested. After short-term cell culture each cell line exhibited distinct pattern of expression of TLRs following interaction with respective ligand. Cytoplasmic TLR staining had usually higher MFI value than membrane one, but after culture with ligand it became reversed. TLRs 7 and 9 showed highest expression in the majority of tumor cells tested. In conclusion, larynx carcinoma cell lines exhibit rather universal expression of TLRs, both on protein and molecular level. Culture of TLR expressing tumor cells with ligands points out for potential reactivity of tumor cells with TLR agonists, what may have therapeutic implications.

  2. Malaria and Tropical Travel

    Centers for Disease Control (CDC) Podcasts

    2008-05-15

    Malaria is a serious mosquito-borne disease that can lead to death. This podcast discusses malaria risk when traveling to tropical areas, as well as how to protect yourself and your family from malaria infection.  Created: 5/15/2008 by National Center for Zoonotic, Vector-Borne, and Enteric Diseases (NCZVED).   Date Released: 5/29/2008.

  3. In-depth comparative analysis of malaria parasite genomes reveals protein-coding genes linked to human disease in Plasmodium falciparum genome.

    Science.gov (United States)

    Liu, Xuewu; Wang, Yuanyuan; Liang, Jiao; Wang, Luojun; Qin, Na; Zhao, Ya; Zhao, Gang

    2018-05-02

    Plasmodium falciparum is the most virulent malaria parasite capable of parasitizing human erythrocytes. The identification of genes related to this capability can enhance our understanding of the molecular mechanisms underlying human malaria and lead to the development of new therapeutic strategies for malaria control. With the availability of several malaria parasite genome sequences, performing computational analysis is now a practical strategy to identify genes contributing to this disease. Here, we developed and used a virtual genome method to assign 33,314 genes from three human malaria parasites, namely, P. falciparum, P. knowlesi and P. vivax, and three rodent malaria parasites, namely, P. berghei, P. chabaudi and P. yoelii, to 4605 clusters. Each cluster consisted of genes whose protein sequences were significantly similar and was considered as a virtual gene. Comparing the enriched values of all clusters in human malaria parasites with those in rodent malaria parasites revealed 115 P. falciparum genes putatively responsible for parasitizing human erythrocytes. These genes are mainly located in the chromosome internal regions and participate in many biological processes, including membrane protein trafficking and thiamine biosynthesis. Meanwhile, 289 P. berghei genes were included in the rodent parasite-enriched clusters. Most are located in subtelomeric regions and encode erythrocyte surface proteins. Comparing cluster values in P. falciparum with those in P. vivax and P. knowlesi revealed 493 candidate genes linked to virulence. Some of them encode proteins present on the erythrocyte surface and participate in cytoadhesion, virulence factor trafficking, or erythrocyte invasion, but many genes with unknown function were also identified. Cerebral malaria is characterized by accumulation of infected erythrocytes at trophozoite stage in brain microvascular. To discover cerebral malaria-related genes, fast Fourier transformation (FFT) was introduced to extract

  4. Brain mitochondrial function in a murine model of cerebral malaria and the therapeutic effects of rhEPO

    DEFF Research Database (Denmark)

    Karlsson, Michael; Hempel, Casper; Sjövall, Fredrik

    2013-01-01

    and no connection between disease severity and mitochondrial respiratory function. Treatment with rhEPO similarly had no effect on respiratory function. Thus cerebral metabolic dysfunction in CM does not seem to be directly linked to altered mitochondrial respiratory capacity as analyzed in brain homogenates ex...

  5. Molecular structure, functionality and applications of oxidized starches: A review.

    Science.gov (United States)

    Vanier, Nathan Levien; El Halal, Shanise Lisie Mello; Dias, Alvaro Renato Guerra; da Rosa Zavareze, Elessandra

    2017-04-15

    During oxidation, the hydroxyl groups of starch molecules are first oxidized to carbonyl groups, then to carboxyl groups. The contents of the carbonyl and carboxyl groups in a starch molecule therefore indicate the extent of starch oxidation. The mechanisms of starch oxidation with different oxidizing agents, including sodium hypochlorite, hydrogen peroxide, ozone and sodium periodate, are described in this review. The effects of these oxidizing agents on the molecular, physicochemical, thermal, pasting and morphological properties of starch are described as well. In addition, the main industrial applications of oxidized starches are presented. The present review is important for understanding the effects of oxidation on starch properties, and this information may facilitate the development of novel oxidized starches for both food and non-food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. EDF: Computing electron number probability distribution functions in real space from molecular wave functions

    Science.gov (United States)

    Francisco, E.; Pendás, A. Martín; Blanco, M. A.

    2008-04-01

    Given an N-electron molecule and an exhaustive partition of the real space ( R) into m arbitrary regions Ω,Ω,…,Ω ( ⋃i=1mΩ=R), the edf program computes all the probabilities P(n,n,…,n) of having exactly n electrons in Ω, n electrons in Ω,…, and n electrons ( n+n+⋯+n=N) in Ω. Each Ω may correspond to a single basin (atomic domain) or several such basins (functional group). In the later case, each atomic domain must belong to a single Ω. The program can manage both single- and multi-determinant wave functions which are read in from an aimpac-like wave function description ( .wfn) file (T.A. Keith et al., The AIMPAC95 programs, http://www.chemistry.mcmaster.ca/aimpac, 1995). For multi-determinantal wave functions a generalization of the original .wfn file has been introduced. The new format is completely backwards compatible, adding to the previous structure a description of the configuration interaction (CI) coefficients and the determinants of correlated wave functions. Besides the .wfn file, edf only needs the overlap integrals over all the atomic domains between the molecular orbitals (MO). After the P(n,n,…,n) probabilities are computed, edf obtains from them several magnitudes relevant to chemical bonding theory, such as average electronic populations and localization/delocalization indices. Regarding spin, edf may be used in two ways: with or without a splitting of the P(n,n,…,n) probabilities into α and β spin components. Program summaryProgram title: edf Catalogue identifier: AEAJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5387 No. of bytes in distributed program, including test data, etc.: 52 381 Distribution format: tar.gz Programming language: Fortran 77 Computer

  7. Functional histology of tumors as a basis of molecular imaging

    International Nuclear Information System (INIS)

    Ljungkvist, A.S.; Bussink, J.; Rijken, P.F.; Van Der Kogel, A.; Kaanders, J.H.

    2003-01-01

    The aim of this study was to characterize the various elements of the microenvironment and their interrelationships by quantitative image analysis. Tumor cell proliferation, hypoxia, and apoptosis are detected by immunohistochemical methods, and mapped in relation to the vasculature. This allows quantitative relationships to be measured in the context of tissue structure. Guided by e.g., gene expression profiles for hypoxia induced-genes, several molecular markers of tumor hypoxia were identified and are immunohistochemically detectable. We have thus far concentrated on the glucose transporters glut-1 and glut-3, as well as a pH-regulating enzyme, carbonic anhydrase IX. The extent and distribution of hypoxia is assessed by administering nitroimidazole-based markers such as pimonidazole, that can be detected immunohistochemically. Multiple hypoxia markers (CCI-103F, pimonidazole) can be used to study the effects of modifiers of perfusion or oxygenation on the distribution and dynamics of hypoxic cells in the same tumor. Proliferating cells are detected by thymidine analogues. Apoptotic cells are imaged by TUNEL and caspase-3 detection. In xenografted human tumors, examples of the use of quantitative imaging of hypoxia and proliferation are the study of reoxygenation after irradiation, or the investigation of the lifespan and dynamics of hypoxic cell populations over time. Perturbation of the microenvironment after cytotoxic treatments has been investigated by co-registration of the various markers, e.g. after treatment with the hypoxic cytotoxin tirapazamine. The combination of well-timed administration of external markers of hypoxia and proliferation with the detection of intrinsic molecular markers followed by quantitative image-registration yields a comprehensive view of the dynamics of the microenvironment in individual tumors

  8. The long-term effects of DDT exposure on semen, fertility, and sexual function of malaria vector-control workers in Limpopo Province, South Africa

    International Nuclear Information System (INIS)

    Dalvie, M.A.; Myers, J.E.; Thompson, M.L.; Robins, T.G.; Dyer, Silke; Riebow, John; Molekwa, Josef; Jeebhay, Mohamed; Millar, Robert; Kruger, Phillip

    2004-01-01

    Hormonally active chemicals in the environment such as DDT have been associated with declining male reproductive health, especially semen quality. A cross-sectional study of 60 workers was performed near the Malaria Control Center (MCC) in Tzaneen, Limpopo Province, South Africa. Tests included a questionnaire (sexual function, fertility, and job history), a physical examination of the reproductive system, and semen analysis (produced via coitus interruptus or masturbation). Sperm count, density, and motility using the World Health Organization criteria and morphology using the strict Tygerberg criteria were determined. Serum o'p' and p'p' isomers of DDE, DDT, and DDD were measured. Forty-eight (81.0%) participants produced a semen sample, while all completed the questionnaires and physical examination. The mean sperm count was 93.8±130.3 million, and sperm density was 74.6±85.1 million/mL. The mean normal morphology score was 2.5±1.8% of subjects. Eighty-four percent of morphology scores were below either the WHO or the Tygerberg criteria, with the highest individual score being 6%. Self-perceived current problems with sexual function ranged between 10% and 20%. The most prevalent genital abnormality was abnormal testis disposition at 71%. There were few significant associations between DDT exposure measures (measured as years worked at MCC and serum DDT) and reproductive outcomes. p'p'-DDT was negatively associated with semen count (β-circumflex=-3.7±1.7; P=0.04; R 2 =0.05 adjusted for age, abstinence, physical abnormality, and fever in last 2 months). While the semen quality in the study was less than normal, no strong evidence for a DDT effect was found

  9. Molecular materials and devices: developing new functional systems based on the coordination chemistry approach

    Directory of Open Access Journals (Sweden)

    Toma Henrique E.

    2003-01-01

    Full Text Available At the onset of the nanotechnology age, molecular designing of materials and single molecule studies are opening wide possibilities of using molecular systems in electronic and photonic devices, as well as in technological applications based on molecular switching or molecular recognition. In this sense, inorganic chemists are privileged by the possibility of using the basic strategies of coordination chemistry to build up functional supramolecular materials, conveying the remarkable chemical properties of the metal centers and the characteristics of the ancillary ligands. Coordination chemistry also provides effective self-assembly strategies based on specific metal-ligand affinity and stereochemistry. Several molecular based materials, derived from inorganic and metal-organic compounds are focused on this article, with emphasis on new supramolecular porphyrins and porphyrazines, metal-clusters and metal-polyimine complexes. Such systems are also discussed in terms of their applications in catalysis, sensors and molecular devices.

  10. Bench to bedside molecular functional imaging in translational cancer medicine: to image or to imagine?

    International Nuclear Information System (INIS)

    Mahajan, A.; Goh, V.; Basu, S.; Vaish, R.; Weeks, A.J.; Thakur, M.H.; Cook, G.J.

    2015-01-01

    Ongoing research on malignant and normal cell biology has substantially enhanced the understanding of the biology of cancer and carcinogenesis. This has led to the development of methods to image the evolution of cancer, target specific biological molecules, and study the anti-tumour effects of novel therapeutic agents. At the same time, there has been a paradigm shift in the field of oncological imaging from purely structural or functional imaging to combined multimodal structure–function approaches that enable the assessment of malignancy from all aspects (including molecular and functional level) in a single examination. The evolving molecular functional imaging using specific molecular targets (especially with combined positron-emission tomography [PET] computed tomography [CT] using 2- [ 18 F]-fluoro-2-deoxy-D-glucose [FDG] and other novel PET tracers) has great potential in translational research, giving specific quantitative information with regard to tumour activity, and has been of pivotal importance in diagnoses and therapy tailoring. Furthermore, molecular functional imaging has taken a key place in the present era of translational cancer research, producing an important tool to study and evolve newer receptor-targeted therapies, gene therapies, and in cancer stem cell research, which could form the basis to translate these agents into clinical practice, popularly termed “theranostics”. Targeted molecular imaging needs to be developed in close association with biotechnology, information technology, and basic translational scientists for its best utility. This article reviews the current role of molecular functional imaging as one of the main pillars of translational research. -- Highlights: •Molecular functional imaging (MFI) gives insight into the tumor biology and intratumoral heterogeneity. •It has potential role in identifying radiomic signatures associated with underlying gene-expression. •Radiomics can be used to create a road map

  11. [Future perspectives for diagnostic imaging in urology: from anatomic and functional to molecular imaging].

    Science.gov (United States)

    Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo

    2013-01-01

    The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.

  12. Molecular epidemiology of malaria in Cameroon. XXX. sequence analysis of Plasmodium falciparum ATPase 6, dihydrofolate reductase, and dihydropteroate synthase resistance markers in clinical isolates from children treated with an artesunate-sulfadoxine-pyrimethamine combination.

    Science.gov (United States)

    Menemedengue, Virginie; Sahnouni, Khalifa; Basco, Leonardo; Tahar, Rachida

    2011-07-01

    Plasmodium falciparum dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes are reliable molecular markers for antifolate resistance. The P. falciparum ATPase 6 (pfatp6) gene has been proposed to be a potential marker for artemisinin resistance. In our previous clinical study, we showed that artesunate-sulfadoxine-pyrimethamine is highly effective against uncomplicated malaria in Yaoundé, Cameroon. In the present study, dhfr, dhps, and pfatp6 mutations in P. falciparum isolates obtained from children treated with artesunate-sulfadoxine-pyrimethamine were determined. All 61 isolates had wild-type Pfatp6 263, 623, and 769 alleles, and 11 (18%) had a single E431K substitution. Three additional mutations, E643Q, E432K, and E641Q, were detected. The results did not indicate any warning signal of serious concern (i.e., no parasites were seen with quintuple dhfr-dhps, DHFR Ile164Leu, or pfatp6 mutations), as confirmed by the high clinical efficacy of artesunate-sulfadoxine-pyrimethamine. Further studies are required to identify a molecular marker that reliably predicts artemisinin resistance.

  13. Molecular cloning and functional characterization of avian interleukin-19

    Science.gov (United States)

    The present study describes the cloning and functional characterization of avian interleukin (IL)-19, a cytokine that, in mammals, alters the balance of Th1 and Th2 cells in favor of the Th2 phenotype. The full-length avian IL-19 gene, located on chromosome 26, was amplified from LPS-stimulated chi...

  14. Relativistic Green function for atomic and molecular systems

    Energy Technology Data Exchange (ETDEWEB)

    Gruzdev, P.F.; Sherstyuk, A.I.

    1981-12-01

    The problem on Green function construction of Dirac equation is solved for a wide class of single electron potentials in the atom and molecule theory. The solution is obtained in the form of a spectrum analysis according to the total system of eigenfuctions of the generalized Dirac problem for eigenvalues. The problem possesses a purely discrete spectrum.

  15. The challenges of understanding glycolipid functions: An open outlook based on molecular simulations

    DEFF Research Database (Denmark)

    Manna, M.; Rog, T.; Vattulainen, I.

    2014-01-01

    and molecular simulations can be used to shed light on the role of glycolipids in membrane structure and dynamics, receptor function, and other phenomena related to emergence of diseases such as Parkinson's. The cases we discuss highlight the challenge to understand how glycolipids function in cell membranes......, and the significant added value that one would gain by bridging molecular simulations with experiments. This article is part of a Special Issue entitled Tools to study lipid functions. (C) 2014 Elsevier B.V. All rights reserved.......Glycolipids are the most complex lipid type in cell membranes, characterized by a great diversity of different structures and functions. The underlying atomistic/molecular interactions and mechanisms associated with these functions are not well understood. Here we discuss how atomistic...

  16. Astrocytes in neurodegenerative diseases (I): function and molecular description.

    Science.gov (United States)

    Guillamón-Vivancos, T; Gómez-Pinedo, U; Matías-Guiu, J

    2015-03-01

    Astrocytes have been considered mere supporting cells in the CNS. However, we now know that astrocytes are actively involved in many of the functions of the CNS and may play an important role in neurodegenerative diseases. This article reviews the roles astrocytes play in CNS development and plasticity; control of synaptic transmission; regulation of blood flow, energy, and metabolism; formation of the blood-brain barrier; regulation of the circadian rhythms, lipid metabolism and secretion of lipoproteins; and in neurogenesis. Astrocyte markers and the functions of astrogliosis are also described. Astrocytes play an active role in the CNS. A good knowledge of astrocytes is essential to understanding the mechanisms of neurodegenerative diseases. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  17. Impacts of Climate Change on Malaria Transmission in Africa

    Science.gov (United States)

    Eltahir, E. A. B.; Endo, N.; Yamana, T. K.

    2017-12-01

    Malaria is a major vector-borne parasitic disease transmitted to humans by Anopheles spp mosquitoes. Africa is the hotspot for malaria transmission where more than 90% of malaria deaths occur every year. Malaria transmission is an intricate function of climatic factors, which non-linearly affect the development of vectors and parasites. We project that the risk of malaria will increase towards the end of the 21st century in east Africa, but decrease in west Africa. We combine a novel malaria transmission simulator, HYDREMATS, that has been developed based on comprehensive multi-year field surveys both in East Africa and West Africa, and the most reliable climate projections through regional dynamical downscaling and rigorous selection of GCMs from among CMIP5 models. We define a bell-shaped relation between malaria intensity and temperature, centered around a temperature of 30°C. Future risks of malaria are projected for two highly populated regions in Africa: the highlands in East Africa and the fringes of the desert in West Africa. In the highlands of East Africa, temperature is substantially colder than this optimal temperature; warmer future climate exacerbate malaria conditions. In the Sahel fringes in West Africa, temperature is around this optimal temperature; warming is not likely to exacerbate and might even reduce malaria burden. Unlike the highlands of East Africa, which receive significant amounts of annual rainfall, dry conditions also limit malaria transmission in the Sahel fringes in West Africa. This disproportionate risk of malaria due to climate change should guide strategies for climate adaptation over Africa.

  18. Impaired systemic tetrahydrobiopterin bioavailability and increased dihydrobiopterin in adult falciparum malaria: association with disease severity, impaired microvascular function and increased endothelial activation.

    Directory of Open Access Journals (Sweden)

    Tsin W Yeo

    2015-03-01

    Full Text Available Tetrahydrobiopterin (BH₄ is a co-factor required for catalytic activity of nitric oxide synthase (NOS and amino acid-monooxygenases, including phenylalanine hydroxylase. BH4 is unstable: during oxidative stress it is non-enzymatically oxidized to dihydrobiopterin (BH₂, which inhibits NOS. Depending on BH₄ availability, NOS oscillates between NO synthase and NADPH oxidase: as the BH₄/BH₂ ratio decreases, NO production falls and is replaced by superoxide. In African children and Asian adults with severe malaria, NO bioavailability decreases and plasma phenylalanine increases, together suggesting possible BH₄ deficiency. The primary three biopterin metabolites (BH₄, BH₂ and B₀ [biopterin] and their association with disease severity have not been assessed in falciparum malaria. We measured pterin metabolites in urine of adults with severe falciparum malaria (SM; n=12, moderately-severe malaria (MSM, n=17, severe sepsis (SS; n=5 and healthy subjects (HC; n=20 as controls. In SM, urinary BH₄ was decreased (median 0.16 ¼mol/mmol creatinine compared to MSM (median 0.27, SS (median 0.54, and HC (median 0.34]; p<0.001. Conversely, BH₂ was increased in SM (median 0.91 ¼mol/mmol creatinine, compared to MSM (median 0.67, SS (median 0.39, and HC (median 0.52; p<0.001, suggesting increased oxidative stress and insufficient recycling of BH2 back to BH4 in severe malaria. Overall, the median BH₄/BH₂ ratio was lowest in SM [0.18 (IQR: 0.04-0.32] compared to MSM (0.45, IQR 0.27-61, SS (1.03; IQR 0.54-2.38 and controls (0.66; IQR 0.43-1.07; p<0.001. In malaria, a lower BH₄/BH₂ ratio correlated with decreased microvascular reactivity (r=0.41; p=0.03 and increased ICAM-1 (r=-0.52; p=0.005. Decreased BH4 and increased BH₂ in severe malaria (but not in severe sepsis uncouples NOS, leading to impaired NO bioavailability and potentially increased oxidative stress. Adjunctive therapy to regenerate BH4 may have a role in improving NO

  19. Molecular structures and functional relationships in clostridial neurotoxins.

    Science.gov (United States)

    Swaminathan, Subramanyam

    2011-12-01

    The seven serotypes of Clostridium botulinum neurotoxins (A-G) are the deadliest poison known to humans. They share significant sequence homology and hence possess similar structure-function relationships. Botulinum neurotoxins (BoNT) act via a four-step mechanism, viz., binding and internalization to neuronal cells, translocation of the catalytic domain into the cytosol and finally cleavage of one of the three soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) causing blockage of neurotransmitter release leading to flaccid paralysis. Crystal structures of three holotoxins, BoNT/A, B and E, are available to date. Although the individual domains are remarkably similar, their domain organization is different. These structures have helped in correlating the structural and functional domains. This has led to the determination of structures of individual domains and combinations of them. Crystal structures of catalytic domains of all serotypes and several binding domains are now available. The catalytic domains are zinc endopeptidases and share significant sequence and structural homology. The active site architecture and the catalytic mechanism are similar although the binding mode of individual substrates may be different, dictating substrate specificity and peptide cleavage selectivity. Crystal structures of catalytic domains with substrate peptides provide clues to specificity and selectivity unique to BoNTs. Crystal structures of the receptor domain in complex with ganglioside or the protein receptor have provided information about the binding of botulinum neurotoxin to the neuronal cell. An overview of the structure-function relationship correlating the 3D structures with biochemical and biophysical data and how they can be used for structure-based drug discovery is presented here. Journal compilation © 2011 FEBS. No claim to original US government works.

  20. Molecular monolayers for electrical passivation and functionalization of silicon-based solar energy devices

    NARCIS (Netherlands)

    Veerbeek, Janneke; Firet, Nienke J.; Vijselaar, Wouter; Elbersen, R.; Gardeniers, Han; Huskens, Jurriaan

    2017-01-01

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based

  1. Functional porous composites by blending with solution-processable molecular pores.

    Science.gov (United States)

    Jiang, S; Chen, L; Briggs, M E; Hasell, T; Cooper, A I

    2016-05-25

    We present a simple method for rendering non-porous materials porous by solution co-processing with organic cage molecules. This method can be used both for small functional molecules and for polymers, thus creating porous composites by molecular blending, rather than the more traditional approach of supporting functional molecules on pre-frabricated porous supports.

  2. Application of GIS to predict malaria hotspots based on Anopheles arabiensis habitat suitability in Southern Africa

    Science.gov (United States)

    Gwitira, Isaiah; Murwira, Amon; Zengeya, Fadzai M.; Shekede, Munyaradzi Davis

    2018-02-01

    Malaria remains a major public health problem and a principal cause of morbidity and mortality in most developing countries. Although malaria still presents health problems, significant successes have been recorded in reducing deaths resulting from the disease. As malaria transmission continues to decline, control interventions will increasingly depend on the ability to define high-risk areas known as malaria hotspots. Therefore, there is urgent need to use geospatial tools such as geographic information system to detect spatial patterns of malaria and delineate disease hot spots for better planning and management. Thus, accurate mapping and prediction of seasonality of malaria hotspots is an important step towards developing strategies for effective malaria control. In this study, we modelled seasonal malaria hotspots as a function of habitat suitability of Anopheles arabiensis (A. Arabiensis) as a first step towards predicting likely seasonal malaria hotspots that could provide guidance in targeted malaria control. We used Geographical information system (GIS) and spatial statistic methods to identify seasonal hotspots of malaria cases at the country level. In order to achieve this, we first determined the spatial distribution of seasonal malaria hotspots using the Getis Ord Gi* statistic based on confirmed positive malaria cases recorded at health facilities in Zimbabwe over four years (1996-1999). We then used MAXENT technique to model habitat suitability of A. arabiensis from presence data collected from 1990 to 2002 based on bioclimatic variables and altitude. Finally, we used autologistic regression to test the extent to which malaria hotspots can be predicted using A. arabiensis habitat suitability. Our results show that A. arabiensis habitat suitability consistently and significantly (p < 0.05) predicts malaria hotspots from 1996 to 1999. Overall, our results show that malaria hotspots can be predicted using A. arabiensis habitat suitability, suggesting

  3. Malaria, malnutrition, and birthweight

    DEFF Research Database (Denmark)

    Cates, Jordan E.; Unger, Holger W.; Briand, Valerie

    2017-01-01

    were identified by the Maternal Malaria and Malnutrition (M3) initiative using a convenience sampling approach and were eligible for pooling given adequate ethical approval and availability of essential variables. Study-specific adjusted effect estimates were calculated using inverse probability...... be multiplicative interaction between malaria infection at enrollment and low MUAC within studies conducted in Africa; however, this finding was not consistent on the additive scale, when accounting for multiple comparisons, or when using other definitions of malaria and malnutrition. The major limitations...... of the study included availability of only 2 cross-sectional measurements of malaria and the limited availability of ultrasound-based pregnancy dating to assess impacts on preterm birth and fetal growth in all studies.  Conclusions : Pregnant women with malnutrition and malaria infection are at increased risk...

  4. Severe malaria in Europe

    DEFF Research Database (Denmark)

    Kurth, Florian; Develoux, Michel; Mechain, Matthieu

    2017-01-01

    BACKGROUND: Malaria remains one of the most serious infections for travellers to tropical countries. Due to the lack of harmonized guidelines a large variety of treatment regimens is used in Europe to treat severe malaria. METHODS: The European Network for Tropical Medicine and Travel Health (Trop......Net) conducted an 8-year, multicentre, observational study to analyse epidemiology, treatment practices and outcomes of severe malaria in its member sites across Europe. Physicians at participating TropNet centres were asked to report pseudonymized retrospective data from all patients treated at their centre...... for microscopically confirmed severe Plasmodium falciparum malaria according to the 2006 WHO criteria. RESULTS: From 2006 to 2014 a total of 185 patients with severe malaria treated in 12 European countries were included. Three patients died, resulting in a 28-day survival rate of 98.4%. The majority of infections...

  5. [Malaria and intestinal protozoa].

    Science.gov (United States)

    Rojo-Marcos, Gerardo; Cuadros-González, Juan

    2016-03-01

    Malaria is life threatening and requires urgent diagnosis and treatment. Incidence and mortality are being reduced in endemic areas. Clinical features are unspecific so in imported cases it is vital the history of staying in a malarious area. The first line treatments for Plasmodium falciparum are artemisinin combination therapies, chloroquine in most non-falciparum and intravenous artesunate if any severity criteria. Human infections with intestinal protozoa are distributed worldwide with a high global morbid-mortality. They cause diarrhea and sometimes invasive disease, although most are asymptomatic. In our environment populations at higher risk are children, including adopted abroad, immune-suppressed, travelers, immigrants, people in contact with animals or who engage in oral-anal sex. Diagnostic microscopic examination has low sensitivity improving with antigen detection or molecular methods. Antiparasitic resistances are emerging lately. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  6. Extensively Reversible Thermal Transformations of a Bistable, Fluorescence-Switchable Molecular Solid: Entry into Functional Molecular Phase-Change Materials.

    Science.gov (United States)

    Srujana, P; Radhakrishnan, T P

    2015-06-15

    Functional phase-change materials (PCMs) are conspicuously absent among molecular materials in which the various attributes of inorganic solids have been realized. While organic PCMs are primarily limited to thermal storage systems, the amorphous-crystalline transformation of materials like Ge-Sb-Te find use in advanced applications such as information storage. Reversible amorphous-crystalline transformations in molecular solids require a subtle balance between robust supramolecular assembly and flexible structural elements. We report novel diaminodicyanoquinodimethanes that achieve this transformation by interlinked helical assemblies coupled with conformationally flexible alkoxyalkyl chains. They exhibit highly reversible thermal transformations between bistable (crystalline/amorphous) forms, along with a prominent switching of the fluorescence emission energy and intensity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight

    Science.gov (United States)

    Zhang, Yanjie; Furyk, Steven; Sagle, Laura B.; Cho, Younhee; Bergbreiter, David E.; Cremer, Paul S.

    2008-01-01

    The effect of a series of sodium salts on the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide), PNIPAM, was investigated as a function of molecular weight and polymer concentration with a temperature gradient microfluidic device under a dark-field microscope. In solutions containing sufficient concentrations of kosmotropic anions, the phase transition of PNIPAM was resolved into two separate steps for higher molecular weight samples. The first step of this two step transition was found to be sensitive to the polymer’s molecular weight and solution concentration, while the second step was not. Moreover, the binding of chaotropic anions to the polymer was also influenced by molecular weight. Both sets of results could be explained by the formation of intramolecular and intermolecular hydrogen-bonding between polymer chains. By contrast, the hydrophobic hydration of the isopropyl moieties and polymer backbone was found to be unaffected by either the polymer’s molecular weight or solution concentration. PMID:18820735

  8. Molecular simulation of the thermophysical properties of N-functionalized alkylimidazoles.

    Science.gov (United States)

    Turner, C Heath; Cooper, Alex; Zhang, Zhongtao; Shannon, Matthew S; Bara, Jason E

    2012-06-07

    Molecular simulations are used to probe the thermophysical properties of a series of N-functionalized alkylimidazoles, ranging from N-methylimidazole to N-heptylimidazole. These compounds have been previously synthesized, and their solvation properties have been shown to be potentially useful for CO(2) capture from industrial sources. In this work, we use first-principles calculations to fit electrostatic charges to the molecular models, which are then used to perform a series of molecular dynamics simulations. Over a range of different temperatures, we benchmark the simulated densities and heat capacities against experimental measurements. Also, we predict the Henry's constants for CO(2) absorption and probe the solvents' structures using molecular simulation techniques, such as fractional free volume analysis and void distributions. We find that our simulations are able to closely reproduce the experimental benchmarks and add additional insight into the molecular structure of these fluids, with respect to their observed solvent properties.

  9. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids

    International Nuclear Information System (INIS)

    Aradi, Balint; Frauenheim, Thomas

    2015-01-01

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. Furthermore, for systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can also be applied to a broad range of problems in materials science, chemistry, and biology

  10. Extended Lagrangian Density Functional Tight-Binding Molecular Dynamics for Molecules and Solids.

    Science.gov (United States)

    Aradi, Bálint; Niklasson, Anders M N; Frauenheim, Thomas

    2015-07-14

    A computationally fast quantum mechanical molecular dynamics scheme using an extended Lagrangian density functional tight-binding formulation has been developed and implemented in the DFTB+ electronic structure program package for simulations of solids and molecular systems. The scheme combines the computational speed of self-consistent density functional tight-binding theory with the efficiency and long-term accuracy of extended Lagrangian Born-Oppenheimer molecular dynamics. For systems without self-consistent charge instabilities, only a single diagonalization or construction of the single-particle density matrix is required in each time step. The molecular dynamics simulation scheme can be applied to a broad range of problems in materials science, chemistry, and biology.

  11. Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters using Density Functional Theory

    Science.gov (United States)

    2017-05-05

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--17-9724 Equilibrium Structures and Absorption Spectra for SixOy Molecular Clusters...TELEPHONE NUMBER (include area code) b. ABSTRACT c. THIS PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Equilibrium Structures and Absorption...and electronic excited-state absorption spectra for eqilibrium structures of SixOy molecular clusters using density function theory (DFT) and time

  12. Contribution of molecular analysis to the typification of the non-functioning pituitary adenomas

    Science.gov (United States)

    Sanchez-Ortiga, Ruth; Aranda, Francisco Ignacio

    2017-01-01

    Aim The WHO Classification of Tumours of Endocrine Organs considers the inmunohistochemical characterization of pituitary adenomas (PA) as mandatory for patient diagnosis. Recent advances in the knowledge of the molecular patterns of these tumours could complement this classification with gene expression profiling. Methods Within the context of the Spanish Molecular Registry of Pituitary Adenomas (REMAH), a multicentre clinical-basic research project, we analysed the molecular phenotype of 142 PAs with complete IHC and clinical information. Gene expression levels of all pituitary hormones, type 1 corticotrophin-releasing hormone receptor, dopamine receptors and arginine vasopressin receptor 1b were measured by quantitative real-time polymerase chain reaction. In addition, we used three housekeeping genes for normalization and a pool of nine healthy pituitary glands from autopsies as calibration reference standard. Results Based on the clinically functioning PA (FPA: somatotroph, corticotroph, thyrotroph and lactotroph adenomas), we established the interquartile range of relative expression for all genes studied in each PA subtype. That allowed molecularly the different PA subtypes, including the clinically non-functioning PA (NFPA). Afterwards, we estimated the concordance of the molecular and immunohistochemical classification with clinical diagnosis in FPA and between them in NFPA. The kappa values were higher in molecular than in immunohistochemical classification in FPA and showed a bad concordance in all NFPA subtypes. Conclusions According to these results, the molecular characterization of the PA complements the IHC analysis, allowing a better typification of the NFPA. PMID:28692683

  13. Contribution of molecular analysis to the typification of the non-functioning pituitary adenomas.

    Directory of Open Access Journals (Sweden)

    Laura Sanchez-Tejada

    Full Text Available The WHO Classification of Tumours of Endocrine Organs considers the inmunohistochemical characterization of pituitary adenomas (PA as mandatory for patient diagnosis. Recent advances in the knowledge of the molecular patterns of these tumours could complement this classification with gene expression profiling.Within the context of the Spanish Molecular Registry of Pituitary Adenomas (REMAH, a multicentre clinical-basic research project, we analysed the molecular phenotype of 142 PAs with complete IHC and clinical information. Gene expression levels of all pituitary hormones, type 1 corticotrophin-releasing hormone receptor, dopamine receptors and arginine vasopressin receptor 1b were measured by quantitative real-time polymerase chain reaction. In addition, we used three housekeeping genes for normalization and a pool of nine healthy pituitary glands from autopsies as calibration reference standard.Based on the clinically functioning PA (FPA: somatotroph, corticotroph, thyrotroph and lactotroph adenomas, we established the interquartile range of relative expression for all genes studied in each PA subtype. That allowed molecularly the different PA subtypes, including the clinically non-functioning PA (NFPA. Afterwards, we estimated the concordance of the molecular and immunohistochemical classification with clinical diagnosis in FPA and between them in NFPA. The kappa values were higher in molecular than in immunohistochemical classification in FPA and showed a bad concordance in all NFPA subtypes.According to these results, the molecular characterization of the PA complements the IHC analysis, allowing a better typification of the NFPA.

  14. Molecular Mechanisms behind Free Radical Scavengers Function against Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Fereshteh Ahmadinejad

    2017-07-01

    Full Text Available Accumulating evidence shows that oxidative stress is involved in a wide variety of human diseases: rheumatoid arthritis, Alzheimer’s disease, Parkinson’s disease, cancers, etc. Here, we discuss the significance of oxidative conditions in different disease, with the focus on neurodegenerative disease including Parkinson’s disease, which is mainly caused by oxidative stress. Reactive oxygen and nitrogen species (ROS and RNS, respectively, collectively known as RONS, are produced by cellular enzymes such as myeloperoxidase, NADPH-oxidase (nicotinamide adenine dinucleotide phosphate-oxidase and nitric oxide synthase (NOS. Natural antioxidant systems are categorized into enzymatic and non-enzymatic antioxidant groups. The former includes a number of enzymes such as catalase and glutathione peroxidase, while the latter contains a number of antioxidants acquired from dietary sources including vitamin C, carotenoids, flavonoids and polyphenols. There are also scavengers used for therapeutic purposes, such as 3,4-dihydroxyphenylalanine (L-DOPA used routinely in the treatment of Parkinson’s disease (not as a free radical scavenger, and 3-methyl-1-phenyl-2-pyrazolin-5-one (Edaravone that acts as a free radical detoxifier frequently used in acute ischemic stroke. The cell surviving properties of L-DOPA and Edaravone against oxidative stress conditions rely on the alteration of a number of stress proteins such as Annexin A1, Peroxiredoxin-6 and PARK7/DJ-1 (Parkinson disease protein 7, also known as Protein deglycase DJ-1. Although they share the targets in reversing the cytotoxic effects of H2O2, they seem to have distinct mechanism of function. Exposure to L-DOPA may result in hypoxia condition and further induction of ORP150 (150-kDa oxygen-regulated protein with its concomitant cytoprotective effects but Edaravone seems to protect cells via direct induction of Peroxiredoxin-2 and inhibition of apoptosis.

  15. Pheochromocytoma and Paraganglioma: Current Functional and Future Molecular Imaging

    International Nuclear Information System (INIS)

    Blanchet, Elise M.; Martucci, Victoria; Pacak, Karel

    2012-01-01

    Paragangliomas are neural crest-derived tumors, arising either from chromaffin sympathetic tissue (in adrenal, abdominal, intra-pelvic, or thoracic paraganglia) or from parasympathetic tissue (in head and neck paraganglia). They have a specific cellular metabolism, with the ability to synthesize, store, and secrete catecholamines (although most head and neck paragangliomas do not secrete any catecholamines). This disease is rare and also very heterogeneous, with various presentations (e.g., in regards to localization, multifocality, potential to metastasize, biochemical phenotype, and genetic background). With growing knowledge, notably about the pathophysiology and genetic background, guidelines are evolving rapidly. In this context, functional imaging is a challenge for the management of paragangliomas. Nuclear imaging has been used for exploring paragangliomas for the last three decades, with MIBG historically as the first-line exam. Tracers used in paragangliomas can be grouped in three different categories. Agents that specifically target catecholamine synthesis, storage, and secretion pathways include: 123 and 131I-metaiodobenzylguanidine (123/131I-MIBG), 18F-fluorodopamine (18F-FDA), and 18F-fluorodihydroxyphenylalanine (18F-FDOPA). Agents that bind somatostatin receptors include 111In-pentetreotide and 68Ga-labeled somatostatin analog peptides (68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE). The non-specific agent most commonly used in paragangliomas is 18F-fluorodeoxyglucose (18F-FDG). This review will first describe conventional scintigraphic exams that are used for imaging paragangliomas. In the second part we will emphasize the interest in new PET approaches (specific and non-specific), considering the growing knowledge about genetic background and pathophysiology, with the aim of understanding how tumors behave, and optimally adjusting imaging technique for each tumor type.

