WorldWideScience

Sample records for malachite green mg

  1. Analytical Methods for Malachite Green : Completion Report : Malachite Green Analysis in Water.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, John L.; Gofus, Jane E.; Meinertz, Jeffery R.

    1991-06-01

    Malachite green is a known teratogen and therefore its use is limited to nonfood fish under an Investigational New Animal Drug permit (INAD), number 2573. Although a charcoal adsorption column was developed to remove malachite green from hatchery water, INAD compliance requires that the malachite green residue concentrations in any effluent from hatcheries using the chemical be quantified. Therefore, we developed a method for the analysis of malachite green residues in water. Enrichment of the residues of malachite green in water on a diol column followed by High Performance Liquid Chromatographic (HPLC) analysis gives a minimum sensitivity of less than 10 ppb for the chemical. When combined with post-column oxidation using a lead oxide post-column reactor, the procedure can be used for the simultaneous analysis of malachite green in its leuco form, a decomposition product of the dye, as well as its chromatic form. Recovery of the leuco form is pH dependent and water samples should be adjusted to pH 6 to optimize recovery of this form. Water samples spiked with malachite green were concentrated on a diol column followed by elution with 0.05 M p-toluene sulfonic acid in methanol. The methanol elutes were analyzed by HPLC. Pond water samples spiked with malachite green and leuco malachite green yielded average recoveries of 95.4% for malachite green and 57.3% for leuco malachite green. Tap water samples spiked with the carbinol form of malachite green gave average recoveries of 98.6%. The method is very sensitive and is capable of detecting malachite green residues in water at less than 10 ppb. Fish culturists, who cannot find an effective replacement for malachite green, can utilize the method to ensure that their effluents comply with INAD regulations. 13 refs., 2 figs., 7 tabs.

  2. An Isocratic Toxic Chemical-Free Mobile Phase HPLC-PDA Analysis of Malachite Green and Leuco-Malachite Green

    Directory of Open Access Journals (Sweden)

    Naoto Furusawa

    2014-05-01

    Full Text Available This paper describes a reserved-phase high-performance liquid chromatographic (HPLC method for detecting malachite green (MG and leuco-malachite green (LMG using an isocratic toxic organic solvent/reagent-free mobile phase. Chromatographic separations were performed an Inertsil® WP300 C4 with 0.02 mol/L octane sulfonic acid–ethanol mobile phase and a photodiode-array detector. The total run time was <5 min. The system suitability was well within the international acceptance criteria. A harmless method for simultaneously detecting MG and LMG was developed and may be further applied to the quantification in foods.

  3. An Isocratic Toxic Chemical-Free Mobile Phase HPLC-PDA Analysis of Malachite Green and Leuco-Malachite Green

    OpenAIRE

    Furusawa, Naoto

    2014-01-01

    This paper describes a reserved-phase high-performance liquid chromatographic (HPLC) method for detecting malachite green (MG) and leuco-malachite green (LMG) using an isocratic toxic organic solvent/reagent-free mobile phase. Chromatographic separations were performed an Inertsil® WP300 C4 with 0.02 mol/L octane sulfonic acid–ethanol mobile phase and a photodiode-array detector. The total run time was <5 min. The system suitability was well within the international acceptance criteria. A...

  4. Pathway and Molecular Mechanisms for Malachite Green Biodegradation in Exiguobacterium sp. MG2

    Science.gov (United States)

    Wang, Ji’ai; Gao, Feng; Liu, Zhongzhong; Qiao, Min; Niu, Xuemei; Zhang, Ke-Qin; Huang, Xiaowei

    2012-01-01

    Malachite green (MG), N-methylated diaminotriphenylmethane, is one of the most common dyes in textile industry and has also been used as an effective antifungal agent. However, due to its negative impact on the environment and carcinogenic effects to mammalian cells, there is a significant interest in developing microbial agents to degrade this type of recalcitrant molecules. Here, an Exiguobacterium sp. MG2 was isolated from a river in Yunnan Province of China as one of the best malachite green degraders. This strain had a high decolorization capability even at the concentration of 2500 mg/l and maintained its stable activity within the pH range from 5.0 to 9.0. High-pressure liquid chromatography, liquid chromatography-mass spectrometry and gas chromatography–mass spectrometry were employed to detect the catabolic pathway of MG. Six intermediate products were identified and a potential biodegradation pathway was proposed. This pathway involves a series of reactions of N-demethylation, reduction, benzene ring-removal, and oxidation, which eventually converted N-methylated diaminotriphenylmethane into N, N-dimethylaniline that is the key precursor to MG. Furthermore, our molecular biology experiments suggested that both triphenylmethane reductase gene tmr and cytochrome P450 participated in MG degradation, consistent with their roles in the proposed pathway. Collectively, our investigation is the first report on a biodegradation pathway of triphenylmethane dye MG in bacteria. PMID:23251629

  5. [Studies on photo-electron-chemical catalytic degradation of the malachite green].

    Science.gov (United States)

    Li, Ming-yu; Diao, Zeng-hui; Song, Lin; Wang, Xin-le; Zhang, Yuan-ming

    2010-07-01

    A novel two-compartment photo-electro-chemical catalytic reactor was designed. The TiO2/Ti thin film electrode thermally formed was used as photo-anode, and graphite as cathode and a saturated calomel electrode (SCE) as the reference electrode in the reactor. The anode compartment and cathode compartment were connected with the ionic exchange membrane in this reactor. Effects of initial pH, initial concentration of malachite green and connective modes between the anode compartment and cathode compartment on the decolorization efficiency of malachite green were investigated. The degradation dynamics of malachite green was studied. Based on the change of UV-visible light spectrum, the degradation process of malachite green was discussed. The experimental results showed that, during the time of 120 min, the decolouring ratio of the malachite green was 97.7% when initial concentration of malachite green is 30 mg x L(-1) and initial pH is 3.0. The catalytic degradation of malachite green was a pseudo-first order reaction. In the degradation process of malachite green the azo bond cleavage and the conjugated system of malachite green were attacked by hydroxyl radical. Simultaneity, the aromatic ring was oxidized. Finally, malachite green was degraded into other small molecular compounds.

  6. Malachite Green Adsorption by Spent Coffee Grounds

    Science.gov (United States)

    Syamimie Atirah Mat, Siti; Zati Hanani Syed Zuber, Sharifah; Rahim, Siti Kartini Enche Ab; Sohaimi, Khairunissa Syairah Ahmad; Halim, Noor Amirah Abdul; Fauziah Zainudin, Nor; Aida Yusoff, Nor; Munirah Rohaizad, Nor; Hidayah Ishak, Noor; Anuar, Adilah; Sarip, Mohd Sharizan Md

    2018-03-01

    In this work, the ability of spent coffee grounds (SCG) as a low-cost adsorbent to remove malachite green (MG) from aqueous solutions was studied. Batch adsorption tests were carried out to observe the effect of various experimental parameters such as contact time, initial concentration of malachite green and adsorbent dosage on the removal of dye. The results obtained show that the percentage of dye removal will decreased with the increased of initial concentration of dye in the range of 50 mg/L to 250 mg/L. Besides, percentage removal of dye was also found to be increased as the contact time increased until it reached equilibrium condition. The results also showed that the adsorbent dosage in range of 0.2 g to 1.0 g is proportional to the percentage removal of malachite green dye. Study on the kinetic adsorption and isotherm adsorption has also been investigated. The adsorption isotherm data were described by Langmuir isotherm with high-correlation coefficients while the experimental data showed the pseudo-second-order kinetics model was the best model for the adsorption of MG by SCG with the coefficients of correlation R2 > 0.9978.

  7. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    OpenAIRE

    Eko Ariyanto

    2012-01-01

    A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  8. ADSORPTION MALACHITE GREEN ON NATURAL ZEOLITE

    Directory of Open Access Journals (Sweden)

    Eko Ariyanto

    2012-02-01

    Full Text Available A natural zeolite was employed as adsorbent for reducing of malachite green from aqueous solution. A batch system was applied to study the adsorption of malachite green in single system on natural zeolite. The adsorption studies indicate that malachite green in single component system follows the second-order kinetics and the adsorption is diffusion process with two stages for malachite green. Malachite green adsorption isotherm follows the Langmuir model.

  9. TOXICOLOGICAL STUDIES ON MALACHITE GREEN - A TRIPHENYLMETHANE DYE

    DEFF Research Database (Denmark)

    Cleinmensen, Steen; Jensen, Jørn C.; Jensen, Niels J.

    1984-01-01

    The oral LD50 for malachite green oxalate was found to be 275 mg/kg in rats while the approximate lethal dose for NMRI mice was 50 mg/kg. No systemic effects were seen after dermal application of 2,000 mg/kg. Repeated administration in the diet for 28 days to rats produced only minor changes...... in serum urea and aspartate aminotransferase levels. The rats at the highest dose level showed decreased weight gain and appeared clinically to have elevated motor activity. No sex differences were observed in either acute or prolonged experiments. In accord with human experience malachite green...

  10. Lipoprotein processing is essential for resistance of Mycobacterium tuberculosis to malachite green.

    Science.gov (United States)

    Banaei, Niaz; Kincaid, Eleanor Z; Lin, S-Y Grace; Desmond, Edward; Jacobs, William R; Ernst, Joel D

    2009-09-01

    Malachite green, a synthetic antimicrobial dye, has been used for over 50 years in mycobacterial culture medium to inhibit the growth of contaminants. The molecular basis of mycobacterial resistance to malachite green is unknown, although the presence of malachite green-reducing enzymes in the cell envelope has been suggested. The objective of this study was to investigate the role of lipoproteins in resistance of Mycobacterium tuberculosis to malachite green. The replication of an M. tuberculosis lipoprotein signal peptidase II (lspA) mutant (DeltalspA::lspAmut) on Middlebrook agar with and without 1 mg/liter malachite green was investigated. The lspA mutant was also compared with wild-type M. tuberculosis in the decolorization rate of malachite green and sensitivity to sodium dodecyl sulfate (SDS) detergent and first-line antituberculosis drugs. The lspA mutant has a 10(4)-fold reduction in CFU-forming efficiency on Middlebrook agar with malachite green. Malachite green is decolorized faster in the presence of the lspA mutant than wild-type bacteria. The lspA mutant is hypersensitive to SDS detergent and shows increased sensitivity to first-line antituberculosis drugs. In summary, lipoprotein processing by LspA is essential for resistance of M. tuberculosis to malachite green. A cell wall permeability defect is likely responsible for the hypersensitivity of lspA mutant to malachite green.

  11. Scientific opinion: Malachite green in food

    NARCIS (Netherlands)

    Hoogenboom, L.A.P.

    2016-01-01

    Malachite green (MG) has been used globally in aquaculture but is not registered for use in food-producing animals in the European Union. The European Commission requested EFSA to evaluate whether a reference point for action (RPA) of 2 μg/kg for the sum of MG and its major metabolite leucomalachite

  12. Organic additives stabilize RNA aptamer binding of malachite green.

    Science.gov (United States)

    Zhou, Yubin; Chi, Hong; Wu, Yuanyuan; Marks, Robert S; Steele, Terry W J

    2016-11-01

    Aptamer-ligand binding has been utilized for biological applications due to its specific binding and synthetic nature. However, the applications will be limited if the binding or the ligand is unstable. Malachite green aptamer (MGA) and its labile ligand malachite green (MG) were found to have increasing apparent dissociation constants (Kd) as determined through the first order rate loss of emission intensity of the MGA-MG fluorescent complex. The fluorescent intensity loss was hypothesized to be from the hydrolysis of MG into malachite green carbinol base (MGOH). Random screening organic additives were found to reduce or retain the fluorescence emission and the calculated apparent Kd of MGA-MG binding. The protective effect became more apparent as the percentage of organic additives increased up to 10% v/v. The mechanism behind the organic additive protective effects was primarily from a ~5X increase in first order rate kinetics of MGOH→MG (kMGOH→MG), which significantly changed the equilibrium constant (Keq), favoring the generation of MG, versus MGOH without organic additives. A simple way has been developed to stabilize the apparent Kd of MGA-MG binding over 24h, which may be beneficial in stabilizing other triphenylmethane or carbocation ligand-aptamer interactions that are susceptible to SN1 hydrolysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Extractive spectrophotometric determination of uranium with malachite green

    International Nuclear Information System (INIS)

    Dubey, S.C.; Nadkarni, M.N.

    1977-01-01

    A sensitive spectrophotometric method based on the extraction of a uranium-benzoate-Malachite Green complex by chlorobenzene is described. The absorption maximum is at 635 nm and the molar absorptivity is 8.3 x 10 4 1. mole -1 cm -1 . A preliminary separation of uranium by extraction with methyl isobutyl ketone from acid-deficient aluminium nitrate solution is used to avoid interferences. An aliquot of the extract in then diluted with chlorobenzene and shaken with benzoate buffer containing Malachite Green (MG). The method has been applied for the determination of uranium in a synthetic leach solution. The complex extracted is probably [U0 2 (C 6 H 5 C00 3 - ][MG + ]. (author)

  14. Extractive spectrophotometric determination of uranium with malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, S C; Nadkarni, M N [Bhabha Atomic Research Centre, Bombay (India). Fuel Reprocessing Div.

    1977-04-01

    A sensitive spectrophotometric method based on the extraction of a uranium-benzoate-Malachite Green complex by chlorobenzene is described. The absorption maximum is at 635 nm and the molar absorptivity is 8.3 x 10/sup 4/1. mole /sup -1/ cm/sup -1/. A preliminary separation of uranium by extraction with methyl isobutyl ketone from acid-deficient aluminium nitrate solution is used to avoid interferences. An aliquot of the extract in then diluted with chlorobenzene and shaken with benzoate buffer containing Malachite Green (MG). The method has been applied for the determination of uranium in a synthetic leach solution. The complex extracted is probably (U0/sub 2/(C/sub 6/H/sub 5/C00/sub 3//sup -/)(MG/sup +/).

  15. Review of Methods for the Detection and Determination of Malachite Green and Leuco-Malachite Green in Aquaculture.

    Science.gov (United States)

    Zhou, Xinhui; Zhang, Jiaran; Pan, Zhongli; Li, Daoliang

    2018-05-14

    Malachite green (MG) has been widely used in the aquaculture industry as a fungicide and parasiticide because of its high efficiency and low cost, and it is commonly found in aquatic products and environmental water. However, MG and its primary metabolite, leuco-malachite green (LMG), are also toxic inorganic contaminants that are hazardous to the health of humans and other organisms. A variety of methods have been proposed in recent years for detecting and monitoring MG and LMG. This article was compiled as a general review of the methods proposed for MG and LMG detection, and several important detection parameters, such as the limit of detection, recovery and relative standard deviation, were tabulated. The analytical methods for the determination of MG and LMG in various matrices include high-performance liquid chromatography separation-based methods, liquid chromatography tandem mass spectrometry, surface-enhanced Raman spectroscopy, electrochemical methods, immunological assays, spectrophotometry and fluorescent methods which were described in detail in this article. In addition, some sample preparation techniques were also described. This review can provide expert guidance to the reader on the advantages, disadvantages and applicability of the different methodologies. This review also discussed challenges and several perspectives on the future trends in the determination of MG and LMG.

  16. Picosecond dynamics of conformation changes in malachite green dye produced by photoionization of malachite green leucocyanide

    Energy Technology Data Exchange (ETDEWEB)

    Cremers, D A; Cremers, T L

    1983-01-07

    The appearance of malachite green dye absorption following photoionization of malachite green leucocyanide has been examined using picosecond flash photolysis. The rate of absorption increase depends upon solvent viscosity and exhibits a two-step behavior in viscous glycerol solutions. 21 references, 4 figures.

  17. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry.

    Science.gov (United States)

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-08-11

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L(-1) (S/N = 3) in lake water samples and ~0.5 μg·L(-1) in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10-1000 μg·L(-1). Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L(-1) gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples.

  18. Determination of malachite green and its leuco form in water

    Science.gov (United States)

    Allen, J.L.; Meinertz, J.R.; Gofus, J.E.

    1992-01-01

    Liquid chromatographic (lc) analysis can detect malachite green residues in water at less than 10 mu-g/l. Water samples were concentrated on disposable diol columns, eluted with 0.05m P-toluene-sulfonic acid in methanol, and determined by reversed-phase lc. When combined with a lead oxide postcolumn reactor, the lc method can simultaneously determine both leuco and chromatic forms of malachite green. Recoveries averaged 95.4% For the chromatic form and 57.3% For the leuco form of malachite green oxalate and leuco malachite green in spiked pond water samples. Recoveries of the carbinol form of malachite green (an equilibrium product of the dye in water) from spiked tap water samples averaged 98.6%. Recoveries of leuco malachite green were low and ph-dependent.

  19. Malachite green interferes with postantibiotic recovery of mycobacteria.

    Science.gov (United States)

    Gelman, Ekaterina; McKinney, John D; Dhar, Neeraj

    2012-07-01

    The genus Mycobacterium comprises slow-growing species with generation times ranging from hours to weeks. The protracted incubation time before colonies appear on solid culture medium can result in overgrowth by faster-growing microorganisms. To prevent contamination, the solid media used in laboratories and clinics for cultivation of mycobacteria contain the arylmethane compound malachite green, which has broad-spectrum antimicrobial activity. Malachite green has no impact on the plating efficiency of mycobacteria when cells are grown under normal conditions. However, we found that malachite green interfered with colony formation when bacteria were preexposed to antibiotics targeting cell wall biogenesis (isoniazid, ethionamide, ethambutol). This inhibitory effect of malachite green was not observed when bacteria were preexposed to antibiotics targeting cellular processes other than cell wall biogenesis (rifampin, moxifloxacin, streptomycin). Sputum specimens from tuberculosis patients are routinely evaluated on solid culture medium containing high concentrations of malachite green. This practice could lead to underestimation of bacterial loads and overestimation of chemotherapeutic efficacy.

  20. The catalytic oxidation of malachite green by the microwave-Fenton processes.

    Science.gov (United States)

    Zheng, Huaili; Zhang, Huiqin; Sun, Xiaonan; Zhang, Peng; Tshukudu, Tiroyaone; Zhu, Guocheng

    2010-01-01

    Catalytic oxidation of malachite green using the microwave-Fenton process was investigated. 0% of malachite green de-colorization using the microwave process and 23.5% of malachite green de-colorization using the Fenton process were observed within 5 minutes. In contrast 95.4% of malachite green de-colorization using the microwave-Fenton was observed in 5 minutes. During the microwave-Fenton process, the optimum operating conditions for malachite green de-colorization were found to be 3.40 of initial pH, 0.08 mmol/L of Fe2+ concentration and 12.5 mmol/L of H2O2 concentration. Confirmatory tests were carried out under the optimum conditions and the COD removal rate of 82.0% and the de-colorization rate of 99.0% were observed in 5 minutes. The apparent kinetics equation of -dC/dt=0.0337 [malachite green]0.9860[Fe2+)]0.8234[H2O2]0.1663 for malachite green de-colorization was calculated, which implied that malachite green was the dominant factor in determining the removal efficiency of malachite green based on microwave-Fenton process.

  1. Reduction of malachite green to leucomalachite green by intestinal bacteria.

    OpenAIRE

    Henderson, A L; Schmitt, T C; Heinze, T M; Cerniglia, C E

    1997-01-01

    Intestinal microfloras from human, rat, mouse, and monkey fecal samples and 14 pure cultures of anaerobic bacteria representative of those found in the human gastrointestinal tract metabolized the triphenylmethane dye malachite green to leucomalachite green. The reduction of malachite green to the leuco derivative suggests that intestinal microflora could play an important role in the metabolic activation of the triphenylmethane dye to a potential carcinogen.

  2. [Biosorption of crystal violet and malachite green by Rhodotorula graminis Y-5].

    Science.gov (United States)

    Hu, Rong; Huang, Jian-Bo; Yang, Zhou-Ping; Cheng, Zi-Zhang; Jing, De-Jun; Huang, Qian-Ming

    2011-12-01

    With a shaker, this paper studied the characteristics of the biosorption of crystal violet and malachite green by Rhodotorula graminis Y-5 under different adsorption time, initial pH, and temperature, as well as the desorption and recycling use of the dyes. The biosorption of crystal violet and malachite green by R. graminis Y-5 had the peaks (93.8% and 87.7%, respectively) at pH 7.0, dye concentration 50 mg x L(-1), 150 r x min(-1), 30 degrees C, and lasting 10 hours. After desorption, the biosorption rate of crystal violet and malachite green by R. graminis was 85.5% and 78.5%, respectively, indicating that the biosorption of crystal violet and malachite green was reversible, and the recycling use of the dyes by R. graminis was quite good, i. e., the dyes were renewable and could be recycled. Biosorption could be the mechanism of the decolorization of the dyes. The dyes were mostly adsorbed on the R. graminis surface -OH. The adsorption process was fast, efficient, and reversible, suggesting that R. graminis had a high potential for waste water treatment.

  3. Potential toxicity and affinity of triphenylmethane dye malachite green to lysozyme.

    Science.gov (United States)

    Ding, Fei; Li, Xiu-Nan; Diao, Jian-Xiong; Sun, Ye; Zhang, Li; Ma, Lin; Yang, Xin-Ling; Zhang, Li; Sun, Ying

    2012-04-01

    Malachite green is a triphenylmethane dye that is used extensively in many industrial and aquacultural processes, generating environmental concerns and health problems to human being. In this contribution, the complexation between lysozyme and malachite green was verified by means of computer-aided molecular modeling, steady state and time-resolved fluorescence, and circular dichroism (CD) approaches. The precise binding patch of malachite green in lysozyme has been identified from molecular modeling and ANS displacement, Trp-62, Trp-63, and Trp-108 residues of lysozyme were earmarked to possess high-affinity for this dye, the principal forces in the lysozyme-malachite green adduct are hydrophobic and π-π interactions. Steady state fluorescence proclaimed the complex of malachite green with lysozyme yields quenching through static type, which substantiates time-resolved fluorescence measurements that lysozyme-malachite green conjugation formation has an affinity of 10(3)M(-1). Moreover, via molecular modeling and also CD data, we can safely arrive at a conclusion that the polypeptide chain of lysozyme partially destabilized upon complexation with malachite green. The data emerged here will help to further understand the toxicological action of malachite green in human body. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Molecularly imprinted polymer for selective extraction of malachite green from seawater and seafood coupled with high-performance liquid chromatographic determination

    International Nuclear Information System (INIS)

    Lian Ziru; Wang Jiangtao

    2012-01-01

    Highlights: ► The malachite green molecularly imprinted polymer (MG-MIP) was prepared. ► The characteristics and regeneration property of MIP were studied. ► An off-line method for MG was developed using MIP as solid-phase extraction. ► The MG concentrations from seawater and seafood samples were determined. - Abstract: In this paper, a highly selective sample cleanup procedure combining molecular imprinting technique (MIT) and solid-phase extraction (SPE) was developed for the isolation of malachite green in seawater and seafood samples. The molecularly imprinted polymer (MIP) was prepared using malachite green as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer. The imprinted polymer and non-imprinted polymer were characterized by scanning electron microscope and static adsorption experiments. The MIP showed a high adsorption capacity and was used as selective sorbent for the SPE of malachite green. An off-line molecularly imprinted solid-phase extraction (MISPE) method followed by high-performance liquid chromatography with diodearray detection for the analysis of malachite green in seawater and seafood samples was also established. Finally, five samples were determined. The results showed that malachite green concentration in one seawater sample was at 1.30 μg L −1 and the RSD (n = 3) was 4.15%.

  5. Improved removal of malachite green from aqueous solution using chemically modified cellulose by anhydride.

    Science.gov (United States)

    Zhou, Yanmei; Min, Yinghao; Qiao, Han; Huang, Qi; Wang, Enze; Ma, Tongsen

    2015-03-01

    Cellulose modified with maleic (M) and phthalic (P) anhydride, to be named CMA and CPA, were tested as feasible adsorbents for the removal of malachite green from aqueous solution. At the same time, the uptake ability of natural cellulose was also studied for comparison. The structure of material was characterized by FT-IR and XRD. The effects of solution pH, initial dye concentration, contact time and temperature were investigated in detail by batch adsorption experiments. The kinetic and isotherm studies suggested that the adsorption followed the pseudo-second-order model and Langmuir isotherm. The maximum adsorption capacity on CMA and CPA were 370 mg g(-1) and 111 mg g(-1), respectively. Furthermore, the thermodynamics studies indicated the spontaneous nature of adsorption of malachite green on adsorbents. All the studied results showed that the modified cellulose could be used as effective adsorption material for the removal of malachite green from aqueous solutions. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Determination of malachite green residues in the eggs, fry, and adult muscle-tissue of rainbow-trout (Oncorhynchus-mykiss)

    Science.gov (United States)

    Allen, John L.; Gofus, J.E.; Meinertz, Jeffery R.

    1994-01-01

    Malachite green, an effective antifungal therapeutant used in fish culture, is a known teratogen. We developed a method to simultaneously detect both the chromatic and leuco forms of malachite green residues in the eggs, fry, and adult muscle tissue of rainbow trout (oncorhynchus mykiss). Homogenates of these tissues were fortified with [c-14] malachite green chloride and extracted with 1% (v/v) acetic acid in acetonitrile or in methanol. The extracts were partitioned with chloroform, dried, redissolved in mobile phase, and analyzed by liquid chromatography (lc) with postcolumn oxidation of leuco malachite green to the chromatic form. Lc fractions were collected every 30 s for quantitation by scintillation counting. Recoveries of total [c-14] malachite green chloride residue were 85 and 98% in eggs fortified with labeled malachite green at concentrations of 0.5 And 1.00 Mug/g, respectively; 68% in fry similarly fortified at a concentration of 0.65 Mug/g; and 66% in muscle homogenate similarly fortified at a level of 1.00 Mug/g. The method was tested under operational conditions by exposing adult rainbow trout to 1.00 Mg/l [c-14] malachite green chloride bath for 1 h. Muscle samples analyzed by sample oxidation and scintillation counting contained 1.3 And 0.5 Mug/g total malachite green chloride residues immediately after exposure and after a 5-day withdrawal period, respectively.

  7. Decolorization of Malachite Green and Crystal Violet by Waterborne Pathogenic Mycobacteria

    OpenAIRE

    Jones, Jefferson J.; Falkinham III, Joseph O.

    2003-01-01

    Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, Mycobacterium marinum, and Mycobacterium chelonae tolerate high concentrations of the dyes malachite green and crystal violet. Cells of strains of those species decolorized (reduced) both malachite green and crystal violet. Because decolorized malachite green lacked antimicrobial activity, the resistance of these mycobacteria could be due, in part, to their ability to decolorize the dyes. Small amounts of malachite...

  8. Removal of Malachite Green from water using hydrothermally carbonized pine needles

    KAUST Repository

    Hammud, Hassan Hasan; Shmait, Abeer; Hourani, Nadim

    2015-01-01

    Hydrothermal carbonization of pine needles (HTC-PN) and their oxidized-activated form HTC-APN are prepared and applied for the adsorption of Malachite Green (MG) in aqueous solution. The HTC materials were characterized by thermal and TEM analysis

  9. Analysis of pure and malachite green doped polysulfone sample using FT-IR technique

    Science.gov (United States)

    Nayak, Rashmi J.; Khare, P. K.; Nayak, J. G.

    2018-05-01

    The sample of pure and malachite green doped Polysulfone in the form of foil was prepared by isothermal immersion technique. For the preparation of pure sample 4 gm of Polysulfone was dissolved in 50 ml of Dimethyl farmamide (DMF) solvent, while for the preparation of doped sample 10 mg, 50 mg and 100 mg Malachite Green was mixed with 4 gm of Polysulfone respectively. For the study of structural characterization of these pure and doped sample, Fourier Transform Infra-Red Spectroscopy (FT-IR) technique was used. This study shows that the intensity of transmittance decreases as the ratio of doping increases in pure polysulfone. The reduction in intensity of transmittance is clearly apparent in the present case more over the bands were broader which indicates towards charge transfer interaction between the donar and acceptor molecule.

  10. Optical properties of (nanometer MCM-41)-(malachite green) composite materials

    International Nuclear Information System (INIS)

    Li Xiaodong; Zhai Qingzhou; Zou Mingqiang

    2010-01-01

    Nanosized materials loaded with organic dyes are of interest with respect to novel optical applications. The optical properties of malachite green (MG) in MCM-41 are considerably influenced by the limited nanoporous channels of nanometer MCM-41. Nanometer MCM-41 was synthesized by tetraethyl orthosilicate (TEOS) as the source of silica and cetyltrimethylammonium bromide (CTMAB) as the template. The liquid-phase grafting method has been employed for incorporation of the malachite green molecules into the channels of nanometer MCM-41. A comparative study has been carried out on the adsorption of the malachite green into modified MCM-41 and unmodified MCM-41. The modified MCM-41 was synthesized using a silylation reagent, trimethychlorosilane (TMSCl), which functionalized the surface of nanometer MCM-41 for proper host-guest interaction. The prepared (nanometer MCM-41)-MG samples have been studied by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, low-temperature nitrogen adsorption-desorption technique at 77 K, Raman spectra and luminescence studies. In the prepared (nanometer MCM-41)-MG composite materials, the frameworks of the host molecular sieve were kept intact and the MG located inside the pores of MCM-41. Compared with the MG, it is found that the prepared composite materials perform a considerable luminescence. The excitation and emission spectra of MG in both modified MCM-41 and unmodified MCM-41 were examined to explore the structural effects on the optical properties of MG. The results of luminescence spectra indicated that the MG molecules existed in monomer form within MCM-41. However, the luminescent intensity of MG incorporated in the modified MCM-41 are higher than that of MG encapsulated in unmodified MCM-41, which may be due to the anchored methyl groups on the channels of the nanometer MCM-41 and the strong host-guest interactions. The steric effect from the pore size of the host materials is significant. Raman

  11. Adsorption of malachite green onto carbon prepared from borassus bar

    International Nuclear Information System (INIS)

    Arivoli, S; Hema, M; Prasath, P Martin Deva

    2009-01-01

    An activated carbon prepared from Borassus bark, a low-cost source, by sulphuric acid activation, was tested for its ability to remove malachite green in aqueous solution. The parameters studied included contact time, initial dye concentration, carbon dose, pH, and temperature. The adsorption followed first order rate equation and the rate was mainly controlled by intra-particle diffusion. Freundlich and Langmuir isotherm models were applied to the equilibrium data. The adsorption capacities (Qm) obtained from the Langmuir isotherm plots were 20.70, 20.25, 19.76, and 19.34 mg/g at 30, 40, 50, and 60 degree C, respectively, at an initial pH of 6.0. The temperature variation study showed that the malachite green adsorption was endothermic and spontaneous with increased randomness at the solid solution interface. (author)

  12. Fluorinated Analogs of Malachite Green: Synthesis and Toxicity

    Directory of Open Access Journals (Sweden)

    Bahram Parvin

    2008-04-01

    Full Text Available A series of fluorinated analogs of malachite green (MG have been synthesizedand their toxicity to Saccharomyces cerevisiae and a human ovarian epithelial cell lineexamined. The toxicity profiles were found to be different for these two species. Twoanalogs, one with 2,4-difluoro substitution and the other with 2-fluoro substitution seem tobe the most promising analogs because they showed the lowest toxicity to the human cells.

  13. Fluorinated analogs of malachite green: synthesis and toxicity.

    Science.gov (United States)

    Kraus, George A; Jeon, Insik; Nilsen-Hamilton, Marit; Awad, Ahmed M; Banerjee, Jayeeta; Parvin, Bahram

    2008-04-27

    A series of fluorinated analogs of malachite green (MG) have been synthesized and their toxicity to Saccharomyces cerevisiae and a human ovarian epithelial cell line examined. The toxicity profiles were found to be different for these two species. Two analogs, one with 2,4-difluoro substitution and the other with 2-fluoro substitution seem to be the most promising analogs because they showed the lowest toxicity to the human cells.

  14. Adsorption of malachite green dye from aqueous solution on the bamboo leaf ash

    Science.gov (United States)

    Kuntari, Priwidyanjati, Dessyntha Anggiani

    2017-12-01

    Bamboo leaf ash has been developed as an adsorbent material for removal malachite green from aqueous solution. Adsorption parameters have studied are contact time and initial pH. The effect of contact time and pH were examined in the batch adsorption processes. The physicochemical characters of bamboo leaf ash were investigated by using X-Ray Diffraction (XRD) and FT-IR spectroscopy. Malachite green concentration was determined by UV-Vis spectrophotometer. FT-IR spectrogram of bamboo leaf ash shows that typical fingerprint of adsorbent material with Si-O-Si or Al-O-Al group. The X-ray diffractograms of bamboo leaf ash show that adsorbent material has a highly amorphous nature. The percentage of adsorption was showed raised with increasing contact time. The optimum removal of malachite green when the initial dye concentration, initial pH, weight of adsorbent and contact time was 20 mg/L, 7, 0.25 g and 75 minutes respectively.

  15. Isolation of nontuberculous mycobacteria from soil using Middlebrook 7H10 agar with increased malachite green concentration.

    Science.gov (United States)

    Hu, Yuli; Yu, Xinglong; Zhao, Dun; Li, Runcheng; Liu, Yang; Ge, Meng; Hu, Huican

    2017-12-01

    Environmental exposure is considered to be responsible for nontuberculous mycobacterial infections in humans. To facilitate the isolation of mycobacteria from soil, Middlebrook 7H10 agar was optimized as an enhanced selective medium by increasing the concentration of malachite green. A series of modified Middlebrook 7H10 agar media with malachite green concentrations ranging from 2.5 to 2500 mg/L was evaluated using 20 soil samples decontaminated with 3% sodium dodecyl sulfate plus 2% NaOH for 30 min. Among these modified Middlebrook 7H10 media, the medium with malachite green at a concentration of 250 mg/L, i.e., at the same concentration as in Löwenstein-Jensen medium, was the most effective in terms of the number of plates with mycobacterial growth. This medium was further evaluated with 116 soil samples. The results showed that 87.1% (101/116) of the samples produced mycobacterial growth, and 15 samples (12.9%) produced no mycobacterial growth. Of the plates inoculated with the soil samples, each in duplicate, 5.2% (12/232) showed late contamination. In total, 19 mycobacterial species were isolated, including seven (36.8%) rapidly growing mycobacteria and 12 (63.2%) slowly growing mycobacteria. Our results demonstrate that the modified Middlebrook 7H10 agar with 250 mg/L malachite green is useful for the primary isolation of nontuberculous mycobacteria from soil.

  16. Utilization of unconventional lignocellulosic waste biomass for the biosorption of toxic triphenylmethane dye malachite green from aqueous solution.

    Science.gov (United States)

    Selvasembian, Rangabhashiyam; P, Balasubramanian

    2018-05-12

    Biosorption potential of novel lignocellulosic biosorbents Musa sp. peel (MSP) and Aegle marmelos shell (AMS) was investigated for the removal of toxic triphenylmethane dye malachite green (MG), from aqueous solution. Batch experiments were performed to study the biosorption characteristics of malachite green onto lignocellulosic biosorbents as a function of initial solution pH, initial malachite green concentration, biosorbents dosage, and temperature. Biosorption equilibrium data were fitted to two and three parameters isotherm models. Three-parameter isotherm models better described the equilibrium data. The maximum monolayer biosorption capacities obtained using the Langmuir model for MG removal using MSP and AMS was 47.61 and 18.86 mg/g, respectively. The biosorption kinetic data were analyzed using pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion models. The pseudo-second-order kinetic model best fitted the experimental data, indicated the MG biosorption using MSP and AMS as chemisorption process. The removal of MG using AMS was found as highly dependent on the process temperature. The removal efficiency of MG showed declined effect at the higher concentrations of NaCl and CaCl 2 . The regeneration test of the biosorbents toward MG removal was successful up to three cycles.

  17. Decolorization of Malachite Green and Crystal Violet by Waterborne Pathogenic Mycobacteria

    Science.gov (United States)

    Jones, Jefferson J.; Falkinham III, Joseph O.

    2003-01-01

    Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, Mycobacterium marinum, and Mycobacterium chelonae tolerate high concentrations of the dyes malachite green and crystal violet. Cells of strains of those species decolorized (reduced) both malachite green and crystal violet. Because decolorized malachite green lacked antimicrobial activity, the resistance of these mycobacteria could be due, in part, to their ability to decolorize the dyes. Small amounts of malachite green and its reduced, decolorized product were detected in the lipid fraction of M. avium strain A5 cells grown in the presence of malachite green, suggesting that a minor component of resistance could be due to sequestering the dyes in the extensive mycobacterial cell surface lipid. The membrane fraction of M. avium strain A5 had at least a fivefold-higher specific decolorization rate than did the crude extract, suggesting that the decolorization activity is membrane associated. The malachite green-decolorizing activity of the membrane fraction of M. avium strain A5 was abolished by either boiling or proteinase exposure, suggesting that the decolorizing activity was due to a protein. Decolorization activity of membrane fractions was stimulated by ferrous ion and inhibited by dinitrophenol and metyrapone. PMID:12821489

  18. Removal of Malachite Green Dye from Aqueous Solution Using Multi-Walled Carbon Nano tubes: An Application of Experimental Design

    International Nuclear Information System (INIS)

    Siti Aminah Zulkepli; Md Pauzi Abdullah; Md Pauzi Abdullah; Wan Mohd Afiq Wan Mohd Khalik

    2016-01-01

    An experimental design methodology was performed in the optimization of removal of malachite green dye by multi-walled carbon nano tubes. A Central Composite Design (25) was chosen to develop a mathematical model and determine the optimum condition for adsorption of malachite green by carbon nano tubes. Five experimental factors, namely initial dye concentration, mass of adsorbent, pH, contact time and agitation speed were studied. Maximum adsorption of malachite green was achieved at the suggested optimum conditions: initial dye concentration (20 ppm), weight of adsorbent (0.03 g), pH solution (7) contact time (17 min) and agitation speed (150 strokes per min). The experimental value of adsorption by multi-walled carbon nano tubes were found to be in good agreement with the predicted value (R"2 = 0.922).The experimental equilibrium data were best fitted to isotherm model (Langmuir) and kinetic model (pseudo second-order) respectively. Maximum adsorption by carbon nano tubes at monolayer for malachite green was obtained at 112.36 mg/ g while kinetic rate constant was calculated to be 0.0017 g mg"-"1 min"-"1. (author)

  19. Optical Properties of Malachite Green Dye Doped SiO2 Glasses: Effect of Transition Metal (Fe-I Used as a Codopant

    Directory of Open Access Journals (Sweden)

    Dulen Bora

    2014-01-01

    Full Text Available Enhanced luminescence properties of Malachite Green (MG (oxalate in Fe-MG codoped SiO2 glasses compared to its values in MG doped SiO2 glasses are reported here. The enhancement is chiefly attributed to a resonance nonradiative energy transfer between Fe and MG. The quantum yield of Malachite Green (MG, in presence of Iron, trapped in sol-gel derived SiO2 glass increases by an order of ~103 compared to that in low viscous solvent while a lifetime of 3.29 ns is reported.

  20. Confirmatory analysis of malachite green, Leucomalachite green, crystal violet and leucocrystal violet in salmon by liquid chromatography-tandem mass spectrometry

    NARCIS (Netherlands)

    Dowling, A.P.G.; Mulder, P.P.J.; Duffy, C.; Regan, L.; Smyth, M.R.

    2007-01-01

    A method has been developed to analyse for malachite green (MG), leucornalachite green (LMG), crystal violet (CV) and leucocrystal violet (LCV) residues in salmon. Salmon samples were extracted with acetonitrile:Mclllvain pH 3 buffer (90: 10 v/v), sample extracts were purified on a Bakerbond strong

  1. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor

    International Nuclear Information System (INIS)

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-01-01

    Highlights: • A novel dual-tank photoelectrochemical catalytic reactor was designed. • Malachite green degraded in bipolar double-effect mode. • Salt bridge replaced by a cation exchange membrane in the reactor. • Degradation pathways of malachite green in the cathode and anode tanks were similar. -- Abstract: A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO 2 /Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions

  2. Formation of an intermediate radical cation in the nanosecond pulse radiolysis of malachite green leucocyanide in organic solvents

    International Nuclear Information System (INIS)

    Grodkowski, J.; Bobrowski, K.; Mehnert, R.; Brede, O.

    1989-01-01

    The malachite green leucocyanide (MGCN) was irradiated in argon or oxygen saturated solutions of n-butyl chloride, 1.2-DCE, CCl 4 and acetone with 13 ns electron pulses. Two species with absorption maxima at 620 and 480 nm were observed. The latter was attributed to the malachite green leucocyanide radical cation (MGCN +radical ) and the former to the known carbonium ion of malachite green dye (MG + ). Observation of the consecutive charge transfer via the schemes: DCE +radical → BPh +radical → MGCN +radical and DCE +radical → MGCN +radical → TMPD +radical , allowed to estimate the ionization potential of MGCN molecule in the range 6.9 eV MGCN +radical radical cation is located in the ''aniline'' part of the molecule. (author)

  3. A study of the interaction between malachite green and lysozyme by steady-state fluorescence.

    Science.gov (United States)

    Ding, Fei; Liu, Wei; Liu, Feng; Li, Zhi-Yuan; Sun, Ying

    2009-09-01

    The interaction of a N-methylated diaminotriphenylmethane dye, malachite green, with lysozyme was investigated by fluorescence spectroscopic techniques under physiological conditions. The binding parameters have been evaluated by fluorescence quenching methods. The results revealed that malachite green caused the fluorescence quenching of lysozyme through a static quenching procedure. The thermodynamic parameters like DeltaH and DeltaS were calculated to be -15.33 kJ mol(-1) and 19.47 J mol(-1) K(-1) according to van't Hoff equation, respectively, which proves main interaction between malachite green and lysozyme is hydrophobic forces and hydrogen bond contact. The distance r between donor (lysozyme) and acceptor (malachite green) was obtained to be 3.82 nm according to Frster's theory. The results of synchronous fluorescence, UV/vis and three-dimensional fluorescence spectra showed that binding of malachite green with lysozyme can induce conformational changes in lysozyme. In addition, the effects of common ions on the constants of lysozyme-malachite green complex were also discussed.

  4. Degradation pathway of malachite green in a novel dual-tank photoelectrochemical catalytic reactor.

    Science.gov (United States)

    Diao, Zenghui; Li, Mingyu; Zeng, Fanyin; Song, Lin; Qiu, Rongliang

    2013-09-15

    A novel dual-tank photoelectrochemical catalytic reactor was designed to investigate the degradation pathway of malachite green. A thermally formed TiO₂/Ti thin film electrode was used as photoanode, graphite was used as cathode, and a saturated calomel electrode was employed as the reference electrode in the reactor. In the reactor, the anode and cathode tanks were connected by a cation exchange membrane. Results showed that the decolorization ratio of malachite green in the anode and cathode was 98.5 and 96.5% after 120 min, respectively. Malachite green in the two anode and cathode tanks was oxidized, achieving the bipolar double effect. Malachite green in both the anode and cathode tanks exhibited similar catalytic degradation pathways. The double bond of the malachite green molecule was attacked by strong oxidative hydroxyl radicals, after which the organic compound was degraded by the two pathways into 4,4-bis(dimethylamino) benzophenone, 4-(dimethylamino) benzophenone, 4-(dimethylamino) phenol, and other intermediate products. Eventually, malachite green was degraded into oxalic acid as a small molecular organic acid, which was degraded by processes such as demethylation, deamination, nitration, substitution, addition, and other reactions. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Mini-column assay for rapid detection of malachite green in fish.

    Science.gov (United States)

    Shalaby, Ali R; Emam, Wafaa H; Anwar, Mervat M

    2017-07-01

    A simple, rapid and economical mini-column method for detecting malachite green (MG) residue in fish was developed. The method used a column with 2mm ID that was tightly packed with silica gel followed by alumina. Detection of MG was performed by viewing the developed mini-column at visible light by naked eye; where MG was seen as compact green band at the confluence of the silica gel layer with alumina layer. The limit of detection of the assay was 2ng which conform the minimum required performance limit (MRPL). Evaluation utility of the method indicated that all blank and spiked samples at levels below MRPL were assessed as accepted. The intensity of the green band increased whenever MG level in the extract increased; indicated that suggested mini-column technique could be used for semi-quantitative determination of MG in fish samples. The method can be used to select the questionable samples. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Photodegradation of Malachite Green by Nanostructured Bi2WO6 Visible Light-Induced Photocatalyst

    OpenAIRE

    Yijie Chen; Yaqin Zhang; Chen Liu; Aimin Lu; Weihua Zhang

    2012-01-01

    Bi2WO6 photocatalyst was first utilized to degrade malachite green. The effects of the concentration of malachite green, the pH value, and the concentration of Bi2WO6 on the photocatalytic efficiency were investigated. This study presents a strategy to eliminate highly toxic and persistent dyes such as malachite green.

  7. Investigation on removal of malachite green using EM based compost as adsorbent.

    Science.gov (United States)

    Bhagavathi Pushpa, T; Vijayaraghavan, J; Sardhar Basha, S J; Sekaran, V; Vijayaraghavan, K; Jegan, J

    2015-08-01

    The discarded materials from different sources can be utilized as effective materials in wastewater remediation. This proposed study was aimed mainly to investigate the possibility of Effective Microorganisms based compost (EMKC), which is derived from the kitchen solid waste, as a non-conventional low cost adsorbent for the removal of malachite green from aqueous solution. Batch experiments were carried out to evaluate the optimum operating parameters like pH (2-9), initial dye concentration (50-1000mg/L), adsorbent particle size (0.6-2.36mm) and adsorbent dosage (2-12g/L). EMKC recorded maximum uptake of 136.6mg/g of MG at pH 8, initial dye concentration 1000mg/L, adsorbent particle size 1.18mm and adsorbent dosage 4g/L. Two and three parameter adsorption models were employed to describe experimental biosorption isotherm data. The results revealed that the Sips model resulted in better fit than other models. The pseudo-first and -second order models were applied to describe kinetic data, of which the pseudo-second order described experimental data better with high correlation coefficient. This investigation suggested that EMKC could be an effective and low cost material for the removal of malachite green dye from aqueous solution. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Degradation of malachite green in aqueous solution by Fenton process.

    Science.gov (United States)

    Hameed, B H; Lee, T W

    2009-05-30

    In this study, advanced oxidation process utilizing Fenton's reagent was investigated for degradation of malachite green (MG). The effects of different reaction parameters such as the initial MG concentration, initial pH, the initial hydrogen peroxide concentration, the initial ferrous concentration and the reaction temperature on the oxidative degradation of MG have been investigated. The optimal reacting conditions were experimentally found to be pH 3.40, initial hydrogen peroxide concentration=0.50mM and initial ferrous concentration=0.10mM for initial MG concentration of 20mg/L at 30 degrees C. Under optimal conditions, 99.25% degradation efficiency of dye in aqueous solution was achieved after 60 min of reaction.

  9. Determination of adulteration of malachite green in green pea and some prepared foodstuffs by micellar liquid chromatography.

    Science.gov (United States)

    Ashok, Vipin; Agrawal, Nitasha; Durgbanshi, Abhilasha; Esteve-Romero, Josep; Bose, Devasish

    2014-01-01

    A simple, fast, and robust micellar LC method was developed for the separation and identification of the nonpermitted color malachite green in green pea and some ready-to-eat foodstuffs. Malachite green (4-[(4-dimethylaminophenyl) phenyl-methyl]-N,N-dimethylaniline) is a hazardous dye that is used to treat fungal and protozoan infections in fish and is a common adulterant (coloring agent) in green pea and other green vegetables because of its green color. In the present work, malachite green was determined in various foodstuffs using a direct injection technique on an RP C18 column with isocratic elution. The optimum mobile phase consisted of 0.15 M sodium dodecyl sulfate (SDS), 6% pentanol buffered at pH 5. Detection was carried out at 620 nm. Malachite green was eluted in 9.2 min without any interference caused by endogenous compounds. Linearities (r > 0.9999), intraday and interday precision (RSD less than 1.00%) in micellar media, and robustness were studied for method validation. LOD and LOQ were 0.10 and 0.25 ppm, respectively. The simplicity of the developed method makes it useful for routine analysis in the area of food QC.

  10. Quirks of dye nomenclature. 6. Malachite green.

    Science.gov (United States)

    Cooksey, C J

    2016-08-01

    Malachite green was discovered independently by two researchers in Germany in the 19(th) century and found immediate employment as a dye and a pigment. Subsequently, other uses, such as staining biological specimens, emerged. A much later application was the control of fungal and protozoan infections in fish, for which the dye remains popular, although illegal in many countries owing to a variety of toxicity problems. In solution, malachite green can exist as five different species depending on the pH. The location of the positive charge of the colored cation on a carbon atom or a nitrogen atom is still debated. The original names of this dye, and their origins, are briefly surveyed.

  11. Reduced toxicity of malachite green decolorized by laccase produced from Ganoderma sp. rckk-02 under solid-state fermentation.

    Science.gov (United States)

    Sharma, Abha; Shrivastava, Bhuvnesh; Kuhad, Ramesh Chander

    2015-10-01

    Statistical designs were applied for optimizing laccase production from a white-rot fungus, Ganoderma sp. rckk-02 under solid-state fermentation (SSF). Compared to unoptimized conditions [2,154 U/gds (Unit per gram of dry substrate)], the optimization process resulted in a 17.3-fold increase in laccase production (37,423 U/gds). The laccase produced was evaluated for its potential to decolorize a recalcitrant synthetic dye, malachite green. Laccase at dosage of 30 U/ml in presence of 1 mM of 1-hydroxybenzotriazole (HBT) almost completely decolorized 100 and 200 mg/l of malachite green in 16 and 20 h, respectively, at 30 °C, pH 5.5 and 150 rpm. While, higher dyes concentrations of 300, 400 and 500 mg/l were decolorized to 72, 62 and 55 % in 24, 28 and 32 h, respectively, under similar conditions. Furthermore, it was observed that the decolorized malachite green was less toxic towards the growth of five white-rot fungi tested viz. Crinipellis sp. RCK-1, Ganoderma sp. rckk-02, Coriolopsis Caperata RCK 2011, Phanerochaete chrysosporium K3 and Pycnoporous cinnabarinus PB. The present study demonstrates the potential of Ganoderma sp. rckk-02 to produce high titres of laccase under SSF, which can be exploited in conjunction with redox mediator for the decolorization of high concentrations of malachite green from water bodies.

  12. Function and dynamics of aptamers: A case study on the malachite green aptamer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianjiao [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Aptamers are short single-stranded nucleic acids that can bind to their targets with high specificity and high affinity. To study aptamer function and dynamics, the malachite green aptamer was chosen as a model. Malachite green (MG) bleaching, in which an OH- attacks the central carbon (C1) of MG, was inhibited in the presence of the malachite green aptamer (MGA). The inhibition of MG bleaching by MGA could be reversed by an antisense oligonucleotide (AS) complementary to the MGA binding pocket. Computational cavity analysis of the NMR structure of the MGA-MG complex predicted that the OH- is sterically excluded from the C1 of MG. The prediction was confirmed experimentally using variants of the MGA with changes in the MG binding pocket. This work shows that molecular reactivity can be reversibly regulated by an aptamer-AS pair based on steric hindrance. In addition to demonstrate that aptamers could control molecular reactivity, aptamer dynamics was studied with a strategy combining molecular dynamics (MD) simulation and experimental verification. MD simulation predicted that the MG binding pocket of the MGA is largely pre-organized and that binding of MG involves reorganization of the pocket and a simultaneous twisting of the MGA terminal stems around the pocket. MD simulation also provided a 3D-structure model of unoccupied MGA that has not yet been obtained by biophysical measurements. These predictions were consistent with biochemical and biophysical measurements of the MGA-MG interaction including RNase I footprinting, melting curves, thermodynamic and kinetic constants measurement. This work shows that MD simulation can be used to extend our understanding of the dynamics of aptamer-target interaction which is not evident from static 3D-structures. To conclude, I have developed a novel concept to control molecular reactivity by an aptamer based on steric protection and a strategy to study the dynamics of aptamer-target interaction by combining MD

  13. Morphological changes in vesicles and release of an encapsulated compound triggered by a photoresponsive Malachite Green leuconitrile derivative.

    Science.gov (United States)

    Uda, Ryoko M; Hiraishi, Eri; Ohnishi, Ryo; Nakahara, Yoshio; Kimura, Keiichi

    2010-04-20

    Photoinduced morphological changes in phosphatidylcholine vesicles are triggered by a Malachite Green leuconitrile derivative dissolved in the lipidic membrane, and are observed at Malachite Green derivative/lipid ratios Malachite Green derivative is a photoresponsive compound that undergoes ionization to afford a positive charge on the molecule by UV irradiation. The Malachite Green derivative exhibits amphiphilicity when ionized photochemically, whereas it behaves as a lipophilic compound under dark conditions. Cryo-transmission electron microscopy was used to determine vesicle morphology. The effects of the Malachite Green derivative on vesicles were studied by dynamic light scattering and fluorescence resonance energy transfer. Irradiation of vesicles containing the Malachite Green derivative induces nonspherical vesicle morphology, fusion of vesicles, and membrane solubilization, depending on conditions. Furthermore, irradiation of the Malachite Green derivative induces the release of a vesicle-encapsulated compound.

  14. A nanosilver-based spectrophotometric method for determination of malachite green in surface water samples.

    Science.gov (United States)

    Sahraei, R; Farmany, A; Mortazavi, S S; Noorizadeh, H

    2013-07-01

    A new spectrophotometric method is reported for the determination of nanomolar level of malachite green in surface water samples. The method is based on the catalytic effect of silver nanoparticles on the oxidation of malachite green by hexacyanoferrate (III) in acetate-acetic acid medium. The absorbance is measured at 610 nm with the fixed-time method. Under the optimum conditions, the linear range was 8.0 × 10(-9)-2.0 × 10(-7) mol L(-1) malachite green with a correlation coefficient of 0.996. The limit of detection (S/N = 3) was 2.0 × 10(-9) mol L(-1). Relative standard deviation for ten replicate determinations of 1.0 × 10(-8) mol L(-1) malachite green was 1.86%. The method is featured with good accuracy and reproducibility for malachite green determination in surface water samples without any pre-concentration and separation step.

  15. A Highly Sensitive and Selective Method for the Determination of an Iodate in Table-salt Samples Using Malachite Green-based Spectrophotometry.

    Science.gov (United States)

    Konkayan, Mongkol; Limchoowong, Nunticha; Sricharoen, Phitchan; Chanthai, Saksit

    2016-01-01

    A simple, rapid, and sensitive malachite green-based spectrophotometric method for the selective trace determination of an iodate has been developed and presented for the first time. The reaction mixture was specifically involved in the liberation of iodine in the presence of an excess of iodide in an acidic condition following an instantaneous reaction between the liberated iodine and malachite green dye. The optimum condition was obtained with a buffer solution pH of 5.2 in the presence of 40 mg L -1 potassium iodide and 1.5 × 10 -5 M malachite green for a 5-min incubation time. The iodate contents in some table-salt samples were in the range of 26 to 45 mg kg -1 , while those of drinking water, tap water, canal water, and seawater samples were not detectable (< 96 ng mL -1 of limits of detection, LOQ) with their satisfied method of recoveries of between 93 and 108%. The results agreed with those obtained using ICP-OES for comparison.

  16. Biosorption of malachite green onto Haematococcus pluvialis observed through synchrotron-FTIR microspectroscopy.

    Science.gov (United States)

    Liu, J H; Zhang, L; Zha, D C; Chen, L Q; Chen, X X; Qi, Z M

    2018-06-28

    Microalgae have emerged as promising biosorbents for the treatment of malachite green in wastewater. However, the underlying mechanism for the biosorption of malachite green onto microalgae is still unclear and needs further intensive study. In this work, synchrotron Fourier-transform infrared (synchrotron-FTIR) microspectroscoy in combination with biochemical assay is employed to evaluate malachite green removal efficiency (95.2%, 75.6% and 66.5%) by three stages of Haematococcus pluvialis. Meanwhile, the various vital changes of algal cells including lipids, proteins, polysaccharides and carotenoids, is distinguished and quantified in situ. This study illustrates that synchrotron-FTIR microspectroscopy is an effective and powerful tool to scrutinize the mechanism for the interactions between the malachite green dye and microalgal cells and it even provides an effective and none-invasive new approach to screen potentially proper biosorbents for the removal of dyes from wastewater. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Formation of an intermediate radical cation in the nanosecond pulse radiolysis of malachite green leucocyanide in organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Grodkowski, J; Bobrowski, K; Mehnert, R; Brede, O

    1989-01-01

    The malachite green leucocyanide (MGCN) was irradiated in argon or oxygen saturated solutions of n-butyl chloride, 1.2-DCE, CCl/sub 4/ and acetone with 13 ns electron pulses. Two species with absorption maxima at 620 and 480 nm were observed. The latter was attributed to the malachite green leucocyanide radical cation (MGCN/sup +radical/) and the former to the known carbonium ion of malachite green dye (MG/sup +/). Observation of the consecutive charge transfer via the schemes: DCE/sup +radical/ -> BPh/sup +radical/ -> MGCN/sup +radical/ and DCE/sup +radical/ -> MGCN/sup +radical/ -> TMPD/sup +radical/, allowed to estimate the ionization potential of MGCN molecule in the range 6.9 eV < Ip/sub MGCN/ < 8.27 eV. Presented results and literature data suggest that positive charge in MGCN/sup +radical/ radical cation is located in the ''aniline'' part of the molecule. (author).

  18. Removal of malachite green by adsorption and precipitation using aminopropyl functionalized magnesium phyllosilicate

    International Nuclear Information System (INIS)

    Lee, Young-Chul; Kim, Eui Jin; Yang, Ji-Won; Shin, Hyun-Jae

    2011-01-01

    Highlights: → Preparation of aminopropyl functionalized magnesium phyllosilicate (AMP clay). → Characterization of AMP clay and AMP clay-malachite green (MG) mixture. → Novel precipitation mechanism including MG fading plus collapsed AMP clay. → Adsorption kinetics and thermodynamics of MG using AMP clay. - Abstract: We report a method for the removal of malachite green (MG) by adsorption and precipitation using nano-sized aminopropyl functionalized magnesium phyllosilicate (AMP) clay. MG, which is used in aquaculture and fisheries, is a carcinogenic and mutagenic compound. In response to these health risks, many efforts have been focused on adsorption of MG onto various adsorbents, which is a versatile and widely used technique for removing MG from water. Herein, we describe the adsorption and precipitation of MG using AMP clay, as well as the alkaline fading phenomenon of MG. In this study, prepared AMP clay and the precipitate product after the reaction of MG-AMP clay mixture were characterized. In addition, adsorption isotherms and kinetics, as well as thermodynamic studies are presented. Based on the results, we suggest a macro- and microscopic removal mechanism for the adsorption and precipitation of MG using AMP clay. An AMP clay dosage of 0.1 mg mL -1 exhibited a maximum removal capacity of 334.80 mg g -1 and 81.72% MG removal efficiency. With further increases of the AMP clay dosage, removal capacity by AMP clay gradually decreased; at dosage above 0.2 mg mL -1 of AMP clay, the removal efficiency reached 100%.

  19. Removal of malachite green by adsorption and precipitation using aminopropyl functionalized magnesium phyllosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Chul [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Eui Jin [Department of Chemical and Biochemical Engineering, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of); Yang, Ji-Won [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Shin, Hyun-Jae, E-mail: shinhj@chosun.ac.kr [Department of Chemical and Biochemical Engineering, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759 (Korea, Republic of)

    2011-08-15

    Highlights: {yields} Preparation of aminopropyl functionalized magnesium phyllosilicate (AMP clay). {yields} Characterization of AMP clay and AMP clay-malachite green (MG) mixture. {yields} Novel precipitation mechanism including MG fading plus collapsed AMP clay. {yields} Adsorption kinetics and thermodynamics of MG using AMP clay. - Abstract: We report a method for the removal of malachite green (MG) by adsorption and precipitation using nano-sized aminopropyl functionalized magnesium phyllosilicate (AMP) clay. MG, which is used in aquaculture and fisheries, is a carcinogenic and mutagenic compound. In response to these health risks, many efforts have been focused on adsorption of MG onto various adsorbents, which is a versatile and widely used technique for removing MG from water. Herein, we describe the adsorption and precipitation of MG using AMP clay, as well as the alkaline fading phenomenon of MG. In this study, prepared AMP clay and the precipitate product after the reaction of MG-AMP clay mixture were characterized. In addition, adsorption isotherms and kinetics, as well as thermodynamic studies are presented. Based on the results, we suggest a macro- and microscopic removal mechanism for the adsorption and precipitation of MG using AMP clay. An AMP clay dosage of 0.1 mg mL{sup -1} exhibited a maximum removal capacity of 334.80 mg g{sup -1} and 81.72% MG removal efficiency. With further increases of the AMP clay dosage, removal capacity by AMP clay gradually decreased; at dosage above 0.2 mg mL{sup -1} of AMP clay, the removal efficiency reached 100%.

  20. Permethylated-β-Cyclodextrin Capped CdTe Quantum Dot and its Sensitive Fluorescence Analysis of Malachite Green.

    Science.gov (United States)

    Cao, Yujuan; Wei, Jiongling; Wu, Wei; Wang, Song; Hu, Xiaogang; Yu, Ying

    2015-09-01

    In the present work, the CdTe quantum dots were covalently conjugated with permethylated-β-cyclodextrin (OMe-β-CD) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as cross-linking reagent. The obtained functional quantum dots (OMe-β-CD/QDs) showed highly luminescent, water solubility and photostability as well as good inclusion ability to malachite green. A sensitive fluorescence method was developed for the analysis of malachite green in different samples. The good linearity was 2.0 × 10(-7)-1.0 × 10(-5) mol/L and the limit of detect was 1.7 × 10(-8) mol/L. The recoveries for three environmental water samples were 92.0-108.2 % with relative standard deviation (RSD) of 0.24-1.87 %, while the recovery for the fish sample was 94.3 % with RSD of 1.04 %. The results showed that the present method was sensitive and convenient to determine malachite green in complex samples. Graphical Abstract The analytical mechanism of OMe-β-CD/QDs and its linear response to MG.

  1. Removal of Pb(II ions and malachite green dye from wastewater by activated carbon produced from lemon peel

    Directory of Open Access Journals (Sweden)

    Sayed Zia Mohammadi

    2014-06-01

    Full Text Available In the present study, a high-surface area activated carbon was prepared by chemical activation of lemon peel with H3PO4 as the active agent. Then, the adsorption behavior of Malachite green dye and Pb(II ions on the produced activated carbon was studied. Batch process was employed for sorption kinetics and equilibrium studies. Experimental data were �tted to various isotherm models. According to the Langmuir model, the maximum adsorption capacities of Malachite green dye and Pb(II ions were found to be 66.67 and 90.91 mg g-1, respectively, at room temperature. Kinetic studies showed the adsorption process followed a pseudo second-order rate model. The sorption kinetics were controlled by intra-particle diffusion. The results indicated that the produced activated carbon can be economically and effectively used as an adsorbent for the removal of Malachite green dye and Pb(II ions from wastewaters.

  2. Lipoprotein Processing Is Essential for Resistance of Mycobacterium tuberculosis to Malachite Green▿

    Science.gov (United States)

    Banaei, Niaz; Kincaid, Eleanor Z.; Lin, S.-Y. Grace; Desmond, Edward; Jacobs, William R.; Ernst, Joel D.