  16. Malaria control in the African Region: perceptions and viewspoints on proceedings of the Africa Leaders Malaria Alliance (ALMA

    Directory of Open Access Journals (Sweden)

    Sambo Luis

    2011-06-01

    Full Text Available Abstract Background In 2009 a total of 153,408 malaria deaths were reported in Africa. Eleven countries showed a reduction of more than 50% in either confirmed malaria cases or malaria admissions and deaths in recent years. However, many African countries are not on track to achieve the malaria component of the Millennium Development Goal (MDG 6. The African Leaders Malaria Alliance (ALMA working session at the 15th African Union Summit discussed the bottlenecks to achieving MDG 6 (specifically halting and beginning to reverse the incidence of malaria by 2015, success factors, and what countries needed to do to accelerate achievement of the MDG. The purpose of this article is to reflect on the proceedings of the ALMA working session. Methods Working methods of the session included speeches and statements by invited speakers and high-level panel discussions. Discussion The main bottlenecks identified related to the capacity of the health systems to deliver quality care and accessibility issues; need for strong, decentralized malaria-control programmes with linkages with other health and development sectors, the civil society and private sector entities; benefits of co-implementation of malaria control programmes with child survival or other public health interventions; systematic application of integrated promotive, preventive, diagnostic and case management interventions with full community participation; adapting approaches to local political, socio-cultural and administrative environments. The following prerequisites for success were identified: a clear vision and effective leadership of national malaria control programmes; high level political commitment to ensure adequate capacity in expertise, skill mix and number of managers, technicians and service providers; national ownership, intersectoral collaboration and accountability, as well as strong civil society and private sector involvement; functional epidemiological surveillance systems

  17. The calculation of the viscosity from the autocorrelation function using molecular and atomic stress tensors

    Science.gov (United States)

    Cui, S. T.

    The stress-stress correlation function and the viscosity of a united-atom model of liquid decane are studied by equilibrium molecular dynamics simulation using two different formalisms for the stress tensor: the atomic and the molecular formalisms. The atomic and molecular correlation functions show dramatic difference in short-time behaviour. The integrals of the two correlation functions, however, become identical after a short transient period whichis significantly shorter than the rotational relaxation time of the molecule. Both reach the same plateau value in a time period corresponding to this relaxation time. These results provide a convenient guide for the choice of the upper integral time limit in calculating the viscosity by the Green-Kubo formula.

  18. Density functional study of molecular interactions in secondary structures of proteins.

    Science.gov (United States)

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  19. In-situ preparation of functionalized molecular sieve material and a methodology to remove template

    Science.gov (United States)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-01

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, 13C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  20. Hsp90 molecular chaperone: structure, functions and participation in cardio-vascular pathologies

    Directory of Open Access Journals (Sweden)

    Kroupskaya I. V.

    2009-10-01

    Full Text Available The review is devoted to the analysis of structural and functional properties of molecular chaperon Hsp90. Hsp90 is a representative of highly widespread family of heat shock proteins. The protein is found in eubacteria and all branches of eukarya, but it is apparently absent in archaea. It is one of key regulators of numerous signalling pathways, cell growth and development, apoptosis, induction of autoimmunity, and progression of heart failure. The full functional activity of Hsp90 shows up in a complex with other molecular chaperones and co-chaperones. Molecular interactions between chaperones, different signalling proteins and protein-partners are highly crucial for the normal functioning of signalling pathways and their destruction causes an alteration in the cell physiology up to its death.

  1. In-situ preparation of functionalized molecular sieve material and a methodology to remove template.

    Science.gov (United States)

    Yadav, Rekha; Ahmed, Maqsood; Singh, Arvind Kumar; Sakthivel, Ayyamperumal

    2016-03-10

    A series of diaminosilane-functionalized silicoaluminophosphate molecular sieve (SAPO-37) was prepared by in-situ synthesis, and a novel method was developed for the selective removal of structure directing agent (SDA)/template from the functionalized SAPO-37.The complete removal of the SDA was evident according to FT-IR, TGA, (13)C MAS-NMR and elemental analysis. The developed method was found to be efficient for removal of template from microporous molecular sieve viz., SAPO-37 and can be applied for other microporous molecular sieves such as SAPO-5, SAPO-40, etc. The powder XRD pattern of the template-removed samples showed a highly crystalline SAPO-37 phase. Argentometric titration revealed that more than 90% of diamine functionality exposed on the surface was accessible for catalytic applications. The resultant materials showed promising activity for ring opening of epoxide with aniline to yield β-amino-alcohol.

  2. Frequently Asked Questions (FAQs) about Malaria

    Science.gov (United States)

    ... Facebook Tweet Share Compartir The Disease What is Malaria? Malaria is a serious and sometimes fatal disease ... cycle of disease and poverty. How People Get Malaria (Transmission) How is malaria transmitted? Usually, people get ...

  3. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    Science.gov (United States)

    2017-04-23

    Our approach represents a full solid-state calculation, allowing for polarization ef- fects while still capable of capturing inter-molecular dis...AFRL-AFOSR-UK-TR-2017-0030 Optical absorption in molecular crystals from time-dependent density functional theory Leeor Kronik WEIZMANN INSTITUTE OF...from time-dependent density functional theory 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-15-1-0290 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S

  4. Malaria and Vascular Endothelium

    Energy Technology Data Exchange (ETDEWEB)

    Alencar, Aristóteles Comte Filho de, E-mail: aristoteles.caf@gmail.com [Universidade Federal do Amazonas, Manaus, AM (Brazil); Lacerda, Marcus Vinícius Guimarães de [Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, AM (Brazil); Okoshi, Katashi; Okoshi, Marina Politi [Faculdade de Medicina de Botucatu (Unesp), Botucatu, SP (Brazil)

    2014-08-15

    Involvement of the cardiovascular system in patients with infectious and parasitic diseases can result from both intrinsic mechanisms of the disease and drug intervention. Malaria is an example, considering that the endothelial injury by Plasmodium-infected erythrocytes can cause circulatory disorders. This is a literature review aimed at discussing the relationship between malaria and endothelial impairment, especially its effects on the cardiovascular system. We discuss the implications of endothelial aggression and the interdisciplinarity that should guide the malaria patient care, whose acute infection can contribute to precipitate or aggravate a preexisting heart disease.

  5. Malaria and Vascular Endothelium

    International Nuclear Information System (INIS)

    Alencar, Aristóteles Comte Filho de; Lacerda, Marcus Vinícius Guimarães de; Okoshi, Katashi; Okoshi, Marina Politi

    2014-01-01

    Involvement of the cardiovascular system in patients with infectious and parasitic diseases can result from both intrinsic mechanisms of the disease and drug intervention. Malaria is an example, considering that the endothelial injury by Plasmodium-infected erythrocytes can cause circulatory disorders. This is a literature review aimed at discussing the relationship between malaria and endothelial impairment, especially its effects on the cardiovascular system. We discuss the implications of endothelial aggression and the interdisciplinarity that should guide the malaria patient care, whose acute infection can contribute to precipitate or aggravate a preexisting heart disease

  6. A global model of malaria climate sensitivity: comparing malaria response to historic climate data based on simulation and officially reported malaria incidence

    Directory of Open Access Journals (Sweden)

    Edlund Stefan

    2012-09-01

    Full Text Available Abstract Background The role of the Anopheles vector in malaria transmission and the effect of climate on Anopheles populations are well established. Models of the impact of climate change on the global malaria burden now have access to high-resolution climate data, but malaria surveillance data tends to be less precise, making model calibration problematic. Measurement of malaria response to fluctuations in climate variables offers a way to address these difficulties. Given the demonstrated sensitivity of malaria transmission to vector capacity, this work tests response functions to fluctuations in land surface temperature and precipitation. Methods This study of regional sensitivity of malaria incidence to year-to-year climate variations used an extended Macdonald Ross compartmental disease model (to compute malaria incidence built on top of a global Anopheles vector capacity model (based on 10 years of satellite climate data. The predicted incidence was compared with estimates from the World Health Organization and the Malaria Atlas. The models and denominator data used are freely available through the Eclipse Foundation’s Spatiotemporal Epidemiological Modeller (STEM. Results Although the absolute scale factor relating reported malaria to absolute incidence is uncertain, there is a positive correlation between predicted and reported year-to-year variation in malaria burden with an averaged root mean square (RMS error of 25% comparing normalized incidence across 86 countries. Based on this, the proposed measure of sensitivity of malaria to variations in climate variables indicates locations where malaria is most likely to increase or decrease in response to specific climate factors. Bootstrapping measures the increased uncertainty in predicting malaria sensitivity when reporting is restricted to national level and an annual basis. Results indicate a potential 20x improvement in accuracy if data were available at the level ISO 3166–2

  7. Changing the Malaria Environment

    African Journals Online (AJOL)

    tega

    Malaria in the 21st Century” was held at ... seconds, and more than one million deaths occur annually from this disease. ... Biological control, for example the use of predatory fish against mosquito larvae and the use of other predatory insects.

  8. Bioinformatics approaches to malaria

    DEFF Research Database (Denmark)

    Hansen, Daniel Aaen

    Malaria is a life threatening disease found in tropical and subtropical regions of the world. Each year it kills 781 000 individuals; most of them are children under the age of five in sub-Saharan Africa. The most severe form of malaria in humans is caused by the parasite Plasmodium falciparum......, which is the subject of the first part of this thesis. The PfEMP1 protein which is encoded by the highly variablevargene family is important in the pathogenesis and immune evasion of malaria parasites. We analyzed and classified these genes based on the upstream sequence in seven......Plasmodium falciparumclones. We show that the amount of nucleotide diversity is just as big within each clone as it is between the clones. DNA methylation is an important epigenetic mark in many eukaryotic species. We are studying DNA methylation in the malaria parasitePlasmodium falciparum. The work is still in progress...

  9. Muscling out malaria

    DEFF Research Database (Denmark)

    Hughes, David Peter; Boomsma, Jacobus Jan

    2006-01-01

    ) [2] highlighted the back-to-back articles in Science 3 and 4 that demonstrated the potential biocontrol of malaria by targeting mosquitoes with entomopathogenic fungi (Metarhizium and Beauveria spp.). The wide impact of the original articles and the need to find alternatives to pesticidal control...... where malaria is endemic, humanity cannot afford shortcuts, because any failures owing to poor management or premature implementation will reduce local governmental support rather than enhance it (Andrew Read, pers. commun.). Therefore, if we are to ‘muscle out malaria', well...... of key importance, and the new focus on fungal biocontrol of malaria should therefore act as a catalyst for further research on the basic biology of fungal pathogens. Understanding morphological, biochemical or immune system-based resistance to insect pathogenic fungi will be easier if we know...

  10. Structural and Conformational Chemistry from Electrochemical Molecular Machines. Replicating Biological Functions. A Review.

    Science.gov (United States)

    Otero, Toribio F

    2017-12-14

    Each constitutive chain of a conducting polymer electrode acts as a reversible multi-step electrochemical molecular motor: reversible reactions drive reversible conformational movements of the chain. The reaction-driven cooperative actuation of those molecular machines generates, or destroys, inside the film the free volume required to lodge/expel balancing counterions and solvent: reactions drive reversible film volume variations, which basic structural components are here identified and quantified from electrochemical responses. The content of the reactive dense gel (chemical molecular machines, ions and water) mimics that of the intracellular matrix in living functional cells. Reaction-driven properties (composition-dependent properties) and devices replicate biological functions and organs. An emerging technological world of soft, wet, reaction-driven, multifunctional and biomimetic devices and the concomitant zoomorphic or anthropomorphic robots is presented. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Renewed mobilization against malaria.

    Science.gov (United States)

    1991-01-01

    1 million people die in the world from malaria annually, 800,000 of whom are 5 year old children in Sub-Sahara Africa. Further it affects 270 million people. In fact, 110 million develop malaria, 90 million of whom are from Sub-Saharan Africa. Thus WHO has introduced a new world initiative for malaria control to reverse the worsening trend that began in the mid 1970s. In October 1991, 150 officials from 50 African, Asian, and Latin American countries and participants from UN cooperation and development agencies and bilateral agencies attended an interregional conference at the WHO Regional office for Africa in Brazzaville, Congo. It strove to evaluate malaria situations specific to Africa, to update the malaria control plan in Africa, and to contribute to the development of an implementable world strategy. This world strategy needs to consider the local situation and encourage participation of the government and people of affected countries. Further individuals, communities, and various sectors of the national economy including those involved in health, education, development, and agriculture need to participate in malaria control. In addition, for this strategy to work, most countries must strengthen the management and financing of health services to meet their needs. For example, local populations must share local operating costs such as those for essential drugs and mosquito control operations. Community participation must also include personal protection such as impregnated bed nets and environmental measures. Besides malaria control must be integrated into the existing health system at country, provincial, and peripheral levels. In sum, improved case management, control of malaria transmission, and prevention and control of epidemics form the basis for the new strategy.

  12. Malaria in Pregnancy

    Directory of Open Access Journals (Sweden)

    Jesus R. Alvarez

    2005-01-01

    Full Text Available Recently, there has been a resurgence of malaria in densely populated areas of the United States secondary to human migration from endemic areas where factors such as cessation of vector control, vector resistance to insecticides, disease resistance to drugs, environmental changes, political instability, and indifference, have played a role for malaria becoming an overwhelming infection of these tropical underdeveloped countries. It is important for health care providers of gravida to be alert of the disease and its effects on pregnancy.

  13. 78 FR 21128 - Molecular Diagnostic Instruments With Combined Functions; Draft Guidance for Industry and Food...

    Science.gov (United States)

    2013-04-09

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-D-0258] Molecular Diagnostic Instruments With Combined Functions; Draft Guidance for Industry and Food and Drug Administration Staff; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food...

  14. Enantiopure Functional Molecular Motors Obtained by a Switchable Chiral-Resolution Process

    NARCIS (Netherlands)

    van Leeuwen, Thomas; Gan, Jefri; Kistemaker, Jos C. M.; Pizzolato, Stefano F.; Chang, Mu-Chieh; Feringa, Ben L.

    2016-01-01

    Molecular switches, rotors, and motors play an important role in the development of nano-machines and devices, as well as responsive and adaptive functional materials. For unidirectional rotors based on chiral overcrowded alkenes, their stereochemical homogeneity is of crucial importance. Herein, a

  15. Origami: A Versatile Modeling System for Visualising Chemical Structure and Exploring Molecular Function

    Science.gov (United States)

    Davis, James; Leslie, Ray; Billington, Susan; Slater, Peter R.

    2010-01-01

    The use of "Origami" is presented as an accessible and transferable modeling system through which to convey the intricacies of molecular shape and highlight structure-function relationships. The implementation of origami has been found to be a versatile alternative to conventional ball-and-stick models, possessing the key advantages of being both…

  16. Chronic granulomatous disease in Israel: clinical, functional and molecular studies of 38 patients

    NARCIS (Netherlands)

    Wolach, Baruch; Gavrieli, Ronit; de Boer, Martin; Gottesman, Giora; Ben-Ari, Josef; Rottem, Menachem; Schlesinger, Yechiel; Grisaru-Soen, Galia; Etzioni, Amos; Roos, Dirk

    2008-01-01

    Chronic granulomatous disease (CGD) is an innate immunodeficiency due to a genetic defect in one of the NADPH-oxidase components. In the course of 21 years, 38 Israeli CGD patients were diagnosed with 17 gene mutations, seven of which were new. Clinical, functional, and molecular studies were

  17. Novel Plasmodium falciparum malaria vaccines: evidence-based searching for variant surface antigens as candidates for vaccination against pregnancy-associated malaria

    DEFF Research Database (Denmark)

    Staalsoe, Trine; Jensen, Anja T R; Theander, Thor G

    2002-01-01

    Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited to statistic......Malaria vaccine development has traditionally concentrated on careful molecular, biochemical, and immunological characterisation of candidate antigens. In contrast, evidence of the importance of identified antigens in immunity to human infection and disease has generally been limited...... to statistically significant co-variation with protection rather than on demonstration of causal relationships. We have studied the relationship between variant surface antigen-specific antibodies and clinical protection from Plasmodium falciparum malaria in general, and from pregnancy-associated malaria (PAM......) in particular, to provide robust evidence of a causal link between the two in order to allow efficient and evidence-based identification of candidate antigens for malaria vaccine development....

  18. Laboratory diagnostics of malaria

    Science.gov (United States)

    Siahaan, L.

    2018-03-01

    Even now, malaria treatment should only be administered after laboratory confirmation. There are several principal methods for diagnosing malaria. All these methods have their disadvantages.Presumptive treatment of malaria is widely practiced where laboratory tests are not readily available. Microscopy of Giemsa-stained thick and thin blood films remains the gold standard for the diagnosis of malaria infection. The technique of slide preparation, staining and reading are well known and standardized, and so is the estimate of the parasite density and parasite stages. Microscopy is not always available or feasible at primary health services in limited resource settings due to cost, lack of skilled manpower, accessories and reagents required. Rapid diagnostic tests (RDTs) are potential tools for parasite-based diagnosis since the tests are accurate in detecting malaria infections and are easy to use. The test is based on the capture of parasite antigen that released from parasitized red blood cells using monoclonal antibodies prepared against malaria antigen target. Polymerase Chain Reaction (PCR), depend on DNA amplification approaches and have higher sensitivity than microscopy. PCR it is not widely used due to the lack of a standardized methodology, high costs, and the need for highly-trained staff.

  19. The malaria parasite RhopH protein complex interacts with erythrocyte calmyrin identified from a comprehensive erythrocyte protein library.

    Science.gov (United States)

    Miura, Toyokazu; Takeo, Satoru; Ntege, Edward H; Otsuki, Hitoshi; Sawasaki, Tatsuya; Ishino, Tomoko; Takashima, Eizo; Tsuboi, Takafumi

    2018-06-02

    Malaria merozoite apical organelles; microneme and rhoptry secreted proteins play functional roles during and following invasion of host erythrocytes. Among numerous proteins, the rhoptries discharge high molecular weight proteins known as RhopH complex. Recent reports suggest that the RhopH complex is essential for growth and survival of the malaria parasite within erythrocytes. However, an in-depth understanding of the host-parasite molecular interactions is indispensable. Here we utilized a comprehensive mouse erythrocyte protein library consisting of 443 proteins produced by a wheat germ cell-free system, combined with AlphaScreen technology to identify mouse erythrocyte calmyrin as an interacting molecule of the rodent malaria parasite Plasmodium yoelii RhopH complex (PyRhopH). The PyRhopH interaction was dependent on the calmyrin N-terminus and divalent cation capacity. The finding unveils a recommendable and invaluable usefulness of our comprehensive mouse erythrocyte protein library together with the AlphaScreen technology in investigating a wide-range of host-parasite molecular interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Vibrational characteristics of diethyltoluenediamines (DETDA) functionalized carbon nanotubes using molecular dynamics simulations

    International Nuclear Information System (INIS)

    Ajori, S.; Ansari, R.

    2015-01-01

    Functionalization of carbon nanotubes (CNTs) can be viewed as an important process by which the dispersion and solubility of CNTs in the matrices of nanocomposites are improved. Covalent functionalization can affect the mechanical behavior of CNTs. In this paper, the vibrational behavior of diethyltoluenediamines (DETDA) functionalized CNTs is investigated utilizing molecular dynamics simulations in canonical ensemble at room temperature. The models of simulations are divided into two categories of functionalized CNTs with regular and random distributions of DETDA polymers. The results demonstrate that natural frequency of functionalized CNTs is lower than that of pristine ones. Also, it is observed that buckling phenomenon occurs during vibration for functionalized CNTs with regular distribution of polymers. It is further observed that polymer mass and van der Waals (vdW) forces are responsible for frequency changes in functionalized CNTs with random and regular distribution patterns of CNTs, respectively

  1. De novo transcriptome sequencing and sequence analysis of the malaria vector Anopheles sinensis (Diptera: Culicidae)

    Science.gov (United States)

    2014-01-01

    Background Anopheles sinensis is the major malaria vector in China and Southeast Asia. Vector control is one of the most effective measures to prevent malaria transmission. However, there is little transcriptome information available for the malaria vector. To better understand the biological basis of malaria transmission and to develop novel and effective means of vector control, there is a need to build a transcriptome dataset for functional genomics analysis by large-scale RNA sequencing (RNA-seq). Methods To provide a more comprehensive and complete transcriptome of An. sinensis, eggs, larvae, pupae, male adults and female adults RNA were pooled together for cDNA preparation, sequenced using the Illumina paired-end sequencing technology and assembled into unigenes. These unigenes were then analyzed in their genome mapping, functional annotation, homology, codon usage bias and simple sequence repeats (SSRs). Results Approximately 51.6 million clean reads were obtained, trimmed, and assembled into 38,504 unigenes with an average length of 571 bp, an N50 of 711 bp, and an average GC content 51.26%. Among them, 98.4% of unigenes could be mapped onto the reference genome, and 69% of unigenes could be annotated with known biological functions. Homology analysis identified certain numbers of An. sinensis unigenes that showed homology or being putative 1:1 orthologues with genomes of other Dipteran species. Codon usage bias was analyzed and 1,904 SSRs were detected, which will provide effective molecular markers for the population genetics of this species. Conclusions Our data and analysis provide the most comprehensive transcriptomic resource and characteristics currently available for An. sinensis, and will facilitate genetic, genomic studies, and further vector control of An. sinensis. PMID:25000941

  2. Plasmodium vivax cerebral malaria complicated with venous sinus thrombosis in Colombia

    Institute of Scientific and Technical Information of China (English)

    Miguel A Pinzn; Juan C Pineda; Fernando Rosso; Masaru Shinchi; Fabio Bonilla-Abada

    2013-01-01

    Complicated malaria is usually due to Plasmodium falciparum. Nevertheless, Plasmodium vivax is infrequently related with life-threatening complications. Few cases have been reported of severe Plasmodium vivax infection, and most of them from Southeast Asia and India. We report the first case of cerebral malaria due to Plasmodium vivax in Latin America, complicated with sagittal sinus thrombosis and confirmed by a molecular method.

  3. Hari Malaria Sedunia 2013 Investasi Di Masa Depan. Taklukkan Malaria

    Directory of Open Access Journals (Sweden)

    Hotnida Sitorus

    2017-02-01

    Full Text Available Abstract Malaria is still the global health problems, World Health Organization estimates that malaria causes death of approximately 660.000 in 2010, most of the age of the children in the region of sub-Saharan Africa. World Malaria Day 2013 assigned the theme “Invest in the future. Defeat malaria”. It takes political will and collective action to jointly combat malaria through malaria elimination. Needed more new donors to be involved in global partnerships against malaria. These partnerships exist, one of which is support of funding or facility for malaria endemic countries which do not have sufficient resources to control malaria. A lot of effort has been done or is still in the development stage. The use of long-lasting insecticidal nets appropriately can reduce malaria cases. The use of rapid diagnostic test, especially in remote areas and health facility with no microscopy, is very beneficial for patients to get prompt treatment. The control of malaria through integrated vector management is a rational decision making process to optimize the use of resources in the control of vector. Sterile insect technique has a promising prospect and expected to replace the role of chemical insecticides that have negative impact both on the environment and target vector (resistance. Keywords: Malaria, long-lasting insecticidal nets, rapid diagnostic test Abstrak Malaria masih menjadi masalah kesehatan dunia, Organisasi Kesehatan Dunia (WHO memperkirakan malaria menyebabkan kurang lebih 660.000 kematian pada tahun 2010, kebanyakan usia anak-anak di wilayah Sub-Sahara Afrika. Pada peringatan hari malaria dunia tahun 2013 ditetapkan tema “Investasi di masa depan. Taklukkan malaria”. Dibutuhkan kemauan politik dan tindakan kolektif untuk bersama-sama memerangi malaria melalui gerakan eliminasi malaria. Diperlukan lebih banyak donor baru untuk turut terlibat dalam kemitraan global melawan malaria. Wujud kemitraan tersebut salah satunya adalah

  4. Functional Molecular Diversity of Marine Dissolved Organic Matter Is Reduced during Degradation

    Directory of Open Access Journals (Sweden)

    Andrea Mentges

    2017-06-01

    Full Text Available Dissolved organic matter (DOM is a highly diverse mixture of compounds, accounting for one of the world's largest active carbon pools. The surprising recalcitrance of some DOM compounds to bacterial degradation has recently been associated with its diversity. However, little is known about large-scale patterns of marine DOM diversity and its change through degradation, in particular considering the functional diversity of DOM. Here, we analyze the development of marine DOM diversity during degradation in two data sets comprising DOM of very different ages: a three-year mesocosm experiment and highly-resolved field samples from the Atlantic and Southern Ocean. The DOM molecular composition was determined using ultra-high resolution mass spectrometry. We quantify DOM diversity using three conceptually different diversity measures, namely richness of molecular formulas, abundance-based diversity, and functional molecular diversity. Using these measures we find stable molecular richness of DOM with age >1 year, systematic changes in the molecules' abundance distribution with degradation state, and increasing homogeneity with respect to chemical properties for more degraded DOM. Coinciding with differences in sea water density, the spatial field data separated clearly into regions of high and low diversity. The joint application of different diversity measures yields a comprehensive overview on temporal and spatial patterns of molecular diversity, valuable for general conclusions on drivers and consequences of marine DOM diversity.

  5. Diversity of radioprobes targeted to tumor angiogenesis on molecular functional imaging

    International Nuclear Information System (INIS)

    Lu Xia; Zhang Huabei

    2013-01-01

    Molecular functional imaging could visualize, characterize, and measure the bio- logical processes including tumor angiogenesis at the molecular and cellular levels in humans and other living systems. The molecular probes labeled by a variety of radionuclide used in the field of the nuclear medicine play pivotal roles in molecular imaging of tumor angiogenesis. However, the regulatory role of different probes in tumor angiogenesis has not been systematically illustrated. The current status of tumor angiogenesis imaging with radiolabeled probes of peptide, monoclonal antibody as well as its fragment, especially nanoparticle-based probes to gain insights into the robust tumor angiogenesis development were summarized. It was recognized that only the probes such as nanoparticle-based probes, which truly target the tumor vasculature rather than tumor cells because of poor extravasation, are really tumor angiogenesis imaging agent. The research of molecular probe targeted to angiogenesis would meet its flourish just after the outstanding improvements in the in vivo stability and biocompatibility, tumor-targeting efficacy, and pharmacokinetics of tumor angiogenesis imaging probes are made. Translation to clinical applications will also be critical for the maximize benefits of these novel agents. The future of tumor angiogenesis imaging lies in liable imaging probes and multiple imaging modalities, imaging of protein-protein interactions, and quantitative molecular imaging. (authors)

  6. Description of the electrodynamics of a gas by molecular-electromagnetic correlation functions

    International Nuclear Information System (INIS)

    Coulter, C.A.; Howgate, D.W.

    1985-01-01

    Starting from basic principles, we develop a description of the electromagnetic interactions of a molecular gas in terms of a set of correlation functions which we call the molecular-electromagnetic correlation functions (MECF's). First we use the energy eigenfunctions for an isolated molecule of the species of interest to define a set of molecular creation and annihilation operators. We then derive a closed set of operator equations for these molecular creation and annihilation operators and the electromagnetic vector potential. Explicit definitions of the lowest-order MECF's are given in terms of these operators, and it is shown how the operator equations which have been obtained can be used to derive equations of motion for the MECF's. Finally, we illustrate the use of the MECF's in describing physical properties of the molecular gas and the electromagnetic field. Brief indications are given of the application of the MECF formulation to the semiclassical approximation and to the description of quantum emission of radiation, topics which are treated in greater detail in subsequent papers. The basic MECF formulation described here contains three rather mild approximations: (1) Atomic nuclei are treated as elementary particles; (2) nuclei and electrons are treated nonrelativistically; and (3) the effect of molecular collisions with the container walls on the internal molecular state is neglected. Consequently, the physical description contained in the formulation is rather complete; and the MECF results can be used both to provide a sound basis for some aspects of the usual heuristic models, and to ascertain the ways in which those models are incomplete

  7. Reduced Hsp70 and Glutamine in Pediatric Severe Malaria Anemia

    DEFF Research Database (Denmark)

    Kempaiah, Prakasha; Dokladny, Karol; Karim, Zachary

    2016-01-01

    by decreased HSPA1A, a heat shock protein (Hsp) 70 coding gene. Hsp70 is a ubiquitous chaperone that regulates Nuclear Factor-kappa B (NF-κB) signaling and production of pro-inflammatory cytokines known to be important in malaria pathogenesis (e.g., IL-1β, IL-6 and TNF-α). Since the role of host Hsp70...... in malaria pathogenesis is unexplored, we investigated Hsp70 and molecular pathways in children with SMA. Validation experiments revealed that leukocytic HSP70 transcripts were reduced in SMA relative to non-severe malaria, and that intraleukocytic hemozoin (PfHz) was associated with lower HSP70. HSP70...... was correlated with reticulocyte production and Hb. Since glutamine (Gln) up-regulates Hsp70, modulates NF-κB activation, and attenuates over-expression of pro-inflammatory cytokines, circulating Gln was measured in children with malaria. Reduced Gln was associated with increased risk of developing SMA...

  8. Quality of malaria case management in Malawi: results from a nationally representative health facility survey.

    Science.gov (United States)

    Steinhardt, Laura C; Chinkhumba, Jobiba; Wolkon, Adam; Luka, Madalitso; Luhanga, Misheck; Sande, John; Oyugi, Jessica; Ali, Doreen; Mathanga, Don; Skarbinski, Jacek

    2014-01-01

    Malaria is endemic throughout Malawi, but little is known about quality of malaria case management at publicly-funded health facilities, which are the major source of care for febrile patients. In April-May 2011, we conducted a nationwide, geographically-stratified health facility survey to assess the quality of outpatient malaria diagnosis and treatment. We enrolled patients presenting for care and conducted exit interviews and re-examinations, including reference blood smears. Moreover, we assessed health worker readiness (e.g., training, supervision) and health facility capacity (e.g. availability of diagnostics and antimalarials) to provide malaria case management. All analyses accounted for clustering and unequal selection probabilities. We also used survey weights to produce estimates of national caseloads. At the 107 facilities surveyed, most of the 136 health workers interviewed (83%) had received training on malaria case management. However, only 24% of facilities had functional microscopy, 15% lacked a thermometer, and 19% did not have the first-line artemisinin-based combination therapy (ACT), artemether-lumefantrine, in stock. Of 2,019 participating patients, 34% had clinical malaria (measured fever or self-reported history of fever plus a positive reference blood smear). Only 67% (95% confidence interval (CI): 59%, 76%) of patients with malaria were correctly prescribed an ACT, primarily due to missed malaria diagnosis. Among patients without clinical malaria, 31% (95% CI: 24%, 39%) were prescribed an ACT. By our estimates, 1.5 million of the 4.4 million malaria patients seen in public facilities annually did not receive correct treatment, and 2.7 million patients without clinical malaria were inappropriately given an ACT. Malawi has a high burden of uncomplicated malaria but nearly one-third of all patients receive incorrect malaria treatment, including under- and over-treatment. To improve malaria case management, facilities must at minimum have

  9. Knowledge of malaria and practice of home management of malaria ...

    African Journals Online (AJOL)

    Background: Malaria is a preventable and treatable disease associated with high morbidity and mortality. It is the 3rd leading cause of death for children under five years worldwide. Home-based management of malaria may go a long way in reducing the attending morbidity and mortality associated with malaria in this group ...

  10. Case management of malaria: Diagnosis

    African Journals Online (AJOL)

    triggering control programme action, and detecting gametocyte carriers, who may ... clinical malaria does not generally apply to local-born populations, although it ... deficiencies in the quality of malaria diagnosis in routine laboratories. Quality ...

  11. Coherent molecular transistor: control through variation of the gate wave function.

    Science.gov (United States)

    Ernzerhof, Matthias

    2014-03-21

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor.

  12. Coherent molecular transistor: Control through variation of the gate wave function

    International Nuclear Information System (INIS)

    Ernzerhof, Matthias

    2014-01-01

    In quantum interference transistors (QUITs), the current through the device is controlled by variation of the gate component of the wave function that interferes with the wave function component joining the source and the sink. Initially, mesoscopic QUITs have been studied and more recently, QUITs at the molecular scale have been proposed and implemented. Typically, in these devices the gate lead is subjected to externally adjustable physical parameters that permit interference control through modifications of the gate wave function. Here, we present an alternative model of a molecular QUIT in which the gate wave function is directly considered as a variable and the transistor operation is discussed in terms of this variable. This implies that we specify the gate current as well as the phase of the gate wave function component and calculate the resulting current through the source-sink channel. Thus, we extend on prior works that focus on the phase of the gate wave function component as a control parameter while having zero or certain discrete values of the current. We address a large class of systems, including finite graphene flakes, and obtain analytic solutions for how the gate wave function controls the transistor

  13. Tests of potential functional barriers for laminated multilayer food packages. Part II: Medium molecular weight permeants.

    Science.gov (United States)

    Simal-Gándara, J; Sarria-Vidal, M; Rijk, R

    2000-09-01

    Experiments were performed to characterize the kinetics of the permeation of different medium molecular weight model permeants: bisphenol A, warfarin and anthracene, from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick orientated polypropylene--OPP) into the food simulants olive oil and 3% (w/v) acetic acid. The characterization of permeation kinetics generally observed the permeation models previously reported to explain the experimental permeation results obtained for a low molecular weight group of model permeants. In general, the model permeants exhibited behaviour consistent with their relative molecular weights with respect to (a) the time taken to attain steady-state permeation into the food simulant in which they were more soluble, (b) their subsequent steady-state permeation rates, and (c) their partition between liquid paraffin and the OPP membrane.

  14. MALARIA VACCINE: MYTH OR REALITY?

    African Journals Online (AJOL)

    Femi Olaleye

    Malaria currently remains the highest killer disease nationwide despite existing control measures. Malaria vaccine ... that malaria could be eliminated or at least controlled. However, because of changes in vector behaviour, drug resistance, manpower constraints for public ..... Although animal host models are different from ...

  15. Malaria and Agriculture in Kenya

    International Development Research Centre (IDRC) Digital Library (Canada)

    Nancy Minogue

    die every day from malaria, conventional efforts to control the disease have not worked. Malaria parasites are .... and other animals. Mosquito nets. Provide insecticide-treated bednets to groups at high risk for malaria, namely young children and pregnant women, through partnerships with nongovernmental organizations ...

  16. Classifying the molecular functions of Rab GTPases in membrane trafficking using deep convolutional neural networks.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Ho, Quang-Thai; Ou, Yu-Yen

    2018-06-13

    Deep learning has been increasingly used to solve a number of problems with state-of-the-art performance in a wide variety of fields. In biology, deep learning can be applied to reduce feature extraction time and achieve high levels of performance. In our present work, we apply deep learning via two-dimensional convolutional neural networks and position-specific scoring matrices to classify Rab protein molecules, which are main regulators in membrane trafficking for transferring proteins and other macromolecules throughout the cell. The functional loss of specific Rab molecular functions has been implicated in a variety of human diseases, e.g., choroideremia, intellectual disabilities, cancer. Therefore, creating a precise model for classifying Rabs is crucial in helping biologists understand the molecular functions of Rabs and design drug targets according to such specific human disease information. We constructed a robust deep neural network for classifying Rabs that achieved an accuracy of 99%, 99.5%, 96.3%, and 97.6% for each of four specific molecular functions. Our approach demonstrates superior performance to traditional artificial neural networks. Therefore, from our proposed study, we provide both an effective tool for classifying Rab proteins and a basis for further research that can improve the performance of biological modeling using deep neural networks. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Radiopharmaceuticals: nanoparticles like multi-functional systems for the obtaining in vivo of molecular images

    International Nuclear Information System (INIS)

    Ferro F, G.; Ramirez de la Cruz, F. M.; Ocampo G, B. E.; Morales A, E.; Santos C, C. L.; Mendoza S, A. N.

    2010-01-01

    The techniques of obtaining direct or indirect molecular images detect and register the space-temporary distribution of molecular or cellular processes for biochemical, biological, diagnostic and therapeutic applications. The advanced techniques of image like the nuclear magnetic resonance, the single photon emission computed tomography, the positron emission tomography and the images of optic fluorescence have been used successfully to detect these processes. On the other hand, the utility of the nanoparticles for any application is dependent of the physicochemical properties that present, being possible to modify their surface when making them react with different biomolecules what allows the formation of conjugates with specific molecular recognition. The joint of various protein molecules, peptides or oligonucleotides to the surface of a nanoparticle produce a multi-functional system able to increase the multivalent joints from the nanoparticles-biomolecules to their receivers for the obtaining of molecular images in vivo. The peptides stimulate, regulate or inhibit numerous functions of the life, acting mainly as information transmitters and activity coordinators of several tissues in the organism. The receivers of regulator peptides are over represented in numerous types of cancer cells and they are protein structures. These receivers have been used as white molecular of marked peptides, to locate primary malignant tumors and their metastasis, using the diagnostic techniques of molecular image mentioned above, which consist basically on the radio peptides use and conjugated peptides to fluoro chromes, to metallic nanoparticles and nano crystals. A summary of the work is presented carried out by the personnel of the Radio-active Materials and Chemistry Departments of the Instituto Nacional de Investigaciones Nucleares in this field. (Author)

  18. Molecular and Functional Properties of Regional Astrocytes in the Adult Brain.

    Science.gov (United States)

    Morel, Lydie; Chiang, Ming Sum R; Higashimori, Haruki; Shoneye, Temitope; Iyer, Lakshmanan K; Yelick, Julia; Tai, Albert; Yang, Yongjie

    2017-09-06

    The molecular signature and functional properties of astroglial subtypes in the adult CNS remain largely undefined. By using translational ribosome affinity purification followed by RNA-Seq, we profiled astroglial ribosome-associated (presumably translating) mRNAs in major cortical and subcortical brain regions (cortex, hippocampus, caudate-putamen, nucleus accumbens, thalamus, and hypothalamus) of BAC aldh1l1 -translational ribosome affinity purification (TRAP) mice (both sexes). We found that the expression of astroglial translating mRNAs closely follows the dorsoventral axis, especially from cortex/hippocampus to thalamus/hypothalamus posteriorly. This region-specific expression pattern of genes, such as synaptogenic modulator sparc and transcriptional factors ( emx2 , lhx2 , and hopx ), was validated by qRT-PCR and immunostaining in brain sections. Interestingly, cortical or subcortical astrocytes selectively promote neurite growth and synaptic activity of neurons only from the same region in mismatched cocultures, exhibiting region-matched astrocyte to neuron communication. Overall, these results generated new molecular signature of astrocyte types in the adult CNS, providing insights into their origin and functional diversity. SIGNIFICANCE STATEMENT We investigated the in vivo molecular and functional heterogeneity of astrocytes inter-regionally from adult brain. Our results showed that the expression pattern of ribosome-associated mRNA profiles in astrocytes closely follows the dorsoventral axis, especially posteriorly from cortex/hippocampus to thalamus/hypothalamus. In line with this, our functional results further demonstrated region-selective roles of cortical and subcortical astrocytes in regulating cortical or subcortical neuronal synaptogenesis and maturation. These in vivo studies provide a previously uncharacterized and important molecular atlas for exploring region-specific astroglial functions. Copyright © 2017 the authors 0270-6474/17/378706-12$15.00/0.

  19. Human Skin Barrier Structure and Function Analyzed by Cryo-EM and Molecular Dynamics Simulation.

    Science.gov (United States)

    Lundborg, Magnus; Narangifard, Ali; Wennberg, Christian L; Lindahl, Erik; Daneholt, Bertil; Norlén, Lars

    2018-04-24

    In the present study we have analyzed the molecular structure and function of the human skin's permeability barrier using molecular dynamics simulation validated against cryo-electron microscopy data from near native skin. The skin's barrier capacity is located to an intercellular lipid structure embedding the cells of the superficial most layer of skin - the stratum corneum. According to the splayed bilayer model (Iwai et al., 2012) the lipid structure is organized as stacked bilayers of ceramides in a splayed chain conformation with cholesterol associated with the ceramide sphingoid moiety and free fatty acids associated with the ceramide fatty acid moiety. However, knowledge about the lipid structure's detailed molecular organization, and the roles of its different lipid constituents, remains circumstantial. Starting from a molecular dynamics model based on the splayed bilayer model, we have, by stepwise structural and compositional modifications, arrived at a thermodynamically stable molecular dynamics model expressing simulated electron microscopy patterns matching original cryo-electron microscopy patterns from skin extremely closely. Strikingly, the closer the individual molecular dynamics models' lipid composition was to that reported in human stratum corneum, the better was the match between the models' simulated electron microscopy patterns and the original cryo-electron microscopy patterns. Moreover, the closest-matching model's calculated water permeability and thermotropic behaviour were found compatible with that of human skin. The new model may facilitate more advanced physics-based skin permeability predictions of drugs and toxicants. The proposed procedure for molecular dynamics based analysis of cellular cryo-electron microscopy data might be applied to other biomolecular systems. Copyright © 2018. Published by Elsevier Inc.

  20. The role of EPCR in the pathogenesis of severe malaria

    DEFF Research Database (Denmark)

    Mosnier, Laurent O; Lavstsen, Thomas

    2016-01-01

    and therapeutic options, for which understanding of the mechanisms that cause death and disability in malaria is essential. The recent discoveries that certain variants of P. falciparum erythrocyte membrane protein 1 (PfEMP1) expressed on infected erythrocytes are intimately linked to the precipitation of severe...... the new paradigm that EPCR plays a central role in the pathogenesis of severe malaria. Thus, targeting of the PfEMP1-EPCR interaction and restoring the functionality of the PC system may provide new strategies for the development of novel adjuvant therapies for severe malaria....

  1. Towards A Malaria Vaccine?

    Directory of Open Access Journals (Sweden)

    B S GARG

    1990-12-01

    Full Text Available The last few years have seen a marked change in the understanding of malaria mmunology.We have very little knowledge on immunity of Malaria based on experiments in humanbeings due to ethical reasons. Whatsoever our knowledge exists at present is based onexperimentas in mice and monkey. However it is clear that it is sporzoite or merozoitewhich is directly exposed to our immune system in the life cycle of Malaria parasite. On thebasis of human experiments we can draw inference that immunity to malaria is species.specific (on cross immunity, stage specific and strain specific as well acquired in the response to surface antigen and relapsed antigen although the parasite also demonstrates escape machanism to immune system.So the host system kills or elimi nate the parasite by means of (a Antbody to extracell~ular form of parasite with the help of mechanism of Block invasion, Agglutination or opsonization and/or (b Cellular machanism-either by phago-cytosis of parasite or by antibody dependent cellular cytotoxicity ABCC (? or by effects of mediators like tumor necrosis fJ.ctor (TNF in cerebaral malaria or crisis forming factor as found in sudan or by possible role of lysis mechanism.However, inspite of all these theories the parasite has been able to invade the immunesystem by virtue of its intracellular development stage specificity, sequestration in capillaries and also by its unusual characteristics of antigenic diversity and antigenic variation.

  2. Roll back malaria update.

    Science.gov (United States)

    1999-10-01

    This article presents the activities under WHO's Roll Back Malaria (RBM) program in Asia, particularly in Nepal, Indonesia, India, Bangladesh, Sri Lanka and the Philippines. In India, the RBM program will start in 5 districts with a major malaria problem. A national committee has been formed by researchers, which will be able to provide operational and strategic support and research expertise in relation to malaria. In Bangladesh, the RBM program was initiated in the sparsely populated hill tract areas of Banderban and Chittagong where access to health care is very poor. At the district level, effective partnerships with private practitioners, politicians, community leaders, school teachers, the press and district Ministry of Health officials are operating to plan for rolling back malaria. In Myanmar, Cambodia, Lao People's Democratic Republic, Yunnan province of China, Vietnam, and Thailand, the focus of the RBM program was to move health care closer to the malaria-infected communities. WHO¿s Global Health Leadership Fellowship Programme, supported by the UN Foundation and Rockefeller Foundation, enables potential leaders to experience the work of UN agencies and contribute to the work of the organization for 2 years. Three out of four persons appointed to the RBM program received prestigious awards: Dr. Paola Marchesini of Brazil; Dr. Tieman Diarra of Mali; and Dr. Bob Taylor of the UK.

  3. Transfected HEK293 Cells Expressing Functional Recombinant Intercellular Adhesion Molecule 1 (ICAM-1) - A Receptor Associated with Severe Plasmodium falciparum Malaria

    DEFF Research Database (Denmark)

    Bengtsson, Anja; Joergensen, Louise; Barbati, Zachary R

    2013-01-01

    Intercellular adhesion molecule 1 (ICAM-1) is a membrane-bound glycoprotein expressed on endothelial cells and cells of the immune system. Human ICAM-1 mediates adhesion and migration of leucocytes, and is implicated in inflammatory pathologies, autoimmune diseases and in many cancer processes....... Additionally, ICAM-1 acts as receptor for pathogens like human rhinovirus and Plasmodium falciparum malaria parasites. A group of related P. falciparum erythrocyte membrane protein 1 (PfEMP1) domains, the DBLβ, mediates ICAM-1 binding of P. falciparum-infected erythrocytes. This ICAM‑1-binding phenotype has...

  4. The economic burden of malaria.

    Science.gov (United States)

    Gallup, J L; Sachs, J D

    2001-01-01

    Malaria and poverty are intimately connected. Controlling for factors such as tropical location, colonial history, and geographical isolation, countries with intensive malaria had income levels in 1995 of only 33% that of countries without malaria, whether or not the countries were in Africa. The high levels of malaria in poor countries are not mainly a consequence of poverty. Malaria is geographically specific. The ecological conditions that support the more efficient malaria mosquito vectors primarily determine the distribution and intensity of the disease. Intensive efforts to eliminate malaria in the most severely affected tropical countries have been largely ineffective. Countries that have eliminated malaria in the past half century have all been either subtropical or islands. These countries' economic growth in the 5 years after eliminating malaria has usually been substantially higher than growth in the neighboring countries. Cross-country regressions for the 1965-1990 period confirm the relationship between malaria and economic growth. Taking into account initial poverty, economic policy, tropical location, and life expectancy, among other factors, countries with intensive malaria grew 1.3% less per person per year, and a 10% reduction in malaria was associated with 0.3% higher growth. Controlling for many other tropical diseases does not change the correlation of malaria with economic growth, and these diseases are not themselves significantly negatively correlated with economic growth. A second independent measure of malaria has a slightly higher correlation with economic growth in the 1980-1996 period. We speculate about the mechanisms that could cause malaria to have such a large impact on the economy, such as foreign investment and economic networks within the country.

  5. Improvement of a new rotation function for molecular replacement by designing new scoring functions and dynamic correlation coefficient

    Science.gov (United States)

    Jiang, Fan; Ding, Wei

    2010-10-01

    A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function more robust and independent of a specific set of weights for scoring and ranking. The previously described new rotation function calculates the rotation function of molecular replacement by matching the search model directly with the Patterson vector map. The signal-to-noise ratio for the correct match was increased by averaging all the matching peaks. Several matching scores were employed to evaluate the goodness of matching. These matching scores were then combined into a single total score by optimizing a set of weights using the linear regression method. It was found that there exists an optimal set of weights that can be applied to the global rotation search and the correct solution can be ranked in the top 100 or less. However, this set of optimal weights in general is dependent on the search models and the crystal structures with different space groups and cell parameters. In this work, we try to solve this problem by designing a dynamic correlation coefficient. It is shown that the dynamic correlation coefficient works for a variety of space groups and cell parameters in the global search of rotation function. We also introduce two new matching scores: relative entropy and mean-square-residues. Last but not least, we discussed a valid method for the optimization of the adjustable parameters for matching vectors.

  6. A molecular dynamics study on the interaction between epoxy and functionalized graphene sheets

    DEFF Research Database (Denmark)

    Melro, Liliana Sofia S. F. P.; Pyrz, Ryszard; Jensen, Lars Rosgaard

    2016-01-01

    The interaction between graphene and epoxy resin was studied using molecular dynamics simulations. The interfacial shear strength and pull out force were calculated for functionalised graphene layers (carboxyl, carbonyl, and hydroxyl) and epoxy composites interfaces. The influence of functional...... groups, as well as their distribution and coverage density on the graphene sheets were also analysed through the determination of the Young's modulus. Functionalisation proved to be detrimental to the mechanical properties, nonetheless according to interfacial studies the interaction between graphene...

  7. Asymptomatic Malaria and its Challenges in the Malaria Elimination Program in Iran: a Systematic Review

    Directory of Open Access Journals (Sweden)

    Gholmreza Hassanpour

    2017-06-01

    Full Text Available Background: The ob­jective of this study was to find an appropriate approach to asymptomatic malaria in elimination setting through a systematic review.Methods: A broad search was conducted to find articles with the words ‘malaria’ in their titles and ‘asymptomatic’ or ‘submicroscopic’ in their texts, irrespective of the type of study conducted. The Cochrane, Medline/PubMed, and Scopus databases, as well as Google Scholar were systematically searched for English articles and reports and Iran’s databases- IranMedex, SID and Magiran were searched for Persian reports and articles, with no time limitation. The study was qualitatively summarized if it contained precise information on the role of asymptomatic malaria in the elimination phase.Results: Six articles were selected from the initial 2645 articles. The results all re-emphasize the significance of asymptomatic malaria in the elimination phase, and empha­size the significance of diagnostic tests of higher sensitivity to locate these patients and perform interventions to re­duce the asymptomatic parasitic reservoirs particularly in regions of low transmission. However, we may infer from the results that the current evidence cannot yet specify an accurate strategy on the role of asymptomatic malaria in the elimination phase.Conclusion: To eliminate malaria, alongside vector control, and treatment of symptomatic and asymptomatic pa­tients, active and inactive methods of case detection need to be employed. The precise monitoring of asymptomatic individuals and submicroscopic cases of malaria through molecular assays and valid serological methods, especially in regions where seasonal and low transmission exists can be very helpful at this phase.

  8. Morphological and molecular evidence for functional organization along the rostrocaudal axis of the adult zebrafish intestine

    Directory of Open Access Journals (Sweden)

    Lam Siew

    2010-06-01

    Full Text Available Abstract Background The zebrafish intestine is a simple tapered tube that is folded into three sections. However, whether the intestine is functionally similar along its length remains unknown. Thus, a systematic structural and functional characterization of the zebrafish intestine is desirable for future studies of the digestive tract and the intestinal biology and development. Results To characterize the structure and function of the adult zebrafish intestine, we divided the intestine into seven roughly equal-length segments, S1-S7, and systematically examined the morphology of the mucosal lining, histology of the epithelium, and molecular signatures from transcriptome analysis. Prominent morphological features are circumferentially-oriented villar ridges in segments S1-S6 and the absence of crypts. Molecular characterization of the transcriptome from each segment shows that segments S1-S5 are very similar while S6 and S7 unique. Gene ontology analyses reveal that S1-S5 express genes whose functions involve metabolism of carbohydrates, transport of lipids and energy generation, while the last two segments display relatively limited function. Based on comparative Gene Set Enrichment Analysis, the first five segments share strong similarity with human and mouse small intestine while S6 shows similarity with human cecum and rectum, and S7 with human rectum. The intestinal tract does not display the anatomical, morphological, and molecular signatures of a stomach and thus we conclude that this organ is absent from the zebrafish digestive system. Conclusions Our genome-wide gene expression data indicate that, despite the lack of crypts, the rostral, mid, and caudal portions of the zebrafish intestine have distinct functions analogous to the mammalian small and large intestine, respectively. Organization of ridge structures represents a unique feature of zebrafish intestine, though they produce similar cross sections to mammalian intestines

  9. Melting slope of MgO from molecular dynamics and density functional theory

    Science.gov (United States)

    Tangney, Paul; Scandolo, Sandro

    2009-09-01

    We combine density functional theory (DFT) with molecular dynamics simulations based on an accurate atomistic force field to calculate the pressure derivative of the melting temperature of magnesium oxide at ambient pressure—a quantity for which a serious disagreement between theory and experiment has existed for almost 15 years. We find reasonable agreement with previous DFT results and with a very recent experimental determination of the slope. We pay particular attention to areas of possible weakness in theoretical calculations and conclude that the long-standing discrepancy with experiment could only be explained by a dramatic failure of existing density functionals or by flaws in the original experiment.

  10. MIGRATION AND MALARIA IN EUROPE

    Directory of Open Access Journals (Sweden)

    Begoña Monge-Maillo

    2012-03-01

    Full Text Available The proportion of imported malaria cases due to immigrants in Europe has increased during the lasts decades, being the higher rates for those settled immigrants who travel to visit friends and relatives (VFRs at their country of origin. Cases are mainly due to P. falciparum and Sub-Saharan Africa is the most common origin. Clinically, malaria in immigrants is characterized by a mild clinical presentation with even asymptomatic o delayed malaria cases and low parasitemic level. These characteristics may be explained by a semi-immunity acquired after long periods of time exposed to stable transmission of malaria. Malaria cases among immigrants, even those asymptomatic patients with sub-microscopic parasitemia, could increase the risk of transmission and reintroduction of malaria in certain areas with the adequate vectors and climate conditions. Moreover imported malaria cases by immigrants can also play an important role in the non-vectorial transmission out of endemic area, by blood transfusions, organ transplantation or congenital or occupational exposures. Probably, out of endemic areas, screening of malaria among recent arrived immigrants coming from malaria endemic countries should be performed. These aim to reduce the risk of clinical malaria in the individual as well as to prevent autochthonous transmission of malaria in areas where it had been eradicated.

  11. Vacuna contra la malaria

    OpenAIRE

    Patarroyo, Manuel Elkin

    2017-01-01

    La malaria es una enfermedad parasitaria producida por la picadura de un mosquito; una afección que en el año 2015 registró 212 millones de casos y 429.000 muertes. Cada dos minutos, la malaria provocó la muerte de un niño menor de cinco años en todo el mundo. Diferentes científicos a lo largo de todo el mundo han hecho múltiples intentos para combatir esta enfermedad con una vacuna efectiva que pueda erradicarla de raíz.

  12. Single amino acid substitution in important hemoglobinopathies does not disturb molecular function and biological process

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-06-01

    Full Text Available Viroj WiwanitkitDepartment of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: Hemoglobin is an important protein found in the red cells of many animals. In humans, the hemoglobin is mainly distributed in the red blood cell. Single amino acid substitution is the main pathogenesis of most hemoglobin disorders. Here, the author used a new gene ontology technology to predict the molecular function and biological process of four important hemoglobin disorders with single substitution. The four studied important abnormal hemoglobins (Hb with single substitution included Hb S, Hb E, Hb C, and Hb J-Baltimore. Using the GoFigure server, the molecular function and biological process in normal and abnormal hemoglobins was predicted. Compared with normal hemoglobin, all studied abnormal hemoglobins had the same function and biological process. This indicated that the overall function of oxygen transportation is not disturbed in the studied hemoglobin disorders. Clinical findings of oxygen depletion in abnormal hemoglobin should therefore be due to the other processes rather than genomics, proteomics, and expression levels.Keywords: hemoglobin, amino acid, substitution, function

  13. Molecular cloning and functional expression of a Drosophila receptor for the neuropeptides capa-1 and -2

    DEFF Research Database (Denmark)

    Iversen, Annette; Cazzamali, Giuseppe; Williamson, Michael

    2002-01-01

    the malaria mosquito Anopheles gambiae (58% amino acid residue identities; 76% conserved residues; and 5 introns at identical positions within the two insect genes). Because capa-1 and -2 and related insect neuropeptides stimulate fluid secretion in insect Malpighian (renal) tubules, the identification...

  14. Molecular cloning and functional expression of the first two specific insect myosuppressin receptors

    DEFF Research Database (Denmark)

    Egerod, Kristoffer; Reynisson, Eyjólfur; Hauser, Frank

    2003-01-01

    insect visceral muscles. Other tested Drosophila neuropeptides did not activate the two receptors. In addition to the two Drosophila myosuppressin receptors, we identified a sequence in the genomic database from the malaria mosquito Anopheles gambiae that also very likely codes for a myosuppressin...

  15. Total and Direct Correlation Function Integrals from Molecular Simulation of Binary Systems

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; O’Connell, John P.; Peters, Günther H.J.

    2011-01-01

    The possibility for obtaining derivative properties for mixtures from integrals of spatial total and direct correlation functions obtained from molecular dynamics simulations is explored. Theoretically well-supported methods are examined to extend simulation radial distribution functions to long...... are consistent with an excess Helmholtz energy model fitted to available simulations. In addition, simulations of water/methanol and water/t-butanol mixtures have been carried out. The method yields results for partial molar volumes, activity coefficient derivatives, and individual correlation function integrals...... in reasonable agreement with smoothed experimental data. The proposed method for obtaining correlation function integrals is shown to perform at least as well as or better than two previously published approaches....

  16. A physically motivated sparse cubature scheme with applications to molecular density-functional theory

    International Nuclear Information System (INIS)

    Rodriguez, Juan I; Thompson, David C; Anderson, James S M; Thomson, Jordan W; Ayers, Paul W

    2008-01-01

    We present a novel approach for performing multi-dimensional integration of arbitrary functions. The method starts with Smolyak-type sparse grids as cubature formulae on the unit cube and uses a transformation of coordinates based on the conditional distribution method to adapt those formulae to real space. Our method is tested on integrals in one, two, three and six dimensions. The three dimensional integration formulae are used to evaluate atomic interaction energies via the Gordon-Kim model. The six dimensional integration formulae are tested in conjunction with the nonlocal exchange-correlation energy functional proposed by Lee and Parr. This methodology is versatile and powerful; we contemplate application to frozen-density embedding, next-generation molecular-mechanics force fields, 'kernel-type' exchange-correlation energy functionals and pair-density functional theory

  17. Malaria resistance | Iyabo | Nigerian Medical Practitioner

    African Journals Online (AJOL)

    Age and puberty have been found to contribute to malaria resistance. It is expected that knowledge of natural resistance to malaria may aid in developing Vaccines against this deadly disease. Keywords: malaria resistance, puberty, malaria economy, malaria vaccine. Nigerian Medical Practitioner Vol. 49(5) 2006: 133-142 ...

  18. Molecular characterization of calreticulin from Anopheles stephensi midgut cells and functional assay of the recombinant calreticulin with Plasmodium berghei ookinetes.

    Science.gov (United States)

    Borhani Dizaji, Nahid; Basseri, Hamid Reza; Naddaf, Saied Reza; Heidari, Mansour

    2014-10-25

    Transmission blocking vaccines (TBVs) that target the antigens on the midgut epithelium of Anopheles mosquitoes are among the promising tools for the elimination of the malaria parasite. Characterization and analysis of effective antigens is the first step to design TBVs. Calreticulin (CRT), a lectin-like protein, from Anopheles albimanus midgut, has shown antigenic features, suggesting a promising and novel TBV target. CRT is a highly conserved protein with similar features in vertebrates and invertebrates including anopheline. We cloned the full-length crt gene from malaria vector, Anopheles stephensi (AsCrt) and explored the interaction of recombinant AsCrt protein, expressed in a prokaryotic system (pGEX-6p-1), with surface proteins of Plasmodium berghei ookinetes by immunofluorescence assay. The cellular localization of AsCrt was determined using the baculovirus expression system. Sequence analysis of the whole cDNA of AsCrt revealed that AsCrt contains an ORF of 1221 bp. The amino acid sequence of AsCrt protein obtained in this study showed 64% homology with similar protein in human. The AsCrt shares the most common features of CRTs from other species. This gene encodes a 406 amino-acid protein with a molecular mass of 46 kDa, which contains a predicted 16 amino-acid signal peptides, conserved cysteine residues, a proline-rich region, and highly acidic C-terminal domain with endoplasmic reticulum retrieval sequence HDEL. The production of GST-AsCrt recombinant protein was confirmed by Western blot analysis using an antibody against the GST protein. The FITC-labeled GST-AsCrt exhibited a significant interaction with P. berghei ookinete surface proteins. Purified recombinant GST-AsCrt, labeled with FITC, displayed specific binding to the surface of P. berghei ookinetes in comparison with control. Moreover, the expression of AsCrt in baculovirus expression system indicated that AsCrt was localized on the surface of Sf9 cells. Our results suggest that AsCrt could

  19. Dissecting molecular descriptors into atomic contributions in density functional reactivity theory

    Energy Technology Data Exchange (ETDEWEB)

    Rong, Chunying [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081 (China); Lu, Tian [School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing (China); Liu, Shubin, E-mail: shubin@email.unc.edu [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China) and Key Laboratory of Resource Fine-Processing and Advanced Materials of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081 (China); Research Computing Center, University of North Carolina, Chapel Hill, North Carolina 27599-3420 (United States)

    2014-01-14

    Density functional reactivity theory (DFRT) employs the electron density of a molecule and its related quantities such as gradient and Laplacian to describe its structure and reactivity properties. Proper descriptions at both molecular (global) and atomic (local) levels are equally important and illuminating. In this work, we make use of Bader's zero-flux partition scheme and consider atomic contributions for a few global reactivity descriptors in DFRT, including the density-based quantification of steric effect and related indices. Earlier, we proved that these quantities are intrinsically correlated for atomic and molecular systems [S. B. Liu, J. Chem. Phys. 126, 191107 (2007); ibid. 126, 244103 (2007)]. In this work, a new basin-based integration algorithm has been implemented, whose reliability and effectiveness have been extensively examined. We also investigated a list of simple hydrocarbon systems and different scenarios of bonding processes, including stretching, bending, and rotating. Interesting changing patterns for the atomic and molecular values of these quantities have been revealed for different systems. This work not only confirms the strong correlation between these global reactivity descriptors for molecular systems, as theoretically proven earlier by us, it also provides new and unexpected changing patterns for their atomic values, which can be employed to understand the origin and nature of chemical phenomena.

  20. Dissecting molecular descriptors into atomic contributions in density functional reactivity theory

    International Nuclear Information System (INIS)

    Rong, Chunying; Lu, Tian; Liu, Shubin

    2014-01-01

    Density functional reactivity theory (DFRT) employs the electron density of a molecule and its related quantities such as gradient and Laplacian to describe its structure and reactivity properties. Proper descriptions at both molecular (global) and atomic (local) levels are equally important and illuminating. In this work, we make use of Bader's zero-flux partition scheme and consider atomic contributions for a few global reactivity descriptors in DFRT, including the density-based quantification of steric effect and related indices. Earlier, we proved that these quantities are intrinsically correlated for atomic and molecular systems [S. B. Liu, J. Chem. Phys. 126, 191107 (2007); ibid. 126, 244103 (2007)]. In this work, a new basin-based integration algorithm has been implemented, whose reliability and effectiveness have been extensively examined. We also investigated a list of simple hydrocarbon systems and different scenarios of bonding processes, including stretching, bending, and rotating. Interesting changing patterns for the atomic and molecular values of these quantities have been revealed for different systems. This work not only confirms the strong correlation between these global reactivity descriptors for molecular systems, as theoretically proven earlier by us, it also provides new and unexpected changing patterns for their atomic values, which can be employed to understand the origin and nature of chemical phenomena

  1. The pathogenesis of malaria: a new perspective.

    Science.gov (United States)

    Mawson, Anthony R

    2013-04-01

    With 3·3 billion people at risk of infection, malaria remains one of the world's most significant health problems. Increasing resistance of the main causative parasite to currently available drugs has created an urgent need to elucidate the pathogenesis of the disease in order to develop new treatments. A possible clue to such an understanding is that the malaria parasite Plasmodium falciparum selectively absorbs vitamin A from the host and appears to use it for its metabolism; serum vitamin A levels are also reduced in children with malaria. Although vitamin A is essential in low concentration for numerous biological functions, higher concentrations are cytotoxic and pro-oxidant, and potentially toxic quantities of the vitamin are stored in the liver. During their life cycle in the host the parasites remain in the liver for several days before invading the red blood cells (RBCs). The hypothesis proposed is that the parasites emerge from the liver packed with vitamin A and use retinoic acid (RA), the main biologically active metabolite of vitamin A, as a cell membrane destabilizer to invade the RBCs throughout the body. The characteristic hemolysis and anemia of malaria and other symptoms of the disease may thus be manifestations of an endogenous form of vitamin A intoxication associated with high concentrations of RA but low concentrations of retinol (ROL). Retinoic acid released from the parasites may also affect the fetus and cause preterm birth and fetal growth restriction (FGR) as a function of the membranolytic and growth inhibitory effects of these compounds, respectively. Subject to testing, the hypothesis suggests that parasite vitamin A metabolism could become a new target for the treatment and prevention of malaria.

  2. Proteins involved in invasion of human red blood cells by malaria parasites

    Directory of Open Access Journals (Sweden)

    Ewa Jaśkiewicz

    2010-11-01

    Full Text Available Malaria is a disease caused by parasites of Plasmodium species. It is responsible for around 1-2 million deaths annually, mainly children under the age of 5. It occurs mainly in tropical and subtropical areas.Malaria is caused by five Plasmodium species:[i] P. falciparum, P. malariae, P. vivax, P. knowlesi[/i] and [i]P. ovale[/i]. Mosquitoes spread the disease by biting humans. The malaria parasite has two stages of development: the human stage and the mosquito stage. The first stage occurs in the human body and is divided into two phases: the liver phase and the blood phase.The invasion of erythrocytes by [i]Plasmodium[/i] merozoites is a multistep process of specific protein interactions between the parasite and red blood cell. The first step is the reversible merozoite attachment to the erythrocyte followed by its apical reorientation, then formation of an irreversible “tight” junction and finally entry into the red cell in a parasitophorous vacuole.The blood phase is supported by a number of proteins produced by the parasite. The merozoite surface GPI-anchored proteins (MSP-1, 2, 4, 5, 8 and 10 assist in the process of recognition of susceptible erythrocytes, apical membrane antigen (AMA-1 may be directly responsible for apical reorientation of the merozoite and apical proteins which function in tight junction formation. These ligands are members of two families: Duffy binding-like (DBL and reticulocyte binding-like (RBL proteins. In [i]Plasmodium[/i] [i]falciparum[/i] the DBL family includes: EBA-175, EBA-140 (BAEBL, EBA-181 (JESEBL, EBA-165 (PEBL and EBL-1 ligands.To date, no effective antimalarial vaccine has been developed, but there are several studies for this purpose. Therefore, it is crucial to understand the molecular basis of host cells invasion by parasites. Major efforts are focused on developing a multiantigenic and multiepitope vaccine preventing all steps of [i]Plasmodium[/i] invasion.

  3. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2018-01-01

    Full Text Available Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA family, the auxin response factor (ARF family, small auxin upregulated RNA (SAUR, and the auxin-responsive Gretchen Hagen3 (GH3 family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein–protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.

  4. Roles of water in protein structure and function studied by molecular liquid theory.

    Science.gov (United States)

    Imai, Takashi

    2009-01-01

    The roles of water in the structure and function of proteins have not been completely elucidated. Although molecular simulation has been widely used for the investigation of protein structure and function, it is not always useful for elucidating the roles of water because the effect of water ranges from atomic to thermodynamic level. The three-dimensional reference interaction site model (3D-RISM) theory, which is a statistical-mechanical theory of molecular liquids, can yield the solvation structure at the atomic level and calculate the thermodynamic quantities from the intermolecular potentials. In the last few years, the author and coworkers have succeeded in applying the 3D-RISM theory to protein aqueous solution systems and demonstrated that the theory is useful for investigating the roles of water. This article reviews some of the recent applications and findings, which are concerned with molecular recognition by protein, protein folding, and the partial molar volume of protein which is related to the pressure effect on protein.

  5. Chemical insight from density functional modeling of molecular adsorption: Tracking the bonding and diffusion of anthracene derivatives on Cu(111) with molecular orbitals

    Science.gov (United States)

    Wyrick, Jonathan; Einstein, T. L.; Bartels, Ludwig

    2015-03-01

    We present a method of analyzing the results of density functional modeling of molecular adsorption in terms of an analogue of molecular orbitals. This approach permits intuitive chemical insight into the adsorption process. Applied to a set of anthracene derivates (anthracene, 9,10-anthraquinone, 9,10-dithioanthracene, and 9,10-diselenonanthracene), we follow the electronic states of the molecules that are involved in the bonding process and correlate them to both the molecular adsorption geometry and the species' diffusive behavior. We additionally provide computational code to easily repeat this analysis on any system.

  6. Informed decision-making before changing to RDT: a comparison of microscopy, rapid diagnostic test and molecular techniques for the diagnosis and identification of malaria parasites in Kassala, eastern Sudan.

    Science.gov (United States)

    Osman, Mamoun M M; Nour, Bakri Y M; Sedig, Mohamed F; De Bes, Laura; Babikir, Adil M; Mohamedani, Ahmed A; Mens, Petra F

    2010-12-01

    Rapid diagnostic tests (RDTs) are promoted for the diagnosis of malaria in many countries. The question arises whether laboratories where the current method of diagnosis is microscopy should also switch to RDT. This problem was studied in Kassala, Sudan where the issue of switching to RDT is under discussion. Two hundred and three blood samples were collected from febrile patients suspected of having malaria. These were subsequently analysed with microscopy, RDT (SD Bioline P.f/P.v) and PCR for the detection and identification of Plasmodium parasites. Malaria parasites were detected in 36 blood samples when examined microscopically, 54 (26.6%) samples were found positive for malaria parasites by RDT, and 44 samples were positive by PCR. Further analysis showed that the RDT used in our study resulted in a relatively high number of false positive samples. When microscopy was compared with PCR, an agreement of 96.1% and k = 0.88 (sensitivity 85.7% and specificity 100%) was found. However, when RDT was compared with PCR, an agreement of only 81.2 and k = 0.48 (sensitivity 69% and specificity 84%) was found. PCR has proven to be one of the most specific and sensitive diagnostic methods, particularly for malaria cases with low parasitaemia. However, this technique has limitations in its routine use under resource-limited conditions, such as our study location. At present, based on these results, microscopy remains the best option for routine diagnosis of malaria in Kassala, eastern Sudan. © 2010 Blackwell Publishing Ltd.

  7. Pulmonary manifestations of malaria

    International Nuclear Information System (INIS)

    Rauber, K.; Enkerlin, H.L.; Riemann, H.; Schoeppe, W.; Frankfurt Univ.

    1987-01-01

    We report on the two different types of pulmonary manifestations in acute plasmodium falciparum malaria. The more severe variant shows long standing interstitial pulmonary infiltrates, whereas in the more benign courses only short-term pulmonary edemas are visible. (orig.) [de

  8. Chemotherapy of Malaria

    Science.gov (United States)

    1974-05-31

    malaria in Vietnam was resisent to drugs such as chloroquine , generally recognized since World War ii as satisfactory antimalarial agents. The urgent...known to have antimalarial activity; (3) structural analogues of compounds found active in our test system and representing several novel chemical

  9. Plasmodium falciparum malaria

    African Journals Online (AJOL)

    Durrheim, Karen Barnes. Objectives. To assess the therapeutic efficacy of sulfadoxine- pyrimethamine (SP) after 5 years of use as first-line treatment of uncomplicated Plasmodium falciparum malaria, and thus guide the selection of artemisinin-based combination therapy in Mpumalanga, South Africa. Design. An open-label ...

  10. Malaria and gold fever.

    Science.gov (United States)

    Veeken, H

    1993-08-14

    The mineral rich territory of the Yanomami Indians of northern Brazil has been invaded by miners--who have destroyed the environment and introduced disease. Médecins Sans Frontières agreed to help combat the malaria epidemic. Conditions in the rainforest and villages and the health care facilities are described. Mere medical aid cannot prevent the Yanomami from being decimated.

  11. Malaria prevention and treatment

    African Journals Online (AJOL)

    to allow prompt and accurate treatment of malaria in areas out .... It is essential to seek medical advice promptly if ... Not ideal for machine operators, drivers or those that work at heights .... with food that contains oil e.g. chips, bread and butter.

  12. Statistical mechanical calculations of molecular pair correlation functions and scattering intensities

    International Nuclear Information System (INIS)

    Bertagnolli, H.

    1978-01-01

    For the case of special molecular models representing the acetonitrile molecule the expansion coefficients of the molecular par distribution function are calculated by use of pertubation theory. These results are used to get theoretical access to scattering intensities in the frame of several approximations. The first model describes the molecule by three hard spheres and uses a hard sphere liquid as reference. In the second cast the calculations are based on an anisotropic Lennard-Jones potential by application of a model of overlapping ellipsoids and by use of a Lennard-Jones liquid as a reference system. In the third model dipolar attractive forces are taken into account with an anisotropic hard-sphere liquid as a reference. In the third model dipolar attractive forces are taken into account with an anisotropic hard-sphere liquid as a reference. Finally all the calculations with different intermolecular potentials are compared with neutron scattering experiments. (orig.) 891 HK [de

  13. Adsorptive detoxification of fermentation inhibitors in acid pretreated liquor using functionalized polymer designed by molecular simulation.

    Science.gov (United States)

    Devendra, Leena P; Pandey, Ashok

    2017-11-01

    Acid pretreatment is the most common method employed in the lignocellulosic biorefinery leading to the separation of pentose and hexose sugar. The liquor obtained after pretreatment (acid pretreatment liquor or APL) needs to be detoxified prior to fermentation. The aim of this study was to design functional groups on a polymer matrix which are selective in their interaction to inhibitors with little or no specificity to sugars. Molecular modeling was used as a tool to design a suitable adsorbent for selective adsorption of inhibitors from a complex mixture of APL. Phenyl glycine-p-sulfonic acid loaded on chloromethylated polystyrene polymer was designed as an adsorbent for selective interaction with inhibitors. Experimental verification of the selectivity was successfully achieved. The current study provides insights on the adsorptive separation processes at the molecular level by design of specific adsorbent which can be tailor made for the better selectivity of the desired component.

  14. Characterization of nonprimate hepacivirus and construction of a functional molecular clone

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Kapoor, Amit; Nishiuchi, Eiko

    2015-01-01

    Nonprimate hepacivirus (NPHV) is the closest known relative of hepatitis C virus (HCV) and its study could enrich our understanding of HCV evolution, immunity, and pathogenesis. High seropositivity is found in horses worldwide with ∼ 3% viremic. NPHV natural history and molecular virology remain...... circulating liver enzymes and mild hepatitis was observed, followed by viral clearance. This establishes the molecular components of a functional NPHV genome. Thus, NPHV appears to resemble HCV not only in genome structure but also in its ability to establish chronic infection with delayed seroconversion...... and hepatitis. This NPHV infectious clone and resulting acute phase sera will facilitate more detailed studies on the natural history, pathogenesis, and immunity of this novel hepacivirus in its natural host....

  15. Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model

    Science.gov (United States)

    Links, Jon; Shen, Yibing

    2018-05-01

    We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.