    2009-01-01

    Malachite green, a synthetic antimicrobial dye, has been used for over 50 years in mycobacterial culture medium to inhibit the growth of contaminants. The molecular basis of mycobacterial resistance to malachite green is unknown, although the presence of malachite green-reducing enzymes in the cell envelope has been suggested. The objective of this study was to investigate the role of lipoproteins in resistance of Mycobacterium tuberculosis to malachite green. The replication of an M. tuberculosis lipoprotein signal peptidase II (lspA) mutant (ΔlspA::lspAmut) on Middlebrook agar with and without 1 mg/liter malachite green was investigated. The lspA mutant was also compared with wild-type M. tuberculosis in the decolorization rate of malachite green and sensitivity to sodium dodecyl sulfate (SDS) detergent and first-line antituberculosis drugs. The lspA mutant has a 104-fold reduction in CFU-forming efficiency on Middlebrook agar with malachite green. Malachite green is decolorized faster in the presence of the lspA mutant than wild-type bacteria. The lspA mutant is hypersensitive to SDS detergent and shows increased sensitivity to first-line antituberculosis drugs. In summary, lipoprotein processing by LspA is essential for resistance of M. tuberculosis to malachite green. A cell wall permeability defect is likely responsible for the hypersensitivity of lspA mutant to malachite green. PMID:19596883

  3. Application of Micro-cloud point extraction for spectrophotometric determination of Malachite green, Crystal violet and Rhodamine B in aqueous samples

    Science.gov (United States)

    Ghasemi, Elham; Kaykhaii, Massoud

    2016-07-01

    A novel, green, simple and fast method was developed for spectrophotometric determination of Malachite green, Crystal violet, and Rhodamine B in water samples based on Micro-cloud Point extraction (MCPE) at room temperature. This is the first report on the application of MCPE on dyes. In this method, to reach the cloud point at room temperature, the MCPE procedure was carried out in brine using Triton X-114 as a non-ionic surfactant. The factors influencing the extraction efficiency were investigated and optimized. Under the optimized condition, calibration curves were found to be linear in the concentration range of 0.06-0.60 mg/L, 0.10-0.80 mg/L, and 0.03-0.30 mg/L with the enrichment factors of 29.26, 85.47 and 28.36, respectively for Malachite green, Crystal violet, and Rhodamine B. Limit of detections were between 2.2 and 5.1 μg/L.

  4. Factorial experimental design for the optimization of catalytic degradation of malachite green dye in aqueous solution by Fenton process

    Directory of Open Access Journals (Sweden)

    A. Elhalil

    2016-09-01

    Full Text Available This work focuses on the optimization of the catalytic degradation of malachite green dye (MG by Fenton process “Fe2+/H2O2”. A 24 full factorial experimental design was used to evaluate the effects of four factors considered in the optimization of the oxidative process: concentration of MG (X1, concentration of Fe2+ (X2, concentration of H2O2 (X3 and temperature (X4. Individual and interaction effects of the factors that influenced the percentage of dye degradation were tested. The effect of interactions between the four parameters shows that there is a dependency between concentration of MG and concentration of Fe2+; concentration of Fe2+ and concentration of H2O2, expressed by the great values of the coefficient of interaction. The analysis of variance proved that, the concentration of MG, the concentration of Fe2+ and the concentration of H2O2 have an influence on the catalytic degradation while it is not the case for the temperature. In the optimization, the great dependence between observed and predicted degradation efficiency, the correlation coefficient for the model (R2=0.986 and the important value of F-ratio proved the validity of the model. The optimum degradation efficiency of malachite green was 93.83%, when the operational parameters were malachite green concentration of 10 mg/L, Fe2+ concentration of 10 mM, H2O2 concentration of 25.6 mM and temperature of 40 °C.

  5. EFSA CONTAM Panel (EFSA Panel on Contaminants in the Food Chain), 2016. Scientific opinion on malachite green in food

    DEFF Research Database (Denmark)

    Petersen, Annette

    Malachite green (MG) has been used globally in aquaculture but is not registered for use infood-producing animals in the European Union. The European Commission requested EFSA to evaluatewhether a reference point for action (RPA) of 2 lg/kg for the sum of MG and its major metaboliteleucomalachite...

  6. HPLC Determination and MS Confirmation of Malachite Green, Gentian Violet, and Their Leuco Metabolites in Catfish Muscle

    Science.gov (United States)

    Residues of malachite green (MG), gentian violet (GV), and their leuco metabolites in catfish muscle were individually determined by HPLC using visible and fluorescence detectors. This detection scheme obviated a PbO2 column that converts leuco forms to chromatic forms for visible detection, thus el...

  7. Extraction photometric determination of uranium (6) with use of malachite green

    International Nuclear Information System (INIS)

    Stepanenko, Yu.V.; Bagdasarov, K.N.; Shchemeleva, G.G.

    1975-01-01

    A study of the reaction between uranium (6) and malachite green in the presence of sodium benzoate has indicated that, in a weakly acid medium (pH 4.5 to 5.5), the reaction yields a poorly soluble greenish compound which tends to be extracted by a 1-to-1 mixture of benzene and chloroform. The compound comprises uranium, a benzoate and a malachite green in a ratio of 1/3/1. A method has been developed for an extraction-photometric determination of uranium in metallic lead

  8. Extraction photometric determination of uranium (6) with use of malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Stepanenko, Yu V; Bagdasarov, K N; Shchemeleva, G G [Rostovskij-na-Donu Gosudarstvennyj Univ. (USSR)

    1975-12-01

    A study of the reaction between uranium (6) and malachite green in the presence of sodium benzoate has indicated that, in a weakly acid medium (pH 4.5 to 5.5), the reaction yields a poorly soluble greenish compound which tends to be extracted by a 1-to-1 mixture of benzene and chloroform. The compound comprises uranium, a benzoate and a malachite green in a ratio of 1/3/1. A method has been developed for an extraction-photometric determination of uranium in metallic lead.

  9. Adsorption kinetics of malachite green onto activated carbon prepared from Tuncbilek lignite

    International Nuclear Information System (INIS)

    Onal, Y.; Akmil-Basar, C.; Eren, Didem; Sarici-Ozdemir, Cigdem; Depci, Tolga

    2006-01-01

    Adsorbent (T 3 K618) has been prepared from Tuncbilek lignite by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N 2 adsorption isotherm. The N 2 adsorption isotherm of malachite green on T 3 K618 is type I. The BET surface area of the adsorbent which was primarily contributed by micropores was determined 1000 m 2 /g. T 3 K618 was used to adsorb malachite green (MG) from an aqueous solution in a batch reactor. The effects of initial dye concentration, agitation time, initial pH and adsorption temperature have been studied. It was also found that the adsorption isotherm followed both Freundlich and Dubinin-Radushkevich models. However, the Freundlich gave a better fit to all adsorption isotherms than the Dubinin-Radushkevich. The kinetics of adsorption of MG has been tested using pseudo-first-order, pseudo-second-order and intraparticle diffusion models. Results show that the adsorption of MG from aqueous solution onto micropores T 3 K618 proceeds according to the pseudo-second-order model. The intraparticle diffusion of MG molecules within the carbon particles was identified to be the rate-limiting step. The adsorption of the MG was endothermic (ΔH o = 6.55-62.37 kJ/mol) and was accompanied by an increase in entropy (ΔS o = 74-223 J/mol K) and a decrease in mean value of Gibbs energy (ΔG o = -6.48 to -10.32 kJ/mol) in the temperature range of 20-50 deg. C

  10. Synthesis and characterization of N-demethylated metabolites of malachite green and leucomalachite green.

    Science.gov (United States)

    Cho, Bongsup P; Yang, Tianle; Blankenship, Lonnie R; Moody, Joanna D; Churchwell, Mona; Beland, Frederick A; Culp, Sandra J

    2003-03-01

    Malachite green (MG), a triphenylmethane dye used to treat fungal and protozoan infections in fish, undergoes sequential oxidation to produce various N-demethylated derivatives (monodes-, dides(sym)-, dides(unsym)-, trides-, and tetrades-) both before and after reduction to leucomalachite green (LMG). The close structure resemblance of the metabolites with aromatic amine carcinogens implicates a potential genotoxicity from exposure to MG. The availability of the synthetic standards is important for metabolic and DNA adduct studies of MG. This paper describes a simple and versatile method for the synthesis of MG, LMG, and their N-demethylated metabolites. The synthesis involves a coupling of 4-(dimethylamino)benzophenone or 4-nitrobenzophenone with the aryllithium reagents derived from appropriately substituted 4-bromoaniline derivatives, followed by treatment with HCl in methanol. The resulting cationic MG and their leuco analogues showed systematic UV/vis spectral and tandem mass fragmentation patterns consistent with sequential N-demethylation. The extensive (1)H and (13)C spectral assignments of the metabolites were aided by the availability of (13)C(7)-labeled MG and LMG. The results indicate the existence of a resonance structure with the cationic charge located in the central methane carbon (C(7)). The synthetic procedure is general in scope so that it can be extended to the preparation of N-demethylated metabolites of other structurally related N-methylated triphenylmethane dyes.

  11. Pulse radiolysis of malachite green leucocyanide in alcoholic solvents, the influence of oxygen

    International Nuclear Information System (INIS)

    Grodkowski, J.; Stuglik, Z.; Wieczorek, G.

    1992-01-01

    The solutions of malachite green leucocyanide (MGCN) in methanol, n-propanol and 2-propanol were investigated using pulse radiolysis. In the presence of oxygen, MG + -carbonium ions were radiolytically formed in two different time steps. The yield of MG + in the slower process was dependent on oxygen concentration and was proportional to the yield of intermediate MG radicals. The yield of MG was about ten times higher in 2-propanol than in methanol and n-propanol solutions. The reactants responsible for MG oxidation to MG + were RO 2 , hydroxyalkylperoxyl radicals derived from alcohols. The rate constant for MG reaction with RO 2 were estimated as (6.5±1) x 10 8 M -1 s -1 . The molar extinction coefficient of MG was calculated. (author)

  12. Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer

    Science.gov (United States)

    Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.

    2011-01-01

    The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051

  13. Green synthesized conditions impacting on the reactivity of Fe NPs for the degradation of malachite green.

    Science.gov (United States)

    Huang, Lanlan; Luo, Fang; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravendra

    2015-02-25

    This study investigates green tea extract synthesized conditions impacting on the reactivity of iron nanoparticles (Fe NPs) used for the degradation of malachite green (MG), including the volume ratio of Fe(2+) and tea extract, the solution pH and temperature. Results indicated that the reactivity of Fe NPs increased with higher temperature, but fell with increasing pH and the volume ratio of Fe(2+) and tea extract. Scanning electron microscope (SEM), energy-dispersive spectrometer (EDS), Fourier transform infrared spectroscope (FTIR) and X-ray diffraction (XRD) indicated that Fe NPs were spherical in shape, their diameter was 70-80 nm and they were mainly composed of iron oxide nanoparticles. UV-visible (UV-vis) indicated that reactivity of Fe NPs used in degradation of MG significantly depended on the synthesized conditions of Fe NPs. This was due to their impact on the reactivity and morphology of Fe NPs. Finally, degradation of MG showed that 90.56% of MG was removed using Fe NPs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fenton-Like Oxidation of Malachite Green Solutions: Kinetic and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Saeedeh Hashemian

    2013-01-01

    Full Text Available Oxidation by Fenton-like (Fe3+/H2O2 reactions is proven to be an economically feasible process for destruction of a variety of hazardous pollutants in wastewater. In this study, the degradation and mineralization of malachite green dye are reported using Fenton-like reaction. The effects of different parameters like pH of the solution, the initial concentrations of Fe3+, H2O2, and dye, temperature, and added electrolytes (Cl− and on the oxidation of the dye were investigated. Optimized condition was determined. The efficiency of 95.5% degradation of MAG after 15 minutes of reaction at pH 3 was obtained. TOC removal indicates partial and insignificant mineralization of malachite green dye. The results of experiments showed that degradation of malachite green dye in Fenton-like oxidation process can be described with a pseudo-second-order kinetic model. The thermodynamic constants of the Fenton oxidation process were evaluated. The results implied that the oxidation process was feasible, spontaneous, and endothermic. The results will be useful for designing the treatment systems of various dye-containing wastewaters.

  15. Degradation of malachite green on Pd/WO3 photocatalysts under simulated solar light

    International Nuclear Information System (INIS)

    Liu Yonggang; Ohko, Yoshihisa; Zhang Ruiqin; YangYingnan; Zhang Zhenya

    2010-01-01

    The photocatalytic degradation of malachite green (MG) dye molecules in aqueous solution was investigated by using palladium (Pd) modified tungsten trioxide (WO 3 ) under simulated solar light. The optimum values for Pd content vs. WO 3 and catalyst concentration in solution for MG (5.0 μmol L -1 ) degradation were 0.5 wt.% and 150 mg L -1 , respectively. The MG concentration change followed the pseudo first order kinetics of the Langmuir-Hinshelwood model. Since MG was also degraded under visible light (λ > 470 nm), which was not absorbed by WO 3 , the mechanism involved both the photocatalytic degradation and self-sensitized degradation of MG. Pd modified WO 3 would be useful as an efficient tool for the decolorization of wastewater under solar light.

  16. Molecular recognition of malachite green by hemoglobin and their specific interactions: insights from in silico docking and molecular spectroscopy.

    Science.gov (United States)

    Peng, Wei; Ding, Fei; Peng, Yu-Kui; Sun, Ying

    2014-01-01

    Malachite green is an organic compound that can be widely used as a dyestuff for various materials; it has also emerged as a controversial agent in aquaculture. Since malachite green is proven to be carcinogenic and mutagenic, it may become a hazard to public health. For this reason, it is urgently required to analyze this controversial dye in more detail. In our current research, the interaction between malachite green and hemoglobin under physiological conditions was investigated by the methods of molecular modeling, fluorescence spectroscopy, circular dichroism (CD) as well as hydrophobic ANS displacement experiments. From the molecular docking, the central cavity of hemoglobin was assigned to possess high-affinity for malachite green, this result was corroborated by time-resolved fluorescence and hydrophobic ANS probe results. The recognition mechanism was found to be of static type, or rather the hemoglobin-malachite green complex formation occurred via noncovalent interactions such as π-π interactions, hydrogen bonds and hydrophobic interactions with an association constant of 10(4) M(-1). Moreover, the results also show that the spatial structure of the biopolymer was changed in the presence of malachite green with a decrease of the α-helix and increase of the β-sheet, turn and random coil suggesting protein damage, as derived from far-UV CD and three-dimensional fluorescence. Results of this work will help to further comprehend the molecular recognition of malachite green by the receptor protein and the possible toxicological profiles of other compounds, which are the metabolites and ramifications of malachite green.

  17. Investigation on the interaction between an antimicrobial in aquaculture, malachite green and hemocyanin from mud crab Scylla paramamosain.

    Science.gov (United States)

    Li, Zhenxing; Tang, Boping; Zhang, Hongmei

    2015-01-25

    Interaction between malachite green and hemocyanin of crab plays a crucial role in the metabolism, distribution, and efficacy of toxic dyes in aquaculture. The mechanism of interaction between malachite green and Hc from mud crab was studied by using multi-spectral methods and molecular modeling in this work. The spectroscopic and thermodynamic data show that the interaction is a spontaneous process with the estimated enthalpy and entropy changes of -14.85(±1.86) kJ mol(-1) and 30.38(±5.21) J mol(-1) K(-1), respectively. The binding sites of malachite green in hemocyanin mainly locate in the interface of protein. The hydrophobic and electrostatic forces are the primary contributors to the interaction between hemocyanin and malachite green. The results of ultraviolet-vis absorbance, circular dichroism, and synchronous fluorescence spectroscopy suggest that the binding of malachite green to hemocyanin induces some conformational changes of protein. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Pulse radiolysis of malachite green leucocyanide in alcoholic solvents, the influence of oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Grodkowski, J; Stuglik, Z; Wieczorek, G [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1992-04-01

    The solutions of malachite green leucocyanide (MGCN) in methanol, n-propanol and 2-propanol were investigated using pulse radiolysis. In the presence of oxygen, MG{sup +}-carbonium ions were radiolytically formed in two different time steps. The yield of MG{sup +} in the slower process was dependent on oxygen concentration and was proportional to the yield of intermediate MG radicals. The yield of MG was about ten times higher in 2-propanol than in methanol and n-propanol solutions. The reactants responsible for MG oxidation to MG{sup +} were RO{sub 2}, hydroxyalkylperoxyl radicals derived from alcohols. The rate constant for MG reaction with RO{sub 2} were estimated as (6.5{+-}1) x 10{sup 8}M{sup -1}s{sup -1}. The molar extinction coefficient of MG was calculated. (author).

  19. Rapid analysis of malachite green and leucomalachite green in fish muscles with surface-enhanced resonance Raman scattering.

    Science.gov (United States)

    Zhang, Yuanyuan; Yu, Wansong; Pei, Lu; Lai, Keqiang; Rasco, Barbara A; Huang, Yiqun

    2015-02-15

    Surface-enhanced resonance Raman scattering (SERRS) coupled with gold nanospheres was applied for rapid analysis of the hazardous substances malachite green (MG) and leucomalachite green (LMG) in fish muscle tissues. The lowest concentration of MG that could be detected was 0.5ngmL(-1) with high linear correlation (R(2)=0.970-0.998) between MG concentration and intensities of characteristic Raman peaks. A simplified sample preparation method taking less than 1h for recovering MG and LMG in fish fillets was developed for SERRS analysis, and 4-8 samples could be handled in parallel. MG and LMG could be detected in extracts of tilapia fish fillets at as low as 2ngg(-1) with SERRS and a simple principle component analysis method. For six other fish species, the lowest detectable concentration of MG ranged from 1ngg(-1) to 10ngg(-1). This study provides a new sensitive approach for the detection of trace amounts of the prohibited drugs MG and LMG in muscle food, which has the potential for rapidly screening a large number of samples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Removal of Malachite Green from aqueous solution using degreased coffee bean

    International Nuclear Information System (INIS)

    Baek, Mi-Hwa; Ijagbemi, Christianah Olakitan; O, Se-Jin; Kim, Dong-Su

    2010-01-01

    This study reports on the feasibility of employing degreased coffee beans (DCB) as adsorbent for Malachite Green (MG) removal in dyeing wastewater. The iodine value (IV), specific surface area (SSA) and porosity of the raw coffee beans (RCB) used in the study increased after the degreasing process, resulting in significant increase in the adsorption of MG onto DCB. Employing a batch experimental set-up, optimum conditions for complete color removal and adsorption of MG by DCB was studied considering parameters such as effect of degreasing process, adsorbent dosage, initial dye concentration, reaction temperature and pH. Adsorbed amount of MG by DCB increased with increasing DCB dosage and initial MG concentration. The rate of the adsorption reaction followed the pseudo second-order kinetics with the sorption isotherm well fitted to the Freundlich and the Langmuir isotherm models. Thermodynamic studies revealed that the adsorption processes is spontaneous and endothermic in nature. DCB has potentials for application as adsorbent for the removal of MG from dyeing process wastewater.

  1. Removal of Malachite Green from aqueous solution using degreased coffee bean

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Mi-Hwa; Ijagbemi, Christianah Olakitan; O, Se-Jin [Department of Environmental Science and Engineering, Ewha Womans University, Daehyundong 11-1, Seodaemungu, Seoul 120-750 (Korea, Republic of); Kim, Dong-Su, E-mail: dongsu@ewha.ac.kr [Department of Environmental Science and Engineering, Ewha Womans University, Daehyundong 11-1, Seodaemungu, Seoul 120-750 (Korea, Republic of)

    2010-04-15

    This study reports on the feasibility of employing degreased coffee beans (DCB) as adsorbent for Malachite Green (MG) removal in dyeing wastewater. The iodine value (IV), specific surface area (SSA) and porosity of the raw coffee beans (RCB) used in the study increased after the degreasing process, resulting in significant increase in the adsorption of MG onto DCB. Employing a batch experimental set-up, optimum conditions for complete color removal and adsorption of MG by DCB was studied considering parameters such as effect of degreasing process, adsorbent dosage, initial dye concentration, reaction temperature and pH. Adsorbed amount of MG by DCB increased with increasing DCB dosage and initial MG concentration. The rate of the adsorption reaction followed the pseudo second-order kinetics with the sorption isotherm well fitted to the Freundlich and the Langmuir isotherm models. Thermodynamic studies revealed that the adsorption processes is spontaneous and endothermic in nature. DCB has potentials for application as adsorbent for the removal of MG from dyeing process wastewater.

  2. Permanent draft genome of the malachite-green-tolerant bacterium Rhizobium sp. MGL06.

    Science.gov (United States)

    Liu, Yang; Wang, Runping; Zeng, Runying

    2014-12-01

    Rhizobium sp. MGL06, the first Rhizobium isolate from a marine environment, is a malachite-green-tolerant bacterium with a broader salinity tolerance (range: 0.5% to 9%) than other rhizobia. This study sequences and annotates the draft genome sequence of this strain. Genome sequence information provides a basis for analyzing the malachite green tolerance, broad salinity adaptation, nitrogen fixation properties, and taxonomic classification of the isolate. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    International Nuclear Information System (INIS)

    Kusvuran, Erdal; Gulnaz, Osman; Samil, Ali; Yildirim, Ozlem

    2011-01-01

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min -1 . Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  4. Decolorization of malachite green, decolorization kinetics and stoichiometry of ozone-malachite green and removal of antibacterial activity with ozonation processes

    Energy Technology Data Exchange (ETDEWEB)

    Kusvuran, Erdal, E-mail: erdalkusvuran@yahoo.com [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Gulnaz, Osman [Biology Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey); Samil, Ali [Chemistry Department, Arts and Sciences Faculty, Sutcu Imam University, 46100 Kahramanmaras (Turkey); Yildirim, Ozlem [Chemistry Department, Arts and Sciences Faculty, Cukurova University, 01330 Balcali, Adana (Turkey)

    2011-02-15

    This study aimed to identify degradation intermediates and to investigate the stoichiometry of decolorization and degradation, decolorization kinetics, and removal of antibacterial activity of malachite green (MG) using ozonization processes. The decolorization of MG was optimal at an acidic pH value of 3 based on molecular ozone attack on MG molecules. The stoichiometric ratio of decolorization between ozone and MG was calculated to be 7.0 with a regression coefficient of 0.995, whereas the ratio for degradation was calculated as 13.1 with a regression coefficient of 0.998. With MG concentrations in the range of 0.30-1.82 mM, the concentration of decolorized MG increased with higher initial concentrations of MG, whereas the ozonolytic decolorization rates of MG, decreased with increasing initial concentration. The pseudo-first-order degradation rate constants (k') decreased with the initial concentration and ranged from 0.769 to 0.223 min{sup -1}. Twelve different intermediates were produced during the ozonation of MG with ozonation times between 5 min and 30 min and were identified by GC-MS. Although 86% of MG in the reaction mixture was removed by ozonation after 10 min, the decrease of antibacterial activity was very low (10%) for Bacillus subtilis and Staphylococcus epidermidis because the degradation intermediates, phenol and benzoic acid, also have antibacterial activity. The antibacterial activity of both MG and its intermediates were removed successfully with ozonation times above 26 min.

  5. Malachite green adsorption onto natural zeolite and reuse by microwave irradiation

    International Nuclear Information System (INIS)

    Han Runping; Wang Yu; Sun Qing; Wang Lulu; Song Jiyun; He Xiaotian; Dou Chanchan

    2010-01-01

    Natural zeolite was used for the removal of malachite green (MG) from aqueous solution in batch mode and reused by microwave irradiation. The isotherm data were analyzed by the Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan isotherm model. The better fit for the equilibrium process was Koble-Corrigan model. The kinetic studies indicated that the adsorption followed the pseudo-second-order kinetic. Thermodynamic calculations showed that the adsorption was spontaneous and endothermic process. Spent zeolite was treated by microwave irradiation and it was found that yield of regeneration was 85.8% in the case of microwave irradiated time 10 min at 160 W.

  6. Removal of Malachite Green Dye by Mangifera indica Seed Kernel Powder

    Science.gov (United States)

    Singh, Dilbagh; Sowmya, V.; Abinandan, S.; Shanthakumar, S.

    2017-11-01

    In this study, batch experiments were carried out to study the adsorption of Malachite green dye from aqueous solution by Mangifera indica (mango) seed kernel powder. The mango seed kernel powder was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Effect of various parameters including pH, contact time, adsorbent dosage, initial dye concentration and temperature on adsorption capacity of the adsorbent was observed and the optimized condition for maximum dye removal was identified. Maximum percentage removal of 96% was achieved with an adsorption capacity of 22.8 mg/g at pH 6 with an initial concentration of 100 mg/l. The equilibrium data were examined to fit the Langmuir and Freundlich isotherm models. Thermodynamic parameters for the adsorption process were also calculated.

  7. Removal of malachite green dye from aqueous solution using mesoporous silica synthesized from 1-octyl-3-methylimidazolium chloride ionic liquid

    International Nuclear Information System (INIS)

    Ekka, Basanti; Nayak, Soumitra Ranjan; Dash, Priyabrat; Patel, Raj Kishore

    2016-01-01

    In this research, mesoporous silica was synthesized via a modified sol-gel route using 1-octyl-3-methylimidazolium chloride and was employed to remove malachite green (MG) dye from aqueous solution. Subsequently, this material was characterized and identified by different techniques such as Fourier transform infrared spectroscopy (FT-IR), N_2 adsorption-desorption method, scanning electron microscopy (SEM), and thermosgravimetric analysis (TGA). Unique properties such as high surface area and pore diameter, in addition to highly reactive atoms and presence of various functional groups make the mesoporous silica possible for efficient removal of malachite green (MG). In batch experimental set-up, optimum conditions for quantitative removal of MG by mesoporous silica was attained by varying different variables such as adsorbent dosage, initial dye concentration, contact time, and pH. Optimum values were set as pH of 8.0, 0.5 g of adsorbent at contact time of 120 min. The adsorption of MG follows the pseudo-second-order rate equation. Equilibrium data fitted well with the Freundlich model at all amount of adsorbent, while maximum adsorption capacity was 5.981 mg g"−1 for 0.5 g mesoporous silica synthesized in IL.

  8. Removal of Malachite Green from water using hydrothermally carbonized pine needles

    KAUST Repository

    Hammud, Hassan Hasan

    2015-01-01

    Hydrothermal carbonization of pine needles (HTC-PN) and their oxidized-activated form HTC-APN are prepared and applied for the adsorption of Malachite Green (MG) in aqueous solution. The HTC materials were characterized by thermal and TEM analysis. Adsorbent dose, initial concentration of MG, contact time, temperature and pH effect on MG adsorption onto the HTC materials were studied. The adsorption equilibrium data was best fitted by the Langmuir isotherm model and the adsorption kinetics followed pseudo-second-order models for both HTC-PN and HTC-APN. The maximum capacity predicted by the Langmuir nonlinear model is 52.91 and 97.08 mg g-1 for uptake of MG by HTC-PN and HTC-APN, respectively, at 30 °C. Thermodynamic investigations showed that the adsorption is spontaneous and endothermic in nature. Results suggest HTC-APN can be used as a low-cost adsorbent for MG removal from industrial wastewater. Yoon-Nelson is the best model with a column capacity of 38.3 mg g-1 for the adsorption of MG onto HTC-APN. This journal is

  9. [Fe₃O₄-β-Cyclodextrin Polymer Nano Composites Solid-Phase Extraction-UV-Vis Spectrophotometry for Separation Analysis Malachite Green].

    Science.gov (United States)

    Feng, Gang; Ping, Wen-hui; Zhu, Xia-shi

    2016-02-01

    In this paper, carboxymethyl-hydroxypropyl-β-cyclodextrin polymer modified magnetic particles Fe₃O₄ (CM-HP-β-CD- CP-MNPs) were prepared and applied to magnetic solid phase extraction of malachite green combined with UV-Visible spectrom- etry detection. The synthesized magnetic particles were characterized by element analysis, Fourier transform infrared spectra and transmission electron microscopy. Several variables affecting the extraction and desorption of malachite green such as pH, the amount of adsorbent, the type and volume of eluent, extraction and desorption time, and temperature were investigated. Under the optimum conditions, malachite green could be adsorbed by CM-HP-β-CDCP-MNPs (RE% = 92), and elution by C₂H₅OH (EE% = 90). the preconcentration factor of the proposed method was approximately 7.5, the CM-HP-β-CDCP-MNPs could be used repeatedly for 5 times and offered better recovery. The linear range and detection limit (DL) were found to be 0.08~8.00 µg · mL⁻¹ and 5.6 ng · mL⁻¹ respectively. This technique had been successfully applied to the determination of malachite green in real samples. The inclusion interaction of CM-HP--CDCP-MNPs with malachite green was studied through FTIR.

  10. Malachite green "a cationic dye" and its removal from aqueous solution by adsorption

    Science.gov (United States)

    Raval, Nirav P.; Shah, Prapti U.; Shah, Nisha K.

    2017-11-01

    Adsorption can be efficiently employed for the removal of various toxic dyes from water and wastewater. In this article, the authors reviewed variety of adsorbents used by various researchers for the removal of malachite green (MG) dye from an aqueous environment. The main motto of this review article was to assemble the scattered available information of adsorbents used for the removal of MG to enlighten their wide potential. In addition to this, various optimal experimental conditions (solution pH, equilibrium contact time, amount of adsorbent and temperature) as well as adsorption isotherms, kinetics and thermodynamics data of different adsorbents towards MG were also analyzed and tabulated. Finally, it was concluded that the agricultural solid wastes and biosorbents such as biopolymers and biomass adsorbents have demonstrated outstanding adsorption capabilities for removal of MG dye.

  11. Adsorptive removal of malachite green from aqueous solutions by almond gum: Kinetic study and equilibrium isotherms.

    Science.gov (United States)

    Bouaziz, Fatma; Koubaa, Mohamed; Kallel, Fatma; Ghorbel, Rhoudha Ellouz; Chaabouni, Semia Ellouz

    2017-12-01

    This work aimed at investigating the potential of almond gum as low cost adsorbent for the removal of the cationic dye; malachite green from aqueous solutions. Almond gum was first analyzed by scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR), and then the adsorption behavior was studied in batch system. The effects of the adsorption parameters (adsorbent dose, pH, contact time, particle size, initial dye concentration, temperature and agitation) on the dye removal have been studied. Adsorption equilibrium and isotherms were evaluated depending on temperature using the isotherms of Freundlich, Langmuir, and Tempkin. The obtained result showed that both Langmuir and Freundlich models were adapted to study the dye sorption. The maximum adsorption capacities were equal to 172.41mg/g, 181.81mg/g, and 196.07mg/g at 303.16K, 313.16K, and 323.16K, respectively. The kinetics of sorption were following the pseudo-second order model. The thermodynamic changes in enthalpy (ΔH), entropy (ΔS), and free energy (ΔG) indicated that the adsorption of malachite green at the surface of almond gum is endothermic and occurs spontaneously. Desorption experiments were conducted to regenerate almond gum, showing great desorption capacity when using HCl at pH 2. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    International Nuclear Information System (INIS)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Highlights: • Bi_2Se_3 and Ni doped Bi_2Se_3 were synthesized by solvothermal approach. • Presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement. • Complete degradation of malachite green (MG) dye was achieved by Ni doped Bi_2Se_3 with H_2O_2. • Remarkable photo-catalytic degradation by doped bismuth selenide has been explained. • Scavenger tests show degradation of MG is mainly dominated by ·OH oxidation process. - Abstract: Bismuth selenide (Bi_2Se_3) and nickel (Ni) doped Bi_2Se_3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi_2Se_3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi_2Se_3 sample exhibited higher photo-catalytic activity than that of the pure Bi_2Se_3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi_2Se_3 in presence of hydrogen peroxide (H_2O_2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  13. Removal of Malachite Green from aqueous solution using degreased coffee bean.

    Science.gov (United States)

    Baek, Mi-Hwa; Ijagbemi, Christianah Olakitan; O, Se-Jin; Kim, Dong-Su

    2010-04-15

    This study reports on the feasibility of employing degreased coffee beans (DCB) as adsorbent for Malachite Green (MG) removal in dyeing wastewater. The iodine value (IV), specific surface area (SSA) and porosity of the raw coffee beans (RCB) used in the study increased after the degreasing process, resulting in significant increase in the adsorption of MG onto DCB. Employing a batch experimental set-up, optimum conditions for complete color removal and adsorption of MG by DCB was studied considering parameters such as effect of degreasing process, adsorbent dosage, initial dye concentration, reaction temperature and pH. Adsorbed amount of MG by DCB increased with increasing DCB dosage and initial MG concentration. The rate of the adsorption reaction followed the pseudo second-order kinetics with the sorption isotherm well fitted to the Freundlich and the Langmuir isotherm models. Thermodynamic studies revealed that the adsorption processes is spontaneous and endothermic in nature. DCB has potentials for application as adsorbent for the removal of MG from dyeing process wastewater. 2009 Elsevier B.V. All rights reserved.

  14. Ocular hazards of the colors used during the festival-of-colors (Holi) in India--malachite green toxicity.

    Science.gov (United States)

    Velpandian, T; Saha, K; Ravi, A K; Kumari, S S; Biswas, N R; Ghose, S

    2007-01-10

    The objective of this study was to evaluate the nature of the colors used and their toxicity to the eye upon exposure to them during celebration of Holi (our festival-of-colors). Color powders and formulations were procured at random in and around Delhi during the festival. The green/bluish-green colors reported with the higher incidence of ocular toxicity were subjected for further evaluation. Eyewash fluid collected from the patients exposed to the colors was also subjected for analysis. This study was further extended to evaluate the corneal penetration of malachite green using goat cornea in perfusion chamber. In 16/18 color samples collected, malachite green or 4-[(4-dimethylaminophenyl)-phenyl-methyl]-N,N-dimethyl-aniline was detected at different concentrations. In the eyewash fluid of four patients, HPLC estimation confirmed the presence of malachite green at concentrations of 1.3, 0.18, 3.5 and 5.4 microg in 250 ml which was responsible for its reported toxicity. The in vitrotrans-corneal penetration studies did not show any detectable amount of malachite green in effluent fluid-in vitro tissue retention studies revealed that increasing the contact time increases tissue concentration. After 2 min of exposure, the tissue concentration was significantly higher. To conclude, malachite green was extensively used in our festival of Holi and has caused severe ocular irritation with epithelial defect upon exposure, though it did not penetrate through the cornea-further in vitro and in vivo studies are required on colors used in Holi.

  15. Laccase-Catalyzed Decolorization of Malachite Green: Performance Optimization and Degradation Mechanism

    Science.gov (United States)

    Yang, Jie; Yang, Xiaodan; Lin, Yonghui; Ng, Tzi Bun; Lin, Juan; Ye, Xiuyun

    2015-01-01

    Malachite green (MG) was decolorized by laccase (LacA) of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL-1 LacA, 109.9 mg L-1 MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s-1, respectively. UV–visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography–mass spectrometry (LC-MS) analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries. PMID:26020270

  16. Laccase-catalyzed decolorization of malachite green: performance optimization and degradation mechanism.

    Directory of Open Access Journals (Sweden)

    Jie Yang

    Full Text Available Malachite green (MG was decolorized by laccase (LacA of white-rot fungus Cerrena sp. with strong decolorizing ability. Decolorization conditions were optimized with response surface methodology. A highly significant quadratic model was developed to investigate MG decolorization with LacA, and the maximum MG decolorization ratio of 91.6% was predicted under the conditions of 2.8 U mL(-1 LacA, 109.9 mg L(-1 MG and decolorization for 172.4 min. Kinetic studies revealed the Km and kcat values of LacA toward MG were 781.9 mM and 9.5 s(-1, respectively. UV-visible spectra confirmed degradation of MG, and the degradation mechanism was explored with liquid chromatography-mass spectrometry (LC-MS analysis. Based on the LC-MS spectra of degradation products, LacA catalyzed MG degradation via two simultaneous pathways. In addition, the phytotoxicity of MG, in terms of inhibition on seed germination and seedling root elongation of Nicotiana tabacum and Lactuca sativa, was reduced after laccase treatment. These results suggest that laccase of Cerrena was effective in decolorizing MG and promising in bioremediation of wastewater in food and aquaculture industries.

  17. Biomimetic ELISA detection of malachite green based on molecularly imprinted polymer film.

    Science.gov (United States)

    Li, Lu; Peng, Ai-Hong; Lin, Zheng-Zhong; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2017-08-15

    A highly selective and sensitive enzyme-linked immunosorbent assay (ELISA) was developed for the detection of malachite green (MG) using a molecularly imprinted polymer (MIP) film as bionic antibody. The MIP film, based on the self-polymerization of dopamine, was fabricated on the surfaces of a 96-well microplate. It showed specific recognition for MG in aqueous solution. A direct competitive ELISA method was established with the sensitivity reaching 10.31μgL -1 and the detection limit being 0.3μgL -1 . The cross-reactivity of two structural analogues to MG was less than 10%. The average recovery tested by MG standard spiking was 88.8% for bass and 90.4% for water, and the relative standard deviations were less than 3.6%. All the above results indicated that the developed method could be used to detect MG in fish and water samples rapidly, specifically and accurately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Labeling RNAs in Live Cells Using Malachite Green Aptamer Scaffolds as Fluorescent Probes.

    Science.gov (United States)

    Yerramilli, V Siddartha; Kim, Kyung Hyuk

    2018-03-16

    RNAs mediate many different processes that are central to cellular function. The ability to quantify or image RNAs in live cells is very useful in elucidating such functions of RNA. RNA aptamer-fluorogen systems have been increasingly used in labeling RNAs in live cells. Here, we use the malachite green aptamer (MGA), an RNA aptamer that can specifically bind to malachite green (MG) dye and induces it to emit far-red fluorescence signals. Previous studies on MGA showed a potential for the use of MGA for genetically tagging other RNA molecules in live cells. However, these studies also exhibited low fluorescence signals and high background noise. Here we constructed and tested RNA scaffolds containing multiple tandem repeats of MGA as a strategy to increase the brightness of the MGA aptamer-fluorogen system as well as to make the system fluoresce when tagging various RNA molecules, in live cells. We demonstrate that our MGA scaffolds can induce fluorescence signals by up to ∼20-fold compared to the basal level as a genetic tag for other RNA molecules. We also show that our scaffolds function reliably as genetically encoded fluorescent tags for mRNAs of fluorescent proteins and other RNA aptamers.

  19. Colorimetric Detection of Multidrug-Resistant or Extensively Drug-Resistant Tuberculosis by Use of Malachite Green Indicator Dye▿

    OpenAIRE

    Farnia, Parissa; Masjedi, Mohammad Reza; Mohammadi, Foroozan; Tabarsei, Payam; Farnia, Poopak; Mohammadzadeh, Ali Reza; Baghei, Parvaneh; Varahram, Mohammad; Hoffner, Sven; Velayati, Ali Akbar

    2007-01-01

    The malachite green microtube (MGMT) susceptibility assay was performed directly on sputum specimens (n = 80) and indirectly on Mycobacterium tuberculosis clinical isolates (n = 60). The technique is based on the malachite green dye, which changes color in response to M. tuberculosis growth. The MGMT assay is simple and rapid and does not require expensive instruments.

  20. Molecularly imprinted polymer for selective extraction of malachite green from seawater and seafood coupled with high-performance liquid chromatographic determination.

    Science.gov (United States)

    Lian, Ziru; Wang, Jiangtao

    2012-12-01

    In this paper, a highly selective sample cleanup procedure combining molecular imprinting technique (MIT) and solid-phase extraction (SPE) was developed for the isolation of malachite green in seawater and seafood samples. The molecularly imprinted polymer (MIP) was prepared using malachite green as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer. The imprinted polymer and non-imprinted polymer were characterized by scanning electron microscope and static adsorption experiments. The MIP showed a high adsorption capacity and was used as selective sorbent for the SPE of malachite green. An off-line molecularly imprinted solid-phase extraction (MISPE) method followed by high-performance liquid chromatography with diodearray detection for the analysis of malachite green in seawater and seafood samples was also established. Finally, five samples were determined. The results showed that malachite green concentration in one seawater sample was at 1.30 μg L⁻¹ and the RSD (n=3) was 4.15%. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  1. Diphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation & inhibition of DNA damage in mice

    Science.gov (United States)

    Das, Jayanta Kumar; Sarkar, Sibani; Hossain, Sk Ugir; Chakraborty, Pramita; Das, Rajat Kumar; Bhattacharya, Sudin

    2013-01-01

    Background & objectives: Malachite green (MG), an environmentally hazardous material, is used as a non permitted food colouring agent, especially in India. Selenium (Se) is an essential nutritional trace element required for animals and humans to guard against oxidative stress induced by xenobiotic compounds of diverse nature. In the present study, the role of the selenium compound diphenylmethyl selenocyanate (DMSE) was assessed on the oxidative stress (OS) induced by a food colouring agent, malachite green (MG) in vivo in mice. Methods: Swiss albino mice (Mus musculus) were intraperitoneally injected with MG at a standardized dose of 100 μg/ mouse for 30 days. DMSE was given orally at an optimum dose of 3 mg/kg b.w. in pre (15 days) and concomitant treatment schedule throughout the experimental period. The parameters viz. ALT, AST, LPO, GSH, GST, SOD, CAT, GPx, TrxR, CA, MN, MI and DNA damage have been evaluated. Results: The DMSE showed its potential to protect against MG induced hepatotoxicity by controlling the serum alanine aminotransferase and aspartate amino transferase (ALT and AST) levels and also ameliorated oxidative stress by modulating hepatic lipid peroxidation and different detoxifying and antioxidative enzymes such as glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), and also the selenoenzymes such as glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) and reduced glutathione level which in turn reduced DNA damage. Interpretation & conclusions: The organo-selenium compound DMSE showed significant protection against MG induced heptotoxicity and DNA damage in murine model. Better protection was observed in pretreatment group than in the concomitant group. Further studies need to be done to understand the mechanism of action. PMID:23852297

  2. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways

    International Nuclear Information System (INIS)

    Yong, Li; Zhanqi, Gao; Yuefei, Ji; Xiaobin, Hu; Cheng, Sun; Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang

    2015-01-01

    Highlights: • Photofate of malachite green was studied under simulated and natural irradiation. • Favorable conditions for degradation were optimized by the orthogonal array design. • Main ROS for the decomposition were determined by free radical quenchers. • Fifty-three products were determined by LC–MS and GC–MS. • Pathways were proposed with the aid of theoretical calculation. - Abstract: In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe 2+ , Ca 2+ , HCO 3 − , and NO 3 − , of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h −1 . Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography–mass spectrometry, and thirteen small molecular products were identified by gas chromatography–mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions

  3. Application of Taguchi L16 design method for comparative study of ability of 3A zeolite in removal of Rhodamine B and Malachite green from environmental water samples

    Science.gov (United States)

    Rahmani, Mashaallah; Kaykhaii, Massoud; Sasani, Mojtaba

    2018-01-01

    This study aimed to investigate the efficiency of 3A zeolite as a novel adsorbent for removal of Rhodamine B and Malachite green dyes from water samples. To increase the removal efficiency, effecting parameters on adsorption process were investigated and optimized by adopting Taguchi design of experiments approach. The percentage contribution of each parameter on the removal of Rhodamine B and Malachite green dyes determined using ANOVA and showed that the most effective parameters in removal of RhB and MG by 3A zeolite are initial concentration of dye and pH, respectively. Under optimized condition, the amount predicted by Taguchi design method and the value obtained experimentally, showed good closeness (more than 94.86%). Good adsorption efficiency obtained for proposed methods indicates that, the 3A zeolite is capable to remove the significant amounts of Rhodamine B and Malachite green from environmental water samples.

  4. UV light induced photodegradation of malachite green on TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Chen, C.C.; Lu, C.S.; Chung, Y.C.; Jan, J.L.

    2007-01-01

    The photodegradation of malachite green (MG), a cationic triphenylmethane dye, is examined both under different pH values and amounts of TiO 2 . After 15 W UV-365 nm irradiation for 4 h, ca. 99.9% of MG was degraded with addition of 0.5 g L -1 TiO 2 to solutions containing 50 mg L -1 of the MG dye. The HPLC-PDA-ESI-MS technique was used to obtain a better understanding on the mechanistic details of this TiO 2 -assisted photodegradation of the MG dye with UV irradiation. Five intermediates of the process were separated, identified, and characterized for the first time. The results indicated that the N-de-methylation degradation of MG dye took place in a stepwise manner to yield mono-, di-, tri-, and tetra-N-de-methylated MG species generated during the processes. Under acidic conditions, the results indicated that the photodegradation mechanism is favorable to cleavage of the whole conjugated chromophore structure of the MG dye. Under basic conditions, the results showed that the photodegradation mechanism is favorable to a formation of a series of N-de-methylated intermediates of the MG dye

  5. Photodegradation of malachite green under simulated and natural irradiation: Kinetics, products, and pathways

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Li [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Zhanqi, Gao [State Environmental Protection Key Laboratory of Monitoring and Analysis for Organic Pollutants in Surface Water, Jiangsu Provincial Environmental Monitoring Center, Nanjing 210036 (China); Yuefei, Ji [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Xiaobin, Hu [School of Life Science, Huzhou University, Huzhou 313000 (China); Cheng, Sun, E-mail: envidean@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang [State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China)

    2015-03-21

    Highlights: • Photofate of malachite green was studied under simulated and natural irradiation. • Favorable conditions for degradation were optimized by the orthogonal array design. • Main ROS for the decomposition were determined by free radical quenchers. • Fifty-three products were determined by LC–MS and GC–MS. • Pathways were proposed with the aid of theoretical calculation. - Abstract: In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe{sup 2+}, Ca{sup 2+}, HCO{sub 3}{sup −}, and NO{sub 3}{sup −}, of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h{sup −1}. Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography–mass spectrometry, and thirteen small molecular products were identified by gas chromatography–mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions.

  6. Removal of malachite green from aqueous solution by activated carbon prepared from the Annona squmosa seed by adsorption

    Directory of Open Access Journals (Sweden)

    T. Santhi

    2010-12-01

    Full Text Available The use of low -cost, locally available, highly efficient and eco-friendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. This study investigates the potential use of activated carbon prepared from the Annona squmosa seed for the removal of malachite green (MG dye from simulated wastewater. The effects of different system variables, adsorbent dosage, initial dye concentration, pH and contact time were investigated and optimal experimental conditions were ascertained. The results showed that as the amount of the adsorbent is increased, the percentage of dye removal increase accordingly. Optimum pH value for dye adsorption was 7.0. Maximum dye was sequestered within 50 min from the start of every experiment. The adsorption of malachite green followed the pseudo-second –order rate equation and fits the Langmuir, Freundlich, Dubinin-Radushekevich (D-R and Tempkin equations well. The maximum removal of MG was obtained at pH 7 as 86.11% for adsorbent dose of 0.2 g/ 50 mL and 25 mg L -1 initial dye concentration at room temperature. Furthermore, adsorption kinetics of MG was studied and the rate of adsorption was found to conform to pseudo-second –order kinetics with a good correlation (R2 > 0.99 with intraparticle diffusion as one of the rate determining steps. Activated carbon developed from the Annona squmosa seed can be an attractive option for dye removal from diluted industrial effluents since test reaction made on simulated dyeing wastewater showed better removal percentage of MG.

  7. Novel Castellaniella denitrificans SA13P as a Potent Malachite Green Decolorizing Strain

    Directory of Open Access Journals (Sweden)

    Ankita Chawla

    2014-01-01

    Full Text Available Triphenylmethane dyes represent a major group of dyes causing serious environmental hazards. Malachite Green is one of the commonly and extensively used triphenylmethane dyes although it is carcinogenic and mutagenic in nature. Various physicochemical methods have been employed for its elimination but are highly expensive, coupled with the formation of huge amount of sludge. Hence, biological methods being ecofriendly are good alternatives. In the present study, the novel bacterial isolate SA13P was isolated from UASB tank of tannery effluent treatment plant. Phylogenetic characterization of 1470 bp fragment of SA13P has revealed its similarity with Castellaniella denitrificans. This strain has been found to decolorize the dye (malachite green at a concentration of 100 mg L−1 (80.29%. Decolorization was done by living bacterial cells rather than adsorption. Growth conditions have also been optimized for the decolorization. Maximum decolorization was observed at a temperature of 37°C and pH 8.0. Also, it has been found that bacterization of seeds of Vigna radiata with Castellaniella denitrificans SA13P increases germination rate. We have reported for the first time that Castellaniella denitrificans SA13P may be used as a novel strain for dye decolorization (malachite green and biological treatment of tannery effluent.

  8. Removal of Malachite Green dye from aqueous solution using MnFe2O4/Al2O3 Nanophotocatalyst by UV/H2O2 process

    Directory of Open Access Journals (Sweden)

    Davood Kaviani

    2016-04-01

    Full Text Available Background & Aims of the Study: Malachite Green (MG is the most commonly used substance for dying cotton, food & pharmacy industries, paper, leather and silk. On inhalation it can cause difficult breathing, while on the direct contact it may cause permanent injury of the eyes of human and animals, burning sensations, nausea, vomiting, profuse sweating, mental confusion and methemoglobinemia; also it can causes cancer in livers. The aim of this study is  the removal of Malachite Green (MG dye from aqueous solutions, using MnFe2O4/Al2O3 nanophotocatalyst by UV/H2O2 process which was used as a low cost method. Materials & Methods: In this research, photocatalytic decomposition of malachite green in water was done by nanocatalyst MnFe2O4/Al2O3 in discontinuous photoreactor under UV light and the injection of H2O2. In order to identify and analyze the provided catalyst, SEM image and XRD diffraction pattern were used. The effect of operational factors in the photocatalytic decomposition of the desired pollutant such as pH, the initial thickness of the dye, the thickness of H2O2 and the quantity of the catalyst were investigated. Results: The finding showed that the right conditions for the elimination of the pollutant included pH equals 4, the initial thickness of the dye being 10 ppm, the thickness of H2O2 being 250ppm, the amount of catalyst being 50mg, the Correlation Coefficient being 0.998 and the dye removal was 94 percent at the end of the experiment. the reaction of Malachite green decomposition was in terms of kinetics investigated through integral method as well; also it showed the kinetic reaction is the first type and the constant speed rate is K=0.047 min-1 . Conclusions: According to the results, because of the complexity of dye structure, biological system was not able to remove the dye as efficient as hybrid system of advanced oxidation processes UV/H2O2 with nanophotocatalyst as an efficient way to remove the Malachite green dye

  9. Malachite green decolorization by the filamentous fungus Myrothecium roridum--Mechanistic study and process optimization.

    Science.gov (United States)

    Jasińska, Anna; Paraszkiewicz, Katarzyna; Sip, Anna; Długoński, Jerzy

    2015-10-01

    The filamentous fungus Myrothecium roridum isolated from a dye-contaminated area was investigated in terms of its use for the treatment of Malachite green (MG). The mechanisms involved in this process were established. Peroxidases and cytochrome P-450 do not mediate MG elimination. The laccase of M. roridum IM 6482 was found to be responsible for the decolorization of 8-11% of MG. Thermostable low-molecular-weight factors (LMWF) resistant to sodium azide were found to be largely involved in dye decomposition. In addition, MG decolorization by M. roridum IM 6482 occurred in a non-toxic manner. Data from antimicrobial tests showed that MG toxicity decreased after decolorization. To optimize the MG decolorization process, the effects of operational parameters (such as the medium pH and composition, process temperature and culture agitation) were examined. The results demonstrate that M. roridum IM 6482 may be used effectively as an alternative to traditional decolorization agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Effective adsorption of malachite green using magnetic barium phosphate composite from aqueous solution

    Science.gov (United States)

    Zhang, Fan; Wei, Zhong; Zhang, Wanning; Cui, Haiyan

    2017-07-01

    Magnetic Ba3(PO4)2/Fe3O4-nanoparticle (called BPFN) was prepared, characterized, and developed as a low-cost adsorbent for malachite green (MG) from aqueous solution. Factors such as adsorption temperature, pH of solution, dosage of adsorbent, adsorption kinetics and isotherms were investigated. The maximum adsorption capacity obtained in this work was 1639 mg g- 1 at 45 °C and pH 6. The adsorption process fitted the pseudo-first-order kinetic model and Langmuir isotherm model. Evidences from zeta potential, Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS) data revealed that the adsorption process was driven by electrostatic attraction, the interaction between Lewis base sbnd N(CH3)2 in MG and Lewis acid Ba sites of BPFN. In addition, the BPFN could be easily regenerated by a magnet and the adsorption capacity maintained at 70% after five cycles. The present study suggests that the BPFN had high potential of removing MG from wastewater.

  11. Spent coffee grounds-based activated carbon preparation for sequestering of malachite green

    Science.gov (United States)

    Lim, Jun-Wei; Lam, Keat-Ying; Bashir, Mohammed J. K.; Yeong, Yin-Fong; Lam, Man-Kee; Ho, Yeek-Chia

    2016-11-01

    The key of reported work was to optimize the fabricating factors of spent coffee grounds-based activated carbon (SCG-bAC) used to sequester Malachite Green (MG) form aqueous solution via adsorption process. The fabricating factors of impregnation ratio with ortho-phosphoric acid, activation temperature and activation time were simultaneously optimized by central composite design (CCD) of response surface methodology (RSM) targeting on maximum removal of MG. At the optimum condition, 96.3% of MG was successfully removed by SCG-bAC at the impregnation ratio with ortho-phosphoric acid of 0.50, activation temperature of 554°C and activation time of 31.4 min. Statistical model that could predict the MG removal percentage was also derived and had been statistically confirmed to be significant. Subsequently, the MG adsorption equilibrium data was found well-fitted to Langmuir isotherm model, indicating the predominance of monolayer adsorption of MG on SCG-bAC surface. To conclude, the findings from the this study unveil the potential of spent coffee grounds as an alternative precursor in fabricating low-cost AC for the treatment of wastewater loaded with MG pollutant.

  12. Synthesis of novel laccase-biotitania biocatalysts for malachite green decolorization.

    Science.gov (United States)

    Zhang, Xinying; Wang, Meiyin; Lin, Linlin; Xiao, Gao; Tang, Zhenping; Zhu, Xuefeng

    2018-07-01

    Biomimetic mineralization has emerged as a novel tool for generating excellent supports for enzyme stabilization. In this work, protamine was used to induce titanium (IV) bis(ammonium lactato) dihydroxide (Ti-BALDH) into titania nanoparticles. This biomimetic titanification process was adopted for laccase immobilization. Laccase-biotitania biocatalyst was prepared and the effect of different parameters (buffer solution, titania precursor concentration, protamine concentration, and enzyme loading) on the encapsulation efficiency and recovery of laccase were evaluated. Compared with free laccase, the thermal and pH stability of immobilized laccase were improved significantly. In addition, laccase loaded on titania was effective at enhancing its storage stability. After seven consecutive cycles, the immobilized laccase still retained 51% of its original activity. Finally, laccase-biotitania biocatalysts showed good performance on decolorization of malachite green (MG), which can be attributed to an adsorption and degradation effect. The intermediates of the MG degradation were identified by gas chromatography-mass spectrometry (GC-MS) analysis, and the most probable degradation pathway was proposed. This study provides deeper understanding of the laccase-biotitania particles as a fast biocatalyst for MG decolorization. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. Photodegradation of malachite green under simulated and natural irradiation: kinetics, products, and pathways.

    Science.gov (United States)

    Yong, Li; Zhanqi, Gao; Yuefei, Ji; Xiaobin, Hu; Cheng, Sun; Shaogui, Yang; Lianhong, Wang; Qingeng, Wang; Die, Fang

    2015-03-21

    In this work photodegradation rates and pathways of malachite green were studied under simulated and solar irradiation with the goal of assessing the potential of photolysis as a removal mechanism in real aquatic environment. Factors influencing the photodegradation process were investigated, including pH, humic acid, Fe(2+), Ca(2+), HCO3(-), and NO3(-), of which favorable conditions were optimized by the orthogonal array design under simulated sunlight irradiation in the presence of dissolved oxygen. The degradation processes of malachite green conformed to pseudo first-order kinetics and their degradation rate constants were between 0.0062 and 0.4012 h(-1). Under solar irradiation, the decolorization efficiency of most tests can reach almost 100%, and relatively thorough mineralization could be observed. Forty degradation products were detected by liquid chromatography-mass spectrometry, and thirteen small molecular products were identified by gas chromatography-mass spectrometry. Based on the analyses of the degradation products and calculation of the frontier electron density, the pathways were proposed: decomposition of conjugated structure, N-demethylation reactions, hydroxyl addition reactions, the removal of benzene ring, and the ring-opening reaction. This study has provided a reference, both for photodegradation of malachite green and future safety applications and predictions of decontamination of related triphenylmethane dyes under real conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Determination of trace amount of formaldehyde base on a bromate-Malachite Green system.

    Science.gov (United States)

    Tang, Yufang; Chen, Hao; Weng, Chao; Tang, Xiaohui; Zhang, Miaoling; Hu, Tao

    2015-01-25

    A novel catalytic kinetic spectrophotometric method for determination of trace amount of formaldehyde (FA) has been established, based on catalytic effect of trace amount of FA on the oxidation of Malachite Green (MG) by potassium bromate in presence of sulfuric acid medium, and was reported for the first time. The method was monitored by measuring the decrease in absorbance of MG at 617 nm and allowed a precise determination of FA in the range of 0.003-0.08 μg mL(-1), with a limit of detection down to 1 ng mL(-1). The relative standard deviation of 10 replicate measurements was 1.63%. The method developed was approved to be sensitive, selective and accurate, and adopted to determinate free FA in samples directly with good accuracy and reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Adsorption of malachite green and iodine on rice husk-based porous carbon

    International Nuclear Information System (INIS)

    Guo Yupeng; Zhang Hui; Tao Nannan; Liu Yanhua; Qi Juirui; Wang Zichen; Xu Hongding

    2003-01-01

    Adsorption isotherms of I 2 and malachite green (MG) by rice husk-based porous carbons (RHCs) from aqueous medium have been studied. Three samples of carbons prepared by NaOH-activation, three samples prepared by KOH-activation and two samples of commercial carbons have been studied. And the adsorption isotherms have been determined after modifying the carbon surfaces by oxidation with nitric acid and hydrogen peroxide and after degassing at 800 deg. C. The results have been found to follow the Freundlich adsorption isotherm. Three samples of N series have larger capacity for removing I 2 and MG from solution compared to that of the tested commercial carbons. The adsorption capacity of I 2 is similar for K series and commercial carbons. And the capacity of commercial carbons for MG is larger than K series. The adsorption capacity of I 2 on oxidation carbons has increased for hydrogen peroxide treatment and decreased for nitric acid, and that of MG is decreased. But the adsorption capacities of I 2 and MG increase on degassing. On the other hand, the adsorption of I 2 increases after modifying the carbon surfaces by HCl without oxidation. Suitable mechanisms have been proposed

  16. Solvent extraction of W(VI) and Hg(II) with malachite green and rhodamine-B respectively into organic solvents

    International Nuclear Information System (INIS)

    Patil, V.B.; David, M.M.; Turel, Z.R.

    1992-01-01

    Aqueous malachite green and alcoholic rhodamine-B have been used for the extraction of tungsten( W(VI)) and mercury( Hg(II)) respectively into nitrobenzene. This paper deals with developing a rapid method and selective method for the extraction of tungsten(W(VI)) and mercury (Hg(II)) using malachite green and rhodamine-B respectively. 185 W and 203 Hg were used as tracers for studying the extraction process.(author). 2 refs., 2 tab

  17. Optimization of Malachite Green Removal from Water by TiO₂ Nanoparticles under UV Irradiation.

    Science.gov (United States)

    Ma, Yongmei; Ni, Maofei; Li, Siyue

    2018-06-13

    TiO₂ nanoparticles with surface porosity were prepared by a simple and efficient method and presented for the removal of malachite green (MG), a representative organic pollutant, from aqueous solution. Photocatalytic degradation experiments were systematically conducted to investigate the influence of TiO₂ dosage, pH value, and initial concentrations of MG. The kinetics of the reaction were monitored via UV spectroscopy and the kinetic process can be well predicted by the pseudo first-order model. The rate constants of the reaction kinetics were found to decrease as the initial MG concentration increased; increased via elevated pH value at a certain amount of TiO₂ dosage. The maximum efficiency of photocatalytic degradation was obtained when the TiO₂ dosage, pH value and initial concentrations of MG were 0.6 g/L, 8 and 10 −5 mol/L (M), respectively. Results from this study provide a novel optimization and an efficient strategy for water pollutant treatment.

  18. Malachite green and chloramphenicol in aquatic products from regions around Dongting Lake in Hunan, China.

    Science.gov (United States)

    He, Jiang; Cui, Jingzhen

    2016-01-01

    Aquatic products are important sources of animal proteins in human diet, especially in developing countries. As such, the safety of aquatic products is of primary concern. In this study, a standard method is used to detect malachite green (MG) and chloramphenicol (CAP) and to analyse the contents of these banned chemicals in turtle, mandarin fish and grass carp sampled from the region surrounding Dongting Lake area in Hunan, China. Results showed that 10.6% of the samples were MG-positive, most of them turtles. CAP was found in 8.3% of the samples, mostly in mandarin fish. These data indicated that these banned substances are still used in the surveyed area. Hence, adequate strategies must be implemented by the local government to control these banned substances.

  19. Effect of malachite green toxicity on non target soil organisms.

    Science.gov (United States)

    Gopinathan, R; Kanhere, J; Banerjee, J

    2015-02-01

    Although malachite green (MG), is banned in Europe and US for its carcinogenic and teratogenic effect, the dye being cheap, is persistently used in various countries for fish farming, silk, dye, leather and textile industries. Current research, however, fails to elucidate adequate knowledge concerning the effects of MG in our ecosystem. In the present investigation, for the first time, an attempt has been made to study the effects of MG on soil biota by testing Bacillus subtilis, Azotobacter chroococcum, Saccharomyces cerevisiae, Penicillium roqueforti, Eisenia fetida and seeds of three crop plants of different families. Various tests were conducted for determining cytotoxicity, genotoxicity, acute toxicity, morphological and germination effect. Our data confirmed MG toxicity on fungi and bacteria (gram positive and gram negative organisms) showing elevated level of ROS. Genotoxicity caused in the microorganisms was detected by DNA polymorphism and fragmentation. Also, scanning electron microscopy data suggests that the inhibitory effect of MG to these beneficial microbes in the ecosystem might be due to pore formation in the cell and its eventual disruption. Filter paper and artificial soil test conducted on earthworms demonstrated a LC 50 of 2.6 mg cm(-2) and 1.45 mg kg(-1) respectively with severe morphological damage. However, seed germination of Mung bean, Wheat and Mustard was found to be unaffected in presence of MG up to 100 mL(-1) concentration. Thus, understanding MG toxicity in non target soil organisms and emphasis on its toxicological effects would potentially explicate its role as an environmental contaminant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor.

    Science.gov (United States)

    Lee, Sangyeop; Choi, Junghyun; Chen, Lingxin; Park, Byungchoon; Kyong, Jin Burm; Seong, Gi Hun; Choo, Jaebum; Lee, Yeonjung; Shin, Kyung-Hoon; Lee, Eun Kyu; Joo, Sang-Woo; Lee, Kyeong-Hee

    2007-05-08

    A rapid and highly sensitive trace analysis technique for determining malachite green (MG) in a polydimethylsiloxane (PDMS) microfluidic sensor was investigated using surface-enhanced Raman spectroscopy (SERS). A zigzag-shaped PDMS microfluidic channel was fabricated for efficient mixing between MG analytes and aggregated silver colloids. Under the optimal condition of flow velocity, MG molecules were effectively adsorbed onto silver nanoparticles while flowing along the upper and lower zigzag-shaped PDMS channel. A quantitative analysis of MG was performed based on the measured peak height at 1615 cm(-1) in its SERS spectrum. The limit of detection, using the SERS microfluidic sensor, was found to be below the 1-2 ppb level and this low detection limit is comparable to the result of the LC-Mass detection method. In the present study, we introduce a new conceptual detection technology, using a SERS microfluidic sensor, for the highly sensitive trace analysis of MG in water.