  16. Sickle cell protection from malaria: a review

    Directory of Open Access Journals (Sweden)

    Sandro Eridani

    2011-11-01

    Full Text Available A linkage between presence of Sickle Haemoglobin (HbS and protection from malaria infection and clinical manifestations in certain areas was suspected from early observations and progressively elucidated by more recent studies. Research has confirmed the abovementioned connection, but also clarified how such protection may be abolished by coexistence of sickle cell trait (HbS trait and alpha thalassemia, which may explain the relatively low incidence of HbS trait in the Mediterranean. The mechanisms of such protective effect are now being investigated: factors of genetic, molecular and immunological nature are prominent. As for genetic factors attention is given to the role of the red blood cell (RBC membrane complement regulatory proteins as polymorphisms of these components seem to be associated with resistance to severe malaria; genetic ligands like the Duffy group blood antigen, necessary for erythrocytic invasion, and human protein CD36, a major receptor for P. falciparum-infected RBC‘s, are also under scrutiny: attention is focused also on plasmodium erythrocyte-binding antigens, which bind to RBC surface components. Genome-wide linkage and association studies are now carried out too, in order to identify genes associated with malaria resistance. Only a minor role is attributed to intravascular sickling, phagocytosis and haemolysis, while specific molecular mechanisms are the object of intensive research: among these a decisive role is played by a biochemical sequence, involving activation of haeme oxygenase (HMO-1, whose effect appears mediated by carbon monoxide (CO. A central role in protection from malaria is also played by immunological factors, which may stimulate antibody production to plasmodium antigens in the early years of life; the role of agents like pathogenic CD8 T-cells has been suggested while the effects of molecular actions on the immunity mechanism are presently investigated. It thus appears that protection from

  17. Mapping hypoendemic, seasonal malaria in rural Bandarban, Bangladesh: a prospective surveillance

    Directory of Open Access Journals (Sweden)

    Glass Gregory

    2011-05-01

    Full Text Available Abstract Background Until recently the Chittagong Hill tracts have been hyperendemic for malaria. A past cross-sectional RDT based survey in 2007 recorded rates of approximately 15%. This study was designed to understand the present epidemiology of malaria in this region, to monitor and facilitate the uptake of malaria intervention activities of the national malaria programme and to serve as an area for developing new and innovative control strategies for malaria. Methods This research field area was established in two rural unions of Bandarban District of Bangladesh north of Bandarban city, which are known to be endemic for malaria due to Plasmodium falciparum. The project included the following elements: a a demographic surveillance system including an initial census with updates every four months, b periodic surveys of knowledge attitude and practice, c a geographic information system, d weekly active and continuous passive surveillance for malaria infections using smears, rapid tests and PCR, f monthly mosquito surveillance, and e daily weather measures. The programme included both traditional and molecular methods for detecting malaria as well as lab methods for speciating mosquitoes and detecting mosquitoes infected with sporozoites. Results The demographic surveillance enumerated and mapped 20,563 people, 75% of which were tribal non-Bengali. The monthly mosquito surveys identified 22 Anopheles species, eight of which were positive by circumsporozoite ELISA. The annual rate of malaria was close to 1% with 85% of cases in the rainy months of May-October. Definitive clustering identified in the low transmission season persisted during the high transmission season. Conclusion This demographically and geographically defined area, near to the Myanmar border, which is also hypoendemic for malaria, will be useful for future studies of the epidemiology of malaria and for evaluation of strategies for malaria control including new drugs and

  18. Surface functionalization of SPR chip for specific molecular interaction analysis under flow condition

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2017-03-01

    Full Text Available Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance (SPR sensors. In this paper, we report a method circulating the dopamine aqueous solution to coat polydopamine film on sensing surface for surface functionalization of SPR chip. The polydopamine film with available thickness can be easily prepared by controlling the circulation time and the biorecognition elements can be immobilized on the polydopamine film for specific molecular interaction analysis. These operations are all performed under flow condition in the fluidic system, and have the advantages of easy implementation, less time consuming, and low cost, because the reagents and devices used in the operations are routinely applied in most laboratories. In this study, the specific absorption between the protein A probe immobilized on the sensing surface and human immunoglobulin G in the buffer is monitored based on this surface functionalization strategy to demonstrated its feasibility for SPR biosensing applications.

  19. Structure of solvent-free grafted nanoparticles: Molecular dynamics and density-functional theory

    KAUST Repository

    Chremos, Alexandros

    2011-01-01

    The structure of solvent-free oligomer-grafted nanoparticles has been investigated using molecular dynamics simulations and density-functional theory. At low temperatures and moderate to high oligomer lengths, the qualitative features of the core particle pair probability, structure factor, and the oligomer brush configuration obtained from the simulations can be explained by a density-functional theory that incorporates the configurational entropy of the space-filling oligomers. In particular, the structure factor at small wave numbers attains a value much smaller than the corresponding hard-sphere suspension, the first peak of the pair distribution function is enhanced due to entropic attractions among the particles, and the oligomer brush expands with decreasing particle volume fraction to fill the interstitial space. At higher temperatures, the simulations reveal effects that differ from the theory and are likely caused by steric repulsions of the expanded corona chains. © 2011 American Institute of Physics.

  20. LAMININS IN COLORECTAL CANCER: EXPRESSION, FUNCTION, PROGNOSTIC POWER AND MOLECULAR MECHANISMS

    Directory of Open Access Journals (Sweden)

    S. A. Rodin

    2017-01-01

    Full Text Available Extracellular matrix (ECM proteins are a major component of the tumor stroma. Laminins emerge as one of the main families of ECM proteins with signaling properties. Apart from the structural function, laminins and products of their degradation affect survival and differentiation of cancer cells, motility of cancer and stromal cells, angiogenesis, invasion into distant organs, and other aspects of cancer development. Here, we discus expression of laminins in colorectal cancer (CRC, studying of laminin functions in in vitro and in vivo models of CRC, and using laminins as prognostic markers of CRC. Recently, we have reported a new approach to assessing prognostic power using classifiers constructed from sets of laminin genes. The method allows for accurate prognosis of CRC and provides additional information that may suggest possible molecular mechanisms of laminin function in CRC progression.

  1. Watching proteins function with picosecond X-ray crystallography and molecular dynamics simulations.

    Science.gov (United States)

    Anfinrud, Philip

    2006-03-01

    Time-resolved electron density maps of myoglobin, a ligand-binding heme protein, have been stitched together into movies that unveil with molecular dynamics (MD) calculations and picosecond time-resolved X-ray structures provides single-molecule insights into mechanisms of protein function. Ensemble-averaged MD simulations of the L29F mutant of myoglobin following ligand dissociation reproduce the direction, amplitude, and timescales of crystallographically-determined structural changes. This close agreement with experiments at comparable resolution in space and time validates the individual MD trajectories, which identify and structurally characterize a conformational switch that directs dissociated ligands to one of two nearby protein cavities. This unique combination of simulation and experiment unveils functional protein motions and illustrates at an atomic level relationships among protein structure, dynamics, and function. In collaboration with Friedrich Schotte and Gerhard Hummer, NIH.

  2. Improvement of a new rotation function for molecular replacement by designing new scoring functions and dynamic correlation coefficient

    International Nuclear Information System (INIS)

    Fan, Jiang; Wei, Ding

    2010-01-01

    A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function more robust and independent of a specific set of weights for scoring and ranking. The previously described new rotation function calculates the rotation function of molecular replacement by matching the search model directly with the Patterson vector map. The signal-to-noise ratio for the correct match was increased by averaging all the matching peaks. Several matching scores were employed to evaluate the goodness of matching. These matching scores were then combined into a single total score by optimizing a set of weights using the linear regression method. It was found that there exists an optimal set of weights that can be applied to the global rotation search and the correct solution can be ranked in the top 100 or less. However, this set of optimal weights in general is dependent on the search models and the crystal structures with different space groups and cell parameters. In this work, we try to solve this problem by designing a dynamic correlation coefficient. It is shown that the dynamic correlation coefficient works for a variety of space groups and cell parameters in the global search of rotation function. We also introduce two new matching scores: relative entropy and mean-square-residues. Last but not least, we discussed a valid method for the optimization of the adjustable parameters for matching vectors. (condensed matter: structure, thermal and mechanical properties)

  3. Theory for site-site pair distribution functions of molecular fluids. II. Approximations for the Percus--Yevick site-site direct correlation functions

    International Nuclear Information System (INIS)

    Johnson, E.

    1977-01-01

    A theory for site-site pair distribution functions of molecular fluids is derived from the Ornstein-Zernike equation. Atom-atom pair distribution functions of this theory which were obtained by using different approximations for the Percus-Yevick site-site direct correlation functions are compared

  4. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  5. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  6. Childhood malaria: mothers' perception and treatment- seeking ...

    African Journals Online (AJOL)

    major strategies for reducing the burden of malaria, therefore ... children. The incidence of history of fever, indicative of malaria in children of the respondents within one ... interventions for the control of childhood malaria. ..... Yellow eyes. 20.

  7. Choosing a Drug to Prevent Malaria

    Science.gov (United States)

    ... Malaria About Malaria FAQs Fast Facts Disease Biology Ecology Human Factors Sickle Cell Mosquitoes Parasites Where Malaria ... medicines, also consider the possibility of drug-drug interactions with other medicines that the person might be ...

  8. Determination of liquid's molecular interference function based on X-ray diffraction and dual-energy CT in security screening

    International Nuclear Information System (INIS)

    Zhang, Li; YangDai, Tianyi

    2016-01-01

    A method for deriving the molecular interference function (MIF) of an unknown liquid for security screening is presented. Based on the effective atomic number reconstructed from dual-energy computed tomography (CT), equivalent molecular formula of the liquid is estimated. After a series of optimizations, the MIF and a new effective atomic number are finally obtained from the X-ray diffraction (XRD) profile. The proposed method generates more accurate results with less sensitivity to the noise and data deficiency of the XRD profile. - Highlights: • EDXRD combined with dual-energy CT has been utilized for deriving the molecular interference function of an unknown liquid. • The liquid's equivalent molecular formula is estimated based on the effective atomic number reconstructed from dual-energy CT. • The proposed method provides two ways to estimate the molecular interference function: the simplified way and accurate way. • A new effective atomic number of the liquid could be obtained.

  9. Partition functions. I. Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    Science.gov (United States)

    Popovas, A.; Jørgensen, U. G.

    2016-11-01

    Context. Hydrogen is the most abundant molecule in the Universe. Its thermodynamic quantities dominate the physical conditions in molecular clouds, protoplanetary disks, etc. It is also of high interest in plasma physics. Therefore thermodynamic data for molecular hydrogen have to be as accurate as possible in a wide temperature range. Aims: We here rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods: Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H2. Both equilibrium and normal hydrogen was taken into consideration. Results: Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20 000 K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Conclusions: For most of the relevant astrophysical cases it is strongly advised to avoid using simplifications, such as a harmonic oscillator and rigid rotor or ad hoc summation limits of the eigenstates to estimate accurate partition functions and to be particularly careful when

  10. 99m-Tc-aprotinin; a low molecular weight protein for the study of renal function

    International Nuclear Information System (INIS)

    Bianchi, C.; Donadio, C.; Tramonti, G.; Lorusso, P.; Bellitto, L.; Lunghi, F.

    1982-01-01

    Aprotinin (A), a low molecular weight polypeptide (6500 daltons), is a protease inhibitor which is electively accumulated in the kidney of animals. If labelled with Tcsup(99m), A is an excellent agent for renal imaging. Pharmacokinetics of A-Tcsup(99m) was studied in 53 renal patients with different degrees of renal impairment. In patients with normal or slightly impaired renal function the plasma cl of A-Tcsup(99m) was lower than the GFR (mean ratio plasma cl A-Tcsup(99m)/GFR = 0.68+-0.22 SD). In patients with renal failure, the plasma cl exceeded the GFR (mean ratio 3.35). The apparent distribution volume of A-Tcsup(99m) (percent of body weight) was 15.4+-2.5 SD. A-Tcsup(99m) was markedly and rapidly accumulated in the kidneys. In patients with unilateral kidney disease the accumulation curve of the affected kidney was flatter than that of the contralateral kidney. In 4 of these patients the functional difference between the two kidneys as given by renal accumulation of A-Tcsup(99m) (2 hrs after injection) was lower than that of GFR. Urinary excretion of radioactivity in the first 2 hrs after i.v. injection of A-Tcsup(99m) was negligible (2.4+-1.6 SD percent of the dose). Conclusions: Labelled aprotinin is promising for the study of renal handling of low molecular weight proteins and for the measurement of unilateral renal function. (Author)

  11. Revealing molecular mechanisms by integrating high-dimensional functional screens with protein interaction data.

    Directory of Open Access Journals (Sweden)

    Angela Simeone

    2014-09-01

    Full Text Available Functional genomics screens using multi-parametric assays are powerful approaches for identifying genes involved in particular cellular processes. However, they suffer from problems like noise, and often provide little insight into molecular mechanisms. A bottleneck for addressing these issues is the lack of computational methods for the systematic integration of multi-parametric phenotypic datasets with molecular interactions. Here, we present Integrative Multi Profile Analysis of Cellular Traits (IMPACT. The main goal of IMPACT is to identify the most consistent phenotypic profile among interacting genes. This approach utilizes two types of external information: sets of related genes (IMPACT-sets and network information (IMPACT-modules. Based on the notion that interacting genes are more likely to be involved in similar functions than non-interacting genes, this data is used as a prior to inform the filtering of phenotypic profiles that are similar among interacting genes. IMPACT-sets selects the most frequent profile among a set of related genes. IMPACT-modules identifies sub-networks containing genes with similar phenotype profiles. The statistical significance of these selections is subsequently quantified via permutations of the data. IMPACT (1 handles multiple profiles per gene, (2 rescues genes with weak phenotypes and (3 accounts for multiple biases e.g. caused by the network topology. Application to a genome-wide RNAi screen on endocytosis showed that IMPACT improved the recovery of known endocytosis-related genes, decreased off-target effects, and detected consistent phenotypes. Those findings were confirmed by rescreening 468 genes. Additionally we validated an unexpected influence of the IGF-receptor on EGF-endocytosis. IMPACT facilitates the selection of high-quality phenotypic profiles using different types of independent information, thereby supporting the molecular interpretation of functional screens.

  12. Malaria and protective behaviours: is there a malaria trap?

    Science.gov (United States)

    Berthélemy, Jean-Claude; Thuilliez, Josselin; Doumbo, Ogobara; Gaudart, Jean

    2013-06-13

    In spite of massive efforts to generalize efficient prevention, such as insecticide-treated mosquito nets (ITN) or long-lasting insecticidal nets (LLINs), malaria remains prevalent in many countries and ITN/LLINs are still only used to a limited extent. This study proposes a new model for malaria economic analysis by combining economic epidemiology tools with the literature on poverty traps. A theoretical model of rational protective behaviour in response to malaria is designed, which includes endogenous externalities and disease characteristics. Survey data available for Uganda provide empirical support to the theory of prevalence-elastic protection behaviours, once endogeneity issues related to epidemiology and poverty are solved. Two important conclusions emerge from the model. First, agents increase their protective behaviour when malaria is more prevalent in a society. This is consistent with the literature on "prevalence-elastic behaviour". Second, a 'malaria trap' defined as the result of malaria reinforcing poverty while poverty reduces the ability to deal with malaria can theoretically exist and the conditions of existence of the malaria trap are identified. These results suggest the possible existence of malaria traps, which provides policy implications. Notably, providing ITN/LLINs at subsidized prices is not sufficient. To be efficient an ITN/LLINs dissemination campaigns should include incentive of the very poor for using ITN/LLINs.

  13. Long-term oil contamination alters the molecular ecological networks of soil microbial functional genes

    Directory of Open Access Journals (Sweden)

    Yuting eLiang

    2016-02-01

    Full Text Available With knowledge on microbial composition and diversity, investigation of within-community interactions is a further step to elucidate microbial ecological functions, such as the biodegradation of hazardous contaminants. In this work, microbial functional molecular ecological networks were studied in both contaminated and uncontaminated soils to determine the possible influences of oil contamination on microbial interactions and potential functions. Soil samples were obtained from an oil-exploring site located in South China, and the microbial functional genes were analyzed with GeoChip, a high-throughput functional microarray. By building random networks based on null model, we demonstrated that overall network structures and properties were significantly different between contaminated and uncontaminated soils (P < 0.001. Network connectivity, module numbers, and modularity were all reduced with contamination. Moreover, the topological roles of the genes (module hub and connectors were altered with oil contamination. Subnetworks of genes involved in alkane and polycyclic aromatic hydrocarbon degradation were also constructed. Negative co-occurrence patterns prevailed among functional genes, thereby indicating probable competition relationships. The potential keystone genes, defined as either hubs or genes with highest connectivities in the network, were further identified. The network constructed in this study predicted the potential effects of anthropogenic contamination on microbial community co-occurrence interactions.

  14. Picosecond Transient Photoconductivity in Functionalized Pentacene Molecular Crystals Probed by Terahertz Pulse Spectroscopy

    Science.gov (United States)

    Hegmann, F. A.; Tykwinski, R. R.; Lui, K. P.; Bullock, J. E.; Anthony, J. E.

    2002-11-01

    We have measured transient photoconductivity in functionalized pentacene molecular crystals using ultrafast optical pump-terahertz probe techniques. The single crystal samples were excited using 800nm, 100fs pulses, and the change in transmission of time-delayed, subpicosecond terahertz pulses was used to probe the photoconducting state over a temperature range from 10 to 300K. A subpicosecond rise in photoconductivity is observed, suggesting that mobile carriers are a primary photoexcitation. At times longer than 4ps, a power-law decay is observed consistent with dispersive transport.

  15. Possible Function of Molecular Chaperones in Diseases Caused by Propagating Amyloid Aggregates

    Directory of Open Access Journals (Sweden)

    Vladimir F. Lazarev

    2017-05-01

    Full Text Available The vast majority of neurodegenerative pathologies stem from the formation of toxic oligomers and aggregates composed of wrongly folded proteins. These protein complexes can be released from pathogenic cells and enthralled by other cells, causing the formation of new aggregates in a prion-like manner. By this mechanism, migrating complexes can transmit a disorder to distant regions of the brain and promote gradually transmitting degenerative processes. Molecular chaperones can counteract the toxicity of misfolded proteins. In this review, we discuss recent data on the possible cytoprotective functions of chaperones in horizontally transmitting neurological disorders.

  16. Layered interfaces between immiscible liquids studied by density-functional theory and molecular-dynamics simulations.

    Science.gov (United States)

    Geysermans, P; Elyeznasni, N; Russier, V

    2005-11-22

    We present a study of the structure in the interface between two immiscible liquids by density-functional theory and molecular-dynamics calculations. The liquids are modeled by Lennard-Jones potentials, which achieve immiscibility by suppressing the attractive interaction between unlike particles. The density profiles of the liquids display oscillations only in a limited part of the simple liquid-phase diagram (rho,T). When approaching the liquid-vapor coexistence, a significant depletion appears while the layering behavior of the density profile vanishes. By analogy with the liquid-vapor interface and the analysis of the adsorption this behavior is suggested to be strongly related to the drying transition.

  17. Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores

    International Nuclear Information System (INIS)

    Neimark, Alexander V; Ravikovitch, Peter I; Vishnyakov, Aleksey

    2003-01-01

    With the example of the capillary condensation of Lennard-Jones fluid in nanopores ranging from 1 to 10 nm, we show that the non-local density functional theory (NLDFT) with properly chosen parameters of intermolecular interactions bridges the scale gap from molecular simulations to macroscopic thermodynamics. On the one hand, NLDFT correctly approximates the results of Monte Carlo simulations (shift of vapour-liquid equilibrium, spinodals, density profiles, adsorption isotherms) for pores wider than about 2 nm. On the other hand, NLDFT smoothly merges (above 7-10 nm) with the Derjaguin-Broekhoff-de Boer equations which represent augmented Laplace-Kelvin equations of capillary condensation and desorption

  18. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Collingwood, S.A.; Ingolfsson, H.I.

    2010-01-01

    with collective physical properties (e.g. thickness, intrinsic monolayer curvature or elastic moduli). Studies in physico-chemical model systems have demonstrated that changes in bilayer physical properties can regulate membrane protein function by altering the energetic cost of the bilayer deformation associated...... with a protein conformational change. This type of regulation is well characterized, and its mechanistic elucidation is an interdisciplinary field bordering on physics, chemistry and biology. Changes in lipid composition that alter bilayer physical properties (including cholesterol, polyunsaturated fatty acids...... channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli....

  19. Parasite threshold associated with clinical malaria in areas of different transmission intensities in north eastern Tanzania

    DEFF Research Database (Denmark)

    Mmbando, Bruno P; Lusingu, John P; Vestergaard, Lasse S

    2009-01-01

    BACKGROUND: In Sub-Sahara Africa, malaria due to Plasmodium falciparum is the main cause of ill health. Evaluation of malaria interventions, such as drugs and vaccines depends on clinical definition of the disease, which is still a challenge due to lack of distinct malaria specific clinical...... features. Parasite threshold is used in definition of clinical malaria in evaluation of interventions. This however, is likely to be influenced by other factors such as transmission intensity as well as individual level of immunity against malaria. METHODS: This paper describes step function and dose...... response model with threshold parameter as a tool for estimation of parasite threshold for onset of malaria fever in highlands (low transmission) and lowlands (high transmission intensity) strata. These models were fitted using logistic regression stratified by strata and age groups (0-1, 2-3, 4-5, 6...

  20. Plasmodium vivax Malaria in Cambodia

    Science.gov (United States)

    Siv, Sovannaroth; Roca-Feltrer, Arantxa; Vinjamuri, Seshu Babu; Bouth, Denis Mey; Lek, Dysoley; Rashid, Mohammad Abdur; By, Ngau Peng; Popovici, Jean; Huy, Rekol; Menard, Didier

    2016-01-01

    The Cambodian National Strategic Plan for Elimination of Malaria aims to move step by step toward elimination of malaria across Cambodia with an initial focus on Plasmodium falciparum malaria before achieving elimination of all forms of malaria, including Plasmodium vivax in 2025. The emergence of artemisinin-resistant P. falciparum in western Cambodia over the last decade has drawn global attention to support the ultimate goal of P. falciparum elimination, whereas the control of P. vivax lags much behind, making the 2025 target gradually less achievable unless greater attention is given to P. vivax elimination in the country. The following review presents in detail the past and current situation regarding P. vivax malaria, activities of the National Malaria Control Program, and interventional measures applied. Constraints and obstacles that can jeopardize our efforts to eliminate this parasite species are discussed. PMID:27708187

  1. Molecular Dynamic Simulation Insights into the Normal State and Restoration of p53 Function

    Directory of Open Access Journals (Sweden)

    Jianzhong Chen

    2012-08-01

    Full Text Available As a tumor suppressor protein, p53 plays a crucial role in the cell cycle and in cancer prevention. Almost 50 percent of all human malignant tumors are closely related to a deletion or mutation in p53. The activity of p53 is inhibited by over-active celluar antagonists, especially by the over-expression of the negative regulators MDM2 and MDMX. Protein-protein interactions, or post-translational modifications of the C-terminal negative regulatory domain of p53, also regulate its tumor suppressor activity. Restoration of p53 function through peptide and small molecular inhibitors has become a promising strategy for novel anti-cancer drug design and development. Molecular dynamics simulations have been extensively applied to investigate the conformation changes of p53 induced by protein-protein interactions and protein-ligand interactions, including peptide and small molecular inhibitors. This review focuses on the latest MD simulation research, to provide an overview of the current understanding of interactions between p53 and its partners at an atomic level.

  2. Molecular acidity: An accurate description with information-theoretic approach in density functional reactivity theory.

    Science.gov (United States)

    Cao, Xiaofang; Rong, Chunying; Zhong, Aiguo; Lu, Tian; Liu, Shubin

    2018-01-15

    Molecular acidity is one of the important physiochemical properties of a molecular system, yet its accurate calculation and prediction are still an unresolved problem in the literature. In this work, we propose to make use of the quantities from the information-theoretic (IT) approach in density functional reactivity theory and provide an accurate description of molecular acidity from a completely new perspective. To illustrate our point, five different categories of acidic series, singly and doubly substituted benzoic acids, singly substituted benzenesulfinic acids, benzeneseleninic acids, phenols, and alkyl carboxylic acids, have been thoroughly examined. We show that using IT quantities such as Shannon entropy, Fisher information, Ghosh-Berkowitz-Parr entropy, information gain, Onicescu information energy, and relative Rényi entropy, one is able to simultaneously predict experimental pKa values of these different categories of compounds. Because of the universality of the quantities employed in this work, which are all density dependent, our approach should be general and be applicable to other systems as well. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. A Protoplast Transient Expression System to Enable Molecular, Cellular, and Functional Studies in Phalaenopsis orchids

    Directory of Open Access Journals (Sweden)

    Hsiang-Yin Lin

    2018-06-01

    Full Text Available The enigmatic nature of the specialized developmental programs of orchids has fascinated plant biologists for centuries. The recent releases of orchid genomes indicate that orchids possess new gene families and family expansions and contractions to regulate a diverse suite of developmental processes. However, the extremely long orchid life cycle and lack of molecular toolkit have hampered the advancement of orchid biology research. To overcome the technical difficulties and establish a platform for rapid gene regulation studies, in this study, we developed an efficient protoplast isolation and transient expression system for Phalaenopsis aphrodite. This protocol was successfully applied to protein subcellular localization and protein–protein interaction studies. Moreover, it was confirmed to be useful in delineating the PaE2F/PaDP-dependent cell cycle pathway and studying auxin response. In summary, the established orchid protoplast transient expression system provides a means to functionally characterize orchid genes at the molecular level allowing assessment of transcriptome responses to transgene expression and widening the scope of molecular studies in orchids.

  4. NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops

    Directory of Open Access Journals (Sweden)

    Dagmara Podzimska-Sroka

    2015-07-01

    Full Text Available Within the last decade, NAC transcription factors have been shown to play essential roles in senescence, which is the focus of this review. Transcriptome analyses associate approximately one third of Arabidopsis NAC genes and many crop NAC genes with senescence, thereby implicating NAC genes as important regulators of the senescence process. The consensus DNA binding site of the NAC domain is used to predict NAC target genes, and protein interaction sites can be predicted for the intrinsically disordered transcription regulatory domains of NAC proteins. The molecular characteristics of these domains determine the interactions in gene regulatory networks. Emerging local NAC-centered gene regulatory networks reveal complex molecular mechanisms of stress- and hormone-regulated senescence and basic physiological steps of the senescence process. For example, through molecular interactions involving the hormone abscisic acid, Arabidopsis NAP promotes chlorophyll degradation, a hallmark of senescence. Furthermore, studies of the functional rice ortholog, OsNAP, suggest that NAC genes can be targeted to obtain specific changes in lifespan control and nutrient remobilization in crop plants. This is also exemplified by the wheat NAM1 genes which promote senescence and increase grain zinc, iron, and protein content. Thus, NAC genes are promising targets for fine-tuning senescence for increased yield and quality.

  5. Malaria vector species in Colombia: a review

    Directory of Open Access Journals (Sweden)

    James Montoya-Lerma

    2011-08-01

    Full Text Available Here we present a comprehensive review of the literature on the vectorial importance of the major Anopheles malaria vectors in Colombia. We provide basic information on the geographical distribution, altitudinal range, immature habitats, adult behaviour, feeding preferences and anthropophily, endophily and infectivity rates. We additionally review information on the life cycle, longevity and population fluctuation of Colombian Anopheles species. Emphasis was placed on the primary vectors that have been epidemiologically incriminated in malaria transmission: Anopheles darlingi, Anopheles albimanus and Anopheles nuneztovari. The role of a selection of local, regional or secondary vectors (e.g., Anopheles pseudopunctipennis and Anopheles neivai is also discussed. We highlight the importance of combining biological, morphological and molecular data for the correct taxonomical determination of a given species, particularly for members of the species complexes. We likewise emphasise the importance of studying the bionomics of primary and secondary vectors along with an examination of the local conditions affecting the transmission of malaria. The presence and spread of the major vectors and the emergence of secondary species capable of transmitting human Plasmodia are of great interest. When selecting control measures, the anopheline diversity in the region must be considered. Variation in macroclimate conditions over a species' geographical range must be well understood and targeted to plan effective control measures based on the population dynamics of the local Anopheles species.

  6. Impact of malaria interventions on child mortality in endemic African settings: comparison and alignment between LiST and Spectrum-Malaria model.

    Science.gov (United States)

    Korenromp, Eline; Hamilton, Matthew; Sanders, Rachel; Mahiané, Guy; Briët, Olivier J T; Smith, Thomas; Winfrey, William; Walker, Neff; Stover, John

    2017-11-07

    In malaria-endemic countries, malaria prevention and treatment are critical for child health. In the context of intervention scale-up and rapid changes in endemicity, projections of intervention impact and optimized program scale-up strategies need to take into account the consequent dynamics of transmission and immunity. The new Spectrum-Malaria program planning tool was used to project health impacts of Insecticide-Treated mosquito Nets (ITNs) and effective management of uncomplicated malaria cases (CMU), among other interventions, on malaria infection prevalence, case incidence and mortality in children 0-4 years, 5-14 years of age and adults. Spectrum-Malaria uses statistical models fitted to simulations of the dynamic effects of increasing intervention coverage on these burdens as a function of baseline malaria endemicity, seasonality in transmission and malaria intervention coverage levels (estimated for years 2000 to 2015 by the World Health Organization and Malaria Atlas Project). Spectrum-Malaria projections of proportional reductions in under-five malaria mortality were compared with those of the Lives Saved Tool (LiST) for the Democratic Republic of the Congo and Zambia, for given (standardized) scenarios of ITN and/or CMU scale-up over 2016-2030. Proportional mortality reductions over the first two years following scale-up of ITNs from near-zero baselines to moderately higher coverages align well between LiST and Spectrum-Malaria -as expected since both models were fitted to cluster-randomized ITN trials in moderate-to-high-endemic settings with 2-year durations. For further scale-up from moderately high ITN coverage to near-universal coverage (as currently relevant for strategic planning for many countries), Spectrum-Malaria predicts smaller additional ITN impacts than LiST, reflecting progressive saturation. For CMU, especially in the longer term (over 2022-2030) and for lower-endemic settings (like Zambia), Spectrum-Malaria projects larger

  7. Cerebral malaria: susceptibility weighted MRI

    Directory of Open Access Journals (Sweden)

    Vinit Baliyan

    2015-03-01

    Full Text Available Cerebral malaria is one of the fatal complications of Plasmodium falciparum infection. Pathogenesis involves cerebral microangiopathy related to microvascular plugging by infected red blood cells. Conventional imaging with MRI and CT do not reveal anything specific in case of cerebral malaria. Susceptibility weighted imaging, a recent advance in the MRI, is very sensitive to microbleeds related to microangiopathy. Histopathological studies in cerebral malaria have revealed microbleeds in brain parenchyma secondary to microangiopathy. Susceptibility weighted imaging, being exquisitely sensitive to microbleeds may provide additional information and improve the diagnostic accuracy of MRI in cerebral malaria.

  8. Error correction in multi-fidelity molecular dynamics simulations using functional uncertainty quantification

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, Samuel Temple; Strachan, Alejandro, E-mail: strachan@purdue.edu

    2017-04-01

    We use functional, Fréchet, derivatives to quantify how thermodynamic outputs of a molecular dynamics (MD) simulation depend on the potential used to compute atomic interactions. Our approach quantifies the sensitivity of the quantities of interest with respect to the input functions as opposed to its parameters as is done in typical uncertainty quantification methods. We show that the functional sensitivity of the average potential energy and pressure in isothermal, isochoric MD simulations using Lennard–Jones two-body interactions can be used to accurately predict those properties for other interatomic potentials (with different functional forms) without re-running the simulations. This is demonstrated under three different thermodynamic conditions, namely a crystal at room temperature, a liquid at ambient pressure, and a high pressure liquid. The method provides accurate predictions as long as the change in potential can be reasonably described to first order and does not significantly affect the region in phase space explored by the simulation. The functional uncertainty quantification approach can be used to estimate the uncertainties associated with constitutive models used in the simulation and to correct predictions if a more accurate representation becomes available.

  9. Range-separated density-functional theory for molecular excitation energies

    International Nuclear Information System (INIS)

    Rebolini, E.

    2014-01-01

    Linear-response time-dependent density-functional theory (TDDFT) is nowadays a method of choice to compute molecular excitation energies. However, within the usual adiabatic semi-local approximations, it is not able to describe properly Rydberg, charge-transfer or multiple excitations. Range separation of the electronic interaction allows one to mix rigorously density-functional methods at short range and wave function or Green's function methods at long range. When applied to the exchange functional, it already corrects most of these deficiencies but multiple excitations remain absent as they need a frequency-dependent kernel. In this thesis, the effects of range separation are first assessed on the excitation energies of a partially-interacting system in an analytic and numerical study in order to provide guidelines for future developments of range-separated methods for excitation energy calculations. It is then applied on the exchange and correlation TDDFT kernels in a single-determinant approximation in which the long-range part of the correlation kernel vanishes. A long-range frequency-dependent second-order correlation kernel is then derived from the Bethe-Salpeter equation and added perturbatively to the range-separated TDDFT kernel in order to take into account the effects of double excitations. (author)

  10. Molecular Monolayers for Electrical Passivation and Functionalization of Silicon-Based Solar Energy Devices.

    Science.gov (United States)

    Veerbeek, Janneke; Firet, Nienke J; Vijselaar, Wouter; Elbersen, Rick; Gardeniers, Han; Huskens, Jurriaan

    2017-01-11

    Silicon-based solar fuel devices require passivation for optimal performance yet at the same time need functionalization with (photo)catalysts for efficient solar fuel production. Here, we use molecular monolayers to enable electrical passivation and simultaneous functionalization of silicon-based solar cells. Organic monolayers were coupled to silicon surfaces by hydrosilylation in order to avoid an insulating silicon oxide layer at the surface. Monolayers of 1-tetradecyne were shown to passivate silicon micropillar-based solar cells with radial junctions, by which the efficiency increased from 8.7% to 9.9% for n + /p junctions and from 7.8% to 8.8% for p + /n junctions. This electrical passivation of the surface, most likely by removal of dangling bonds, is reflected in a higher shunt resistance in the J-V measurements. Monolayers of 1,8-nonadiyne were still reactive for click chemistry with a model catalyst, thus enabling simultaneous passivation and future catalyst coupling.

  11. The molecular chaperone function of α-crystallin is impaired by UV photolysis

    International Nuclear Information System (INIS)

    Borkman, R.F.; McLaughlin, J.

    1995-01-01

    Buffer solutions of the lens protein γ-crystallin and the enzymes aldolase and liver alcohol dehydrogenase became turbid and formed solid precipitate upon exposure to an elevated temperature of 63 o C or to UV radiation at 308 nm. When α-crystallin was added to the protein solutions in stoichiometric amounts, heat or UV irradiation did not cause turbidity, or turbidity developed much less rapidly than in the absence of α-crystallin. Hence, normal α-crystallin functioned as a ''molecular chaperone,'' providing protection against both UV and heat-induced protein aggregation. When α-crystallin was preirradiated with UV at 308 nm, its ability to function as a chaperone vis-a-vis both UV and heat-induced aggregation was significantly impaired, but only at relatively high UV doss. (author)

  12. Super-Resolution Molecular and Functional Imaging of Nanoscale Architectures in Life and Materials Science

    KAUST Repository

    Habuchi, Satoshi

    2014-06-12

    Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.

  13. Explicit polarization (X-Pol) potential using ab initio molecular orbital theory and density functional theory.

    Science.gov (United States)

    Song, Lingchun; Han, Jaebeom; Lin, Yen-lin; Xie, Wangshen; Gao, Jiali

    2009-10-29

    The explicit polarization (X-Pol) method has been examined using ab initio molecular orbital theory and density functional theory. The X-Pol potential was designed to provide a novel theoretical framework for developing next-generation force fields for biomolecular simulations. Importantly, the X-Pol potential is a general method, which can be employed with any level of electronic structure theory. The present study illustrates the implementation of the X-Pol method using ab initio Hartree-Fock theory and hybrid density functional theory. The computational results are illustrated by considering a set of bimolecular complexes of small organic molecules and ions with water. The computed interaction energies and hydrogen bond geometries are in good accord with CCSD(T) calculations and B3LYP/aug-cc-pVDZ optimizations.

  14. Altered regulation of Akt signaling with murine cerebral malaria, effects on long-term neuro-cognitive function, restoration with lithium treatment.

    Directory of Open Access Journals (Sweden)

    Minxian Dai

    Full Text Available Neurological and cognitive impairment persist in more than 20% of cerebral malaria (CM patients long after successful anti-parasitic treatment. We recently reported that long term memory and motor coordination deficits are also present in our experimental cerebral malaria model (ECM. We also documented, in a murine model, a lack of obvious pathology or inflammation after parasite elimination, suggesting that the long-term negative neurological outcomes result from potentially reversible biochemical and physiological changes in brains of ECM mice, subsequent to acute ischemic and inflammatory processes. Here, we demonstrate for the first time that acute ECM results in significantly reduced activation of protein kinase B (PKB or Akt leading to decreased Akt phosphorylation and inhibition of the glycogen kinase synthase (GSK3β in the brains of mice infected with Plasmodium berghei ANKA (PbA compared to uninfected controls and to mice infected with the non-neurotrophic P. berghei NK65 (PbN. Though Akt activation improved to control levels after chloroquine treatment in PbA-infected mice, the addition of lithium chloride, a compound which inhibits GSK3β activity and stimulates Akt activation, induced a modest, but significant activation of Akt in the brains of infected mice when compared to uninfected controls treated with chloroquine with and without lithium. In addition, lithium significantly reversed the long-term spatial and visual memory impairment as well as the motor coordination deficits which persisted after successful anti-parasitic treatment. GSK3β inhibition was significantly increased after chloroquine treatment, both in lithium and non-lithium treated PbA-infected mice. These data indicate that acute ECM is associated with abnormalities in cell survival pathways that result in neuronal damage. Regulation of Akt/GSK3β with lithium reduces neuronal degeneration and may have neuroprotective effects in ECM. Aberrant regulation of Akt

  15. The appropriateness of density-functional theory for the calculation of molecular electronics properties.

    Science.gov (United States)

    Reimers, Jeffrey R; Cai, Zheng-Li; Bilić, Ante; Hush, Noel S

    2003-12-01

    As molecular electronics advances, efficient and reliable computation procedures are required for the simulation of the atomic structures of actual devices, as well as for the prediction of their electronic properties. Density-functional theory (DFT) has had widespread success throughout chemistry and solid-state physics, and it offers the possibility of fulfilling these roles. In its modern form it is an empirically parameterized approach that cannot be extended toward exact solutions in a prescribed way, ab initio. Thus, it is essential that the weaknesses of the method be identified and likely shortcomings anticipated in advance. We consider four known systematic failures of modern DFT: dispersion, charge transfer, extended pi conjugation, and bond cleavage. Their ramifications for molecular electronics applications are outlined and we suggest that great care is required when using modern DFT to partition charge flow across electrode-molecule junctions, screen applied electric fields, position molecular orbitals with respect to electrode Fermi energies, and in evaluating the distance dependence of through-molecule conductivity. The causes of these difficulties are traced to errors inherent in the types of density functionals in common use, associated with their inability to treat very long-range electron correlation effects. Heuristic enhancements of modern DFT designed to eliminate individual problems are outlined, as are three new schemes that each represent significant departures from modern DFT implementations designed to provide a priori improvements in at least one and possible all problem areas. Finally, fully semiempirical schemes based on both Hartree-Fock and Kohn-Sham theory are described that, in the short term, offer the means to avoid the inherent problems of modern DFT and, in the long term, offer competitive accuracy at dramatically reduced computational costs.