  1. Determination of malachite green in aquatic products based on magnetic molecularly imprinted polymers.

    Science.gov (United States)

    Lin, Zheng-zhong; Zhang, Hong-yuan; Peng, Ai-hong; Lin, Yi-dong; Li, Lu; Huang, Zhi-yong

    2016-06-01

    Magnetic molecularly imprinted polymers (MMIPs) were synthesized through precipitation polymerization using malachite green (MG) as template, methacrylic acid as monomer, ethylene dimethacrylate as crosslinker, and Fe3O4 magnetite as magnetic component. MMIPs were characterized by scanning electron microscopy, Fourier transform infrared spectrometry, and vibrating sample magnetometry. Under the optimum condition, the MMIPs obtained exhibited quick binding kinetics and high affinity to MG in the solution. Scatchard plot analysis revealed that the MMIPs contained only one type of binding site with dissociation constant of 24.0 μg mL(-1). The selectivity experiment confirmed that the MMIPs exhibited higher selective binding capacity for MG than its structurally related compound (e.g., crystal violet). As a sorbent for the extraction of MG in sample preparation, MMIPs together with the absorbed analytes could easily be separated from the sample matrix with an external magnet. After elution with methanol/acetic acid (9:1, v/v), MG in the eluent was determined by high-performance liquid chromatography coupled with UV detector with recoveries of 94.0-115%. Results indicated that the as-prepared MMIPs are promising materials for MG analysis in aquatic products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Extraction-absorptiometric determination of copper by malachite green in natural and waste waters

    International Nuclear Information System (INIS)

    Arstamyan, Zh.M.; Mangasaryan, S.H.

    2006-01-01

    In interaction of Cu anionic complex with three phenylmethane basic dye-malachite green has been studied. The colored ionic associate could be extracted by benzene in 1.0 M hydrochloric acid solution. The method is based on the reduction of Cu(II) to Cu(I) with ascorbic acid.The calibration graph obeyed Beer's law over the range 0,125-10,0 m kg/ml copper. The apparent molar absorptivity of the extract was 8,7·10 4± 500 l mol - 1 c m 1 . The molar ratio between Cu(I) chloride complex and cation of malachite green in ionic associate has been determined by method Asmuse which is (1:1). The influence of foreign ions on the determination of copper has been studied. Methods was applied for determination of cooper in natural and waste waters

  3. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels.

    Science.gov (United States)

    Jiang, Feng; Dinh, Darren M; Hsieh, You-Lo

    2017-10-01

    Ultra-light aerogels have been assembled from cellulose nanofibrils into hierarchically macroporous (several hundred μm) honeycomb cellular structure surrounded with mesoporous (8-60nm) thin walls. The high specific surface (193m 2 /g) and surface carboxyl content (1.29mmol/g) of these aerogels were demonstrated to be highly capable of removing cationic malachite green (MG) dye from aqueous media. The rapid MG adsorption was driven by electrostatic interactions and followed a pseudo-second-order adsorption kinetic and monolayer Langmuir adsorption isotherm. At a low 1:5mg/mL aerogel/MG ratio, both initial MG adsorption rate (2.3-59.8mgg -1 min -1 ) and equilibrium adsorption capacity (53.0-203.7mgg -1 ) increased with increasing initial MG concentrations from 10 to 200mg/L, reaching a maximum adsorption of 212.7mgg -1 . The excellent dye removal efficiency was demonstrated by complete MG removal through four repetitive adsorptions at a low 1:5mg/mL aerogel/MG ratio and 10mg/L dye concentration as well as 92% MG adsorption in a single batch at one order of magnitude higher10:5mg/mL aerogel/MG ratio and 100mg/L dye concentration. The adsorbed MG in aerogels could be desorbed in aqueous media by increasing ionic strength, demonstrating facile recovery of both dye and aerogel as well as the robust capability of this aerogel for repetitive applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Kai-Xuan; Guo, Mei-Hong; Huang, Yu-Ping; Li, Xiao-Dong; Sun, Jian-Jun

    2018-04-01

    A highly sensitive and rapid method of in-situ surface-enhanced Raman spectroscopy (SERS) combining with electrochemical preconcentration (EP) in detecting malachite green (MG) in aquaculture water was established. Ag nanoparticles (AgNPs) were synthesized and spread onto the surface of gold electrodes after centrifuging to produce SERS-active substrates. After optimizing the pH values, preconcentration potentials and times, in-situ EP-SERS detection was carried out. A sensitive and rapid analysis of the low-concentration MG was accomplished within 200s and the limit of detection was 2.4 × 10 -16 M. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Determination of malachite green in fish based on magnetic molecularly imprinted polymer extraction followed by electrochemiluminescence.

    Science.gov (United States)

    Huang, Baomei; Zhou, Xibin; Chen, Jing; Wu, Guofan; Lu, Xiaoquan

    2015-09-01

    A novel procedure for selective extraction of malachite green (MG) from fish samples was set up by using magnetic molecularly imprinted polymers (MMIP) as the solid phase extraction material followed by electrochemiluminescence (ECL) determination. MMIP was prepared by using Fe3O4 magnetite as magnetic component, MG as template molecule, methacrylic acid (MAA) as functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking agent. MMIP was characterized by SEM, TEM, FT-IR, VSM and XRD. Leucomalachite green (LMG) was oxidized in situ to MG by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). And then MMIP was successfully used to selectively enrich MG from fish samples. Adsorbed MG was desorbed and determined by ECL. Under the optimal conditions, calibration curve was good linear in the range of 0.29-290 μg/kg and the limit of detection (LOD) was 7.3 ng/kg (S/N=3). The recoveries of MMIP extraction were 77.1-101.2%. In addition, MMIP could be regenerated. To the best of our knowledge, MMIP coupling with ECL quenching of Ru(bpy)3(2+)/TPA for the determination of MG has not yet been developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Enhanced Sensitive Immunoassay: Noncompetitive Phage Anti-Immune Complex Assay for the Determination of Malachite Green and Leucomalachite Green

    Science.gov (United States)

    2015-01-01

    To develop a more sensitive immunoassay for malachite green (MG) and leucomalachite green (LMG), we identified the immunocomplex binding phage-borne peptides for use in the noncompetitive phage anti-immunocomplex assay (PHAIA). An anti-LMG monoclonal antibody (mAb) was used to select immunocomplex binding peptides from a circular random eight-amino-acid phage-displayed library. After three rounds of panning-elution, five peptides that bound the LMG–mAb immunocomplex were obtained. One of the phage-borne peptide clones that resulted in an assay with the highest sensitivity was chosen for further research. The concentration of LMG producing 50% of the saturated signal and the limit of detection of the assay were 7.02 and 0.55 ng/mL, respectively, with a linear range of 1.35 to 21.56 ng/mL. The PHAIA based on the same antibody was 16 times more sensitive compared to the competitive immunoassay. PHAIA was used to analyze LMG, MG, and two mixtures of spiked fish samples, with validation by high-performance liquid chromatography (HPLC) with fluorescence detector. Results showed a good correlation (R2LMG = 0.9841; R2MG = 0.993; R2Mixture = 0.9903) between the data of PHAIA and HPLC, thus the assay was an efficient method for monitoring food safety. PMID:25077381

  7. Optimization of Malachite Green Removal from Water by TiO2 Nanoparticles under UV Irradiation

    Directory of Open Access Journals (Sweden)

    Yongmei Ma

    2018-06-01

    Full Text Available TiO2 nanoparticles with surface porosity were prepared by a simple and efficient method and presented for the removal of malachite green (MG, a representative organic pollutant, from aqueous solution. Photocatalytic degradation experiments were systematically conducted to investigate the influence of TiO2 dosage, pH value, and initial concentrations of MG. The kinetics of the reaction were monitored via UV spectroscopy and the kinetic process can be well predicted by the pseudo first-order model. The rate constants of the reaction kinetics were found to decrease as the initial MG concentration increased; increased via elevated pH value at a certain amount of TiO2 dosage. The maximum efficiency of photocatalytic degradation was obtained when the TiO2 dosage, pH value and initial concentrations of MG were 0.6 g/L, 8 and 10−5 mol/L (M, respectively. Results from this study provide a novel optimization and an efficient strategy for water pollutant treatment.

  8. Fe3O4@mesoporous SBA-15: A magnetically recoverable catalyst for photodegradation of malachite green

    International Nuclear Information System (INIS)

    Aliyan, Hamid; Fazaeli, Razieh; Jalilian, Rahil

    2013-01-01

    Surface of mesostructured silica (SBA-15) was modified by immobilizing Fe 3 O 4 . This modified-nanosized mesoporous silica Fe 3 O 4 @SBA-15 was characterized by FTIR, XRD, BET and SEM. A comparison of the photoefficiency of Fe 3 O 4 @SBA-15 toward photodegradation of malachite green (MG) was investigated in a photocatalytic reactor using UV lamp as a light source. The effect of various experimental parameters on the degradation performance of the process was evaluated by examining catalyst dosage, initial dye concentration and pH of the dye solution in the presence of Fe 3 O 4 @SBA-15 as photocatalyst. It was found that the photocatalyst exhibited significantly high catalytic stability, and the activity loss is negligible after five MG degradation cycles.

  9. Adsorption of Malachite Green Dye by Acid Activated Carbon - Kinetic, Thermodynamic and Equilibrium Studies

    Directory of Open Access Journals (Sweden)

    P. K. Baskaran

    2011-01-01

    Full Text Available The ability of zea mays dust carbon to remove malachite green from aqueous solutions has been studied for different adsorbate concentrations by varying the amount of adsorbent, temperature, pH and shaking time. Thermodynamic parameters such as ΔH°,ΔS° and ΔG°, were calculated from the slope and intercept of the linear plots. Analysis of adsorption results obtained at 303, 313, 323 and 333 K showed that the adsorption pattern on zea mays dust carbon seems to follow the Langmuir and Freundlich. The numerical values of sorption free energy indicate physical adsorption. The kinetic data indicated an intra-particle diffusion process with sorption being first order. The concentration of malachite green oxalate was measured before and after adsorption by using UV-visible spectrophotometer.

  10. Adsorption of malachite green by magnetic litchi pericarps: A response surface methodology investigation.

    Science.gov (United States)

    Zheng, Hao; Qi, Jinqiu; Jiang, Ruixue; Gao, Yan; Li, Xiaochen

    2015-10-01

    In this work, we synthesized a novel magnetic adsorbent containing litchi pericarps, denoted as MLP, for the removal of malachite green (MG) from solution. The factors influencing MG adsorption, such as contact time, adsorbent dosage, and initial dye concentration, were optimized using the Box-Behnken response surface methodology (RSM). The adsorption isotherms as well as the kinetics and thermodynamics of the adsorption of MG onto MLP are discussed. The results showed that MLP has a maximum adsorption efficiency of 99.5% when the temperature, pH, contact time, adsorbent dosage, and initial MG concentration were optimally set as 25 °C, 6.0, 66.69 min, 5.14 g/L, and 150 mg/L, respectively. The best model to describe this process is the Langmuir isotherm, with the maximum adsorption capacity being 70.42 mg/g. In addition, the kinetics of MG adsorption onto MLP followed a pseudo-second-order model; moreover, thermodynamic analysis suggested that MG adsorption onto MLP is spontaneous and endothermic. Finally, it was found that the new magnetic adsorbent can be separated easily and rapidly from mixed solutions in the presence of an external magnetic field. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Temperature sensitive molecularly imprinted microspheres for solid-phase dispersion extraction of malachite green, crystal violet and their leuko metabolites

    International Nuclear Information System (INIS)

    Tan, Lei; Chen, Kuncai; He, Rong; Peng, Rongfei; Huang, Cong

    2016-01-01

    This article demonstrates the feasibility of an alternative strategy for producing temperature sensitive molecularly imprinted microspheres (MIMs) for solid-phase dispersion extraction of malachite green, crystal violet and their leuko metabolites. Thermo-sensitive MIMs can change their structure following temperature stimulation. This allows capture and release of target molecules to be controlled by temperature. The fabrication technique provides surface molecular imprinting in acetonitrile using vinyl modified silica microspheres as solid supports, methacrylic acid and N-isopropyl acrylamide as the functional monomers, ethyleneglycol dimethacrylate as the cross-linker, and malachite green as the template. After elution of the template, the MIMs can be used for fairly group-selective solid phase dispersion extraction of malachite green, crystal violet, leucomalachite green, and leucocrystal violet from homogenized fish samples at a certain temperature. Following centrifugal separation of the microspheres, the analytes were eluted with a 95:5 mixture of acetonitrile and formic acid, and then quantified by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with isotope internal calibration. The detection limits for malachite green, crystal violet and their metabolites typically are 30 ng·kg −1 . Positive samples were identified by UHPLC-MS/MS in the positive ionization mode with multiple reaction monitoring. The method was applied to the determination of the dyes and the respective leuko dyes in fish samples, and accuracy and precision were validated by comparative analysis of the samples by using aluminum neutral columns. (author)

  12. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green

    Science.gov (United States)

    Liu, Jue; Zeng, Min; Yu, Ronghai

    2016-05-01

    A new octahedral ZnO/ZnFe2O4 heterostructure has been fabricated through a facile surfactant-free solvothermal method followed by thermal treatment. It exhibits a record-high adsorption capacity (up to 4983.0 mg·g-1) of malachite green (MG), which is a potentially harmful dye in prevalence and should be removed from wastewater and other aqueous solutions before discharging into the environment. The octahedral ZnO/ZnFe2O4 heterostructure also demonstrates strong selective adsorption towards MG from two kinds of mixed solutions: MG/methyl orange (MO) and MG/rhodamine B (RhB) mixtures, indicating its promise in water treatment.

  13. Lipoprotein Processing Is Essential for Resistance of Mycobacterium tuberculosis to Malachite Green▿

    OpenAIRE

    Banaei, Niaz; Kincaid, Eleanor Z.; Lin, S.-Y. Grace; Desmond, Edward; Jacobs, William R.; Ernst, Joel D.

    2009-01-01

    Malachite green, a synthetic antimicrobial dye, has been used for over 50 years in mycobacterial culture medium to inhibit the growth of contaminants. The molecular basis of mycobacterial resistance to malachite green is unknown, although the presence of malachite green-reducing enzymes in the cell envelope has been suggested. The objective of this study was to investigate the role of lipoproteins in resistance of Mycobacterium tuberculosis to malachite green. The replication of an M. tubercu...

  14. Voltammetric determination of heparin based on its interaction with malachite green

    Directory of Open Access Journals (Sweden)

    Xueliang Niu

    2008-08-01

    Full Text Available In this paper malachite green (MG was used as a bioprobe to determine heparin concentration by linear sweep voltammetry on the dropping mercury working electrode (DME. In Britton-Robinson (B-R buffer solution of pH 1.5, MG had a well-defined second order derivative linear sweep voltammetric reductive peak at –0.618 V (vs. SCE. After the addition of heparin into the MG solution, the reductive peak current decreased apparently without the movement of peak potential. Based on the difference of the peak current, a new voltammetric method for the determination of heparin was established. The conditions for the binding reaction and the electrochemical detection were optimized. Under the selected experimental conditions the difference of peak current was directly proportional to the concentration of heparin in the range from 0.3 to 10.0 mg/L with the linear regression equation as ∆ip″ (nA = 360.19 C (mg/L + 178.88 (n = 15, γ = 0.998 and the detection limit as 0.28 mg/L (3σ. The effects of coexisting substances such as metal ions, amino acids on the determination of heparin were investigated and the results showed that this method had good selectivity. This method was further applied to determine the heparin content in heparin sodium injection samples with satisfactory results and good recovery. The stoichiometry of the biocomplex was calculated by the electrochemical method and the binding mechanism was further discussed.

  15. Molecularly imprinted polymers for extraction of malachite green from fish samples prior to its determination by HPLC

    International Nuclear Information System (INIS)

    Li, Lu; Chen, Xiao-mei; Zhang, Hong-yuan; Lin, Yi-dong; Lin, Zheng-zhong; Huang, Zhi-yong; Lai, Zhu-zhi

    2015-01-01

    Molecularly imprinted polymer (MIP) particles for malachite green (MG) were prepared by emulsion polymerization using methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, and a combination of Span-80 and Tween-80 as an emulsifier. The MIP particles were characterized by SEM micrographs and FT-IR spectra. Their binding capacity for MG was evaluated based on kinetic and isothermal adsorption experiments and compared to non-imprinted polymer particles. Analytical figures of merit include an adsorption equilibrium time of 15 min, an adsorption capacity of 1.9 mg∙g -1 in acetonitrile-water (20:80), and an imprinting factor of 1.85. The MIP particles were successfully applied to the extraction of MG from fish samples spiked with MG and the other interfering substances prior to its determination of MG by HPLC. Spiked samples gave recoveries of MG that ranged from 86 to 104 %, much higher than that of the other interfering substance. (author)

  16. Biomimetic ELISA detection of malachite green based on magnetic molecularly imprinted polymers.

    Science.gov (United States)

    Li, Lu; Lin, Zheng-Zhong; Peng, Ai-Hong; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2016-11-01

    A direct competitive enzyme-linked immunosorbent assay (ELISA) method was used for the detection of malachite green (MG) with a high sensitivity and selectivity using magnetic molecularly imprinted polymers (MMIPs) as a bionic antibody. MMIPs were prepared through emulsion polymerization using Fe 3 O 4 nanoparticles as magnetic nuclei, MG as a template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent and span-80/tween-80 as mixed emulsifiers. The MMIPs were characterized by scanning electron micrographs (SEM), thermal-gravimetric analyzer (TGA), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer (VSM), respectively. A high magnetic saturation value of 54.1emug -1 was obtained, resulting in rapid magnetic separation of MMIPs with an external magnet. The IC 50 of the established ELISA method was 20.1μgL -1 and the detection limit (based on IC 85 ) was 0.1μgL -1 . The MMIPs exhibited high selective binding capacity for MG with cross-reactivities less than 3.9% for MG structural analogues. The MG spiking recoveries were 85.0%-106% with the relative standard deviations less than 4.7%. The results showed that the biomimetic ELISA method by using MMIPs as bionic antibody could be used to detect MG rapidly in fish samples with a high sensitivity and accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Sensitive detection of malachite green and crystal violet by nonlinear laser wave mixing and capillary electrophoresis.

    Science.gov (United States)

    Maxwell, Eric J; Tong, William G

    2016-05-01

    An ultrasensitive label-free antibody-free detection method for malachite green and crystal violet is presented using nonlinear laser wave-mixing spectroscopy and capillary zone electrophoresis. Wave-mixing spectroscopy provides a sensitive absorption-based detection method for trace analytes. This is accomplished by forming dynamic gratings within a sample cell, which diffracts light to create a coherent laser-like signal beam with high optical efficiency and high signal-to-noise ratio. A cubic dependence on laser power and square dependence on analyte concentration make wave mixing sensitive enough to detect molecules in their native form without the use of fluorescent labels for signal enhancement. A 532 nm laser and a 635 nm laser were used for malachite green and crystal violet sample excitation. The use of two lasers of different wavelengths allows the method to simultaneously detect both analytes. Selectivity is obtained through the capillary zone electrophoresis separation, which results in characteristic migration times. Measurement in capillary zone electrophoresis resulted in a limit of detection of 6.9 × 10(-10)M (2.5 × 10(-19) mol) for crystal violet and 8.3 × 10(-11)M (3.0 × 10(-20) mol) for malachite green at S/N of 2. Copyright © 2016. Published by Elsevier B.V.

  18. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    Science.gov (United States)

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Cathodic and anodic simultaneous electrolytic deposition to minimize copper and lead interferences on spectrophotometric determination of cadmium by the Malachite Green-iodide reaction

    International Nuclear Information System (INIS)

    Oliveira, Adriana Paiva de; Freschi, Gian Paulo Giovanni; Dakuzaku, Carolina Sinabucro; Moraes, Mercedes de; Crespi, Marisa Spirandeli; Gomes Neto, Jose de Anchieta

    2001-01-01

    Simultaneous electrolytic deposition is proposed for minimization of Cu 2+ and Pb 2+ interferences on automated determination of Cd 2+ by the Malachite Green-iodide reaction. During electrolysis of sample in a cell with two Pt electrodes and a medium adjusted to 5% (v/v) HNO 3 + 0.1% (v/v) H 2 SO 4 + 0.5 mol L -1 NaCl, Cu 2+ is deposited as Cu on the cathode, Pb 2+ is deposited as PbO 2 on the anode while Cd 2+ is kept in solution. With 60 s electrolysis time and 0.25 A current, Pb 2+ and Cu 2+ levels up to 50 and 250 mg L -1 respectively, can be tolerated without interference. With on-line extraction of Cd 2+ in anionic resin mini column, calibration graph in the 5.00 - 50.0 μg Cd L -1 range is obtained, corresponding to twenty measurements per hour, 0.7 mg Malachite Green and 500 mg Kl and 5 mL sample consumed per determination. Results of the determination of Cd in certified reference materials, vegetables and tap water were in agreement with certified values and with those obtained by GFAAS at 95% confidence level. The detection limit is 0.23 μg Cd L-1 and the RSD for typical samples containing 13.0 μg Cd L -1 was 3.85 % (n= 12). (author)

  20. Acceleration effect of alcohols on ion association of molbdophosphate with malachite green and its use to the sensitive flow-injection determination of phosphate. Molybdo rinsan ion-malachite green ion kaigotai seisei ni oyobosu alcohol no hanno sokushinkoka to sore wo riyosuru rin no kokando flow injection bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Motomizu, S; Yasuda, Y; Oshima, M [Okayama Univ., Okayama (Japan). Faculty of Science

    1991-12-10

    Molibdophosphoric acid (PMo) reacts with malachite green (MG{sup +}) to form a colored ion associate (MG{sup +}- PMo) in an acidic solution according to the formula : HMG{sup 2+}+H{sub 3}PMo{sub 12}O{sub 40}{yields}(MG{sup +})H{sub 2}PMo{sub 12}O{sub 40}+2H{sup +}. A protonated form HMG{sup 2+} is yellow (the absorption mximum at 446 nm), whereas the ion associate MG{sup +} is blue green (the absorption maximum at 650 nm). MG{sup +} is found to accelerate the formation of PMo. Water-miscible organic solvents such as methanol,ethanol and propanol also accelerate the formation of PMo as well as the formation of MG sup + - PMo. Some anionic surfactants decelerate the reaction, however, contribute to the suppression of the baseline drift in a flow injection analysis (FIA). By the use of the proposed reaction accelerator and surfactant. a highly sensitive FIA system is established for,orthophosphate up to the range of several ppb. 16 figs.. 11 refs.

  1. Solvent extraction of Sb(III) with malachite green into chloroform

    International Nuclear Information System (INIS)

    Shanbhag, B.S.; Turel, Z.R.

    2002-01-01

    A rapid and selective method for the solvent extraction of Sb(III) using malachite green (C. I. Basic green 4) has been described. Effect of different parameters affecting the extraction coefficient value of Sb(III) such as acidity, time of equilibration, KI concentration, solvents, anions, etc. has been studied. For various elements the separation factor has been evaluated. The stoichiometry of the extracted species has been determined by the method of substoichiometric extraction. The decontamination factor for some elements using substoichiometric quantities of the extracting agent has been evaluated. Radiotracers were employed for the extraction studies. The method elaborated has been employed for the quantitative determination of antimony in normal, benign and cancerous tissues of the human brain. (author)

  2. Spectrophotometric determination of boron by solvent extraction with 2-hydroxy-2-methylbutyric acid and malachite green

    International Nuclear Information System (INIS)

    Sato, Shigeya; Uchikawa, Sumio

    1984-01-01

    A very simple and sensitive method for the spectrophotometric determination of boron was developed. Boron was found to react with 2-hydroxy-2-methylbutyric acid in weak acidic aqueous solution at room temperature to form a complex anion which can be extracted into chlorobenzene with malachite green in a single extraction; boron is determined indirectly by measuring the absorbance of malachite green in the extract at 629 nm. The calibration graph is linear over the range (7.50 x 10 -7 - 2.00 x 10 -5 ) mol dm -3 boron; the apparent molar absorptivity is 6.50 x 10 4 dm 3 mol -1 cm -1 . The method is applied to the determination of micro amounts of boron in natural waters with satisfactory results. (author)

  3. Efficient photo-catalytic degradation of malachite green using nickel tungstate material as photo-catalyst.

    Science.gov (United States)

    Helaïli, N; Boudjamaa, A; Kebir, M; Bachari, K

    2017-03-01

    The present study focused on the evaluation of photo-catalytic and photo-electrochemical properties of the photo-catalyst based on nickel tungstate material prepared by a nitrate method through the degradation of malachite green (MG) dye's. The effect of catalyst loading and dye concentration was examined. Physico-chemical, optical, electrical, electrochemical, and photo-electrochemical properties of the prepared material were analyzed by X-ray diffraction (XRD), fourier transform-infrared spectroscopy (FTIR), BET analysis, optical reflectance diffuse (DR), scanning electron microscopy (SEM/EDX), electrical conductivity, cyclic voltammetry (CV), current intensity, mott-shottky, and nyquist. XRD revealed the formation of monoclinic structure with a small particle size. BET surface area of the sample was around 10 m 2 /g. The results show that the degradation of MG was more than 80%, achieved after 3 h of irradiation at pH 4.6 and with a catalyst loading of 75 mg. Also, it was found that the dye photo-degradation obeyed the pseudo-first order kinetic via Langmuir Hinshelwood model.

  4. Solvent extraction of W(VI) with malachite green into nitrobenzene

    International Nuclear Information System (INIS)

    Patil, V.B.; Turel, Z.R.

    1995-01-01

    A rapid and selective method has been developed for the extraction of W(VI) with malachite green into nitrobenzene. The effect of various parameters on the extraction coefficient value such as effect of pH, time of equilibration, effect of various cations and anions have been evaluated. The stoichiometry of metal to reagent determined by the method of substoichiometric extraction was found to be 1:1. It was further supported by the slope ratio method. (author). 6 refs., 2 tabs., 2 figs

  5. Solvent extraction of W(VI) with malachite green into nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Patil, V B; Turel, Z R [The Institute of Science, Bombay (India). Nuclear Chemistry Division

    1995-04-01

    A rapid and selective method has been developed for the extraction of W(VI) with malachite green into nitrobenzene. The effect of various parameters on the extraction coefficient value such as effect of pH, time of equilibration, effect of various cations and anions have been evaluated. The stoichiometry of metal to reagent determined by the method of substoichiometric extraction was found to be 1:1. It was further supported by the slope ratio method. (author). 6 refs., 2 tabs., 2 figs.

  6. Biosorption Studies for the Removal of Malachite Green from its Aqueous Solution by Activated Carbon Prepared from Cassava Peel

    Directory of Open Access Journals (Sweden)

    C. Parvathi

    2011-01-01

    Full Text Available The association of dyes with health related problems is not a new phenomenon. The effectiveness of carbon adsorption for dye removal from textile effluent has made it an ideal alternative to other expensive treatment methods. The preparation of activated carbon from agricultural waste could increase economic return and reduce pollution. Cassava peel has been used as a raw material to produce activated carbon. The study investigates the removal of malachite green dye from its aqueous solution. The effects of condition such as adsorbent dosage, initial dye concentration, pH and contact time were studied. The adsorption capacity was demonstrated as a function of time for malachite green from aqueous solution by the prepared activated carbon. The results showed that as the amount of the adsorbent was increased, the percentage of dye removal increased accordingly. Higher adsorption percentages were observed at lower concentrations of malachite green dye. Silver nitrate treated cassava peel showed a better performance compared to Sulphuric acid treated and raw carbons, thus making it an interesting option for dye removal textile effluent.

  7. Fe(III)-loaded collagen fiber as a heterogeneous catalyst for the photo-assisted decomposition of Malachite Green

    International Nuclear Information System (INIS)

    Liu Xiaohu; Tang Rui; He Qiang; Liao Xuepin; Shi Bi

    2010-01-01

    A heterogeneous catalyst for Fenton reaction was prepared by immobilizing Fe(III) onto collagen fiber and its catalytic activity for the photo-assisted decomposition of Malachite Green (MG) was investigated. The results indicated that this Fe(III)-immobilized collagen fiber (Fe-CF) can effectively catalyse the decoloration and decomposition/mineralization of MG in aqueous solution. Catalysed by Fe-CF, MG solution was completely decolorized in 30 min, while 55.0% of TOC was removed from the dye solution within 120 min in the presence of H 2 O 2 and UVA irradiation (365 nm, 10 W). Fe-CF was recycled for seven times with certain activity loss (32.6% in decoloration, 18.5% in TOC removal), and its catalytic activity can be easily recovered by re-immobilization of Fe(III). Therefore, Fe-CF could act as an efficient and cost-effective catalyst for the photo-assisted decomposition of MG, and shows potential applications in practice.

  8. Spectrophotometric determination of boron by solvent extraction with 2-hydroxy-2-methylbutyric acid and malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Shigeya; Uchikawa, Sumio [Kumamoto Univ. (Japan). Faculty of Education

    1984-03-01

    A very simple and sensitive method for the spectrophotometric determination of boron was developed. Boron was found to react with 2-hydroxy-2-methylbutyric acid in weak acidic aqueous solution at room temperature to form a complex anion which can be extracted into chlorobenzene with malachite green in a single extraction; boron is determined indirectly by measuring the absorbance of malachite green in the extract at 629 nm. The calibration graph is linear over the range (7.50 x 10/sup -7/ - 2.00 x 10/sup -5/) mol dm/sup -3/ boron; the apparent molar absorptivity is 6.50 x 10/sup 4/ dm/sup 3/ mol/sup -1/ cm/sup -1/. The method is applied to the determination of micro amounts of boron in natural waters with satisfactory results.

  9. Preparation of novel oxidized mesoporous carbon with excellent adsorption performance for removal of malachite green and lead ion

    Science.gov (United States)

    Zhang, Xialan; Lin, Qilang; Luo, Shiyuan; Ruan, Kezhao; Peng, Kaiping

    2018-06-01

    An oxidized mesoporous carbon (OMC) with fluffy structure was fabricated from the mixture of petroleum asphalt and aluminum isopropoxide, and its structures were characterized by FESEM, TEM, BET, TG, XPS and FT-IR. In addition, bath absorption experiments for malachite green (MG) and lead ion (Pb2+) were carried out to explore the effects of pH, initial concentration, contact time and temperature on its absorption process. Results show that the OMC prepared has a fluffy ultrathin-wall structure with narrow pore size distribution and rich oxygen-containing groups. It exhibits excellent absorption performance for the removal of MG as well as Pb2+, as indicated by that its maximum adsorption capacity is 963.1 mg g-1 for MG and 198.6 mg g-1 for Pb2+. The absorption experimental data are all fitted well with pseudo-second-order model and Frendlich isotherm, respectively. More importantly, the OMC still maintains relatively high adsorption capacity after five cycles.

  10. Investigation kinetics mechanisms of adsorption malachite green onto activated carbon

    International Nuclear Information System (INIS)

    Onal, Y.; Akmil-Basar, C.; Sarici-Ozdemir, C.

    2007-01-01

    Lignite was used to prepare activated carbon (T3K618) by chemical activation with KOH. Pore properties of the activated carbon such as BET surface area, pore volume, pore size distribution, and pore diameter were characterized by t-plot based on N 2 adsorption isotherm. BET surface area of activated carbon is determined as 1000 m 2 /g. Adsorption capacity of malachite green (MG) onto T3K618 activated carbon was investigated in a batch system by considering the effects of various parameters like initial concentration (100, 150 and 200 mg/L) and temperature (25, 40 and 50 deg. C). The adsorption process was relatively fast and equilibrium was reached after about 20 min for 100, 150 mg/L at all adsorption temperature. Equilibrium time for 200 mg/L was determined as 20 min and 40 min at 298, 313 and 323 K, respectively. Simple mass and kinetic models were applied to the experimental data to examine the mechanisms of adsorption and potential rate controlling steps such as external mass transfer, intraparticle diffusion. Pseudo second-order model was found to explain the kinetics of MG adsorption most effectively. It was found that both mass transfer and pore diffusion are important in determining the adsorption rates. The intraparticle diffusion rate constant, external mass transfer coefficient, film and pore diffusion coefficient at various temperatures were evaluated. The activation energy (E a ) was determined as 48.56, 63.16, 67.93 kJ/mol for 100, 150, 200 mg/L, respectively. The Langmiur and Freundlich isotherm were used to describe the adsorption equilibrium studies at different temperatures. Langmiur isotherm shows better fit than Freundlich isotherm in the temperature range studied. The thermodynamic parameters, such as ΔG o , ΔS and ΔH o were calculated. The thermodynamics of dyes-T3K618 system indicates endothermic process

  11. Polyvinyl butyral films containing leuco-malachite green as low-dose dosimeters

    International Nuclear Information System (INIS)

    Hoang Hoa Mai; Solomon, H.M.; Taguchi, M.; Kojima, T.

    2008-01-01

    Thin films containing leuco-malachite green (LMG) dye in polyvinyl butyral (PVB) have been developed for dose measurements of a few hundreds Gy level. The film shows significant color change in the visible range, and the sensitivity of the film to absorbed dose was enhanced by addition of chloride-containing compounds, such as chloral hydrate or 2,2,2-trichloroethanol. The film is suitable as dosimeters for dose measurements, e.g. in food irradiation and environmental protection

  12. Irradiation-induced fusion between giant vesicles and photoresponsive large unilamellar vesicles containing malachite green derivative.

    Science.gov (United States)

    Uda, Ryoko M; Yoshikawa, Yuki; Kitaba, Moe; Nishimoto, Noriko

    2018-07-01

    Light-initiated fusion between vesicles has attracted much attention in the research community. In particular, fusion between photoresponsive and non-photoresponsive vesicles has been of much interest in the development of systems for the delivery of therapeutic agents to cells. We have performed fusion between giant vesicles (GVs) and photoresponsive smaller vesicles containing malachite green (MG) derivative, which undergoes ionization to afford a positive charge on the molecule by irradiation. The fusion proceeds as the concentration of GV lipid increases toward equimolarity with the lipid of the smaller vesicle. It is also dependent on the molar percentage of photoionized MG in the lipid of the smaller vesicle. On the other hand, the fusion is hardly affected by the anionic component of the GV. The photoinduced fusion was characterized by two methods, involving the mixing of lipid membranes and of aqueous contents. Fluorescence microscopy revealed that irradiation triggered the fusion of a single GV with the smaller vesicles containing MG. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Isotherm and kinetics study of malachite green adsorption onto copper nanowires loaded on activated carbon: artificial neural network modeling and genetic algorithm optimization.

    Science.gov (United States)

    Ghaedi, M; Shojaeipour, E; Ghaedi, A M; Sahraei, Reza

    2015-05-05

    In this study, copper nanowires loaded on activated carbon (Cu-NWs-AC) was used as novel efficient adsorbent for the removal of malachite green (MG) from aqueous solution. This new material was synthesized through simple protocol and its surface properties such as surface area, pore volume and functional groups were characterized with different techniques such XRD, BET and FESEM analysis. The relation between removal percentages with variables such as solution pH, adsorbent dosage (0.005, 0.01, 0.015, 0.02 and 0.1g), contact time (1-40min) and initial MG concentration (5, 10, 20, 70 and 100mg/L) was investigated and optimized. A three-layer artificial neural network (ANN) model was utilized to predict the malachite green dye removal (%) by Cu-NWs-AC following conduction of 248 experiments. When the training of the ANN was performed, the parameters of ANN model were as follows: linear transfer function (purelin) at output layer, Levenberg-Marquardt algorithm (LMA), and a tangent sigmoid transfer function (tansig) at the hidden layer with 11 neurons. The minimum mean squared error (MSE) of 0.0017 and coefficient of determination (R(2)) of 0.9658 were found for prediction and modeling of dye removal using testing data set. A good agreement between experimental data and predicted data using the ANN model was obtained. Fitting the experimental data on previously optimized condition confirm the suitability of Langmuir isotherm models for their explanation with maximum adsorption capacity of 434.8mg/g at 25°C. Kinetic studies at various adsorbent mass and initial MG concentration show that the MG maximum removal percentage was achieved within 20min. The adsorption of MG follows the pseudo-second-order with a combination of intraparticle diffusion model. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Biosorption of malachite green from aqueous solutions by Pleurotus ostreatus using Taguchi method

    Science.gov (United States)

    2014-01-01

    Dyes released into the environment have been posing a serious threat to natural ecosystems and aquatic life due to presence of heat, light, chemical and other exposures stable. In this study, the Pleurotus ostreatus (a macro-fungus) was used as a new biosorbent to study the biosorption of hazardous malachite green (MG) from aqueous solutions. The effective disposal of P. ostreatus is a meaningful work for environmental protection and maximum utilization of agricultural residues. The operational parameters such as biosorbent dose, pH, and ionic strength were investigated in a series of batch studies at 25°C. Freundlich isotherm model was described well for the biosorption equilibrium data. The biosorption process followed the pseudo-second-order kinetic model. Taguchi method was used to simplify the experimental number for determining the significance of factors and the optimum levels of experimental factors for MG biosorption. Biosorbent dose and initial MG concentration had significant influences on the percent removal and biosorption capacity. The highest percent removal reached 89.58% and the largest biosorption capacity reached 32.33 mg/g. The Fourier transform infrared spectroscopy (FTIR) showed that the functional groups such as, carboxyl, hydroxyl, amino and phosphonate groups on the biosorbent surface could be the potential adsorption sites for MG biosorption. P. ostreatus can be considered as an alternative biosorbent for the removal of dyes from aqueous solutions. PMID:24620852

  15. Photodynamic inactivation of Staphylococcus aureus and Escherichia coli biofilms by malachite green and phenothiazine dyes: an in vitro study.

    Science.gov (United States)

    Vilela, Simone Furgeri Godinho; Junqueira, Juliana Campos; Barbosa, Junia Oliveira; Majewski, Marta; Munin, Egberto; Jorge, Antonio Olavo Cardoso

    2012-06-01

    The organization of biofilms in the oral cavity gives them added resistance to antimicrobial agents. The action of phenothiazinic photosensitizers on oral biofilms has already been reported. However, the action of the malachite green photosensitizer upon biofilm-organized microorganisms has not been described. The objective of the present work was to compare the action of malachite green with the phenothiazinic photosensitizers (methylene blue and toluidine blue) on Staphylococcus aureus and Escherichia coli biofilms. The biofilms were grown on sample pieces of acrylic resin and subjected to photodynamic therapy using a 660-nm diode laser and photosensitizer concentrations ranging from 37.5 to 3000 μM. After photodynamic therapy, cells from the biofilms were dispersed in a homogenizer and cultured in Brain Heart Infusion broth for quantification of colony-forming units per experimental protocol. For each tested microorganism, two control groups were maintained: one exposed to the laser radiation without the photosensitizer (L+PS-) and other treated with the photosensitizer without exposure to the red laser light (L-PS+). The results were subjected to descriptive statistical analysis. The best results for S. aureus and E. coli biofilms were obtained with photosensitizer concentrations of approximately 300 μM methylene blue, with microbial reductions of 0.8-1.0 log(10); 150 μM toluidine blue, with microbial reductions of 0.9-1.0 log(10); and 3000 μM malachite green, with microbial reductions of 1.6-4.0 log(10). Greater microbial reduction was achieved with the malachite green photosensitizer when used at higher concentrations than those employed for the phenothiazinic dyes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Use of kaolin as a potential low-cost adsorbent for the removal of malachite green from colored effluents

    Energy Technology Data Exchange (ETDEWEB)

    Foletto, E.L.; Caponi, N.; Collazzo, G.C.; Jahn, S.L.; Dotto, G.L.; Mazutti, M.A. [Universidade Federal de Santa Maria (UFSM), RS (Brazil)

    2016-07-01

    Full text: This study investigated the potential of raw kaolin as a low-cost adsorbent for the removal Malachite Green (MG) from colored effluents. The morphology, chemical structure and the surface properties of the adsorbent were investigated by characterization techniques such as X-ray diffraction, N2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, X-ray fluorescence spectroscopy and scanning electron microscopy. A possible technological application of kaolin is the MG removal from aqueous media, which was investigated by batch adsorption experiments. The adsorption kinetics was studied using the pseudo-first order, pseudo-second order and Elovich models. The adsorption isotherms were studied using Langmuir, Freundlich and Sips models. Maximum adsorption capacity was found to be 128 mg g-1, and this satisfactory result may be associated to some properties of adsorbent. Therefore, the results of this investigation revealed that kaolin can be utilized as a promising low-cost adsorbent to remove MG from colored effluents. (author)

  17. Facile synthesis of three-dimensional diatomite/manganese silicate nanosheet composites for enhanced Fenton-like catalytic degradation of malachite green dye

    Science.gov (United States)

    Jiang, De Bin; Yuan, Yunsong; Zhao, Deqiang; Tao, Kaiming; Xu, Xuan; Zhang, Yu Xin

    2018-05-01

    In this work, we demonstrate a novel and simple approach for fabrication of the complex three-dimensional (3D) diatomite/manganese silicate nanosheet composite (DMSNs). The manganese silicate nanosheets are uniformly grown on the inner and outer surface of diatomite with controllable morphology using a hydrothermal method. Such structural features enlarged the specific surface area, resulting in more catalytic active sites. In the heterogeneous Fenton-like reaction, the DMSNs exhibited excellent catalytic capability for the degradation of malachite green (MG). Under optimum condition, 500 mg/L MG solution was nearly 93% decolorized at 70 min in the reaction. The presented results show an enhanced catalytic behavior of the DMSNs prepared by the low-cost natural diatomite material and simple controllable process, which indicates their potential for environmental remediation applications. [Figure not available: see fulltext.

  18. Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes

    International Nuclear Information System (INIS)

    Prado, Alexandre G.S.; Costa, Leonardo L.

    2009-01-01

    The nanotubes of titania were synthesized in a hydrothermal system and characterized by scanning electronic microscopy (SEM), FT-IR, FT-Raman, and surface charge density by surface area analyzer. These nanomaterials were applied to photocatalyse malachite green dye degradation. Photodegradation capacity of TiO 2 nanotubes was compared to TiO 2 anatase photoactivity. Malachite dye was completely degraded in 75 and 105 min of reaction photocatalysed by TiO 2 nanotubes and TiO 2 anatase, respectively. Catalysts displayed high photodegradation activity at pH 4. TiO 2 nanotubes were easily recycled whereas the reuse of TiO 2 anatase was not effective. Nanotubes maintained 80% of their activity after 10 catalytic cycles and TiO 2 anatase presented only 8% of its activity after 10 cycles.

  19. TSDC and X-ray diffraction analysis of pure and malachite green sensitized polyvinyl carbazole films

    International Nuclear Information System (INIS)

    Mishra, Pankaj Kumar; Kathal, Rachana; Mishra, Jyoti; Pandey, Hariom; Khare, P. K.

    2013-01-01

    This paper describes the method for investigating the electrical properties of high solids via the study of thermal relaxation effects and offers an alternative scheme to the conventional bridge methods or the current voltage temperature measurements. For standard TSD experiment, this is comparable to a dielectric loss measurement, the low equivalent frequency and high sensitivity (ability to detect dipole concentration). The activation energies found by initial rise method are 0.31 ± 0.02 eV for pure and 0.43 ± 0.03 eV for malachite green sensitized PVK thermoelectrets. The peak current charges and activation energy associated with the peaks are affected by concentration of malachite green and have been explained in terms of formation of charge transfer complexes and molecular aggregates. The microscopic origin of a given current spectrum is explained by comparing the predictions of the general theories regarding the main polarization processes with the experimental data.

  20. Adsorption of malachite green from aqueous solution by using novel chitosan ionic liquid beads.

    Science.gov (United States)

    Naseeruteen, Faizah; Hamid, Nur Shahirah Abdul; Suah, Faiz Bukhari Mohd; Ngah, Wan Saime Wan; Mehamod, Faizatul Shimal

    2018-02-01

    Chitosan ionic liquid beads were prepared from chitosan and 1-butyl-3-methylimidazolium based ionic liquids to remove Malachite Green (MG) from aqueous solutions. Batch adsorption experiments were carried out as a function of initial pH, adsorbent dosage, agitation time and initial MG concentration. The optimum conditions were obtained at pH 4.0, 0.008g of adsorbent dosage and 20min of agitation time were utilized in the kinetic and isotherm studies. Three kinetic models were applied to analyze the kinetic data and pseudo-second order was found to be the best fitted model with R 2 >0.999. In order to determine the adsorption capacity, the sorption data were analyzed using the linear form of Langmuir, Freundlich and Temkin equations. The isotherm was best fitted by Langmuir isotherm model. The maximum adsorption capacity (q max ) obtained from Langmuir isotherm for two chitosan beads 1-butyl-3-methylimidazolium acetate A and 1-butyl-3-methylimidazolium B are 8.07mgg -1 and 0.24mgg -1 respectively. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Adsorption of malachite green from aqueous solution onto carbon prepared from Arundo donax root

    International Nuclear Information System (INIS)

    Zhang Jian; Li Yan; Zhang Chenglu; Jing Yuming

    2008-01-01

    Arundo donax root carbon (ADRC), a new adsorbent, was prepared from Arundo donax root by carbonization. The surface area of the adsorbent was determined 158 m 2 /g by N 2 adsorption isotherm. Batch adsorption experiments were carried out for the removal of malachite green (MG) from aqueous solution using ADRC as adsorbent. The effects of various parameters such as solution pH (3-10), carbon dose (0.15-1.0 g/100 ml) and initial MG concentration (10-100 mg/l) on the adsorption system were investigated. The effective pH was 5-7 and the optimum adsorbent dose was found to be 0.6 g/100 ml. Equilibrium experimental data at 293, 303 and 313 K were better represented by Langmuir isotherm than Freundlich isotherm using linear and non-linear methods. Thermodynamic parameters such as ΔG, ΔH and ΔS were also calculated. The negative Gibbs free energy change and the positive enthalpy change indicated the spontaneous and endothermic nature of the adsorption. The adsorption equilibrium time was 180 min. Adsorption kinetics was determined using pseudo-first-order model, pseudo-second-order model and intraparticle diffusion model. The results showed that the adsorption of MG onto ADRC followed pseudo-second-order model

  2. Cr(OH)3-NPs-CNC hybrid nanocomposite: a sorbent for adsorptive removal of methylene blue and malachite green from solutions.

    Science.gov (United States)

    Nekouei, Farzin; Nekouei, Shahram; Keshtpour, Farzaneh; Noorizadeh, Hossein; Wang, Shaobin

    2017-11-01

    In this article, Cr(OH) 3 nanoparticle-modified cellulose nanocrystal (CNC) as a novel hybrid nanocomposite (Cr(OH) 3 -NPs-CNC) was prepared by a simple procedure and used as a sorbent for adsorptive removal of methylene blue (MB) and malachite green (MG) from aqueous solution. Different kinetic models were tested, and the pseudo-second-order kinetic model was found more suitable for the MB and MG adsorption processes. The BET and Langmuir models were more suitable for the adsorption processes of MB and MG. Thermodynamic studies suggested that the adsorption of MB and MG onto Cr(OH) 3 -NPs-CNC nanocomposite was a spontaneous and endothermic process. The maximum adsorption capacities for MB and MG were reached 106 and 104 mg/g, respectively, which were almost two times higher than unmodified CNC. The chemical stability and leaching tests of the Cr(OH) 3 -NPs-CNC hybrid nanocomposite showed that only small amounts of chromium were leached into the solution.

  3. Accurate SERS detection of malachite green in aquatic products on basis of graphene wrapped flexible sensor.

    Science.gov (United States)

    Ouyang, Lei; Yao, Ling; Zhou, Taohong; Zhu, Lihua

    2018-10-16

    Malachite Green (MG) is a banned pesticide for aquaculture products. As a required inspection item, its fast and accurate determination before the products' accessing market is very important. Surface enhanced Raman scattering (SERS) is a promising tool for MG sensing, but it requires the overcoming of several problems such as fairly poor sensitivity and reproducibility, especially laser induced chemical conversion and photo-bleaching during SERS observation. By using a graphene wrapped Ag array based flexible membrane sensor, a modified SERS strategy was proposed for the sensitive and accurate detection of MG. The graphene layer functioned as an inert protector for impeding chemical transferring of the bioproduct Leucomalachite Green (LMG) to MG during the SERS detection, and as a heat transmitter for preventing laser induced photo-bleaching, which enables the separate detection of MG and LMG in fish extracts. The combination of the Ag array and the graphene cover also produced plentiful densely and uniformly distributed hot spots, leading to analytical enhancement factor up to 3.9 × 10 8 and excellent reproducibility (relative standard deviation low to 5.8% for 70 runs). The proposed method was easily used for MG detection with limit of detection (LOD) as low as 2.7 × 10 -11  mol L -1 . The flexibility of the sensor enable it have a merit for in-field fast detection of MG residues on the scale of a living fish through a surface extraction and paste transferring manner. The developed strategy was successfully applied in the analysis of real samples, showing good prospects for both the fast inspection and quantitative detection of MG. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Determination of residues of three triphenylmethane dyes and their metabolites (malachite green, leuco malachite green, crystal violet, leuco crystal violet, and brilliant green) in aquaculture products by LC/MS/MS: first action 2012.25.

    Science.gov (United States)

    Hurtaud-Pessel, Dominique; Couëdor, Pierrick; Verdon, Eric; Dowell, Dawn

    2013-01-01

    During the AOAC Annual Meeting held from September 30 to October 3, 2012 in Las Vegas, NV, the Expert Review Panel (ERP) on Veterinary Drug Residues reviewed data for the method for determination of residues of three triphenylmethane dyes and their metabolites (malachite green, leuco malachite green, crystal violet, leuco crystal violet, and brilliant green) in aquaculture products by LC/MS/MS, previously published in the Journal of Chromatography A 1218, 1632-1645 (2006). The method data were reviewed and compared to the standard method performance requirements (SMPRs) found in SMPR 2009.001, published in AOAC's Official Methods of Analysis, 19th Ed. (2012). The ERP determined that the data were acceptable, and the method was approved AOAC Official First Action. The method uses acetonitrile to isolate the analyte from the matrix. Then determination is conducted by LCIMS/MS with positive electrospray ionization. Accuracy ranged from 100.1 to 109.8% for samples fortified at levels of 0.5, 0.75, 1.0, and 2.0 microg/kg. Precision ranged from 2.0 to 10.3% RSD for the intraday samples and 1.9 to 10.6% for the interday samples analyzed over 3 days. The described method is designed to accurately operate in the analytical range from 0.5 to 2 microg/kg, where the minimum required performance limit for laboratories has been fixed in the European Union at 2.0 microg/kg for these banned substances and their metabolites. Upper levels of concentrations (1-100 microg/kg) can be analyzed depending on the different optional calibrations used.

  5. A high dose dosimeter based polyvinyl chloride dyed with malachite green

    International Nuclear Information System (INIS)

    Kattan, M.; Daher, Y.; Alkassiri, H.

    2007-01-01

    Polyvinyl chloride film (PVC) dyed with malachite green has been studied for high dose radiation dosimetry using visible spectrophotometry. A linear relationship between the relative absorbance and the absorbed dose at the wavelength 628 nm in the range of 0-125 kGy was found. The effect of dose rate, irradiation temperature, film thickness and dye intensity were found not to influence the response. The effects of shelf-life and the post-irradiation storage in darkness and indirect daylight conditions on dosimetry performance were discussed. (author)

  6. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    Science.gov (United States)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Bismuth selenide (Bi2Se3) and nickel (Ni) doped Bi2Se3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi2Se3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi2Se3 sample exhibited higher photo-catalytic activity than that of the pure Bi2Se3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi2Se3 in presence of hydrogen peroxide (H2O2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  7. Magnetic solid-phase extraction for determination of the total malachite green, gentian violet and leucomalachite green, leucogentian violet in aquaculture water by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Zhao, Jiao; Wei, Daqiao; Yang, Yaling

    2016-06-01

    In this study, magnetic multi-walled carbon nanotube nanoparticles were synthesized and used as the adsorbent for the sums of malachite green, gentian violet and leucomalachite green, leucogentian violet in aquaculture water samples followed by high performance liquid chromatography with fluorescence detection. This method was based on in situ reduction of chromic malachite green, gentian violet to colorless leucomalachite green, leucogentian violet with potassium borohydride, respectively. The obtained adsorbent combines the advantages of carbon nanotubes and Fe3 O4 nanoparticles in one material for separation and preconcentration of the reductive dyes in aqueous media. The structure and properties of the prepared nanoparticles were characterized by transmission and scanning electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy. The main parameters affecting the adsorption recoveries were investigated and optimized, including reducing agent concentration, type and amount of sorbent, sample pH, and eluting conditions. Under the optimum conditions, the limits of detection in this method were 0.22 and 0.09 ng/mL for malachite green and gentian violet, respectively. Product recoveries ranged from 87.0 to 92.8% with relative standard deviations from 4.6 to 5.9%. The results indicate that the sorbent is a suitable material for the removal and concentration of triphenylmethane dyes from polluted environmental samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Application of Response Surface Methodology to Optimize Malachite Green Removal by Cl-nZVI Nanocomposites

    Directory of Open Access Journals (Sweden)

    Farshid Ghorbani

    2017-09-01

    Full Text Available Disposal of effluents containing dyes into natural ecosystems pose serious threats to both the environment and its aquatic life. Malachite green (MG is a basic dye that has extensive industrial applications, especially in aquaculture, throughout the world. This study reports on the application of the central composite design (CCD under the response surface methodology (RSM for the optimization of MG adsorption from aqueous solutions using the clinoptilolite nano-zerovalence iron (Cl-nZVI nanocomposites. The sorbent structures produced are characterized by means of scanning electron micrograph (SEM, energy-dispersive X-ray spectroscopy (EDS, and vibrating sample magnetometer (VSM. The effects of different parameters including pH, initial MG concentration, and sorbent dosage on the removal efficiency (R of MG were studied to find the optimum operating conditions. For this purpose, a total of 20 sets of experiments were designed by the Design Expert.7.0 software and the values of removal efficiency were used as input response to the software. The optimum pH, initial MG concentration, and sorbent dosage were found to be 5.6, 49.21 mg.L-1, and 1.43 g.L-1, respectively. A high MG removal efficiency (57.90% was obtained with optimal process parameters. Moreover, a desirability value of 0.963 was obtained for the optimization process.

  9. In vitro interactions of malachite green and leucomalachite green with hepatic drug-metabolizing enzyme systems in the rainbow trout (Onchorhyncus mykiss).

    Science.gov (United States)

    Nebbia, Carlo; Girolami, Flavia; Carletti, Monica; Gasco, Laura; Zoccarato, Ivo; Giuliano Albo, Alessandra

    2017-10-05

    Malachite green (MG) has been widely used in aquaculture to treat a number of microbial and parasitic diseases. It is currently banned in the EU because of the high cytotoxicity and carcinogenic activity, which is also shared by leucomalachite green (LMG), a reduced MG metabolite that can persist in fish tissues for months. There is scant information about the ability of either compound to interact with drug metabolizing enzymes in fish. Therefore we evaluated the in vitro effects of MG and LMG (25, 50 and 100μM) on some DMEs and glutathione (GSH) content in rainbow trout liver subfractions. LMG did not affect any of the examined parameters. In contrast, MG proved to deplete GSH and to depress to a various extent the activities of NAD(P)H cytochrome c reductase, 7-ethoxycoumarin O-deethylase, 1-naphthol uridindiphosphoglucuronyl-transferase and maximally those of 7-ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) accepting 1-chloro2,4-dinitrobenzene (CDNB) as substrate. The inhibition mechanisms of EROD and GST were investigated by means of non-linear Michaelis-Menten kinetics and Lineweaver-Burk plots using 0.175-8μM MG. The calculated IC 50 for EROD was 7.1μM, and the inhibition appeared to be competitive (K i 2.78±0.24μM). In the case of GST, the calculated IC 50 was 0.53μM. The inhibition was best described as competitive toward GSH (Ki 0.39±0.02μM) and of mixed-type toward CDNB (Ki 0.64±0.06μM). Our findings indicate that, contrary to LMG, MG behaves as a relatively strong inhibitor of certain liver DMEs and can reversibly bind GSH. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Photocatalytic degradation of malachite green dye using Au/NaNbO_3 nanoparticles

    International Nuclear Information System (INIS)

    Baeissa, E.S.

    2016-01-01

    The morphology of sodium niobate, which was produced using a hydrothermal method, was studied by changing the hydrothermal temperature from 100 to 250 °C. Using 250 °C hydrothermal temperature resulted in sodium niobate with a nanocube structure. The sodium niobate nanocubes were doped with gold by impregnation with an aqueous solution of HAuCl_4. The band gap of sodium niobate is approximately 3.4 eV, and it was decreased to 2.45 eV by gold doping. The surface area of sodium niobate is higher than that of Au/NaNbO_3 due to blockage of some pores of sodium niobate by gold doping. The photocatalytic performance of gold-doped sodium niobate was studied by degradation of malachite green dye using visible light irradiation. The results demonstrate that the photocatalytic performance of gold-doped sodium niobate is higher than that of sodium niobate and TiO_2 Degussa under visible light irradiation. - Highlights: • Au/NaNbO_3 were used for photocatalytic degradation of malachite green dye. • Photocatalytic degradation was dependent on wt % of Au; reaction time, and weight of catalyst. • Catalyst re-use revealed the present photocatalyst remain effective and active after five cycles.

  11. Inorganic fullerene-type WS2 nanoparticles: processing, characterization and its photocatalytic performance on malachite green

    Science.gov (United States)

    Hazarika, Saurabh Jyoti; Mohanta, Dambarudhar

    2017-05-01

    In this work, we have employed a hydrothermal route for the synthesis of fullerene-type tungsten disulfide (WS2) nanoparticles. X-ray diffraction analysis signifies a hexagonal crystal structure of WS2 with the crystallites experiencing preferred orientations along (002) and (103) planes. The agglomerated nanoparticles and inorganic fullerene (IF)-type structures are apparently observable from the high-resolution electron micrographs. Raman spectrum shows prominent E1_{{2{{g}}}} and A 1g modes emanating from the IF nano-WS2 system. The Tauc's plot obtained from the optical absorption data predicts a direct band gap of 1.91 eV for the nano-WS2 system; whereas, photoluminescence analysis reveals a broad emission peak located at 638 nm and is ascribed to the associated transition from the indirect to direct nature of the band gap. The photocatalytic decomposition of malachite green (MG) solution (30 mg/l) by WS2 (100 mg/l) under UV and visible light irradiation has been evaluated. The latter condition exhibited a better photocatalytic response with the MG degradation as high as 71.2%, revealed for 120 min. Photocatalytic and optoelectronic features of IF-type nano-WS2 would bring new insights not only to resolve issues related to environmental hazards, but also in functional devices of technological relevance.

  12. Rapid detection of malachite green in fish based on CdTe quantum dots coated with molecularly imprinted silica.

    Science.gov (United States)

    Wu, Le; Lin, Zheng-Zhong; Zhong, Hui-Ping; Peng, Ai-Hong; Chen, Xiao-Mei; Huang, Zhi-Yong

    2017-08-15

    A sensitive fluorescence sensor for the detection of malachite green (MG) was fabricated by grafting molecularly imprinted polymers (MIPs) onto the surface of CdTe quantum dots (QDs). The MIP-coated QDs were synthesized via a reverse microemulsion method using (3-aminopropyl)triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) as functional monomer and cross-linker, respectively. The optimum molar ratio of MG, functional monomer and cross-linker was 1:3:10. The MIP-coated QDs exhibited uniform spheres with diameter around 49nm and excellent fluorescence emission at λ ex 370nm. A linear relationship with two segments between the relative fluorescence intensities and the MG concentrations ranging from 0.08 to 20μmol·L -1 could be obtained with a detection limit of 12μg·kg -1 . The fluorescent probe was successfully applied to the determination of MG in fish samples with the spiked recoveries ranging from 94.3% to 109.5% which were in accordance with those of the measurement by HPLC-UV. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Removal of malachite green by using an invasive marine alga Caulerpa racemosa var. cylindracea

    International Nuclear Information System (INIS)

    Bekci, Zehra; Seki, Yoldas; Cavas, Levent

    2009-01-01

    The biosorption of a cationic dye, malachite green oxalate (MG) from aqueous solution onto an invasive marine alga Caulerpa racemosa var. cylindracea (CRC) was investigated at different temperatures (298, 308 and 318 K). The dye adsorption onto CRC was confirmed by FTIR analysis. Equilibrium data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (DR) equations. All of the isotherm parameters were calculated. The Freundlich model gave a better conformity than Langmuir equation. The mean free energy values (E) from DR isotherm were also estimated. In order to clarify the sorption kinetic, the fit of pseudo-first-order kinetic model, second-order kinetic model and intraparticle diffusion model were investigated. It was obtained that the biosorption process followed the pseudo-second-order rate kinetics. From thermodynamic studies the free energy changes were found to be -7.078, -9.848 and -10.864 kJ mol -1 for 298, 308 and 318 K, respectively. This implied the spontaneous nature of biosorption and the type of adsorption as physisorption. Activation energy value for MG sorption (E a ) was found to be 37.14 kJ mol -1 . It could be also derived that this result supported physisorption as a type of adsorption

  14. Antimicrobial photodynamic inactivation of Staphylococcus aureus biofilms in bone specimens using methylene blue, toluidine blue ortho and malachite green: An in vitro study.

    Science.gov (United States)

    Rosa, Luciano Pereira; da Silva, Francine Cristina; Nader, Sumaia Alves; Meira, Giselle Andrade; Viana, Magda Souza

    2015-05-01

    To evaluate the in vitro effectiveness of APDI with a 660 nm laser combined with methylene blue (MB), toluidine blue ortho (TBO) and malachite green (MG) dyes to inactivate Staphylococcus aureus (ATCC 25923) biofilms in compact and cancellous bone specimens. Eighty specimens of compact and 80 of cancellous bone were contaminated with a standard suspension of the microorganism and incubated for 14 days at 37°C to form biofilms. After this period, the specimens were divided into groups (n=10) according to established treatment: PS-L- (control - no treatment); PSmb+L-, PStbo+L-, PSmg+L- (only MB, TBO or MG for 5 min in the dark); PS-L+ (only laser irradiation for 180 s); and APDImb, APDItbo and APDImg (APDI with MB, TBO or MG for 180 s). The findings were statistically analyzed by ANOVA at 5% significance levels. All experimental treatments showed significant reduction of log CFU/mL S. aureus biofilms when compared with the control group for compact and cancellous bones specimens; the APDI group's treatment was more effective. The APDI carried out for the compact specimens showed better results when compared with cancellous specimens at all times of application. For the group of compact bone, APDImg showed greater reductions in CFU/mL (4.46 log 10). In the group of cancellous bone, the greatest reductions were found in the APDImb group (3.06 log 10). APDI with methylene blue, toluidine blue ortho and malachite green dyes and a 660 nm laser proved to be effective in the inactivation of S. aureus biofilms formed in compact and cancellous bone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples

    Science.gov (United States)

    Song, Dan; Yang, Rong; Wang, Chongwen; Xiao, Rui; Long, Feng

    2016-01-01

    A novel nanosilver-deposited silica-coated Fe3O4 magnetic particle (Fe3O4@SiO2@Ag) with uniform size, good SERS activity and magnetic responsiveness was synthesized using amination polymer. The Fe3O4@SiO2@Ag magnetic particles have been successfully applied for ultrasensitive SERS detection of malachite green (MG) in water samples. The mechanism is that MG can be adsorbed on the silver surface of nanosilver-coated magnetic particles via one nitrogen atom, and the Raman signal intensity of MG is significantly enhanced by the nanosilver layer formed on the magnetic particles. The developed sensing system exhibited a sensitive response to MG in the range of 10 fM to 100 μM with a low limit of detection (LOD) 2 fM under optimal conditions. The LOD was several orders of magnitude lower than those of other methods. This SERS-based sensor showed good reproducibility and stability for MG detection. The silver-coated magnetic particles could easily be regenerated as SERS substrates only using low pH solution for multiple sensing events. The recovery of MG added to several water samples at different concentrations ranged from 90% to 110%. The proposed method facilitates the ultrasensitive analysis of dyes to satisfy the high demand for ensuring the safety of water sources. PMID:26964502

  16. Modeling of Malachite Green Removal from Aqueous Solutions by Nanoscale Zerovalent Zinc Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Wenqian Ruan

    2017-12-01

    Full Text Available The commercially available nanoscale zerovalent zinc (nZVZ was used as an adsorbent for the removal of malachite green (MG from aqueous solutions. This material was characterized by X-ray diffraction and X-ray photoelectron spectroscopy. The advanced experimental design tools were adopted to study the effect of process parameters (viz. initial pH, temperature, contact time and initial concentration and to reduce number of trials and cost. Response surface methodology and rapidly developing artificial intelligence technologies, i.e., artificial neural network coupled with particle swarm optimization (ANN-PSO and artificial neural network coupled with genetic algorithm (ANN-GA were employed for predicting the optimum process variables and obtaining the maximum removal efficiency of MG. The results showed that the removal efficiency predicted by ANN-GA (94.12% was compatible with the experimental value (90.72%. Furthermore, the Langmuir isotherm was found to be the best model to describe the adsorption of MG onto nZVZ, while the maximum adsorption capacity was calculated to be 1000.00 mg/g. The kinetics for adsorption of MG onto nZVZ was found to follow the pseudo-second-order kinetic model. Thermodynamic parameters (ΔG0, ΔH0 and ΔS0 were calculated from the Van’t Hoff plot of lnKc vs. 1/T in order to discuss the removal mechanism of MG.

  17. Photocatalytic degradation of Reactive Black 5 and Malachite Green with ZnO and lanthanum doped nanoparticles

    International Nuclear Information System (INIS)

    Kaneva, N; Bojinova, A; Papazova, K

    2016-01-01

    Here we report the preparation of ZnO particles with different concentrations of La 3 + doping (0, 0.5 and 1 wt%) via sol-gel method. The nanoparticles are synthesized directly from Zn(CH 3 COO) 2 .2H 2 O in the presence of 1-propanol and triethylamine at 80°C. The conditions are optimized to obtain particles of uniform size, easy to isolate and purify. The nanoparticles are characterized by SEM, XRD and UV-Vis analysis. The photocatalytic properties of pure and La-doped ZnO are studied in the photobleaching of Malachite Green (MG) and Reactive Black 5 (RB5) dyes in aqueous solutions upon UV illumination. It is observed that the rate constant increases with the La loading up to 1 wt%. The doping helps to achieve complete mineralization of MG within a short irradiation time. 1 wt% La-doped ZnO nanoparticles show highest photocatalytic activity. The La 3+ doped ZnO particles degrade faster RB5 than MG. The reason is weaker N=N bond in comparison with the C-C bond between the central carbon atom and N,N-dimethylaminobenzyl in MG. The as-prepared ZnO particles can find practical application in photocatalytic purification of textile wastewaters. (paper)

  18. Photocatalytic degradation of malachite green dye using Au/NaNbO{sub 3} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Baeissa, E.S., E-mail: elhambaeissa@gmail.com

    2016-07-05

    The morphology of sodium niobate, which was produced using a hydrothermal method, was studied by changing the hydrothermal temperature from 100 to 250 °C. Using 250 °C hydrothermal temperature resulted in sodium niobate with a nanocube structure. The sodium niobate nanocubes were doped with gold by impregnation with an aqueous solution of HAuCl{sub 4}. The band gap of sodium niobate is approximately 3.4 eV, and it was decreased to 2.45 eV by gold doping. The surface area of sodium niobate is higher than that of Au/NaNbO{sub 3} due to blockage of some pores of sodium niobate by gold doping. The photocatalytic performance of gold-doped sodium niobate was studied by degradation of malachite green dye using visible light irradiation. The results demonstrate that the photocatalytic performance of gold-doped sodium niobate is higher than that of sodium niobate and TiO{sub 2} Degussa under visible light irradiation. - Highlights: • Au/NaNbO{sub 3} were used for photocatalytic degradation of malachite green dye. • Photocatalytic degradation was dependent on wt % of Au; reaction time, and weight of catalyst. • Catalyst re-use revealed the present photocatalyst remain effective and active after five cycles.

  19. Comparative analysis and validation of the malachite green assay for the high throughput biochemical characterization of terpene synthases.

    Science.gov (United States)

    Vardakou, Maria; Salmon, Melissa; Faraldos, Juan A; O'Maille, Paul E

    2014-01-01

    Terpenes are the largest group of natural products with important and diverse biological roles, while of tremendous economic value as fragrances, flavours and pharmaceutical agents. Class-I terpene synthases (TPSs), the dominant type of TPS enzymes, catalyze the conversion of prenyl diphosphates to often structurally diverse bioactive terpene hydrocarbons, and inorganic pyrophosphate (PPi). To measure their kinetic properties, current bio-analytical methods typically rely on the direct detection of hydrocarbon products by radioactivity measurements or gas chromatography-mass spectrometry (GC-MS). In this study we employed an established, rapid colorimetric assay, the pyrophosphate/malachite green assay (MG), as an alternative means for the biochemical characterization of class I TPSs activity.•We describe the adaptation of the MG assay for turnover and catalytic efficiency measurements of TPSs.•We validate the method by direct comparison with established assays. The agreement of k cat/K M among methods makes this adaptation optimal for rapid evaluation of TPSs.•We demonstrate the application of the MG assay for the high-throughput screening of TPS gene libraries.

  20. Inorganic fullerene-type WS_2 nanoparticles: processing, characterization and its photocatalytic performance on malachite green

    International Nuclear Information System (INIS)

    Hazarika, Saurabh Jyoti; Mohanta, Dambarudhar

    2017-01-01

    In this work, we have employed a hydrothermal route for the synthesis of fullerene-type tungsten disulfide (WS_2) nanoparticles. X-ray diffraction analysis signifies a hexagonal crystal structure of WS_2 with the crystallites experiencing preferred orientations along (002) and (103) planes. The agglomerated nanoparticles and inorganic fullerene (IF)-type structures are apparently observable from the high-resolution electron micrographs. Raman spectrum shows prominent E"1_2_g and A_1_g modes emanating from the IF nano-WS_2 system. The Tauc's plot obtained from the optical absorption data predicts a direct band gap of ∝1.91 eV for the nano-WS_2 system; whereas, photoluminescence analysis reveals a broad emission peak located at ∝638 nm and is ascribed to the associated transition from the indirect to direct nature of the band gap. The photocatalytic decomposition of malachite green (MG) solution (30 mg/l) by WS_2 (100 mg/l) under UV and visible light irradiation has been evaluated. The latter condition exhibited a better photocatalytic response with the MG degradation as high as 71.2%, revealed for 120 min. Photocatalytic and optoelectronic features of IF-type nano-WS_2 would bring new insights not only to resolve issues related to environmental hazards, but also in functional devices of technological relevance. (orig.)

  1. Highly efficient decolorization of Malachite Green by a novel Micrococcus sp. strain BD15.

    Science.gov (United States)

    Du, Lin-Na; Zhao, Ming; Li, Gang; Zhao, Xiao-Ping; Zhao, Yu-Hua

    2011-08-01

    Malachite Green (MG) is used for a variety of applications but is also known to be carcinogenic and mutagenic. In this study, a novel Micrococcus sp. (strain BD15) was observed to efficiently decolorize MG. The purposes of this study were to explore the optimal conditions for decolorization and to evaluate the potential use of this strain for MG decolorization. Optical microscope and UV-visible analyses were carried out to determine whether the decolorization was due to biosorption or biodegradation. A Plackett-Burman design was employed to investigate the effect of various parameters on decolorization, and response surface methodology was then used to explore the optimal decolorization conditions. Kinetics analysis and antimicrobial activity tests were also performed. The results indicated that the decolorization by the strain was mainly due to biodegradation. Concentrations of MG, urea, and yeast extract and inoculum size had significantly positive effects on MG decolorization, while concentrations of CuCl(2) and MgCl(2), and temperature had significantly negative effects. The interaction between different parameters could significantly affect decolorization, and the optimal conditions for decolorization were 1.0 g/L urea, 0.9 g/L yeast extract, 100 mg/L MG, 0.1 g/L inoculums (dry weight), and incubation at 25.2°C. Under the optimal conditions, 96.9% of MG was removed by the strain within 1 h, which represents highly efficient microbial decolorization. Moreover, the kinetic data for decolorization fit a second-order model well, and the strain showed a good MG detoxification capability. Based on the results of this study, we propose Micrococcus sp. strain BD15 as an excellent candidate strain for MG removal from wastewater.

  2. Application of Casuarina equisetifolia needle for the removal of methylene blue and malachite green dyes from aqueous solution

    Directory of Open Access Journals (Sweden)

    Muhammad Khairud Dahri

    2015-12-01

    Full Text Available This study investigated the potential of Casuarina equisetifolia needle (CEN on the removal of two important dyes, methylene blue (MB and malachite green (MG, by batch adsorption experiments. Characterisation of CEN’s functional groups was done using Fourier Transform infrared spectroscopy while elemental analysis was carried out using CHNS analysis and X-ray fluorescence. The experiments were carried out by varying the adsorbent dosage, pH, ionic strength, contact time and initial dye concentration. The pseudo-second-order kinetics model best represented the experimental data for both CEN-MB and CEN-MG systems. The Weber–Morris intraparticle diffusion model showed that intraparticle diffusion is not the rate-limited step for both adsorbates, while the Boyd model suggested both systems could be controlled by film diffusion. The Langmuir, Freundlich and Dubinin–Radushkevich isotherm models were used for describing the adsorption process. Of these, the Langmuir model best represented both adsorbents systems (CEN-MB and CEN-MG giving maximum adsorption capacity (qm of 110.8 and 77.6 mg g−1, respectively, at 25 °C. Thermodynamics studies showed that both adsorption systems are spontaneous and endothermic.

  3. Using Ag/Ag2O/SnO2 Nanocomposites to Remove Malachite Green by a Photocatalytic Process

    Science.gov (United States)

    Taufik, A.; Paramarta, V.; Prakoso, S. P.; Saleh, R.

    2017-03-01

    Silver/silver oxide/tin oxide nanocomposites of various weight ratios were synthesized using a microwave-assisted method. The Ag/Ag2O:SnO2 nanoparticle weight ratios used were 25:75, 50:50, and 75:25. All samples were characterized using X-ray diffraction, UV-Vis spectroscopy, Differential Scanning Calorimetry and Thermogravimetric Analysis (TGA). The Ag/Ag2O/SnO2 nanocomposites contained cubic structures provided by the Ag and Ag2O and tetragonal structures provided by the SnO2. The silver resulted in surface plasmon resonance (SPR) at a wavelength of about 435 nm. The silver oxide material was transformed into pure Ag at a temperature of about 370 °C The photocatalytic activity was tested on the degradation of malachite green (MG) from an aqueous solution. The results showed that Ag/Ag2O/SnO2 at a ratio of 50:50 exhibited the best photocatalytic performance for degrading MG under visible-light irradiation. The degradation of MG using Ag/Ag2O/SnO2 nanocomposites followed pseudo first-order kinetic reactions, and electron holes were found to be the main species acting on the degradation process.

  4. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Grodkowski, J

    1986-10-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. 14 references.

  5. Cherenkov light as a source of photochemical reactions in irradiated solutions of nitrile of malachite green

    International Nuclear Information System (INIS)

    Stuglik, Z.; Grodkowski, J.

    1986-01-01

    Experimental data on photochemical activity of Cherenkov light are presented. Malachite green leucocyanide was used to detect the photochemical effects. The G value of Cherenkov light from the region 200-330 nm (number of quanta formed per 100 eV absorbed energy of ionizing radiation) in ethanol was estimated to be in the range of 0.0027-0.049. (author)

  6. Optimization of the Adsorption of Malachite Green on the NH2-SBA-15 Nano-adsorbent Using the Taguchi Method by Qualitek-4 Software An Isotherm, Kinetic, and Thermodynamic Study

    Directory of Open Access Journals (Sweden)

    Arghavan Mirahsani

    2015-01-01

    Full Text Available SBA-15 nanoporous silica was prepared and functionalized with propylamine groups via post-synthesis grafting to develop efficient adsorbents of dyes in wastewater. The materials thus prepared were then characterized by XRD, N2 adsorption-desorption, and FTIR. Adsorption of a cationic dye, malachite green, on functionalized SBA-15 was investigated under various conditions of pH (5, 6, and 7, temperature (10, 20, and 30 °C, adsorbent dosage (0.1, 0.3, and 0.5 g/L, and dye concentration (50, 100, 150, 200, 250, 300 mg/L. Maximum equilibrium adsorption capacity to achieve maximum removal percentage (R%=100% in optimum conditions (dye concentration=100 mg/L, pH=7, adsorbent dosage= 0.3 g/L was estimated at 333 mg/g. The Taguchi method was used to optimize the adsorption performances of the materials , and then the isotherm, kinetic, and thermodynamic properties were analyzed under the optimum conditions. The results showed that the overall process was fast and its kinetics was well-fitted by pseudo-second-order kinetic model. The experimental data agreed well with Freundlich model. Therefore, the maximum amount of multilayer dye adsorbed was estimated as 500 mg/g. Based on the results obtained, this process may be regarded as an endothermic one with a negative ∆G, which shows the process is also spontaneous. Finally, the results indicate that the silica‐based nanoporous organic–inorganic hybrid material can be a promising sorbent for the removal of malachite green from aquatic solutions

  7. Use of Standing Gold Nanorods for Detection of Malachite Green and Crystal Violet in Fish by SERS.

    Science.gov (United States)

    Chen, Xiaowei; Nguyen, Trang H D; Gu, Liqun; Lin, Mengshi

    2017-07-01

    With growing consumption of aquaculture products, there is increasing demand on rapid and sensitive techniques that can detect prohibited substances in the seafood products. This study aimed to develop a novel surface-enhanced Raman spectroscopy (SERS) method coupled with simplified extraction protocol and novel gold nanorod (AuNR) substrates to detect banned aquaculture substances (malachite green [MG] and crystal violet [CV]) and their mixture (1:1) in aqueous solution and fish samples. Multivariate statistical tools such as principal component analysis (PCA) and partial least squares regression (PLSR) were used in data analysis. PCA results demonstrate that SERS can distinguish MG, CV and their mixture (1:1) in aqueous solution and in fish samples. The detection limit of SERS coupled with standing AuNR substrates is 1 ppb for both MG and CV in fish samples. A good linear relationship between the actual concentration and predicted concentration of analytes based on PLSR models with R 2 values from 0.87 to 0.99 were obtained, indicating satisfactory quantification results of this method. These results demonstrate that the SERS method coupled with AuNR substrates can be used for rapid and accurate detection of MG and CV in fish samples. © 2017 Institute of Food Technologists®.

  8. Graphene oxide membrane as an efficient extraction and ionization substrate for spray-mass spectrometric analysis of malachite green and its metabolite in fish samples.

    Science.gov (United States)

    Wei, Shih-Chun; Fan, Shen; Lien, Chia-Wen; Unnikrishnan, Binesh; Wang, Yi-Sheng; Chu, Han-Wei; Huang, Chih-Ching; Hsu, Pang-Hung; Chang, Huan-Tsung

    2018-03-20

    A graphene oxide (GO) nanosheet-modified N + -nylon membrane (GOM) has been prepared and used as an extraction and spray-ionization substrate for robust mass spectrometric detection of malachite green (MG), a highly toxic disinfectant in liquid samples and fish meat. The GOM is prepared by self-deposition of GO thin film onto an N + -nylon membrane, which has been used for efficient extraction of MG in aquaculture water samples or homogenized fish meat samples. Having a dissociation constant of 2.17 × 10 -9  M -1 , the GOM allows extraction of approximately 98% of 100 nM MG. Coupling of the GOM-spray with an ion-trap mass spectrometer allows quantitation of MG in aquaculture freshwater and seawater samples down to nanomolar levels. Furthermore, the system possesses high selectivity and sensitivity for the quantitation of MG and its metabolite (leucomalachite green) in fish meat samples. With easy extraction and efficient spray ionization properties of GOM, this membrane spray-mass spectrometry technique is relatively simple and fast in comparison to the traditional LC-MS/MS methods for the quantitation of MG and its metabolite in aquaculture products. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water.

    Science.gov (United States)

    Lin, Kun-Yi Andrew; Chang, Hsuan-Ang

    2015-11-01

    Zeolitic imidazole frameworks (ZIFs), a new class of adsorbents, are proposed to adsorb Malachite Green (MG) in water. Particularly, ZIF-67 was selected owing to its stability in water and straightforward synthesis. The as-synthesized ZIF-67 was characterized and used to adsorb MG from water. Factors affecting the adsorption capacity were investigated including mixing time, temperature, the presence of salts and pH. The kinetics, adsorption isotherm and thermodynamics of the MG adsorption to ZIF-67 were also studied. The adsorption capacity of ZIF-67 for MG could be as high as 2430mgg(-1) at 20°C, which could be improved at the higher temperatures. Such an ultra-high adsorption capacity of ZIF-67 was almost 10-times of those of conventional adsorbents, including activated carbons and biopolymers. A mechanism for the high adsorption capacity was proposed and possibly attributed to the π-π stacking interaction between MG and ZIF-67. ZIF-67 also could be conveniently regenerated by washing with ethanol and the regeneration efficiency could remain 95% up to 4 cycles of the regeneration. ZIF-67 was also able to remove MG from the aquaculture wastewater, in which MG can be typically found. These features enable ZIF-67 to be one of the most effective and promising adsorbent to remove MG from water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Inorganic fullerene-type WS{sub 2} nanoparticles: processing, characterization and its photocatalytic performance on malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Hazarika, Saurabh Jyoti; Mohanta, Dambarudhar [Tezpur University, Nanoscience and Soft Matter Laboratory, Department of Physics, Tezpur, Assam (India)

    2017-05-15

    In this work, we have employed a hydrothermal route for the synthesis of fullerene-type tungsten disulfide (WS{sub 2}) nanoparticles. X-ray diffraction analysis signifies a hexagonal crystal structure of WS{sub 2} with the crystallites experiencing preferred orientations along (002) and (103) planes. The agglomerated nanoparticles and inorganic fullerene (IF)-type structures are apparently observable from the high-resolution electron micrographs. Raman spectrum shows prominent E{sup 1}{sub 2g} and A{sub 1g} modes emanating from the IF nano-WS{sub 2} system. The Tauc's plot obtained from the optical absorption data predicts a direct band gap of ∝1.91 eV for the nano-WS{sub 2} system; whereas, photoluminescence analysis reveals a broad emission peak located at ∝638 nm and is ascribed to the associated transition from the indirect to direct nature of the band gap. The photocatalytic decomposition of malachite green (MG) solution (30 mg/l) by WS{sub 2} (100 mg/l) under UV and visible light irradiation has been evaluated. The latter condition exhibited a better photocatalytic response with the MG degradation as high as 71.2%, revealed for 120 min. Photocatalytic and optoelectronic features of IF-type nano-WS{sub 2} would bring new insights not only to resolve issues related to environmental hazards, but also in functional devices of technological relevance. (orig.)

  11. Central composite design and genetic algorithm applied for the optimization of ultrasonic-assisted removal of malachite green by ZnO Nanorod-loaded activated carbon

    Science.gov (United States)

    Ghaedi, M.; Azad, F. Nasiri; Dashtian, K.; Hajati, S.; Goudarzi, A.; Soylak, M.

    2016-10-01

    Maximum malachite green (MG) adsorption onto ZnO Nanorod-loaded activated carbon (ZnO-NR-AC) was achieved following the optimization of conditions, while the mass transfer was accelerated by ultrasonic. The central composite design (CCD) and genetic algorithm (GA) were used to estimate the effect of individual variables and their mutual interactions on the MG adsorption as response and to optimize the adsorption process. The ZnO-NR-AC surface morphology and its properties were identified via FESEM, XRD and FTIR. The adsorption equilibrium isotherm and kinetic models investigation revealed the well fit of the experimental data to Langmuir isotherm and pseudo-second-order kinetic model, respectively. It was shown that a small amount of ZnO-NR-AC (with adsorption capacity of 20 mg g- 1) is sufficient for the rapid removal of high amount of MG dye in short time (3.99 min).

  12. Photocatalytic Degradation of Malachite Green Using Nano-sized cerium-iron Oxide

    Directory of Open Access Journals (Sweden)

    K. L. Ameta

    2014-05-01

    Full Text Available Nano-sized cerium-iron oxide nanoparticles has been synthesized, characterized and explored as an efficient photocatalyst for the photocatalytic degradation of malachite green. The effects of different variables on degradation of dye were optimized such as the pH of the dye solution, dye concentration, amount of photocatalyst and light intensity. About 91% degradation of dye of 2×10-5 M concentration was observed after 2 hours at 8.5 pH and 600 Wm-2 light intensity. The reason for the high catalytic activity of the synthesized nanoparticles is ascribed to the high surface area which determines the active sites of the catalyst and accelerates the photocatalytic degradation.

  13. Enhancing adsorption capacity of toxic malachite green dye through chemically modified breadnut peel: equilibrium, thermodynamics, kinetics and regeneration studies.

    Science.gov (United States)

    Chieng, Hei Ing; Lim, Linda B L; Priyantha, Namal

    2015-01-01

    Breadnut skin, in both its unmodified (KS) and base-modified (BM-KS) forms, was investigated for its potential use as a low-cost adsorbent for the removal of toxic dye, malachite green (MG). Characterization of the adsorbents was carried out using scanning electron microscope, X-ray fluorescence and Fourier transform infra-red spectroscopy. Batch adsorption experiments, carried out under optimized conditions, for the adsorption of MG were fitted using five isotherm models (Langmuir, Freundlich, Dubinin-Radushkevich, Temkin and Sips) and six error functions to determine the best-fit model. The adsorption capacity was greatly enhanced when breadnut skin was chemically modified with NaOH, leading to an adsorption capacity of 353.0 mg g(-1), that was far superior to most reported adsorbents for the removal of MG. Thermodynamics studies indicated that the adsorption of MG was spontaneous on KS and BM-KS, and the reactions were endothermic and exothermic, respectively. Kinetics studies showed that both followed the pseudo-second order. Regeneration experiments on BM-KS indicated that its adsorption capacity was still maintained at>90% even after five cycles. It can be concluded that NaOH-modified breadfruit skin has great potential to be utilized in real-life application as a low-cost adsorbent for the removal of MG in wastewater treatment.

  14. Photodegradation of malachite green dye catalyzed by Keggin-type polyoxometalates under visible-light irradiation: Transition metal substituted effects

    Science.gov (United States)

    Liu, Chun-Guang; Zheng, Ting; Liu, Shuang; Zhang, Han-Yu

    2016-04-01

    In the present paper, Keggin-type polyoxometalates (POMs) (NH4)3[PW12O40] and its mono-transition-metal-substituted species (NH4)5[{PW11O39}MII(H2O)] (M = Mn, Fe, Co, Ni, Cu, Zn) have been synthesized and used as photocatalyst to activate O2 for the degradation of dye molecule under visible-light irradiation. Because of the strong adsorption on the surface of POM catalyst, malachite green (MG) molecule was employed as a molecular probe to test their photocatalytic activity. The photodegradation study shows that introduction of transition metal ion leads to an increase in the degradation of MG in the following order: Mn < Fe < Co < [PW12O40]3- < Ni < Cu < Zn, which indicates that the photocatalytic activity of these POMs is sensitive to the transition metal substituted effects. Electronic structure analysis based on the density functional theory calculations shows that a moderate decrease of oxidizing ability of POM catalyst may improve the photocatalytic activity in the degradation of dye molecule under visible-light irradiation. Meanwhile, intermediate products about the photocatalytic oxidation of MG molecule were proposed on the basis of gas chromatograph mass spectrometer analysis.

  15. Incorporation of flow injection analysis with dual-wavelength overlapping resonance Rayleigh scattering for rapid determination of malachite green and its metabolite in fish.

    Science.gov (United States)

    Zhu, Jinghui; Qin, Mingyou; Liu, Shaopu; Liu, Zhongfang; Yang, Jidong; Hu, Xiaoli

    2014-09-15

    A flow injection analysis (FIA) system combined with dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) has been established and validated for rapid determination of malachite green (MG) and its metabolite in fish samples. Under experimental condition, MG would react with Erythrosin (Ery) to form ion-association complexes, resulting in the occurrence of two RRS peaks and a dramatic enhancement of RRS intensity. The maximum RRS peaks were located at 286 nm and 337 nm. It is noted that the increments of both of these two peaks were proportional to the concentration of MG. The detection limit of DWO-RRS was 1.5 ng/mL, which was comparable to several reported methods. Moreover, the results of real sample analysis exhibited an acceptable recovery between 97.5% and 103.6%, indicating that the method had good reproducibility. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A novel biochar from Manihot esculenta Crantz waste: application for the removal of Malachite Green from wastewater and optimization of the adsorption process.

    Science.gov (United States)

    Beakou, Buscotin Horax; El Hassani, Kaoutar; Houssaini, Mohammed Amine; Belbahloul, Mounir; Oukani, Elhassan; Anouar, Abdellah

    2017-09-01

    The adsorptive removal of Malachite Green (MG) by a novel biochar namely Cassava Rind Carbon (CRC) was studied in a batch system. Moreover, Box-Behnken Response Surface Methodology was used to optimize operating conditions of the adsorption process. Characterization was done by Thermo Gravimetric Analysis (TGA), Attenuated Total Reflectance Fourier Transform Infra-Red Spectroscopy (ATR/FTIR), Brunauer-Emmett-Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and pH zero charge point (pH ZCP ). The pseudo-second-order model and Langmuir model provided the best fit for kinetic and isotherm, respectively. The maximum capacity of dye adsorbed was 932.98 mg/g at 25 °C. The influence of temperature, the mass of adsorbent and the concentration of dye was studied. The optimal amount of adsorbed MG was 1,363.58 mg/g corresponding to 50 °C, 5 mg of CRC and 150 mg/L of dye. According to the high performance exhibited by CRC in this study, Manihot esculenta Crantz waste can be used as a better and low-cost biomass for wastewater decolourization.

  17. Anatase/rutile TiO2 composites: Influence of the mixing ratio on the photocatalytic degradation of Malachite Green and Orange II in slurry

    International Nuclear Information System (INIS)

    Bojinova, A.; Kralchevska, R.; Poulios, I.; Dushkin, C.

    2007-01-01

    The present study is directed to clarify the influence of the ratio of anatase to rutile phase, containing in the TiO 2 samples, on their activity as photocatalysts in slurry. A series of samples corresponding to different percentages of anatase is prepared from commercial anatase and rutile TiO 2 brands (KRONOS). The crystalline phase composition of the samples is characterized by X-ray diffraction. The photocatalytic action of the mixtures is tested in photodegradation of the commercial organic dyes Malachite Green Hydrochloride and Orange II in aqueous solutions under UV irradiation. Comparative tests with Degussa P-25 are performed. The apparent rate constants of the process are determined from the kinetic curves using appropriate models. They generally increase with the anatase ratio, being always larger for Malachite Green than for Orange II

  18. Sorption of malachite green from aqueous solution by potato peel: Kinetics and equilibrium modeling using non-linear analysis method

    Directory of Open Access Journals (Sweden)

    El-Khamsa Guechi

    2016-09-01

    Full Text Available Potato peel (PP was used as a biosorbent to remove malachite green (MG from aqueous solution under various operating conditions. The effect of the experimental parameters such as initial dye concentration, biosorbent dose, initial pH, stirring speed, temperature, ionic strength and biosorbent particle size was investigated through a number of batch sorption experiments. The sorption kinetic uptake for MG by PP at various initial dye concentrations was analyzed by non-linear method using pseudo-first, pseudo-second and pseudo-nth order models. It was found that the pseudo-nth order kinetic model was the best applicable model to describe the sorption kinetic data and the order n of sorption reaction was calculated in the range from 0.71 to 2.71. Three sorption isotherms namely the Langmuir, Freundlich and Redlich–Peterson isotherms in their non-linear forms were applied to the biosorption equilibrium data. Both the Langmuir and Redlich–Peterson models were found to fit the sorption isotherm data well, but the Redlich–Peterson model was better. Thermodynamic parameters show that the sorption process of MG is endothermic and more effective process at high temperatures. The results revealed that PP is very effective for the biosorption of MG from aqueous solutions.

  19. Malachite green mediates homodimerization of antibody VL domains to form a fluorescent ternary complex with singular symmetric interfaces

    Science.gov (United States)

    Szent-Gyorgyi, Chris; Stanfield, Robyn L.; Andreko, Susan; Dempsey, Alison; Ahmed, Mushtaq; Capek, Sara; Waggoner, Alan; Wilson, Ian A.; Bruchez, Marcel P.

    2013-01-01

    We report that a symmetric small molecule ligand mediates the assembly of antibody light chain variable domains (VLs) into a correspondent symmetric ternary complex with novel interfaces. The L5* Fluorogen Activating Protein (FAP) is a VL domain that binds malachite green dye (MG) to activate intense fluorescence. Crystallography of liganded L5* reveals a 2:1 protein:ligand complex with inclusive C2 symmetry, where MG is almost entirely encapsulated between an antiparallel arrangement of the two VL domains. Unliganded L5* VL domains crystallize as a similar antiparallel VL/VL homodimer. The complementarity determining regions (CDRs) are spatially oriented to form novel VL/VL and VL/ligand interfaces that tightly constrain a propeller conformer of MG. Binding equilibrium analysis suggests highly cooperative assembly to form a very stable VL/MG/VL complex, such that MG behaves as a strong chemical inducer of dimerization. Fusion of two VL domains into a single protein tightens MG binding over 1,000-fold to low picomolar affinity without altering the large binding enthalpy, suggesting that bonding interactions with ligand and restriction of domain movements make independent contributions to binding. Fluorescence activation of a symmetrical fluorogen provides a selection mechanism for the isolation and directed evolution of ternary complexes where unnatural symmetric binding interfaces are favored over canonical antibody interfaces. As exemplified by L5*, these self-reporting complexes may be useful as modulators of protein association or as high affinity protein tags and capture reagents. PMID:23978698

  20. Removal of malachite green dye from aqueous solution with adsorption technique using Limonia acidissima (wood apple shell as low cost adsorbent

    Directory of Open Access Journals (Sweden)

    Ashish S. Sartape

    2017-05-01

    Full Text Available In the present study, the use of low-cost, abundantly available, highly efficient and eco-friendly adsorbent wood apple shell (WAS has been reported as an alternative to the current expensive methods of removing of malachite green (MG dye from aqueous solution. The effects of different variables, adsorbent dosage, initial dye concentration, pH, contact time, temperature etc. were investigated and optimal experimental conditions were ascertained. The Langmuir isotherm model has given a better conformity than the Freundlich model with 80.645 mg/g as maximum adsorption capacity at 299 K. The adsorption of MG on WAS was confirmed by FTIR, SEM study, as it showed the change in characterization before and after adsorption. It was found that the Lagergren’s model could be used for the prediction of the system’s kinetics, while intraparticle diffusion study and Boyd plot were used to furnish the mechanistic study. Thermodynamic study concluded the spontaneous and endothermic nature of the adsorption. Present investigation and comparison with other reported adsorbents concluded that, WAS may be applied as a low-cost attractive option for removal of MG from aqueous solution.

  1. Preparation of re-usable photocatalytic filter for degradation of Malachite Green dye under UV and vis-irradiation

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Arpac, E.; Sayilkan, H.

    2007-01-01

    Sn 4+ doped and undoped nano-TiO 2 particles easily dispersed in water were synthesized without using organic solvent by hydrothermal process. Nanostructure-TiO 2 based thin films were prepared on flyswatter substrate, made with stainless steel, by dip-coating technique. The structure, surface and optical properties of the particles and thin films were characterized by element analysis and XRD, BET, SEM and UV/vis/NIR techniques. The photocatalytic performance of the films were tested for degradation of Malachite Green dye in solution under UV and vis-lights. The results showed that the coated flyswatter has a very high photocatalytic performance for the photodegradation of Malachite Green irradiated with UV and vis-lights. The results also proved that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces are hydrophilic, and the doping of transition metal ion efficiently improved the degradation performance of TiO 2 -coated flyswatter. The photocatalytic performances determined at both irradiation conditions were very good and were almost similar to each other for Sn 4+ doped TiO 2 -coated flyswatter and it can be repeatedly used with increasing photocatalytic activity compared to undoped TiO 2 -coated flyswatter

  2. An enzyme-free strategy for ultrasensitive detection of adenosine using a multipurpose aptamer probe and malachite green.

    Science.gov (United States)

    Zhao, Hui; Wang, Yong-Sheng; Tang, Xian; Zhou, Bin; Xue, Jin-Hua; Liu, Hui; Liu, Shan-Du; Cao, Jin-Xiu; Li, Ming-Hui; Chen, Si-Han

    2015-08-05

    We report on an enzyme-free and label-free strategy for the ultrasensitive determination of adenosine. A novel multipurpose adenosine aptamer (MAAP) is designed, which serves as an effective target recognition probe and a capture probe for malachite green. In the presence of adenosine, the conformation of the MAAP is converted from a hairpin structure to a G-quadruplex. Upon addition of malachite green into this solution, a noticeable enhancement of resonance light scattering was observed. The signal response is directly proportional to the concentration of adenosine ranging from 75 pM to 2.2 nM with a detection limit of 23 pM, which was 100-10,000 folds lower than those obtained by previous reported methods. Moreover, this strategy has been applied successfully for detecting adenosine in human urine and blood samples, further proving its reliability. The mechanism of adenosine inducing MAAP to form a G-quadruplex was demonstrated by a series of control experiments. Such a MAAP probe can also be used to other strategies such as fluorescence or spectrophotometric ones. We suppose that this strategy can be expanded to develop a universal analytical platform for various target molecules in the biomedical field and clinical diagnosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fabrication of Ag-decorated BiOBr-mBiVO4 dual heterojunction composite with enhanced visible light photocatalytic performance for degradation of malachite green

    Science.gov (United States)

    Regmi, Chhabilal; Dhakal, Dipesh; Kim, Tae-Ho; Yamaguchi, Takutaro; Wohn Lee, Soo

    2018-04-01

    A visible light active Ag-decorated BiVO4-BiOBr dual heterojunction photocatalyst was prepared using a facile hydrothermal method, followed by the photodeposition of Ag. The photocatalytic activity of the synthesized samples was investigated by monitoring the change in malachite green (MG) concentration upon visible light irradiation. The synthesized sample was highly effective for the degradation of non-biodegradable MG. The enhanced activity observed was ascribed to the efficient separation and transfer of charge carriers across the dual heterojunction structure as verified by photoluminescence measurements. The removal of MG was primarily initiated by hydroxyl radicals and holes based on scavenger’s effect. To gain insight into the degradation mechanism, both high performance liquid chromatography and high resolution-quantitative time of flight, electrospray ionization mass spectrometry measurements during the degradation process were carried out. The degradation primarily followed the hydroxylation and N-demethylation process. A possible reaction pathway is proposed on the basis of all the information obtained under various experimental conditions.

  4. Interaction of malachite green with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods

    International Nuclear Information System (INIS)

    Zhang Yezhong; Zhou Bo; Zhang Xiaoping; Huang Ping; Li Chaohong; Liu Yi

    2009-01-01

    The interaction between malachite green (MG) and bovine serum albumin (BSA) under simulative physiological conditions was investigated by the methods of fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy. Fluorescence data showed that the fluorescence quenching of BSA by MG was the result of the formation of the MG-BSA complex. According to the modified Stern-Volmer equation, the effective quenching constants (K a ) between MG and BSA at four different temperatures were obtained to be 3.734 x 10 4 , 3.264 x 10 4 , 2.718 x 10 4 , and 2.164 x 10 4 L mol -1 , respectively. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be -27.25 kJ mol -1 and -11.23 J mol -1 K -1 , indicating that van der Waals force and hydrogen bonds were the dominant intermolecular force in stabilizing the complex. Site marker competitive experiments indicated that the binding of MG to BSA primarily took place in sub-domain IIA. The binding distance (r) between MG and the tryptophan residue of BSA was obtained to be 4.79 nm according to Foerster theory of non-radioactive energy transfer. The conformational investigation showed that the presence of MG decreased the α-helical content of BSA (from 62.6% to 55.6%) and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of BSA molecules

  5. Tetrazolium Reduction-Malachite Green Method for Assessing the Viability of Filamentous Bacteria in Activated Sludge

    Science.gov (United States)

    Bitton, Gabriel; Koopman, Ben

    1982-01-01

    A method was developed to assess the activity of filamentous bacteria in activated sludge. It involves the incubation of activated sludge with 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride followed by staining with malachite green. Both cells and 2(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride-formazan crystals can be observed in prepared specimens by using bright-field microscopy. This procedure allowed us to distinguish between inactive and actively metabolizing filaments after chlorine application to control the bulking of activated sludge. Images PMID:16345999

  6. Combining Pickering Emulsion Polymerization with Molecular Imprinting to Prepare Polymer Microspheres for Selective Solid-Phase Extraction of Malachite Green

    Directory of Open Access Journals (Sweden)

    Weixin Liang

    2017-08-01

    Full Text Available Malachite green (MG is currently posing a carcinogenic threat to the safety of human lives; therefore, it is highly desirable to develop an effective method for fast trace detection of MG. Herein, for the first time, this paper presents a systematic study on polymer microspheres, being prepared by combined Pickering emulsion polymerization and molecular imprinting, to detect and purify MG. The microspheres, molecularly imprinted with MG, show enhanced adsorption selectivity to MG, despite a somewhat lowered adsorption capacity, as compared to the counterpart without molecular imprinting. Structural features and adsorption performance of these microspheres are elucidated by different characterizations and kinetic and thermodynamic analyses. The surface of the molecularly imprinted polymer microspheres (M-PMs exhibits regular pores of uniform pore size distribution, endowing M-PMs with impressive adsorption selectivity to MG. In contrast, the microspheres without molecular imprinting show a larger average particle diameter and an uneven porous surface (with roughness and a large pore size, causing a lower adsorption selectivity to MG despite a higher adsorption capacity. Various adsorption conditions are investigated, such as pH and initial concentration of the solution with MG, for optimizing the adsorption performance of M-PMs in selectively tackling MG. The adsorption kinetics and thermodynamics are deeply discussed and analyzed, so as to provide a full picture of the adsorption behaviors of the polymer microspheres with and without the molecular imprinting. Significantly, M-PMs show promising solid-phase extraction column applications for recovering MG in a continuous extraction manner.

  7. Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles.

    Science.gov (United States)

    Mohammadi, Abbas; Daemi, Hamed; Barikani, Mehdi

    2014-08-01

    In this study, superparamagnetic sodium alginate-coated Fe3O4 nanoparticles (Alg-Fe3O4) as a novel magnetic adsorbent were prepared by in situ coprecipitation method, in which Fe3O4 nanoparticles were precipitated from FeCl3 and FeCl2 under alkaline medium in the presence of sodium alginate. The Alg-Fe3O4 nanoparticles were used for removal of malachite green (MG) from aqueous solutions using batch adsorption technique. The characterization of synthesized nanoparticles was performed using XRD, FTIR, TEM, TGA and vibrating sample magnetometer (VSM) techniques. FTIR analysis of synthesized nanoparticles provided the evidence that sodium alginate was successfully coated on the surface of Fe3O4 nanoparticles. The FT-IR and TGA characterization showed that the Alg-Fe3O4 nanoparticles contained about 14% (w/w) of sodium alginate. Moreover, TEM analysis indicated that the average diameter of the Alg-Fe3O4 nanoparticles was about 12nm. The effects of adsorbent dosage, pH and temperature were investigated on the adsorption properties of MG onto Alg-Fe3O4 nanoparticles. The equilibrium adsorption data were modeled using the Langmuir and Freundlich isotherms. The maximum adsorption capacity obtained from Langmuir isotherm equation was 47.84mg/g. The kinetics of adsorption of MG onto Alg-Fe3O4 nanoparticles were investigated using the pseudo-first-order and pseudo-second-order kinetic models. The results showed that the adsorption of MG onto nanoparticles followed pseudo-second-order kinetic model. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Analysis of malachite green in aquatic products by carbon nanotube-based molecularly imprinted - matrix solid phase dispersion.

    Science.gov (United States)

    Wang, Yu; Chen, Ligang

    2015-10-01

    A simple method based on matrix solid phase dispersion (MSPD) using molecularly imprinted polymers (MIPs) as sorbents for selective extraction of malachite green (MG) from aquatic products was developed. The MIPs were prepared by using carbon nanotube as support, MG as template, methacrylic acid as functional monomer, ethyleneglycol dimethacrylate as crosslinker and methylene chloride as solvent. The MIPs were characterized by Fourier transform infrared spectrometry and transmission electron microscopy. The isothermal adsorption, kinetics absorption and selective adsorption experiments were carried out. We optimized the extraction conditions as follows: the ratio of MIPs to sample was 2:3, the dispersion time was 15min, washing solvent was 4mL 50% aqueous methanol and elution solvent was 3mL methanol-acetic acid (98: 2, v/v). Once the MSPD process was completed, the MG extracted from aquatic products was determined by high performance liquid chromatography. The detection limit of MG was 0.7μgkg(-1). The relative standard deviations of intra-day and inter-day were obtained in the range of 0.9%-4.7% and 3.4%-9.8%, respectively. In order to evaluate the applicability and reliability of the proposed method, it was applied to determine MG in different aquatic products samples including fish, shrimp, squid and crabs. The satisfied recoveries were in the range of 89.2%-104.6%. The results showed that this method is faster, simpler and makes extraction and purification in the same system. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Degradation and detoxification of the triphenylmethane dye malachite green catalyzed by crude manganese peroxidase from Irpex lacteus F17.

    Science.gov (United States)

    Yang, Xueting; Zheng, Jinzhao; Lu, Yongming; Jia, Rong

    2016-05-01

    Malachite green (MG), a recalcitrant, carcinogenic, and mutagenic triphenylmethane dye, was decolorized and detoxified using crude manganese peroxidase (MnP) prepared from the white rot fungus Irpex lacteus F17. In this study, the key factors (pH, temperature, MG, Mn(2+), H2O2, MnP) in these processes were investigated. Under optimal conditions, 96 % of 200 mg L(-1) of MG was decolorized when 66.32 U L(-1) of MnP was added for 1 h. The K m, V max, and k cat values were 109.9 μmol L(-1), 152.8 μmol L(-1) min(-1), and 44.5 s(-1), respectively. The decolorization of MG by MnP followed first-order reaction kinetics with a kinetic rate constant of 0.0129 h(-1). UV-vis and UPLC analysis revealed degradation of MG. Furthermore, seven different intermediates formed during the MnP treatment of 0.5 h were identified by LC-TOF-MS. These degradation products were generated via two different routes by either N-demethylation of MG or the oxidative cleavage of the C-C double bond in MG. Based on ecotoxicity analyses performed on bacteria and algae, it was confirmed that MG metabolites produced by the MnP-catalyzed system were appreciably less toxic than the parent compound. These studies indicate the potential use of this enzyme system in the clean-up of aquatic and terrestrial environments.

  10. Double-shell Fe2O3 hollow box-like structure for enhanced photo-Fenton degradation of malachite green dye

    Science.gov (United States)

    Jiang, De Bin; Liu, Xiaoying; Xu, Xuan; Zhang, Yu Xin

    2018-01-01

    In this work we demonstrate the synthesis of novel Fe2O3 nanosheets with double-shell hollow morphology by replica molding from diatomite framework. The nanostructures of Fe2O3 nanosheets were examined by focused-ion-beam scanning electron microscopy (FIB/SEM), X-ray diffraction spectroscopy (XRD), Brunauer-Emmett-Teller (BET) specific surface area measurements and Fourier transform infrared (FT-IR) spectroscopy. The results reveal that (1) Pure Fe2O3 nanosheets were successfully obtained; (2) The double-shell Fe2O3 hollow structure achieved via the NaOH etching silica method was observed; (3) Fe2O3 nanosheets possessed uniformly distributed porous nanosheets. Such structural features enlarged the specific surface area of Fe2O3 nanosheets and led to more catalytic active sites. In the heterogeneous photo-Fenton reaction, the double-shell Fe2O3 hollow morphology exhibited excellent catalytic capability for the degradation of malachite green (MG) at circumneutral pH condition. Under optimum condition, MG solution was almost completely decolorized in 60 min (99.9%). The Fe2O3 nanosheets also showed good stability and recyclability, demonstrating great potential as a promising photo-Fenton catalyst for the effective degradation of MG dye in wastewater.

  11. Effect of COOH-functionalized SWCNT addition on the electrical and photovoltaic characteristics of Malachite Green dye based photovoltaic cells

    International Nuclear Information System (INIS)

    Chakraborty, S.; Manik, N. B.

    2014-01-01

    We report the effect of COOH-functionalized single walled carbon nanotubes (COOH-SWCNT) on the electrical and photovoltaic characteristics of Malachite Green (MG) dye based photovoltaic cells. Two different types of photovoltaic cells were prepared, one with MG dye and another by incorporating COOH-SWCNT with this dye. Cells were characterized through different electrical and photovoltaic measurements including photocurrent measurements with pulsed radiation. From the dark current—voltage (I–V) characteristic results, we observed a certain transition voltage (V th ) for both the cells beyond which the conduction mechanism of the cells change sharply. For the MG dye, V th is 3.9 V whereas for COOH-SWCNT mixed with this dye, V th drops to 2.7 V. The device performance improves due to the incorporation of COOH-SWCNT. The open circuit voltage and short circuit current density change from 4.2 to 97 mV and from 108 to 965 μA/cm 2 respectively. Observations from photocurrent measurements show that the rate of growth and decay of the photocurrent are quite faster in the presence of COOH-SWCNT. This observation indicates a faster charge separation processes due to the incorporation of COOH-SWCNT in the MG dye cells. The high aspect ratio of COOH-SWCNT allows efficient conduction pathways for the generated charge carriers. (semiconductor devices)

  12. Adsorption of malachite green on groundnut shell waste based powdered activated carbon

    International Nuclear Information System (INIS)

    Malik, R.; Ramteke, D.S.; Wate, S.R.

    2007-01-01

    In the present technologically fast changing situation related to waste management practices, it is desirable that disposal of plant waste should be done in a scientific manner by keeping in view economic and pollution considerations. This is only possible when the plant waste has the potential to be used as raw material for some useful product. In the present study, groundnut shell, an agricultural waste, was used for the preparation of an adsorbent by chemical activation using ZnCl 2 under optimized conditions and its comparative characterisation was conducted with commercially available powdered activated carbon (CPAC) for its physical, chemical and adsorption properties. The groundnut shell based powdered activated carbon (GSPAC) has a higher surface area, iodine and methylene blue number compared to CPAC. Both of the carbons were used for the removal of malachite green dye from aqueous solution and the effect of various operating variables, viz. adsorbent dose (0.1-1 g l -1 ), contact time (5-120 min) and adsorbate concentrations (100-200 mg l -1 ) on the removal of dye, has been studied. The experimental results indicate that at a dose of 0.5 g l -1 and initial concentration of 100 mg l -1 , GSPAC showed 94.5% removal of the dye in 30 min equilibrium time, while CPAC removed 96% of the dye in 15 min. The experimental isotherm data were analyzed using the linearized forms of Freundlich, Langmuir and BET equations to determine maximum adsorptive capacities. The equilibrium data fit well to the Freundlich isotherm, although the BET isotherm also showed higher correlation for both of the carbons. The results of comparative adsorption capacity of both carbons indicate that groundnut shell can be used as a low-cost alternative to commercial powdered activated carbon in aqueous solution for dye removal

  13. Interaction of malachite green with bovine serum albumin: Determination of the binding mechanism and binding site by spectroscopic methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yezhong [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); College of Chemistry and Molecular Sciences and State Key Laboratory of Virology, Wuhan University, Wuhan 430072 (China); Zhou Bo [College of Chemistry and Molecular Sciences and State Key Laboratory of Virology, Wuhan University, Wuhan 430072 (China); Zhang Xiaoping; Huang Ping [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China); Li Chaohong [Education Ministry Key Laboratory for Oral Biomedical Engineering, School of Stomatology, Wuhan University, Wuhan 430072 (China); Liu Yi [Department of Chemistry, College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023 (China) and College of Chemistry and Molecular Sciences and State Key Laboratory of Virology, Wuhan University, Wuhan 430072 (China)], E-mail: prof.liuyi@263.net

    2009-04-30

    The interaction between malachite green (MG) and bovine serum albumin (BSA) under simulative physiological conditions was investigated by the methods of fluorescence spectroscopy, UV-vis absorption and circular dichroism (CD) spectroscopy. Fluorescence data showed that the fluorescence quenching of BSA by MG was the result of the formation of the MG-BSA complex. According to the modified Stern-Volmer equation, the effective quenching constants (K{sub a}) between MG and BSA at four different temperatures were obtained to be 3.734 x 10{sup 4}, 3.264 x 10{sup 4}, 2.718 x 10{sup 4}, and 2.164 x 10{sup 4} L mol{sup -1}, respectively. The enthalpy change ({delta}H) and entropy change ({delta}S) were calculated to be -27.25 kJ mol{sup -1} and -11.23 J mol{sup -1} K{sup -1}, indicating that van der Waals force and hydrogen bonds were the dominant intermolecular force in stabilizing the complex. Site marker competitive experiments indicated that the binding of MG to BSA primarily took place in sub-domain IIA. The binding distance (r) between MG and the tryptophan residue of BSA was obtained to be 4.79 nm according to Foerster theory of non-radioactive energy transfer. The conformational investigation showed that the presence of MG decreased the {alpha}-helical content of BSA (from 62.6% to 55.6%) and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of BSA molecules.

  14. Cytotoxicity, genotoxicity and oxidative stress of malachite green on the kidney and gill cell lines of freshwater air breathing fish Channa striata.

    Science.gov (United States)

    Majeed, S Abdul; Nambi, K S N; Taju, G; Vimal, S; Venkatesan, C; Hameed, A S Sahul

    2014-12-01

    The cytotoxicity, genotoxicity and oxidative stress of malachite green (MG) was investigated using the fish Channa striata kidney (CSK) and Channa striata gill (CSG) cell lines. Five concentrations ranging from 0.001 to 10 μg mL(-1) were tested in three independent experiments. Cytotoxicity was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, Rhodamine 123 and Alamar Blue. The mitochondrial changes and apoptosis of MG-exposed cells were observed by Rhodamine 123 and acridine orange/ethidium bromide (AO/EB) staining, respectively. In vitro potential DNA damaging effect of MG was tested using comet assay. Mitochondrial damage, apoptosis and DNA fragmentation increased in a concentration-dependent manner. Additionally, DNA electrophoretic mobility experiments were carried out to study the binding effect of MG to double-stranded DNA (dsDNA) of cells. DNA shift mobility experiments showed that MG is capable of strongly binding to linear dsDNA causing its degradation. Biochemical parameters such as lipid peroxidation (MDA), catalase (CAT) activity and reduced glutathione (GSH) levels were evaluated after exposure to MG. In CSK and CSG cell lines exposed to MG for 48 h, a significant increase in lipid peroxidation, which might be associated with decreased levels of reduced glutathione and catalase activity in these cell lines (p < 0.001), was observed.

  15. In Vitro Effect of Malachite Green on Candida albicans Involves Multiple Pathways and Transcriptional Regulators UPC2 and STP2

    Science.gov (United States)

    Dhamgaye, Sanjiveeni; Devaux, Frederic; Manoharlal, Raman; Vandeputte, Patrick; Shah, Abdul Haseeb; Singh, Ashutosh; Blugeon, Corinne; Sanglard, Dominique

    2012-01-01

    In this study, we show that a chemical dye, malachite green (MG), which is commonly used in the fish industry as an antifungal, antiparasitic, and antibacterial agent, could effectively kill Candida albicans and non-C. albicans species. We have demonstrated that Candida cells are susceptible to MG at a very low concentration (MIC that reduces growth by 50% [MIC50], 100 ng ml−1) and that the effect of MG is independent of known antifungal targets, such as ergosterol metabolism and major drug efflux pump proteins. Transcriptional profiling in response to MG treatment of C. albicans cells revealed that of a total of 207 responsive genes, 167 genes involved in oxidative stress, virulence, carbohydrate metabolism, heat shock, amino acid metabolism, etc., were upregulated, while 37 genes involved in iron acquisition, filamentous growth, mitochondrial respiration, etc., were downregulated. We confirmed experimentally that Candida cells exposed to MG resort to a fermentative mode of metabolism, perhaps due to defective respiration. In addition, we showed that MG triggers depletion of intracellular iron pools and enhances reactive oxygen species (ROS) levels. These effects could be reversed by the addition of iron or antioxidants, respectively. We provided evidence that the antifungal effect of MG is exerted through the transcription regulators UPC2 (regulating ergosterol biosynthesis and azole resistance) and STP2 (regulating amino acid permease genes). Taken together, our transcriptome, genetic, and biochemical results allowed us to decipher the multiple mechanisms by which MG exerts its anti-Candida effects, leading to a metabolic shift toward fermentation, increased generation of ROS, labile iron deprivation, and cell necrosis. PMID:22006003

  16. Use of Enzymatic Bio-Fenton as a New Approach in Decolorization of Malachite Green

    Science.gov (United States)

    Karimi, Afzal; Aghbolaghy, Mostafa; Khataee, Alireza; Shoa Bargh, Shabnam

    2012-01-01

    An enzymatic reaction using glucose oxidase was applied for in situ production of hydrogen peroxide for use in simultaneously Fenton's reaction in decolorization of malachite green. It was found that decolorization rate increased by increasing of glucose concentration from 0.2 g/L to 1.5 g/L. Decolorization rate showed different behaviors versus temperature changes. Initial rate of decolorization process was increased by increasing of temperature; after 30 minutes, especially at temperatures above 30°C, the decolorization rate was gradually reduced. The pH value in the reaction media was decreased from natural to about pH = 3 which had synergic effect on the Fenton process by stabilizing of Fe2+ ions. PMID:22649310

  17. A chemometric-assisted method for the simultaneous determination of malachite green and crystal violet in water based on absorbance-pH data generated by a homemade pH gradient apparatus.

    Science.gov (United States)

    Yu, Shuling; Yuan, Xuejie; Yang, Jing; Yuan, Jintao; Shi, Jiahua; Wang, Yali; Chen, Yuewen; Gao, Shufang

    2015-01-01

    An attractive method of generating second-order data was developed by a dropping technique to generate pH gradient simultaneously coupled with diode-array spectrophotometer scanning. A homemade apparatus designed for the pH gradient. The method and the homemade apparatus were used to simultaneously determine malachite green (MG) and crystal violet (CV) in water samples. The absorbance-pH second-order data of MG or CV were obtained from the spectra of MG or CV in a series of pH values of HCl-KCl solution. The second-order data of mixtures containing MG and CV that coexisted with interferents were analyzed using multidimensional partial least-squares with residual bilinearization. The method and homemade apparatus were used to simultaneously determine MG and CV in fish farming water samples and in river ones with satisfactory results. The presented method and the homemade apparatus could serve as an alternative tool to handle some analysis problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Sorption of malachite green (MG) by cassava stem biochar (CSB ...

    African Journals Online (AJOL)

    Cassava stem biochar (CSB) was produced by pyrolyzing CS at 500°C for 2 hours at nitrogen environment. Proximate and ultimate analyses were conducted on CS and CSB. Batch sorption experiment on synthetic MG wastewater was optimized for the sorbent dosage, MG solution pH and contact time. Sorption data was ...

  19. Home-Made Micro Valve for Determining Malachite Green Dye by Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Amal Saadoon Majeed

    2017-07-01

    Full Text Available The research is included studying and designing micro flow injection system which is characterized with rapidity, simplicity, and low cost for the determination of green malachite dye. The study of flow rate of carrier stream, repeatability, dispersion coefficient, and calibration graph are conducted. It is found that the optimum conditions for the determination of mentioned dye are flow rate 4.200 mL/min, sampling rate 102 sample/h, limit of detection 0.05 ppm, linear range (0.05-18.00 ppm with linearity (R2=0.9700, RSD is 0.355, the repeatability for seven successive injections is studied for the two concentrations 5 ppm and 12 ppm, and the dispersion coefficient values are 1.73 and 1.28 at the two concentrations 2 ppm and 9 ppm respectively.

  20. DC conduction mechanism and dielectric properties of Poly (methyl methacrylate)/Poly (vinyl acetate) blends doped and undoped with malachite green

    International Nuclear Information System (INIS)

    Abd-El Kader, F.H.; Osman, W.H.; Hafez, R.S.

    2013-01-01

    Cast thin films of Poly (methyl methacrylate)/Poly (vinyl acetate) blends of different concentrations undoped and doped with malachite green have been prepared and subjected to both dc electrical conduction and dielectric spectroscopy measurements. The analysis of dc electrical conduction data showed that the space charge limited current mechanism has been dominant for Poly (vinyl acetate) while Schottky-Richardson conduction mechanism prevailed for the Poly (methyl methacrylate) and blended samples. The values of field lowering constant β and the thermal activation energy ΔE involved in the dc conduction were reported, which provide another support for the suggested Schottky-Richardson mechanism. The increase in current for the blend sample doped with malachite green has been attributed to the formation of charge transfer complexes inside the polyblend matrix. The dielectric constant as a function of temperature for all samples have been calculated which are affected by the composition ratio and the addition of dye. The relaxation peak that appeared in the dielectric loss curve at 347 K for the doped blend sample is related to local dipoles that are present in the dye material. The obtained relaxation process spectra present in the investigated samples were analyzed with the well-known model of Havriliak-Negami.

  1. Photocatalytic performance of Sn-doped TiO2 nanostructured thin films for photocatalytic degradation of malachite green dye under UV and VIS-lights

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Sener, S.; Arpac, E.; Sayilkan, H.

    2008-01-01

    Sn-doped and undoped nano-TiO 2 particles have been synthesized by hydrotermal process without acid catalyst at 225 deg. C in 1 h. Nanostructure-TiO 2 based thin films, contain at different solid ratio of TiO 2 in coating, have been prepared on glass surfaces by spin-coating technique. The structure, surface morphology and optical properties of the thin films and the particles have been investigated by element analysis and XRD, BET and UV/VIS/NIR techniques. The photocatalytic performance of the films was tested for degradation of malachite green dye in solution under UV and VIS-lights. The results showed that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water, the coated surfaces have nearly super-hydrophilic properties and, the doping of transition metal ion efficiently improved the photocatalytic performance of the TiO 2 thin film. The results also proved that malachite green is decomposed catalytically due to the pseudo first-order reaction kinetics

  2. Use of Enzymatic Bio-Fenton as a New Approach in Decolorization of Malachite Green

    Directory of Open Access Journals (Sweden)

    Afzal Karimi

    2012-01-01

    Full Text Available An enzymatic reaction using glucose oxidase was applied for in situ production of hydrogen peroxide for use in simultaneously Fenton's reaction in decolorization of malachite green. It was found that decolorization rate increased by increasing of glucose concentration from 0.2 g/L to 1.5 g/L. Decolorization rate showed different behaviors versus temperature changes. Initial rate of decolorization process was increased by increasing of temperature; after 30 minutes, especially at temperatures above 30°C, the decolorization rate was gradually reduced. The pH value in the reaction media was decreased from natural to about pH=3 which had synergic effect on the Fenton process by stabilizing of Fe2+ ions.

  3. Post-column reaction for simultaneous analysis of chromatic and leuco forms of malachite green and crystal violet by high-performance liquid chromatography with photometric detection

    Science.gov (United States)

    Allen, J.L.; Meinertz, J.R.

    1991-01-01

    The chromatic and leuco forms of malachite green and crystal violet were readily separated and detected by a sensitive and selective high-performance liquid chromatographic procedure. The chromatic and leuco forms of the dyes were separated within 11 min on a C18 column with a mobile phase of 0.05 M sodium acetate and 0.05 M acetic acid in water (19%) and methanol (81%). A reaction chamber, containing 10% PbO2 in Celite 545, was placed between the column and the spectrophotometric detector to oxidize the leuco forms of the dyes to their chromatic forms. Chromatic and leuco malachite green were quantified by their absorbance at 618 nm; and chromatic and leuco Crystal Violet by their absorbance at 588 nm. Detection limits for chromatic and leuco forms of both dyes ranged from 0.12 to 0.28 ng. A linear range of 1 to 100 ng was established for both forms of the dyes.

  4. Simultaneous Adsorption and Photocatalytic Degradation of Malachite Green Using Electrospun P(3HB-TiO2 Nanocomposite Fibers and Films

    Directory of Open Access Journals (Sweden)

    Nanthini Sridewi

    2011-01-01

    Full Text Available This paper demonstrated the applicability of electrospun P(3HB film as a dye adsorbent agent. Malachite green (MG was used as the model dye in this study. Interestingly, the electrospun P(3HB film exhibited excellent dye adsorption capacity whereby 78% of dye was adsorbed from a 30 μM solution of MG. The film was further improvised by incorporating titanium dioxide photocatalysts to form a dual dye treatment system employing adsorption and photocatalytic degradation techniques. The resultant electrospun P(3HB-50 wt%   TiO2 was capable of completely decolorizing MG in 45 min under solar irradiation, which corresponded to 58.7%  COD removal. The fully decolorized MG solution also proved to be nontoxic against A. aegypti mosquito larvae. The reapplicability of this film was possible as it induced a decolorization rate of 98% or more at every usage for ten consequent usages. EDX analysis suggested that there were no significant changes in the concentration of titanium (Ti in the film before and after ten times of usage. The concentration of Ti in cast P(3HB-50 wt%  TiO2 film was found to decrease significantly during the repeated usage. The electrospun P(3HB-50 wt%  TiO2 film has high potency as an efficient and inexpensive yet simple method for the dye effluent decolorization, degradation, and detoxification.

  5. Highly efficient removal of Malachite green from water by a magnetic reduced graphene oxide/zeolitic imidazolate framework self-assembled nanocomposite

    International Nuclear Information System (INIS)

    Lin, Kun-Yi Andrew; Lee, Wei-Der

    2016-01-01

    Graphical abstract: - Highlights: • MRGO/ZIF nanocomposite was prepared via self-assembly and used for MG adsorption. • MRGO/ZIF can exhibit an ultra-high adsorption capacity for MG of ∼3000 mg g −1 . • Adsorption isotherm was properly fitted to the Langmuir–Freundlich isotherm model. • Effects of temperature, pH and co-existing compounds were investigated. • Recyclability of MRGO/ZIF for MG adsorption was highly efficient and stable. - Abstract: Compared to the relatively low adsorption capacities of conventional adsorbents for Malachite Green (MG) (i.e., ∼500 mg g −1 ), zeolitic imidazolate framework (ZIF) appears to be a promising adsorbent considering its significantly high adsorption capacity (i.e., >2000 mg g −1 ). Nevertheless, using such a nano-scale ZIF material for adsorption may lead to secondary contamination from the release of nanomaterials to the environment. Thus, ZIF has to be recovered conveniently to prevent the secondary contamination and facilitate the separation of adsorbent from water after adsorption. To this end, in this study ZIF nanocrystals were loaded on the sheet-like magnetic reduced graphene oxide (MRGO) to form a self-assembled MRGO/ZIF. The self-assembly of MRGO/ZIF was achieved possibly via the electrostatic attraction and the π–π stacking interaction between MRGO and ZIF. The resultant MRGO/ZIF exhibited an ultra-high adsorption capacity for MG (∼3000 mg g −1 ). The adsorption kinetics, isotherm, activation and thermodynamics were also determined. Other factors affecting the adsorption were examined including temperature, pH and co-existing ions/compound. To demonstrate that MRGO/ZIF can be recovered and reused, a multiple-cycle of MG adsorption using the regenerated MRGO/ZIF was revealed and the recyclability remained highly efficient and stable. The highly-effective, recoverable and re-usable features enable MRGO/ZIF a promising adsorbent to remove MG from water.

  6. Novel treatment using topical malachite green for nasal phaeohyphomycosis caused by a new Cladophialophora species in a cat.