  16. Cdc42 and Tks5: a minimal and universal molecular signature for functional invadosomes.

    Science.gov (United States)

    Di Martino, Julie; Paysan, Lisa; Gest, Caroline; Lagrée, Valérie; Juin, Amélie; Saltel, Frédéric; Moreau, Violaine

    2014-01-01

    Invadosomes are actin-based structures involved in extracellular-matrix degradation. Invadosomes, either known as podosomes or invadopodia, are found in an increasing number of cell types. Moreover, their overall organization and molecular composition may vary from one cell type to the other. Some are constitutive such as podosomes in hematopoietic cells whereas others are inducible. However, they share the same feature, their ability to interact and to degrade the extracellular matrix. Based on the literature and our own experiments, the aim of this study was to establish a minimal molecular definition of active invadosomes. We first highlighted that Cdc42 is the key RhoGTPase involved in invadosome formation in all described models. Using different cellular models, such as NIH-3T3, HeLa, and endothelial cells, we demonstrated that overexpression of an active form of Cdc42 is sufficient to form invadosome actin cores. Therefore, active Cdc42 must be considered not only as an inducer of filopodia, but also as an inducer of invadosomes. Depending on the expression level of Tks5, these Cdc42-dependent actin cores were endowed or not with a proteolytic activity. In fact, Tks5 overexpression rescued this activity in Tks5 low expressing cells. We thus described the adaptor protein Tks5 as a major actor of the invadosome degradation function. Surprisingly, we found that Src kinases are not always required for invadosome formation and function. These data suggest that even if Src family members are the principal kinases involved in the majority of invadosomes, it cannot be considered as a common element for all invadosome structures. We thus define a minimal and universal molecular signature of invadosome that includes Cdc42 activity and Tks5 presence in order to drive the actin machinery and the proteolytic activity of these invasive structures.

  17. Studying the Impact of Spaceflight Environment on Immune Functions Using New Molecular Diagnostics System

    Science.gov (United States)

    Cohen, Luchino

    Immune functions are altered during space flights. Latent virus reactivation, reduction in the number of immune cells, decreased cell activation and increased sensitivity of astronauts to infections following their return on Earth demonstrate that the immune system is less efficient during space flight. The causes of this immune deficiency are not fully understood and this dysfunction during long-term missions could result in the appearance of opportunistic infections or a decrease in the immuno-surveillance mechanisms that eradicate cancer cells. Therefore, the immune functions of astronauts will have to be monitored continuously during long-term missions in space, using miniature and semi-automated diagnostic systems. The objectives of this project are to study the causes of space-related immunodeficiency, to develop countermeasures to maintain an optimal immune function and to improve our capacity to detect infectious diseases during space missions through the monitoring of astronauts' immune system. In order to achieve these objectives, an Immune Function Diagnostic System (IFDS) will be designed to perform a set of immunological assays on board spacecrafts or on planet-bound bases. Through flow cytometric assays and molecular biology analyses, this diagnostic system could improve medical surveillance of astronauts and could be used to test countermeasures aimed at preventing immune deficiency during space missions. The capacity of the instrument to assess cellular fluorescence and to quantify the presence of soluble molecules in biological samples would support advanced molecular studies in space life sciences. Finally, such diagnostic system could also be used on Earth in remote areas or in mobile hospitals following natural disasters to fight against infectious diseases and other pathologies.

  18. Characterization of Angiotensin II Molecular Determinants Involved in AT1 Receptor Functional Selectivity.

    Science.gov (United States)

    Domazet, Ivana; Holleran, Brian J; Richard, Alexandra; Vandenberghe, Camille; Lavigne, Pierre; Escher, Emanuel; Leduc, Richard; Guillemette, Gaétan

    2015-06-01

    The octapeptide angiotensin II (AngII) exerts a variety of cardiovascular effects through the activation of the AngII type 1 receptor (AT1), a G protein-coupled receptor. The AT1 receptor engages and activates several signaling pathways, including heterotrimeric G proteins Gq and G12, as well as the extracellular signal-regulated kinases (ERK) 1/2 pathway. Additionally, following stimulation, βarrestin is recruited to the AT1 receptor, leading to receptor desensitization. It is increasingly recognized that specific ligands selectively bind and favor the activation of some signaling pathways over others, a concept termed ligand bias or functional selectivity. A better understanding of the molecular basis of functional selectivity may lead to the development of better therapeutics with fewer adverse effects. In the present study, we developed assays allowing the measurement of six different signaling modalities of the AT1 receptor. Using a series of AngII peptide analogs that were modified in positions 1, 4, and 8, we sought to better characterize the molecular determinants of AngII that underlie functional selectivity of the AT1 receptor in human embryonic kidney 293 cells. The results reveal that position 1 of AngII does not confer functional selectivity, whereas position 4 confers a bias toward ERK signaling over Gq signaling, and position 8 confers a bias toward βarrestin recruitment over ERK activation and Gq signaling. Interestingly, the analogs modified in position 8 were also partial agonists of the protein kinase C (PKC)-dependent ERK pathway via atypical PKC isoforms PKCζ and PKCι. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  19. Positive Selection or Free to Vary? Assessing the Functional Significance of Sequence Change Using Molecular Dynamics.

    Directory of Open Access Journals (Sweden)

    Jane R Allison

    Full Text Available Evolutionary arms races between pathogens and their hosts may be manifested as selection for rapid evolutionary change of key genes, and are sometimes detectable through sequence-level analyses. In the case of protein-coding genes, such analyses frequently predict that specific codons are under positive selection. However, detecting positive selection can be non-trivial, and false positive predictions are a common concern in such analyses. It is therefore helpful to place such predictions within a structural and functional context. Here, we focus on the p19 protein from tombusviruses. P19 is a homodimer that sequesters siRNAs, thereby preventing the host RNAi machinery from shutting down viral infection. Sequence analysis of the p19 gene is complicated by the fact that it is constrained at the sequence level by overprinting of a viral movement protein gene. Using homology modeling, in silico mutation and molecular dynamics simulations, we assess how non-synonymous changes to two residues involved in forming the dimer interface-one invariant, and one predicted to be under positive selection-impact molecular function. Interestingly, we find that both observed variation and potential variation (where a non-synonymous change to p19 would be synonymous for the overprinted movement protein does not significantly impact protein structure or RNA binding. Consequently, while several methods identify residues at the dimer interface as being under positive selection, MD results suggest they are functionally indistinguishable from a site that is free to vary. Our analyses serve as a caveat to using sequence-level analyses in isolation to detect and assess positive selection, and emphasize the importance of also accounting for how non-synonymous changes impact structure and function.

  20. Molecular Evolution of the Infrared Sensory Gene TRPA1 in Snakes and Implications for Functional Studies

    Science.gov (United States)

    Jiang, Ke; Zhang, Peng

    2011-01-01

    TRPA1 is a calcium ion channel protein recently identified as the infrared receptor in pit organ-containing snakes. Therefore, understanding the molecular evolution of TRPA1 may help to illuminate the origin of “heat vision” in snakes and reveal the molecular mechanism of infrared sensitivity for TRPA1. To this end, we sequenced the infrared sensory gene TRPA1 in 24 snake species, representing nine snake families and multiple non-snake outgroups. We found that TRPA1 is under strong positive selection in the pit-bearing snakes studied, but not in other non-pit snakes and non-snake vertebrates. As a comparison, TRPV1, a gene closely related to TRPA1, was found to be under strong purifying selection in all the species studied, with no difference in the strength of selection between pit-bearing snakes and non-pit snakes. This finding demonstrates that the adaptive evolution of TRPA1 specifically occurred within the pit-bearing snakes and may be related to the functional modification for detecting infrared radiation. In addition, by comparing the TRPA1 protein sequences, we identified 11 amino acid sites that were diverged in pit-bearing snakes but conserved in non-pit snakes and other vertebrates, 21 sites that were diverged only within pit-vipers but conserved in the remaining snakes. These specific amino acid substitutions may be potentially functional important for infrared sensing. PMID:22163322

  1. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    Science.gov (United States)

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Synthesis of Molecularly Imprinted Polymers for Amino Acid Derivates by Using Different Functional Monomers

    Directory of Open Access Journals (Sweden)

    Sonia Scorrano

    2011-03-01

    Full Text Available Fmoc-3-nitrotyrosine (Fmoc-3-NT molecularly imprinted polymers (MIPs were synthesized to understand the influence of several functional monomers on the efficiency of the molecular imprinting process. Acidic, neutral and basic functional monomers, such as acrylic acid (AA, methacrylic acid (MAA, methacrylamide (MAM, 2-vinylpyridine (2-VP, 4-vinylpyridine (4-VP, have been used to synthesize five different polymers. In this study, the MIPs were tested in batch experiments by UV-visible spectroscopy in order to evaluate their binding properties. The MIP prepared with 2-VP exhibited the highest binding affinity for Fmoc-3NT, for which Scatchard analysis the highest association constant (2.49 × 104 M−1 was obtained. Furthermore, titration experiments of Fmoc-3NT into acetonitrile solutions of 2-VP revealed a stronger bond to the template, such that a total interaction is observed. Non-imprinted polymers as control were prepared and showed no binding affinities for Fmoc-3NT. The results are indicative of the importance of ionic bonds formed between the –OH residues of the template molecule and the pyridinyl groups of the polymer matrix. In conclusion, 2-VP assists to create a cavity which allows better access to the analytes.

  3. PENELITIAN OBAT ANTI MALARIA

    Directory of Open Access Journals (Sweden)

    Emiliana Tjitra

    2012-09-01

    Full Text Available Some sensitivity tests of antimalarial drugs had been done by National Institute of Health Research and Development in collaboration with Directorate General of Communicable Disease Control and Environment Health, Naval Medical Research Unit No.2 and Faculty of Medicine University of Indonesia. In-vivo and or in-vitro Plasmodium falciparum multidrug resistance was reported from 11 provinces : Aceh, North Sumatera, Riau, Lampung, West Java, Jakarta (imported case, Central Java, East Kalimantan, South Sulawesi, East Nusa Tenggara and Irian Jaya. Only quinine had a good response for treatment of falciparum malaria resistant to multidrug. R falciparum resistant to mefloquine or halofantrine was found although it was not available in Indonesia yet. Chloroquine prophylaxis using standard dose was still effective in Tanjung Pinang and Central Java. To support the successfulness of treatment in malaria control programme, further studies on alternative antimalaria drugs is needed.

  4. Chimpanzee malaria parasites related to Plasmodium ovale in Africa.

    Directory of Open Access Journals (Sweden)

    Linda Duval

    Full Text Available Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes and gorillas (Gorilla gorilla from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes.

  5. Common variation in the ABO glycosyltransferase is associated with susceptibility to severe Plasmodium falciparum malaria.

    Science.gov (United States)

    Fry, Andrew E; Griffiths, Michael J; Auburn, Sarah; Diakite, Mahamadou; Forton, Julian T; Green, Angela; Richardson, Anna; Wilson, Jonathan; Jallow, Muminatou; Sisay-Joof, Fatou; Pinder, Margaret; Peshu, Norbert; Williams, Thomas N; Marsh, Kevin; Molyneux, Malcolm E; Taylor, Terrie E; Rockett, Kirk A; Kwiatkowski, Dominic P

    2008-02-15

    There is growing epidemiological and molecular evidence that ABO blood group affects host susceptibility to severe Plasmodium falciparum infection. The high frequency of common ABO alleles means that even modest differences in susceptibility could have a significant impact on the health of people living in malaria endemic regions. We performed an association study, the first to utilize key molecular genetic variation underlying the ABO system, genotyping >9000 individuals across three African populations. Using population- and family-based tests, we demonstrated that alleles producing functional ABO enzymes are associated with greater risk of severe malaria phenotypes (particularly malarial anemia) in comparison with the frameshift deletion underlying blood group O: case-control allelic odds ratio (OR), 1.2; 95% confidence interval (CI), 1.09-1.32; P = 0.0003; family-studies allelic OR, 1.19; 95% CI, 1.08-1.32; P = 0.001; pooled across all studies allelic OR, 1.18; 95% CI, 1.11-1.26; P = 2 x 10(-7). We found suggestive evidence of a parent-of-origin effect at the ABO locus by analyzing the family trios. Non-O haplotypes inherited from mothers, but not fathers, are significantly associated with severe malaria (likelihood ratio test of Weinberg, P = 0.046). Finally, we used HapMap data to demonstrate a region of low F(ST) (-0.001) between the three main HapMap population groups across the ABO locus, an outlier in the empirical distribution of F(ST) across chromosome 9 (approximately 99.5-99.9th centile). This low F(ST) region may be a signal of long-standing balancing selection at the ABO locus, caused by multiple infectious pathogens including P. falciparum.

  6. Households' incidence on malaria and expenditures to treat malaria ...

    African Journals Online (AJOL)

    CONCLUSION: The relationship between expenditure and use of different vector control depends on the geographic location of respondents. People living in the rural areas spend more to have access to malaria control tools. Location of respondent has a positive effect on expenditures and use of malaria control tools.

  7. Malaria parasitemia among asymptomatic infants seen in a malaria ...

    African Journals Online (AJOL)

    In clinical settings, management of malaria cases has primarily been centred on case definition, giving minimal consideration to the asymptomatic individuals who remain a major reservoir since they do not seek care. In malaria endemic areas, infants are likely to remain asymptomatic since they have partial immunity ...

  8. Integrated malaria vector control in different agro-ecosystems in western Kenya

    NARCIS (Netherlands)

    Imbahale, S.S.

    2009-01-01

    Malaria is a complex disease and its transmission is a function of the interaction between the Anopheles mosquito vector, the Plasmodium parasite, the hosts and the environment. Malaria control has mainly targeted the Plasmodium parasite or the adult anopheline mosquitoes. However, development of

  9. Molecular dynamics simulations of Gay-Berne nematic liquid crystal: Elastic properties from direct correlation functions

    International Nuclear Information System (INIS)

    Stelzer, J.; Trebin, H.R.; Longa, L.

    1994-08-01

    We report NVT and NPT molecular dynamics simulations of a Gay-Berne nematic liquid crystal using generalization of recently proposed algorithm by Toxvaerd [Phys. Rev. E47, 343, 1993]. On the basis of these simulations the Oseen-Zoher-Frank elastic constants K 11 , K 22 and K 33 as well as the surface constants K 13 and K 24 have been calculated within the framework of the direct correlation function approach of Lipkin et al. [J. Chem. Phys. 82, 472 (1985)]. The angular coefficients of the direct pair correlation function, which enter the final formulas, have been determined from the computer simulation data for the pair correlation function of the nematic by combining the Ornstein-Zernike relation and the Wienier-Hopf factorization scheme. The unoriented nematic approximation has been assumed when constructing the reference, isotropic state of Lipkin et al. By an extensive study of the model over a wide range of temperatures, densities and pressures a very detailed information has been provided about elastic behaviour of the Gay-Berne nematic. Interestingly, it is found that the results for the surface elastic constants are qualitatively different than those obtained with the help of analytical approximations for the isotropic, direct pair correlation function. For example, the values of the surface elastic constants are negative and an order of magnitude smaller than the bulk elasticity. (author). 30 refs, 9 figs

  10. Conformational and functional analysis of molecular dynamics trajectories by Self-Organising Maps

    Directory of Open Access Journals (Sweden)

    Stella Fabio

    2011-05-01

    Full Text Available Abstract Background Molecular dynamics (MD simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering. Results The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions. Conclusions The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to

  11. Conformational and functional analysis of molecular dynamics trajectories by Self-Organising Maps

    Science.gov (United States)

    2011-01-01

    Background Molecular dynamics (MD) simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs) were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering. Results The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions. Conclusions The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to conformational ensembles from

  12. Spatio-temporal heterogeneity of malaria morbidity in Ghana: Analysis of routine health facility data.

    Science.gov (United States)

    Awine, Timothy; Malm, Keziah; Peprah, Nana Yaw; Silal, Sheetal P

    2018-01-01

    Malaria incidence is largely influenced by vector abundance. Among the many interconnected factors relating to malaria transmission, weather conditions such as rainfall and temperature are known to create suitable environmental conditions that sustain reproduction and propagation of anopheles mosquitoes and malaria parasites. In Ghana, climatic conditions vary across the country. Understanding the heterogeneity of malaria morbidity using data sourced from a recently setup data repository for routine health facility data could support planning. Monthly aggregated confirmed uncomplicated malaria cases from the District Health Information Management System and average monthly rainfall and temperature records obtained from the Ghana Meteorological Agency from 2008 to 2016 were analysed. Univariate time series models were fitted to the malaria, rainfall and temperature data series. After pre-whitening the morbidity data, cross correlation analyses were performed. Subsequently, transfer function models were developed for the relationship between malaria morbidity and rainfall and temperature. Malaria morbidity patterns vary across zones. In the Guinea savannah, morbidity peaks once in the year and twice in both the Transitional forest and Coastal savannah, following similar patterns of rainfall at the zonal level. While the effects of rainfall on malaria morbidity are delayed by a month in the Guinea savannah and Transitional Forest zones those of temperature are delayed by two months in the Transitional forest zone. In the Coastal savannah however, incidence of malaria is significantly associated with two months lead in rainfall and temperature. Data captured on the District Health Information Management System has been used to demonstrate heterogeneity in the dynamics of malaria morbidity across the country. Timing of these variations could guide the deployment of interventions such as indoor residual spraying, Seasonal Malaria Chemoprevention or vaccines to optimise

  13. Density functional theory for prediction of far-infrared vibrational frequencies: molecular crystals of astrophysical interest

    Science.gov (United States)

    Ennis, C.; Auchettl, R.; Appadoo, D. R. T.; Robertson, E. G.

    2017-11-01

    Solid-state density functional theory code has been implemented for the structure optimization of crystalline methanol, acetaldehyde and acetic acid and for the calculation of infrared frequencies. The results are compared to thin film spectra obtained from low-temperature experiments performed at the Australian Synchrotron. Harmonic frequency calculations of the internal modes calculated at the B3LYP-D3/m-6-311G(d) level shows higher deviation from infrared experiment than more advanced theory applied to the gas phase. Importantly for the solid-state, the simulation of low-frequency molecular lattice modes closely resembles the observed far-infrared features after application of a 0.92 scaling factor. This allowed experimental peaks to be assigned to specific translation and libration modes, including acetaldehyde and acetic acid lattice features for the first time. These frequency calculations have been performed without the need for supercomputing resources that are required for large molecular clusters using comparable levels of theory. This new theoretical approach will find use for the rapid characterization of intermolecular interactions and bonding in crystals, and the assignment of far-infrared spectra for crystalline samples such as pharmaceuticals and molecular ices. One interesting application may be for the detection of species of prebiotic interest on the surfaces of Kuiper-Belt and Trans-Neptunian Objects. At such locations, the three small organic molecules studied here could reside in their crystalline phase. The far-infrared spectra for their low-temperature solid phases are collected under planetary conditions, allowing us to compile and assign their most intense spectral features to assist future far-infrared surveys of icy Solar system surfaces.

  14. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    International Nuclear Information System (INIS)

    Bowsher, James; Giles, William; Yin, Fang-Fang; Yan, Susu; Roper, Justin

    2014-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  15. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  16. Molecular Design and Functional Control of Novel Self-Oscillating Polymers

    Directory of Open Access Journals (Sweden)

    Ryo Yoshida

    2010-02-01

    Full Text Available If we could realize an autonomous polymer system driven under biological conditions by a tailor-made molecular design, human beings could create unprecedented biomimetic functions and materials such as heartbeats, autonomous peristaltic pumps, etc. In order to achieve this objective, we have investigated the molecular design of such a polymer system. As a result, we were the first to demonstrate a self-oscillating polymer system driven in a solution where only malonic acid existed, which could convert the chemical energy of the Belousov-Zhabotinsky (BZ reaction into a change in the conformation of the polymer chain. To cause the self-oscillation in solution, we have attempted to construct a built-in system where the required BZ system substrates other than the organic acid are incorporated into the polymer itself. That is, the novel polymer chain incorporated the metal catalyst of the BZ reaction, a pH-control site and an oxidant supply site at the same time. As a result of introducing the pH control and oxidant supply sites into the conventional-type self-oscillating polymer chain, the novel polymer chain caused aggregation-disaggregation self-oscillations in the solution. We clarified that the period of the self-oscillation of the novel self-oscillating polymer chain was proportional to the concentration of the malonic acid. Therefore, the concentration of the malonic acid can be determined by measuring the period of the novel self-oscillating polymer solution. In this review, we introduce the detailed molecular design of the novel self-oscillating polymer chain and its self-oscillating behavior. Moreover, we report an autonomous self-oscillating polymer gel actuator that causes a bending-stretching motion under the constant conditions.

  17. Malaria in pregnancy | Okpere | Nigerian Medical Journal

    African Journals Online (AJOL)

    Malaria remains one of the highest contributors to the precarious maternal mortality figures in sub-Saharan Africa. At least 6 million women worldwide are at risk of malaria infection in pregnancy. Malaria contributes to at least 10,000 maternal deaths and to at least 200,000 newborn deaths annually. Malaria is a contributor ...

  18. Functional and molecular imaging with MRI: potential applications in paediatric radiology

    International Nuclear Information System (INIS)

    Arthurs, Owen J.; Gallagher, Ferdia A.

    2011-01-01

    MRI is a very versatile tool for noninvasive imaging and it is particularly attractive as an imaging technique in paediatric patients given the absence of ionizing radiation. Recent advances in the field of MRI have enabled tissue function to be probed noninvasively, and increasingly MRI is being used to assess cellular and molecular processes. For example, dynamic contrast-enhanced MRI has been used to assess tissue vascularity, diffusion-weighted imaging can quantify molecular movements of water in tissue compartments and MR spectroscopy provides a quantitative assessment of metabolite levels. A number of targeted contrast agents have been developed that bind specifically to receptors on the vascular endothelium or cell surface and there are several MR methods for labelling cells and tracking cellular movements. Hyperpolarization techniques have the capability of massively increasing the sensitivity of MRI and these have been used to image tissue pH, successful response to drug treatment as well as imaging the microstructure of the lungs. Although there are many challenges to be overcome before these techniques can be translated into routine paediatric imaging, they could potentially be used to aid diagnosis, predict disease outcome, target biopsies and determine treatment response noninvasively. (orig.)

  19. Molecular imprinted polymer functionalized carbon nanotube sensors for detection of saccharides

    Science.gov (United States)

    Badhulika, Sushmee; Mulchandani, Ashok

    2015-08-01

    In this work, we report the synthesis and fabrication of an enzyme-free sugar sensor based on molecularly imprinted polymer (MIP) on the surface of single walled carbon nanotubes (SWNTs). Electropolymerization of 3-aminophenylboronic acid (3-APBA) in the presence of 10 M d-fructose and fluoride at neutral pH conditions resulted in the formation of a self-doped, molecularly imprinted conducting polymer (MICP) via the formation of a stable anionic boronic ester complex between poly(aniline boronic acid) and d-fructose. Template removal generated binding sites on the polymer matrix that were complementary to d-fructose both in structure, i.e., shape, size, and positioning of functional groups, thus enabling sensing of d-fructose with enhanced affinity and specificity over non-MIP based sensors. Using carbon nanotubes along with MICPs helped to develop an efficient electrochemical sensor by enhancing analyte recognition and signal generation. These sensors could be regenerated and used multiple times unlike conventional affinity based biosensors which suffer from physical and chemical stability.

  20. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer.

    Science.gov (United States)

    Chrisikos, Taylor T; Zhou, Yifan; Slone, Natalie; Babcock, Rachel; Watowich, Stephanie S; Li, Haiyan S

    2018-03-14

    Dendritic cells (DCs) are the principal antigen-presenting cells of the immune system and play key roles in controlling immune tolerance and activation. As such, DCs are chief mediators of tumor immunity. DCs can regulate tolerogenic immune responses that facilitate unchecked tumor growth. Importantly, however, DCs also mediate immune-stimulatory activity that restrains tumor progression. For instance, emerging evidence indicates the cDC1 subset has important functions in delivering tumor antigens to lymph nodes and inducing antigen-specific lymphocyte responses to tumors. Moreover, DCs control specific therapeutic responses in cancer including those resulting from immune checkpoint blockade. DC generation and function is influenced profoundly by cytokines, as well as their intracellular signaling proteins including STAT transcription factors. Regardless, our understanding of DC regulation in the cytokine-rich tumor microenvironment is still developing and must be better defined to advance cancer treatment. Here, we review literature focused on the molecular control of DCs, with a particular emphasis on cytokine- and STAT-mediated DC regulation. In addition, we highlight recent studies that delineate the importance of DCs in anti-tumor immunity and immune therapy, with the overall goal of improving knowledge of tumor-associated factors and intrinsic DC signaling cascades that influence DC function in cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Surface functionalization of solid state ultra-high molecular weight polyethylene through chemical grafting

    Science.gov (United States)

    Sherazi, Tauqir A.; Rehman, Tayyiba; Naqvi, Syed Ali Raza; Shaikh, Ahson Jabbar; Shahzad, Sohail Anjum; Abbas, Ghazanfar; Raza, Rizwan; Waseem, Amir

    2015-12-01

    The surface of ultra-high molecular weight polyethylene (UHMWPE) powder was functionalized with styrene using chemical grafting technique. The grafting process was initiated through radical generation on base polymer matrix in the solid state by sodium thiosulfate, while peroxides formed at radical sites during this process were dissociated by ceric ammonium nitrate. Various factors were optimized and reasonably high level of monomer grafting was achieved, i.e., 15.6%. The effect of different acids as additive and divinyl benzene (DVB) as a cross-linking agent was also studied. Post-grafting sulfonation was conducted to introduce the ionic moieties to the grafted polymer. Ion-exchange capacity (IEC) was measured experimentally and is found to be 1.04 meq g-1, which is in close agreement with the theoretical IEC values. The chemical structure of grafted and functionalized polymer was characterized by attenuated total reflection infrared spectroscopy (ATR-FTIR) and thermal properties were investigated by thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Thermal analysis depicts that the presence of radicals on the polymer chain accelerates the thermal decomposition process. The results signify that the chemical grafting is an effective tool for substantial surface modification and subsequent functionalization of polyethylene.

  2. Self-interaction corrected density functional calculations of molecular Rydberg states

    International Nuclear Information System (INIS)

    Gudmundsdóttir, Hildur; Zhang, Yao; Weber, Peter M.; Jónsson, Hannes

    2013-01-01

    A method is presented for calculating the wave function and energy of Rydberg excited states of molecules. A good estimate of the Rydberg state orbital is obtained using ground state density functional theory including Perdew-Zunger self-interaction correction and an optimized effective potential. The total energy of the excited molecule is obtained using the Delta Self-Consistent Field method where an electron is removed from the highest occupied orbital and placed in the Rydberg orbital. Results are presented for the first few Rydberg states of NH 3 , H 2 O, H 2 CO, C 2 H 4 , and N(CH 3 ) 3 . The mean absolute error in the energy of the 33 molecular Rydberg states presented here is 0.18 eV. The orbitals are represented on a real space grid, avoiding the dependence on diffuse atomic basis sets. As in standard density functional theory calculations, the computational effort scales as NM 2 where N is the number of orbitals and M is the number of grid points included in the calculation. Due to the slow scaling of the computational effort with system size and the high level of parallelism in the real space grid approach, the method presented here makes it possible to estimate Rydberg electron binding energy in large molecules

  3. Tests of potential functional barriers for laminated multilayer food packages. Part I: Low molecular weight permeants.

    Science.gov (United States)

    Simal-Gándara, J; Sarria-Vidal, M; Koorevaar, A; Rijk, R

    2000-08-01

    The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick oriented PP) into the food stimulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.

  4. Structural and functional analysis of glycoprotein butyrylcholinesterase using atomistic molecular dynamics

    Science.gov (United States)

    Bernardi, Austen; Faller, Roland

    Atomistic molecular dynamics (MD) has proven to be a powerful tool for studying the structure and dynamics of biological systems on nanosecond to microsecond time scales and nanometer length scales. In this work we study the effects of modifying the glycan distribution on the structure and function of full length monomeric butyrylcholinesterase (BChE). BChE exists as a monomer, dimer, or tetramer, and is a therapeutic glycoprotein with nine asparagine glycosylation sites per monomer. Each monomer acts as a stoichiometric scavenger for organophosphorus (OP) nerve agents (e.g. sarin, soman). Glycan distributions are highly heterogeneous and have been shown experimentally to affect certain glycoproteins' stability and reactivity. We performed structural analysis of various biologically relevant glycoforms of BChE using classical atomistic MD. Functional analysis was performed through binding energy simulations using umbrella sampling with BChE and OP cofactors. Additionally, we assess the quality of the glycans' conformational sampling. We found that the glycan distribution has a significant effect on the structure and function of BChE on timescales available to atomistic MD. This project is funded by the DTRA Grant HDTRA1-15-1-0054.

  5. The effect of empirical potential functions on modeling of amorphous carbon using molecular dynamics method

    International Nuclear Information System (INIS)

    Li, Longqiu; Xu, Ming; Song, Wenping; Ovcharenko, Andrey; Zhang, Guangyu; Jia, Ding

    2013-01-01

    Empirical potentials have a strong effect on the hybridization and structure of amorphous carbon and are of great importance in molecular dynamics (MD) simulations. In this work, amorphous carbon at densities ranging from 2.0 to 3.2 g/cm 3 was modeled by a liquid quenching method using Tersoff, 2nd REBO, and ReaxFF empirical potentials. The hybridization, structure and radial distribution function G(r) of carbon atoms were analyzed as a function of the three potentials mentioned above. The ReaxFF potential is capable to model the change of the structure of amorphous carbon and MD results are in a good agreement with experimental results and density function theory (DFT) at low density of 2.6 g/cm 3 and below. The 2nd REBO potential can be used when amorphous carbon has a very low density of 2.4 g/cm 3 and below. Considering the computational efficiency, the Tersoff potential is recommended to model amorphous carbon at a high density of 2.6 g/cm 3 and above. In addition, the influence of the quenching time on the hybridization content obtained with the three potentials is discussed.

  6. Molecular characterization and function of tenomodulin, a marker of tendons and ligaments that integrate musculoskeletal components

    Directory of Open Access Journals (Sweden)

    Chisa Shukunami, DDS, PhD

    2016-11-01

    Full Text Available Tendons and ligaments are dense fibrous bands of connective tissue that integrate musculoskeletal components in vertebrates. Tendons connect skeletal muscles to the bone and function as mechanical force transmitters, whereas ligaments bind adjacent bones together to stabilize joints and restrict unwanted joint movement. Fibroblasts residing in tendons and ligaments are called tenocytes and ligamentocytes, respectively. Tenomodulin (Tnmd is a type II transmembrane glycoprotein that is expressed at high levels in tenocytes and ligamentocytes, and is also present in periodontal ligament cells and tendon stem/progenitor cells. Tnmd is related to chondromodulin-1 (Chm1, a cartilage-derived angiogenesis inhibitor, and both Tnmd and Chm1 are expressed in the CD31− avascular mesenchyme. The conserved C-terminal hydrophobic domain of these proteins, which is characterized by the eight Cys residues to form four disulfide bonds, may have an anti-angiogenic function. This review highlights the molecular characterization and function of Tnmd, a specific marker of tendons and ligaments.

  7. Molecular Design of Bioinspired Nanostructures for Biomedical Applications: Synthesis, Self-Assembly and Functional Properties

    Science.gov (United States)

    Xu, Hesheng Victor; Zheng, Xin Ting; Mok, Beverly Yin Leng; Ibrahim, Salwa Ali; Yu, Yong; Tan, Yen Nee

    2016-08-01

    Biomolecules are the nanoscale building blocks of cells, which play multifaceted roles in the critical biological processes such as biomineralization in a living organism. In these processes, the biological molecules such as protein and nucleic acids use their exclusive biorecognition properties enabled from their unique chemical composition, shape and function to initiate a cascade of cellular events. The exceptional features of these biomolecules, coupled with the recent advancement in nanotechnology, have led to the emergence of a new research field that focuses on the molecular design of bioinspired nanostructures that inherit the extraordinary function of natural biomaterials. These “bioinspired” nanostructures could be formulated by biomimetic approaches through either self-assembling of biomolecules or acting as a biomolecular template/precursor to direct the synthesis of nanocomposite. In either situation, the resulting nanomaterials exhibit phenomenal biocompatibility, superb aqueous solubility and excellent colloidal stability, branding them exceptionally desirable for both in vitro and in vivo biomedical applications. In this review, we will present the recent developments in the preparation of “bioinspired” nanostructures through biomimetic self-assembly and biotemplating synthesis, as well as highlight their functional properties and potential applications in biomedical diagnostics and therapeutic delivery. Lastly, we will conclude this topic with some personal perspective on the challenges and future outlooks of the “bioinspired” nanostructures for nanomedicine.

  8. Broadening the functionality of a J-protein/Hsp70 molecular chaperone system.

    Science.gov (United States)

    Schilke, Brenda A; Ciesielski, Szymon J; Ziegelhoffer, Thomas; Kamiya, Erina; Tonelli, Marco; Lee, Woonghee; Cornilescu, Gabriel; Hines, Justin K; Markley, John L; Craig, Elizabeth A

    2017-10-01

    By binding to a multitude of polypeptide substrates, Hsp70-based molecular chaperone systems perform a range of cellular functions. All J-protein co-chaperones play the essential role, via action of their J-domains, of stimulating the ATPase activity of Hsp70, thereby stabilizing its interaction with substrate. In addition, J-proteins drive the functional diversity of Hsp70 chaperone systems through action of regions outside their J-domains. Targeting to specific locations within a cellular compartment and binding of specific substrates for delivery to Hsp70 have been identified as modes of J-protein specialization. To better understand J-protein specialization, we concentrated on Saccharomyces cerevisiae SIS1, which encodes an essential J-protein of the cytosol/nucleus. We selected suppressors that allowed cells lacking SIS1 to form colonies. Substitutions changing single residues in Ydj1, a J-protein, which, like Sis1, partners with Hsp70 Ssa1, were isolated. These gain-of-function substitutions were located at the end of the J-domain, suggesting that suppression was connected to interaction with its partner Hsp70, rather than substrate binding or subcellular localization. Reasoning that, if YDJ1 suppressors affect Ssa1 function, substitutions in Hsp70 itself might also be able to overcome the cellular requirement for Sis1, we carried out a selection for SSA1 suppressor mutations. Suppressing substitutions were isolated that altered sites in Ssa1 affecting the cycle of substrate interaction. Together, our results point to a third, additional means by which J-proteins can drive Hsp70's ability to function in a wide range of cellular processes-modulating the Hsp70-substrate interaction cycle.

  9. Using polarized Raman spectroscopy and the pseudospectral method to characterize molecular structure and function

    Science.gov (United States)

    Weisman, Andrew L.

    Electronic structure calculation is an essential approach for determining the structure and function of molecules and is therefore of critical interest to physics, chemistry, and materials science. Of the various algorithms for calculating electronic structure, the pseudospectral method is among the fastest. However, the trade-off for its speed is more up-front programming and testing, and as a result, applications using the pseudospectral method currently lag behind those using other methods. In Part I of this dissertation, we first advance the pseudospectral method by optimizing it for an important application, polarized Raman spectroscopy, which is a well-established tool used to characterize molecular properties. This is an application of particular importance because often the easiest and most economical way to obtain the polarized Raman spectrum of a material is to simulate it; thus, utilization of the pseudospectral method for this purpose will accelerate progress in the determination of molecular properties. We demonstrate that our implementation of Raman spectroscopy using the pseudospectral method results in spectra that are just as accurate as those calculated using the traditional analytic method, and in the process, we derive the most comprehensive formulation to date of polarized Raman intensity formulas, applicable to both crystalline and isotropic systems. Next, we apply our implementation to determine the orientations of crystalline oligothiophenes -- a class of materials important in the field of organic electronics -- achieving excellent agreement with experiment and demonstrating the general utility of polarized Raman spectroscopy for the determination of crystal orientation. In addition, we derive from first-principles a method for using polarized Raman spectra to establish unambiguously whether a uniform region of a material is crystalline or isotropic. Finally, we introduce free, open-source software that allows a user to determine any of a

  10. UCLA's Molecular Screening Shared Resource: enhancing small molecule discovery with functional genomics and new technology.

    Science.gov (United States)

    Damoiseaux, Robert

    2014-05-01

    The Molecular Screening Shared Resource (MSSR) offers a comprehensive range of leading-edge high throughput screening (HTS) services including drug discovery, chemical and functional genomics, and novel methods for nano and environmental toxicology. The MSSR is an open access environment with investigators from UCLA as well as from the entire globe. Industrial clients are equally welcome as are non-profit entities. The MSSR is a fee-for-service entity and does not retain intellectual property. In conjunction with the Center for Environmental Implications of Nanotechnology, the MSSR is unique in its dedicated and ongoing efforts towards high throughput toxicity testing of nanomaterials. In addition, the MSSR engages in technology development eliminating bottlenecks from the HTS workflow and enabling novel assays and readouts currently not available.

  11. The use of functionalized AFM tips as molecular sensors in the detection of pesticides

    International Nuclear Information System (INIS)

    Deda, Daiana K.; Pereira, Barbara B.S.; Bueno, Carolina C.; Silva, Aline N. da; Ribeiro, Gabrielle A.; Amarante, Adriano M.; Leite, Fabio L.; Franca, Eduardo F.

    2013-01-01

    Atomic force spectroscopy, a technique derived from Atomic Force Microscopy (AFM), allowed to distinguish nonspecific and specific interactions between the acetolactate synthase enzyme (ALS) and anti-atrazine antibody biomolecules and the herbicides imazaquin, metsulfuron-methyl and atrazine. The presence of specific interactions increased the adhesion force (F adh ) between the AFM tip and the herbicides, which made the modified tip a powerful biosensor. Increases of approximately 132% and 145% in the F adh values were observed when a tip functionalized with ALS was used to detect imazaquin and metsulfuron-methyl, respectively. The presence of specific interactions between the atrazine and the anti-atrazine antibody also caused an increase in the F adh values (approximately 175%) compared to those observed when using an unfunctionalized tip. The molecular modeling results obtained with the ALS enzyme suggest that the orientation of the biomolecule on the tip surface could be suitable for allowing interaction with the herbicides imazaquin and metsulfuron-methyl. (author)

  12. The use of functionalized AFM tips as molecular sensors in the detection of pesticides

    Directory of Open Access Journals (Sweden)

    Daiana K. Deda

    2013-06-01

    Full Text Available Atomic force spectroscopy, a technique derived from Atomic Force Microscopy (AFM, allowed us to distinguish nonspecific and specific interactions between the acetolactate synthase enzyme (ALS and anti-atrazine antibody biomolecules and the herbicides imazaquin, metsulfuron-methyl and atrazine. The presence of specific interactions increased the adhesion force (Fadh between the AFM tip and the herbicides, which made the modified tip a powerful biosensor. Increases of approximately 132% and 145% in the Fadh values were observed when a tip functionalized with ALS was used to detect imazaquin and metsulfuron-methyl, respectively. The presence of specific interactions between the atrazine and the anti-atrazine antibody also caused an increase in the Fadh values (approximately 175% compared to those observed when using an unfunctionalized tip. The molecular modeling results obtained with the ALS enzyme suggest that the orientation of the biomolecule on the tip surface could be suitable for allowing interaction with the herbicides imazaquin and metsulfuron-methyl.

  13. Molecular design and ordering effects in π-functional materials for transistor and solar cell applications

    KAUST Repository

    Beaujuge, Pierre

    2011-12-21

    Organic electronics are broadly anticipated to impact the development of flexible thin-film device technologies. Among these, solution-processable π-conjugated polymers and small molecules are proving particularly promising in field-effect transistors and bulk heterojunction solar cells. This Perspective analyzes some of the most exciting strategies recently suggested in the design and structural organization of π-functional materials for transistor and solar cell applications. Emphasis is placed on the interplay between molecular structure, self-assembling properties, nanoscale and mesoscale ordering, and device efficiency parameters. A critical look at the various approaches used to optimize both materials and device performance is provided to assist in the identification of new directions and further advances. © 2011 American Chemical Society.

  14. Threshold defect production in silicon determined by density functional theory molecular dynamics simulations

    International Nuclear Information System (INIS)

    Holmstroem, E.; Kuronen, A.; Nordlund, K.

    2008-01-01

    We studied threshold displacement energies for creating stable Frenkel pairs in silicon using density functional theory molecular dynamics simulations. The average threshold energy over all lattice directions was found to be 36±2 STAT ±2 SYST eV, and thresholds in the directions and were found to be 20±2 SYST eV and 12.5±1.5 SYST eV, respectively. Moreover, we found that in most studied lattice directions, a bond defect complex is formed with a lower threshold than a Frenkel pair. The average threshold energy for producing either a bond defect or a Frenkel pair was found to be 24±1 STAT ±2 SYST eV

  15. Molecular basis of the functional heterogeneity of the muscarinic acetylcholine receptor

    International Nuclear Information System (INIS)

    Numa, S.; Fukuda, K.; Kubo, T.; Maeda, A.; Akiba, I.; Bujo, H.; Nakai, J.; Mishina, M.; Higashida, H.

    1988-01-01

    The muscarinic acetylcholine receptor (mAChR) mediates a variety of cellular responses, including inhibition of adenylate cyclase, breakdown of phosphoinositides, and modulation of potassium channels, through the action of guanine-nucleotide-binding regulatory proteins (G proteins). The question then arises as to whether multiple mAChR species exist that are responsible for the various biochemical and physiological effects. In fact, pharmacologically distinguishable forms of the mAChR occur in different tissues and have been provisionally classified into M 1 (I), M 2 cardiac (II), and M 2 glandular (III) subtypes on the basis of their difference in apparent affinity for antagonists. Here, the authors have made attempts to understand the molecular basis of the functional heterogeneity of the mAChR, using recombinant DNA technology

  16. Multiscale simulations of anisotropic particles combining molecular dynamics and Green's function reaction dynamics

    Science.gov (United States)

    Vijaykumar, Adithya; Ouldridge, Thomas E.; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2017-03-01

    The modeling of complex reaction-diffusion processes in, for instance, cellular biochemical networks or self-assembling soft matter can be tremendously sped up by employing a multiscale algorithm which combines the mesoscopic Green's Function Reaction Dynamics (GFRD) method with explicit stochastic Brownian, Langevin, or deterministic molecular dynamics to treat reactants at the microscopic scale [A. Vijaykumar, P. G. Bolhuis, and P. R. ten Wolde, J. Chem. Phys. 143, 214102 (2015)]. Here we extend this multiscale MD-GFRD approach to include the orientational dynamics that is crucial to describe the anisotropic interactions often prevalent in biomolecular systems. We present the novel algorithm focusing on Brownian dynamics only, although the methodology is generic. We illustrate the novel algorithm using a simple patchy particle model. After validation of the algorithm, we discuss its performance. The rotational Brownian dynamics MD-GFRD multiscale method will open up the possibility for large scale simulations of protein signalling networks.

  17. Biomechanical signals guiding stem cell cartilage engineering: from molecular adaption to tissue functionality

    Directory of Open Access Journals (Sweden)

    Y Zhang

    2016-01-01

    Full Text Available In vivo cartilage is in a state of constant mechanical stimulation. It is therefore reasonable to deduce that mechanical forces play an important role in cartilage formation. Mechanical forces, such as compression, tension, and shear force, have been widely applied for cartilage engineering; however, relatively few review papers have summarized the influence of biomechanical signals on stem cell-based neo-cartilage formation and cartilage engineering in both molecular adaption and tissue functionality. In this review, we will discuss recent progress related to the influences of substrate elasticity on stem cell chondrogenic differentiation and elucidate the potential underlying mechanisms. Aside from active sensing and responding to the extracellular environment, stem cells also could respond to various external mechanical forces, which also influence their chondrogenic capacity; this topic will be updated along with associated signaling pathways. We expect that these different regimens of biomechanical signals can be utilized to boost stem cell-based cartilage engineering and regeneration.

  18. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines

    International Nuclear Information System (INIS)

    Jia, Weile; Fu, Jiyun; Cao, Zongyan; Wang, Long; Chi, Xuebin; Gao, Weiguo; Wang, Lin-Wang

    2013-01-01

    Plane wave pseudopotential (PWP) density functional theory (DFT) calculation is the most widely used method for material simulations, but its absolute speed stagnated due to the inability to use large scale CPU based computers. By a drastic redesign of the algorithm, and moving all the major computation parts into GPU, we have reached a speed of 12 s per molecular dynamics (MD) step for a 512 atom system using 256 GPU cards. This is about 20 times faster than the CPU version of the code regardless of the number of CPU cores used. Our tests and analysis on different GPU platforms and configurations shed lights on the optimal GPU deployments for PWP-DFT calculations. An 1800 step MD simulation is used to study the liquid phase properties of GaInP

  19. A Hybrid Density Functional Theory/Molecular Mechanics Approach for Linear Response Properties in Heterogeneous Environments.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Mikkelsen, Kurt V; Ågren, Hans

    2014-03-11

    We introduce a density functional theory/molecular mechanical approach for computation of linear response properties of molecules in heterogeneous environments, such as metal surfaces or nanoparticles embedded in solvents. The heterogeneous embedding environment, consisting from metallic and nonmetallic parts, is described by combined force fields, where conventional force fields are used for the nonmetallic part and capacitance-polarization-based force fields are used for the metallic part. The presented approach enables studies of properties and spectra of systems embedded in or placed at arbitrary shaped metallic surfaces, clusters, or nanoparticles. The capability and performance of the proposed approach is illustrated by sample calculations of optical absorption spectra of thymidine absorbed on gold surfaces in an aqueous environment, where we study how different organizations of the gold surface and how the combined, nonadditive effect of the two environments is reflected in the optical absorption spectrum.

  20. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress.

    Science.gov (United States)

    Usman, Magaji G; Rafii, Mohd Y; Martini, Mohammad Y; Yusuff, Oladosu A; Ismail, Mohd R; Miah, Gous

    2017-04-01

    Studying the strategies of improving abiotic stress tolerance is quite imperative and research under this field will increase our understanding of response mechanisms to abiotic stress such as heat. The Hsp70 is an essential regulator of protein having the tendency to maintain internal cell stability like proper folding protein and breakdown of unfolded proteins. Hsp70 holds together protein substrates to help in movement, regulation, and prevent aggregation under physical and or chemical pressure. However, this review reports the molecular mechanism of heat shock protein 70 kDa (Hsp70) action and its structural and functional analysis, research progress on the interaction of Hsp70 with other proteins and their interaction mechanisms as well as the involvement of Hsp70 in abiotic stress responses as an adaptive defense mechanism.

  1. Nutritional Proteomics: Investigating molecular mechanisms underlying the health beneficial effect of functional foods

    Directory of Open Access Journals (Sweden)

    Yusuke Kawashima

    2013-07-01

    Full Text Available ABSTRACTObjective: We introduce a new technical and conceptual term “nutritional proteomics” by identifying and quantifying the proteins and their changes in a certain organ or tissue dependent on the food intake by utilizing a mass spectrometry-based proteomics technique.Purpose: Food intake is essentially important for every life on earth to sustain the physical as well as mental functions. The outcome of food intake will be manifested in the health state and its dysfunction. The molecular information about the protein expression change caused by diets will assist us to understand the significance of functional foods. We wish to develop nutritional proteomics to promote a new area in functional food studies for a better understanding of the role of functional foods in health and disease.Methods: We chose two classes of food ingredients to show the feasibility of nutritional proteomics, omega-3 polyunsaturated fatty acids and omega-6 polyunsaturated fatty acids both of which are involved in the inflammation/anti-inflammation axis. Each class of the polyunsaturated fatty acids was mixed in mouse chow respectively. The liver tissue of mice fed with omega-3 diet or omega-3 diet was analyzed by the state-of-the-art shotgun proteomics using nano-HPLC-ESI-MS/MS. The data were analyzed by the number of differentially expressed proteins that were guaranteed by 1% false discovery rate for protein identification and by the statistical significance of variance evaluated by p-value in two-tailed distribution analysis better than 0.05 (n=4. The differential pattern of protein expression was characterized with Gene Ontology designation.Results: The data analysis of the shotgun nutritional proteomics identified 2,810 proteins that are validated with 1% FDR. Among these 2,810 proteins, 125 were characterized with statistical significance of variance (p<0.05; n=4 between the omega-3 diet and the omega-6 diet by twotailed distribution analysis. The results

  2. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.

    Directory of Open Access Journals (Sweden)

    Seong-Il Eyun

    Full Text Available Trace amine-associated receptors (TAARs are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4 have emerged earlier, generally have single-copy orthologs (very few duplication or loss, and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9 have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.

  3. Evidence-based nanoscopic and molecular framework for excipient functionality in compressed orally disintegrating tablets.

    Directory of Open Access Journals (Sweden)

    Ali Al-Khattawi

    Full Text Available The work investigates the adhesive/cohesive molecular and physical interactions together with nanoscopic features of commonly used orally disintegrating tablet (ODT excipients microcrystalline cellulose (MCC and D-mannitol. This helps to elucidate the underlying physico-chemical and mechanical mechanisms responsible for powder densification and optimum product functionality. Atomic force microscopy (AFM contact mode analysis was performed to measure nano-adhesion forces and surface energies between excipient-drug particles (6-10 different particles per each pair. Moreover, surface topography images (100 nm2-10 µm2 and roughness data were acquired from AFM tapping mode. AFM data were related to ODT macro/microscopic properties obtained from SEM, FTIR, XRD, thermal analysis using DSC and TGA, disintegration testing, Heckel and tabletability profiles. The study results showed a good association between the adhesive molecular and physical forces of paired particles and the resultant densification mechanisms responsible for mechanical strength of tablets. MCC micro roughness was 3 times that of D-mannitol which explains the high hardness of MCC ODTs due to mechanical interlocking. Hydrogen bonding between MCC particles could not be established from both AFM and FTIR solid state investigation. On the contrary, D-mannitol produced fragile ODTs due to fragmentation of surface crystallites during compression attained from its weak crystal structure. Furthermore, AFM analysis has shown the presence of extensive micro fibril structures inhabiting nano pores which further supports the use of MCC as a disintegrant. Overall, excipients (and model drugs showed mechanistic behaviour on the nano/micro scale that could be related to the functionality of materials on the macro scale.

  4. Functional conservation of nucleosome formation selectively biases presumably neutral molecular variation in yeast genomes.

    Science.gov (United States)

    Babbitt, Gregory A; Cotter, C R

    2011-01-01

    One prominent pattern of mutational frequency, long appreciated in comparative genomics, is the bias of purine/pyrimidine conserving substitutions (transitions) over purine/pyrimidine altering substitutions (transversions). Traditionally, this transitional bias has been thought to be driven by the underlying rates of DNA mutation and/or repair. However, recent sequencing studies of mutation accumulation lines in model organisms demonstrate that substitutions generally do not accumulate at rates that would indicate a transitional bias. These observations have called into question a very basic assumption of molecular evolution; that naturally occurring patterns of molecular variation in noncoding regions accurately reflect the underlying processes of randomly accumulating neutral mutation in nuclear genomes. Here, in Saccharomyces yeasts, we report a very strong inverse association (r = -0.951, P < 0.004) between the genome-wide frequency of substitutions and their average energetic effect on nucleosome formation, as predicted by a structurally based energy model of DNA deformation around the nucleosome core. We find that transitions occurring at sites positioned nearest the nucleosome surface, which are believed to function most importantly in nucleosome formation, alter the deformation energy of DNA to the nucleosome core by only a fraction of the energy changes typical of most transversions. When we examined the same substitutions set against random background sequences as well as an existing study reporting substitutions arising in mutation accumulation lines of Saccharomyces cerevisiae, we failed to find a similar relationship. These results support the idea that natural selection acting to functionally conserve chromatin organization may contribute significantly to genome-wide transitional bias, even in noncoding regions. Because nucleosome core structure is highly conserved across eukaryotes, our observations may also help to further explain locally elevated

  5. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies.

    Directory of Open Access Journals (Sweden)

    Alexandra M Schnoes

    2009-12-01

    Full Text Available Due to the rapid release of new data from genome sequencing projects, the majority of protein sequences in public databases have not been experimentally characterized; rather, sequences are annotated using computational analysis. The level of misannotation and the types of misannotation in large public databases are currently unknown and have not been analyzed in depth. We have investigated the misannotation levels for molecular function in four public protein sequence databases (UniProtKB/Swiss-Prot, GenBank NR, UniProtKB/TrEMBL, and KEGG for a model set of 37 enzyme families for which extensive experimental information is available. The manually curated database Swiss-Prot shows the lowest annotation error levels (close to 0% for most families; the two other protein sequence databases (GenBank NR and TrEMBL and the protein sequences in the KEGG pathways database exhibit similar and surprisingly high levels of misannotation that average 5%-63% across the six superfamilies studied. For 10 of the 37 families examined, the level of misannotation in one or more of these databases is >80%. Examination of the NR database over time shows that misannotation has increased from 1993 to 2005. The types of misannotation that were found fall into several categories, most associated with "overprediction" of molecular function. These results suggest that misannotation in enzyme superfamilies containing multiple families that catalyze different reactions is a larger problem than has been recognized. Strategies are suggested for addressing some of the systematic problems contributing to these high levels of misannotation.

  6. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies.

    Science.gov (United States)

    Schnoes, Alexandra M; Brown, Shoshana D; Dodevski, Igor; Babbitt, Patricia C

    2009-12-01

    Due to the rapid release of new data from genome sequencing projects, the majority of protein sequences in public databases have not been experimentally characterized; rather, sequences are annotated using computational analysis. The level of misannotation and the types of misannotation in large public databases are currently unknown and have not been analyzed in depth. We have investigated the misannotation levels for molecular function in four public protein sequence databases (UniProtKB/Swiss-Prot, GenBank NR, UniProtKB/TrEMBL, and KEGG) for a model set of 37 enzyme families for which extensive experimental information is available. The manually curated database Swiss-Prot shows the lowest annotation error levels (close to 0% for most families); the two other protein sequence databases (GenBank NR and TrEMBL) and the protein sequences in the KEGG pathways database exhibit similar and surprisingly high levels of misannotation that average 5%-63% across the six superfamilies studied. For 10 of the 37 families examined, the level of misannotation in one or more of these databases is >80%. Examination of the NR database over time shows that misannotation has increased from 1993 to 2005. The types of misannotation that were found fall into several categories, most associated with "overprediction" of molecular function. These results suggest that misannotation in enzyme superfamilies containing multiple families that catalyze different reactions is a larger problem than has been recognized. Strategies are suggested for addressing some of the systematic problems contributing to these high levels of misannotation.

  7. Evidence-Based Nanoscopic and Molecular Framework for Excipient Functionality in Compressed Orally Disintegrating Tablets

    Science.gov (United States)

    Al-khattawi, Ali; Alyami, Hamad; Townsend, Bill; Ma, Xianghong; Mohammed, Afzal R.

    2014-01-01

    The work investigates the adhesive/cohesive molecular and physical interactions together with nanoscopic features of commonly used orally disintegrating tablet (ODT) excipients microcrystalline cellulose (MCC) and D-mannitol. This helps to elucidate the underlying physico-chemical and mechanical mechanisms responsible for powder densification and optimum product functionality. Atomic force microscopy (AFM) contact mode analysis was performed to measure nano-adhesion forces and surface energies between excipient-drug particles (6-10 different particles per each pair). Moreover, surface topography images (100 nm2–10 µm2) and roughness data were acquired from AFM tapping mode. AFM data were related to ODT macro/microscopic properties obtained from SEM, FTIR, XRD, thermal analysis using DSC and TGA, disintegration testing, Heckel and tabletability profiles. The study results showed a good association between the adhesive molecular and physical forces of paired particles and the resultant densification mechanisms responsible for mechanical strength of tablets. MCC micro roughness was 3 times that of D-mannitol which explains the high hardness of MCC ODTs due to mechanical interlocking. Hydrogen bonding between MCC particles could not be established from both AFM and FTIR solid state investigation. On the contrary, D-mannitol produced fragile ODTs due to fragmentation of surface crystallites during compression attained from its weak crystal structure. Furthermore, AFM analysis has shown the presence of extensive micro fibril structures inhabiting nano pores which further supports the use of MCC as a disintegrant. Overall, excipients (and model drugs) showed mechanistic behaviour on the nano/micro scale that could be related to the functionality of materials on the macro scale. PMID:25025427

  8. Multiscale simulations of patchy particle systems combining Molecular Dynamics, Path Sampling and Green's Function Reaction Dynamics

    Science.gov (United States)

    Bolhuis, Peter

    Important reaction-diffusion processes, such as biochemical networks in living cells, or self-assembling soft matter, span many orders in length and time scales. In these systems, the reactants' spatial dynamics at mesoscopic length and time scales of microns and seconds is coupled to the reactions between the molecules at microscopic length and time scales of nanometers and milliseconds. This wide range of length and time scales makes these systems notoriously difficult to simulate. While mean-field rate equations cannot describe such processes, the mesoscopic Green's Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. The recently developed multiscale Molecular Dynamics Green's Function Reaction Dynamics (MD-GFRD) approach combines GFRD for simulating the system at the mesocopic scale where particles are far apart, with microscopic Molecular (or Brownian) Dynamics, for simulating the system at the microscopic scale where reactants are in close proximity. The association and dissociation of particles are treated with rare event path sampling techniques. I will illustrate the efficiency of this method for patchy particle systems. Replacing the microscopic regime with a Markov State Model avoids the microscopic regime completely. The MSM is then pre-computed using advanced path-sampling techniques such as multistate transition interface sampling. I illustrate this approach on patchy particle systems that show multiple modes of binding. MD-GFRD is generic, and can be used to efficiently simulate reaction-diffusion systems at the particle level, including the orientational dynamics, opening up the possibility for large-scale simulations of e.g. protein signaling networks.

  9. Radiopharmaceuticals: nanoparticles like multi-functional systems for the obtaining in vivo of molecular images; Radiofarmacos: nanoparticulas como sistemas multifuncionales para la obtencion in vivo de imagenes moleculares

    Energy Technology Data Exchange (ETDEWEB)

    Ferro F, G.; Ramirez de la Cruz, F. M.; Ocampo G, B. E.; Morales A, E.; Santos C, C. L.; Mendoza S, A. N., E-mail: guillermina.ferro@inin.gob.m [ININ, Departamento de Materiales Radiactivos, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    The techniques of obtaining direct or indirect molecular images detect and register the space-temporary distribution of molecular or cellular processes for biochemical, biological, diagnostic and therapeutic applications. The advanced techniques of image like the nuclear magnetic resonance, the single photon emission computed tomography, the positron emission tomography and the images of optic fluorescence have been used successfully to detect these processes. On the other hand, the utility of the nanoparticles for any application is dependent of the physicochemical properties that present, being possible to modify their surface when making them react with different biomolecules what allows the formation of conjugates with specific molecular recognition. The joint of various protein molecules, peptides or oligonucleotides to the surface of a nanoparticle produce a multi-functional system able to increase the multivalent joints from the nanoparticles-biomolecules to their receivers for the obtaining of molecular images in vivo. The peptides stimulate, regulate or inhibit numerous functions of the life, acting mainly as information transmitters and activity coordinators of several tissues in the organism. The receivers of regulator peptides are over represented in numerous types of cancer cells and they are protein structures. These receivers have been used as white molecular of marked peptides, to locate primary malignant tumors and their metastasis, using the diagnostic techniques of molecular image mentioned above, which consist basically on the radio peptides use and conjugated peptides to fluoro chromes, to metallic nanoparticles and nano crystals. A summary of the work is presented carried out by the personnel of the Radio-active Materials and Chemistry Departments of the Instituto Nacional de Investigaciones Nucleares in this field. (Author)

  10. Molecular docking and spectroscopic investigations aided by density functional theory of Parkinson's drug 2-(3,4-dihydroxyphenyl)ethylamine

    Science.gov (United States)

    Sherlin, Y. Sheeba; Vijayakumar, T.; Roy, S. D. D.; Jayakumar, V. S.

    2018-05-01

    Molecular geometry of Parkinson's drug 2-(3,4-Dihydroxyphenyl)ethylamine hydrochloride (Dopamine, DA) has been evaluated and compared with experimental XRD data. Molecular docking and vibrational spectral analysis of DA have been carried out using FT-Raman and FT-IR spectra aided by Density Functional Theory at B3LYP/6-311++G(d,p). The present investigation deals with the analysis of structural and spectral features responsible for drug activities, nature of hydrogen bonding interactions of the molecule and the correlation of Parkinson's nature with its molecular structural features.

  11. [Fake malaria drugs].

    Science.gov (United States)

    Bygbjerg, Ib Christian

    2009-03-02

    The literature on fake medicaments is sparse, even if approximately 15% of all medicaments are fake, a figure that for antimalarials in particular reaches 50% in parts of Africa and Asia. Sub-standard and fake medicines deplete the public's confidence in health systems, health professionals and in the pharmaceutical industry - and increase the risk that resistance develops. For a traveller coming from a rich Western country, choosing to buy e.g. preventive antimalarials over the internet or in poor malaria-endemic areas, the consequences may be fatal. International trade-, control- and police-collaboration is needed to manage the problem, as is the fight against poverty and poor governance.

  12. Bioorganometallic Chemistry and Malaria

    Science.gov (United States)

    Biot, Christophe; Dive, Daniel

    This chapter summarizes recent developments in the design, synthesis, and structure-activity relationship studies of organometallic antimalarials. It begins with a general introduction to malaria and the biology of the parasite Plasmodium falciparum, with a focus on the heme detoxification system. Then, a number of metal complexes from the literature are reported for their antiplasmodial activity. The second half of the chapter deals with the serendipitous discovery of ferroquine, its mechanism(s) of action, and the failure to induce a resistance. Last, but not least, we suggest that the bioorganometallic approach offers the potential for the design of novel therapeutic agents.

  13. Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants

    Science.gov (United States)

    Aklilu, Behailu B.; Culligan, Kevin M.

    2016-01-01

    Replication protein A (RPA) is a heterotrimeric, single-stranded DNA binding complex required for eukaryotic DNA replication, repair, and recombination. RPA is composed of three subunits, RPA1, RPA2, and RPA3. In contrast to single RPA subunit genes generally found in animals and yeast, plants encode multiple paralogs of RPA subunits, suggesting subfunctionalization. Genetic analysis demonstrates that five Arabidopsis thaliana RPA1 paralogs (RPA1A to RPA1E) have unique and overlapping functions in DNA replication, repair, and meiosis. We hypothesize here that RPA1 subfunctionalities will be reflected in major structural and sequence differences among the paralogs. To address this, we analyzed amino acid and nucleotide sequences of RPA1 paralogs from 25 complete genomes representing a wide spectrum of plants and unicellular green algae. We find here that the plant RPA1 gene family is divided into three general groups termed RPA1A, RPA1B, and RPA1C, which likely arose from two progenitor groups in unicellular green algae. In the family Brassicaceae the RPA1B and RPA1C groups have further expanded to include two unique sub-functional paralogs RPA1D and RPA1E, respectively. In addition, RPA1 groups have unique domains, motifs, cis-elements, gene expression profiles, and pattern of conservation that are consistent with proposed functions in monocot and dicot species, including a novel C-terminal zinc-finger domain found only in plant RPA1C-like sequences. These results allow for improved prediction of RPA1 subunit functions in newly sequenced plant genomes, and potentially provide a unique molecular tool to improve classification of Brassicaceae species. PMID:26858742

  14. The Influence of Sub-Unit Composition and Expression System on the Functional Antibody Response in the Development of a VAR2CSA Based Plasmodium falciparum Placental Malaria Vaccine.

    Directory of Open Access Journals (Sweden)

    Morten A Nielsen

    Full Text Available The disease caused by Plasmodium falciparum (Pf involves different clinical manifestations that, cumulatively, kill hundreds of thousands every year. Placental malaria (PM is one such manifestation in which Pf infected erythrocytes (IE bind to chondroitin sulphate A (CSA through expression of VAR2CSA, a parasite-derived antigen. Protection against PM is mediated by antibodies that inhibit binding of IE in the placental intervillous space. VAR2CSA is a large antigen incompatible with large scale recombinant protein expression. Vaccines based on sub-units encompassing the functionally constrained receptor-binding domains may, theoretically, circumvent polymorphisms, reduce the risk of escape-mutants and induce cross-reactive antibodies. However, the sub-unit composition and small differences in the borders, may lead to exposure of novel immuno-dominant antibody epitopes that lead to non-functional antibodies, and furthermore influence the folding, stability and yield of expression. Candidate antigens from the pre-clinical development expressed in High-Five insect cells using the baculovirus expression vector system were transitioned into the Drosophila Schneider-2 cell (S2 expression-system compliant with clinical development. The functional capacity of antibodies against antigens expressed in High-Five cells or in S2 cells was equivalent. This enabled an extensive down-selection of S2 insect cell-expressed antigens primarily encompassing the minimal CSA-binding region of VAR2CSA. In general, we found differential potency of inhibitory antibodies against antigens with the same borders but of different var2csa sequences. Likewise, we found that subtle size differences in antigens of the same sequence gave varying levels of inhibitory antibodies. The study shows that induction of a functional response against recombinant subunits of the VAR2CSA antigen is unpredictable, demonstrating the need for large-scale screening in order to identify antigens

  15. Malaria prophylaxis in post renal transplant recipients in the tropics: is it necessary?

    Science.gov (United States)

    Anteyi, E A; Liman, H M; Gbaji, A

    2003-01-01

    Malaria prophylaxis is usually not provided routinely for most post renal transplant recipients in malaria endemic zones. Therefore, very little information is known about the incidence and severity of this disease among the post-transplant recipients in our environment. Hence a prospective, non-randomized open label clinical trial to determine the incidence of malaria and the beneficial effect of malaria prophylaxis among renal transplant recipients in Nigeria was carried out. All seven consecutive patients who had renal transplants and returned to the unit not more than four weeks later were seen and followed up. This consisted of an initial four week period of no prophylaxis and another four weeks of prophylaxis with proguanil hydrochloride 200 mg daily. Weekly thin and thick blood films by Giemsa stain were examined and other routine investigations of liver function tests, full blood count, urea, creatinine, electrolytes and urinalysis were done. Only three out of the seven patients (42.8%) had positive smears for malaria parasites in the initial no prophylaxis phase. No malaria parasites were detected at the prophylactic phase. There was no significant difference in the results of other investigations including the renal function between the two phases. This study has shown the benefit of short term routine malaria prophylaxis among renal transplant recipients in malaria endemic zones.

  16. Decoding the Role of Glycans in Malaria

    Directory of Open Access Journals (Sweden)

    Pollyanna S. Gomes

    2017-06-01

    Full Text Available Complications arising from malaria are a concern for public health authorities worldwide, since the annual caseload in humans usually exceeds millions. Of more than 160 species of Plasmodium, only 4 infect humans, with the most severe cases ascribed to Plasmodium falciparum and the most prevalent to Plasmodium vivax. Over the past 70 years, since World War II, when the first antimalarial drugs were widely used, many efforts have been made to combat this disease, including vectorial control, new drug discoveries and genetic and molecular approaches. Molecular approaches, such as glycobiology, may lead to new therapeutic targets (both in the host and the parasites, since all interactions are mediated by carbohydrates or glycan moieties decorating both cellular surfaces from parasite and host cells. In this review, we address the carbohydrate-mediated glycobiology that directly affects Plasmodium survival or host resistance.

  17. Pharmacogenomics of the human ABC transporter ABCG2: from functional evaluation to drug molecular design

    Science.gov (United States)

    Ishikawa, Toshihisa; Tamura, Ai; Saito, Hikaru; Wakabayashi, Kanako; Nakagawa, Hiroshi

    2005-10-01

    In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug-drug interactions. We recently developed methods for high-speed functional screening and quantitative structure-activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

  18. Cocaine and MDMA Induce Cellular and Molecular Changes in Adult Neurogenic Systems: Functional Implications

    Directory of Open Access Journals (Sweden)

    Vivian Capilla-Gonzalez

    2011-06-01

    Full Text Available The capacity of the brain to generate new adult neurons is a recent discovery that challenges the old theory of an immutable adult brain. A new and fascinating field of research now focuses on this regenerative process. The two brain systems that constantly produce new adult neurons, known as the adult neurogenic systems, are the dentate gyrus (DG of the hippocampus and the lateral ventricules/olfactory bulb system. Both systems are involved in memory and learning processes. Different drugs of abuse, such as cocaine and MDMA, have been shown to produce cellular and molecular changes that affect adult neurogenesis. This review summarizes the effects that these drugs have on the adult neurogenic systems. The functional relevance of adult neurogenesis is obscured by the functions of the systems that integrate adult neurons. Therefore, we explore the effects that cocaine and MDMA produce not only on adult neurogenesis, but also on the DG and olfactory bulbs. Finally, we discuss the possible role of new adult neurons in cocaine- and MDMA-induced impairments. We conclude that, although harmful drug effects are produced at multiple physiological and anatomical levels, the specific consequences of reduced hippocampus neurogenesis are unclear and require further exploration.

  19. Studies of the energy density functional and its derivatives in atomic and molecular systems

    International Nuclear Information System (INIS)

    Robles, J.

    1986-01-01

    The first chapter is a review of formal density functional theory, (DFT). In the second chapter, approximations to exact DFT are reviewed. In chapter three, the author proposes a modified molecular Thomas-Fermi, (TF) theory. He proceeds by imposing a continuity condition on the density. This avoids the singularities at the nuclei of classical TF. The method is sanctioned by Teller and Balasz theorems. However, it is found that while the classical TF theory is improved, the present method still predicts no-binding. In chapter four, it is suggested that the correlation energy, (E/sub c/), is proportional to the exchange energy, (K), E/sub c/ = cK. This idea is tested with Hartree-Fock (HF) and DFT data. In HF, c = 1/40 for atoms and c = 1/25 for molecules. Furthermore, the method is used to estimate dissociation energies. Thereafter, the author studies the chemical potential, (μ), of atoms (chapter five) and molecules (chapter six). In chapter seven, the concept of local pressure in an inhomogeneous electronic system is studied and extended, within the local thermodynamic formulation of DFT. Finally, appendix A provides the required mathematical framework (basic functional calculus) to understand this work, while appendix B is essentially a summary of the HF method

  20. Molecular recognition in myxobacterial outer membrane exchange: functional, social and evolutionary implications.

    Science.gov (United States)

    Wall, Daniel

    2014-01-01

    Through cooperative interactions, bacteria can build multicellular communities. To ensure that productive interactions occur, bacteria must recognize their neighbours and respond accordingly. Molecular recognition between cells is thus a fundamental behaviour, and in bacteria important discoveries have been made. This MicroReview focuses on a recently described recognition system in myxobacteria that is governed by a polymorphic cell surface receptor called TraA. TraA regulates outer membrane exchange (OME), whereby myxobacterial cells transiently fuse their OMs to efficiently transfer proteins and lipids between cells. Unlike other transport systems, OME is rather indiscriminate in what OM goods are transferred. In contrast, the recognition of partnering cells is discriminatory and only occurs between cells that bear identical or closely related TraA proteins. Therefore TraA functions in kin recognition and, in turn, OME helps regulate social interactions between myxobacteria. Here, I discuss and speculate on the social and evolutionary implications of OME and suggest it helps to guide their transition from free-living cells into coherent and functional populations. © 2013 John Wiley & Sons Ltd.

  1. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    Science.gov (United States)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.

    2017-10-01

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.

  2. Molecular and functional characterization of a fads2 orthologue in the Amazonian teleost, Arapaima gigas.

    Science.gov (United States)

    Lopes-Marques, Mónica; Ozório, Rodrigo; Amaral, Ricardo; Tocher, Douglas R; Monroig, Óscar; Castro, L Filipe C

    2017-01-01

    The Brazilian teleost Arapaima gigas is an iconic species of the Amazon. In recent years a significant effort has been put into the farming of arapaima to mitigate overfishing threats. However, little is known regarding the nutritional requirements of A. gigas in particular those for essential fatty acids including the long-chain polyunsaturated fatty acids (LC-PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The ability to biosynthesize LC-PUFA is dependent upon the gene repertoire of fatty acyl desaturases (Fads) and elongases (Elovl), as well as their fatty acid specificities. In the present study we characterized both molecularly and functionally an orthologue of the desaturase fatty acid desaturase 2 (fads2) from A. gigas. The isolated sequence displayed the typical desaturase features, a cytochrome b 5 -domain with the heme-binding motif, two transmembrane domains and three histidine-rich regions. Functional characterization of A. gigas fads2 showed that, similar to other teleosts, the A. gigas fads2 exhibited a predominant Δ6 activity complemented with some capacity for Δ8 desaturation. Given that A. gigas belongs to one of the oldest teleostei lineages, the Osteoglossomorpha, these findings offer a significant insight into the evolution LC-PUFA biosynthesis in teleosts. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Differential expression of EWI-2 in endometriosis, its functional role and underlying molecular mechanisms.

    Science.gov (United States)

    Zheng, Tingting; Yang, Jing

    2017-07-01

    We aimed to investigate EWI-2 expression in endometrium tissues collected from women with endometriosis at mRNA and protein levels, to evaluate its potential as a biomarker for endometriosis and to study its functional role via possible regulation of the PI3K/Akt signaling pathway. Endometrium tissues were collected from patients with endometriosis and healthy individuals. EWI-2 mRNA expression was evaluated using quantitative real-time PCR (qRT-PCR) while EWI-2 protein levels were determined by western blotting. For functional studies, EWI-2 shRNA was transfected in endometrial epithelial cells and the in vitro migration and invasion assays were performed using the Transwell chambers. EWI-2 was significantly downregulated in tissues obtained from patients with endometriosis compared with healthy individuals (P endometriosis diagnosis was 0.8942 (P = 0.003), 0.9643 (P = 0.0001), 0.9912 (P endometriosis in matched comparisons of data originated from the proliferative, early, middle, and late secretory phases. Over the menstrual cycle, the expression of EWI-2 was significantly decreased in the eutopic tissues compared to the ectopic tissues. Further cellular and molecular analyses showed that EWI-2 inhibited cell migration and invasion via the Akt signaling. Our findings suggested that downregulation of EWI-2 may contribute to endometriosis physiopathology and potentiate EWI-2 as a valuable diagnostic biomarker and therapeutic target for endometriosis. © 2017 Japan Society of Obstetrics and Gynecology.

  4. Molecular simulations and density functional theory calculations of bromine in clathrate hydrate phases

    Energy Technology Data Exchange (ETDEWEB)

    Dureckova, Hana, E-mail: houci059@uottawa.ca; Woo, Tom K., E-mail: tom.woo@uottawa.ca [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 5N6 (Canada); Alavi, Saman, E-mail: saman.alavi@nrc-cnrc.gc.ca [Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 5N6 (Canada); National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1N 6N5 (Canada); Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 (Canada)

    2016-01-28

    Bromine forms a tetragonal clathrate hydrate structure (TS-I) very rarely observed in clathrate hydrates of other guest substances. The detailed structure, energetics, and dynamics of Br{sub 2} and Cl{sub 2} in TS-I and cubic structure I (CS-I) clathrate hydrates are studied in this work using molecular dynamics and quantum chemical calculations. X-ray diffraction studies show that the halogen-water–oxygen distances in the cages of these structures are shorter than the sum of the van der Waals radii of halogen and oxygen atoms. This suggests that the stabilizing effects of halogen bonding or other non-covalent interactions (NCIs) may contribute to the formation of the unique tetragonal bromine hydrate structure. We performed molecular dynamics simulations of Br{sub 2} and Cl{sub 2} clathrate hydrates using our previously developed five-site charge models for the dihalogen molecules [Dureckova et al. Can. J. Chem. 93, 864 (2015)] which reproduce the computed electrostatic potentials of the dihalogens and account for the electropositive σ-hole of the halogen bond donor (the dihalogen). Analysis of the radial distribution functions, enthalpies of encapsulation, velocity and orientation autocorrelation functions, and polar angle distributions are carried out for Br{sub 2} and Cl{sub 2} guests in various cages to contrast the properties of these guests in the TS-I and CS-I phases. Quantum chemical partial geometry optimizations of Br{sub 2} and Cl{sub 2} guests in the hydrate cages using the M06-2X functional give short halogen-water distances compatible with values observed in X-ray diffraction experiments. NCI plots of guest-cage structures are generated to qualitatively show the relative strength of the non-bonding interactions between dihalogens and water molecules. The differences between behaviors of Br{sub 2} and Cl{sub 2} guests in the hydrate cages may explain why bromine forms the unique TS-I phase.