    Science.gov (United States)

    Brooks, Ian J; Walton, Stuart A; Shmalberg, Justin; Harris, Autumn

    2018-01-01

    A 1.5-year-old castrated male domestic shorthair cat presented with a 2 month history of progressive nasal swelling and hyporexia. Minimal improvement prior to referral was achieved with a course of antibiotics and glucocorticoids. Cytology of an ulcerative lesion on the dorsal aspect of the nose was consistent with a diagnosis of phaeohyphomycosis. The cat achieved static disease for 6 weeks following initiation of itraconazole but developed epistaxis at 9 weeks. CT of the head demonstrated nasal and frontal sinus involvement. Nasal biopsy and culture identified infection with a Cladophialophora species not previously reported to cause disease. Initial response to a combination of itraconazole and terbinafine was noted, but owing to severe thrombocytopenia this combination was discontinued. Voriconazole was used but discontinued because of adverse side effects. Posaconazole treatment was offered throughout the clinical course but rejected owing to financial constraints and an uncertain response to medical therapy. Rhinotomy with debulking of diseased tissue and topical malachite green treatment was performed. Following the procedure itraconazole was continued and the cat has had no recurrence for over 1 year. Infections by Cladophialophora species have been reported in veterinary species, including cats. The specific fungal organism isolated from this cat has not been previously reported to cause disease in humans or animals and has only been described in the mangroves of Brazil. Furthermore, this is the first report to describe the use of topical malachite green as a treatment for refractory phaeohyphomycosis.

  7. The effect of gamma irradiation on chitosan film dyed with malachite green

    International Nuclear Information System (INIS)

    Yeoh Siong Hu; Md Soot Ahmad

    2009-01-01

    In this research, chitosan is used as the base for a dye and the effects of γ-irradiation on the dye was researched. The dyed chitosan film of the thickness 70 μm was developed by dissolving chitosan powder in an acetic acid solution. Malachite Green dye was used as the dye and was prepared by using water as solvent. Dyed chitosan gel was the dried and small pieces of 1 x 1 cm 2 was cut out and the dyed film was analyzed using the UV-VIS spectrometer and achieved a maximum absorption at the wavelength of λ=615 nm. Using Gammacell, the film was irradiated by gamma ray with various doses ranging from 5-25 KGy. The effect of the irradiation on the dyed film was study for various factors. The effect of the dose, thickness and shelf life was studied and shows significant effect to the optical density. As the dose reaches 25 KGy, the destruction of the dye approaches 20%. (Author)

  8. Synthesis of magnetic mesoporous metal-organic framework-5 for the effective enrichment of malachite green and crystal violet in fish samples.

    Science.gov (United States)

    Zhou, Zhihui; Fu, Yanqing; Qin, Qian; Lu, Xin; Shi, Xianzhe; Zhao, Chunxia; Xu, Guowang

    2018-07-27

    A novel, magnetic and mesoporous Fe 3 O 4 @PEI-MOF-5 material was synthesized for the effective enrichment of malachite green (MG) and crystal violet (CV) in fish samples. The Fe 3 O 4 @PEI-MOF-5 material was prepared by a facile two-step solvothermal approach in which Fe 3 O 4 @PEI and MOF-5 were connected through chemical bonds. Characterization of the newly synthesized Fe 3 O 4 @PEI-MOF-5 material was performed by Fourier transform infrared spectroscopy, X-ray diffractometry, vibrating sample magnetometry, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis and X-ray photoelectron spectroscopy. This new material was determined to have high magnetization and chemical stability, a large surface area and a distinctive morphology. An effective enrichment and detection method for MG and CV was subsequently developed by combining the Fe 3 O 4 @PEI-MOF-5 material with ultra-high-performance liquid chromatography-tandem mass spectrometry. The linearity ranges of this approach for MG and CV were 1-500ng/mL and 0.25-500ng/mL, respectively, with correlation coefficients (R 2 ) of 0.999. The limits of detection (LODs) of the method for MG and CV were 0.30ng/mL and 0.08ng/mL, respectively, indicating that the Fe 3 O 4 @PEI-MOF-5 material had good adsorption properties for MG and CV. Fe 3 O 4 @PEI-MOF-5 can be expected to also provide efficient enrichment of MG and CV in other complex matrices. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites

    Science.gov (United States)

    Lucchi, Naomi W.; Ljolje, Dragan; Silva-Flannery, Luciana; Udhayakumar, Venkatachalam

    2016-01-01

    Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP), are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG) dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1–8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed. PMID:26967908

  10. Use of Malachite Green-Loop Mediated Isothermal Amplification for Detection of Plasmodium spp. Parasites.

    Directory of Open Access Journals (Sweden)

    Naomi W Lucchi

    Full Text Available Malaria elimination efforts are hampered by the lack of sensitive tools to detect infections with low-level parasitemia, usually below the threshold of standard diagnostic methods, microscopy and rapid diagnostic tests. Isothermal nucleic acid amplification assays such as the loop-mediated isothermal amplification (LAMP, are well suited for field use as they do not require thermal cyclers to run the test. However, the use of specialized equipment, as described by many groups, reduces the versatility of the LAMP technique as a simple tool for use in endemic countries. In this study, the use of the malachite green (MG dye, as a visual endpoint readout, together with a simple mini heat block was evaluated for the detection of malaria parasites. The assay was performed for 1 hour at 63°C and the results scored by 3 independent human readers. The limit of detection of the assay was determined using well-quantified Plasmodium spp. infected reference samples and its utility in testing clinical samples was determined using 190 pre-treatment specimens submitted for reference diagnosis of imported malaria in the United States. Use of a simplified boil and spin methods of DNA extraction from whole blood and filter paper was also investigated. We demonstrate the accurate and sensitive detection of malaria parasites using this assay with a detection limit ranging between 1-8 parasites/μL, supporting its applicability for the detection of infections with low parasite burden. This assay is compatible with the use of a simple boil and spin sample preparation method from both whole blood and filter papers without a loss of sensitivity. The MG-LAMP assay described here has great potential to extend the reach of molecular tools to settings where they are needed.

  11. Application of potato (Solanum tuberosum plant wastes for the removal of methylene blue and malachite green dye from aqueous solution

    Directory of Open Access Journals (Sweden)

    Neha Gupta

    2016-09-01

    Full Text Available Dye pollutants from the textile, paper, and leather industries are important sources of environmental contamination. In the present study an agricultural waste from potato plant (potato stem powder, PSP and potato leaves powder, PLP was used as an adsorbent for removal of the methylene blue (MB and malachite green (MG dyes from aqueous solution. The adsorbent materials were characterized by scanning electron microscope (SEM and Fourier transform infrared (FTIR spectroscopy. Batch experiments were performed to investigate the effect of physico-chemical parameters, such as pHpzc, ionic strength, adsorbent dose, contact time, initial dyes concentration and temperature. The kinetics of adsorption was studied by applying the pseudo-first order, pseudo-second order and intraparticle diffusion models. The pseudo-second order model better represented the adsorption kinetics and the mechanism was controlled by surface adsorption and intraparticle diffusion. Equilibrium data were analyzed using Langmuir and Freundlich isotherm models. The thermodynamic parameters such as change in enthalpy (ΔH°, entropy (ΔS° and Gibb’s free energy (ΔG° of adsorption systems were also determined and evaluated.

  12. Molecular cloning, characterization and expression of heat shock protein 70 gene from the oyster Crassostrea hongkongensis responding to thermal stress and exposure of Cu(2+) and malachite green.

    Science.gov (United States)

    Zhang, Zhanhui; Zhang, Qizhong

    2012-04-15

    Heat shock protein 70 (HSP70) acts mostly as a molecular chaperone and plays a key role in the process of protecting cells by facilitating the folding of nascent peptides and the cellular stress response. The cDNA of the oyster Crassostrea hongkongensis hsp70 (designated chhsp70) was cloned with the techniques of homological cloning and rapid amplification of cDNA ends (RACE). The full-length chhsp70 cDNA was 2251bp, consisting of a 130bp 5'-UTR, 216bp 3'-UTR with a canonical polyadenylation signal sequence AATAAA and a poly (A) tail, and an open reading frame of 1905bp, which encoded a polypeptide of 634 amino acids. Three classical HSP signature motifs were detected in ChHSP70, i.e., DLGTT-S-V, IFDLGGGTFDVSIL and VVLVGGSTRIPKIQK. BLAST analysis revealed that the ChHSP70 shared high identity with other bivalve HSP70. The phylogenetic analysis indicated that the ChHSP70 was a member of the HSP70 family. The chhsp70 mRNA transcripts were quantified by fluorescent real time RT-PCR under both unstressed and stressed conditions, i. e., heat shock and exposure to Cu(2+) and malachite green. Basal expression level was similar in mantle, gill, digestive gland, and heart, but higher in muscle than that in the others. A similar trend showed that the chhsp70 mRNA expression significantly increased at 3-6h, then dropped and returned to control level at 24h in the five tissues and organs mentioned above after heat shock. A clearly time-dependent expression pattern of chhsp70 mRNA in digestive gland and gill of the oyster was observed after exposure of Cu(2+) and malachite green. In the two tissues, the chhsp70 mRNA level reached the maximum at 6h after malachite green exposure and on day 4 after Cu(2+) exposure, and then decreased progressively to the control level. The results indicated that ChHSP70 of the oyster is an inducible protein, and plays an important role in response to the Cu(2+) and malachite green polluted stress, so chhsp70 might be used as a potential molecular

  13. Detection of malachite green in fish based on magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs

    Science.gov (United States)

    Wu, Le; Lin, Zheng-Zhong; Zeng, Jun; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2018-05-01

    A magnetic fluorescent probe of CdTe QDs/nano-Fe3O4@MIPs was prepared using CdTe QDs and Fe3O4 nanoparticles as co-nucleus and molecularly imprinted polymers (MIPs) as specific recognition sites based on a reverse microemulsion method. With the specific enrichment and magnetic separation properties, the probe of CdTe QDs/nano-Fe3O4@MIPs was used to detect malachite green (MG) in fish samples. The TEM analysis showed that the particles of CdTe QDs/nano-Fe3O4@MIPs were spherical with average diameter around 53 nm, and a core-shell structure was well-shaped with several Fe3O4 nanoparticles and CdTe QDs embedded in each of the microsphere. Quick separation of the probes from solutions could be realized with a magnet, indicating the excellent magnetic property of CdTe QDs/nano-Fe3O4@MIPs. The probe exhibited high specific adsorption towards MG and excellent fluorescence emission at λem 598 nm. The fluorescence of CdTe QDs/nano-Fe3O4@MIPs could be linearly quenched by MG at the concentrations from 0.025 to 1.5 μmol L-1. The detection limit was 0.014 μmol L-1. The average recovery of spiked MG in fish samples was 105.2%. The result demonstrated that the as-prepared CdTe QDs/nano-Fe3O4@MIPs could be used as a probe to the detection of trace MG in fish samples.

  14. Extraction/spectrophotometric determination of molybdenum(VI) with 4,6-di-t-butyl-3-methoxycatechol and Malachite Green

    Energy Technology Data Exchange (ETDEWEB)

    Oshima, Mitsuko; Nishizaki, Youko; Motomizu, Shoji

    1988-10-01

    Mo(VI) forms an chelate anion with 4,6-di-t-butyl-3-methoxycatechol (DBMC) and the ion asscoiate between the chelate anion and Malachite Green (MG) is extracted into toluene in the pH range from 1.8 to 3.5. DBMC was synthesized according to our previous work. The standard procedure was as follows: transfer a sample solution /Mo (VI) < 4.8 /mu/g/ into a 25 ml test tube with stopper, and add 0.5 ml each of 5 x 10/sup -2/ M sulfuric acid and 1.0 x 10/sup -3/ M MG solution. If necessary, add masking agent solution (ascorbic acid and tartaric acid). After adding water to make up to 10 ml, add 5 ml of 1.5 x 10/sup -2/ M DBMC toluene solution, then shake for 30 min. Measure the absorbance of the organic phase at 635 nm. Apparent molar absorptivity was 8.0 x 10/sup 4/ l mol/sup -1/ cm/sup -1/ and the absorbance of the reagent blank was 0.01. The relative standard deviation of 10 measurements of 1.92 ..mu..g of Mo(VI) was 0.52 %. The present method was applied to steel samples with satisfactory results. The effect of W(VI) coexisting at concentrations over 1 x 10/sup -6/ M was corrected by the equations using apparent molar absorptivities of Mo(VI) and W(VI) obtained with or without the masking agent (2.5 x 10/sup -3/ M tartaric acid).

  15. Sonocatalytic degradation of malachite green oxalate by a semiconductor metal oxide nanocatalyst.

    Science.gov (United States)

    Bhavani, R; Sivasamy, A

    2016-12-01

    Advanced Oxidation Process (AOP) technologies are considered to be better technique for the degradation or mineralization of many recalcitrant compounds and pollutants. In the present study heterogeneous sonocatalytic degradation of a model organic compound such as Malachite green oxalate (MGO) was carried out in the aqueous phase. Zinc oxide nanorods were prepared by precipitation method employing zinc acetates as precursors and were characterized by FT-IR, XRD, FE-SEM and EDAX analysis. Degradation of MGO in the aqueous phase was studied in detail under the sonocatalytic process. Effects of pH, dye concentration, oxidant concentration, kinetics and effect of electrolytes on dye degradation were carried out to check the efficiency of the sonocatalyst. Effect of energy input on the degradation processes was also investigated. The degradation of dye molecules were monitored by UV-visible spectrophotometer and Chemical Oxygen demand (COD). The dye molecules were readily degraded at above 90% in the pH range 5.0-7.0 under ultrasound with zinc oxide nanorods. The interference of electrolytes like NaCl, KCl, Na 2 CO 3 , NaHCO 3 and MgSO 4 on the degradation of dye molecules were also studied on the sonocatalytic degradation of MGO. From the kinetic studies it was observed that at lower initial concentration of dye molecules the degradation efficiency was above 90%. The rate of the reaction decreased on increasing the initial dye concentrations of the dye molecules. It was observed that the complete mineralization of dye molecules was achieved without the formation of toxic by-products. The reusability of the catalyst also showed the effective degradation of the dye molecules up to five cycles without loss of the catalytic activities. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Heterologous Expression of Phanerochaete chrysoporium Glyoxal Oxidase and its Application for the Coupled Reaction with Manganese Peroxidase to Decolorize Malachite Green

    Science.gov (United States)

    Son, Yu-Lim; Kim, Hyoun-Young; Thiyagarajan, Saravanakumar; Xu, Jing Jing

    2012-01-01

    cDNA of the glx1 gene encoding glyoxal oxidase (GLX) from Phanerochaete chrysosporium was isolated and expressed in Pichia pastoris. The recombinant GLX (rGLX) produces H2O2 over 7.0 nmol/min/mL using methyl glyoxal as a substrate. Use of rGLX as a generator of H2O2 improved the coupled reaction with recombinant manganese peroxidase resulting in decolorization of malachite green up to 150 µM within 90 min. PMID:23323052

  17. Cationic dyes as extraction and spectrophotometric reagents: extraction of thiocyanate complex of mercury (II) in association with malachite green

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, N V; Murthy, T K.S.

    1975-01-01

    An extraction spectrophotometric method for the determination of Hg(II) is described. This is based on the extraction of Hg(CNS)/sub 3//sup -/ complex in association with the cation of malachite green into benzene. The benzene extract has lambda max at 640 mm. Maximal extraction takes place from an aqueous solution of pH 4.5. Although four extractions are needed for quantitative recovery of Hg(II), a single extraction with aqueous organic = 2.5 : 1 is recommended for analysis and the apparent molar absorptivity is 65,000. The interference from a number of anions and cations has also been studied. (auth)

  18. Preparation of nanomaterials for the ultrasound-enhanced removal of Pb2+ ions and malachite green dye: Chemometric optimization and modeling.

    Science.gov (United States)

    Dil, Ebrahim Alipanahpour; Ghaedi, Mehrorang; Asfaram, Arash; Hajati, Shaaker; Mehrabi, Fatemeh; Goudarzi, Alireza

    2017-01-01

    Copper oxide nanoparticle-loaded activated carbon (CuO-NP-AC) was synthesized and characterized using different techniques such as FE-SEM, XRD and FT-IR. It was successfully applied for the ultrasound-assisted simultaneous removal of Pb 2+ ions and malachite green (MG) dye in binary system from aqueous solution. The effect of important parameters was modeled and optimized by artificial neural network (ANN) and response surface methodology (RSM). Maximum simultaneous removal percentages (>99.0%) were found at 25mgL -1 , 20mgL -1 , 0.02g, 5min and 6.0 corresponding to initial Pb 2+ concentration, initial MG concentration, CuO-NP-AC amount, ultrasonication time and pH, respectively. The precision of the equation obtained by RSM was confirmed by the analysis of variance and calculation of correlation coefficient relating the predicted and the experimental values of ultrasound-assisted simultaneous removal of the analytes. A good agreement between experimental and predicted values was observed. A feed-forward neural network with a topology optimized by response surface methodology was successfully applied for the prediction of ultrasound-assisted simultaneous removal of Pb 2+ ions and MG dye in binary system by CuO-NPs-AC. The number of hidden neurons, MSE, R 2 , number of epochs and error histogram were chosen for ANN modeling. Then, Langmuir, Freundlich, Temkin and D-R isothermal models were applied for fitting the experimental data. It was found that the Langmuir model well describes the isotherm data with a maximum adsorption capacity of 98.328 and 87.719mgg -1 for Pb 2+ and MG, respectively. Kinetic studies at optimum condition showed that maximum Pb 2+ and MG adsorption is achieved within 5min of the start of most experiments. The combination of pseudo-second-order rate equation and intraparticle diffusion model was applicable to explain the experimental data of ultrasound-assisted simultaneous removal of Pb 2+ and MG at optimum condition obtained from RSM

  19. Efficient Photocatalytic Degradation of Malachite Green in Seawater by the Hybrid of Zinc-Oxide Nanorods Grown on Three-Dimensional (3D Reduced Graphene Oxide(RGO/Ni Foam

    Directory of Open Access Journals (Sweden)

    Qing Wang

    2018-06-01

    Full Text Available A hybrid of ZnO nanorods grown onto three-dimensional (3D reduced graphene oxide (RGO@Ni foam (ZnO/RGO@NF is synthesized by a facile hydrothermal method. The as-prepared hybrid material is physically characterized by SEM, XRD, Raman, and X-ray photoelectron spectroscopy (XPS. When the as-prepared 3D hybrid is investigated as a photocatalyst, it demonstrates significant high photocatalytic activity for the degradation of methylene blue (MB, rhodamine (RhB, and mixed MB/RhB as organic dye pollutants. In addition, the practical application and the durability of the as-prepared catalyst to degradation of malachite green (MG in seawater are firstly assessed in a continuous flow system. The catalyst shows a high degradation efficiency and stable photocatalytic activity for 5 h continuous operation, which should be a promising catalyst for the degradation of organic dyes in seawater.

  20. Green emission from ZnO–MgO nanocomposite due to Mg diffusion at the interface

    International Nuclear Information System (INIS)

    Sowri Babu, K.; Ramachandra Reddy, A.; Venugopal Reddy, K.

    2015-01-01

    The origin and electronic transitions responsible for green emission observed from ZnO–MgO nanocomposite are investigated. The photoluminescence (PL) spectrum of ZnO–MgO nanocomposite annealed at 600 °C showed only a sharp and intense UV emission peak centered at 396 nm. As the annealing temperature increased from 600 °C to 1000 °C, the green emission positioned at 503 nm is emerged and its intensity enhanced gradually and reached maximum value at 900 °C and then decreased at 1000 °C. It is observed that both UV and green emission intensities are enhanced with variation of atomic ratio (Zn/Mg=1.52, 0.50, 0.30, 0.21, 0.15). Our experiments confirmed that the enhancement of green emission intensity is due to the formation of oxygen vacancies (V o ) due to Mg doping at the interface of ZnO and MgO. This experimental observation is in good agreement with the recent theoretical predictions which states that Mg doping in ZnO lowers the formation energies of oxygen vacancies (V o ) and zinc interstitials (Zn i ) significantly. PL excitation and emission spectra analysis reveals that excited state for both UV and green emissions is same and lies 0.24 eV below the conduction band of ZnO. Hence, the green emission is attributed to the transition of an electron form the shallow donor (defect level of Zn i ) to the deep acceptor (defect level of V o ). - Highlights: • It is found that the UV emission intensity from ZnO–MgO nanocomposite enhanced with increase of Mg concentration. • The intensity of the green emission is enhanced gradually as the temperature increased from 600 °C to 900 °C and then decreased at 1000 °C. • The effect of Mg concentration, MgO, strain at the interface on green emission is investigated. • These experiments confirmed that green emission is due to the oxygen vacancies created in ZnO due to the Mg doping at the interface and it is in good agreement with the theoretical predictions. • The decrease of green emission intensity is

  1. Designing MgFe{sub 2}O{sub 4} decorated on green mediated reduced graphene oxide sheets showing photocatalytic performance and luminescence property

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Krushitha [Department of Nanotechnology, PG Center, Bangalore Region, VIAT, VTU, Muddenahalli, Chikkaballapur 562101 (India); Dr. D. Premachandrasagar Centre for Advanced Materials, DSCE, Bangalore 560078 (India); Lokesh, S.V. [Department of Nanotechnology, PG Center, Bangalore Region, VIAT, VTU, Muddenahalli, Chikkaballapur 562101 (India); Rangappa, Dinesh, E-mail: dineshrangappa@gmail.com [Department of Nanotechnology, PG Center, Bangalore Region, VIAT, VTU, Muddenahalli, Chikkaballapur 562101 (India); Nagaswarupa, H.P., E-mail: nagaswarupa77@gmail.com [Research Center, Department of Science, East West Institute of Technology, Bangalore 560091 (India); Nagabhushana, H., E-mail: bhushanvlc@gmail.com [Prof. CNR Rao Centre for Advanced Materials, Tumkur University, Tumkur 572103 (India); Anantharaju, K.S., E-mail: iamananthkurupalya@gmail.com [Department of Chemistry, Dayananda Sagar College of Engineering, Shavige Malleshwara Hills, Kumaraswamy Layout, Bangalore 560078 (India); Dr. D. Premachandrasagar Centre for Advanced Materials, DSCE, Bangalore 560078 (India); Prashantha, S.C. [Research Center, Department of Science, East West Institute of Technology, Bangalore 560091 (India); Vidya, Y.S. [Department of Physics, Lal Bahadur Shastri Government First Grade College, Bangalore, 560032 (India); Sharma, S.C. [Dr. D. Premachandrasagar Centre for Advanced Materials, DSCE, Bangalore 560078 (India); Department of Mechanical Engineering, DSCE, Bangalore-560078 (India)

    2017-02-15

    Here, a green route has been reported to convert Graphene Oxide (GO) to reduced graphene oxide (RGO) using clove extract. A modest and eco-accommodating sol-gel strategy has been employed to prepare MgFe{sub 2}O{sub 4} nanoparticles, MgFe{sub 2}O{sub 4}–RGO nanocomposite samples. The samples were analyzed by Powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy (FTIR), UV–Visible Spectroscopy, Scanning Electron Microcopy (SEM), Transmission Electron Microscopy (TEM), Photoluminescence (PL) and Electrochemical Impedance Spectroscopy (EIS). PXRD result revealed that the prepared samples were cubic spinel in nature. SEM results uncovered flake like surface morphology of the prepared nanomaterial. Better PL emission signature was observed when excited at 329 nm. PL studies demonstrated that the present samples were potential for the fabrication of white component of white light emitting diodes (WLEDs). Further, MgFe{sub 2}O{sub 4}–RGO nanocomposite showed enhanced photocatalytic movement (PCM) and photostability under Sunlight in the decomposition of Malachite Green (MG) compared to MgFe{sub 2}O{sub 4}. This can be attributed to the interaction of MgFe{sub 2}O{sub 4} surface with RGO sheets which results in PL quenching, demonstrates that the recombination of photo-induced electrons and holes in MgFe{sub 2}O{sub 4}–RGO nanocomposite is more effectively inhibited. A possible mechanism for the enhanced properties of MgFe{sub 2}O{sub 4}–RGO nanocomposite was discussed. Moreover, MgFe{sub 2}O{sub 4}–RGO photocatalyst also showed easy magnetic separation with high reusability. These results unveil that the synthesized sample can be used in display applications and also as a potential photocatalyst. - Graphical abstract: Green mediated reduced graphene oxide with MgFe{sub 2}O{sub 4} for display applications and also as a potential photocatalyst. - Highlights: • Synthesized GO was reduced to RGO by green route using clove extract. • Mg

  2. A rapid molecular diagnosis of cutaneous leishmaniasis bycolorimetric malachite green-loop-mediated isothermal amplification(LAMP) combined with an FTA card as a direct sampling tool

    OpenAIRE

    Nzelu, Chukwunonso O.; Cáceres, Abraham G.; Guerrero-Quincho, Silvia; Tineo-Villafuerte, Edwin; Rodriquez-Delfin, Luis; Mimori, Tatsuyuki; Uezato, Hiroshi; Katakura, Ken; Gomez, Eduardo A.; Guevara, Angel G.; Hashiguchi, Yoshihisa; Kato, Hirotomo

    2015-01-01

    Leishmaniasis remains one of the world's most neglected diseases, and early detection of the infectious agent, especially in developing countries, will require a simple and rapid test. In this study, we established a quick, one-step, single-tube, highly sensitive loop-mediated isothermal amplification (LAMP) assay for rapid detection of Leishmania DNA from tissue materials spotted on an FTA card. An FTA-LAMP with pre-added malachite green was performed at 64 degrees C for 60 mm using a heatin...

  3. Comparative use of anodic oxidation, electro-Fenton and photoelectro-Fenton with Pt or boron-doped diamond anode to decolorize and mineralize Malachite Green oxalate dye

    International Nuclear Information System (INIS)

    El-Ghenymy, Abdellatif; Centellas, Francesc; Rodríguez, Rosa María; Cabot, Pere Lluís; Garrido, José Antonio; Sirés, Ignasi; Brillas, Enric

    2015-01-01

    Highlights: • Degradation of Malachite Green oxalate solutions at pH 3.0 by AO, AO-H 2 O 2 , EF and PEF. • A Pt anode leads to slower decolorization and mineralization than BDD. • Up to 97% mineralization by the most powerful PEF process with BDD at 100 mA cm −2 . • Study of the evolution of seven final short-chain aliphatic carboxylic acids. • Conversion of the initial N atoms of the dye mainly into NH 4 + , along with small amounts of NO 3 − . - Abstract: The degradation of 100 cm 3 of 177 mg dm −3 of the triphenylmethane dye Malachite Green oxalate at pH 3.0 was studied by anodic oxidation with stainless steel cathode (AO-SS), AO with air-diffusion cathode (AO-H 2 O 2 ), electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. The main oxidizing species were hydroxyl radicals formed from either water oxidation at the anode surface or in the bulk between added Fe 2+ and H 2 O 2 generated at the air-diffusion cathode. The use of a Pt anode led to slower decolorization and mineralization than BDD in all treatments because of the higher oxidation power of the latter. The decolorization was much faster for EF and PEF compared to AO-SS and AO-H 2 O 2 due to the contribution of hydroxyl radicals in the bulk. PEF allowed the quickest color removal by the rapid Fe 2+ regeneration from the photolysis of Fe(III) complexes with oxalate. The most powerful process was PEF with BDD, which yielded total decolorization in 6 min and 97% mineralization at 240 min operating at 100 mA cm −2 , thanks to hydroxyl radicals formed at the anode surface and in the bulk along with the photolytic action of UVA radiation. The evolution of final carboxylic acids like maleic, fumaric, succinic, acetic, oxalic, formic and oxamic was followed by ion-exclusion HPLC. All these acids and their Fe(III) complexes were removed more slowly with Pt anode. The initial N atoms of the dye were pre-eminently accumulated as NH 4 + ion, along with small amounts of NO 3 − ion.

  4. Studies on the Removal of Rhodamine B and Malachite Green from Aqueous Solutions by Activated Carbon

    Directory of Open Access Journals (Sweden)

    A. Edwin Vasu

    2008-01-01

    Full Text Available Activated carbon prepared from tamarind fruit shells by direct carbonization was used for the removal of rhodamine B and malachite green dyes from aqueous solutions. Adsorption studies were performed by varying such parameters as dye concentration, pH of the dye solution, time and temperature. The equilibrium adsorption data obtained were used to calculate the Freundlich, Langmuir and Redlich-Peterson isotherm parameters. Increase in pH of the solution pH resulted in increased adsorption of both the dyes. Kinetic studies indicate that the pseudo-second order model can be used for describing the dynamics of the sorption processes. Film diffusion of the dyes was the rate determining step at low dye concentrations while diffusion of dyes through the pores the carbon particles determined the overall uptake at high concentrations. Thermodynamic parameters of the endothermic sorptions were evaluated using van’t Hoff equation. Desorption studies with acids were also performed in order to regenerate the used carbons.

  5. RNA Seq analysis of the role of calcium chloride stress and electron transport in mitochondria for malachite green decolorization by Aspergillus niger.

    Science.gov (United States)

    Gomaa, Ola M; Selim, Nabila S; Wee, Josephine; Linz, John E

    2017-08-01

    Aspergillus niger was previously demonstrated to decolorize the commercial dye malachite green (MG) and this process was enhanced under calcium chloride (CaCl 2 ) treatment. Previous data also suggested that the decolorization process is related to mitochondrial cytochrome c. In the current work, we analyzed in depth the specific relationship between CaCl 2 treatment and MG decolorization. Gene expression analysis (RNA Seq) using Next Generation Sequencing (NGS) revealed up-regulation of 28 genes that are directly or indirectly associated with stress response functions as early as 30min of CaCl 2 treatment; these data further strengthen our previous findings that CaCl 2 treatment induces a stress response in A. niger which enhances the ability to decolorize MG. A significant increase in fluorescence observed by MitoTracker dye suggests that CaCl 2 treatment also increased mitochondrial membrane potential. Isolated mitochondrial membrane protein fractions obtained from A. niger grown under standard growth conditions decolorized MG in the presence of NADH and decolorization was enhanced in samples isolated from CaCl 2 -treated A. niger cultures. Treatment of whole mitochondrial fraction with KCN which inhibits electron transport by cytochrome c oxidase and Triton-X 100 which disrupts mitochondrial membrane integrity suggests that cyanide sensitive cytochrome c oxidase activity is a key biochemical step in MG decolorization. This suggestion was confirmed by the addition of palladium α-lipoic acid complex (PLAC) which resulted in an initial increase in decolorization. Although the role of cytochrome c and cytochrome c oxidase was confirmed at the biochemical level, changes in levels of transcripts encoding these enzymes after CaCl 2 treatment were not found to be statistically significant in RNA Seq analysis. These data suggest that the regulation of cytochrome c enzymes occur predominantly at the post-transcriptional level under CaCl 2 stress. Thus, using global

  6. Simultaneous spectrophotometric determination of crystal violet and malachite green in water samples using partial least squares regression and central composite design after preconcentration by dispersive solid-phase extraction.

    Science.gov (United States)

    Razi-Asrami, Mahboobeh; Ghasemi, Jahan B; Amiri, Nayereh; Sadeghi, Seyed Jamal

    2017-04-01

    In this paper, a simple, fast, and inexpensive method is introduced for the simultaneous spectrophotometric determination of crystal violet (CV) and malachite green (MG) contents in aquatic samples using partial least squares regression (PLS) as a multivariate calibration technique after preconcentration by graphene oxide (GO). The method was based on the sorption and desorption of analytes onto GO and direct determination by ultraviolet-visible spectrophotometric techniques. GO was synthesized according to Hummers method. To characterize the shape and structure of GO, FT-IR, SEM, and XRD were used. The effective factors on the extraction efficiency such as pH, extraction time, and the amount of adsorbent were optimized using central composite design. The optimum values of these factors were 6, 15 min, and 12 mg, respectively. The maximum capacity of GO for the adsorption of CV and MG was 63.17 and 77.02 mg g -1 , respectively. Preconcentration factors and extraction recoveries were obtained and were 19.6, 98% for CV and 20, 100% for MG, respectively. LOD and linear dynamic ranges for CV and MG were 0.009, 0.03-0.3, 0.015, and 0.05-0.5 (μg mL -1 ), respectively. The intra-day and inter-day relative standard deviations were 1.99 and 0.58 for CV and 1.69 and 3.13 for MG at the concentration level of 50 ng mL -1 , respectively. Finally, the proposed DSPE/PLS method was successfully applied for the simultaneous determination of the trace amount of CV and MG in the real water samples.

  7. Multiscale Modeling of Plasmon-Exciton Dynamics of Malachite Green Monolayers on Gold Nanoparticles

    Science.gov (United States)

    Smith, Holden; Karam, Tony; Haber, Louis; Lopata, Kenneth

    A multi-scale hybrid quantum/classical approach using classical electrodynamics and a collection of discrete two-level quantum system is used to investigate the coupling dynamics of malachite green monolayers adsorbed to the surface of a spherical gold nanoparticle (NP). This method utilizes finite difference time domain (FDTD) to describe the plasmonic response of the NP and a two-level quantum description for the molecule via the Maxwell/Liouville equation. The molecular parameters are parameterized using CASPT2 for the energies and transition dipole moments, with the dephasing lifetime fit to experiment. This approach is suited to simulating thousands of molecules on the surface of a plasmonic NP. There is good agreement with experimental extinction measurements, predicting the plasmon and molecule depletions. Additionally, this model captures the polariton peaks overlapped with a Fano-type resonance profile observed in the experimental extinction measurements. This technique shows promise for modeling plasmon/molecule interactions in chemical sensing and light harvesting in multi-chromophore systems. This material is based upon work supported by the National Science Foundation under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 and by the Louisiana Board of Regents Research Competitiveness Subprogram under Contract Number LEQSF(2014-17)-RD-A-0.

  8. Isotherms and kinetic study of ultrasound-assisted adsorption of malachite green and Pb2+ ions from aqueous samples by copper sulfide nanorods loaded on activated carbon: Experimental design optimization.

    Science.gov (United States)

    Sharifpour, Ebrahim; Khafri, Hossein Zare; Ghaedi, Mehrorang; Asfaram, Arash; Jannesar, Ramin

    2018-01-01

    Copper sulfide nanorods loaded on activated carbon (CuS-NRs-AC) was synthesized and used for simultaneous ultrasound-assisted adsorption of malachite green (MG) and Pb 2+ ions from aqueous solution. Following characterization of CuS-NRs-AC were investigated by SEM, EDX, TEM and XRD, the effects of pH (2.0-10), amount of adsorbent (0.003-0.011g), MG concentration (5-25mgL -1 ), Pb 2+ concentration (3-15mgL -1 ) and sonication time (1.5-7.5min) and their interactions on responses were investigated by central composite design (CCD) and response surface methodology. According to desirability function on the Design Expert optimum removal (99.4%±1.0 for MG and 68.3±1.8 for Pb 2+ ions) was obtained at pH 6.0, 0.009g CuS-NRs-AC, 6.0min mixing by sonication and 15 and 6mgL -1 for MG and Pb 2+ ions, respectively. High determination coefficient (R 2 >0.995), Pred-R 2 -value (>0.920) and Adju-R 2 -value (>0.985) all are good indication of best agreement between the experimental and design modelling. The adsorption kinetics follows the pseudo-second order model and adsorption isotherm follows the Langmuir model with maximum adsorption capacity of 145.98 and 47.892mgg -1 for MG and Pb 2+ ions, respectively. This adsorbent over short contact time is good choice for simultaneous removal of large content of both MG and Pb 2+ ions from wastewater sample. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A novel "dual-potential" electrochemiluminescence aptasensor array using CdS quantum dots and luminol-gold nanoparticles as labels for simultaneous detection of malachite green and chloramphenicol.

    Science.gov (United States)

    Feng, Xiaobin; Gan, Ning; Zhang, Huairong; Yan, Qing; Li, Tianhua; Cao, Yuting; Hu, Futao; Yu, Hongwei; Jiang, Qianli

    2015-12-15

    A novel type of "dual-potential" electrochemiluminescence (ECL) aptasensor array was fabricated on a homemade screen-printed carbon electrode (SPCE) for simultaneous detection of malachite green (MG) and chloramphenicol (CAP) in one single assay. The SPCE substrate consisted of a common Ag/AgCl reference electrode, carbon counter electrode and two carbon working electrodes (WE1 and WE2). In the system, CdS quantum dots (QDs) were modified on WE1 as cathode ECL emitters and luminol-gold nanoparticles (L-Au NPs) were modified on WE2 as anode ECL emitters. Then the MG aptamer complementary strand (MG cDNA) and CAP aptamer complementary strand (CAP cDNA) were attached on CdS QDs and L-Au NPs, respectively. The cDNA would hybridize with corresponding aptamer that was respectively tagged with cyanine dye (Cy5) (as quenchers of CdS QDs) and chlorogenic acid (CA) (as quenchers of l-Au NPs) using poly(ethylenimine) (PEI) as a bridging agent. PEI could lead to a large number of quenchers on the aptamer, which increased the quenching efficiency. Upon MG and CAP adding, the targets could induce strand release due to the highly affinity of analytes toward aptamers. Meanwhile, it could release the Cy5 and CA, which recovered cathode ECL of CdS QDs and anode ECL of L-Au NPs simultaneously. This "dual-potential" ECL strategy could be used to detect MG and CAP with the linear ranges of 0.1-100 nM and 0.2-150 nM, with detection limits of 0.03 nM and 0.07 nM (at 3sB), respectively. More importantly, this designed method was successfully applied to determine MG and CAP in real fish samples and held great potential in the food analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Adsorption of Methylene Blue Malachite Green from aqueous solution on the surface of Wool Carbonizing Waste

    International Nuclear Information System (INIS)

    Khan, A. R.; Tahir, H.; Fahimuddin; Waqar, S. S.

    2005-01-01

    With ever increasing environmental pollution problems, the present day study was related to the removal of colorants. Synthetic colorants represented a relatively large group of organic chemicals. Such chemicals have undesirable effects not only on the environment but also on human beings. Present study is related with the removal of basic dyes methylene blue and malachite green using wool carbonizing waste materials as adsorbent. Adsorption of dyes is carried out as a function of temperature, amount of adsorbent, pH and duration. Spectrophotomeric technique was adopted for measuring the extent of adsorption. The data are fitted in Langmuir and Freundlich isotherm equations and their corresponding constants are calculated. Thermodynamic study is also carried out by calculating the values of thermodynamic parameters such as, enthalpy change (delta H), free energy change (delta G) and entropy change (delta S). The values of percent removal and KD for each dye system is also calculated at the range of temperatures ranging from 293-323K with the intervals of 10C+-0.2C. (author)

  11. Rapid detection of multidrug-resistant Mycobacterium tuberculosis using the malachite green decolourisation assay

    Science.gov (United States)

    Coban, Ahmet Yilmaz; Uzun, Meltem

    2013-01-01

    Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA) in detecting isoniazid (INH) and rifampicin (RIF) resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results. PMID:24402143

  12. Rapid detection of multidrug-resistant Mycobacterium tuberculosis using the malachite green decolourisation assay

    Directory of Open Access Journals (Sweden)

    Ahmet Yilmaz Coban

    2013-12-01

    Full Text Available Early detection of drug resistance in Mycobacterium tuberculosis isolates allows for earlier and more effective treatment of patients. The aim of this study was to investigate the performance of the malachite green decolourisation assay (MGDA in detecting isoniazid (INH and rifampicin (RIF resistance in M. tuberculosis clinical isolates. Fifty M. tuberculosis isolates, including 19 multidrug-resistant, eight INH-resistant and 23 INH and RIF-susceptible samples, were tested. The sensitivity, specificity, positive predictive value (PPV, negative predictive value (NPV and agreement of the assay for INH were 92.5%, 91.3%, 92.5%, 91.3% and 92%, respectively. Similarly, the sensitivity, specificity, PPV, NPV and agreement of the assay for RIF were 94.7%, 100%, 100%, 96.8% and 98%, respectively. There was a major discrepancy in the tests of two isolates, as they were sensitive to INH by the MGDA test, but resistant by the reference method. There was a minor discrepancy in the tests of two additional isolates, as they were sensitive to INH by the reference method, but resistant by the MGDA test. The drug susceptibility test results were obtained within eight-nine days. In conclusion, the MGDA test is a reliable and accurate method for the rapid detection of INH and RIF resistance compared with the reference method and the MGDA test additionally requires less time to obtain results.

  13. Curly malachite on archaeological bronze : A systematic study of the shape and phenomenological approach of its formation mechanism

    NARCIS (Netherlands)

    Nienhuis, J.; Robbiola, Luc; Giuliani, Roberta; Joosten, Ineke; Huisman, Hans; van Os, Bertil; Sietsma, J.

    2016-01-01

    Curly malachite (CM) is found as a green cupric carbonate hydroxide corrosion product on archaeological bronze, mostly on artefacts retrieved from graves. In this paper, a morphological characterization approach is proposed, enabling the investigation of the formation process of CM. It is suggested

  14. Synthesis, Characterization, and Use of Novel Bimetal Oxide Catalyst for Photoassisted Degradation of Malachite Green Dye

    Directory of Open Access Journals (Sweden)

    K. L. Ameta

    2014-01-01

    Full Text Available This work reports a simple, novel, and cost effective synthesis of nanobimetal oxide catalyst using cerium and cadmium nitrates as metal precursors. The cerium-cadmium oxide nanophotocatalyst was synthesized by coprecipitation method and characterized by X-ray powder diffraction method to analyze the particle size. XRD study reveals a high degree of crystallinity and 28.43 nm particle size. The photocatalytic efficiency of the synthesized nanobimetal catalyst was examined by using it for the photocatalytic degradation of malachite green dye. Experiments were conducted to study the effect of various parameters, such as the pH of the dye solution, concentration of dye, amount of catalyst, and light intensity on the rate of dye degradation. The progress of the dye degradation was monitored spectrophotometrically by taking the optical density of the dye solution at regular intervals. Experimental results indicate that the dye degrades best at pH 8.0 with light intensity 600 Wm−2 and catalyst loading 0.03 g/50 mL of dye solution. The rate constant for the reaction was 7.67 × 10−4 s−1.

  15. Photo-triggered release from liposomes without membrane solubilization, based on binding to poly(vinyl alcohol) carrying a malachite green moiety.

    Science.gov (United States)

    Uda, Ryoko M; Kato, Yutaka; Takei, Michiko

    2016-10-01

    When working with liposomes analogous to cell membranes, it is important to develop substrates that can regulate interactions with the liposome surface in response to light. We achieved a photo-triggered release from liposomes by using a copolymer of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). Although PVAMG is a neutral polymer under dark conditions, it is photoionized upon exposure to UV light, resulting in the formation of a cationic site for binding to liposomes with a negatively charged surface. Under UV irradiation, PVAMG showed effective interaction with liposomes, releasing the encapsulated compound; however, this release was negligible under dark conditions. The poly(vinyl alcohol) moiety of PVAMG played an important role in the photo-triggered release. This release was caused by membrane destabilization without lipid solubilization. We also investigated different aspects of liposome/PVAMG interactions, including PVAMG-induced fusion between the liposomes and the change in the liposome morphologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator.

    Science.gov (United States)

    Wu, Dandan; Ma, Wenhui; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-05-18

    In this study, ammonium ion was used to enhance the sulfidation flotation of malachite. The effect of ammonium ion on the sulfidation flotation of malachite was investigated using microflotation test, inductively coupled plasma (ICP) analysis, zeta potential measurements, and scanning electron microscope analysis (SEM). The results of microflotation test show that the addition of sodium sulfide and ammonium sulfate resulted in better sulfidation than the addition of sodium sulfide alone. The results of ICP analysis indicate that the dissolution of enhanced sulfurized malachite surface is significantly decreased. Zeta potential measurements indicate that a smaller isoelectric point value and a large number of copper-sulfide films formed on the malachite surface by enhancing sulfidation resulted in a large amount of sodium butyl xanthate absorbed onto the enhanced sulfurized malachite surface. EDS semi-quantitative analysis and XPS analysis show that malachite was easily sulfurized by sodium sulfide with ammonium ion. These results show that the addition of ammonium ion plays a significant role in the sulfidation of malachite and results in improved flotation performance.

  17. Efficient photocatalytic degradation of malachite green dye under visible irradiation by water soluble ZnS:Mn/ZnS core/shell nanoparticles

    Science.gov (United States)

    Khaparde, Rohini A.; Acharya, Smita A.

    2018-05-01

    ZnS:Mn/ ZnS core/shell nanoparticles was prepared by two step synthesis method. In first step, oleic acid - coated Mn doped ZnS core nanoparticles were prepared which were charged through ligand exchange. Shell of ZnS NPs was finally deposited upon the surface of charged Mn doped ZnS core. Scanning electron microscopy (SEM) image exhibit morphological confirmation of ZnS:Mn/ZnS core/shell. As Nano ZnS are the most suitable candidates for photocatalyst that extensively involved in degradation and complete mineralization of various toxic organic pollutants owing to its high efficiency, strong oxidizing power, non-toxicity, high photochemical and biological stability, corrosive resistance and low cost. Photodegradation of malachite green is systematically investigated by adding different molar proportional of ZnS:Mn/ZnS core/shell in the dye. The rate of de-coloration of dye is detected by UV-VIS absorption spectroscopy. Efficient detoriation in the colour of dye is attributed to the core /shell morphology of the particles.

  18. A natural sorbent, Luffa cylindrica for the removal of a model basic dye

    International Nuclear Information System (INIS)

    Altinisik, Aylin; Guer, Emel; Seki, Yoldas

    2010-01-01

    In this work, application of Luffa cylindrica in malachite green (MG) removal from aqueous solution was studied in a batch system. The effect of contact time, pH and temperature on removal of malachite green was also investigated. By the time pH was increased from 3 to 5, the amount of sorbed malachite green also increased. Beyond the pH value of 5, the amount of sorbed malachite green remains constant. The fits of equilibrium sorption data to Langmuir, Freundlich and Dubinin-Radushkevich equations were investigated. Langmuir isotherm exhibited best fit with the experimental data. Monolayer sorption capacity increased with the increasing of temperature. Sorption kinetic was evaluated by pseudo-first-order, pseudo-second-order, Elovich rate equations and intraparticle diffusion models. It was inferred that sorption follows pseudo-second-order kinetic model. Thermodynamic parameters for sorption process were also found out. Spontaneous and endothermic nature of sorption was obtained due to negative value of free energy (ΔG o ) and positive value of enthalpy (ΔH o ) changes. FTIR analyses were also conducted to confirm the sorption of malachite green onto L. cylindrica.

  19. Structural characterization of mesoporous magnetite nanoparticles synthesized using the leaf extract of Calliandra haematocephala and their photocatalytic degradation of malachite green dye

    Science.gov (United States)

    Sirdeshpande, Karthikey Devadatta; Sridhar, Anushka; Cholkar, Kedar Mohan; Selvaraj, Raja

    2018-03-01

    A simple method for the synthesis of magnetite nanoparticles using the leaf extract of Calliandra haematocephala has been developed. UV-Vis spectrum showed a characteristic strong absorption band. SEM image revealed the bead-like spherical nanoparticles. EDS showed the prominent peaks for elemental iron and oxygen. PXRD patterns confirmed the crystalline nature and the average crystallite size of 7.45 nm. In addition, the lattice parameter value was calculated to be 8.413 Å, close to Fe3O4 nanoparticles. BET analysis disclosed the total specific surface area of the nanoparticles as 63.89 m2/g and the mesoporous structure of the nanoparticles with a pore radius of 34.18 Å. FTIR studies showed the specific bands at 599.82 and 472.53 cm-1, typical for Fe3O4 nanoparticles. The photocatalytic efficacy of the nanoparticles was demonstrated against the degradation of malachite green dye under sunlight irradiation and the photocatalytic degradation constant was calculated as 0.0621 min-1.

  20. CNT supported Mn-doped ZnO nanoparticles: simple synthesis and improved photocatalytic activity for degradation of malachite green dye under visible light

    Science.gov (United States)

    Mohamed, R. M.; Shawky, Ahmed

    2018-03-01

    Hexagonal ZnO nanoparticles doped with Mn and supported with a minor amount of carbon nanotubes (CNTs) were synthesized through a simple coprecipitation-ultrasonication process with high yield. The effect of Mn doping, as well as CNTs addition on structure, surface morphology and texture, optical and electronic properties, was studied. We found that just 1% Mn doping and 1% CNT addition on ZnO showed the best crystallinity, highest surface area, improved visible light absorption, and a lowest estimated band gap of 2.6 eV with minimum charge recombination as revealed from photoluminescence spectra. The application of the optimum composition of the synthesized sample for the photodegradation of malachite green dye showed enhanced photocatalytic activity > 95% under visible light irradiation within 120 min at a minimum dosage of 0.1 g L-1 without any using of hole scavenger or changing the pH. This work highlighting the humble preparation procedure and develops photocatalysis research for real industrial applications.

  1. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Directory of Open Access Journals (Sweden)

    Jihane Cheriaa

    2012-01-01

    Full Text Available A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila-(CM-4 was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L and malachite green (50 mg/L dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  2. Structure defects in malachite revealed by positron annihilation

    International Nuclear Information System (INIS)

    Geffroy, B.; Diallo, I.; Paulin, R.

    1984-01-01

    Positron lifetime is measured between 77 and 400 K in two malachite samples with different mineralogical structures. The complex spectrum found in zoned malachite reveals a microporosity which remains stable in this range of temperature. Besides, above 200 K, equilibrium defects appear. Their formation energy is estimated to be Esub(f) = 0.27 +- 0.02 eV [fr

  3. Structure defects in malachite revealed by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Geffroy, B; Diallo, I; Paulin, R [Institut National des Sciences et Techniques Nucleaires, CEN/Saclay, 91 - Gif-sur-Yvette (France)

    1984-01-01

    Positron lifetime is measured between 77 and 400 K in two malachite samples with different mineralogical structures. The complex spectrum found in zoned malachite reveals a microporosity which remains stable in this range of temperature. Besides, above 200 K, equilibrium defects appear. Their formation energy is estimated to be Esub(f) = 0.27 +- 0.02 eV.

  4. A new alternative adsorbent for the removal of cationic dyes from aqueous solution

    Directory of Open Access Journals (Sweden)

    T. Santhi

    2016-09-01

    Full Text Available Adsorption of Malachite green (MG and Methylene blue (MB from aqueous solutions on low cost adsorbent prepared from Annona squmosa seed (CAS is studied experimentally. Results obtained indicate that the removal efficiency of Malachite green and Methylene blue at 27 ± 2 °C exceeds 75.66% and 24.33% respectively, and that the adsorption process is highly pH-dependent. Results showed that the optimum pH for dye removal is 6.0. The amount of dye adsorbed from aqueous solution increases with the increase of the initial dye concentration. Smaller adsorbent particle adds to increase the percentage removal of Malachite green and Methylene blue. The equilibrium data fitted well to the Langmuir model (R2 > 0.97 and the adsorption kinetic followed the pseudo-second-order equation (R2 > 0.99. The maximum adsorption capacities of MG, MB on CAS are 25.91 mg g−1 and 08.52 mg g−1 respectively. These results suggest that A. squmosa seed is a potential low-cost adsorbent for the dye removal from industrial wastewater. The adsorption capacity of CAS on MG is greater than MB.

  5. Malachite Green and Crystal Violet Decolorization by Ganoderma lucidum and Pleurotus ostreatus Supernatant and by rGlLCC1 and rPOXA 1B Concentrates: Molecular Docking Analysis.

    Science.gov (United States)

    Morales-Álvarez, Edwin D; Rivera-Hoyos, Claudia M; Poveda-Cuevas, Sergio A; Reyes-Guzmán, Edwin A; Pedroza-Rodríguez, Aura M; Reyes-Montaño, Edgar A; Poutou-Piñales, Raúl A

    2018-03-01

    Laccases catalyze the oxidation of various aromatic organic compounds concomitantly with molecular oxygen reduction to water. Triphenylmethane dyes are synthetic compounds widely used in diverse industries. Their removal from effluents is difficult, due to their high degree of structural complexity; hence, their high concentration in effluents cause a negative impact on the environment. In the present work, molecular docking was used to evaluate interactions between rGlLCC1 or rPOXA 1B enzymes with Crystal Violet (CV) or Malachite Green (MG) dyes. In addition, removal tests of the two dyes were performed. Van der Waals interactions were obtained for only the CV dye for both GlLCC1 and POXA 1B enzymes. Nevertheless, in the GlLCC1 model, two π-π interactions were observed. For the MG dye only, Van der Waals interactions were obtained. Moreover, amino acid composition interacting in each model with each dye was similar. It is important to highlight that by molecular docking, none of the estimated ligand configurations generated hydrogen bonds. Thus, explaining the difficulty to degrade CV and MG. Regarding CV, maximum decolorization percentage was 23.6 ± 1.0% using Ganoderma lucidum supernatant and 5.0 ± 0.5% with Pleurotus ostreatus supernatant. When using recombinant laccase enzyme concentrates, decolorization percentages were 9.9 ± 0.1 and 7.5 ± 1.0% for rGlLCC1 and rPOXA 1B, respectively. On the other hand, for the MG dye, maximum decolorization percentages were 52.1 ± 5.1 and 2.3 ± 0.2% using G. lucidum and P. ostreatus concentrates, respectively. Whereas with recombinant laccase enzymatic concentrates, values of 9.4 ± 0.8% were obtained, with rGlLCC1, and 2.1 ± 0.1% when using rPOXA 1B. These findings represent an important step in bioremediation processes improvement and efficiency of industry-generated products, using environmentally friendly alternatives.

  6. Comparison between dispersive solid-phase and dispersive liquid-liquid microextraction combined with spectrophotometric determination of malachite green in water samples based on ultrasound-assisted and preconcentration under multi-variable experimental design optimization.

    Science.gov (United States)

    Alipanahpour Dil, Ebrahim; Ghaedi, Mehrorang; Asfaram, Arash; Zare, Fahimeh; Mehrabi, Fatemeh; Sadeghfar, Fardin

    2017-11-01

    The ultrasound-assisted dispersive solid-phase microextraction (USA-DSPME) and the ultrasound-assisted dispersive liquid-liquid microextraction (USA-DLLME) developed for as an ultra preconcentration and/or technique for the determination of malachite green (MG) in water samples. Central composite design based on analysis of variance and desirability function guide finding best operational conditions and represent dependency of response to variables viz. volume of extraction, eluent and disperser solvent, pH, adsorbent mass and ultrasonication time has significant influence on methods efficiency. Optimum conditions was set for USA-DSPME as: 1mg CNTs/Zn:ZnO@Ni 2 P-NCs; 4min sonication time and 130μL eluent at pH 6.0. Meanwhile optimum point for USA-DLLME conditions were fixed at pH 6.0; 4min sonication time and 130, 650μL and 10mL of extraction solvent (CHCl 3 ), disperser solvent (ethanol) and sample volume, respectively. Under the above specified best operational conditions, the enrichment factors for the USA-DSPME and USA-DLLME were 88.89 and 147.30, respectively. The methods has linear response in the range of 20.0 to 4000.0ngmL -1 with the correlation coefficients (r) between 0.9980 to 0.9995, while its reasonable detection limits viz. 1.386 to 2.348ngmL -1 and good relative standard deviations varied from 1.1% to 2.8% (n=10) candidate this method for successful monitoring of analyte from various media. The relative recoveries of the MG dye from water samples at spiking level of 500ngmL -1 were in the range between 94.50% and 98.86%. The proposed methods has been successfully applied to the analysis of the MG dye in water samples, and a satisfactory result was obtained. Copyright © 2017. Published by Elsevier B.V.

  7. Design of binary SnO_2-CuO nanocomposite for efficient photocatalytic degradation of malachite green dye

    International Nuclear Information System (INIS)

    Kumar, Aniket; Rout, Lipeeka; Achary, L. Satish Kumar; Mohanty, Anurag; Marpally, Jyoshna; Chand, Pradyumna Kumar; Dash, Priyabrat

    2016-01-01

    Semiconductor mediated photocatalysis has got enormous consideration as it has shown immense potential in addressing the overall energy and environmental issues. To overcome the earlier drawbacks concerning quick charge recombination and limited visible-light absorption of semiconductor photocatalysts, numerous methods have been produced in the past couple of decades and the most broadly utilized one is to develop the photocatalytic heterojunctions. In our work, a series of SnO_2-CuO nanocomposites of different compositions were synthesized by a combustion method and have been investigated in detail by various characterization techniques, such as wide angle X-ray diffraction (XRD), UV-vis spectroscopy, transmission electron microscopy (TEM), and field emission scanning electron microscopy (FE-SEM). The results revealed that the crystal structure and optical properties of the nanocomposites were almost same for all the compositions. FE-SEM images showed that the shape of SnO_2-CuO was spherical in nature and the 1: 1 Sn/Cu sample had a well-proportioned morphology. The malachite green dye was used for the photocatalytic studies in a photoreactor and monitored with a UV-visible spectrometer for different composition ratio of metal (Sn: Cu) such as 1:1, 1:2, 2:1, 1:0.5 and 0.5:1. The 1:1 ratio nanocomposite showed excellent photocatalytic degradation of 96 % compared to pure SnO_2 and CuO. The mechanism of degradation and charge separation ability of the nanocomposite are also explored using photocurrent measurement study.

  8. Aegle marmelos Mediated Green Synthesis of Different Nanostructured Metal Hexacyanoferrates: Activity against Photodegradation of Harmful Organic Dyes

    Directory of Open Access Journals (Sweden)

    Vidhisha Jassal

    2016-01-01

    Full Text Available Prussian blue analogue potassium metal hexacyanoferrate (KMHCF nanoparticles Fe4[Fe(CN6]3 (FeHCF, K2Cu3[Fe(CN6]2 (KCuHCF, K2Ni[Fe(CN6]·3H2O (KNiHCF, and K2Co[Fe(CN6] (KCoHCF have been synthesized using plant based biosurfactant Aegle marmelos (Bael and water as a green solvent. It must be emphasized here that no harmful reagent or solvent was used throughout the study. Plant extracts are easily biodegradable and therefore do not cause any harm to the environment. Hence, the proposed method of synthesis of various KMHCF nanoparticles followed a green path. The synthesized nanoparticles were characterized by powder X-ray diffraction (PXRD, Field-Emission Scanning Electron Microscopy (FE-SEM, Transmission Electron Microscopy (TEM, and Fourier Transform Infrared Spectroscopy (FT-IR. MHCF nanoparticles were used for the photocatalytic degradation of toxic dyes like Malachite Green (MG, Eriochrome Black T (EBT, Methyl Orange (MO, and Methylene Blue (MB. Under optimized reaction conditions, maximum photocatalytic degradation was achieved in case of KCuHCF nanoparticles mediated degradation process (MG: 96.06%, EBT: 83.03%, MB: 94.72%, and MO: 63.71% followed by KNiHCF (MG: 95%, EBT: 80.32%, MB: 91.35%, and MO: 59.42%, KCoHCF (MG: 91.45%, EBT: 78.84%, MB: 89.28%, and MO: 58.20%.

  9. Batch adsorption technique for the removal of malachite green and ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-29

    Nov 29, 2010 ... 2001), used tea leaves. (Tahir et al., 2009), montmorillonite clay powder (Tahir et al., 2008), algea (Tahir et al., 2008) which can be utili- zed to remove dyes and colorants from waste water. Fast green FCF is a sea green triarylmethane food color dye, which is also known as food green with maxi- ...

  10. Synthesis of Copper Pigments, Malachite and Verdigris: Making Tempera Paint

    Science.gov (United States)

    Solomon, Sally D.; Rutkowsky, Susan A.; Mahon, Megan L.; Halpern, Erica M.

    2011-01-01

    Malachite and verdigris, two copper-based pigments, are synthesized in this experiment intended for use in a general chemistry laboratory. The preparation of egg tempera paint from malachite is also described. All procedures can be done with a magnetic stir plate, standard glassware present in any first-year laboratory, and household chemicals.…

  11. A versatile SERS-based immunoassay for immunoglobulin detection using antigen-coated gold nanoparticles and malachite green-conjugated protein A/G

    Science.gov (United States)

    A surface enhanced Raman scattering (SERS) immunoassay for antibody detection in serum is described in the present work. The developed assay is conducted in solution and utilizes Au nanoparticles coated with the envelope (E) protein of West Nile Virus (WNV) as the SERS-active substrate and malachite...

  12. Poly(malachite green) at nafion doped multi-walled carbon nanotube composite film for simple aliphatic alcohols sensor.

    Science.gov (United States)

    Umasankar, Yogeswaran; Periasamy, Arun Prakash; Chen, Shen-Ming

    2010-01-15

    Conductive composite film which contains nafion (NF) doped multi-walled carbon nanotubes (MWCNTs) along with the incorporation of poly(malachite green) (PMG) has been synthesized on glassy carbon electrode (GCE), gold and indium tin oxide (ITO) electrodes by potentiostatic methods. The presence of MWCNTs in the composite film (MWCNTs-NF-PMG) enhances surface coverage concentration (Gamma) of PMG to approximately 396%, and increases the electron transfer rate constant (k(s)) to approximately 305%. Similarly, electrochemical quartz crystal microbalance study reveals the enhancement in the deposition of PMG at MWCNTs-NF film. The surface morphology of the composite film deposited on ITO electrode has been studied using scanning electron microscopy (SEM) and scanning tunneling microscopy (STM). These two techniques reveal that the PMG incorporated on MWCNTs-NF film. The MWCNTs-NF-PMG composite film also exhibits promising enhanced electrocatalytic activity towards the simple aliphatic alcohols such as methanol, ethanol and propanol. The electroanalytical responses of analytes at NF-PMG and MWCNTs-NF-PMG films were measured using both cyclic voltammetry (CV) and differential pulse voltammetry (DPV). From electroanalytical studies, well defined voltammetric peaks have been obtained at MWCNTs-NF-PMG composite film for methanol, ethanol and propanol at Epa=609, 614 and 602mV respectively. The sensitivity of MWCNTs-NF-PMG composite film towards methanol, ethanol and propanol in CV technique are 0.59, 0.36 and 0.92microAmM(-1)cm(-2) respectively, which are higher than NF-PMG film. Further, the sensitivity values obtained using DPV are higher than the values obtained using CV technique.

  13. Highly efficient green light harvesting from Mg doped ZnO nanoparticles: Structural and optical studies

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sarla, E-mail: mail2sarlasharma@gmail.com [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Vyas, Rishi [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Sharma, Neha [Department of Physics, University of Rajasthan, Jaipur 302055 (India); Singh, Vidyadhar [Okinawa Institute of Science and Technology, Graduate University, Okinawa 9040495 (Japan); Singh, Arvind [Department of Physics, Institute of Chemical Technology, Mumbai 400 019 (India); Kataria, Vanjula; Gupta, Bipin Kumar [National Physical Laboratory (CSIR), New Delhi 110012 (India); Vijay, Y.K. [Department of Physics, University of Rajasthan, Jaipur 302055 (India)

    2013-03-05

    Graphical abstract: Demonstration of highly efficient green light emission harvesting from Mg doped ZnO nanoparticles were synthesized via facile wet chemical route with an average particle size ∼15 nm. The resulted nanoparticles exhibit intense green emission peaking at 530 nm upon 325 nm excitation. The photoluminescence (PL) intensity of visible emission depends upon the doping concentration of Mg. The PL intensity was found maximum up to 4% doping of Mg and beyond it exhibits a decrees in emission. The obtained highly luminescent green emission of ZnO nanoparticle would be an ultimate choice for next generation optoelectronics device materials. Highlights: ► Zn{sub 1−x}Mg{sub x}O nanoparticles were prepared by mechanochemical processing. ► High blue emission intensity was observed contrary to previous reports. ► Blue emission is suggested to be originating from the high density of defects. ► Defect density in as-milled condition is very high resulting in high emission. ► Mg promoted non-radiative recombination and lowered intensities. -- Abstract: Highly efficient green light emission was observed from Mg doped ZnO nanoparticles synthesized via facile wet chemical route with an average particle size ∼15 nm. The XRD analysis confirmed the growth of wurtzite phase of ZnO nanoparticles. Moreover, the optical properties of these nanoparticles were investigated by different spectroscopic techniques. The resulted nanoparticles exhibit intense green emission peaking at 530 nm (2.34 eV) upon 325 nm (3.81 eV) excitation. The photoluminescence (PL) intensity of visible emission depends upon the doping concentration of Mg. The PL intensity was found maximum up to 4% doping of Mg, and beyond it exhibits a decrees in emission. Furthermore, by varying the band gap from 3.50 to 3.61 eV, the PL spectra showed a near band edge (NBE) emission at wavelength around 370 nm (3.35 eV) and a broad deep level emission in the visible region. The obtained highly

  14. Activation mechanism of ammonium ions on sulfidation of malachite (-201) surface by DFT study

    Science.gov (United States)

    Wu, Dandan; Mao, Yingbo; Deng, Jiushuai; Wen, Shuming

    2017-07-01

    The activation mechanism of ammonium ions on the sulfidation of malachite (-201) was determined by density functional theory (DFT) calculations. Results of DFT calculations indicated that interlayer sulfidation occurs during the sulfidation process of malachite (-201). The absorption of both the ammonium ion and sulfide ion on the malachite (-201) surface is stronger than that of sulfur ion. After sulfidation was activated with ammonium ion, the Cu 3d orbital peak is closer to the Fermi level and characterized by a stronger peak value. Therefore, the addition of ammonium ions activated the sulfidation of malachite (-201), thereby improving the flotation performance.

  15. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles

    International Nuclear Information System (INIS)

    Saikia, Jiban; Saha, Bedabrata; Das, Gopal

    2011-01-01

    Graphical abstract: Malachite nanoparticles of 100-150 nm, have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate in pH range 4-5. - Abstract: Malachite nanoparticles of 100-150 nm have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate. We report a high adsorption capacity for chromate and arsenate on malachite nanoparticle from both individual and mixed solution in pH ∼4-5. However, the adsorption efficiency decreases with the increase of solution pH. Batch studies revealed that initial pH, temperature, malachite nanoparticles dose and initial concentration of chromate and arsenate were important parameters for the adsorption process. Thermodynamic analysis showed that adsorption of chromate and arsenate on malachite nanoparticles is endothermic and spontaneous. The adsorption of these anions has also been investigated quantitatively with the help of adsorption kinetics, isotherm, and selectivity coefficient (K) analysis. The adsorption data for both chromate and arsenate were fitted well in Langmuir isotherm and preferentially followed the second order kinetics. The binding affinity of chromate is found to be slightly higher than arsenate in a competitive adsorption process which leads to the comparatively higher adsorption of chromate on malachite nanoparticles surface.

  16. Photocatalytic performance of Sn-doped TiO2 nanostructured mono and double layer thin films for Malachite Green dye degradation under UV and vis-lights

    International Nuclear Information System (INIS)

    Sayilkan, F.; Asiltuerk, M.; Tatar, P.; Kiraz, N.; Arpac, E.; Sayilkan, H.

    2007-01-01

    Nanostructure Sn 4+ -doped TiO 2 based mono and double layer thin films, contain 50% solid ratio of TiO 2 in coating have been prepared on glass surfaces by spin-coating technique. Their photocatalytic performances were tested for degradation of Malachite Green dye in solution under UV and vis irradiation. Sn 4+ -doped nano-TiO 2 particle a doping ratio of about 5[Sn 4+ /Ti(OBu n ) 4 ; mol/mol%] has been synthesized by hydrotermal process at 225 deg. C. The structure, surface and optical properties of the thin films and/or the particles have been investigated by XRD, BET and UV/vis/NIR techniques. The results showed that the double layer coated glass surfaces have a very high photocatalytic performance than the other one under UV and vis lights. The results also proved that the hydrothermally synthesized nano-TiO 2 particles are fully anatase crystalline form and are easily dispersed in water. The results also reveal that the coated surfaces have hydrophilic property

  17. Decolorization and degradation of malachite green by Aspergillus ...

    African Journals Online (AJOL)

    Bioremediation using a variety of microbes for the degradation of xenobiotics seems a green solution to the problem of environmental pollution. Microbes have been gifted by nature with the ability of degrading a wide spectrum of environmental pollutants. Different fungi have the potentials to degrade complex and ...

  18. Enhanced sulfidation xanthate flotation of malachite using ammonium ions as activator

    OpenAIRE

    Dandan Wu; Wenhui Ma; Yingbo Mao; Jiushuai Deng; Shuming Wen

    2017-01-01

    In this study, ammonium ion was used to enhance the sulfidation flotation of malachite. The effect of ammonium ion on the sulfidation flotation of malachite was investigated using microflotation test, inductively coupled plasma (ICP) analysis, zeta potential measurements, and scanning electron microscope analysis (SEM). The results of microflotation test show that the addition of sodium sulfide and ammonium sulfate resulted in better sulfidation than the addition of sodium sulfide alone. The ...

  19. Efficient removal of chromate and arsenate from individual and mixed system by malachite nanoparticles.

    Science.gov (United States)

    Saikia, Jiban; Saha, Bedabrata; Das, Gopal

    2011-02-15

    Malachite nanoparticles of 100-150 nm have been efficiently and for the first time used as an adsorbent for the removal of toxic arsenate and chromate. We report a high adsorption capacity for chromate and arsenate on malachite nanoparticle from both individual and mixed solution in pH ∼4-5. However, the adsorption efficiency decreases with the increase of solution pH. Batch studies revealed that initial pH, temperature, malachite nanoparticles dose and initial concentration of chromate and arsenate were important parameters for the adsorption process. Thermodynamic analysis showed that adsorption of chromate and arsenate on malachite nanoparticles is endothermic and spontaneous. The adsorption of these anions has also been investigated quantitatively with the help of adsorption kinetics, isotherm, and selectivity coefficient (K) analysis. The adsorption data for both chromate and arsenate were fitted well in Langmuir isotherm and preferentially followed the second order kinetics. The binding affinity of chromate is found to be slightly higher than arsenate in a competitive adsorption process which leads to the comparatively higher adsorption of chromate on malachite nanoparticles surface. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Guest–host interactions in the alkaline bleaching of ...

    Indian Academy of Sciences (India)

    Administrator

    cyclodextrin on the bleaching rates of triphenylmethane dyes crystal violet (CV), malachite green (MG) and rosaniline. (RA) have been investigated in alkaline medium with a view to understand the guest–host interaction in these system. 2.

  1. Adsorptive Removal of Malachite Green with Activated Carbon ...

    African Journals Online (AJOL)

    NICO

    2012-11-22

    Nov 22, 2012 ... pyrolyzed in a stainless steel vertical tubular reactor placed in a tube furnace under ... the gas flow was switched to CO2 and activation was continued for 2 h. ... where Co and Ce (mg L–1) are the initial and equilibrium liquid- .... increase in contact time did not enhance the MG dye adsorption process.

  2. Sensitivity of juvenile striped bass to chemicals used in aquaculture

    Science.gov (United States)

    Bills, Terry D.; Marking, Leif L.; Howe, George E.

    1993-01-01

    Efforts to restore anadromous striped bass (Morone saxatilis) populations by the U.S. Fish and Wildlife Service and other agencies over the past 20 years have concentrated on hatchery culture to supplement dwindling natural reproduction. Adult fish captured for artificial spawning are stressed by handling and crowding in rearing ponds and are often exposed to therapeutants, anesthetics, disinfectants, and herbicides used in fish culture. We determined the toxicity of 17 fishery chemicals (chloramine-T, erythromycin, formalin, Hyamine 3500, Roccal, malachite green, sulfamerazine, benzocaine, etomidate, Finquel (MS-222) , metomidate, quinaldine sulfate, chlorine, potassium permanganate, Aquazine, copper sulfate, and Rodeo) to striped bass fry (average weight = 1 g) in reconstituted water (total hardness 40 mg/L) at 12 degree C. The 96-h LC50's (concentration calculated to produce 50% mortality in a population) ranged from 0.129 mg/L for malachite green to 340 mg/L for erythromycin. We also determined the effects of selected levels of water temperature, hardness, and pH on the toxicity of chloramine-T, formalin, malachite green, and Roccal. There were no differences in toxicity for any of the chemicals at any water quality variable tested except for chloramine-T, which was about 25 times more toxic in soft, acid water than in soft, alkaline water. Our data show that the striped bass is as sensitive to fishery chemicals as rainbow trout (Oncorhynchus mykiss), but is generally less resistant than bluegill (Lepomis macrochirus) and channel catfish (Ictalurus punctatus).

  3. Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions

    CSIR Research Space (South Africa)

    Mittala, H

    2016-02-01

    Full Text Available after nanocomposite formation with SiC NPs. The HNC was employed for the removal of cationic dyes, i.e., malachite green (MG) and rhodamine B (RhB) from the aqueous solution. The HNC was found to remove 91% (MG) and 86% (RhB) of dyes with a polymer dose...

  4. Surface modification of malachite with ethanediamine and its effect on sulfidization flotation

    Science.gov (United States)

    Feng, Qicheng; Zhao, Wenjuan; Wen, Shuming

    2018-04-01

    Ethanediamine was used to modify the mineral surface of malachite to improve its sulfidization and flotation behavior. The activation mechanism was investigated by adsorption experiments, X-ray photoelectron spectroscopy (XPS) analysis, and zeta potential measurements. Microflotation experiments showed that the flotation recovery of malachite was enhanced after the pretreatment of the mineral particles with ethanediamine prior to the addition of Na2S. Adsorption tests revealed that numerous sulfide ion species in the pulp solution were transferred onto the mineral surface through the formation of more copper sulfide species. This finding was confirmed by the results of the XPS measurements. Ethanediamine modification not only increased the contents of copper sulfide species on the malachite surface but also enhanced the reactivity of the sulfidization products. During sulfidization, Cu(II) species on the mineral surface were reduced into Cu(I) species, and the percentages of S22- and Sn2- relative to the total S increased after modification, resulting in increased surface hydrophobicity. The results of zeta potential measurements showed that the ethanediamine-modified mineral surface adsorbed with more sulfide ion species was advantageous to the attachment of xanthate species, thereby improving malachite floatability. The proposed ethanediamine modification followed by sulfidization xanthate flotation exhibits potential for industrial application.

  5. Synthesis of malachite@clay nanocomposite for rapid scavenging of cationic and anionic dyes from synthetic wastewater.

    Science.gov (United States)

    Srivastava, Varsha; Sillanpää, Mika

    2017-01-01

    Synthesis of malachite@clay nanocomposite was successfully carried out for the removal of cationic (Methylene Blue, MB) and anionic dyes (Congo Red, CR) from synthetic wastewater. Nanocomposite was characterized by TEM, SEM, FT-IR, EDS analysis and zeta potential. TEM analysis indicated that the particle diameter of nanocomposite was in the range of 14 to 23nm. Various important parameters viz. contact time, concentration of dyes, nanocomposite dosage, temperature and solution pH were optimized to achieve maximum adsorption capacity. In the case of MB, removal decreased from 99.82% to 93.67% while for CR, removal decreased from 88.55% to 75.69% on increasing dye concentration from 100 to 450mg/L. pH study confirmed the higher removal of CR in acidic range while MB removal was higher in alkaline range. Kinetic study revealed the applicability of pseudo-second-order model for the adsorption of both dyes. Negative values of ΔG 0 for both systems suggested the feasibility of dye removal and support for spontaneous adsorption of CR and MB on nanocomposite. Nanocomposite showed 277.77 and 238.09mg/g Langmuir adsorption capacity for MB and CR respectively. Desorption of dyes from the dye loaded nanocomposite was easily carried out with acetone. The results indicate that the prepared malachite@clay nanocomposite is an efficient adsorbent with high adsorption capacity for the aforementioned dyes. Copyright © 2016. Published by Elsevier B.V.

  6. (TECTONA GRANDIS LEAF POWDER

    Directory of Open Access Journals (Sweden)

    Yash Mishra

    2015-01-01

    Full Text Available In this study, the adsorption potential of Teak (Tectona grandis leaf powder (TLP toremove Methylene blue (MB and Malachite Green (MG dye molecules from aqueoussolution was investigated. Batch experiments were conducted to evaluate the influenceof operational parameters such as, pH (2−9, adsorbent dosage (1−7 g/L, contact time(15−150 minutes and initial dye concentration (20−120 mg/L at stirring speed of 150rpm for the adsorption of MB and MG on TLP. Maximum removal efficiency of 98.4%and 95.1% was achieved for MB and MG dye, respectively. The experimentalequilibrium data were analysed using Langmuir, Freundlich and Temkin isothermmodels and it was found that, it fitted well to the Freundlich isotherm model. Thesurface structure and morphology of the adsorbent was characterized using scanningelectron microscopy (SEM and the presence of functional groups and its interactionwith the dye molecules were analysed using Fourier transform infrared spectroscopy(FTIR. Based on the investigation, it has been demonstrated that the teak leaf powderhas good potential for effective adsorption of methylene blue and malachite green dye.

  7. Adsorption of hazardous cationic dye onto the combustion derived SrTiO3 nanoparticles: Kinetic and isotherm studies

    Directory of Open Access Journals (Sweden)

    N.P. Bhagya

    2016-03-01

    Full Text Available In this article we report on solution combustion method to synthesize SrTiO3 nanoparticles (ST-NPs and the removal of malachite green (MG azo dye from the aqueous solution. The synthesized ST-NPs were calcined at 600 °C for 2 h. Powder X-ray diffraction (PXRD, field emission scanning electron microscopy (FE-SEM, transmission electron microscopy (TEM, Fourier transform infrared spectroscopy (FT-IR, and Brunauer–Emmett–Teller (BET were used to characterize the product. Adsorption experiments were performed with cationic malachite green (MG dye. ∼98% dye was adsorbed onto the ST-NPs at pH 10 for 30 min of the contact time. The optimum adsorbent dose was found to be 0.015 g/L of the dye. To study the adsorption kinetics Langmuir Hinshelwood model was used and the first order kinetic best describes the MG adsorption onto the ST-NPs. The adsorption isotherms data of MG onto ST-NPs obtained were analyzed by Langmuir and Freundlich isotherm models and the results describe the best representation of the Langmuir isotherm model.

  8. A rapid molecular diagnosis of cutaneous leishmaniasis by colorimetric malachite green-loop-mediated isothermal amplification (LAMP) combined with an FTA card as a direct sampling tool.

    Science.gov (United States)

    Nzelu, Chukwunonso O; Cáceres, Abraham G; Guerrero-Quincho, Silvia; Tineo-Villafuerte, Edwin; Rodriquez-Delfin, Luis; Mimori, Tatsuyuki; Uezato, Hiroshi; Katakura, Ken; Gomez, Eduardo A; Guevara, Angel G; Hashiguchi, Yoshihisa; Kato, Hirotomo

    2016-01-01

    Leishmaniasis remains one of the world's most neglected diseases, and early detection of the infectious agent, especially in developing countries, will require a simple and rapid test. In this study, we established a quick, one-step, single-tube, highly sensitive loop-mediated isothermal amplification (LAMP) assay for rapid detection of Leishmania DNA from tissue materials spotted on an FTA card. An FTA-LAMP with pre-added malachite green was performed at 64°C for 60min using a heating block and/or water bath and DNA amplification was detected immediately after incubation. The LAMP assay had high detection sensitivity down to a level of 0.01 parasites per μl. The field- and clinic-applicability of the colorimetric FTA-LAMP assay was demonstrated with 122 clinical samples collected from patients suspected of having cutaneous leishmaniasis in Peru, from which 71 positives were detected. The LAMP assay in combination with an FTA card described here is rapid and sensitive, as well as simple to perform, and has great potential usefulness for diagnosis and surveillance of leishmaniasis in endemic areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Hydrophobization og the surface fo malachite with some fluorosurfactants. 2,3 no fussokei kaimen kasseizai ni yoru malachite hyomen no sosuika

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, M [National Reserach Institute for Pollution and Resources, Tsukuba (Japan); Wakamatsu, T [Kyoto University, Kyoko (Japan). Faculty of Engineering

    1991-10-18

    The depleting trends of high-grade ores in recent years make it unavoidable to float ores in fine powder forms. To achieve this, research and development is important on such a recovering agent that can hydrophobize the surfaces of useful ores selectively and powerfully. This paper describes the discussion on three kinds of fluorosurfactant, namely perfluorooctanoic acid, Ftergent-100 and Ftergent-150, whic were used to hydrophobize the surface of malachite, and compared of its utilization possibility as a recovery agent with other surfactants. As a result, it was found that the Ftergent-100, which contains five CF{sub 3}{sup {minus}} in one molecule having extremely low critical surface tension, and the Ftergent-150 can hydrophobize sufficiently the malachite surface and provide good deposition. The region providing good deposition was at a weak-acidic to weak-alkali region in the case of the Ftergent-150. Therefore, both materials are thought they could be used as a recovering agent. 8 refs., 10 figs., 3 tabs.

  10. Author Details

    African Journals Online (AJOL)

    Immobilization of lead in shooting range soil using biochar from spent mushroomsubstrateImmobilization of lead in shooting range soil using biochar from spent mushroomsubstrate. Abstract PDF · Vol 9, No 6S (2017) - Articles Sorption of malachite green (MG) by cassava stem biochar (CSB) kinetic and isotherm studies

  11. Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution

    International Nuclear Information System (INIS)

    Kannan, Chellapandian; Sundaram, Thiravium; Palvannan, Thayumanavan

    2008-01-01

    The conventional adsorbents like activated carbon, agricultural wastes, molecular sieves, etc., used for dye adsorption are unstable in the environment for long time, and hence the adsorbed dyes again gets liberated and pollute the environment. To avoid this problem, environmentally stable adsorbent of silica and alumina should be employed for malachite green adsorption. The adsorbents were characterized by Fourier transformed infrared spectroscopy (FT-IR) to confirm the tetrahedral framework of silica and non-tetrahedral framework of alumina. The adsorption equilibrium of dye on alumina and silica were 4 and 5 h, respectively, this less adsorption time on alumina might be due to the less activation energy on alumina (63.46 kJ mol -1 ) than silica (69.93 kJ mol -1 ). Adsorption increased with increase of temperature on silica, in alumina, adsorption increased up to 60 deg. C, and further increase of temperature decreased the adsorption due to the structural change of non-tetrahedral alumina in water. The optimum pH for dye adsorption on alumina was 5 and silica was 6. The dye adsorptions on both adsorbents followed pseudo-second-order kinetics. The adsorption well matched with Langmuir and Freundlich adsorption isotherms and found that adsorption capacity on alumina was more than silica. The thermodynamic studies proved that the adsorption was endothermic and chemisorptions (ΔH o > 40 kJ mol -1 ) on alumina and silica. Recovery of dye on alumina and silica were studied from 30 to 90 deg. C and observed that 52% of dye was recovered from alumina and only 3.5% from silica. The less recovery on silica proved the strong adsorption of dye on silica than alumina

  12. Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Chellapandian [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India)], E-mail: chellapandiankannan@gmail.com; Sundaram, Thiravium [Department of Chemistry, Periyar University, Salem 636011, Tamilnadu (India); Palvannan, Thayumanavan [Department of Biochemistry, Periyar University, Salem 636011, Tamilnadu (India)

    2008-08-30

    The conventional adsorbents like activated carbon, agricultural wastes, molecular sieves, etc., used for dye adsorption are unstable in the environment for long time, and hence the adsorbed dyes again gets liberated and pollute the environment. To avoid this problem, environmentally stable adsorbent of silica and alumina should be employed for malachite green adsorption. The adsorbents were characterized by Fourier transformed infrared spectroscopy (FT-IR) to confirm the tetrahedral framework of silica and non-tetrahedral framework of alumina. The adsorption equilibrium of dye on alumina and silica were 4 and 5 h, respectively, this less adsorption time on alumina might be due to the less activation energy on alumina (63.46 kJ mol{sup -1}) than silica (69.93 kJ mol{sup -1}). Adsorption increased with increase of temperature on silica, in alumina, adsorption increased up to 60 deg. C, and further increase of temperature decreased the adsorption due to the structural change of non-tetrahedral alumina in water. The optimum pH for dye adsorption on alumina was 5 and silica was 6. The dye adsorptions on both adsorbents followed pseudo-second-order kinetics. The adsorption well matched with Langmuir and Freundlich adsorption isotherms and found that adsorption capacity on alumina was more than silica. The thermodynamic studies proved that the adsorption was endothermic and chemisorptions ({delta}H{sup o} > 40 kJ mol{sup -1}) on alumina and silica. Recovery of dye on alumina and silica were studied from 30 to 90 deg. C and observed that 52% of dye was recovered from alumina and only 3.5% from silica. The less recovery on silica proved the strong adsorption of dye on silica than alumina.

  13. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N,N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation.

    Science.gov (United States)

    Liu, Sheng; Zhong, Hong; Liu, Guangyi; Xu, Zhenghe

    2018-02-15

    Hydroxamate and sulfhydryl surfactants are effective collectors for flotation of copper minerals. The combination application of hydroxamate and sulfhydryl collectors has been proved to be an effective approach for improving the flotation recovery of non-sulfide copper minerals. A surfactant owing both hydroxamate and dithiocarbamate groups might exhibit strong affinity to non-sulfide copper minerals through double sites adsorption, rendering an enhanced hydrophobization to non-sulfide copper minerals flotation. The flotation performance of S-[(2-hydroxyamino)-2-oxoethyl]- N,N-dibutyldithiocarbamate (HABTC) to malachite, calcite and quartz were first evaluated through systematic micro-flotation experiments. HABTC's hydrophobic mechanism to malachite was further investigated and analyzed by zeta potential, Fourier transform infrared spectroscopy (FTIR), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The micro-flotation results demonstrated HABTC was an excellent collector for malachite flotation and exhibited favorable selectivity for flotation separation of malachite from quartz or calcite under pH 8.5-10.3. Zeta potential and FTIR implied that HABTC might bond with the surface copper atoms of malachite, with releasing the H + ions of its hydroxamate group into pulp. ToF-SIMS provided clear evidences that the Cu-hydroxamate and Cu-dithiocarbamate groups were formed on malachite surfaces after HABTC adsorption. XPS revealed that Cu(I)/Cu(II) mixed-valence surface complexes of HABTC anchored on malachite through formation of Cu(I)S and Cu(II)O bonds, accompanying with reduction of partial surface Cu(II) to Cu(I). The Cu(I)/Cu(II) mixed-valence double chelating character and "chair"-shape N,N-dibutyldithiocarbamate hydrophobic group, resulting in an enhanced affinity and hydrophobization of HABTC to malachite flotation. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Periodically poled self-frequency-doubling green laser fabricated from Nd:Mg:LiNbO₃ single crystal.

    Science.gov (United States)

    Wang, Dong Zhou; Sun, De Hui; Kang, Xue Liang; Sang, Yuan Hua; Yan, Bo Xia; Liu, Hong; Bi, Yong

    2015-07-13

    Although a breakthrough in the fabrication of green laser diodes has occurred, the high costs associated with the difficulty of manufacture still present a great obstacle for its practical application. Another approach for producing a green laser, by combining a laser device and a nonlinear crystal, entails the fabrication of complex structures and exhibits unstable performance due to interface contact defects, thus limiting its application. In this work, we report the fabrication by domain engineering of high quality periodically poled LiNbO₃, co-doped with Nd³⁺ and Mg²⁺, which combines a laser medium and a high efficiency second harmonic conversion crystal into a single system that is designed to overcome the above problems. An 80 mW self-frequency doubling green laser was constructed for the first time from a periodically poled Nd:Mg:LiNbO₃ crystal of 16 mm in length. This crystal can be used for developing compact, stable, highly efficient mini-solid-state-lasers, which promise to have many applications in portable laser-based spectroscopy, photo-communications, terahertz wave generation, and laser displays.

  15. Ni/Fe and Mg/Fe layered double hydroxides and their calcined derivatives: preparation, characterization and application on textile dyes removal

    Directory of Open Access Journals (Sweden)

    Rachid Elmoubarki

    2017-07-01

    Full Text Available In this study, Mg/Fe and Ni/Fe layered double hydroxides (LDHs with molar ratio (M2+/Fe3+ of 3 and intercalated with carbonate ions were synthesized by co-precipitation method. The as-synthesized materials and their calcined products (CLDHs were characterized by X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermo-gravimetric and differential thermal analyses (TGA–DTA, transmission electron microscopy coupled with energy dispersive X-ray spectroscopy (TEM-EDX, inductively coupled plasma (ICP and elemental chemical analysis CHNSO. The materials were used as adsorbents for the removal availability of textile dyes from aqueous solution. Methylene blue (MB and malachite green (MG, representative of cationic dyes, and methyl orange (MO representative of anionic dyes were used as model molecules. Adsorption experiments were carried out under different parameters such as contact time, temperature, initial dyes concentration and solution pH. Experimental results indicate that CLDHs had much higher adsorption capacities compared to LDHs. Adsorption kinetic data fitted well the pseudo-second order kinetic model. The process was spontaneous, endothermic for cationic dyes and exothermic for the anionic dye. Equilibrium sorption data fitted the Langmuir model instead of Freundlich model.

  16. Chlorophyll a is a favorable substrate for Chlamydomonas Mg-dechelatase encoded by STAY-GREEN.

    Science.gov (United States)

    Matsuda, Kaori; Shimoda, Yousuke; Tanaka, Ayumi; Ito, Hisashi

    2016-12-01

    Mg removal from chlorophyll by Mg-dechelatase is the first step of chlorophyll degradation. Recent studies showed that in Arabidopsis, Stay Green (SGR) encodes Mg-dechelatase. Though the Escherichia coli expression system is advantageous for investigating the properties of Mg-dechelatase, Arabidopsis Mg-dechelatase is not successfully expressed in E. coli. Chlamydomonas reinhardtii SGR (CrSGR) has a long, hydrophilic tail, suggesting that active CrSGR can be expressed in E. coli. After the incubation of chlorophyll a with CrSGR expressed in E. coli, pheophytin a accumulated, indicating that active CrSGR was expressed in E. coli. Substrate specificity of CrSGR against chlorophyll b and an intermediate molecule of the chlorophyll b degradation pathway was examined. CrSGR exhibited no activity against chlorophyll b and low activity against 7-hydroxymethyl chlorophyll a, consistent with the fact that chlorophyll b is degraded only after conversion to chlorophyll a. CrSGR exhibited low activity against divinyl chlorophyll a and chlorophyll a', and no activity against chlorophyllide a, protochlorophyll a, chlorophyll c 2 , and Zn-chlorophyll a. These observations indicate that chlorophyll a is the most favorable substrate for CrSGR. When CrSGR was expressed in Arabidopsis cells, the chlorophyll content decreased, further confirming that SGR has Mg-dechelating activity in chloroplasts. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Preparation and Photocatalytic Property of TiO2/Diatomite-Based Porous Ceramics Composite Materials

    Directory of Open Access Journals (Sweden)

    Shuilin Zheng

    2012-01-01

    Full Text Available The diatomite-based porous ceramics was made by low-temperature sintering. Then the nano-TiO2/diatomite-based porous ceramics composite materials were prepared by hydrolysis deposition method with titanium tetrachloride as the precursor of TiO2 and diatomite-based porous as the supporting body of the nano-TiO2. The structure and microscopic appearance of nano-TiO2/diatomite-based porous ceramics composite materials was characterized by XRD and SEM. The photocatalytic property of the composite was investigated by the degradation of malachite green. Results showed that, after calcination at 550°C, TiO2 thin film loaded on the diatomite-based porous ceramics is anatase TiO2 and average grain size of TiO2 is about 10 nm. The degradation ratio of the composite for 5 mg/L malachite green solution reached 86.2% after irradiation for 6 h under ultraviolet.

  18. Electrocoagulation-Adsorption to Remove Anionic and Cationic Dyes from Aqueous Solution by PV-Energy

    OpenAIRE

    Castañeda-Díaz, J.; Pavón-Silva, T.; Gutiérrez-Segura, E.; Colín-Cruz, A.

    2017-01-01

    The cationic dye malachite green (MG) and the anionic dye Remazol yellow (RY) were removed from aqueous solutions using electrocoagulation-adsorption processes. Batch and continuous electrocoagulation procedures were performed and compared. Carbonaceous materials obtained from industrial sewage sludge and commercial activated carbons were used to adsorb dyes from aqueous solutions in column systems with a 96–98% removal efficiency. The continuous electrocoagulation-adsorption system was more ...

  19. On-line Raman spectroscopy of calcite and malachite during irradiation with swift heavy ions

    International Nuclear Information System (INIS)

    Dedera, Sebastian; Burchard, Michael; Glasmacher, Ulrich A.; Schöppner, Nicole; Trautmann, Christina; Severin, Daniel; Romanenko, Anton; Hubert, Christian

    2015-01-01

    A new on-line Raman System, which was installed at the M3-beamline at the UNILAC, GSI Helmholtzzentrum für Schwerionenforschung Darmstadt was used for first “in situ” spectroscopic measurements. Calcite and malachite samples were irradiated in steps between 1 × 10"9 and 1 × 10"1"2 ions/cm"2 with Au ions (calcite) and Xe ions (malachite) at an energy of 4.8 MeV/u. After irradiation, calcite revealed a new Raman band at 437 cm"−"1 and change of the full width at half maximum for the 1087 cm"−"1 Raman band. The Raman bands of malachite change significantly with increasing fluence. Up to a fluence of 7 × 10"1"0 ions/cm"2, all existing bands decrease in intensity. Between 8 × 10"1"0 and 1 × 10"1"1 ions/cm"2 a broad Cu_2O band between 110 and 220 cm"−"1 occurs, which superimposes the pre-existing Raman bands. Additionally, a new broad band between 1000 and 1750 cm"−"1 is formed, which is interpreted as a carbon coating. In contrast to the Cu_2O band, the carbon band vanished when further irradiating the sample. The installations as well as first in situ measurements at room temperature are presented.

  20. Comparison of Adsorption of Phenol O-O and N-O Chelating Collectors at the Malachite/Water Interface in Flotation

    Directory of Open Access Journals (Sweden)

    Zhili Li

    2017-02-01

    Full Text Available To separate one base metal mineral from another by flotation, it is indispensable to identify chemical reagents that specifically interact with the surface metal sites of one mineral or a group of minerals. This work studies the interactions of chelating collectors which offer the best potential for collecting abilities and mineral specificity with a typical refractory oxide mineral (malachite. Zeta potential, adsorption and Fourier transform infrared (FTIR measurements are applied to differentiate the interactions of salicylaldoxime and salicyl hydroxamate on the malachite surface. Salicylaldoxime and salicyl hydroxamate are of molecular structures that resemble each other, but with different bond distances in the ligand atoms which result in their unusual adsorption behavior and collecting ability. Thus, the flotation of malachite behaves differently with the two chelating collectors. This study might provide useful clues for designing novel collectors in base metal oxide flotations.

  1. Depletion layer characteristics and photovoltaic energy conversion in organic P-N heterojunctions

    Energy Technology Data Exchange (ETDEWEB)

    Chamberlain, G A

    1983-11-01

    The depletion layer characteristics of an organic p-n heterojunction were investigated by measuring the temperature variation of the capacitance, rectification and photovoltaic short-circuit current and open-circuit voltage. The cell consisted of indium-tin-oxide-coated glass/n-type malachite green/p-type merocyanine/Au exposed to chlorine vapour, in the absence of air, to effect the marked rectification and photovoltaic properties observed. Capacitance measurements indicate that a depletion layer of about 65 nm and a barrier height of about 0.8 eV are formed between the two dyes. The forward dark current is dominated by electron tunnelling from the malachite green to the merocyanine. Using an asymmetric trapping model, the reverse saturation current was explained as the thermally activated emission of electrons from filled traps at the Fermi energy of the merocyanine to empty traps in the malachite green over a barrier of 0.72+-0.1 eV. When the cell is working in the photovoltaic mode, the photocurrent is limited by the poor carrier photogeneration efficiency in the malachite green.

  2. Quantum chemical and thermodynamic calculations of fulvic and humic copper complexes in reactions of malachite and azurite formation

    International Nuclear Information System (INIS)

    Fomin, Vitaliy N.; Gogol, Daniil B.; Rozhkovoy, Ivan E.; Ponomarev, Dmitriy L.

    2017-01-01

    This article provides a thermodynamic evaluation of the reactions of humic and fulvic acids in the process of malachite and azurite mineralogenesis. Semi-empirical methods AM/1, MNDO, PM3, PM5, PM6 and PM7 were used to compute the heat of formation, enthalpy and entropy for thermodynamic calculations of the reactions performed on the basis of Hess's law. It is shown that methods PM6 and PM7 in the MOPAC software package provide good compliance with experimental and calculated heats of formation for copper complexes and alkaline earth metal complexes with organic acids. It is found that the malachite and azurite formation processes involving humus complexing substances are thermodynamically possible. - Highlights: • Copper and alkali-earth metal complexes with humic and fulvic acids are considered. • Quantum chemical calculation of thermodynamics for the structures was performed. • Semi-empirical methods PM6 and PM7 provide best correlation for the properties. • Parameters of basic copper carbonate formation reactions were obtained by Hess's law. • Processes of malachite and azurite formation from humus complexes are possible.

  3. A facility for liquid-phase radiation experiments on heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Zvara, I; Yakushev, A B; Timokhin, S N [Flerov Lab. of Nuclear Reactions, Dubna (Russian Federation). Joint Inst. for Nuclear Research

    1994-05-01

    The facility for liquid-phase radiation experiments installed on the beam line of the U-400 cyclotron in the Flerov Laboratory of Nuclear Reactions, JINR, Dubna, is described. The accelerator provides intermediate energy (some 10 MeV/nucleon) beams of ions ranging from Li to Xe. Preliminary results on the radiolysis of the Fricke solution and malachite green in ethanol by {sup 11}B, {sup 24}Mg and {sup 40}Ca ions are presented. (author).

  4. High-Efficiency Intracavity Continuous-Wave Green-Light Generation by Quasiphase Matching in a Bulk Periodically Poled MgO:LiNbO3 Crystal

    Directory of Open Access Journals (Sweden)

    Shaowei Chu

    2008-01-01

    Full Text Available 908 mW of green light at 532 nm were generated by intracavity quasiphase matching in a bulk periodically poled MgO:LiNbO3 (PPMgLN crystal. A maximum optical-to-optical conversion efficiency of 33.5% was obtained from a 0.5 mm thick, 10 mm long, and 5 mol% MgO:LiNbO3 crystal with an end-pump power of 2.7 W at 808 nm. The temperature bandwidth between the intracavity and single-pass frequency doubling was found to be different for the PPMgLN. Reliability and stability of the green laser were evaluated. It was found that for continuous operation of 100 hours, the output stability was better than 97.5% and no optical damage was observed.

  5. Study of the field-sequential modulation of Nd:YVO4/MgO:PPLN based intra-cavity frequency doubling green laser

    Science.gov (United States)

    Zhang, Bin; Gan, Yi; Xu, Chang-Qing

    2018-06-01

    The field sequential modulation of a Nd:YVO4/MgO:PPLN intra-cavity, frequency doubling green laser was studied. The modulation frequency was set at 1 kHz and the duty cycle was changed from 20% to CW operation. It was shown that the quasi-phase matched (QPM) temperature decreases with an increase of the modulation duty cycle, and in turn causing the peak efficiency to rise. It was found that the temperature change in MgO:PPLN and the thermal lens effect in Nd:YVO4 crystal were the respective origins of these observed experimental phenomena.

  6. Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements.

    Science.gov (United States)

    Dekant, Wolfgang; Fujii, Kenkichi; Shibata, Eiichiro; Morita, Osamu; Shimotoyodome, Akira

    2017-08-05

    The safety of green tea infusions and green tea extract (GTE)-based products is reviewed regarding catechins. Epigallocatechin 3-gallate (EGCG), the major catechin present in green tea, is suspected of being responsible for liver toxicity reported in humans consuming food supplements. Intake of EGCG with green tea infusions and GTE-based beverages is up to about 450mg EGCG/person/day in Europe and higher in Asia. Consumption of green tea is not associated with liver damage in humans, and green tea infusion and GTE-based beverages are considered safe in the range of historical uses. In animal studies, EGCG's potency for liver effects is highly dependent on conditions of administration. Use of NOAELs from bolus administration to derive a tolerable upper intake level applying the margin of safety concept results in acceptable EGCG-doses lower than those from one cup of green tea. NOAELs from toxicity studies applying EGCG with diet/split of the daily dose are a better point of departure for risk characterization. In clinical intervention studies, liver effects were not observed after intakes below 600mg EGCG/person/day. Thus, a tolerable upper intake level of 300mg EGCG/person/day is proposed for food supplements; this gives a twofold safety margin to clinical studies that did not report liver effects and a margin of safety of 100 to the NOAELs in animal studies with dietary administration of green tea catechins. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Generating a 2.4-W cw Green Laser by Intra-Cavity Frequency Doubling of a Diode-Pumped Nd:GdVO4 Laser with a MgO:PPLN Crystal

    International Nuclear Information System (INIS)

    Lu Jun; Liu Yan-Hua; Zhao Gang; Hu Xiao-Peng; Zhu Shi-Ning

    2012-01-01

    High-power cw green laser radiation is generated by intra-cavity frequency doubling of a diode-pumped Nd:GdVO 4 laser with a MgO-doped periodically-poled LiNbO 3 (MgO:PPLN) crystal at room temperature. An average power of 2.4 W at 0.53 μm is obtained under the pump 15 W at 808 nm, corresponding to an overall optical-to-optical conversion efficiency of 16%. The M 2 factor of the green beam is 3.90 and 1.34 for the horizontal and vertical direction, respectively. In addition, the power fluctuation is measured to be about ±5%

  8. Method for in vitro screening of aquatic fungicides

    Science.gov (United States)

    Bailey, T.A.

    1983-01-01

    Methods were developed for in vitro screening of candidate aquatic fungicides for efficacy against Achlya fiagellata, A. racemosa, Saprolegnia hypogyna and S. megasperma. Agar plugs containing fungal hyphae, removed from the edge of actively growing colonies, were placed in the depressions of spot plates containing 1a??0, 10a??0 and 100 mg/I of the candidate compounds for 15 or 60 min. After exposure, the plugs were transferred on to filter papers (0a??45-A?m pore) in a holder, rinsed, and then placed on cornmeal agar medium in tri-petri dishes. The plates were checked for mycelial growth after 48, 96 and 168 h of incubation in a lighted (400-800 A?m) environmental control chamber at 20A?2A?C. Criteria for the acceptance or rejection of candidate aquatic fungicides for further study were based on the antifungal spectrum index (ASI) comparisons between respective compounds and malachite green after 48 h and the concentration level producing complete growth inhibition. Candidate compounds whose ASI was less than 50% that of malachite green after 48 h or did not inhibit growth at levels less than 100 mg/l were rejected. This method provides a base from which in vivo and definitive test regimens can be developed. Preliminary in vitro screening of candidate fungicides reduces the need for costly in vivo tests on compounds that have low antifungal activity.

  9. Development of an LC-MS based enzyme activity assay for MurC: application to evaluation of inhibitors and kinetic analysis.

    Science.gov (United States)

    Deng, Gejing; Gu, Rong-Fang; Marmor, Stephen; Fisher, Stewart L; Jahic, Haris; Sanyal, Gautam

    2004-06-29

    An enzyme activity assay, based on mass spectrometric (MS) detection of specific reaction product following HPLC separation, has been developed to evaluate pharmaceutical hits identified from primary high throughput screening (HTS) against target enzyme Escherichia coli UDP-N-acetyl-muramyl-L-alanine ligase (MurC), an essential enzyme in the bacterial peptidoglycan biosynthetic pathway, and to study the kinetics of the enzyme. A comparative analysis of this new liquid chromatographic-MS (LC-MS) based assay with a conventional spectrophotometric Malachite Green (MG) assay, which detects phosphate produced in the reaction, was performed. The results demonstrated that the LC-MS assay, which determines specific ligase activity of MurC, offers several advantages including a lower background (0.2% versus 26%), higher sensitivity (> or = 10 fold), lower limit of quantitation (LOQ) (0.02 microM versus 1 microM) and wider linear dynamic range (> or = 4 fold) than the MG assay. Good precision for the LC-MS assay was demonstrated by the low intraday and interday coefficient of variation (CV) values (3 and 6%, respectively). The LC-MS assay, free of the artifacts often seen in the Malachite Green assay, offers a valuable secondary assay for hit evaluation in which the false positives from the primary high throughput screening can be eliminated. In addition, the applicability of this assay to the study of enzyme kinetics has also been demonstrated. Copyright 2004 Elsevier B.V.

  10. Identification of green pigments from fragments of Roman mural paintings of three Roman sites from north of Germania Superior

    Science.gov (United States)

    Debastiani, Rafaela; Simon, Rolf; Goettlicher, Joerg; Heissler, Stefan; Steininger, Ralph; Batchelor, David; Fiederle, Michael; Baumbach, Tilo

    2016-10-01

    Roman mural green pigment painting fragments from three Roman sites in the north of the Roman province Germania Superior: Koblenz Stadtwald Remstecken (KOSR), Weißenthurm " Am guten Mann" (WEIS) and Mendig Lungenkärchen (MELU), dating from second and third centuries AD were analyzed. The experiments were performed nondestructively using synchrotron-based scanning macro-X-ray fluorescence (SR-MA-XRF), synchrotron-based scanning micro-X-ray fluorescence (SR-μ-XRF), synchrotron-based X-ray diffraction (SR-XRD) and Raman spectroscopy. Correlation between SR-MA-XRF, SR-μ-XRF elemental map distributions and optical images of scanned areas was mainly found for the elements Ca, Fe and K. With XRF, Fe and K were identified correlated with green pigment, but in samples from two sites, Mendig Lungenkärchen and Weißenthurm " Am guten Mann", also Cu was detected in minor concentration. The results of SR-XRD and Raman spectroscopy were limited to one sample from Weißenthurm " Am guten Mann". In this sample, green earth and calcium carbonate were identified by SR-XRD and, additionally, malachite by Raman spectroscopy.

  11. A facility for liquid-phase radiation experiments on heavy ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Stuglik, Z; Zvara, I; Yakushev, A B; Timokhin, S N

    1993-12-31

    The title facility is described, installed on a beam line of the 4-meter U-400 cyclotron in the Flerov Laboratory of Nuclear Reactions, JINR, Dubna. The accelerator provides intermediate energy (some 10 MeV/nucleon) beams of ions from Li to Xe. Preliminary results on the radiolysis of two liquid systems -Fricke solution and malachite green in ethanol - by {sup 11}B, {sup 24}Mg, and {sup 40}Ca ions are presented. Some experimental problems and uncertainities faced at the quantitative evaluation of the data are discussed. 62 refs.; 5 figs.; 2 tabs.

  12. A facility for liquid-phase radiation experiments on heavy ion beams

    International Nuclear Information System (INIS)

    Stuglik, Z.; Zvara, I.; Yakushev, A.B.; Timokhin, S.N.

    1992-01-01

    The title facility is described, installed on a beam line of the 4-meter U-400 cyclotron in the Flerov Laboratory of Nuclear Reactions, JINR, Dubna. The accelerator provides intermediate energy (some 10 MeV/nucleon) beams of ions from Li to Xe. Preliminary results on the radiolysis of two liquid systems -Fricke solution and malachite green in ethanol - by 11 B, 24 Mg, and 40 Ca ions are presented. Some experimental problems and uncertainities faced at the quantitative evaluation of the data are discussed. 62 refs.; 5 figs.; 2 tabs

  13. Photodynamic therapy as a new approach in vulvovaginal candidiasis in murine model

    Science.gov (United States)

    Santi, Maria E.; Lopes, Rubia G.; Prates, Renato A.; Sousa, Aline; Ferreira, Luis R.; Fernandes, Adjaci U.; Bussadori, Sandra K.; Deana, Alessandro M.

    2015-02-01

    Vulvovaginal candidiasis is a common cause of vaginal infections. This study investigates the efficiency of antimicrobial photodynamic therapy (aPDT) against yeast cells in mice. Methylene blue (MB), malachite green (MG), and a special designed protoporphirin (PpNetNI) were used as photosensitizers. Female BALB-c mice were infected with Candida albicans ATCC 90028. PDT was applied with two different light sources, intravaginal and transabdominal. Vaginal washes were performed and cultivated for microbial quantification. Antimicrobial PDT was able to decrease microbial content with MB and PpNetNI (pcandidiasis.

  14. Targeting MED1 LxxLL Motifs for Tissue-Selective Treatment of Human Breast Cancer

    Science.gov (United States)

    2013-09-01

    AU U UG AU AU CG UA GC au gc gc AA AA AU CG UA GC UA CG UA AU UA UA CG CG UA UA GC GC AU CG GC GU 5́ 3́ U U MG aptamer Survivin siRNA Folate ...DNA/RNA sequence FIGURE 19.5 Diagram of RNA nanoparticle harboring malachite green aptamer, survivin siRNA and folate -DNA/RNA sequence for targeting...modifications were extensively exam- ined to increase its stability in serum by fluori- nation, methylation , and addition of a 3’-3’-linked

  15. 5W intracavity frequency-doubled green laser for laser projection

    Science.gov (United States)

    Yan, Boxia; Bi, Yong; Li, Shu; Wang, Dongdong; Wang, Dongzhou; Qi, Yan; Fang, Tao

    2014-11-01

    High power green laser has many applications such as high brightness laser projection and large screen laser theater. A compact and high power green-light source has been developed in diode-pumped solid-state laser based on MgO doped periodically poled LiNbO3 (MgO:PPLN). 5W fiber coupled green laser is achieved by dual path Nd:YVO4/MgO:PPLN intra-cacity frequency-doubled. Single green laser maximum power 2.8W at 532nm is obtained by a 5.5W LD pumped, MgO:PPLN dimensions is 5mm(width)×1mm(thickness)×2mm(length), and the optical to optical conversion efficiency is 51%. The second LD series connected with the one LD, the second path green laser is obtained using the same method. Then the second path light overlap with the first path by the reflection mirrors, then couple into the fiber with a focus mirror. Dual of LD, Nd:YVO4, MgO:PPLN are placed on the same heat sink using a TEC cooling, the operating temperature bandwidth is about 12°C and the stablity is 5% in 96h. A 50×50×17mm3 laser module which generated continuous-wave 5 W green light with high efficiency and width temperature range is demonstrated.

  16. Optical absorption and thermoluminescence in Mg O, Mg O:Ni and Mg O:Li irradiated at room temperature; Absorcion optica y termoluminiscencia en MgO, MgO:Ni y MgO:Li irradiados a temperatura ambiente

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, L

    1984-07-01

    Optical absorption and thermoluminescence (TL) studies in Mg O, Mg O:Ni and Mg O:Li irradiated at room temperature are presented. In pure Mg O the thermal annihilation of Fe3+ by recombination with thermally released electrons at {approx} 90 and 175 degree centigree and the V center annealing by hole release up to 100 degree centigree cause the observed glow peaks at these temperatures. The TL excitation spectrum shows two maxima at 245 nm (electron center) and 288 nm (Fe3+). In Mg O:Ni X irradiation induces Fe{sup 2}+ {yields}- Fe{sup 3}+ and Ni{sup 2}+ {yields} Ni{sup 3}+ oxidations. Two TL emission bands centered at 110 degree centigree (red) and 80 o{sup C} (green) are assigned to electron release and their recombination at Fe{sup 3}+ and Ni{sup 3}+ respectively. In Mg O:Li two TL emission bands, one blue (430 nm) and the other red (730 nm) with excitation maxima at 245 nm (electron center) and 200 nm (hole center) respectively are observed. No V-center formation was detected in both Ni and Li doped samples. (Author) 42 refs.

  17. Nitrogen vacancies as a common element of the green luminescence and nonradiative recombination centers in Mg-implanted GaN layers formed on a GaN substrate

    Science.gov (United States)

    Kojima, Kazunobu; Takashima, Shinya; Edo, Masaharu; Ueno, Katsunori; Shimizu, Mitsuaki; Takahashi, Tokio; Ishibashi, Shoji; Uedono, Akira; Chichibu, Shigefusa F.

    2017-06-01

    The photoluminescences of ion-implanted (I/I) and epitaxial Mg-doped GaN (GaN:Mg) are compared. The intensities and lifetimes of the near-band-edge and ultraviolet luminescences associated with a MgGa acceptor of I/I GaN:Mg were significantly lower and shorter than those of the epilayers, respectively. Simultaneously, the green luminescence (GL) became dominant. These emissions were quenched far below room temperature. The results indicate the generation of point defects common to GL and nonradiative recombination centers (NRCs) by I/I. Taking the results of positron annihilation measurement into account, N vacancies are the prime candidate to emit GL and create NRCs with Ga vacancies, (VGa) m (VN) n , as well as to inhibit p-type conductivity.

  18. Optical absorption and thermoluminescence in Mg O, Mg O:Ni and Mg O:Li irradiated at room temperature

    International Nuclear Information System (INIS)

    Delgado, L.

    1984-01-01

    Optical absorption and thermoluminescence (TL) studies in Mg O, Mg O:Ni and Mg O:Li irradiated at room temperature are presented. In pure Mg O the thermal annihilation of Fe3+ by recombination with thermally released electrons at ∼ 90 and 175 degree centigree and the V center annealing by hole release up to 100 degree centigree cause the observed glow peaks at these temperatures. The TL excitation spectrum shows two maxima at 245 nm (electron center) and 288 nm (Fe3+). In Mg O:Ni X irradiation induces Fe 2 + →- Fe 3 + and Ni 2 + → Ni 3 + oxidations. Two TL emission bands centered at 110 degree centigree (red) and 80 o C (green) are assigned to electron release and their recombination at Fe 3 + and Ni 3 + respectively. In Mg O:Li two TL emission bands, one blue (430 nm) and the other red (730 nm) with excitation maxima at 245 nm (electron center) and 200 nm (hole center) respectively are observed. No V-center formation was detected in both Ni and Li doped samples. (Author) 42 refs

  19. Role of P27 -P55 operon from Mycobacterium tuberculosis in the resistance to toxic compounds

    Directory of Open Access Journals (Sweden)

    Cataldi Angel A

    2011-07-01

    Full Text Available Abstract Background The P27-P55 (lprG-Rv1410c operon is crucial for the survival of Mycobacterium tuberculosis, the causative agent of human tuberculosis, during infection in mice. P55 encodes an efflux pump that has been shown to provide Mycobacterium smegmatis and Mycobacterium bovis BCG with resistance to several drugs, while P27 encodes a mannosylated glycoprotein previously described as an antigen that modulates the immune response against mycobacteria. The objective of this study was to determine the individual contribution of the proteins encoded in the P27-P55 operon to the resistance to toxic compounds and to the cell wall integrity of M. tuberculosis. Method In order to test the susceptibility of a mutant of M. tuberculosis H37Rv in the P27-P55 operon to malachite green, sodium dodecyl sulfate, ethidium bromide, and first-line antituberculosis drugs, this strain together with the wild type strain and a set of complemented strains were cultivated in the presence and in the absence of these drugs. In addition, the malachite green decolorization rate of each strain was obtained from decolorization curves of malachite green in PBS containing bacterial suspensions. Results The mutant strain decolorized malachite green faster than the wild type strain and was hypersensitive to both malachite green and ethidium bromide, and more susceptible to the first-line antituberculosis drugs: isoniazid and ethambutol. The pump inhibitor reserpine reversed M. tuberculosis resistance to ethidium bromide. These results suggest that P27-P55 functions through an efflux-pump like mechanism. In addition, deletion of the P27-P55 operon made M. tuberculosis susceptible to sodium dodecyl sulfate, suggesting that the lack of both proteins causes alterations in the cell wall permeability of the bacterium. Importantly, both P27 and P55 are required to restore the wild type phenotypes in the mutant. Conclusions The results clearly indicate that P27 and P55 are

  20. Fabrication and photocatalysis of mesoporous ZnWO4 with PAMAM as a template

    International Nuclear Information System (INIS)

    Lin Shen; Chen Jiebo; Weng Xiulan; Yang Liuyi; Chen Xinqin

    2009-01-01

    Mesoporous ZnWO 4 was prepared with the template of PAMAM. The as-formed samples were characterized by X-ray diffraction (XRD), nitrogen absorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-vis diffuse reflectance spectroscopy (DRS). It is found that the size of pore is in the range of 5-22 nm and that the porosity of ZnWO 4 is composed of aggregated ZnWO 4 nanoparticles. The photocatalytic activities towards degradation of rhodamine B (RhB) and malachite green (MG) under UV light has been investigated. The formation mechanism of mesoporous structures is proposed

  1. Selective adsorption and release of cationic organic dye molecules on mesoporous borosilicates

    International Nuclear Information System (INIS)

    Paul, Manidipa; Pal, Nabanita; Bhaumik, Asim

    2012-01-01

    Mesoporous materials can play a pivotal role as a host material for delivery application to a specific part of a system. In this work we explore the selective adsorption and release of cationic organic dye molecules such as safranine T (ST) and malachite green (MG) on mesoporous borosilicate materials. The mesoporous silica SBA-15 and borosilicate materials (MBS) were prepared using non-ionic surfactant Pluronic P123 as template via evaporation induced self-assembly (EISA) method. After template removal the materials show high surface areas and in some cases ordered mesopores of dimensions ca. 6–7 nm. High surface area, mesoporosity and the presence of heteroatom (boron) help this mesoporous borosilicate material to adsorb high amount of cationic dye molecules at its surface from the respective aqueous solutions. Furthermore, the mesoporous borosilicate samples containing higher percentage adsorbed dyes show excellent release of ST or MG dye in simulated body fluid (SBF) solution at physiological pH = 7.4 and temperature 310 K. The adsorption and release efficiency of mesoporous borosilicate samples are compared with reference boron-free mesoporous pure silica material to understand the nature of adsorbate–adsorbent interaction at the surfaces. - Graphical abstract: Highly ordered 2D-hexagonal mesoporous borosilicate materials have been synthesized by using Pluronic P123 as template. The materials show very good adsorption and release of organic cationic dye molecules under physiological conditions. Highlights: ► Highly ordered 2D-hexagonal mesoporous borosilicate. ► Nonionic Pluoronic P123 templated mesoporous material. ► Adsorption of organic dyes at the mesopore surface. ► Controlled release of dyes under physiological pH and temperature. ► Release of safranine T (ST) and malachite green (MG) dyes in simulated body fluids.

  2. The experimental study of a hybrid solar photo-Fenton and photovoltaic system for water purification

    International Nuclear Information System (INIS)

    Jin, Yanchao; Wang, Yiping; Huang, Qunwu; Zhu, Li; Cui, Yong; Cui, Lingyun; Lin, Chunyan

    2017-01-01

    Highlights: • A new solar photo-Fenton and photovoltaic system was performed for the first time. • Acid Red 26, Malachite Green and Reactive Blue 4 were discolored using the system. • The PV panel of the hybrid system could work under lower temperature. • The system achieved self-sufficient energy and could work autonomously. • Solar spectrum could be made full use for power generation and water purification. - Abstract: A new hybrid system that integrated a photovoltaic (PV) panel with a solar photo-Fenton (SPF) reactor was constructed to treat wastewater and generate electricity for the first time. The decolorization and photovoltaic performances of the hybrid system were tested outdoors by discoloring three dyes: Acid Red 26 (AR26), Malachite Green (MG) and Reactive Blue 4 (RB4). Lab scale experiments also had been done to confirm the impact of temperature on the SPF process. The lab scale results show that SPF process was more efficiency for decoloring the different dyes, compared with dark Fenton. The SPF followed a pseudo-first-order reaction and the reaction rate constant was improved about 3.5, 4.5 and 0.61 times for AR26, RB4 and MG respectively as the wastewater temperature increased from 20 to 50 °C. The decolorization difficulty of the three dyes followed this order: MG > AR26 > RB4. The results of the hybrid systems tested outdoors show that 200 mg/L MG had achieved 98.6% color removal after 3 h of treatment at a low catalyst dose (Fe"2"+ = 5 mg/L) under sunlight. For 100 mg/L MG, 99.3% color removal was observed after 70 min. The treatment time required for decolorization of AR26 and RB4 was more shorter. In the present of the water layer, the wastewater temperature was increased and that of the hybrid system was decreased. The average output power of the hybrid system was more than 12 W and sufficient to drive the system during all of the outdoor experiments. Our results suggest that the system could realize decolorization of different

  3. Green Barley as an Ingredient in Pasta: Antioxidant Activity and Sensory Characteristics Evaluation

    Directory of Open Access Journals (Sweden)

    Ivanišová Eva

    2018-03-01

    Full Text Available The aims of the present study was to determine antioxidant activity, sensory properties as well as total polyphenol, flavonoid and chlorophyll content of raw and cooked pasta enriched by 1%, 3% and 5% addition of green barley powder. Results of antioxidant activity showed that increase of green barley addition increase antioxidant activity of pasta. The values in raw pasta obtained by DPPH ranged from 1.17 (control to 1.81 (5% addition mg TEAC/g DM, after cooking values ranged from 0.82 (control to 1.59 (5% addition mg TEAC/g DM. Similar tendency was signed by molybdenum reducing antioxidant power method. In enriched pasta was also found higher content of total polyphenol (0.19 in control raw sample and 1.81 mg GAE/g DM in pasta with 5 % of green barley addition; values of cooked pasta ranged from 0.10 in control sample to 0.73 mg GAE/g DM in pasta with 5 % of green barley addition as well as total flavonoid content (results of raw pasta were from 0.00 in control sample to 0.41 mg QE/g DM in pasta with 5% of green barley addition; values of cooked pasta were from 0.00 in control sample to 0.29 mg QE/g DM in variant with 5% green barley. Green barley also enriched pasta for chlorophyll with the best results in 5% addition. From prepared variants of enriched pasta the best overall acceptability was sign in 3% of green barley addition. Pastas enriched with plant-derived bioactive compounds such as green barley may confer health benefits to consumers.

  4. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate

    Directory of Open Access Journals (Sweden)

    Oana-M. Buja

    2017-01-01

    Full Text Available A microfluidic setup which enables on-line monitoring of residues of malachite green (MG using surface-enhanced Raman scattering (SERS is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10−7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.

  5. One electron reduction of triphenyl methane dyes by hydrated electrons

    Energy Technology Data Exchange (ETDEWEB)

    Bhasikuttan, A C; Shastri, L V; Sapre, A V; Rama Rao, K V.S. [Bhabha Atomic Research Centre, Bombay (India). Chemistry Div.

    1994-12-31

    Electron reaction rates for the triphenylmethane (TPM) dyes have been evaluated. Spectral characteristics of the resulting dye radicals have been determined. Evolution of the transient spectra shows intramolecular rearrangement in the radical from brilliant green and malachite green. (author). 3 refs., 1 fig., 1 tab.

  6. One electron reduction of triphenyl methane dyes by hydrated electrons

    International Nuclear Information System (INIS)

    Bhasikuttan, A.C.; Shastri, L.V.; Sapre, A.V.; Rama Rao, K.V.S.

    1994-01-01

    Electron reaction rates for the triphenylmethane (TPM) dyes have been evaluated. Spectral characteristics of the resulting dye radicals have been determined. Evolution of the transient spectra shows intramolecular rearrangement in the radical from brilliant green and malachite green. (author). 3 refs., 1 fig., 1 tab

  7. Rapid synthesis of spherical-shaped green-emitting MgGa2O4:Mn2+ phosphor via spray pyrolysis

    International Nuclear Information System (INIS)

    Choi, Sungho; Kim, Kyoungun; Moon, Young-Min; Park, Byung-Yoon; Jung, Ha-Kyun

    2010-01-01

    Simple, one-step synthesis of spherical-shaped powder phosphors with aqueous precursors via a spray pyrolysis method is reported. Green-emitting MgGa 2 O 4 :Mn 2+ phosphor with a controlled shape was successfully obtained by spraying under a reductive atmosphere (N 2 + H 2 carrier gas) without high-temperature post-heat treatment. In addition, the corresponding powder phosphors were well dispersed and showed a clean surface morphology compared to an existing cumbersome process using high-temperature post-annealing. The new method may help to prevent surface residual non-radiative defect sites. The result of highly luminescent and spherical morphology, non-aggregated powder phosphor by this procedure holds promise for a cost-effective and rapid synthesis process for conventional inorganic phosphors.

  8. Investigation on the Fate of Some Pesticides and Their Effects on the Microbial Environment in Cultivation of Green gram (Vigna radiata), Mustard green (Brassica rapa) and Kale (Brassica oleracea)

    International Nuclear Information System (INIS)

    Theingi Nwe; Khin Maung Saing

    2010-12-01

    The main aim of the present work was to find out the persistence of some pesticide residues in some vegetable crops and to investigate the effect of pesticide on soil count. Edible parts of green gram, Mustard green and Kale were extracted and analyzed for the presence and degradation of applied pesticide residuse in relation to time. The pesticide residue concentration in plant samples were analyzed by UV spectrometry. According to UV result data, Acephate pesticide in stored green gram seeds was rapidly declined from 2.91mg/kg (two weeks after application) to 0.96mg/kg (three weeks after application). But, four weeks after application, Acephate residues were not detected in the seeds of green gram. In the seeds of green gram, Dimethoate pesticide residues were detected from 1.26mg/kg (one week after application) to 0.89mg/kg (four weeks after treatment). In Mustard green and Kale, Malathion pesticide residues were detected at day seven after application. But Chlorpyrifos pesticide residues were detected in both mustard green and kale at day three after application. Beyond day three, chlorpyrifos pesticide residues were not detected. The respective chemical residues have been partially identified by IR Spectrometry. These can be confirmed with IR absorption peaks that the residues are the utilized chemicals. According to IR data, it can be predicted whether pesticide residues remained or not in the samples.

  9. [Spectral analysis of green pigments of painting and colored drawing in northern Chinese ancient architectures].

    Science.gov (United States)

    Wang, Li-Qin; Yan, Jing; Fan, Xiao-Lei; Ma, Tao

    2010-02-01

    It is important to identify pigments of painting and colored drawing in ancient architectures in order to restore and conserve them. The components of green pigments were detected with X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy-energy dispersive X-ray (SEM-EDX). Twenty-seven samples were collected from painting and colored drawing in northern Chinese ancient architectures in Beijing, Shanxi province and Gansu province. The experiment results showed that emerald green [CuCH3COO]2 x Cu(AsO2)2], a complex of copper aceto-arsenite pigment, had been used as the colored component in fifteen samples, whereas organic materials synthesized in the rest. However, in all samples there were no malachite and atacamite, green pigments commonly used in ancient time a long time ago. These two pigments have been found in Qin Shihuang's Terracotta Army and the wall paintings at Mogao Grettoes, Dunhuang, and some other famous wall paintings and color pottery figurines. However, emerald green was used many years later. It was reported that emerald green was synthesized by Germany in 1814 and had been widely used in China as watercolor on pith paper works and on scroll paintings since the 1850s. Because painting and colored drawing in ancient architectures stands outside, under sunlight and rain, it must be repaired and repainted in less than fifty years. Therefore, it is not surprising that emerald green was used in them. In recent years, artificial organic materials are increasingly used in painting and colored drawing in ancient architectures. From experiments it was also showed that in the same recolored painting and colored drawing, organic materials are usually in the later layers, but emerald green is in the earlier layers. This work supplies a lot of data for the purpose of selecting restoration materials and identifying painting and colored drawing in ancient architectures with a new method.

  10. Dyed grafted films for large-dose radiation dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Abdel Rehim, F; El-Sawy, N M; Abdel-Fattah, A A [National Centre for Radiation Research and Technology, Cairo (Egypt)

    1993-07-01

    By radiation-induced polymerization of acrylic acid onto poly(ethylene-tetrafluoroethylene) (ET) copolymer film and reacting the resulted grafted film with both Rhodamine B (RB) and Malachite Green (MG), new dosimeter films have been developed for high-dose gamma radiation applications in the range of absorbed doses from 10 to 180 kGy. The radiation-induced color bleaching has been analysed with visible spectrophotometry, either at the maximum of the absorption band peaking at 559 nm (for ETRB) or that peaking at 627 nm (for ETMG). The effects of different conditions of absorbed dose rate, temperature and relative humidity during irradiation and post-irradiation storage on dosimeter performance are discussed. (author).