  5. New records of Anopheles arabiensis breeding on the Mount Kenya highlands indicate indigenous malaria transmission

    Directory of Open Access Journals (Sweden)

    Githure John I

    2006-03-01

    Full Text Available Abstract Background Malaria cases on the highlands west of Mount Kenya have been noticed since 10 – 20 years ago. It was not clear whether these cases were introduced from the nearby lowland or resulted from local transmission because of no record of vector mosquitoes on the highlands. Determination of presence and abundance of malaria vector is vital for effective control and epidemic risk assessment of malaria among both local residents and tourists. Methods A survey on 31 aquatic sites for the malaria-vector mosquitoes was carried out along the primary road on the highlands around Mount Kenya and the nearby Mwea lowland during April 13 to June 28, 2005. Anopheline larvae were collected and reared into adults for morphological and molecular species identification. In addition, 31 families at three locations of the highlands were surveyed using a questionnaire about their history of malaria cases during the past five to 20 years. Results Specimens of Anopheles arabiensis were molecularly identified in Karatina and Naro Moru on the highlands at elevations of 1,720 – 1,921 m above sea level. This species was also the only malaria vector found in the Mwea lowland. Malaria cases were recorded in the two highland locations in the past 10 years with a trend of increasing. Conclusion Local malaria transmission on the Mount Kenya highlands is possible due to the presence of An. arabiensis. Land use pattern and land cover might be the key factors affecting the vector population dynamics and the highland malaria transmission in the region.

  6. Association between serum transferrin receptor levels and malaria ...

    African Journals Online (AJOL)

    user

    ... and malaria is common in sub-Saharan Africa, and is a complex phenomenon. ... iron status and malaria incidence among children in a high malaria ... seasonally as cash crops. ... Children were followed for presence of malaria parasites by.

  7. Effects of vitamin C, vitamin E, and molecular hydrogen on the placental function in trophoblast cells.

    Science.gov (United States)

    Guan, Zhong; Li, Huai-Fang; Guo, Li-Li; Yang, Xiang

    2015-08-01

    This study aimed to investigate the effects of three different antioxidants, namely vitamin C, vitamin E, and molecular hydrogen, on cytotrophoblasts in vitro. Two trophoblast cell lines, JAR and JEG-3, were exposed to different concentrations of vitamin C (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), vitamin E (0, 25, 50, 100, 500, 1,000, 5,000 μmol/L), and molecular hydrogen (0, 25, 50, 100, 500 μmol/L) for 48 h. The cell viability was detected using the MTS assay. The secretion of human chorionic gonadotropin (hCG) and the tumor necrosis factor-α (TNF-α) were assessed and the expression of TNF-α mRNA was observed by real-time RT-PCR. Cell viability was significantly suppressed by 500 μmol/L vitamins C and E (P 0.05). The expression of TNF-α was increased by 100 μmol/L vitamin C and 50 μmol/L vitamins E, separately or combined (P vitamin C and E, separately or combined. High levels of antioxidant vitamins C and E may have significant detrimental effects on placental function, as reflected by decreased cell viability and secretion of hCG; and placental immunity, as reflected by increased production of TNF-a. Meanwhile hydrogen showed no such effects on cell proliferation and TNF-α expression, but it could affect the level of hCG, indicating hydrogen as a potential candidate of antioxidant in the management of preeclampsia (PE) should be further studied.

  8. Molecular dynamics and density functional simulations of tungsten nanostructure formation by helium plasma irradiation

    International Nuclear Information System (INIS)

    Ito, A.M.; Takayama, A.; Oda, Y.

    2014-10-01

    For the purposes of long-term use of tungsten diverter walls, it is necessary to suppress the surface deterioration due to the helium ash which induces the formations of helium bubbles and tungsten fuzzy nanostructures. In the present paper, the formation mechanisms of helium bubbles and tungsten fuzzy nanostructures were explained by the four-step process which is composed of the penetration process, the diffusion and agglomeration process, the helium bubble growth process and the tungsten fuzzy nanostructure formation process. The first to third step processes of the four-step process were investigated by using binary collision approximation, density functional theory and molecular dynamics, respectively. Furthermore, newly developed molecular dynamics and Monte-Carlo hybrid simulation has successfully reproduced the early formation process of tungsten fuzzy nanostructure. From these simulations, we here suggest the following key mechanisms of the formations of helium bubbles and tungsten fuzzy nanostructures: (1) By comparison between helium, neon, argon and hydrogen, the noble gas atoms can agglomerate limitlessly not only at a vacancy but also at an interstitial site. In particular, at the low incident energy, only helium atoms bring about the nucleation for helium bubble. (2) In the helium bubble growth process, the strain of the tungsten material around a helium atom is released as a dislocation loop, which is regarded as the loop punching phenomenon. (3) In the tungsten nanostructure formation process, the bursting of a helium bubble forms cavity and convexity in the surface. The helium bubbles tend to be grown and to burst at the cavity region, and then the difference of height between the cavity and convexity on the surface are enhanced. Consequently, the tungsten fuzzy nanostructure is formed. (author)

  9. Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming

    International Nuclear Information System (INIS)

    Levine, Benjamin G.; Stone, John E.; Kohlmeyer, Axel

    2011-01-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.

  10. Malaria: toxins, cytokines and disease

    DEFF Research Database (Denmark)

    Jakobsen, P H; Bate, C A; Taverne, J

    1995-01-01

    In this review the old concept of severe malaria as a toxic disease is re-examined in the light of recent discoveries in the field of cytokines. Animal studies suggest that the induction of TNF by parasite-derived molecules may be partly responsible for cerebral malaria and anemia, while...... hypoglycaemia may be due to direct effects of similar molecules on glucose metabolism. These molecules appear to be phospholipids and we suggest that when fully characterized they might form the basis of antitoxic therapy for malaria....

  11. Molecular characterization of the llama FGF5 gene and identification of putative loss of function mutations.

    Science.gov (United States)

    Daverio, M S; Vidal-Rioja, L; Frank, E N; Di Rocco, F

    2017-12-01

    Llama, the most numerous domestic camelid in Argentina, has good fiber-production ability. Although a few genes related to other productive traits have been characterized, the molecular genetic basis of fiber growth control in camelids is still poorly understood. Fibroblast growth factor 5 (FGF5) is a secreted signaling protein that controls hair growth in humans and other mammals. Mutations in the FGF5 gene have been associated with long-hair phenotypes in several species. Here, we sequenced the llama FGF5 gene, which consists of three exons encoding 813 bp. cDNA analysis from hair follicles revealed the expression of two FGF5 alternative spliced transcripts, in one of which exon 2 is absent. DNA variation analysis showed four polymorphisms in the coding region: a synonymous SNP (c.210A>G), a single base deletion (c.348delA), a 12-bp insertion (c.351_352insCATATAACATAG) and a non-sense mutation (c.499C>T). The deletion was always found together with the insertion forming a haplotype and producing a putative truncated protein of 123 amino acids. The c.499C>T mutation also leads to a premature stop codon at position 168. In both cases, critical functional domains of FGF5, including one heparin binding site, are lost. All animals analyzed were homozygous for one of the deleterious mutations or compound heterozygous for both (i.e. c.348delA, c.351_352insCATATAACATAG/c.499T). Sequencing of guanaco samples showed that the FGF5 gene encodes a full-length 270-amino acid protein. These results suggest that FGF5 is likely functional in short-haired wild species and non-functional in the domestic fiber-producing species, the llama. © 2017 Stichting International Foundation for Animal Genetics.

  12. Molecular components and functions of the endocannabinoid system in mouse prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Mathieu Lafourcade

    2007-08-01

    Full Text Available Cannabinoids have deleterious effects on prefrontal cortex (PFC-mediated functions and multiple evidences link the endogenous cannabinoid (endocannabinoid system, cannabis use and schizophrenia, a disease in which PFC functions are altered. Nonetheless, the molecular composition and the physiological functions of the endocannabinoid system in the PFC are unknown.Here, using electron microscopy we found that key proteins involved in endocannabinoid signaling are expressed in layers v/vi of the mouse prelimbic area of the PFC: presynaptic cannabinoid CB1 receptors (CB1R faced postsynaptic mGluR5 while diacylglycerol lipase alpha (DGL-alpha, the enzyme generating the endocannabinoid 2-arachidonoyl-glycerol (2-AG was expressed in the same dendritic processes as mGluR5. Activation of presynaptic CB1R strongly inhibited evoked excitatory post-synaptic currents. Prolonged synaptic stimulation at 10Hz induced a profound long-term depression (LTD of layers V/VI excitatory inputs. The endocannabinoid -LTD was presynaptically expressed and depended on the activation of postsynaptic mGluR5, phospholipase C and a rise in postsynaptic Ca(2+ as predicted from the localization of the different components of the endocannabinoid system. Blocking the degradation of 2-AG (with URB 602 but not of anandamide (with URB 597 converted subthreshold tetanus to LTD-inducing ones. Moreover, inhibiting the synthesis of 2-AG with Tetrahydrolipstatin, blocked endocannabinoid-mediated LTD. All together, our data show that 2-AG mediates LTD at these synapses.Our data show that the endocannabinoid -retrograde signaling plays a prominent role in long-term synaptic plasticity at the excitatory synapses of the PFC. Alterations of endocannabinoid -mediated synaptic plasticity may participate to the etiology of PFC-related pathologies.

  13. Molecular mechanisms of the microsomal mixed function oxidases and biological and pathological implications

    Directory of Open Access Journals (Sweden)

    Arthur I. Cederbaum

    2015-04-01

    Full Text Available The cytochrome P450 mixed function oxidase enzymes play a major role in the metabolism of important endogenous substrates as well as in the biotransformation of xenobiotics. The liver P450 system is the most active in metabolism of exogenous substrates. This review briefly describes the liver P450 (CYP mixed function oxidase system with respect to its enzymatic components and functions. Electron transfer by the NADPH-P450 oxidoreductase is required for reduction of the heme of P450, necessary for binding of molecular oxygen. Binding of substrates to P450 produce substrate binding spectra. The P450 catalytic cycle is complex and rate-limiting steps are not clear. Many types of chemical reactions can be catalyzed by P450 enzymes, making this family among the most diverse catalysts known. There are multiple forms of P450s arranged into families based on structural homology. The major drug metabolizing CYPs are discussed with respect to typical substrates, inducers and inhibitors and their polymorphic forms. The composition of CYPs in humans varies considerably among individuals because of sex and age differences, the influence of diet, liver disease, presence of potential inducers and/or inhibitors. Because of such factors and CYP polymorphisms, and overlapping drug specificity, there is a large variability in the content and composition of P450 enzymes among individuals. This can result in large variations in drug metabolism by humans and often can contribute to drug–drug interactions and adverse drug reactions. Because of many of the above factors, especially CYP polymorphisms, there has been much interest in personalized medicine especially with respect to which CYPs and which of their polymorphic forms are present in order to attempt to determine what drug therapy and what dosage would reflect the best therapeutic strategy in treating individual patients.

  14. Deconstructing and constructing innate immune functions using molecular sensors and actuators

    Science.gov (United States)

    Coutinho, Kester; Inoue, Takanari

    2016-05-01

    White blood cells such as neutrophils and macrophages are made competent for chemotaxis and phagocytosis -- the dynamic cellular behaviors that are hallmarks of their innate immune functions -- by the reorganization of complex biological circuits during differentiation. Conventional loss-of-function approaches have revealed that more than 100 genes participate in these cellular functions, and we have begun to understand the intricate signaling circuits that are built up from these gene products. We now appreciate: (1) that these circuits come in a variety of flavors -- so that we can make a distinction between genetic circuits, metabolic circuits and signaling circuits; and (2) that they are usually so complex that the assumption of multiple feedback loops, as well as that of crosstalk between seemingly independent pathways, is now routine. It has not escaped our notice, however, that just as physicists and electrical engineers have long been able to disentangle complex electric circuits simply by repetitive cycles of probing and measuring electric currents using a voltmeter, we might similarly be able to dissect these intricate biological circuits by incorporating equivalent approaches in the fields of cell biology and bioengineering. Existing techniques in biology for probing individual circuit components are unfortunately lacking, so that the overarching goal of drawing an exact circuit diagram for the whole cell -- complete with kinetic parameters for connections between individual circuit components -- is not yet in near sight. My laboratory and others have thus begun the development of a new series of molecular tools that can measurably investigate the circuit connectivity inside living cells, as if we were doing so on a silicon board. In these proceedings, I will introduce some of these techniques, provide examples of their implementation, and offer a perspective on directions moving forward.

  15. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria.

    Science.gov (United States)

    Lozano, José Manuel; Varela, Yahson; Silva, Yolanda; Ardila, Karen; Forero, Martha; Guasca, Laura; Guerrero, Yuly; Bermudez, Adriana; Alba, Patricia; Vanegas, Magnolia; Patarroyo, Manuel Elkin

    2017-11-01

    Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of Pf CSP, STARP; MSA1 and Pf 155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei -ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  16. A Large Size Chimeric Highly Immunogenic Peptide Presents Multistage Plasmodium Antigens as a Vaccine Candidate System against Malaria

    Directory of Open Access Journals (Sweden)

    José Manuel Lozano

    2017-11-01

    Full Text Available Rational strategies for obtaining malaria vaccine candidates should include not only a proper selection of target antigens for antibody stimulation, but also a versatile molecular design based on ordering the right pieces from the complex pathogen molecular puzzle towards more active and functional immunogens. Classical Plasmodium falciparum antigens regarded as vaccine candidates have been selected as model targets in this study. Among all possibilities we have chosen epitopes of PfCSP, STARP; MSA1 and Pf155/RESA from pre- and erythrocyte stages respectively for designing a large 82-residue chimeric immunogen. A number of options aimed at diminishing steric hindrance for synthetic procedures were assessed based on standard Fmoc chemistry such as building block orthogonal ligation; pseudo-proline and microwave-assisted procedures, therefore the large-chimeric target was produced, characterized and immunologically tested. Antigenicity and functional in vivo efficacy tests of the large-chimera formulations administered alone or as antigen mixtures have proven the stimulation of high antibody titers, showing strong correlation with protection and parasite clearance of vaccinated BALB/c mice after being lethally challenged with both P. berghei-ANKA and P. yoelii 17XL malaria strains. Besides, 3D structure features shown by the large-chimera encouraged as to propose using these rational designed large synthetic molecules as reliable vaccine candidate-presenting systems.

  17. The enhanced spin-polarized transport behaviors through cobalt benzene-porphyrin-benzene molecular junctions: the effect of functional groups

    Science.gov (United States)

    Cheng, Jue-Fei; Zhou, Liping; Wen, Zhongqian; Yan, Qiang; Han, Qin; Gao, Lei

    2017-05-01

    The modification effects of the groups amino (NH2) and nitro (NO2) on the spin polarized transport properties of the cobalt benzene-porphyrin-benzene (Co-BPB) molecule coupled to gold (Au) nanowire electrodes are investigated by the nonequilibrium Green’s function method combined with the density functional theory. The calculation results show that functional groups can lead to the significant spin-filter effect, enhanced low-bias negative differential resistance (NDR) behavior and novel reverse rectifying effect in Co-BPB molecular junction. The locations and types of functional groups have distinct influences on spin-polarized transport performances. The configuration with NH2 group substituting H atom in central porphyrin ring has larger spin-down current compared to that with NO2 substitution. And Co-BPB molecule junction with NH2 group substituting H atom in side benzene ring shows reverse rectifying effect. Detailed analyses confirm that NH2 and NO2 group substitution change the spin-polarized transferred charge, which makes the highest occupied molecular orbitals (HOMO) of spin-down channel of Co-BPB closer to the Fermi level. And the shift of HOMO strengthens the spin-polarized coupling between the molecular orbitals and the electrodes, leading to the enhanced spin-polarized behavior. Our findings might be useful in the design of multi-functional molecular devices in the future.

  18. Validation of systems biology derived molecular markers of renal donor organ status associated with long term allograft function.

    Science.gov (United States)

    Perco, Paul; Heinzel, Andreas; Leierer, Johannes; Schneeberger, Stefan; Bösmüller, Claudia; Oberhuber, Rupert; Wagner, Silvia; Engler, Franziska; Mayer, Gert

    2018-05-03

    Donor organ quality affects long term outcome after renal transplantation. A variety of prognostic molecular markers is available, yet their validity often remains undetermined. A network-based molecular model reflecting donor kidney status based on transcriptomics data and molecular features reported in scientific literature to be associated with chronic allograft nephropathy was created. Significantly enriched biological processes were identified and representative markers were selected. An independent kidney pre-implantation transcriptomics dataset of 76 organs was used to predict estimated glomerular filtration rate (eGFR) values twelve months after transplantation using available clinical data and marker expression values. The best-performing regression model solely based on the clinical parameters donor age, donor gender, and recipient gender explained 17% of variance in post-transplant eGFR values. The five molecular markers EGF, CD2BP2, RALBP1, SF3B1, and DDX19B representing key molecular processes of the constructed renal donor organ status molecular model in addition to the clinical parameters significantly improved model performance (p-value = 0.0007) explaining around 33% of the variability of eGFR values twelve months after transplantation. Collectively, molecular markers reflecting donor organ status significantly add to prediction of post-transplant renal function when added to the clinical parameters donor age and gender.

  19. [Congenital malaria due to Plasmodium falciparum and Plasmodium malariae].

    Science.gov (United States)

    Zenz, W; Trop, M; Kollaritsch, H; Reinthaler, F

    2000-05-19

    Increasing tourism and growing numbers of immigrants from malaria-endemic countries are leading to a higher importation rate of rare tropical disorders in European countries. We describe, to the best of our knowledge, the first case of connatal malaria in Austria. The patient is the first child of a 24 year old mother who was born in Ghana and immigrated to Austria one and a half years before delivery. She did not stay in an endemic region during this period and did not show fever or any other signs of malaria. The boy was healthy for the first six weeks of his life. In the 8th week of life he was admitted to our hospital due to persistent fever of unknown origin. On physical examination he showed only mild splenomegaly. Routine laboratory testing revealed mild hemolytic anemia with a hemoglobin value of 8.3 g/l. In the blood smear Plasmodium falciparum and Plasmodium malariae were detected. Oral therapy with quinine hydrochloride was successful and blood smears became negative for Plasmodia within 6 days. This case shows that congenital malaria can occur in children of clinically healthy women who were born in malaria-endemic areas even one and a half year after they have immigrated to non-endemic regions.

  20. Low plasma concentrations of interleukin 10 in severe malarial anaemia compared with cerebral and uncomplicated malaria

    DEFF Research Database (Denmark)

    Kurtzhals, J A; Adabayeri, V; Goka, B Q

    1998-01-01

    -back regulation of TNF, stimulates bone-marrow function in vitro and counteracts anaemia in mice. We investigated the associations of these cytokines with malarial anaemia. METHODS: We enrolled 175 African children with malaria into two studies in 1995 and 1996. In the first study, children were classified...... as having severe anaemia (n=10), uncomplicated malaria (n=26), or cerebral anaemia (n=41). In the second study, patients were classified as having cerebral malaria (n=33) or being fully conscious (n=65), and the two groups were subdivided by measured haemoglobin as normal (>110 g/L), moderate anaemia (60...... anaemia was 270 pg/mL (95% CI 152-482) compared with 725 pg/mL (465-1129) in uncomplicated malaria and 966 pg/mL (612-1526) in cerebral malaria (pcerebral...

  1. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  2. Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae.

    Directory of Open Access Journals (Sweden)

    Gloria Volohonsky

    2017-01-01

    Full Text Available Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1 is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites.

  3. Malaria induced acute renal failure: A single center experience

    International Nuclear Information System (INIS)

    KV Kanodia; AV Vanikar

    2010-01-01

    Malaria has protean clinical manifestations and renal complications, particularly acute renal failure that could be life threatening. To evaluate the incidence, clinical profile, ou come and predictors of mortality in patients with malarial acute renal failure, we retrospectively studied the last two years records of malaria induced acute renal failure in patients with peripheral smear positive for malarial parasites. One hundred (10.4%) (63 males, 37 females) malaria induced acute renal failure amongst 958 cases of acute renal failure were evaluated. Plasmodium (P). falciparum was reported in 85%, P. vivax in 2%, and both in 13% patients. The mean serum creatinine was 9.2 ± 4.2 mg%, and oligo/anuria was present in 82%; 78% of the patients required hemodialysis. Sixty four percent of the patients recovered completely, 10% incompletely, and 5% developed chronic kidney failure; mortality occurred in 21% of the patients. Low hemoglobin, oligo/anuria on admission, hyperbilirubinemia, cerebral malaria, disseminated intravascular coagulation, and high serum creatinine were the main predictors of mortality. We conclude that malaria is associated with acute renal failure, which occurs most commonly in plasmodium falciparum infected patients. Early diagnosis and prompt dialysis with supportive management can reduce morality and enhance recovery of renal function (Author).

  4. An Anthropologist Looks at Malaria

    African Journals Online (AJOL)

    prevalence of malaria is a major selective agent in- ... century before Darwin put forward the Theory of Natural ... A. C. Allison, a former research student of the Anatomy ... A review of all available ... However, they both draw attention to the.

  5. Premunition in Plasmodium falciparum malaria

    African Journals Online (AJOL)

    STORAGESEVER

    2010-03-08

    Mar 8, 2010 ... antigenic polymorphism, shedding of parts of parasite proteins, cross-reactive epitopes of antigens of ... Due to the lack of HLA molecules on the surface of the .... Susceptibility and death rates in P. falciparum malaria are.

  6. [Current malaria situation in Turkey].

    Science.gov (United States)

    Gockchinar, T; Kalipsi, S

    2001-01-01

    Geographically, Turkey is situated in an area where malaria is very risky. The climatic conditions in the region are suitable for the malaria vector to proliferate. Due to agricultural infrastructural changes, GAP and other similar projects, insufficient environmental conditions, urbanization, national and international population moves, are a key to manage malaria control activities. It is estimated that malaria will be a potential danger for Turkey in the forthcoming years. The disease is located largely in south-eastern Anatolia. The Diyarbakir, Batman, Sanliurfa, Siirt, and Mardin districts are the most affected areas. In western districts, like Aydin and Manisa, an increase in the number of indigenous cases can be observed from time to time. This is due to workers moving from malaria districts to western parts to final work. Since these workers cannot be controlled, the population living in these regions get infected from indigenous cases. There were 84,345 malaria cases in 1994 and 82,096 in 1995, they decreased to 60,884 in 1996 and numbered 35,456 in 1997. They accounted for 36,842 and 20,963 in 1998 and 1999, respectively. In Turkey there are almost all cases of P. vivax malaria. There are also P. vivax and P. falciparum malaria cases coming from other countries: There were 321 P. vivax cases, including 2 P. falciparum ones, arriving to Turkey from Iraq in 1995. The P. vivax malaria cases accounted for 229 in 1996, and 67, cases P. vivax including 12 P. falciparum cases, in 1997, and 4 P. vivax cases in 1998 that came from that country. One P. vivax case entered Turkey from Georgia in 1998. The cause of higher incidence of P. vivax cases in 1995, it decreasing in 1999, is the lack of border controls over workers coming to Turkey. The other internationally imported cases are from Syria, Sudan, Pakistan, Afghanistan, Nigeria, India, Azerbaijan, Malaysia, Ghana, Indonesia, Yemen. Our examinations have shown that none of these internationally imported cases

  7. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.

    Science.gov (United States)

    Hu, Jinming; Liu, Shiyong

    2014-07-15

    CONSPECTUS: All living organisms and soft matter are intrinsically responsive and adaptive to external stimuli. Inspired by this fact, tremendous effort aiming to emulate subtle responsive features exhibited by nature has spurred the invention of a diverse range of responsive polymeric materials. Conventional stimuli-responsive polymers are constructed via covalent bonds and can undergo reversible or irreversible changes in chemical structures, physicochemical properties, or both in response to a variety of external stimuli. They have been imparted with a variety of emerging applications including drug and gene delivery, optical sensing and imaging, diagnostics and therapies, smart coatings and textiles, and tissue engineering. On the other hand, in comparison with molecular chemistry held by covalent bonds, supramolecular chemistry built on weak and reversible noncovalent interactions has emerged as a powerful and versatile strategy for materials fabrication due to its facile accessibility, extraordinary reversibility and adaptivity, and potent applications in diverse fields. Typically involving more than one type of noncovalent interactions (e.g., hydrogen bonding, metal coordination, hydrophobic association, electrostatic interactions, van der Waals forces, and π-π stacking), host-guest recognition refers to the formation of supramolecular inclusion complexes between two or more entities connected together in a highly controlled and cooperative manner. The inherently reversible and adaptive nature of host-guest molecular recognition chemistry, stemming from multiple noncovalent interactions, has opened up a new platform to construct novel types of stimuli-responsive materials. The introduction of host-guest chemistry not only enriches the realm of responsive materials but also confers them with promising new applications. Most intriguingly, the integration of responsive polymer building blocks with host-guest recognition motifs will endow the former with

  8. Fast Computation of Solvation Free Energies with Molecular Density Functional Theory: Thermodynamic-Ensemble Partial Molar Volume Corrections.

    Science.gov (United States)

    Sergiievskyi, Volodymyr P; Jeanmairet, Guillaume; Levesque, Maximilien; Borgis, Daniel

    2014-06-05

    Molecular density functional theory (MDFT) offers an efficient implicit-solvent method to estimate molecule solvation free-energies, whereas conserving a fully molecular representation of the solvent. Even within a second-order approximation for the free-energy functional, the so-called homogeneous reference fluid approximation, we show that the hydration free-energies computed for a data set of 500 organic compounds are of similar quality as those obtained from molecular dynamics free-energy perturbation simulations, with a computer cost reduced by 2-3 orders of magnitude. This requires to introduce the proper partial volume correction to transform the results from the grand canonical to the isobaric-isotherm ensemble that is pertinent to experiments. We show that this correction can be extended to 3D-RISM calculations, giving a sound theoretical justification to empirical partial molar volume corrections that have been proposed recently.

  9. Low Molecular Weight Heparin Improves Endothelial Function in Pregnant Women at High Risk of Preeclampsia.

    Science.gov (United States)

    McLaughlin, Kelsey; Baczyk, Dora; Potts, Audrey; Hladunewich, Michelle; Parker, John D; Kingdom, John C P

    2017-01-01

    Low molecular weight heparin (LMWH) has been investigated for the prevention of severe preeclampsia, although the mechanisms of action are unknown. The objective of this study was to investigate the cardiovascular effects of LMWH in pregnant women at high risk of preeclampsia. Pregnant women at high risk of preeclampsia (n=25) and low-risk pregnant controls (n=20) at 22 to 26 weeks' gestation underwent baseline cardiovascular assessments. High-risk women were then randomized to LMWH or saline placebo (30 mg IV bolus and 1 mg/kg subcutaneous dose). Cardiovascular function was assessed 1 and 3 hours post randomization. The in vitro endothelial effects of patient serum and exogenous LMWH on human umbilical venous endothelial cells were determined. High-risk women demonstrated a reduced cardiac output, high resistance hemodynamic profile with impaired radial artery flow-mediated dilation compared with controls. LMWH increased flow-mediated dilation in high-risk women 3 hours after randomization compared with baseline and increased plasma levels of placental growth factor, soluble fms-like tyrosine kinase-1, and myeloperoxidase. Serum from high-risk women impaired endothelial cell angiogenesis and increased PlGF-1 and PlGF-2 transcription compared with serum from low-risk controls. Coexposure of high-risk serum with LMWH improved the in vitro angiogenic response such that it was equivalent to that of low-risk serum and promoted placental growth factor secretion. LMWH improves maternal endothelial function in pregnant women at high risk of developing preeclampsia, possibly mediated through increased placental growth factor bioavailability. © 2016 American Heart Association, Inc.

  10. Bioengineered human IAS reconstructs with functional and molecular properties similar to intact IAS

    Science.gov (United States)

    Singh, Jagmohan

    2012-01-01

    Because of its critical importance in rectoanal incontinence, we determined the feasibility to reconstruct internal anal sphincter (IAS) from human IAS smooth muscle cells (SMCs) with functional and molecular attributes similar to the intact sphincter. The reconstructs were developed using SMCs from the circular smooth muscle layer of the human IAS, grown in smooth muscle differentiation media under sterile conditions in Sylgard-coated tissue culture plates with central Sylgard posts. The basal tone in the reconstructs and its changes were recorded following 0 Ca2+, KCl, bethanechol, isoproterenol, protein kinase C (PKC) activator phorbol 12,13-dibutyrate, and Rho kinase (ROCK) and PKC inhibitors Y-27632 and Gö-6850, respectively. Western blot (WB), immunofluorescence (IF), and immunocytochemical (IC) analyses were also performed. The reconstructs developed spontaneous tone (0.68 ± 0.26 mN). Bethanechol (a muscarinic agonist) and K+ depolarization produced contraction, whereas isoproterenol (β-adrenoceptor agonist) and Y-27632 produced a concentration-dependent decrease in the tone. Maximal decrease in basal tone with Y-27632 and Gö-6850 (each 10−5 M) was 80.45 ± 3.29 and 17.76 ± 3.50%, respectively. WB data with the IAS constructs′ SMCs revealed higher levels of RhoA/ROCK, protein kinase C-potentiated inhibitor or inhibitory phosphoprotein for myosin phosphatase (CPI-17), phospho-CPI-17, MYPT1, and 20-kDa myosin light chain vs. rectal smooth muscle. WB, IF, and IC studies of original SMCs and redispersed from the reconstructs for the relative distribution of different signal transduction proteins confirmed the feasibility of reconstruction of IAS with functional properties similar to intact IAS and demonstrated the development of myogenic tone with critical dependence on RhoA/ROCK. We conclude that it is feasible to bioengineer IAS constructs using human IAS SMCs that behave like intact IAS. PMID:22790596

  11. Molecular cloning, functional characterization, and evolutionary analysis of vitamin D receptors isolated from basal vertebrates.

    Directory of Open Access Journals (Sweden)

    Erin M Kollitz

    Full Text Available The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus, a 1R jawless fish; the little skate (Leucoraja erinacea, a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus, a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may

  12. A dynamic view of molecular switch behavior at serotonin receptors: implications for functional selectivity.

    Directory of Open Access Journals (Sweden)

    Maria Martí-Solano

    Full Text Available Functional selectivity is a property of G protein-coupled receptors that allows them to preferentially couple to particular signaling partners upon binding of biased agonists. Publication of the X-ray crystal structure of serotonergic 5-HT1B and 5-HT2B receptors in complex with ergotamine, a drug capable of activating G protein coupling and β-arrestin signaling at the 5-HT1B receptor but clearly favoring β-arrestin over G protein coupling at the 5-HT2B subtype, has recently provided structural insight into this phenomenon. In particular, these structures highlight the importance of specific residues, also called micro-switches, for differential receptor activation. In our work, we apply classical molecular dynamics simulations and enhanced sampling approaches to analyze the behavior of these micro-switches and their impact on the stabilization of particular receptor conformational states. Our analysis shows that differences in the conformational freedom of helix 6 between both receptors could explain their different G protein-coupling capacity. In particular, as compared to the 5-HT1B receptor, helix 6 movement in the 5-HT2B receptor can be constrained by two different mechanisms. On the one hand, an anchoring effect of ergotamine, which shows an increased capacity to interact with the extracellular part of helices 5 and 6 and stabilize them, hinders activation of a hydrophobic connector region at the center of the receptor. On the other hand, this connector region in an inactive conformation is further stabilized by unconserved contacts extending to the intracellular part of the 5-HT2B receptor, which hamper opening of the G protein binding site. This work highlights the importance of considering receptor capacity to adopt different conformational states from a dynamic perspective in order to underpin the structural basis of functional selectivity.

  13. Cellular, molecular and functional characterisation of YAC transgenic mouse models of Friedreich ataxia.

    Directory of Open Access Journals (Sweden)

    Sara Anjomani Virmouni

    Full Text Available Friedreich ataxia (FRDA is an autosomal recessive neurodegenerative disorder, caused by a GAA repeat expansion mutation within intron 1 of the FXN gene. We have previously established and performed preliminary characterisation of several human FXN yeast artificial chromosome (YAC transgenic FRDA mouse models containing GAA repeat expansions, Y47R (9 GAA repeats, YG8R (90 and 190 GAA repeats and YG22R (190 GAA repeats.We now report extended cellular, molecular and functional characterisation of these FXN YAC transgenic mouse models. FXN transgene copy number analysis of the FRDA mice demonstrated that the YG22R and Y47R lines each have a single copy of the FXN transgene while the YG8R line has two copies. Single integration sites of all transgenes were confirmed by fluorescence in situ hybridisation (FISH analysis of metaphase and interphase chromosomes. We identified significant functional deficits, together with a degree of glucose intolerance and insulin hypersensitivity, in YG8R and YG22R FRDA mice compared to Y47R and wild-type control mice. We also confirmed increased somatic GAA repeat instability in the cerebellum and brain of YG22R and YG8R mice, together with significantly reduced levels of FXN mRNA and protein in the brain and liver of YG8R and YG22R compared to Y47R.Together these studies provide a detailed characterisation of our GAA repeat expansion-based YAC transgenic FRDA mouse models that will help investigations of FRDA disease mechanisms and therapy.

  14. Plasmodium coatneyi in Rhesus Macaques Replicates the Multisystemic Dysfunction of Severe Malaria in Humans

    Science.gov (United States)

    Cabrera-Mora, Monica; Garcia, AnaPatricia; Orkin, Jack; Strobert, Elizabeth; Barnwell, John W.; Galinski, Mary R.

    2013-01-01

    Severe malaria, a leading cause of mortality among children and nonimmune adults, is a multisystemic disorder characterized by complex clinical syndromes that are mechanistically poorly understood. The interplay of various parasite and host factors is critical in the pathophysiology of severe malaria. However, knowledge regarding the pathophysiological mechanisms and pathways leading to the multisystemic disorders of severe malaria in humans is limited. Here, we systematically investigate infections with Plasmodium coatneyi, a simian malaria parasite that closely mimics the biological characteristics of P. falciparum, and develop baseline data and protocols for studying erythrocyte turnover and severe malaria in greater depth. We show that rhesus macaques (Macaca mulatta) experimentally infected with P. coatneyi develop anemia, coagulopathy, and renal and metabolic dysfunction. The clinical course of acute infections required suppressive antimalaria chemotherapy, fluid support, and whole-blood transfusion, mimicking the standard of care for the management of severe malaria cases in humans. Subsequent infections in the same animals progressed with a mild illness in comparison, suggesting that immunity played a role in reducing the severity of the disease. Our results demonstrate that P. coatneyi infection in rhesus macaques can serve as a highly relevant model to investigate the physiological pathways and molecular mechanisms of malaria pathogenesis in naïve and immune individuals. Together with high-throughput postgenomic technologies, such investigations hold promise for the identification of new clinical interventions and adjunctive therapies. PMID:23509137

  15. Combining molecular dynamics with mesoscopic Green’s function reaction dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vijaykumar, Adithya, E-mail: vijaykumar@amolf.nl [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands); van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam (Netherlands); Bolhuis, Peter G. [van ’t Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam (Netherlands); Rein ten Wolde, Pieter, E-mail: p.t.wolde@amolf.nl [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands)

    2015-12-07

    In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level.

  16. Molecular cloning and functional characterization of borneol dehydrogenase from the glandular trichomes of Lavandula x intermedia.