  11. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zaharieva, Katerina, E-mail: zaharieva@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Rives, Vicente, E-mail: vrives@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Tsvetkov, Martin, E-mail: mptsvetkov@gmail.com [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria); Cherkezova-Zheleva, Zara, E-mail: zzhel@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Kunev, Boris, E-mail: bkunev@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Trujillano, Raquel, E-mail: rakel@usal.es [GIR-QUESCAT, Dpto. Química Inorgánica, Universidad de Salamanca, 37008 Salamanca (Spain); Mitov, Ivan, E-mail: mitov@ic.bas.bg [Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia (Bulgaria); Milanova, Maria, E-mail: nhmm@wmail.chem.uni-sofia.bg [Faculty of Chemistry and Pharmacy, St. Kliment Ohridski University of Sofia, 1 J. Bourchier Blvd., 1164 Sofia (Bulgaria)

    2015-06-15

    Nanosized copper ferrite-type materials (Cu{sub x}Fe{sub 3–x}O{sub 4}, 0 ≤ x ≤ 1) have been prepared by combination of co-precipitation and mechanochemical activation and/or thermal treatment. The crystalline structure and morphology of the obtained ferrite nanopowders have been characterized by different instrumental methods, such as Powder X-ray diffraction (PXRD), Mössbauer and FT-IR spectroscopies, specific surface area and porosity measurements, thermal analyses (Differential Thermal Analysis and Thermogravimetric Analysis) and Temperature-Programmed Reduction. The average crystallite size of copper ferrites ranged between 7.8 and 14.7 nm and show a superparamagnetic and collective magnetic excitations nature. The photocatalytic decolorization of Malachite green oxalate under different UV illumination intervals was examined using these copper ferrites as photocatalysts. The results indicate that the prepared nanostructured copper ferrites showed enhanced photocatalytic activity and amount adsorbed Malachite Green dye. The co-precipitated nanosized copper ferrite powder with a low content of copper metal ions in a magnetite host structure (Cu{sub 0.25}Fe{sub 2.75}O{sub 4}) showed an apparent pseudo-first-order rate constant 15.4 × 10{sup −3} min{sup −1} and an amount adsorbed Malachite Green as model organic dye pollutant per 1 g catalyst of 33.4 ppm/g after the dark period. The results confirm that the copper ferrites can be suitable for photocatalytic treatment of wastewaters containing organic dyes. The new aspect of presented investigations is to study the influence of different degree of incorporation of copper ions into the magnetite host structure and preparation methods on the photocatalytic properties of nanosized copper ferrite materials and obtaining of potential photocatalyst (Cu{sub 0.25}Fe{sub 2.75}O{sub 4}) with higher photocatalytic activity (15.4 × 10{sup −3} min{sup −1}) than that of the standard referent Degussa P25 (12 × 10

  12. Preparation, characterization and application of nanosized copper ferrite photocatalysts for dye degradation under UV irradiation

    International Nuclear Information System (INIS)

    Zaharieva, Katerina; Rives, Vicente; Tsvetkov, Martin; Cherkezova-Zheleva, Zara; Kunev, Boris; Trujillano, Raquel; Mitov, Ivan; Milanova, Maria

    2015-01-01

    Nanosized copper ferrite-type materials (Cu x Fe 3–x O 4 , 0 ≤ x ≤ 1) have been prepared by combination of co-precipitation and mechanochemical activation and/or thermal treatment. The crystalline structure and morphology of the obtained ferrite nanopowders have been characterized by different instrumental methods, such as Powder X-ray diffraction (PXRD), Mössbauer and FT-IR spectroscopies, specific surface area and porosity measurements, thermal analyses (Differential Thermal Analysis and Thermogravimetric Analysis) and Temperature-Programmed Reduction. The average crystallite size of copper ferrites ranged between 7.8 and 14.7 nm and show a superparamagnetic and collective magnetic excitations nature. The photocatalytic decolorization of Malachite green oxalate under different UV illumination intervals was examined using these copper ferrites as photocatalysts. The results indicate that the prepared nanostructured copper ferrites showed enhanced photocatalytic activity and amount adsorbed Malachite Green dye. The co-precipitated nanosized copper ferrite powder with a low content of copper metal ions in a magnetite host structure (Cu 0.25 Fe 2.75 O 4 ) showed an apparent pseudo-first-order rate constant 15.4 × 10 −3 min −1 and an amount adsorbed Malachite Green as model organic dye pollutant per 1 g catalyst of 33.4 ppm/g after the dark period. The results confirm that the copper ferrites can be suitable for photocatalytic treatment of wastewaters containing organic dyes. The new aspect of presented investigations is to study the influence of different degree of incorporation of copper ions into the magnetite host structure and preparation methods on the photocatalytic properties of nanosized copper ferrite materials and obtaining of potential photocatalyst (Cu 0.25 Fe 2.75 O 4 ) with higher photocatalytic activity (15.4 × 10 −3 min −1 ) than that of the standard referent Degussa P25 (12 × 10 −3 min −1 ) for degradation of organic dye

  13. Theoretical Calculation and Experimental Verification Demonstrated the Impossibility of Finding Haptens Identifying Triphenylmethane Dyes and Their Leuco Metabolites Simultaneously

    Directory of Open Access Journals (Sweden)

    De-Xin Kong

    2018-03-01

    Full Text Available Detection of triphenylmethane dyes (TDs, especially the widely used malachite green (MG and crystal violet (CV, plays an important role in safety control of aquatic products. There are two chromatic forms of TDs: oxidized or reduced. Usually, only one form can be detected by reported ELISA antibodies. In this article, molecular shape superimposing and quantum mechanics calculation were employed to elucidate the differences between MG, CV, and their reduced chromatic forms (leucomalachite green, LMG and leucocrystal violet, LCV. A potential hapten was rationally designed and synthesized. Polyclonal antibodies were raised through immunizing New Zealand white rabbits and BALB/C mice. We tested the cross-reactivity ratios between the hapten and TDs. The cross-reactivity ratios were correlated with the difference in surface electrostatic potential. The determination coefficients (r2 of the correlations are 0.901 and 0.813 for the rabbit and mouse antibody, respectively. According to this linear model, the significant difference in the atomic charge seemed to make it impossible to find a hapten that can produce antibodies with good cross-reactivities with both reduced and oxidized TDs.

  14. Daily Fluoride Intake from Iranian Green Tea: Evaluation of Various Flavorings on Fluoride Release

    Directory of Open Access Journals (Sweden)

    Afshin Maleki

    2016-01-01

    Full Text Available With increased awareness of the health benefits of the compounds in green tea, especially polyphenols, its consumption is rising. The main purpose of this study is to determine the effect of different additives on the released fluoride into tea liquor and also daily fluoride intake. The concentrations of fluoride, nitrate, sulfate, and chloride were measured in 15 different flavored green teas (Refah-Lahijan. The fluoride and other anion concentrations were measured by ion chromatography method. The data were analyzed with Statistical Package for the Social Sciences version 16.0. The results showed that the minimum and maximum concentrations of fluoride in the green tea infusions were 0.162 mg/L (cinnamon-flavored green tea and 3.29 mg/L (bagged peach-flavored green tea, respectively. The mean concentration of fluoride in the green tea leaves was 52 mg/kg, and approximately 89% of the fluoride was released from the green tea leaves into the infusions after brewing. The fluoride concentrations varied significantly among the examined green teas ( P 0.05. Finally, drinking of the studied green teas cannot make a significant contribution to the daily dietary intake of F for consumers.

  15. Greenness and Carbon Stocks of Mangroves: A climate-driven Effect

    Science.gov (United States)

    Lule, A. V.; Colditz, R. R.; Herrera-Silveira, J.; Guevara, M.; Rodriguez-Zuniga, M. T.; Cruz, I.; Ressl, R.; Vargas, R.

    2017-12-01

    Mangroves cover less than 1% of the earth's surface and are one o­­­f the most productive ecosystems of the world. They are highly vulnerable to climate variability due to their sensitivity to environmental changes; therefore, there are scientific and societal needs to designed frameworks to assess mangrove's vulnerability. We study the relationship between climate drivers, canopy greenness and carbon stocks to quantify a potential climate-driven effect on mangrove carbon dynamics. We identify greenness trends and their relationships with climate drivers and carbon stocks throughout 15 years (2001-2015) across mangrove forests of Mexico. We defined several categories for mangroves: a) Arid mangroves with superficial water input (ARsw); b) Humid mangroves with interior or underground water input (HUiw); and c) Humid mangroves with superficial water input (HUsw). We found a positive significant trend of greenness for ARsw and HUsw categories (pmangrove's categories (pmangrove categories showed higher greenness values during winter; which is likely driven by temperature with a lag of -3 to -5 months (r2 > 0.69). Precipitation and temperature drive canopy greenness only across HUsw. Regarding carbon stocks, the HUiw shows the lower amount of aboveground carbon (AGC; 12.7 Mg C ha-1) and the higher belowground carbon (BGC; 219 Mg C ha-1). The HUsw shows the higher amount of AGC (169.5 Mg C ha-1) and the ARsw the lower of BGC (92.4 Mg C ha-1). Climate drivers are better related with canopy greenness and AGC for both humid mangrove categories (r2 > 0.48), while the relationship of BGC and canopy greenness is lower for all categories (r2 mangrove's ecosystem function and environmental services, as well as their potential vulnerability to climate variability.

  16. Determination of green, blue and yellow artificial food colorants and their abuse in herb-coloured green Easter beers on tap.

    Science.gov (United States)

    Stachová, Ivana; Lhotská, Ivona; Solich, Petr; Šatínský, Dalibor

    2016-07-01

    Beer is one of the most popular alcoholic beverages worldwide. For consumer acceptance, significant factors are its taste, flavour and colour. This study determines selected synthetic green, blue and yellow food colorants in popular Easter herb-coloured green beers on tap produced in breweries on Holy Thursday. The abuse of beer colouring with Tartrazine (E 102), Quinoline yellow (E 104), Sunset yellow (E 110), Patent blue (E 131), Indigo carmine (E 132), Brilliant blue FCF (E 133), Green S (E 142) and Fast green FCF (E 143) was assessed in 11 green beer samples purchased in local restaurants. HPLC was used for the separation and detection of artificial colorants with diode-array detection and a Chromolith Performance CN 100 × 4.6 mm column with guard pre-column Chromolith CN 5 × 4.6 mm. Separation was performed in gradient elution with mobile phase containing methanol-aqueous 2% ammonium acetate at pH 7.0. The study showed that eight beers (70%) marketed in the Czech Republic contained artificial colorants (Tartrazine and Brilliant blue FCF). The concentration of colorants found in analysed green herb-coloured beers ranged from 1.58 to 3.49 mg l(-)(1) for Tartrazine, 0.45-2.18 mg l(-)(1) for Brilliant blue, while Indigo carmine was detected only once at concentration 2.36 mg l(-)(1). Only three beers showed no addition of the synthetic colorants. However, the levels of artificial colorants found in beers marketed in the Czech region were very low and did not show a serious risk for consumers' health.

  17. Low temperature measurements of the heat capacity and thermodynamic functions of pseudo-malachite Cu5(PO4)2(OH)4

    International Nuclear Information System (INIS)

    Bissengaliyeva, M.R.; Gogol, D.B.; Bekturganov, N.S.

    2012-01-01

    The investigation of the heat capacity of a natural specimen of copper phosphate—pseudo-malachite Cu 5 (PO 4 ) 2 (OH) 4 in the temperature range between 4.2 K and 320 K has been carried out by the method of low-temperature adiabatic calorimetry. Tabulated values of the heat capacity and thermodynamic functions of the mineral including the changes of entropy and enthalpy and the Gibbs function of free energy have been calculated. The standard values of thermodynamic functions of pseudo-malachite at T = 298.15 K are C p,m ° =(385.43±0.41)J mole −1  K −1 , Δ 0 T S m ° =(412.16±0.61)J mole −1  K −1 , Δ 0 T H m ° =(63681.5±57.0)J mole −1 , F m ° =(198.57±0.47)J mole −1  K −1 . In the low-temperature area 0 tr = (5.772 ± 0.081) J mole −1 K −1 , ΔH tr = (29.94 ± 0.42) J mole −1 .

  18. Heavy metals and color retention by a synthesized inorganic membrane

    Directory of Open Access Journals (Sweden)

    A. Chougui

    2014-11-01

    The ceramic membranes were tested for the removal of cadmium, zinc, Methylene Blue and Malachite Green from water under a pressure of 5 bar and a treatment time of 2 h. Liquid filtration and flow tests through these membranes resulted in a rejection rate of 100% for Methylene Blue and Malachite Green. This paper also presents the ability of the tubular membrane prepared to separate heavy metals (cadmium and zinc from their synthetic aqueous solutions. The influence of the applied pressure, feed solute concentration, feed pH on the rejection of cadmium and zinc ions was studied. Retention rates of cadmium and zinc ions of 100% were observed for an initial feed concentration of 10−4 mol/L.

  19. Formation of gold nanorods and gold nanorod films for surface-enhanced Raman scattering spectroscopy

    International Nuclear Information System (INIS)

    Trotsyuk, L.L.; Kulakovich, O.S.; Shabunya-Klyachkovskaya, E.V.; Gaponenko, S.V.; Vashchenko, S.V.

    2016-01-01

    The formation of gold nanorods as well as thin films prepared via electrostatic deposition of gold nanorods has been investigated. The obtained gold nanorods films have been used as substrates for the surface-enhanced Raman scattering analysis of sulfur-free organic molecules mitoxantrone and malachite green as well as inorganic malachite microcrystals for the first time. The additional modification of films with L-cysteine allows one to significantly extend the use of gold nanorods for the surface-enhanced Raman scattering analysis. (authors)

  20. Growth and characterization of ZnCdMgSe-based green light emitters and distributed Bragg reflectors towards II-VI based semiconductor disk lasers

    International Nuclear Information System (INIS)

    De Jesus, Joel; Gayen, Swapan K.; Garcia, Thor A.; Tamargo, Maria C.; Kartazaev, Vladimir; Jones, Brynmor E.; Schlosser, Peter J.; Hastie, Jennifer E.

    2015-01-01

    We report the structural and optical properties of molecular beam epitaxy grown II-VI semiconductor multiple quantum well (MQW) structures and distributed Bragg reflector (DBR) on InP substrates for application in developing optically-pumped semiconductor disk lasers (SDLs) operating in the green spectral range. One sample was grown directly on an InP substrate with an InGaAs buffer layer, while another had a 5-period ZnCdMgSe-based DBR grown on the InGaAs/InP substrate. X-ray diffraction and scanning electron microscopy measurements revealed sharp superlattice peaks and abrupt layer interfaces, while steady-state photoluminescence measurements demonstrated surface emission between 540-570 nm. Under pulsed excitation both samples exhibited features of amplified spontaneous emission (ASE) or stimulated emission, accompanied by luminescence lifetime shortening. The sample with the DBR showed higher surface luminescence and the onset of ASE at lower pump power. To further explore the design and performance of a ZnCdMgSe-based DBR, a 20-period DBR was grown and a reflectivity of 83% was obtained at ∝560 nm. We estimate that a DBR with ∝40 periods would be needed for optimal performance in a SDL using these materials. These results show the potential of II-VI MQW structures on InP substrates for the development of SDLs operational in the green-yellow wavelength range. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    OpenAIRE

    H. Kokes; M.H. Morcali; E. Acma

    2014-01-01

    The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III) hydroxide was precipitated by...

  2. Egg detection and control of tribolium castaneum (Herbst) (Coleoptera : Tenebrionidae) in powdered stored food products

    International Nuclear Information System (INIS)

    Dotse, Raphael Djoe Nuseli

    2017-07-01

    For safety and shelf-stability of powdered food products, it is important to detect and deal with any infestation during processing. The focus of this study was to detect the presence of Tribolium castaneum (Herbst) (Coleopera: Tenebionidae) eggs in powdered food products, and where present, kill them using gamma irradiation. The study was carried out at the Radiation Entomology and Pest management Centre (REPMC), Ghana Atomic Energy Commission. Basic reproductive biology of T. castaneum in four different powdered food media (Wheat flour, Roasted corn powder, also known as ‘Tombrown’ powder, Cocoa powder and Fish powder) was studied. Seven (7) different stains (Bromocresol green, Malachite green, Carbol fuchsin, Basic fuchsin, Orange ‘G”, Gentian Violet and Crystal Violet) were evaluated for their ability to differentially stain T. castaneum eggs and background food particles using the American Association of Cereal Chemist, AACC (2000) staining technique. To control any egg infestation, the effect of gamma irradiation at 200Gy on egg hatchability was evaluated. Results indicate that egg production by T. casteneum within a three day period on Wheat flour, Cocoa powder and Tombrown was not significantly different but was significantly lower on fish powder (P = 0.255). Hatchability of T. castaneum eggs in the four food media was not significantly different (P = 0.046). Gamma irradiation at 200Gy was effective in controlling egg infestation by inhibiting hatchability. Bromocresol green and Malachite green differentially stained the eggs in all the four food products. The protocols for Bromocresol green and Malachite green are effective for detection of T. castaneum eggs in powdered foods and can be incorporated into production processes. Where insect eggs are detected and none of the processing steps can eliminate them, irradiation of the packaged products at 200Gy will kill any eggs and maintain the wholesomeness and safety of the product on the shelf

  3. Stable carbon and oxygen isotope ratios of malachite from the patinas of ancient bronze objects

    International Nuclear Information System (INIS)

    Smith, A.W.

    1978-01-01

    13 C/ 12 C and 18 O/ 16 O ratios have been measured for 62 samples of the mineral malachite, taken from the patinas of ancient bronze objects (from Britain, Italy, Libya and China), in order to investigate any possible relationship which may exist between the isotope ratios and the burial conditions of the objects. The results indicate that the isotope ratios are controlled by complex factors related to the climate, vegetation and soil type at the burial site. It is suggested that the technique might be used, given favourable circumstances, in the characterization of patinas and as a possible aid in the detection of synthetic patination. (author)

  4. Use of a fractal-like gold nanostructure in surface-enhanced raman spectroscopy for detection of selected food contaminants.

    Science.gov (United States)

    He, Lili; Kim, Nam-Jung; Li, Hao; Hu, Zhiqiang; Lin, Mengshi

    2008-11-12

    The safety of imported seafood products because of the contamination of prohibited substances, including crystal violet (CV) and malachite green (MG), raised a great deal of concern in the United States. In this study, a fractal-like gold nanostructure was developed through a self-assembly process and the feasibility of using surface-enhanced Raman spectroscopy (SERS) coupled with this nanostructure for detection of CV, MG, and their mixture (1:1) was explored. SERS was capable of characterizing and differentiating CV, MG, and their mixture on fractal-like gold nanostructures quickly and accurately. The enhancement factor of the gold nanostructures could reach an impressive level of approximately 4 x 10(7), and the lowest detectable concentration for the dye molecules was at approximately 0.2 ppb level. These results indicate that SERS coupled with fractal-like gold nanostructures holds a great potential as a rapid and ultra-sensitive method for detecting trace amounts of prohibited substances in contaminated food samples.

  5. Room-temperature fabrication of core-shell nano-ZnO/pollen grain biocomposite for adsorptive removal of organic dye from water

    International Nuclear Information System (INIS)

    Tzvetkov, George; Kaneva, Nina; Spassov, Tony

    2017-01-01

    Highlights: • Meso-/macro-porous nano-ZnO covered pollen grains are prepared at room temperature. • A possible formation mechanism of the core-shell microparticles was proposed. • Adsorptive removal of Malachite Green from water by the biocomposite is studied. - Abstract: A new core-shell nano-ZnO/pollen grain (n-ZnO/PG) biocomposite has been successfully synthesized via simple and low-temperature two-step liquid precipitation method. The synthetic strategy consists of grafting the surface of pine pollen grains (PG) with Zn"2"+-organic complexes followed by a treatment in Zn(CH_3COO)_2/NaOH solution, thus producing a closed n-ZnO shell around the organic core, with a thickness of ∼450 nm. Scanning electron microscopy, X-ray diffraction, FTIR, XPS and UV–vis spectroscopy measurements along with N_2 adsorption/desorption were used to characterize the resulting n-ZnO/PG biocomposite. The as-prepared core-shell microparticles are meso-/macro-porous with BET surface area of 25 m"2 g"−"1 and total pore volume of 0.26 cm"3 g"−"1. The adsorption properties of n-ZnO/PG were evaluated through adsorption of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and adsorptive properties of the raw PG and pure n-ZnO were also examined. Results indicate that n-ZnO/PG is the most favorable for the adsorption of MG under the conditions used in this study. The adsorption kinetic data for PG, n-ZnO and n-ZnO/PG follow the pseudo-second order equation and the maximum adsorption capacity follows an order of n-ZnO/PG > n-ZnO > PG. For n-ZnO/PG an adsorption uptake up to 145.9 mg g"−"1 is observed. The as-prepared core-shell biocomposite material is a promising cost-effective and environmentally friendly adsorbent due to its textural properties, surface chemistry, adsorption capacity and recyclability.

  6. Towards green loyalty: the influences of green perceived risk, green image, green trust and green satisfaction

    Science.gov (United States)

    Chrisjatmiko, K.

    2018-01-01

    The paper aims to present a comprehensive framework for the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty. The paper also seeks to account explicitly for the differences in green perceived risk, green image, green trust, green satisfaction and green loyalty found among green products customers. Data were obtained from 155 green products customers. Structural equation modeling was used in order to test the proposed hypotheses. The findings show that green image, green trust and green satisfaction has positive effects to green loyalty. But green perceived risk has negative effects to green image, green trust and green satisfaction. However, green perceived risk, green image, green trust and green satisfaction also seems to be a good device to gain green products customers from competitors. The contributions of the paper are, firstly, a more complete framework of the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty analyses simultaneously. Secondly, the study allows a direct comparison of the difference in green perceived risk, green image, green trust, green satisfaction and green loyalty between green products customers.

  7. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties.

    Science.gov (United States)

    Shang, Mengmeng; Li, Guogang; Yang, Dongmei; Kang, Xiaojiao; Peng, Chong; Cheng, Ziyong; Lin, Jun

    2011-10-07

    (Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile hydrothermal process. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by hydrothermal process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in field-emission displays.

  8. of Brilliant Green

    Directory of Open Access Journals (Sweden)

    Rana Seyrani

    2016-01-01

    Full Text Available Novel hydrogel nanocomposites, based on κ-carrageenan polysaccharide, were prepared by graft copolymerization of acrylamide (AAM and maleic anhydride (MAH as comonomers in the presence of multiwall carbon nanotubes (MWCNT, using methylene bisacrylamide (MBA and ammonium persulfate (APS,former as a crosslinking agent and the latter as an initiator. The hydrogel nanocomposites structure was characterized by FTIR spectroscopy, scanning electron microscopy (SEM and XRD patterns, and their thermal stability was investigated by TGA thermal analysis. The hydrogel nanocomposites were evaluated using gel content measurements and swelling rate in distilled water and in saline solutions. The carbon nanotube content was examined in relation to its effect on the properties of nanocomposites. The results showed that with increasing carbon nanotube content, the rate of water absorbency and equilibrium swelling in distilled water decreased whereas the water absorbency in the saline solutions increased. Water retention capacity was also studied and the results indicated that the inclusion of carbon nanotube increased water retention under heating condition. Furthermore, the experimental conditions of adsorption kinetics and dynamics for the removal of cationic dye, Brilliant Green (BG, were studied in the range of 6-8 for pH, 10-60 min for time (t, and 10-300 mg/L for initial concentration (C0 of the dye. The optimum conditions obtained for adsorption of Brilliant Green dye were pH 7, t= 50 min and C0= 10 mg/L. Also, the results indicated that more than 98% of the maximum adsorption capacity toward Brilliant Green dye was achieved within the initial 10 min. The experimental tests showed that the hydrogels could be used as fast–responsive and high capacity sorbents in Brilliant Green removal processes from industrial waste water.

  9. (Hevea brasiliensis) SEED PERICARP-ACTIVATED CARBON

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... The continuous drive to increase meat production for the protein needs of the ...... Removal of malachite green from aqueous solution using degreased ... and copper onto treated alga (Undariapinnarlifida):. Application of ...

  10. Solid-Liquid Separation Properties of Thermoregulated Dicationic Ionic Liquid as Extractant of Dyes from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Rui Lv

    2018-01-01

    Full Text Available Two thermoregulated dicationic ionic liquids were synthesized and applied for effective extraction of the common dye malachite green oxalate (MG. The extraction parameters such as amount of ionic liquids, pH of water phase, extraction time, cooling time, and centrifugal time on the extraction efficiency were investigated systematically. It revealed that the dye has been successfully extracted into the ionic liquids, with high extraction efficiency higher than 98%, and recovery of 98.2%–100.8%, respectively. Furthermore, these ionic liquids can be recycled easily after elution. The reusable yields were 87.1% and 88.7%. The extraction of the dye into the thermoregulated ionic liquid provides a method of minimizing pollution of waste water potentially.

  11. Extraction-spectrophotometric method for silicon determination in high-purity substances. 2. Silicon determination in cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Yudelevich, I G; Shaburova, V P; Shamrina, L V [AN SSSR, Novosibirsk (USSR). Inst. Neorganicheskoj Khimii

    1989-01-01

    Cadmium extraction by tributyl phosphate and trialkylbenzylammonium chloride (TABAC) depending on acid (HCl, HI), extracting agent concentration, volume of aqueous and organic phases, number of extraction steps is investigated. On the basis of the obtained results the spectrophotometric method for silicon determination in cadmium and CdCl/sub 2/ using malachite green with preliminary extraction of the base by the TABAC from HCl solutions. The method detection limit is 3.9x10/sup -4/ % Si with respect to initial cadmium sample of 100 mg and 7.8x10/sup -5/ % with respect to 0.5 g of CdCl/sub 2/. The relative standard deviation is S/sub r/-0.07-0.13.

  12. Binding affinities of cationic dyes in the presence of activated charcoal and anionic surfactant in the premicellar region

    Science.gov (United States)

    Ali, Farman; Ibrahim, Muhammad; Khan, Fawad; Bibi, Iram; Shah, Syed W. H.

    2018-03-01

    Binding preferences of cationic dyes malachite green and methylene blue in a mixed charcoal-sodium dodecyl sulfate system have been investigated using UV-visible absorption spectroscopy. The dye adsorption shows surfactant-dependent patterns, indicating diverse modes of interactions. At low surfactant concentration, a direct binding to charcoal is preferred. Comparatively greater quantities of surfactant lead to attachment of dye-surfactant complex to charcoal through hydrophobic interactions. A simple model was employed for determination of equilibrium constant K eq and concentration of dye-surfactant ion pair N DS for both dyes. The values of binding parameters revealed that malachite green was directly adsorbed onto charcoal, whereas methylene blue was bound through surfactant monomers. The model is valid for low surfactant concentrations in the premicellar region. These findings have significance for material and environmental sciences.

  13. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs.

    Science.gov (United States)

    Vijayaraghavan, K; Joshi, Umid Man

    2014-11-01

    The present study examines whether green roofs act as a sink or source of contaminants based on various physico-chemical parameters (pH, conductivity and total dissolved solids) and metals (Na, K, Ca, Mg, Al, Fe, Cr, Cu, Ni, Zn, Cd and Pb). The performance of green roof substrate prepared using perlite, vermiculite, sand, crushed brick, and coco-peat, was compared with local garden soil based on improvement of runoff quality. Portulaca grandiflora was used as green roof vegetation. Four different green roof configurations, with vegetated and non-vegetated systems, were examined for several artificial rain events (un-spiked and metal-spiked). In general, the vegetated green roof assemblies generated better-quality runoff with less conductivity and total metal ion concentration compared to un-vegetated assemblies. Of the different green roof configurations examined, P. grandiflora planted on green roof substrate acted as sink for various metals and showed the potential to generate better runoff. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. CHROMATOGRAPHIC SEPARATION AND SPECTRO ...

    African Journals Online (AJOL)

    Four different fractions having colours yellow, grey, orange and ... Two different dyes vis a vis: methylene blue and malachite green dyes have been separated .... hydrogen carbonate of alkaline and alkaline earth metals in the samples.

  15. METHYL MERCURY IN GREEN MUSCLE (Mytilus viridis L. FROM FISH MARKET MUARA ANGKE : BEFORE AND AFTER COOKING

    Directory of Open Access Journals (Sweden)

    Ermin K. Winarno

    2010-06-01

    Full Text Available The determination of methyl mercury content in green muscle (Mytilus viridis L. that were taken from Pasar Pelelangan Ikan Muara Angke, Jakarta Bay has been carried out. Sampling was taken in November 2005 and March 2006, the samples were bought from the green muscle sellers. The aim of this research is to know the effect of cooking on the content of methyl mercury in green muscle. Samples were homogenized, weighed and washed with aceton and toluene. After washing, the homogenized material was added with HCl solution, extracted with toluene, then the methyl mercury content in toluene extract was analyzed using gas chromatography. The results of this research showed that methyl mercury concentration in raw and cooked green muscle respectively were 0.803 + 0.019 mg/g and 0.443 + 0.035 mg/g (in November 2005 and 0.096 + 0.014 mg/g and 0.079 + 0.016 mg/g (in March 2006 respectively. The methyl mercury content in raw (in November 2005 was higher than in cooked green muscle as permitted concentration in the sea biota by WHO and FAO, it is 0.5 ppm (mg/g, on the other hand the result of the second sampling in March 2006 showed that methyl mercury content in green muscle was lower than permitted concentration. Cooking process of the green muscle decreased methyl mercury content 44.85% (sampling in November 2005 and 17.71% (sampling in March 2006, because methyl mercury that bonded to protein were distributed to boiling water. Methyl mercury content in green muscle after cooking was still lower than the permitted concentration.   Keywords: methyl mercury, green muscle, Mytilus viridis L., Muara Angke

  16. Selected pharmacokinetic parameters for cefovecin in hens and green iguanas

    DEFF Research Database (Denmark)

    Thuesen, Line Risager; Bertelsen, Mads Frost; Brimer, Leon

    2009-01-01

    hens and green iguanas, following subcutaneous injections with 10 mg cefovecin / kg bodyweight. Preliminary studies in eight additional species of birds and reptiles were performed and results were compared with the parameters found in hens and green iguanas. The kinetics were characterized by rapid...

  17. Green tea as an effective antimicrobial for urinary tract infections caused by Escherichia coli

    Directory of Open Access Journals (Sweden)

    Wanda eReygaert

    2013-06-01

    Full Text Available Background: Urinary tract infections (UTIs are a very most common type of infection worldwide, and result in billions of dollars in medical care costs. Escherichia coli is the infective agent for 80%-90% of all UTIs. Green tea, derived from leaves of the Camellia sinensis plant has been shown to have various potential health benefits (e.g. cardiovascular disease and cancer. The major beneficial components of green tea have been characterized, and are now known to be polyphenolic catechins. The main catechins in green tea are (--epicatechin-3-gallate (ECG, (--epigallocatechin (EGC, (--epicatechin (EC, and (--epigallocatechin-3-gallate (EGCG. EGCG and EGC have been shown to have antimicrobial effects, but only EGC has been shown to be excreted in urine. Isolates of E. coli from urinary tract infections collected between 2007-2008 were characterized for antimicrobial resistance to standard drugs. Then 80 of these isolates, representing a wide spectrum of antimicrobial susceptibility patterns, were selected for testing using an extract of green tea.Results: The concentrations of green tea extract tested were 0, 2.5, 3.0, 3.5, and 4.0 mg/ml. All of the strains tested, except one, had MICs of ≤4.0 mg/ml, with 40% of the isolates having an MIC of ≤2.5 mg/ml, 36% of the isolates having an MIC of ≤3.0 mg/ml, 18% of the isolates having an MIC of ≤3.5 mg/ml, and 5% of the isolates having an MIC of ≤4.0 mg/ml. Two control strains varied in susceptibility, one having an MIC of ≤2.5 mg/ml, another having an MIC of ≤3.5 mg/ml, and the third having an MIC of ≤4.0 mg/ml.Conclusion: Since EGC has been shown to have antimicrobial effects on E. coli, and EGC has been shown to be excreted in the urine in a high enough concentration to potentially be effective as an antimicrobial; these MIC results suggest that ingesting green tea could have potential antimicrobial effects on urinary tract infections caused by E. coli.

  18. Total, Soluble and Insoluble Oxalate Contents of Ripe Green and Golden Kiwifruit.

    Science.gov (United States)

    Nguyễn, Hà Vũ Hồng; Savage, Geoffrey P

    2013-03-05

    Three bulk samples of two different cultivars of kiwifruit, green ( Actinidia deliciosa L . ) and golden ( Actinidia chinensis L . ) were bought ripe, ready to eat from a local market. The aim of the study was to determine the oxalate composition of each of the three fractions of kiwifruit, namely skin, pulp and seeds. The pulp consisted of 90.4% of the edible portion of the two cultivars while the skin and seeds made up a mean of 8.0% and 1.6% respectively. Total oxalate was extracted with 2.0 M HCL at 21 °C for 15 min and soluble oxalates extracted at 21 °C in water for 15 min from each fraction. The total and soluble oxalate compositions of each fraction were determined using ion exchange HPLC chromatography. The pulp of golden kiwifruit contained lower amounts of total oxalates (15.7 vs. 19.3 mg/100 g FW) and higher amounts of soluble oxalates (8.5 vs. 7.6 mg/100 g FW) when compared to the green cultivar. The skin of the green cultivar contained lower levels of insoluble oxalates (36.9 vs. 43.6 mg/100 g FW), while the seeds of the green cultivar contained higher levels of insoluble oxalates 106.7 vs. 84.7 mg/100 g FW.

  19. Spectrophotometric flow-injection determination of sulphite in white wines involving gas diffusion through a concentric tubular membrane

    Directory of Open Access Journals (Sweden)

    Melo Denise

    2003-01-01

    Full Text Available A flow-injection system is proposed for the spectrophotometric determination of sulphite in white wines. The method involves analyte conversion to SO2, gas diffusion through a Teflon® semi-permeable membrane, collection into an alkaline stream (pH 8, reaction with Malachite green (MG and monitoring at 620 nm. With a concentric tubular membrane, the system design was simplified. Influence of reagent concentrations, pH of donor and acceptor streams, temperature, timing, surfactant addition and presence of potential interfering species of the wine matrix were investigated. A pronounced (ca. 100% enhancement in sensitivity was noted by adding cetylpyridinium chloride (CPC. The proposed system is robust and baseline drift is not observed during 4 h operating periods. Only 400 muL of sample and 0.32 mg MG are required per determination. The system handles 30 samples per hour, yielding precise results (r.s.d. < 0.015 for 1.0 - 20.0 mg L-1 SO2 in agreement with those obtained by an alternative procedure.

  20. Magnetic Solid Phase Extraction and Removal of Five Cationic Dyes from Aqueous Solution Using Magnetite Nanoparticle Loaded Platanusorientalis Waste Leaves

    Directory of Open Access Journals (Sweden)

    Elaheh Madrakian

    2016-12-01

    Full Text Available This paper reports on synthesis of a magnetic adsorbent for wastewater treatment purposes. In this regard, platanus orientalis waste leaves were chosen as a cheap material for preparing the magnetic adsorbent by loading magnetite nanoparticles on it. The synthesized adsorbent was characterized using scanning electron microscope and X-ray diffractometer. Then, it was used for magnetic solid phase extraction and removal of five cationic dyes including methyl violet (MV, methylene blue (MB, malachite green (MG, crystal violet (CV, and neutral red (NR from aqueous solution as a model application. Different important factors affecting the adsorption process were optimized, and the results showed that under the optimized conditions (pH 10 for CV, MV, MB, and MG; pH 6 for NR; adsorbent dosage, 20 mg; agitation time, 25 min efficient removal of the investigated dyes (adsorption capacities between of 89-133 mg g-1 is achievable using the synthesized adsorbent. Furthermore, the reusability experiments showed that the adsorbent could be reused at least ten cycles without any significant loss in its sorption behavior.

  1. Variation of equation of state parameters in the Mg2(Si 1-xSnx) alloys

    KAUST Repository

    Pulikkotil, Jiji Thomas Joseph

    2010-08-03

    Thermoelectric performance peaks up for intermediate Mg2(Si 1-x:Snx) alloys, but not for isomorphic and isoelectronic Mg2(Si1-xGex) alloys. A comparative study of the equation of state parameters is performed using density functional theory, Green\\'s function technique, and the coherent potential approximation. Anomalous variation of the bulk modulus is found in Mg2(Si1-xSn x) but not in the Mg2(Si1-xGex) analogs. Assuming a Debye model, linear variations of the unit cell volume and pressure derivative of the bulk modulus suggest that lattice effects are important for the thermoelectric response. From the electronic structure perspective, Mg2(Si1-xSnx) is distinguished by a strong renormalization of the anion-anion hybridization. © 2010 IOP Publishing Ltd.

  2. Green Tea attenuates some biochemical disorders induced by γ- irradiation in male rats

    International Nuclear Information System (INIS)

    Nada, A.S.; Amin, N.E.; Aziz, M.M.; Ain-Shoka, A.; Abdel-Latif, H.A.

    2012-01-01

    While radiation hazards, due to free radical generation, present an enormous challenge for biological and medical safety, green tea extract is a potent scavenger of a variety of free radicals. This study was conducted to evaluate the modulating efficacy of prolonged oral administration of green tea against gamma radiation-induced cellular damage in the liver and kidney in male rats using vitamin E as a reference drug. Green tea aqueous extract (300 mg/Kg body weighty) or vitamin E (40 mg/ Kg body weighty) were administered to male albino rats via gavages during 21 successive days before whole body exposure to gamma rays (6.5 Gy), from cesium-137 source, and during 7 days after irradiation. The animals were sacrificed the 7th day post-irradiation. The levels of cholesterol, triglyceride (TG), urea, and creatinine, as well as activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP) were significantly increased in sera of the irradiated rats. Moreover, radiation induced disturbances in liver and kidney content of calcium (Ca), magnesium (Mg) and manganese (Mn). Treatment with green tea extract and or vitamin E before and post irradiation were significantly ameliorated the levels of cholesterol, TG, creatinine, and urea, as well as the activities of AST, ALT, and ALP in serum. Also, green tea extract and or vitamin E achieved significant amelioration liver and kidney contents of Ca, Mg and Mn. In conclusion, green tea extract and or vitamin E show a radioprotective impact against ionizing-radiation-induced liver and kidney injury

  3. Semiconductor thin films directly from minerals—study of structural, optical, and transport characteristics of Cu2O thin films from malachite mineral and synthetic CuO

    International Nuclear Information System (INIS)

    Balasubramaniam, K.R.; Kao, V.M.; Ravichandran, J.; Rossen, P.B.; Siemons, W.; Ager, J.W.

    2012-01-01

    We demonstrate the proof-of-concept of using an abundantly occurring natural ore, malachite (Cu 2 CO 3 (OH) 2 ) to directly yield the semiconductor Cu 2 O to be used as an active component of a functional thin film based device. Cu 2 O is an archetype hole-conducting semiconductor that possesses several interesting characteristics particularly useful for solar cell applications, including low cost, non-toxicity, good hole mobility, large minority carrier diffusion length, and a direct energy gap ideal for efficient absorption. In this article, we compare the structural, optical, and electrical transport characteristics of Cu 2 O thin films grown from the natural mineral malachite and synthetic CuO targets. Growth from either source material results in single-phase, fully epitaxial cuprous oxide thin films as determined by x-ray diffraction. The films grown from malachite have strong absorption coefficients ( 10 4 cm −1 ), a direct allowed optical bandgap ( 2.4 eV), and majority carrier hole mobilities ( 35 cm 2 V −1 s −1 at room temperature) that compare well with films grown from the synthetic target as well as with previously reported values. Our work demonstrates that minerals could be useful to directly yield the active components in functional devices and suggests a route for the exploration of low cost energy conversion and storage technologies. - Highlights: ► Semiconductor thin films directly from minerals ► Chemistry and structure evolution of the films obtained from mineral target is very similar to that films obtained from high-purity synthetic targets. ► Quite interestingly, transport and optical characteristics are also found to be similar.

  4. The SERS and TERS effects obtained by gold droplets on top of Si nanowires.

    Science.gov (United States)

    Becker, M; Sivakov, V; Andrä, G; Geiger, R; Schreiber, J; Hoffmann, S; Michler, J; Milenin, A P; Werner, P; Christiansen, S H

    2007-01-01

    We show that hemispherical gold droplets on top of silicon nanowires when grown by the vapor-liquid-solid (VLS) mechanism, can produce a significant enhancement of Raman scattered signals. Signal enhancement for a few or even just single gold droplets is demonstrated by analyzing the enhanced Raman signature of malachite green molecules. For this experiment, trenches (approximately 800 nm wide) were etched in a silicon-on-insulator (SOI) wafer along crystallographic directions that constitute sidewalls ({110} surfaces) suitable for the growth of silicon nanowires in directions with the intention that the gold droplets on the silicon nanowires can meet somewhere in the trench when growth time is carefully selected. Another way to realize gold nanostructures in close vicinity is to attach a silicon nanowire with a gold droplet onto an atomic force microscopy (AFM) tip and to bring this tip toward another gold-coated AFM tip where malachite green molecules were deposited prior to the measurements. In both experiments, signal enhancement of characteristic Raman bands of malachite green molecules was observed. This indicates that silicon nanowires with gold droplets atop can act as efficient probes for tip-enhanced Raman spectroscopy (TERS). In our article, we show that a nanowire TERS probe can be fabricated by welding nanowires with gold droplets to AFM tips in a scanning electron microscope (SEM). TERS tips made from nanowires could improve the spatial resolution of Raman spectroscopy so that measurements on the nanometer scale are possible.

  5. Facile synthesis of surface-functionalized magnetic nanocomposites for effectively selective adsorption of cationic dyes

    Science.gov (United States)

    Hua, Yani; Xiao, Juan; Zhang, Qinqin; Cui, Chang; Wang, Chuan

    2018-04-01

    A new magnetic nano-adsorbent, polycatechol modified Fe3O4 magnetic nanoparticles (Fe3O4/PCC MNPs) were prepared by a facile chemical coprecipitation method using iron salts and catechol solution as precursors. Fe3O4/PCC MNPs owned negatively charged surface with oxygen-containing groups and showed a strong adsorption capacity and fast adsorption rates for the removal of cationic dyes in water. The adsorption capacity of methylene blue (MB), cationic turquoise blue GB (GB), malachite green (MG), crystal violet (CV) and cationic pink FG (FG) were 60.06 mg g- 1, 70.97 mg g- 1, 66.84 mg g- 1, 66.01 mg g- 1 and 50.27 mg g- 1, respectively. The adsorption mechanism was proposed by the analyses of the adsorption isotherms and adsorption kinetics of cationic dyes on Fe3O4/PCC MNPs. Moreover, the cationic dyes adsorbed on the MNPs as a function of contact time, pH value, temperature, coexisting cationic ions and ion strength were also investigated. These results suggested that the Fe3O4/PCC MNPs is promising to be used as a magnetic adsorbent for selective adsorption of cationic dyes in wastewater treatment.

  6. Determination of tantalum in standard steels by INAA and absorption spectrophotometry

    Energy Technology Data Exchange (ETDEWEB)

    Obrusnik, I; Posta, S [Ustav Jaderneho Vyzkumu, Rez (Czechoslovakia)

    1978-02-14

    Two analytical methods, instrumental neutron activation analysis (INAA) and absorption spectrophotometry with malachite green, have been used for the determination of tantalum in standard steels produced by the Research Institute of CKD Prague - steels No. 167 and No. 169 with expected concentrations of Ta 0.01% and 0.03%, respectively. INAA method consisted of irradiation of steel samples (chips) in a nuclear reactor and Ge(Li) ..gamma..-ray spectrometry after a cooling period of one month. A spectrophotometric determination is based on the extraction of ionic associate of TaF/sub 6//sup -/ with malachite green into Oenzene from a solution of diluted sulphuric acid and hydrofluoric acid. The results obtained by the two methods are in a good agreement. However, INAA method is more sensitive and precise then spectrophotometry for the determination of tantalum in steels in the above-mentioned concentration ranges.

  7. Determination of tantalum in standard steels by INAA and absorption spectrophotometry

    International Nuclear Information System (INIS)

    Obrusnik, I.; Posta, S.

    1978-01-01

    Two analytical methods, instrumental neutron activation analysis (INAA) and absorption spectrophotometry with malachite green, have been used for the determination of tantalum in standard steels produced by the Research Institute of CKD Prague - steels No. 167 and No. 169 with expected concentrations of Ta 0.01% and 0.03%, respectively. INAA method consisted of irradiation of steel samples (chips) in a nuclear reactor and Ge(Li) γ-ray spectrometry after a cooling period of one month. A spectrophotometric determination is based on the extraction of ionic associate of TaF 6 - with malachite green into Oenzene from a solution of diluted sulphuric acid and hydrofluoric acid. The results obtained by the two methods are in a good agreement. However, INAA method is more sensitive and precise then spectrophotometry for the determination of tantalum in steels in the above-mentioned concentration ranges. (author)

  8. Green Tea Extract Supplementation Induces the Lipolytic Pathway, Attenuates Obesity, and Reduces Low-Grade Inflammation in Mice Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Cláudio A. Cunha

    2013-01-01

    Full Text Available The aim of this study was to evaluate the effects of green tea Camellia sinensis extract on proinflammatory molecules and lipolytic protein levels in adipose tissue of diet-induced obese mice. Animals were randomized into four groups: CW (chow diet and water; CG (chow diet and water + green tea extract; HW (high-fat diet and water; HG (high-fat diet and water + green tea extract. The mice were fed ad libitum with chow or high-fat diet and concomitantly supplemented (oral gavage with 400 mg/kg body weight/day of green tea extract (CG and HG, resp.. The treatments were performed for eight weeks. UPLC showed that in 10 mg/mL green tea extract, there were 15 μg/mg epigallocatechin, 95 μg/mg epigallocatechin gallate, 20.8 μg/mg epicatechin gallate, and 4.9 μg/mg gallocatechin gallate. Green tea administered concomitantly with a high-fat diet increased HSL, ABHD5, and perilipin in mesenteric adipose tissue, and this was associated with reduced body weight and adipose tissue gain. Further, we observed that green tea supplementation reduced inflammatory cytokine TNFα levels, as well as TLR4, MYD88, and TRAF6 proinflammatory signalling. Our results show that green tea increases the lipolytic pathway and reduces adipose tissue, and this may explain the attenuation of low-grade inflammation in obese mice.

  9. Influence of the preparation method on the structure, optical and photocatalytic properties of nanosized ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Gancheva, M., E-mail: mancheva@svr.igic.bas.bg [Institute of General and Inorganic Chemistry, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.11, 1113, Sofia (Bulgaria); Uzunov, I.; Iordanova, R. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Science, Acad. G. Bonchev Str., bl.11, 1113, Sofia (Bulgaria); Papazova, K. [University of Sofia, Faculty of Chemistry and Pharmacy, James Bourchier 1 Blvd., 1164, Sofia (Bulgaria)

    2015-08-15

    Mechanochemical activation is the most commonly applied approach for improving the photocatalytic properties of commercial zinc oxide. Here we show that ZnO obtained by two-pathway decomposition of basic zinc carbonate also possesses a very good photocatalytic activity. Nanosized ZnO powders were successfully prepared by thermal and mechanochemical decomposition of Zn{sub 5}(CO{sub 3}){sub 2}(OH){sub 6}, precipitated under soft conditions. The precursor and final products were characterized by X-ray diffraction (XRD), thermal analysis (TG/DTA), infrared spectroscopy (IR) and B.E.T method. The morphology of the ZnO was observed by SEM analysis. The optical and photocatalytic properties of the prepared zinc oxides were also investigated and compared with commercial ZnO. The band gaps of the thermal and mechanochemical obtained ZnO nanopowders are 3.22 and 3.04 eV, respectively. The degree of decomposition of Malachite Green under UV and visible irradiations in the presence of ZnO prepared by both methods reached levels above 90%. Better catalytic activity was found for the visible region. It was established that the process follows second order kinetics. - Graphical abstract: Display Omitted - Highlights: • Synthesis of nanosized ZnO from hydrozincite by thermal and mechanochemical route. • ZnO powders possess high photocatalytic activity under UV and visible irradiation. • The degree of decomposition of Malachite Green is more than 90% for the both ZnO's. • The photodecomposition of MG under UV/Vis irradiation follows second order kinetics.

  10. Total, Soluble and Insoluble Oxalate Contents of Ripe Green and Golden Kiwifruit

    Directory of Open Access Journals (Sweden)

    Hà Vũ Hồng Nguyễn

    2013-03-01

    Full Text Available Three bulk samples of two different cultivars of kiwifruit, green (Actinidia deliciosa L. and golden (Actinidia chinensis L. were bought ripe, ready to eat from a local market. The aim of the study was to determine the oxalate composition of each of the three fractions of kiwifruit, namely skin, pulp and seeds. The pulp consisted of 90.4% of the edible portion of the two cultivars while the skin and seeds made up a mean of 8.0% and 1.6% respectively. Total oxalate was extracted with 2.0 M HCL at 21 °C for 15 min and soluble oxalates extracted at 21 °C in water for 15 min from each fraction. The total and soluble oxalate compositions of each fraction were determined using ion exchange HPLC chromatography. The pulp of golden kiwifruit contained lower amounts of total oxalates (15.7 vs. 19.3 mg/100 g FW and higher amounts of soluble oxalates (8.5 vs. 7.6 mg/100 g FW when compared to the green cultivar. The skin of the green cultivar contained lower levels of insoluble oxalates (36.9 vs. 43.6 mg/100 g FW, while the seeds of the green cultivar contained higher levels of insoluble oxalates 106.7 vs. 84.7 mg/100 g FW.

  11. Optical Properies of Polystyrene Films Doped by Methyl Green Dye

    Directory of Open Access Journals (Sweden)

    Asrar A. Saeed

    2017-11-01

    Full Text Available Effects of methyl green (MG dye on the optical properties of polystyrene (PS have been studied. Pure polystyrene and MG doped PS films were prepared by using casting method. These films were characterized using UV/VIS spectrophotometer technique in order to estimate the type of electric transition which was found to be indirect transition. The value of the optical energy gap was decreased with increasing doping ratios of methyl green dye. Absorption coefficient, extinction coefficient, refractive index and energy gap have been also investigated; it was found that all the above parameters affects by doping dye.

  12. Use practices of antimicrobials and other compounds by shrimp and fish farmers in Northern Vietnam

    DEFF Research Database (Denmark)

    Thi Kim Chi, Tran; Clausen, Jesper H.; Van, Phan Thi

    2017-01-01

    that 20 different antimicrobial products were used for disease prevention and treatment in shrimp and marine fish culture. Banned products used included chloramphenicol, enrofloxacin and malachite green. Cage fish farmers said they purchased antimicrobial tablets readily available at a local pharmacy...

  13. Femtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves

    CSIR Research Space (South Africa)

    Ombinda-Lemboumba, Saturnin

    2009-09-01

    Full Text Available been implemented at the CSIR National Laser Centre and has been applied to investigate energy transfer processes in different parts of photosynthetic systems. In this paper, researchers report on the first results obtained with Malachite green as a...

  14. A photophysical study of two fluorogen-activating proteins bound to their cognate fluorogens

    Energy Technology Data Exchange (ETDEWEB)

    Gaiotto, Tiziano [Los Alamos National Laboratory; Nguyen, Hau B [Los Alamos National Laboratory; Jung, Jaemyeong [Los Alamos National Laboratory; Bradbury, Andrew M [Los Alamos National Laboratory; Gnanakaran, S. [Los Alamos National Laboratory; Schmidt, Jurgen G [Los Alamos National Laboratory; Waldo, Geoffrey S [Los Alamos National Laboratory; Goodwin, Peter M [Los Alamos National Laboratory

    2010-12-14

    We are exploring the feasibility of using recently developed flu orogen-activating proteins (FAPs) as reporters for single-molecule imaging. FAPs are single-chain antibodies choosen to specifically bind small chromophoric molecules termed f1uorogens. Upon binding to its cognate FAP the fluorescence quantum yield of the fluorogen can increase substantially giving rise to a fluorescent complex. Based on the seminal work of Szent-Gyorgyi et al. (Nature Biotechnology, Volume 26, Number 2, pp 235-240, 2008) we have chosen to study two fluorogen-activating single-chain antibodies, HL 1.0.1-TOI and H6-MG bound to their cognate fluorogens, thiazole orange and malachite green derivatives, respectively. Here we use fluorescence correlation spectroscopy study the photophysics of these fluorescent complexes.

  15. Green manure addition to soil increases grain zinc concentration in bread wheat.

    Directory of Open Access Journals (Sweden)

    Forough Aghili

    Full Text Available Zinc (Zn deficiency is a major problem for many people living on wheat-based diets. Here, we explored whether addition of green manure of red clover and sunflower to a calcareous soil or inoculating a non-indigenous arbuscular mycorrhizal fungal (AMF strain may increase grain Zn concentration in bread wheat. For this purpose we performed a multifactorial pot experiment, in which the effects of two green manures (red clover, sunflower, ZnSO4 application, soil γ-irradiation (elimination of naturally occurring AMF, and AMF inoculation were tested. Both green manures were labeled with 65Zn radiotracer to record the Zn recoveries in the aboveground plant biomass. Application of ZnSO4 fertilizer increased grain Zn concentration from 20 to 39 mg Zn kg-1 and sole addition of green manure of sunflower to soil raised grain Zn concentration to 31 mg Zn kg-1. Adding the two together to soil increased grain Zn concentration even further to 54 mg Zn kg-1. Mixing green manure of sunflower to soil mobilized additional 48 µg Zn (kg soil-1 for transfer to the aboveground plant biomass, compared to the total of 132 µg Zn (kg soil-1 taken up from plain soil when neither green manure nor ZnSO4 were applied. Green manure amendments to soil also raised the DTPA-extractable Zn in soil. Inoculating a non-indigenous AMF did not increase plant Zn uptake. The study thus showed that organic matter amendments to soil can contribute to a better utilization of naturally stocked soil micronutrients, and thereby reduce any need for major external inputs.

  16. Antidepressant-like effects of young green barley leaf (Hordeum vulgare L.) in the mouse forced swimming test.

    Science.gov (United States)

    Yamaura, Katsunori; Nakayama, Noriyuki; Shimada, Maki; Bi, Yuanyuan; Fukata, Hideki; Ueno, Koichi

    2012-01-01

    Young green barley leaf is one of the richest sources of antioxidants and has been widely consumed for health management in Japan. In this study, we examined whether oral administration of young green barley leaf has an antidepressant effect on the forced swimming test in mice. Mice were individually forced to swim in an open cylindrical container, one hour after oral administration of young green barley leaf (400 or 1000 mg / kg) or imipramine (100 mg / kg). Expression of mRNA for nerve growth factor (NGF), brain-derived neurotrophic factor, and glucocorticoid receptor in the brain was analyzed using real-time quantitative polymerase chain reaction (PCR). There was a significant antidepressant-like effect in the forced swimming test; both 400 and 1000 mg / kg young green barley leaves, as well as the positive control imipramine (100 mg / kg), reduced the immobility duration compared to the vehicle group. The expression of mRNA for NGF detected in the hippocampus immediately after the last swimming test was higher than that in the non-swimming group (Nil). Oral administration of imipramine suppressed this increase to the level of the Nil group. Young green barley leaf (400 and 1000 mg / kg) also showed a moderate decrease in the expression of mRNA for NGF, in a dose-dependent manner. Oral administration of young green barley leaf is able to produce an antidepressant-like effect in the forced swimming test. Consequently it is possible that the antidepressant-like effects of the young green barley leaf are, at least in part, mediated by an inhibition of the increase in the hippocampus levels of NGF.

  17. ZnCdMgSe as a Materials Platform for Advanced Photonic Devices: Broadband Quantum Cascade Detectors and Green Semiconductor Disk Lasers

    Science.gov (United States)

    De Jesus, Joel

    The ZnCdMgSe family of II-VI materials has unique and promising characteristics that may be useful in practical applications. For example they can be grown lattice matched to InP substrates with lattice matched bandgaps that span from 2.1 to 3.5 eV, they can be successfully doped n-type, have a large conduction band offset (CBO) with no intervalley scattering present when strained, they have lower average phonon energies, and the InP lattice constant lies in the middle of the ZnSe and CdSe binaries compounds giving room to experiment with tensile and compressive stress. However they have not been studied in detail for use in practical devices. Here we have identified two types of devices that are being currently developed that benefit from the ZnCdMgSe-based material properties. These are the intersubband (ISB) quantum cascade (QC) detectors and optically pumped semiconductor lasers that emit in the visible range. The paucity for semiconductor lasers operating in the green-orange portion of the visible spectrum can be easily overcome with the ZnCdMgSe materials system developed in our research. The non-strain limited, large CBO available allows to expand the operating wavelength of ISB devices providing shorter and longer wavelengths than the currently commercially available devices. This property can also be exploited to develop broadband room temperature operation ISB detectors. The work presented here focused first on using the ZnCdMgSe-based material properties and parameter to understand and predict the interband and intersubband transitions of its heterostructures. We did this by studying an active region of a QC device by contactless electroreflectance, photoluminescence, FTIR transmittance and correlating the measurements to the quantum well structure by transfer matrix modeling. Then we worked on optimizing the ZnCdMgSe material heterostructures quality by studying the effects of growth interruptions on their optical and optoelectronic properties of

  18. Browse Title Index

    African Journals Online (AJOL)

    Items 901 - 950 of 1255 ... Vol 10, No 1 (2004), PRODUCTION OF MALACHITE GREEN BY OXIDATION OF ITS ... Prospects of chemically deposited CoS-CU2S coatings for solar ... Vol 11, No 2 (2005), Protective effects of Dried Flower Extract of ...

  19. Volatile and non-volatile compounds in green tea affected in harvesting time and their correlation to consumer preference.

    Science.gov (United States)

    Kim, Youngmok; Lee, Kwang-Geun; Kim, Mina K

    2016-10-01

    Current study was designed to find out how tea harvesting time affects the volatile and non-volatile compounds profiles of green tea. In addition, correlation of instrumental volatile and non-volatile compounds analyses to consumer perception were analyzed. Overall, earlier harvested green tea had stronger antioxidant capacity (~61.0%) due to the polyphenolic compounds from catechin (23,164 mg/L), in comparison to later harvested green teas (11,961 mg/L). However, high catechin content in green tea influenced negatively the consumer likings of green tea, due to high bitterness (27.6%) and astringency (13.4%). Volatile compounds drive consumer liking of green tea products were also identified, that included linalool, 2,3-methyl butanal, 2-heptanone, (E,E)-3,5-Octadien-2-one. Finding from current study are useful for green tea industry as it provide the difference in physiochemical properties of green tea harvested at different intervals.

  20. A versatile optical tool for studying synaptic GABAA receptor trafficking.

    Science.gov (United States)

    Lorenz-Guertin, Joshua M; Wilcox, Madeleine R; Zhang, Ming; Larsen, Mads B; Pilli, Jyotsna; Schmidt, Brigitte F; Bruchez, Marcel P; Johnson, Jon W; Waggoner, Alan S; Watkins, Simon C; Jacob, Tija C

    2017-11-15

    Live-cell imaging methods can provide critical real-time receptor trafficking measurements. Here, we describe an optical tool to study synaptic γ-aminobutyric acid (GABA) type A receptor (GABA A R) dynamics through adaptable fluorescent-tracking capabilities. A fluorogen-activating peptide (FAP) was genetically inserted into a GABA A R γ2 subunit tagged with pH-sensitive green fluorescent protein (γ2 pH FAP). The FAP selectively binds and activates Malachite Green (MG) dyes that are otherwise non-fluorescent in solution. γ2 pH FAP GABA A Rs are expressed at the cell surface in transfected cortical neurons, form synaptic clusters and do not perturb neuronal development. Electrophysiological studies show γ2 pH FAP GABA A Rs respond to GABA and exhibit positive modulation upon stimulation with the benzodiazepine diazepam. Imaging studies using γ2 pH FAP-transfected neurons and MG dyes show time-dependent receptor accumulation into intracellular vesicles, revealing constitutive endosomal and lysosomal trafficking. Simultaneous analysis of synaptic, surface and lysosomal receptors using the γ2 pH FAP-MG dye approach reveals enhanced GABA A R turnover following a bicucculine-induced seizure paradigm, a finding not detected by standard surface receptor measurements. To our knowledge, this is the first application of the FAP-MG dye system in neurons, demonstrating the versatility to study nearly all phases of GABA A R trafficking. © 2017. Published by The Company of Biologists Ltd.

  1. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-09-01

    Full Text Available No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM. The results indicate that green transformational leadership positively influences green mindfulness, green self-efficacy, and green performance. Moreover, this study demonstrates that the positive relationship between green transformational leadership and green performance is partially mediated by the two mediators: green mindfulness and green self-efficacy. It means that green transformational leadership can not only directly affect green performance positively but also indirectly affect it positively through green mindfulness and green self-efficacy. Therefore, firms need to raise their green transformational leadership, green mindfulness, and green self-efficacy to increase their green performance.

  2. Fabrication of flexible gold nanorods polymer metafilm via phase transfer method as SERS substrate for detecting food contaminants.

    Science.gov (United States)

    Yang, Nan; You, Ting-Ting; Gao, Yu-Kun; Zhang, Chen-Meng; Yin, Penggang

    2018-06-08

    Surface enhanced Raman scattering (SERS) has been widely used in detection of food safety due to the nondestructive examination property. Here, we reported a flexible SERS film based on polymer immobilized gold nanorods polymer metafilm. Polystyrene-polyisoprene-polystyrene (SIS), a transparent and flexible along with excellent elasticity polymer was chosen as main support of gold nanorods. A simple phase transfer progress was adopted to mix the gold nanorods with polymer which can further used in most water-insoluble polymers. The SERS film performed satisfactorily while tested in a series of standard Raman probes like crystal violet (CV) and malachite green (MG). Moreover, the excellent reproducibility and elastic properties make the film promising substrates in practical detection. Hence, the MG detection on fish surface and trace thiram detection on orange pericarp were inspected with the detection result of 1 × 10-10 M and 1 × 10-6 M which below the demand of National standard of China, exactly matching the realistic application requirements.

  3. Evaluation of anti-diabetic effects of hydroalcoholic extract of green tea and cinnamon on streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Ghasem Shokri

    2015-06-01

    Full Text Available Today diabetes is one of the most common diseases in the world that affects half of the world population. The use of medicinal herbs especially green tea and cinnamon has been taken into consideration for relieving the symptoms of diabetes, but there were some different ideas about their effectiveness. So, this study was conducted to evaluate the effect of cinnamon and green tea extract, individually and in combination, on blood glucose and weight loss in diabetic mice with Streptozotocin (STZ. The experiment was performed on 50 Wistar rats.  A total of 50 rats were divided into 10 groups of 5 and STZ was injected at the dose of 40 mg/kg/day for 5 days intraperitoneally. After diabetes induction, three groups received, 50, 100 and 200 mg doses of green tea extract,  three groups received 50, 100 and 200 mg doses of cinnamon extract  and three final groups received 50, 100 and 200 mg doses of  cinnamon  and green tea in combination by gavages daily for 6 weeks. After each period of treatments, blood glucose and the weight of animals were determined. At the end of the sixth week, blood glucose and weight loss were improved in diabetic rats in a dose-dependent manner and the dose of 200 mg/kg extract cinnamon with green tea had the most appropriate synergic effect.

  4. Refinement of the crystal structure of malachite, Cu2(OH)2CO3, by neutron diffraction

    International Nuclear Information System (INIS)

    Zigan, F.; Joswig, W.; Schuster, H.D.; Mason, S.A.