    Science.gov (United States)

    Sarker, Lukman S; Galata, Mariana; Demissie, Zerihun A; Mahmoud, Soheil S

    2012-12-15

    Several varieties of Lavandula x intermedia (lavandins) are cultivated for their essential oils (EOs) for use in cosmetic, hygiene and personal care products. These EOs are mainly constituted of monoterpenes including camphor, which contributes an off odor reducing the olfactory appeal of the oil. We have recently constructed a cDNA library from the glandular trichomes (the sites of EO synthesis) of L. x intermedia plants. Here, we describe the cloning of a borneol dehydrogenase cDNA (LiBDH) from this library. The 780 bp open reading frame of the cDNA encoded a 259 amino acid short chain alcohol dehydrogenase with a predicted molecular mass of ca. 27.5 kDa. The recombinant LiBDH was expressed in Escherichia coli, purified by Ni-NTA agarose affinity chromatography, and functionally characterized in vitro. The bacterially produced enzyme specifically converted borneol to camphor as the only product with K(m) and k(cat) values of 53 μM and 4.0 × 10(-4) s(-1), respectively. The LiBDH transcripts were specifically expressed in glandular trichomes of mature flowers indicating that like other Lavandula monoterpene synthases the expression of this gene is regulated in a tissue-specific manner. The cloning of LiBDH has far reaching implications in improving the quality of Lavandula EOs through metabolic engineering. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. The use of functionalized AFM tips as molecular sensors in the detection of pesticides

    Energy Technology Data Exchange (ETDEWEB)

    Deda, Daiana K.; Pereira, Barbara B.S.; Bueno, Carolina C.; Silva, Aline N. da; Ribeiro, Gabrielle A.; Amarante, Adriano M.; Leite, Fabio L., E-mail: fabioleite@ufscar.br [Universidade Federal de Sao Carlos (LNN/UFSCar), Sorocaba, SP (Brazil). Dept. de Fisica, Quimica e Matematica. Lab. de Nanoneurobiofisica; Franca, Eduardo F. [Universidade Federal de Uberlandia (UFU), MG (Brazil). Inst. de Quimica

    2013-11-01

    Atomic force spectroscopy, a technique derived from Atomic Force Microscopy (AFM), allowed to distinguish nonspecific and specific interactions between the acetolactate synthase enzyme (ALS) and anti-atrazine antibody biomolecules and the herbicides imazaquin, metsulfuron-methyl and atrazine. The presence of specific interactions increased the adhesion force (F{sub adh}) between the AFM tip and the herbicides, which made the modified tip a powerful biosensor. Increases of approximately 132% and 145% in the F{sub adh} values were observed when a tip functionalized with ALS was used to detect imazaquin and metsulfuron-methyl, respectively. The presence of specific interactions between the atrazine and the anti-atrazine antibody also caused an increase in the F{sub adh} values (approximately 175%) compared to those observed when using an unfunctionalized tip. The molecular modeling results obtained with the ALS enzyme suggest that the orientation of the biomolecule on the tip surface could be suitable for allowing interaction with the herbicides imazaquin and metsulfuron-methyl. (author)

  18. Molecular mechanism and functional consequences of lansoprazole-mediated heme oxygenase-1 induction

    Science.gov (United States)

    Schulz-Geske, Stephanie; Erdmann, Kati; Wong, Ronald J; Stevenson, David K; Schröder, Henning; Grosser, Nina

    2009-01-01

    AIM: To investigate the molecular mechanism and functional consequences of heme oxygenase-1 (HO-1) activation by lansoprazole in endothelial cells and macrophages. METHODS: Expression of HO-1 mRNA was analyzed by Northern blotting. Western blotting was used to determine the HO-1 and ferritin protein levels. NADPH-dependent reactive oxygen species (ROS) formation was measured with lucigenin-enhanced chemiluminescence. HO-1 promoter activity in mouse fibroblasts, stably transfected with a 15-kb HO-1 gene that drives expression of the reporter gene luciferase, was assessed using in vivo bioluminescence imaging. RESULTS: Lansoprazole increased HO-1 mRNA levels in endothelial cells and HO-1 protein levels in macrophages. In addition, lansoprazole-induced ferritin protein levels in both cell systems. Moreover, induction of the antioxidant proteins HO-1 and ferritin by lansoprazole was followed by a decrease in NADPH-mediated ROS formation. The radical scavenging properties of lansoprazole were diminished in the presence of the HO inhibitor, chromium mesoporphyrin IX. Induction of HO-1 gene expression by lansoprazole was not related to oxidative stress or to the activation of the mitogen-activated protein kinase pathway. However, the phosphatidylinositol 3-kinase inhibitor LY294002 showed a concentration-dependent inhibition of HO-1 mRNA and promoter activity. CONCLUSION: Activation of HO-1 and ferritin may account for the gastric protection of lansoprazole and is dependent on a pathway blocked by LY294002. PMID:19764090

  19. Fluids density functional theory and initializing molecular dynamics simulations of block copolymers

    Science.gov (United States)

    Brown, Jonathan R.; Seo, Youngmi; Maula, Tiara Ann D.; Hall, Lisa M.

    2016-03-01

    Classical, fluids density functional theory (fDFT), which can predict the equilibrium density profiles of polymeric systems, and coarse-grained molecular dynamics (MD) simulations, which are often used to show both structure and dynamics of soft materials, can be implemented using very similar bead-based polymer models. We aim to use fDFT and MD in tandem to examine the same system from these two points of view and take advantage of the different features of each methodology. Additionally, the density profiles resulting from fDFT calculations can be used to initialize the MD simulations in a close to equilibrated structure, speeding up the simulations. Here, we show how this method can be applied to study microphase separated states of both typical diblock and tapered diblock copolymers in which there is a region with a gradient in composition placed between the pure blocks. Both methods, applied at constant pressure, predict a decrease in total density as segregation strength or the length of the tapered region is increased. The predictions for the density profiles from fDFT and MD are similar across materials with a wide range of interfacial widths.

  20. Adsorption of hairy particles with mobile ligands: Molecular dynamics and density functional study

    Science.gov (United States)

    Borówko, M.; Sokołowski, S.; Staszewski, T.; Pizio, O.

    2018-01-01

    We study models of hairy nanoparticles in contact with a hard wall. Each particle is built of a spherical core with a number of ligands attached to it and each ligand is composed of several spherical, tangentially jointed segments. The number of segments is the same for all ligands. Particular models differ by the numbers of ligands and of segments per ligand, but the total number of segments is constant. Moreover, our model assumes that the ligands are tethered to the core in such a manner that they can "slide" over the core surface. Using molecular dynamics simulations we investigate the differences in the structure of a system close to the wall. In order to characterize the distribution of the ligands around the core, we have calculated the end-to-end distances of the ligands and the lengths and orientation of the mass dipoles. Additionally, we also employed a density functional approach to obtain the density profiles. We have found that if the number of ligands is not too high, the proposed version of the theory is capable to predict the structure of the system with a reasonable accuracy.

  1. Density functional theory based molecular dynamics study of hydration and electronic properties of aqueous La(3+).

    Science.gov (United States)

    Terrier, Cyril; Vitorge, Pierre; Gaigeot, Marie-Pierre; Spezia, Riccardo; Vuilleumier, Rodolphe

    2010-07-28

    Structural and electronic properties of La(3+) immersed in bulk water have been assessed by means of density functional theory (DFT)-based Car-Parrinello molecular dynamics (CPMD) simulations. Correct structural properties, i.e., La(III)-water distances and La(III) coordination number, can be obtained within the framework of Car-Parrinello simulations providing that both the La pseudopotential and conditions of the dynamics (fictitious mass and time step) are carefully set up. DFT-MD explicitly treats electronic densities and is shown here to provide a theoretical justification to the necessity of including polarization when studying highly charged cations such as lanthanoids(III) with classical MD. La(3+) was found to strongly polarize the water molecules located in the first shell, giving rise to dipole moments about 0.5 D larger than those of bulk water molecules. Finally, analyzing Kohn-Sham orbitals, we found La(3+) empty 4f orbitals extremely compact and to a great extent uncoupled from the water conduction band, while the 5d empty orbitals exhibit mixing with unoccupied states of water.

  2. Combining molecular dynamics with mesoscopic Green’s function reaction dynamics simulations

    International Nuclear Information System (INIS)

    Vijaykumar, Adithya; Bolhuis, Peter G.; Rein ten Wolde, Pieter

    2015-01-01

    In many reaction-diffusion processes, ranging from biochemical networks, catalysis, to complex self-assembly, the spatial distribution of the reactants and the stochastic character of their interactions are crucial for the macroscopic behavior. The recently developed mesoscopic Green’s Function Reaction Dynamics (GFRD) method enables efficient simulation at the particle level provided the microscopic dynamics can be integrated out. Yet, many processes exhibit non-trivial microscopic dynamics that can qualitatively change the macroscopic behavior, calling for an atomistic, microscopic description. We propose a novel approach that combines GFRD for simulating the system at the mesoscopic scale where particles are far apart, with a microscopic technique such as Langevin dynamics or Molecular Dynamics (MD), for simulating the system at the microscopic scale where reactants are in close proximity. This scheme defines the regions where the particles are close together and simulated with high microscopic resolution and those where they are far apart and simulated with lower mesoscopic resolution, adaptively on the fly. The new multi-scale scheme, called MD-GFRD, is generic and can be used to efficiently simulate reaction-diffusion systems at the particle level

  3. DNA Sensors for Malaria Diagnosis

    DEFF Research Database (Denmark)

    Hede, Marianne Smedegaard; Fjelstrup, Søren; Knudsen, Birgitta R.

    2015-01-01

    In the field of malaria diagnosis much effort is put into the development of faster and easier alternatives to the gold standard, blood smear microscopy. Nucleic acid amplification based techniques pose some of the most promising upcoming diagnostic tools due to their potential for high sensitivity......, robustness and user-friendliness. In the current review, we will discuss some of the different DNA-based sensor systems under development for the diagnosis of malaria....

  4. Heritability of malaria in Africa.

    Directory of Open Access Journals (Sweden)

    Margaret J Mackinnon

    2005-12-01

    Full Text Available While many individual genes have been identified that confer protection against malaria, the overall impact of host genetics on malarial risk remains unknown.We have used pedigree-based genetic variance component analysis to determine the relative contributions of genetic and other factors to the variability in incidence of malaria and other infectious diseases in two cohorts of children living on the coast of Kenya. In the first, we monitored the incidence of mild clinical malaria and other febrile diseases through active surveillance of 640 children 10 y old or younger, living in 77 different households for an average of 2.7 y. In the second, we recorded hospital admissions with malaria and other infectious diseases in a birth cohort of 2,914 children for an average of 4.1 y. Mean annual incidence rates for mild and hospital-admitted malaria were 1.6 and 0.054 episodes per person per year, respectively. Twenty-four percent and 25% of the total variation in these outcomes was explained by additively acting host genes, and household explained a further 29% and 14%, respectively. The haemoglobin S gene explained only 2% of the total variation. For nonmalarial infections, additive genetics explained 39% and 13% of the variability in fevers and hospital-admitted infections, while household explained a further 9% and 30%, respectively.Genetic and unidentified household factors each accounted for around one quarter of the total variability in malaria incidence in our study population. The genetic effect was well beyond that explained by the anticipated effects of the haemoglobinopathies alone, suggesting the existence of many protective genes, each individually resulting in small population effects. While studying these genes may well provide insights into pathogenesis and resistance in human malaria, identifying and tackling the household effects must be the more efficient route to reducing the burden of disease in malaria-endemic areas.

  5. Heritability of Malaria in Africa.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available BACKGROUND: While many individual genes have been identified that confer protection against malaria, the overall impact of host genetics on malarial risk remains unknown. METHODS AND FINDINGS: We have used pedigree-based genetic variance component analysis to determine the relative contributions of genetic and other factors to the variability in incidence of malaria and other infectious diseases in two cohorts of children living on the coast of Kenya. In the first, we monitored the incidence of mild clinical malaria and other febrile diseases through active surveillance of 640 children 10 y old or younger, living in 77 different households for an average of 2.7 y. In the second, we recorded hospital admissions with malaria and other infectious diseases in a birth cohort of 2,914 children for an average of 4.1 y. Mean annual incidence rates for mild and hospital-admitted malaria were 1.6 and 0.054 episodes per person per year, respectively. Twenty-four percent and 25% of the total variation in these outcomes was explained by additively acting host genes, and household explained a further 29% and 14%, respectively. The haemoglobin S gene explained only 2% of the total variation. For nonmalarial infections, additive genetics explained 39% and 13% of the variability in fevers and hospital-admitted infections, while household explained a further 9% and 30%, respectively. CONCLUSION: Genetic and unidentified household factors each accounted for around one quarter of the total variability in malaria incidence in our study population. The genetic effect was well beyond that explained by the anticipated effects of the haemoglobinopathies alone, suggesting the existence of many protective genes, each individually resulting in small population effects. While studying these genes may well provide insights into pathogenesis and resistance in human malaria, identifying and tackling the household effects must be the more efficient route to reducing the burden

  6. Two-time temperature Green functions in kinetic theory and molecular hydrodynamics. 3. Account of interactions of hydrodynamic fluctuations

    International Nuclear Information System (INIS)

    Tserkovnikov, Yu.A.

    2001-01-01

    The regular method for deriving the equations for the Green functions in the tasks on the molecular hydrodynamics and kinetics, making it possible to account consequently the contribution into the generalized kinetics coefficients, conditioned by interaction of two, three and more hydrodynamic modes. In contrast to the general theory of perturbations by the interaction constant the consequent approximations are accomplished by the degree of accounting for the higher correlations, described by the irreducible functions [ru

  7. A third order accurate Lagrangian finite element scheme for the computation of generalized molecular stress function fluids

    DEFF Research Database (Denmark)

    Fasano, Andrea; Rasmussen, Henrik K.

    2017-01-01

    A third order accurate, in time and space, finite element scheme for the numerical simulation of three- dimensional time-dependent flow of the molecular stress function type of fluids in a generalized formu- lation is presented. The scheme is an extension of the K-BKZ Lagrangian finite element me...

  8. Studying the molecular determinants of potassium channel structure and function in membranes by solid-state NMR

    NARCIS (Netherlands)

    van der Cruijsen, Elwin

    2014-01-01

    Solid-state Nuclear Magnetic Resonance (ssNMR) has made remarkable progress in the structural characterization of membrane proteins systems at atomic resolution. Such studies can be further aided by the use of molecular dynamic simulations. Moreover, ssNMR data can be directly compared to functional

  9. Diamond functionalization with light-harvesting molecular wires: improved surface coverage by optimized Suzuki cross-coupling conditions

    Czech Academy of Sciences Publication Activity Database

    Yeap, W. S.; Bevk, D.; Liu, X.; Krýsová, Hana; Pasquarelli, A.; Vanderzande, D.; Lutsen, L.; Kavan, Ladislav; Fahlman, M.; Maes, W.; Haenen, K.

    2014-01-01

    Roč. 4, AUG 2014 (2014), s. 42044-42053 ISSN 2046-2069 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : Functionalizations * Light-harvesting * Molecular wires Subject RIV: CG - Electrochemistry Impact factor: 3.840, year: 2014

  10. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds

    KAUST Repository

    Ginsburg, Hagai

    2015-10-31

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound.

  11. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds

    KAUST Repository

    Ginsburg, Hagai; Abdel-Haleem, Alyaa M.

    2015-01-01

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound.

  12. Malaria Parasite Metabolic Pathways (MPMP) Upgraded with Targeted Chemical Compounds.

    Science.gov (United States)

    Ginsburg, Hagai; Abdel-Haleem, Alyaa M

    2016-01-01

    Malaria Parasite Metabolic Pathways (MPMP) is the website for the functional genomics of intraerythrocytic Plasmodium falciparum. All the published information about targeted chemical compounds has now been added. Users can find the drug target and publication details linked to a drug database for further information about the medicinal properties of each compound. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Maternal malaria induces a procoagulant and antifibrinolytic state that is embryotoxic but responsive to anticoagulant therapy.

    Directory of Open Access Journals (Sweden)

    John W Avery

    Full Text Available Low birth weight and fetal loss are commonly attributed to malaria in endemic areas, but the cellular and molecular mechanisms that underlie these poor birth outcomes are incompletely understood. Increasing evidence suggests that dysregulated hemostasis is important in malaria pathogenesis, but its role in placental malaria (PM, characterized by intervillous sequestration of Plasmodium falciparum, proinflammatory responses, and excessive fibrin deposition is not known. To address this question, markers of coagulation and fibrinolysis were assessed in placentae from malaria-exposed primigravid women. PM was associated with significantly elevated placental monocyte and proinflammatory marker levels, enhanced perivillous fibrin deposition, and increased markers of activated coagulation and suppressed fibrinolysis in placental plasma. Submicroscopic PM was not proinflammatory but tended to be procoagulant and antifibrinolytic. Birth weight trended downward in association with placental parasitemia and high fibrin score. To directly assess the importance of coagulation in malaria-induced compromise of pregnancy, Plasmodium chabaudi AS-infected pregnant C57BL/6 mice were treated with the anticoagulant, low molecular weight heparin. Treatment rescued pregnancy at midgestation, with substantially decreased rates of active abortion and reduced placental and embryonic hemorrhage and necrosis relative to untreated animals. Together, the results suggest that dysregulated hemostasis may represent a novel therapeutic target in malaria-compromised pregnancies.

  14. Malaria in Brazil: an overview.

    Science.gov (United States)

    Oliveira-Ferreira, Joseli; Lacerda, Marcus V G; Brasil, Patrícia; Ladislau, José L B; Tauil, Pedro L; Daniel-Ribeiro, Cláudio Tadeu

    2010-04-30

    Malaria is still a major public health problem in Brazil, with approximately 306,000 registered cases in 2009, but it is estimated that in the early 1940s, around six million cases of malaria occurred each year. As a result of the fight against the disease, the number of malaria cases decreased over the years and the smallest numbers of cases to-date were recorded in the 1960s. From the mid-1960s onwards, Brazil underwent a rapid and disorganized settlement process in the Amazon and this migratory movement led to a progressive increase in the number of reported cases. Although the main mosquito vector (Anopheles darlingi) is present in about 80% of the country, currently the incidence of malaria in Brazil is almost exclusively (99,8% of the cases) restricted to the region of the Amazon Basin, where a number of combined factors favors disease transmission and impair the use of standard control procedures. Plasmodium vivax accounts for 83,7% of registered cases, while Plasmodium falciparum is responsible for 16,3% and Plasmodium malariae is seldom observed. Although vivax malaria is thought to cause little mortality, compared to falciparum malaria, it accounts for much of the morbidity and for huge burdens on the prosperity of endemic communities. However, in the last few years a pattern of unusual clinical complications with fatal cases associated with P. vivax have been reported in Brazil and this is a matter of concern for Brazilian malariologists. In addition, the emergence of P. vivax strains resistant to chloroquine in some reports needs to be further investigated. In contrast, asymptomatic infection by P. falciparum and P. vivax has been detected in epidemiological studies in the states of Rondonia and Amazonas, indicating probably a pattern of clinical immunity in both autochthonous and migrant populations. Seropidemiological studies investigating the type of immune responses elicited in naturally-exposed populations to several malaria vaccine candidates in

  15. Malaria in Brazil: an overview

    Directory of Open Access Journals (Sweden)

    Brasil Patrícia

    2010-04-01

    Full Text Available Abstract Malaria is still a major public health problem in Brazil, with approximately 306 000 registered cases in 2009, but it is estimated that in the early 1940s, around six million cases of malaria occurred each year. As a result of the fight against the disease, the number of malaria cases decreased over the years and the smallest numbers of cases to-date were recorded in the 1960s. From the mid-1960s onwards, Brazil underwent a rapid and disorganized settlement process in the Amazon and this migratory movement led to a progressive increase in the number of reported cases. Although the main mosquito vector (Anopheles darlingi is present in about 80% of the country, currently the incidence of malaria in Brazil is almost exclusively (99,8% of the cases restricted to the region of the Amazon Basin, where a number of combined factors favors disease transmission and impair the use of standard control procedures. Plasmodium vivax accounts for 83,7% of registered cases, while Plasmodium falciparum is responsible for 16,3% and Plasmodium malariae is seldom observed. Although vivax malaria is thought to cause little mortality, compared to falciparum malaria, it accounts for much of the morbidity and for huge burdens on the prosperity of endemic communities. However, in the last few years a pattern of unusual clinical complications with fatal cases associated with P. vivax have been reported in Brazil and this is a matter of concern for Brazilian malariologists. In addition, the emergence of P. vivax strains resistant to chloroquine in some reports needs to be further investigated. In contrast, asymptomatic infection by P. falciparum and P. vivax has been detected in epidemiological studies in the states of Rondonia and Amazonas, indicating probably a pattern of clinical immunity in both autochthonous and migrant populations. Seropidemiological studies investigating the type of immune responses elicited in naturally-exposed populations to several

  16. [Malaria in Poland in 2010].

    Science.gov (United States)

    Stepień, Małgorzata

    2012-01-01

    The objective of this study was to describe the epidemiology of imported malaria in Poland in 2010 in comparison to previous years. The study included malaria cases that were collected and registered by the State Sanitary Inspection in 2010 in Poland. Data reported was verified, processed and published by National Institute of Public Health - National Institute of Hygiene. All cases were laboratory confirmed by blood film, polymerase chain reaction or rapid diagnostic tests outlined by the EU case definition. Differences in the distribution of demographic, parasitological and clinical characteristics, and incidence were analyzed. In 2010, a total of 35 confirmed malaria cases were notified in Poland, 13 more than 2009. All cases were imported, 49% from Africa, including 1 case with relapsing malaria caused by P. vivax and 2 cases of recrudescence falciparum malaria following failure of treatment. The number of cases acquired in Asia (37% of the total), mainly from India and Indonesia, was significantly higher than observed in previous years. Among cases with species-specific diagnosis 19 (63%) were caused by P. falciparum, 9 (30%) by P. vivax, one by P. ovale and one by P. malariae. The median age of all cases was 42 years (range 9 months to 71 years), males comprised 69% of patients, females 31%, three patients were Indian citizens temporarily in Poland. Common reasons for travel to endemic countries were tourism (57%), work-related visits (37%), one person visited family and in one case the reason for travel was unknown. Sixteen travelers took chemoprophylaxis, but only three of them appropriately (adherence to the recommended drug regimen, continuation upon return and use of appropriate medicines). In 2010, there were no deaths due to malaria and clinical course of disease was severe in 7 cases. When compared with 2009, there was a marked increase in the number of imported malaria cases in Poland, however the total number of notified cases remained low. Serious

  17. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control.

    Science.gov (United States)

    Kibret, Solomon; Wilson, G Glenn; Tekie, Habte; Petros, Beyene

    2014-09-13

    Irrigation schemes have been blamed for the increase in malaria in many parts of sub-Saharan Africa. However, proper water management could help mitigate malaria around irrigation schemes in this region. This study investigates the link between irrigation and malaria in Central Ethiopia. Larval and adult mosquitoes were collected fortnightly between November 2009 and October 2010 from two irrigated and two non-irrigated (control) villages in the Ziway area, Central Ethiopia. Daily canal water releases were recorded during the study period and bi-weekly correlation analysis was done to determine relationships between canal water releases and larval/adult vector densities. Blood meal sources (bovine vs human) and malaria sporozoite infection were tested using enzyme-linked immunosorbent assay (ELISA). Monthly malaria data were also collected from central health centre of the study villages. Monthly malaria incidence was over six-fold higher in the irrigated villages than the non-irrigated villages. The number of anopheline breeding habitats was 3.6 times higher in the irrigated villages than the non-irrigated villages and the most common Anopheles mosquito breeding habitats were waterlogged field puddles, leakage pools from irrigation canals and poorly functioning irrigation canals. Larval and adult anopheline densities were seven- and nine-fold higher in the irrigated villages than in the non-irrigated villages, respectively, during the study period. Anopheles arabiensis was the predominant species in the study area. Plasmodium falciparum sporozoite rates of An. arabiensis and Anopheles pharoensis were significantly higher in the irrigated villages than the non-irrigated villages. The annual entomological inoculation rate (EIR) calculated for the irrigated and non-irrigated villages were 34.8 and 0.25 P. falciparum infective bites per person per year, respectively. A strong positive correlation was found between bi-weekly anopheline larval density and canal water

  18. Molecular perspective on diazonium adsorption for controllable functionalization of single-walled carbon nanotubes in aqueous surfactant solutions.

    Science.gov (United States)

    Lin, Shangchao; Hilmer, Andrew J; Mendenhall, Jonathan D; Strano, Michael S; Blankschtein, Daniel

    2012-05-16

    Functionalization of single-walled carbon nanotubes (SWCNTs) using diazonium salts allows modification of their optical and electronic properties for a variety of applications, ranging from drug-delivery vehicles to molecular sensors. However, control of the functionalization process remains a challenge, requiring molecular-level understanding of the adsorption of diazonium ions onto heterogeneous, charge-mobile SWCNT surfaces, which are typically decorated with surfactants. In this paper, we combine molecular dynamics (MD) simulations, experiments, and equilibrium reaction modeling to understand and model the extent of diazonium functionalization of SWCNTs coated with various surfactants (sodium cholate, sodium dodecyl sulfate, and cetyl trimethylammonium bromide). We show that the free energy of diazonium adsorption, determined using simulations, can be used to rank surfactants in terms of the extent of functionalization attained following their adsorption on the nanotube surface. The difference in binding affinities between linear and rigid surfactants is attributed to the synergistic binding of the diazonium ion to the local "hot/cold spots" formed by the charged surfactant heads. A combined simulation-modeling framework is developed to provide guidance for controlling the various sensitive experimental conditions needed to achieve the desired extent of SWCNT functionalization.

  19. H2B ubiquitination: Conserved molecular mechanism, diverse physiologic functions of the E3 ligase during meiosis.

    Science.gov (United States)

    Wang, Liying; Cao, Chunwei; Wang, Fang; Zhao, Jianguo; Li, Wei

    2017-09-03

    RNF20/Bre1 mediated H2B ubiquitination (H2Bub) has various physiologic functions. Recently, we found that H2Bub participates in meiotic recombination by promoting chromatin relaxation during meiosis. We then analyzed the phylogenetic relationships among the E3 ligase for H2Bub, its E2 Rad6 and their partner WW domain-containing adaptor with a coiled-coil (WAC) or Lge1, and found that the molecular mechanism underlying H2Bub is evolutionarily conserved from yeast to mammals. However, RNF20 has diverse physiologic functions in different organisms, which might be caused by the evolutionary divergency of their domain/motif architectures. In the current extra view, we not only elucidate the evolutionarily conserved molecular mechanism underlying H2Bub, but also discuss the diverse physiologic functions of RNF20 during meiosis.

  20. The antibody response to well-defined malaria antigens after acute malaria in individuals living under continuous malaria transmission

    DEFF Research Database (Denmark)

    Petersen, E; Høgh, B; Dziegiel, M

    1992-01-01

    , and a synthetic peptide (EENV)6 representing the C-terminal repeats from Pf155/RESA, were investigated longitudinally in 13 children and 7 adults living under conditions of continuous, intense malaria transmission. Some subjects did not recognize the antigens after malaria infection, and in subjects recognizing...... elicited by natural malaria infection in previously primed donors....

  1. Acquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods

    International Nuclear Information System (INIS)

    Chaparian, A.; Oghabian, M. A.; Changizi, V.

    2009-01-01

    Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo codes are the best option for radiation simulation: however, one permanent defect with Monte Carlo codes has been the lack of a sufficient physical model for coherent (Rayleigh) scattering, including molecular interference effects. Materials and Methods: It was decided to obtain molecular interference functions of coherent X-ray scattering for normal breast tissues by combination of modeling and experimental methods. A Monte Carlo simulation program was written to simulate the angular distribution of scattered photons for the normal breast tissue samples. Moreover, experimental diffraction patterns of these tissues were measured by means of energy dispersive X-ray diffraction method. The simulation and experimental data were used to obtain a tabulation of molecular interference functions for breast tissues. Results: With this study a tabulation of molecular interference functions for normal breast tissues Was prepared to facilitate the simulation diffraction patterns of the tissues without any experimental. Conclusion: The method may lead to design new systems for early detection of breast cancer.

  2. A research agenda for malaria eradication: vaccines.

    NARCIS (Netherlands)

    Abdulla, S.; Agre, P.; Alonso, P.L.; Arevalo-Herrera, M.; Bassat, Q.; Binka, F.; Chitnis, C.; Corradin, G.; Cowman, A. F.; Culpepper, J.; Portillo, H. del; Dinglasan, R.R.; Duffy, P.; Gargallo, D.; Greenwood, B.; Guinovart, C.; Hall, B.F.; Herrera, S.; Hoffman, S.; Lanzavecchia, A.; Leroy, O.; Levine, M.M.; Loucq, C.; Mendis, K.; Milman, J.; Moorthy, V.S.; Pleuschke, G.; Plowe, C.V.; Reed, S.; Sauerwein, R.W.; Saul, A.; Schofield, L.; Sinden, R.R.; Stubbs, J.; Villafana, T.; Wirth, D.; Yadav, P.; Ballou, R.; Brown, G.; Birkett, A.; Brandt, W.; Brooks, A.; Carter, T.; Golden, A.; Lee, C.; Nunes, J.; Puijalon, O.; Raphael, T.; Richards, H.; Warren, C.; Woods, C.

    2011-01-01

    Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if

  3. Malaria in Sokoto, North Western Nigeria

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... 6Department of Parasitology, School of Medical Laboratory ... Malaria prevalence studies had been undertaken in many parts of Nigeria but there is probably no data ..... within the limits of the malaria prevalence rate reports in.

  4. EU grid computing effort takes on malaria

    CERN Multimedia

    Lawrence, Stacy

    2006-01-01

    Malaria is the world's most common parasitic infection, affecting more thatn 500 million people annually and killing more than 1 million. In order to help combat malaria, CERN has launched a grid computing effort (1 page)

  5. Insecticide Resistance Reducing Effectiveness of Malaria Control

    Centers for Disease Control (CDC) Podcasts

    Malaria prevention is increasingly insecticide based. Dr. John Gimnig, an entomologist with the Division of Parasitic Diseases, CDC, discusses evidence that mosquito resistance to insecticides, which is measured in the laboratory, could compromise malaria prevention in the field.

  6. Successfully controlling malaria in South Africa

    African Journals Online (AJOL)

    regard to tourism, within an area of ~100 000 km2. ... Unfortunately, international funding for .... carriers, whether symptomatic or asymptomatic, to interrupt malaria ... education of healthcare workers on malaria diagnosis and treatment.

  7. randomised trial of alternative malaria chemoprophylaxis strategies

    African Journals Online (AJOL)

    hi-tech

    2000-02-02

    Feb 2, 2000 ... randomisation produced comparable intervention and comparison groups with balanced characteristics. Specific results of the baseline studies are presented in the companion paper. ... strategies for protecting pregnant women against malaria. ..... from malaria vaccine trial conducted among Tanzanian.

  8. Hemozoin Inhibition and Control of Clinical Malaria

    Directory of Open Access Journals (Sweden)

    Chibueze Peter Ihekwereme

    2014-01-01

    Full Text Available Malaria has a negative impact on health and social and economic life of residents of endemic countries. The ultimate goals of designing new treatment for malaria are to prevent clinical infection, reduce morbidity, and decrease mortality. There are great advances in the understanding of the parasite-host interaction through studies by various scientists. In some of these studies, attempts were made to evaluate the roles of malaria pigment or toxins in the pathogenesis of malaria. Hemozoin is a key metabolite associated with severe malaria anemia (SMA, immunosuppression, and cytokine dysfunction. Targeting of this pigment may be necessary in the design of new therapeutic products against malaria. In this review, the roles of hemozoin in the morbidity and mortality of malaria are highlighted as an essential target in the quest for effective control of clinical malaria.

  9. Chronic malaria revealed by a new fluorescence pattern on the antinuclear autoantibodies test.

    Directory of Open Access Journals (Sweden)

    Benjamin Hommel

    Full Text Available BACKGROUND: Several clinical forms of malaria such as chronic carriage, gestational malaria or hyper-reactive malarial splenomegaly may follow a cryptic evolution with afebrile chronic fatigue sometimes accompanied by anemia and/or splenomegaly. Conventional parasitological tests are often negative or not performed, and severe complications may occur. Extensive explorations of these conditions often include the search for antinuclear autoantibodies (ANA. METHODS: We analysed fluorescence patterns in the ANA test in patients with either chronic cryptic or acute symptomatic malaria, then conducted a one-year prospective study at a single hospital on all available sera drawn for ANA detections. We then identified autoantibodies differentially expressed in malaria patients and in controls using human protein microarray. RESULTS: We uncovered and defined a new, malaria-related, nucleo-cytoplasmic ANA pattern displaying the specific association of a nuclear speckled pattern with diffuse cytoplasmic perinuclearly-enhanced fluorescence. In the one-year prospective analysis, 79% of sera displaying this new nucleo-cytoplasmic fluorescence were from patients with malaria. This specific pattern, not seen in other parasitic diseases, allowed a timely reorientation of the diagnosis toward malaria. To assess if the autoantibody immune response was due to autoreactivity or molecular mimicry we isolated 42 autoantigens, targets of malarial autoantibodies. BLAST analysis indicated that 23 of recognized autoantigens were homologous to plasmodial proteins suggesting autoimmune responses directly driven by the plasmodial infection. CONCLUSION: In patients with malaria in whom parasitological tests have not been performed recognition of this new, malaria-related fluorescence pattern on the ANA test is highly suggestive of the diagnosis and triggers immediate, easy confirmation and adapted therapy.

  10. Phosphorelay of non-orthodox two component systems functions through a bi-molecular mechanism in vivo

    DEFF Research Database (Denmark)

    Jovanovic, Goran; Sheng, Xia; Ale, Angelique

    2015-01-01

    the functional relevance of the dimerization of a non-orthodox or hybrid histidine kinase along which the phosphorelay takes place has been a subject of debate. We use a combination of molecular and genetic approaches, coupled to mathematical and statistical modelling, to demonstrate that the different possible...... intra- and inter-molecular mechanisms of phosphotransfer are formally non-identifiable in Escherichia coli expressing the ArcB non-orthodox histidine kinase used in anoxic redox control. In order to resolve this issue we further analyse the mathematical model in order to identify discriminatory...

  11. Canonical-ensemble extended Lagrangian Born-Oppenheimer molecular dynamics for the linear scaling density functional theory.

    Science.gov (United States)

    Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi

    2017-10-11

    We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.

  12. Molecular and functional characterization of a human ATM gene analogue at Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Garcia, V.

    2001-12-01

    The human ATM gene, whose inactivation is responsible for the human disease ataxia telangiectasia is conserved throughout the Eukaryotes and plays an important role in the cellular responses to DNA damage, in particular to DNA double-strand breaks (DSBs). Here we describe the identification of an Arabidopsis thaliana homologue of ATM (AtATM), and the molecular and cytological characterization of plants, hereafter called atm, carrying a disrupting T-DNA insertion in this gene. AtATM covers a 32 kb region on chromosome 3. The AtATM transcript has a complex structure, is 12 kb long and formed by 79 exons. The transcriptional level of AtATM is very low in all the tissues tested, and does not vary after exposure to ionizing radiations (IR). In atm plants, the protein is not detected suggesting the mutants are null. The atm mutants are partially sterile. Aberrant segregation of chromosomes during meiosis I on both male and female sides account for this sterility. However, meiotic recombination frequency is normal. Mutant plants are also hypersensitive to gamma rays and methyl methane sulfonate, but not to UV-B, pointing to a specific defect of atm mutants in the response to DNA DSBs. In plants, ionizing radiations induce a strong, rapid and transient transcriptional activation of genes involved in the cellular response to or the repair of DSBs. This transcriptional regulation of AtRAD51, AtPARP1, atGR1 and AtL1G4 is lost in the atm mutants . The absence of AtRAD51 induction associated with ionizing radiation sensitivity suggest that AtAtm play an important function in DSB repair by homologous recombination. In addition we show that homologous intra-chromosomal recombination frequency is elevated in the mutant comparing to wild-type, with or without gamma irradiation. These results show the implication of AtAtm in the genomic stability. (author)

  13. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    Directory of Open Access Journals (Sweden)

    Kawamukai Makoto

    2004-11-01

    Full Text Available Abstract Background Isopentenyl diphosphate (IPP, a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots.

  14. UK malaria treatment guidelines 2016.

    Science.gov (United States)

    Lalloo, David G; Shingadia, Delane; Bell, David J; Beeching, Nicholas J; Whitty, Christopher J M; Chiodini, Peter L

    2016-06-01

    1.Malaria is the tropical disease most commonly imported into the UK, with 1300-1800 cases reported each year, and 2-11 deaths. 2. Approximately three quarters of reported malaria cases in the UK are caused by Plasmodium falciparum, which is capable of invading a high proportion of red blood cells and rapidly leading to severe or life-threatening multi-organ disease. 3. Most non-falciparum malaria cases are caused by Plasmodium vivax; a few cases are caused by the other species of plasmodium: Plasmodium ovale, Plasmodium malariae or Plasmodium knowlesi. 4. Mixed infections with more than one species of parasite can occur; they commonly involve P. falciparum with the attendant risks of severe malaria. 5. There are no typical clinical features of malaria; even fever is not invariably present. Malaria in children (and sometimes in adults) may present with misleading symptoms such as gastrointestinal features, sore throat or lower respiratory complaints. 6. A diagnosis of malaria must always be sought in a feverish or sick child or adult who has visited malaria-endemic areas. Specific country information on malaria can be found at http://travelhealthpro.org.uk/. P. falciparum infection rarely presents more than six months after exposure but presentation of other species can occur more than a year after exposure. 7. Management of malaria depends on awareness of the diagnosis and on performing the correct diagnostic tests: the diagnosis cannot be excluded until more than one blood specimen has been examined. Other travel related infections, especially viral haemorrhagic fevers, should also be considered. 8. The optimum diagnostic procedure is examination of thick and thin blood films by an expert to detect and speciate the malarial parasites. P. falciparum and P. vivax (depending upon the product) malaria can be diagnosed almost as accurately using rapid diagnostic tests (RDTs) which detect plasmodial antigens. RDTs for other Plasmodium species are not as reliable. 9

  15. Recent Experiences with Severe and Cerebral Malaria

    African Journals Online (AJOL)

    1974-06-29

    Jun 29, 1974 ... Malaria admissions. Cerebral malaria ... Cerebral signs. Haemoglobin below 10 g/100 ml (not all tested). Enlarged tender liver or jaundice, or both ... articl~ by H. Smitskamp and F. H. Wolthuis entitled 'New concepts in treatment of malaria with malignant tertian cerebral involvement' which appeared in the ...

  16. morphological identification of malaria vectors within anopheles

    African Journals Online (AJOL)

    DR. AMIN

    Africa among the human population. Determination of risk of malaria transmission requires quick and accurate methods of identification of Anopheles mosquitoes especially when targeting vector control. (Maxwell, et al., 2003). Anopheles mosquito transmits malaria. The most important vectors of malaria are members of.

  17. Malaria deaths in a rural hospital

    African Journals Online (AJOL)

    An audit of all malaria deaths that occurred at Manguzi Hospital between 1 October 1998 to 30 September 1999 was performed. There were 41 deaths from malaria in this time period, which was many more than for the previous three years. The most common causes of death were cerebral malaria, pulmonary oedema, ...

  18. Malaria in Pregnancy: Morbidities and Management | Yakasai ...

    African Journals Online (AJOL)

    control of malaria in the African Subregion during pregnancy has been recommended by the World Health Organization (WHO). These include intermittent preventive treatment (IPT), use of insecticide treated nets (ITNs) and access to effective case management for malaria illness and anemia. Keywords: malaria in ...

  19. Malaria - sick air on the march

    International Nuclear Information System (INIS)

    Aunan, Kristin

    1999-01-01

    The article surveys the expansion of the malaria risk zones with increasing temperatures, change in climate and habitat alterations. Factors such as the living conditions for various malaria parasites, climatic changes, immunity and drug resistance are studied. It is evident that the greenhouse effects contribute to the expanding malaria risk zones

  20. Malaria parasite positivity among febrile neonates | Enyuma ...

    African Journals Online (AJOL)

    Background: Malaria, earlier considered rare in neonates, has been reported with increasing frequency in the last decade. Neonatal malaria diagnosis is challenging because the clinical features are non-specific, variable and also overlap with bacterial infection. Aim: To determine the prevalence of neonatal malaria and ...