    1977-01-01

    The crystal structure of malachite is refined (R = 0,021) with the intensity values of 635 independent neutron reflexions from a single crystal, rather free from absorption and extinction. Concerning the structural geometry, no essential deviations occur from the known results of x-ray diffraction. The thermal elongations are generally largest about the normal to the (201) layers, between which the bonding is relatively weak. In both of the (medium, bent) OH...O hydrogen bonds, the anisotropic thermal parameters, converted according to the riding model, are - with certain restrictions - in agreement with the measured infrared spectrum as well as with frequencies and directions of the proton vibration calculated from the bonding geometry on the basis of a theoretical model. (orig.) [de

  5. A field study to evaluate runoff quality from green roofs.

    Science.gov (United States)

    Vijayaraghavan, K; Joshi, U M; Balasubramanian, R

    2012-03-15

    Green (vegetated) roofs are emerging as practical strategies to improve the environmental quality of cities. However, the impact of green roofs on the storm water quality remains a topic of concern to city planners and environmental policy makers. This study investigated whether green roofs act as a source or a sink of various metals (Na, K, Ca, Mg, Al, Fe, Cu, Cd, Pb, Zn, Mn, Cr, Ni, Li and Co), inorganic anions (NO3-, NO2-, PO4(3-), SO4(2-), Cl-, F- and Br-) and cation (NH4+). A series of green roof assemblies were constructed. Four different real rain events and several artificial rain events were considered for the study. Results showed that concentrations of most of the chemical components in runoff were highest during the beginning of rain events and subsided in the subsequent rain events. Some of the important components present in the runoff include Na, K, Ca, Mg, Li, Fe, Al, Cu, NO3-, PO4(3-) and SO4(2-). However, the concentration of these chemical components in the roof runoff strongly depends on the nature of substrates used in the green roof and the volume of rain. Based on the USEPA standards for freshwater quality, we conclude that the green roof used in this study is reasonably effective except that the runoff contains significant amounts of NO3- and PO4(3-). Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Gum ghatti and poly(acrylamide-co-acrylic acid) based biodegradable hydrogel-evaluation of the flocculation and adsorption properties

    CSIR Research Space (South Africa)

    Mittal, H

    2015-10-01

    Full Text Available removal of cationic dyes from the aqueous solutions and it was found to adsorb 96% of malachite green and 99% of methyl violet. Finally, the hydrogel polymer was subjected to biodegradation using the composting method and 91.77% degradation was achieved...

  7. Stimulation effects of γ-irradiation combined with colchicine on callus formation and green plant regeneration in rice anther culture

    International Nuclear Information System (INIS)

    Jin Wei; Chen Qiufang; Wang Cailian; Lu Yimei

    1999-09-01

    The ability of callus formation and green plant regeneration was very different for various rice types and varieties in rice anther culture. It was quite effective that rice anthers were irradiated with 10-40 Gy of γ-rays after 30 d incubation on induction medium and calli were treated on differentiation medium contained 10-75 mg/L of colchicine for increase of callus formation and green plant regeneration. Among these treatments, 10 Gy of γ-rats was the best for callus formation, and 20 Gy of γ-rays or 30 mg/L of colchicine was the most favourable for green plant regeneration. The simulation effect of 20 Gy of γ-irradiation combined with 30 mg/L of colchicine on green plant regeneration was much better than that of their separate use in rice anther culture

  8. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    Directory of Open Access Journals (Sweden)

    H. Kokes

    2014-03-01

    Full Text Available The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III hydroxide was precipitated by adjusting the pH level of the solution. Subsequently, copper sulfate pentahydrate was obtained by using various precipitants (i.e. ethanol, methanol and sulfuric acid.

  9. Variation of equation of state parameters in the Mg2(Si 1-xSnx) alloys

    KAUST Repository

    Pulikkotil, Jiji Thomas Joseph; Alshareef, Husam N.; Schwingenschlö gl, Udo

    2010-01-01

    Thermoelectric performance peaks up for intermediate Mg2(Si 1-x:Snx) alloys, but not for isomorphic and isoelectronic Mg2(Si1-xGex) alloys. A comparative study of the equation of state parameters is performed using density functional theory, Green

  10. Room-temperature fabrication of core-shell nano-ZnO/pollen grain biocomposite for adsorptive removal of organic dye from water

    Energy Technology Data Exchange (ETDEWEB)

    Tzvetkov, George, E-mail: george.tzvetkov@gmail.com; Kaneva, Nina; Spassov, Tony

    2017-04-01

    Highlights: • Meso-/macro-porous nano-ZnO covered pollen grains are prepared at room temperature. • A possible formation mechanism of the core-shell microparticles was proposed. • Adsorptive removal of Malachite Green from water by the biocomposite is studied. - Abstract: A new core-shell nano-ZnO/pollen grain (n-ZnO/PG) biocomposite has been successfully synthesized via simple and low-temperature two-step liquid precipitation method. The synthetic strategy consists of grafting the surface of pine pollen grains (PG) with Zn{sup 2+}-organic complexes followed by a treatment in Zn(CH{sub 3}COO){sub 2}/NaOH solution, thus producing a closed n-ZnO shell around the organic core, with a thickness of ∼450 nm. Scanning electron microscopy, X-ray diffraction, FTIR, XPS and UV–vis spectroscopy measurements along with N{sub 2} adsorption/desorption were used to characterize the resulting n-ZnO/PG biocomposite. The as-prepared core-shell microparticles are meso-/macro-porous with BET surface area of 25 m{sup 2} g{sup −1} and total pore volume of 0.26 cm{sup 3} g{sup −1}. The adsorption properties of n-ZnO/PG were evaluated through adsorption of Malachite Green (MG) from aqueous medium at room temperature (25 °C). For the sake of comparison, the physico-chemical and adsorptive properties of the raw PG and pure n-ZnO were also examined. Results indicate that n-ZnO/PG is the most favorable for the adsorption of MG under the conditions used in this study. The adsorption kinetic data for PG, n-ZnO and n-ZnO/PG follow the pseudo-second order equation and the maximum adsorption capacity follows an order of n-ZnO/PG > n-ZnO > PG. For n-ZnO/PG an adsorption uptake up to 145.9 mg g{sup −1} is observed. The as-prepared core-shell biocomposite material is a promising cost-effective and environmentally friendly adsorbent due to its textural properties, surface chemistry, adsorption capacity and recyclability.

  11. Population nutrikinetics of green tea extract.

    Science.gov (United States)

    Scholl, Catharina; Lepper, Anna; Lehr, Thorsten; Hanke, Nina; Schneider, Katharina Luise; Brockmöller, Jürgen; Seufferlein, Thomas; Stingl, Julia Carolin

    2018-01-01

    Green tea polyphenols may contribute to the prevention of cancer and other diseases. To learn more about the pharmacokinetics and interindividual variation of green tea polyphenols after oral intake in humans we performed a population nutrikinetic study of standardized green tea extract. 84 healthy participants took green tea extract capsules standardized to 150 mg epigallocatechin-gallate (EGCG) twice a day for 5 days. On day 5 catechin plasma concentrations were analyzed using non-compartmental and population pharmacokinetic methods. A strong between-subject variability in catechin pharmacokinetics was found with maximum plasma concentrations varying more than 6-fold. The AUCs of EGCG, EGC and ECG were 877.9 (360.8-1576.5), 35.1 (8.0-87.4), and 183.6 (55.5-364.6) h*μg/L respectively, and the elimination half lives were 2.6 (1.8-3.8), 3.9 (0.9-10.7) and 1.8 (0.8-2.9) h, respectively. Genetic polymorphisms in genes of the drug transporters MRP2 and OATP1B1 could at least partly explain the high variability in pharmacokinetic parameters. The observed variability in catechin plasma levels might contribute to interindividual variation in benefical and adverse effects of green tea polyphenols. Our data could help to gain a better understanding of the causes of variability of green tea effects and to improve the design of studies on the effects of green tea polyphenols in different health conditions. ClinicalTrials.gov: NCT01360320.

  12. The Antioxidant Capacity of Rosemary and Green Tea Extracts to Replace the Carcinogenic Antioxidant (BHA in Chicken Burgers

    Directory of Open Access Journals (Sweden)

    Manoela A. Pires

    2017-01-01

    Full Text Available The present study aimed to evaluate the effect of natural extracts (rosemary and green tea extracts in frozen storage of chicken burgers. Chicken burger treatments were prepared as follows: control (CON, 20 mg BHA/kg (BHA20, 10 mg green tea extract/kg (GT10, 38 mg green tea extract/kg (GT38, 18.6 mg rosemary extract/kg (RO18, and 480 mg rosemary extract/kg (RO480. Analysis of physicochemical parameters, color, TBAR index, and sensory acceptance were performed at 0, 30, 60, and 120 days of storage at −18°C in burgers packaged in LDPE plastic bags. The addition of natural antioxidants did not affect (p>0.05 the color and physicochemical parameters of the chicken burgers. After 120 days at −18°C, the RO480 sample showed a TBAR index similar (p>0.05 to BHA20 (0.423 and 0.369 mg, resp.. Sensory acceptance did not differ (p>0.05 among the treatments throughout the storage period (p>0.05.

  13. Cardiopulmonary and anesthetic effects of propofol administered intraosseously to green iguanas.

    Science.gov (United States)

    Bennett, R A; Schumacher, J; Hedjazi-Haring, K; Newell, S M

    1998-01-01

    To determine cardiopulmonary effects of intraosseous administration of propofol in green iguanas (Iguana iguana). Prospective study. 14 green iguanas. Anesthesia was induced in 4 iguanas with propofol (10 mg/kg [4.5 mg/lb] of body weight, intraosseously). Heart and respiratory rates, functional hemoglobin oxygen saturation (SpO2), end-tidal CO2 concentration, and cloacal temperature were recorded. Ten additional iguanas were given propofol intraosseously for induction (5 mg/kg [2.3 mg/lb] and maintenance (0.5 mg/kg/min [0.23 mg/lb/min], q 30 min) of anesthesia. Heart and respiratory rates, cloacal temperature, and SpO2 were recorded. Mean induction time for the first 4 iguanas was 1.2 minutes. A significant decrease in heart rate was seen 1 minute after induction of anesthesia. All iguanas were apneic, but spontaneous ventilation resumed within 5 minutes. End-tidal CO2 concentration decreased from 46 mm of Hg 4 minutes after induction of anesthesia to 32 mm of Hg 30 minutes after induction of anesthesia. Mean duration of anesthesia was 27 minutes. Mean induction time for the other 10 iguanas was 3 minutes. A significant decrease in heart rate was detected 35 minutes after induction of anesthesia and persisted until 120 minutes. Mean SpO2 value decreased from 79% 5 minutes after induction of anesthesia to 64% 30 minutes after induction of anesthesia. Mean recovery time was 57 minutes. Propofol is an effective anesthetic agent for use in green iguanas. It is recommended that iguanas be intubated, provided oxygen, and given assisted ventilation after administration of propofol to prevent hypoxemia and hypercapnia.

  14. Investigation of nanoscale structures by small-angle X-ray scattering in a radiochromic dosimeter

    DEFF Research Database (Denmark)

    Skyt, Peter Sandegaard; Jensen, Grethe Vestergaard; Wahlstedt, Isak Hannes

    2014-01-01

    This study examines the nanoscale structures in a radiochromic dosimeter that was based on leuco-malachite-green dye and the surfactant sodium dodecyl sulfate (SDS) suspended in a gelatin matrix. Small-angle X-ray scattering was used to investigate the structures of a range of compositions...

  15. Treatment of trichodiniasis in eel ( Anguilla anguilla ) reared in recirculation systems in Denmark : alternatives to formaldehyde

    DEFF Research Database (Denmark)

    Madsen, H.C.K.; Buchmann, Kurt; Mellergaard, Stig

    2000-01-01

    parasiticidal effect: acriflavin (25 ppm), bithionol (0.1 ppm), chloramine T (50 ppm), Detarox AP(R) (45 ppm), malachite green (1 ppm), raw garlic (200 ppm), potassium permanganate (20 ppm) and Virkon PF(R) vet. (20 ppm). Preliminary screening revealed that the anthelmintic, bithionol, and the decomposable...

  16. Evaluation of medicated feeds with antiparasitical and immune-enhanced Chinese herbal medicines against Ichthyophthirius multifiliis in grass carp (Ctenopharyngodon idellus)

    Science.gov (United States)

    Ichthyophthirius multifiliis (Ich) is a widespread ciliated ectoparasite and results in severe economic loss in the aquaculture industry. Since malachite green was banned for using in food fish due to its carcinogenic and teratogenic effects on human, the search of alternative drug to treat I. multi...

  17. Laboratory Evaluation of the Clean Earth Technologies Decontamination Solutions for Chemical and Biological Agents

    Science.gov (United States)

    2008-01-01

    TA. The DAAMs tubes are analyzed using a Marks UNITY/ULTRA thermal desorption system coupled to an Agilent 6890N gas chromatography -mass selective...tryptic- soy broth (TSB) or tryptic- soy agar (TSA). Frozen stock of bacterial cells, stored at -80 ’C in TSB supplemented with glycerol to a final...NNRidl) were prepared, heat-treated and ethanol-treated before staining with Malachite Green and viewed under oil immersion lens. The green to dark blue

  18. Femtosecond pump probe spectroscopy for the study of energy transfer of light-harvesting complexes from extractions of spinach leaves

    Directory of Open Access Journals (Sweden)

    L. van Rensburg

    2010-01-01

    Full Text Available Measurements of ultrafast transient processes, of temporal durations in the picosecond and femtosecond regime, are made possible by femtosecond pump probe transient absorption spectroscopy. Such an ultrafast pump probe transient absorption setup has been implemented at the CSIR National Laser Centre and has been applied to investigate energy transfer processes in different parts of photosynthetic systems. In this paper we report on our first results obtained with Malachite green as a benchmark. Malachite green was chosen because the lifetime of its excited state is well known. We also present experimental results of the ultrafast energy transfer of light-harvesting complexes in samples prepared from spinach leaves. Various pump wavelengths in the range 600–680 nm were used; the probe was a white light continuum spanning 420–700 nm. The experimental setup is described in detail in this paper. Results obtained with these samples are consistent with those expected and achieved by other researchers in this field.

  19. Synthesis of Bismuth Stannate Nanoparticles with High Photocatalytic Activity under the Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    G. Gnanamoorthy

    2017-06-01

    Full Text Available Malachite Green is one of the most important organic dye, it contains triphenylmethane groups and it has been widely used for many industries. The hazardous dyes were rapidly act on immune and reproductive systems with carcinogenic effect of human health. Different methods were used for the hazardous removal in various industries, such as photocatalysis, biological treatment and adsorption process. The bismuth stannate nanoparticles have special properties of the hydrogen storage, biomolecule detection, gas sensors and catalysis. The bismuth stannate nanoparticles can be used for the degradation of organic pollutants and bismuth stannate is an important ternary oxide semiconductor with a wide band gap material. The composites were synthesized by a hydrothermal method, the obtained product was characterized by XRD, Raman, the morphology structure was confirmed by scanning electron microscopy and optical properties were carried out by DRS-UV-Vis spectroscopy. The excellent photocatalytic performance of the catalyst was evaluated by malachite green under the visible light.

  20. Comparison of different diagnostic techniques for the detection of cryptosporidiosis in bovines

    Directory of Open Access Journals (Sweden)

    H. K. M. Rekha

    2016-02-01

    Full Text Available Aim: Aim of the present study was to compare different methods, viz., Sheather’s sugar flotation (SSF, Ziehl-Neelsen (ZN, Kinyoun’s acid-fast method (KAF, safranin-methylene blue staining (SMB, and negative staining techniques such as nigrosin staining, light green staining, and malachite green staining for the detection of Cryptosporidium spp. oocysts in bovines. Materials and Methods: A total of 455 fecal samples from bovines were collected from private, government farms and from the clinical cases presented to Department of Medicine, Veterinary College, Bengaluru. They were subjected for SSF, ZN, KAF, SMB and negative staining methods. Results: Out of 455 animal fecal samples screened 5.71% were found positive for Cryptosporidium spp. oocysts. The species were identified as Cryptosporidium parvum in calves and Cryptosporidium andersoni in adults based on the morphological characterization and micrometry of the oocysts. Conclusions: Of all the techniques, fecal flotation with sheather’s was found to be more specific and sensitive method for the detection of Cryptosporidium spp. oocysts. Among the conventional staining methods, the SMB gives better differentiation between oocysts and yeast. Among the three negative staining methods, malachite green was found sensitive over the other methods.

  1. Greenhouse gas emissions from green waste composting windrow.

    Science.gov (United States)

    Zhu-Barker, Xia; Bailey, Shannon K; Paw U, Kyaw Tha; Burger, Martin; Horwath, William R

    2017-01-01

    The process of composting is a source of greenhouse gases (GHG) that contribute to climate change. We monitored three field-scale green waste compost windrows over a one-year period to measure the seasonal variance of the GHG fluxes. The compost pile that experienced the wettest and coolest weather had the highest average CH 4 emission of 254±76gCday -1 dry weight (DW) Mg -1 and lowest average N 2 O emission of 152±21mgNday -1 DW Mg -1 compared to the other seasonal piles. The highest N 2 O emissions (342±41mgNday -1 DW Mg -1 ) came from the pile that underwent the driest and hottest weather. The compost windrow oxygen (O 2 ) concentration and moisture content were the most consistent factors predicting N 2 O and CH 4 emissions from all seasonal compost piles. Compared to N 2 O, CH 4 was a higher contributor to the overall global warming potential (GWP) expressed as CO 2 equivalents (CO 2 eq.). Therefore, CH 4 mitigation practices, such as increasing O 2 concentration in the compost windrows through moisture control, feedstock changes to increase porosity, and windrow turning, may reduce the overall GWP of composting. Based on the results of the present study, statewide total GHG emissions of green waste composting were estimated at 789,000Mg of CO 2 eq., representing 2.1% of total annual GHG emissions of the California agricultural sector and 0.18% of the total state emissions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    OpenAIRE

    Yu-Shan Chen; Ching-Hsun Chang; Yu-Hsien Lin

    2014-01-01

    No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM). The results indicate that green transformational leadership positively influences green min...

  3. GREEN PACKAGING, GREEN PRODUCT, GREEN ADVERTISING, PERSEPSI, DAN MINAT BELI KONSUMEN

    Directory of Open Access Journals (Sweden)

    Imam Santoso

    2016-12-01

    Full Text Available Environmental problems become one of the strategic issues in achieving global competitiveness. One of the issues is products that are made from environmental friendly materials or known as green product. Furthermore, in green products marketing, the company also uses green packaging and green advertising concept. This study aimed to analyze the effect of green packaging, green products, and green advertising on consumer perception and purchasing intention. The study was conducted in Ketawanggede Village, Lowokwaru Sub-district, Malang City. The sampling method used nonprobability accidential sampling techniques. The numbers of respondents were 113 consumers in study site. Data were collected by interview using questionnaires. The method of analysis used Generalized Structured Component Analysis (GSCA. The analysis showed that the green packaging, green products, and green advertising had positive significant influence on consumer perceptions. Meanwhile, green product and consumer perception had positive significant influence on purchasing interest, but the green packaging and green advertising has not found sufficient evidence in influencing purchasing intention.

  4. Bio-char derived from sewage sludge by liquefaction: Characterization and application for dye adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Lijian [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yuan, Xingzhong, E-mail: yxz@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Huang, Huajun [School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045 (China); Shao, Jianguang; Wang, Hou [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Xiaohong [School of Business, Central South University, Changsha 410083 (China); Zeng, Guangming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2015-08-15

    Graphical abstract: - Highlights: • SS liquefaction bio-chars were effective on MG and MB removal from aqueous. • MG adsorption capacity depended strongly on carboxylic and phenolic groups. • Metal release accounted for nearly 30% of the total MG adsorbed on bio-chars. • Acetone and low temperature favor effective adsorbent production by liquefaction. - Abstract: Bio-chars produced by liquefaction of sewage sludge with methanol, ethanol, or acetone as the solvent at 260–380 °C were characterized in terms of their elemental composition, thermogravimetric characteristics, surface area and pore size distribution, and oxygen-containing functional groups composition. The surface area and total volume of the bio-chars were low, but the contents of oxygen-containing functional groups were high. The bio-chars were effective on Malachite green (MG) and Methylene blue (MB) removal from aqueous solution. The MG adsorption equilibrium data showed excellent fit to the Langmuir model and the kinetic data fitted well to the Pseudo-second-order model. Thermodynamic investigations indicated that MG adsorption on bio-char was spontaneous and endothermic. The MG adsorption mechanism appears to be associated with cation release and functional group participation. Additionally, liquefaction of SS with acetone as the solvent at low temperature (280 °C) would favor the production of bio-char adsorbent in terms of bio-char yield and MG and MB adsorption capacity.

  5. Method development and validation for the determination of pesticides in green coffee by gas chromatography

    International Nuclear Information System (INIS)

    Dallos Corredor, David; Guerrero Dallos, Jairo Arturo

    2005-01-01

    This study describes the implementation and validation of a multiresidue methodology for the determination of organochlorine, organophosphorus and pyrethroids pesticides in green coffee. Pesticides residues were extracted from green samples with an acetone-water (2:1) mixture followed by ethyl acetate cyclohexane (1:1) partitioning. The clean up steps include gel permeation chromatography and mini column chromatography using silica gel. Final determination was carried out by high-resolution gas chromatography with a pulsed split less injection mode and simultaneous detection by μ-ECD and NPD coupled in parallel. The methodology is specific, selective precise and accurate. Recoveries of majority of pesticides from spiked samples range from 70 to 110% at fortification levels of 0.038 mg/kg-1.536 mg/kg with limit of quantitation between 0.011 mg/kg and 0.100 mg/kg

  6. Magnetic vs. non-magnetic colloids - A comparative adsorption study to quantify the effect of dye-induced aggregation on the binding affinity of an organic dye.

    Science.gov (United States)

    Williams, Tyler A; Lee, Jenny; Diemler, Cory A; Subir, Mahamud

    2016-11-01

    Due to attractive magnetic forces, magnetic particles (MPs) can exhibit colloidal instability upon molecular adsorption. Thus, by comparing the dye adsorption isotherms of MPs and non-magnetic particles of the same size, shape and functional group it should be possible to characterize the influence of magnetic attraction on MP aggregation. For a range of particle densities, a comparative adsorption study of malachite green (MG(+)) onto magnetic and non-magnetic colloids was carried out using a combination of a separation technique coupled with UV-vis spectroscopy, optical microscopy, and polarization dependent second harmonic generation (SHG) spectroscopy. Significant MP aggregation occurs in aqueous solution due to MG(+) adsorption. This alters the adsorption isotherm and challenges the determination of the adsorption equilibrium constant, Kads. The dye-induced aggregation is directly related to the MG(+) concentration, [MG(+)]. A modified Langmuir equation, which incorporates loss of surface sites due to this aggregation, accurately describes the resulting adsorption isotherms. The Kads of 1.1 (±0.3)×10(7) and a loss of maximum MP surface capacity of 2.8 (±0.7)×10(3)M(-1) per [MG(+)] has been obtained. Additionally, SHG has been established as an effective tool to detect aggregation in nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Color-tunable and highly thermal stable Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors

    International Nuclear Information System (INIS)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang; Lei, Bingfu; Deng, Jiankun; Liu, Wei-Ren; Zeng, Yuan; Zheng, Lingling; Zhao, Minyi

    2017-01-01

    Tb"3"+ activated Sr_2MgAl_2_2O_3_6 phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr_2MgAl_2_2O_3_6:Tb"3"+ phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic "5D_3-"7F_J and "5D_4-"7F_J transitions of the Tb"3"+ ion, respectively. The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb"3"+ doping concentration. Furthermore, the thermal quenching temperature (T_1_/_2) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr_2MgAl_2_2O_3_6:Tb"3"+ was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr_2MgAl_2_2O_3_6:Tb"3"+ shows highly thermal stable. • The cross-relaxation mechanism between the "5D_3 and "5D_4 emission was investigated and discussed.

  8. Adsorptive Removal of Malachite Green with Activated Carbon ...

    African Journals Online (AJOL)

    NICO

    2012-11-22

    Nov 22, 2012 ... The kinetics of the adsorption process was tested by means of pseudo-first-order, pseudo-second-order and ... the production of activated carbon by using agricultural ... tion Number 42 000, with the chemical formula C52H54N4O12, and ...... 40 S. Lagergren and B. K. Svenska, Band., 1893, 24, 1–13.

  9. GREEN PACKAGING, GREEN PRODUCT, GREEN ADVERTISING, PERSEPSI, DAN MINAT BELI KONSUMEN

    OpenAIRE

    Imam Santoso; Rengganis Fitriani

    2016-01-01

    Environmental problems become one of the strategic issues in achieving global competitiveness. One of the issues is products that are made from environmental friendly materials or known as green product. Furthermore, in green products marketing, the company also uses green packaging and green advertising concept. This study aimed to analyze the effect of green packaging, green products, and green advertising on consumer perception and purchasing intention. The study was conducted in Ketawangg...

  10. Evaluation of heavy metal pollution in water wells and soil using common leafy green plant indicators in the Al-Kharj region, Saudi Arabia.

    Science.gov (United States)

    Al-Hammad, Bushra Ahmed; Abd El-Salam, Magda Magdy

    2016-06-01

    This study was performed to determine the levels of eight heavy metals in irrigation well water and soil and to assess the suitability of some leafy green plants that are commonly cultivated in the Al-Kharj region, Saudi Arabia, for human consumption using an atomic absorption spectrometer. The mean concentrations of metals ranged from 0.0001 to 0.436 mg/L in well water and from 0.248 to 164.52 mg/kg in soil. The heavy metal concentrations showed significant differences among the different leafy green plants studied. Parsley (4.98 mg/kg) exhibited higher levels of Pb than other leafy green plants, whereas mallow (0.097 mg/kg) revealed greater amounts of Cd than other plants. All of the leafy green plants retained essential metals (Cu, Zn, Fe and Mn) more than the toxic metals (Pb and Cd). The levels of some of the metals in the leafy green plants were found to meet the FAO/WHO-recommended limits. The monitoring of heavy metals in leafy green plants must be continued because these plants are the main source of food for humans in many parts of the world and are considered to be bio-indicators for environmental pollution.

  11. MgAl-Layered Double Hydroxide Solid Base Catalysts for Henry Reaction: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Magda H. Abdellattif

    2018-03-01

    Full Text Available A series of MgAl-layered double hydroxide (MgAl-HT, the calcined form at 500 °C (MgAlOx, and the rehydrated one at 25 °C (MgAl-HT-RH were synthesized. Physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Surface area of the as-synthesized, calcined, and rehydrated catalysts was determined by N2 physisorption at −196 °C. CO2 temperature-programmed desorption (CO2-TPD was applied to determine the basic sites of catalysts. The catalytic test reaction was carried out using benzaldehyde and their derivatives with nitromethane and their derivatives. The Henry products (1–15 were obtained in a very good yield using MgAl-HT-RH catalyst either by conventional method at 90 °C in liquid phase or under microwave irradiation method. The mesoporous structure and basic nature of the rehydrated solid catalyst were responsible for its superior catalytic efficiency. The robust nature was determined by using the same catalyst five times, where the product % yield was almost unchanged significantly.

  12. Greens of the European Green Capitals

    Science.gov (United States)

    Cömertler, Seval

    2017-10-01

    Well established and maintained green areas have a key role on reaching the high quality of life and sustainability in urban environments. Therefore, green areas must be carefully accounted and evaluated in the urban planning affairs. In this context, the European Green Capitals, which attach a great importance to the green areas, have a great potential to act as a role model for both small and big cities in all around the world. These leading cities (chronologically, Stockholm, Hamburg, Vitoria-Gasteiz, Nantes, Copenhagen, Bristol, Ljubljana, Essen and Nijmegen) are inspiring for the other cities which seek to achieve more sustainable and environmentally friendly places through green areas. From this point of view, the aim of this paper was to investigate the green areas of the European Green Capitals. The paper covered whole European Green Capitals, and the application form of each Green Capital was used as a primary data source. Consequently, the paper put forwarded that the European Green Capitals have considerably large amount and high proportion of green areas. Further, these cities provide an excellent access to the public green areas. As a result of abundant provision and proper distribution, the almost all citizens in most of the Green Capitals live within a distance of 300 meters to a green area. For further researches, the paper suggested that these green capitals should be investigated in terms of their efforts, measures, goals and plans, policies and implications to administer, to protect, to enhance and to expand the green areas.

  13. Refinement of the crystal structure of malachite, Cu/sub 2/(OH)/sub 2/CO/sub 3/, by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Zigan, F; Joswig, W; Schuster, H D [Frankfurt Univ. (Germany, F.R.); Mason, S A [Institut Max von Laue - Paul Langevin, 38 - Grenoble (France)

    1977-01-01

    The crystal structure of malachite is refined (R = 0,021) with the intensity values of 635 independent neutron reflexions from a single crystal, rather free from absorption and extinction. Concerning the structural geometry, no essential deviations occur from the known results of x-ray diffraction. The thermal elongations are generally largest about the normal to the (201) layers, between which the bonding is relatively weak. In both of the (medium, bent) OH...O hydrogen bonds, the anisotropic thermal parameters, converted according to the riding model, are - with certain restrictions - in agreement with the measured infrared spectrum as well as with frequencies and directions of the proton vibration calculated from the bonding geometry on the basis of a theoretical model.

  14. Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for heavy metal removal

    International Nuclear Information System (INIS)

    Genc, Oe.; Soysal, L.; Bayramoglu, G.; Arica, M.Y.; Bektas, S.

    2003-01-01

    The effective removal of toxic heavy metals from environmental samples still remains a major topic of present research. Metal-chelating membranes are very promising materials as adsorbents when compared with conventional beads because they are not compressible, and they eliminate internal diffusion limitations. The purpose of this study was to evaluate the performance of a novel adsorbent, Procion Green H-4G immobilized poly(hydroxyethylmethacrylate (HEMA)/chitosan) composite membranes, for the removal of three toxic heavy metal ions, namely, Cd(II), Pb(II) and Hg(II) from aquatic systems. The Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes were characterized by elemental analysis, scanning electron microscopy and Fourier transform infrared (FTIR) spectroscopy. The immobilized amount of the Procion Green H-4G was calculated as 0.018±0.003 μmol/cm 2 from the nitrogen and sulphur stoichiometry. The adsorption capacity of Procion Green H-4G immobilized poly(hydroxyethylmethacrylate/chitosan) composite membranes for selected heavy metal ions from aqueous media containing different amounts of these ions (30-400 mg/l) and at different pH values (2.0-6.0) was investigated. The amount of Cd(II), Pb(II) and Hg(II) adsorbed onto the membranes measured at equilibrium, increased with time during the first 45 min and then remained unchanged toward the equilibrium adsorption. The maximum amounts of heavy metal ions adsorbed were 43.60±1.74, 68.81±2.75 and 48.22±1.92 mg/g for Cd(II), Pb(II) and Hg(II), respectively. The heavy metal ion adsorption on the pHEMA/chitosan membranes (carrying no dye) were relatively low, 6.31±0.13 mg/g for Cd(II), 18.73±0.37 mg/g for Pb(II) and 18.82±0.38 mg/g for Hg(II). Competitive adsorption of the metal ions was also studied. When the metal ions competed with each other, the adsorbed amounts were 12.74±0.38 mg Cd(II)/g, 28.80±0.86 mg Pb(II)/g and 18.41±0.54 mg Hg(II)/g. Procion Green H-4G

  15. Ultra-fast science at the CSIR:NLC

    CSIR Research Space (South Africa)

    Botha, L

    2008-05-01

    Full Text Available by focussing femtosecond pulse onto sapphire plate acts as a probe • Measured on spectrometer • Example: Malachite green 0 2000 4000 6000 8000 550 600 650 700 Delay [fs] W a v e l e n g t h [ n m ] 0 2000 4000 6000 8000 -0.05 -0...

  16. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The refinement of 28 instrumental and structural parameters led to R p = 8.1 %, R ... Optimization of CVD parameters for long ZnO NWs grown on ITO/glass substrate ..... Photocatalytic degradation of Malachite Green dye by modified ZnO nanomaterial ...... Loss of outer membrane integrity in Gram-negative bacteria by silver ...

  17. Remediation of azo dyes by using household used black tea as an ...

    African Journals Online (AJOL)

    In the present study used black tea and its impregnates were used as an adsorbents for the removal of textile dyes such as methylene blue and malachite green. The impregnation technique was adopted for the preparation of metal impregnates. The present study shows that used black tea and its impregnate exhibit ...

  18. Browse Title Index

    African Journals Online (AJOL)

    Issue, Title. Vol 22, No 2 (2008), Voltammetric determination of heparin based on its interaction with malachite green, Abstract PDF. Xueliang Niu, Weili Zhang, Na Zhao, Wei Sun. Vol 22, No 2 (2008), Voltammetric determination of l-cysteic acid on a 1-[4-(ferrocenyl-ethynyl)phenyl]-1-ethanone modified carbon paste ...

  19. Removal of Selected Heavy Metals from Green Mussel via Catalytic Oxidation

    International Nuclear Information System (INIS)

    Faizuan Abdullah; Abdull Rahim Mohd Yusoff; Wan Azelee Wan Abu Bakar; Razali Ismail; Dwi Priya Hadiyanto

    2014-01-01

    Perna viridis or green mussel is a potentially an important aquaculture product along the South Coast of Peninsular Malaysia especially Johor Straits. As the coastal population increases at tremendous rate, there was significant effect of land use changes on marine communities especially green mussel, as the heavy metals input to the coastal area also increase because of anthropogenic activities. Heavy metals content in the green mussel exceeded the Malaysian Food Regulations (1985) and EU Food Regulations (EC No: 1881/ 2006). Sampling was done at Johor Straits from Danga to Pendas coastal area for green mussel samples. This research introduces a catalytic oxidative technique for demetallisation in green mussel using edible oxidants such as peracetic acid (PAA) enhanced with alumina beads supported CuO, Fe 2 O 3 , and ZnO catalysts. The lethal dose of LD 50 to rats of PAA is 1540 mg kg -1 was verified by National Institute of Safety and Health, United State of America. The best calcination temperature for the catalysts was at 1000 degree Celsius as shown in the X-Ray Diffraction (XRD), Nitrogen Adsorption (BET surface area) and Field Emission Scanning Electron Microscopy (FESEM) analyses. The demetallisation process in green mussel was done successfully using only 100 mgL -1 PAA and catalyzed with Fe 2 O 3 / Al 2 O 3 for up to 90 % mercury (Hg) removal. Using PAA with only 1 hour of reaction time, at room temperature (30-35 degree Celsius), pH 5-6 and salinity of 25-28 ppt, 90 % lead (Pb) was removed from life mussel without catalyst. These findings have a great prospect for developing an efficient and practical method for post-harvesting heavy metals removal in green mussel. (author)

  20. From green architecture to architectural green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    that describes the architectural exclusivity of this particular architecture genre. The adjective green expresses architectural qualities differentiating green architecture from none-green architecture. Currently, adding trees and vegetation to the building’s facade is the main architectural characteristics...... they have overshadowed the architectural potential of green architecture. The paper questions how a green space should perform, look like and function. Two examples are chosen to demonstrate thorough integrations between green and space. The examples are public buildings categorized as pavilions. One......The paper investigates the topic of green architecture from an architectural point of view and not an energy point of view. The purpose of the paper is to establish a debate about the architectural language and spatial characteristics of green architecture. In this light, green becomes an adjective...

  1. Antioxidant Effects of Green-Tea on biochemical and Histopathological Changes of liver in Male Rats Poisoned by Malathion Insecticide

    Directory of Open Access Journals (Sweden)

    Rahim Raoofi

    2016-05-01

    Full Text Available Malathion is an organophosphate pesticide which is widely used in agriculture, veterinary and industries. Oxidative stress has been identified as one of Malathion’s main molecular mechanisms of action in plasma, liver, pancreas, muscles and the brain. Green tea (Camellia sinensis, which is the most common drink across the world after water, has many antioxidant properties. The purpose of this research is to investigate the effects of Malathion on the liver and the preventive effects of green tea on Malathion-induced poisoning. Seventy-two Wistar male rats were randomly divided into the control, the sham, and the experimental groups (receiving respectively 40 mg/kg of Malathion; 100, 200, and 400 mg/kg of green tea; and 100, 200, and 400 mg/kg of Malathion and green tea respectively. All injections were performed intraperitoneally for 14 consecutive days. On the 15th day, blood samples were taken from the hearts of the rats to measure serum level of hepatic enzymes, and their liver tissues were removed to be studied. To do the statistical analysis One-way ANOVA test and Duncan’s test at the 5% significance level were used. aspartate transaminase (AST, alanine transaminase (ALT, alkaline phosphatase (ALP, Malondialdehyde (MDA and Total Oxidation Capacity(TOC concentrations in the treatment groups with Malathion and green tea extract at 100, 200, and 400 mg/kg doses showed a significant decline compared to the Malathion group(p<0.05, whileTotal Antioxidant Capacity (TAC level showed a significant increase with various doses of green tea and Malathion compared to the Malathion group (p<0.05. Green tea, probably due to its strong antioxidant properties, could improve the destructive effects of Malathion on the rat liver.

  2. Post-Synthetic Polymerization of UiO-66-NH2 Nanoparticles and Polyurethane Oligomer toward Stand-Alone Membranes for Dye Removal and Separation.

    Science.gov (United States)

    Yao, Bing-Jian; Jiang, Wei-Ling; Dong, Ying; Liu, Zhi-Xian; Dong, Yu-Bin

    2016-07-18

    Metal-organic frameworks (MOFs) are widely used as porous materials in the fields of adsorption and separation. However, their practical application is largely hindered by limitations to their processability. Herein, new UiO-66-Urea-based flexible membranes with MOF loadings of 50 (1), 60 (2), and 70 wt % (3) were designed and prepared by post-synthetic polymerization of UiO-66-NH2 nanoparticles and a polyurethane oligomer under mild conditions. The adsorption behavior of membrane 3 towards four hydrophilic dyes, namely, eosin Y (EY), rhodamine B (RB), malachite green (MG), and methylene blue (MB), in aqueous solution was studied in detail. It exhibits strong adsorption of EY and RB but weak adsorption of MG and MB in aqueous solution. Owing to the selective adsorption of these hydrophilic dyes, membrane 3 can remove EY and RB from aqueous solution and completely separate EY/MB, RB/MG, and RB/MB mixtures in aqueous solution. In addition, the membrane is uniformly textured, easily handled, and can be reused for dye adsorption and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Inhibitory effects of silver zeolite on in vitro growth of fish egg pathogen, Saprolegnia sp.

    Directory of Open Access Journals (Sweden)

    Seyed Ali Johari

    2014-05-01

    Full Text Available Objective: To investigate the effects of powdered silver zeolite (SZ on the in vitro growth of the fish pathogen Saprolegnia sp. Methods: The antifungal activity of SZ was evaluated by determining the minimum inhibitory concentrations using two-fold serial dilutions of powdered SZ in a glucose yeast extract agar at 22 °C. The growth of Saprolegnia sp. on the SZ agar treatments was compared to that on SZ-free agar controls. Results: The results showed that SZ had an inhibitory effect on the in vitro growth of the tested fungi. The minimum inhibitory concentration of SZ for Saprolegnia sp. was also calculated at 600 mg/L, which is equal to 0.06 percent. Conclusions: SZ is a potential good candidate to replace teratogenic and toxic agents, such as malachite green in aquaculture systems.

  4. The Influence of Proactive Green Innovation and Reactive Green Innovation on Green Product Development Performance: The Mediation Role of Green Creativity

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2016-09-01

    Full Text Available This study fills the research gap in the exploration of the relationships between both proactive and reactive green innovations and green product development performance, and examines the mediating effect of green creativity. Structural equation modeling (SEM is utilized to test the hypotheses. From the sample of 146 valid respondents, the results show that proactive green innovation positively affects green creativity and green product development performance, and green creativity positively affects green product development performance. In addition, our findings also indicate that the relationship between proactive green innovation and green product development performance is partially mediated by green creativity. Accordingly, green creativity plays a critical role for companies to achieve a great green product development performance. However, reactive green innovation does not significantly influence green creativity and green product development performance. Companies should develop proactive green innovation rather than reactive green innovation in order to enhance their green creativity and increase their product development performance.

  5. Facile large scale synthesis of Bi{sub 2}S{sub 3} nano rods–graphene composite for photocatalytic photoelectrochemical and supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Vadivel, S. [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India); Naveen, A. Nirmalesh [Department of Physics, Anna University, Chennai, Tamil Nadu 600025 (India); Kamalakannan, V.P. [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India); Cao, P. [Department of Chemistry and Materials Engineering, The University of Auckland, PB 92019, Auckland 1142 (New Zealand); Balasubramanian, N., E-mail: nbsbala@annauniv.edu [Electrochemical Engineering Laboratory, Department of Chemical Engineering, C. Tech Campus, Anna University, Chennai-600 025 (India)

    2015-10-01

    Graphical abstract: - Highlights: • A Bi{sub 2}S{sub 3}/RGO composite was synthesized by one pot precipitation method. • The synthesized Bi{sub 2}S{sub 3}/RGO composite exhibit rod like morphology. • As synthesized composite was applied for malachite green degradation. • The synthesized Bi{sub 2}S{sub 3}/RGO composite exhibits a specific capacitance of 290 F g{sup −1} at a scan rate of 1 A g{sup −1}. • Photocatalytic and supercapacitor properties of Bi{sub 2}S{sub 3} were enhanced mainly due to effective graphene incorporation. - Abstract: Bi{sub 2}S{sub 3} nano rods–graphene (BG) composite material was synthesized by a simple one step precipitation method. The crystallanity, structural and morphological properties were studied by the X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy techniques. The photocatalytic activity of BG was evaluated by the photocatalytic degradation of malachite green dye (MG) aqueous solution under the visible light irradiation. The effect of graphene content on the photoelectrochemical property of Bi{sub 2}S{sub 3} nano rods was also studied. The enhancement of photocurrent and photocatalytic properties of BG composite attributed to the synergistic effect between the Bi{sub 2}S{sub 3} nano rods and graphene sheets which improves the charge separation efficiency in Bi{sub 2}S{sub 3} nano rods. The supercapacitor behavior was studied using cyclic voltametry and galvanostatic charge discharge studies. The BG composite exhibits a maximum specific capacitance of 290 F g{sup −1} at a current density of 1 A g{sup −1}. The present study may provide as a new approach in improving the performance of BG composite in supercapacitor, solar cells and photocatalytic applications.

  6. Pengaruh Green Marketing Hotel Terhadap Green Consumer Behavior

    OpenAIRE

    Yo Fernandez, Eunike Christe; Tjoanda, Evelyn

    2017-01-01

    Penelitian ini dilakukan untuk mengetahui pengaruh dari green marketing hotel terhadap green consumer behavior. Green marketing memiliki 3 dimensi, yaitu green product, green price, dan green promotion. Penelitian ini melibatkan 272 responden masyarakat Surabaya dan menggunakan metode regresi linear berganda. Hasil penelitian menunjukkan bahwa green product dan green price berpengaruh secara positif dan signifikan sedangkan green promotion berpengaruh namun tidak signifikan terhadap green con...

  7. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo; Shi, Yu-e; Cui, Jingcheng; Liu, Zhen; Zhang, Xiaoli; Zhan, Jinhua, E-mail: jhzhan@sdu.edu.cn

    2016-06-07

    Solid phase microextraction-surface enhanced Raman spectroscopy (SPME–SERS), combining the pretreatment and determination functions, has been successfully used in environmental analysis. In this work, Au-coated ZnO nanorods were fabricated on stainless steel fiber as a self-cleaning SERS-active SPME fiber. The ZnO nanorods grown on stainless steel fiber were prepared via a simple hydrothermal approach. Then the obtained nanostructures were decorated with Au nanoparticles through ion-sputtering at room temperature. The obtained SERS-active SPME fiber is a reproducible sensitivity sensor. Taking p-aminothiophenol as the probe molecule, the RSD value of the SERS-active SPME fiber was 8.9%, indicating the fiber owned good uniformity. The qualitative and quantitative detection of crystal violet and malachite green was also achieved. The log–log plot of SERS intensity to crystal violet and malachite green concentration showed a good linear relationship. Meanwhile, this SERS-active SPME fiber can achieve self-cleaning owning to the excellent photocatalytic performance of ZnO nanorods. Crystal violet was still successfully detected even after five cycles, which indicated the high reproducibility of this SERS-active SPME fiber. - Graphical abstract: Au-coated ZnO NRs on stainless steel fiber were used as SERS-active SPME fiber with good extraction effect, high SERS sensitivity. Self-cleaning function of the fiber was achieved based on the photocatalytic degradation property of ZnO nanorods by UV irradiation. - Highlights: • Au-coated ZnO nanorods on stainless steel fiber as a SERS-active SPME fiber was fabricated. • The SERS-active SPME fiber can directly extract and detect the crystal violet and malachite green. • The SERS-active SPME fiber owns good extraction effect, and high SERS sensitivity. • Self-cleaning property of the fiber were achieved based on the photocatalytic degradation property of ZnO.

  8. Au-coated ZnO nanorods on stainless steel fiber for self-cleaning solid phase microextraction-surface enhanced Raman spectroscopy

    International Nuclear Information System (INIS)

    Li, Bo; Shi, Yu-e; Cui, Jingcheng; Liu, Zhen; Zhang, Xiaoli; Zhan, Jinhua

    2016-01-01

    Solid phase microextraction-surface enhanced Raman spectroscopy (SPME–SERS), combining the pretreatment and determination functions, has been successfully used in environmental analysis. In this work, Au-coated ZnO nanorods were fabricated on stainless steel fiber as a self-cleaning SERS-active SPME fiber. The ZnO nanorods grown on stainless steel fiber were prepared via a simple hydrothermal approach. Then the obtained nanostructures were decorated with Au nanoparticles through ion-sputtering at room temperature. The obtained SERS-active SPME fiber is a reproducible sensitivity sensor. Taking p-aminothiophenol as the probe molecule, the RSD value of the SERS-active SPME fiber was 8.9%, indicating the fiber owned good uniformity. The qualitative and quantitative detection of crystal violet and malachite green was also achieved. The log–log plot of SERS intensity to crystal violet and malachite green concentration showed a good linear relationship. Meanwhile, this SERS-active SPME fiber can achieve self-cleaning owning to the excellent photocatalytic performance of ZnO nanorods. Crystal violet was still successfully detected even after five cycles, which indicated the high reproducibility of this SERS-active SPME fiber. - Graphical abstract: Au-coated ZnO NRs on stainless steel fiber were used as SERS-active SPME fiber with good extraction effect, high SERS sensitivity. Self-cleaning function of the fiber was achieved based on the photocatalytic degradation property of ZnO nanorods by UV irradiation. - Highlights: • Au-coated ZnO nanorods on stainless steel fiber as a SERS-active SPME fiber was fabricated. • The SERS-active SPME fiber can directly extract and detect the crystal violet and malachite green. • The SERS-active SPME fiber owns good extraction effect, and high SERS sensitivity. • Self-cleaning property of the fiber were achieved based on the photocatalytic degradation property of ZnO.

  9. Extraction-spectrophotometric method for silicon determination in high-purity substances. 1. Silicon determination in tellurium

    Energy Technology Data Exchange (ETDEWEB)

    Shaburova, V P; Yudelevich, I G [AN SSSR, Novosibirsk (USSR). Inst. Neorganicheskoj Khimii

    1989-01-01

    The extraction-spectrophotometric method for silicon determination in tellurium based on extraction isolation of the base by tributyl phosphate from hydrochloride solutions and with addition of HNO/sub 3/ and spectrophotometric silicon determination using malachite green is developed. The method permits to determine 2x10/sup -1/-3x10/sup -4/ % Si.

  10. E S Kunarti

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. E S Kunarti. Articles written in Bulletin of Materials Science. Volume 37 Issue 6 October 2014 pp 1419-1426. Wash fastness improvement of malachite green-dyed cotton fabrics coated with nanosol composites of silica–titania · I Kartini I Ilmi E S Kunarti Kamariah · More Details ...

  11. Iron supported on bioinspired green silica for water remediation.

    Science.gov (United States)

    Alotaibi, Khalid M; Shiels, Lewis; Lacaze, Laure; Peshkur, Tanya A; Anderson, Peter; Machala, Libor; Critchley, Kevin; Patwardhan, Siddharth V; Gibson, Lorraine T

    2017-01-01

    Iron has been used previously in water decontamination, either unsupported or supported on clays, polymers, carbons or ceramics such as silica. However, the reported synthesis procedures are tedious, lengthy (involving various steps), and either utilise or produce toxic chemicals. Herein, the use of a simple, rapid, bio-inspired green synthesis method is reported to prepare, for the first time, a family of iron supported on green nanosilica materials (Fe@GN) to create new technological solutions for water remediation. In particular, Fe@GN were employed for the removal of arsenate ions as a model for potentially toxic elements in aqueous solution. Several characterization techniques were used to study the physical, structural and chemical properties of the new Fe@GN. When evaluated as an adsorption platform for the removal of arsenate ions, Fe@GN exhibited high adsorption capacity (69 mg of As per g of Fe@GN) with superior kinetics (reaching ∼35 mg As per g sorbent per hr) - threefold higher than the highest removal rates reported to date. Moreover, a method was developed to regenerate the Fe@GN allowing for a full recovery and reuse of the adsorbent in subsequent extractions; strongly highlighting the potential technological benefits of these new green materials.

  12. Experimental design and modeling of ultrasound assisted simultaneous adsorption of cationic dyes onto ZnS: Mn-NPs-AC from binary mixture.

    Science.gov (United States)

    Asfaram, Arash; Ghaedi, Mehrorang; Yousefi, Fakhri; Dastkhoon, Mehdi

    2016-11-01

    The manganese impregnated zinc sulfide nanoparticles deposited on activated carbon (ZnS: Mn-NPs-AC) which fully was synthesized and characterized successfully applied for simultaneous removal of malachite green and methylene blue in binary situation. The effects of variables such as pH (2.0-10.0), sonication time (1-5min), adsorbent mass (0.005-0.025g) and MB and MG concentration (4-20mgL(-1)) on their removal efficiency was studied dy central composite design (CCD) to correlate dyes removal percentage to above mention variables that guides amongst the maximum influence was seen by changing the sonication time and adsorbent mass. Sonication time, adsorbent mass and pH in despite of dyes concentrations has positive relation with removal percentage. Multiple regression analysis of the experimental results is associated with 3-D response surface and contour plots that guide setting condition at pH of 7.0, 3min sonication time, 0.025g Mn: ZnS-NPs-AC and 15mgL(-1) of MB and MG lead to achievement of removal efficiencies of 99.87% and 98.56% for MG and MB, respectively. The pseudo-second-order model as best choice efficiency describe the dyes adsorption behavior, while MG and MB maximum adsorption capacity according to Langmuir was 202.43 and 191.57mgg(-1). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Evaluation of Solar Photosensitised River Water Treatment in the Caribbean

    Directory of Open Access Journals (Sweden)

    K. Tota-Maharaj

    2013-01-01

    Full Text Available An economical supply of hygienic potable water is one of the most pressing public health issues facing developing countries in the Caribbean region today. This project investigates the performance of a novel solar photochemical reactor for disinfecting river water. The prototype photochemical reactor was designed, constructed, and tested for the microbiological degradation of faecal coliform present in River Water. The experiments evaluated the efficacy of two photosensitive dyes (malachite green and methylene blue as agents for detoxification with concentrations ranging from 0.5 to 3.0 mg/L. The photochemical reactor operated in a single-pass mode and compared the disinfection rates with direct photolysis. The photosensitizers showed a high efficacy rate using natural sunlight with microbial reduction ranging from 97 to 99% for concentrations as low as 0.5 mg/L of dye. The sensitizers were found to be photobleaching and were very effective at lower concentrations (0.01. Post-solar disinfection included the use of a coconut fiber filter which polished the water removing residual dye concentrations and bacterial contaminants.

  14. Utilization of a new optical sensor unit to monitor the electrochemical elimination of selected dyes in water

    Science.gov (United States)

    Valica, M.; Černá, T.; Hostin, S.

    2017-10-01

    This paper presents results obtained by developed optical sensor, which consist from multi-wavelength LED light source and two photodetectors capable of measuring the change in optical signal along two different optical paths (absorbance and reflectance measurements). Arduino microcomputer was used for light source management and optical signal data measuring and recording. Analytical validation of developed optical sensor is presented in this paper. The performance of the system has been tested with varying water solution of dyes (malachite green, methyl orange, trypan red). These results show strong correlations between the optical signal response and colour change from the dyes. Sensor was used for continual in-situ monitoring of electrochemical elimination of selected dyes (current density 15.7 mA cm-2, electrolyte volume 4 L and NaCl concentration 2 g L-1). Maximum decolorization level varies with each dye. For malachite green was obtain 92,7 % decolorization (25 min); methyl orange 90,8% (8,5 min) and trypan red 84,7% decolorization after 33 min of electrochemical treatment.

  15. A Comparative Study of Chemically and Biologically Synthesized MgO Nanomaterial for Liquefied Petroleum Gas Detection

    Science.gov (United States)

    Thirupathi, Rampelly; Solleti, Goutham; Sreekanth, Tirumala; Sadasivuni, Kishor Kumar; Venkateswara Rao, Kalagadda

    2018-03-01

    The exceptional chemical and physical properties of nanostructured materials are extremely suitable for designing new and enhanced sensing devices, particularly gas sensors and biosensors. The present work describes the synthesis of magnesium oxide (MgO) nanoparticles through two methods: a green synthesis using aloe vera plant extract and a chemical method using a glycine-based solution combustion route. In a single step, the extracted organic molecules from aloe vera plants were used to reduce metal ions by the green method. MgO nanoparticles were coated onto the interdigital electrode using the drop-drying method. The dynamic gas-sensing characteristics were measured for liquefied petroleum gas (LPG) at different concentrations and various temperatures. The MgO nanoparticles were characterized by using x-ray diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy to determine the size and structure of the particles. The product's functional properties were analyzed by Fourier transform-infrared spectroscopy and UV-visible spectroscopy. We found that the LPG sensing behavior of biologically synthesized MgO registers excellent sensitivity at various operating temperatures.

  16. High Accumulation and Subcellular Distribution of Thallium in Green Cabbage (Brassica Oleracea L. Var. Capitata L.).

    Science.gov (United States)

    Ning, Zengping; He, Libin; Xiao, Tangfu; Márton, László

    2015-01-01

    The accumulation of thallium (Tl) in brassicaceous crops is widely known, but both the uptake extents of Tl by the individual cultivars of green cabbage and the distribution of Tl in the tissues of green cabbage are not well understood. Five commonly available cultivars of green cabbage grown in the Tl-spiked pot-culture trials were studied for the uptake extent and subcellular distribution of Tl. The results showed that all the trial cultivars mainly concentrated Tl in the leaves (101∼192 mg/kg, DW) rather than in the roots or stems, with no significant differences among cultivars (p = 0.455). Tl accumulation in the leaves revealed obvious subcellular fractionation: cell cytosol and vacuole > cell wall > cell organelles. The majority (∼ 88%) of leaf-Tl was found to be in the fraction of cytosol and vacuole, which also served as the major storage site for other major elements such as Ca and Mg. This specific subcellular fractionation of Tl appeared to enable green cabbage to avoid Tl damage to its vital organelles and to help green cabbage tolerate and detoxify Tl. This study demonstrated that all the five green cabbage cultivars show a good application potential in the phytoremediation of Tl-contaminated soils.

  17. Green(ing) infrastructure

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2014-03-01

    Full Text Available the generation of electricity from renewable sources such as wind, water and solar. Grey infrastructure – In the context of storm water management, grey infrastructure can be thought of as the hard, engineered systems to capture and convey runoff..., pumps, and treatment plants.  Green infrastructure reduces energy demand by reducing the need to collect and transport storm water to a suitable discharge location. In addition, green infrastructure such as green roofs, street trees and increased...

  18. Selected pharmacokinetic parameters for Cefovecin in hens and green iguanas.

    Science.gov (United States)

    Thuesen, L R; Bertelsen, M F; Brimer, L; Skaanild, M T

    2009-12-01

    The third generation cephalosporin cefovecin has been shown to have an exceptionally long elimination half-life in dogs and cats, making it suitable for antibacterial treatment with a 14-day dosing interval in these species. Pharmacokinetic parameters for cefovecin were investigated in juvenile hens and green iguanas, following subcutaneous injections with 10 mg cefovecin/kg bodyweight. Preliminary studies in eight additional species of birds and reptiles were performed and results were compared with the parameters found in hens and green iguanas. The kinetics were characterized by rapid absorption with peak plasma concentration of 6 +/- 2 microg/mL in hens and 35 +/- 12 microg/mL in green iguanas. The mean plasma half-life for cefovecin was 0.9 +/- 0.3 h for hens and 3.9 h in green iguanas. Volume of distribution was 1.6 +/- 0.5 L/kg for hens and 0.3 L/kg for green iguanas and clearance was 1252 +/- 185 mL.h/kg for hens and 53 mL.h/kg for green iguanas. Results from preliminary studies did not differ notably from those seen in hens and green iguanas. Cefovecin is not suitable for the treatment of bacterial infections with a 14-day dosing interval in hens or green iguanas and seems not to be in a number of other bird and retile species either.

  19. EPR and optical properties of Eu{sup 2+} and Mn{sup 2+} co-doped MgSrAl{sub 10}O{sub 17} blue–green light emitting powder phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Singh, Vijay, E-mail: vijayjiin2006@yahoo.com [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Sivaramaiah, G. [Department of Physics, Government College (M), Kadapa 516 004 (India); Rao, J.L. [Department of Physics, Sri Venkateswara University, Tirupati 517 502 (India); Singh, Pramod K. [Materials Research Laboratory, Sharda University, Greater Noida 201 310 (India); Pathak, M.S. [Department of Chemical Engineering, Konkuk University, Seoul 143-701 (Korea, Republic of); Dhoble, S.J. [Department of Physics, RTM Nagpur University, Nagpur 440 033 (India); Mohapatra, M. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2016-10-15

    Strong blue–green light emitting MgSrAl{sub 10}O{sub 17}:Eu{sup 2+},Mn{sup 2+} phosphor was synthesized by a low-temperature initiated, self-propagating and gas producing combustion process in a very short time (<5 min). Structural characterization of the luminescent material was studied with X-ray diffraction analysis and energy-dispersive X-ray analysis. The absorption spectrum exhibits bands due to Eu{sup 2+} and Mn{sup 3+} ions. The excitation spectrum shows a peak at 337 nm. Upon excitation at 337 nm, the emission spectrum exhibits an intense band centered at 462 nm due to transitions from the 4f{sup 6}5d{sup 1} to the 4f{sup 7} configuration of the Eu{sup 2+} ions, whereas sharp peak at 513 nm attributed to {sup 4}T{sub 1}→{sup 6}A{sub 1} transition of Mn{sup 2+} ions. The X-band EPR spectra of MgSrAl{sub 10}O{sub 17}:Eu{sup 2+},Mn{sup 2+} showed the presence of Eu{sup 2+} and Mn{sup 2+} ions.

  20. Effects of an Intensive Resistant Training Sessions and Green Tea

    Directory of Open Access Journals (Sweden)

    Mohammad Esmaeil Afzalpour

    2014-03-01

    Full Text Available Background: Intensive and acute exercise trainings may induce oxidative stress, but antioxidant supplements may attenuate its degenerative consequences. The aim of this research was to examine the effect of green tea supplementation on the oxidative stress indices after an intensive resistance training session. Materials and Methods: 40 non-athletes (without regular physical activity women were randomly divided into 4 equal (n=10 groups including green tea supplementation, green tea supplementation plus resistance training, resistance training, and control groups. After supplementation period (600 mg/day, 14 days, resistance training and green tea supplementation plus resistance training groups performed an intensive resistance training session at 75-85 % of one repetition maximum. The malondialdehyde and total thiol were measured as oxidative stress indices. Data were analyzed by using of repeated measure ANOVA and LSD tests at p<0.056T. Results: Results showed that after 14 days of green tea consumption, malondialdehyde significantly decreased in green tea supplementation (p=0.03 and green tea supplementation plus resistance training (p=0.01 groups, while total thiol increased significantly (p=0.01 in two green tea supplementation groups. However, an intensive resistance training session increased malondialdehyde (p=0.01 without any significantly changes in total thiol (p=0.426T. Conclusion: It seems that green tea supplementation can inhibit exercise-induced protein and lipid oxidation in non-athletes women via enhancement of antioxidant defense system of the body6T.6T

  1. Removal of binary dyes mixtures with opposite and similar charges by adsorption, coagulation/flocculation and catalytic oxidation in the presence of CeO2/H2O2 Fenton-like system.

    Science.gov (United States)

    Issa Hamoud, Houeida; Finqueneisel, Gisèle; Azambre, Bruno

    2017-06-15

    In this study, the removal of binary mixtures of dyes with similar (Orange II/Acid Green 25) or opposite charges (Orange II/Malachite Green) was investigated either by simple adsorption on ceria or by the heterogeneous Fenton reaction in presence of H 2 O 2 . First, the CeO 2 nanocatalyst with high specific surface area (269 m 2 /g) and small crystal size (5 nm) was characterized using XRD, Raman spectroscopy and N 2 physisorption at 77 K. The adsorption of single dyes was studied either from thermodynamic and kinetic viewpoints. It is shown that the adsorption of dyes on ceria surface is highly pH-dependent and followed a pseudo-second order kinetic model. Adsorption isotherms fit well the Langmuir model with a complete monolayer coverage and higher affinity towards Orange II at pH 3, compared to other dyes. For the (Orange II/Acid Green 25) mixture, both the amounts of dyes adsorbed on ceria surface and discoloration rates measured from Fenton experiments were decreased by comparison with single dyes. This is due to the adsorption competition existing onto the same surface Ce x+ sites and the reaction competition with hydroxyl radicals, respectively. The behavior of the (Orange II/Malachite Green) mixture is markedly different. Dyes with opposite charges undergo paired adsorption on ceria as well as homogeneous and heterogeneous coagulation/flocculation processes, but can also be removed by heterogeneous Fenton process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Customers’ Intention to Use Green Products: the Impact of Green Brand Dimensions and Green Perceived Value

    Directory of Open Access Journals (Sweden)

    Doszhanov Aibek

    2015-01-01

    Full Text Available This study aimed to identify the relationships between green brand dimension (green brand awareness, green brand image, and green brand trust, green perceived value and customer’s intention to use green products. Data was collected through structured survey questionnaire from 384 customers of three hypermarkets in Kuala-Lumpur. Data was analyzed based on multiple regression analysis. The results indicate that there are significant relationships between green brand awareness, green brand trust, green perceived value, and customer’s intention to use green products. However, green brand image was not found to have significant relationship with customer’s intention to use green products. The discussion presented suggestions for marketers and researchers interested in green branding.

  3. Radiochromic leuco dye micelle hydrogels: I. Initial investigation

    International Nuclear Information System (INIS)

    Jordan, Kevin; Avvakumov, Nikita

    2009-01-01

    This investigation reports the use of surfactants and colorless leuco triarylmethane dyes to form a new class of radiochromic micelle hydrogels for three-dimensional (3D) water-equivalent dosimetry. Gelatin gel samples with several surfactants and leuco dyes were prepared and evaluated for optical transparency, dose sensitivity and diffusion rates. The addition of Triton X-100, a non-ionic surfactant, at levels exceeding the critical micelle concentration provides a transparent hydrogel in which the water insoluble leuco Malachite Green (LMG) can dissolve. During irradiation, the LMG dye precursor converts to Malachite Green (MG + ). The most sensitive reported LMG gel formulation contains 0.3 mM LMG leuco dye, 16 mM trichloroacetic acid, 7 mM Triton X-100 and 4% w/w gelatin. A diffusion coefficient of 0.14 mm 2 h -1 was determined for MG + in this gel by fitting the time-dependent degradation of the transmission profile after irradiating half of the sample. The diffusion rate was three times lower than the standard radiochromic ferrous xylenol-orange (FX) gel. The primary feature of this 3D hydrogel is that it introduces transparent, radiochromic, micelle hydrogels. The radiochromic response to dose is instantaneous and images are stable for several hours. A dosimetric characterization revealed that the dose response is reproducible to within 10% over five separate batches and independent of both energy and dose rate. Uniform pre-irradiation of samples to 5 Gy provided a subsequent near linear response to greater than 110 Gy. LMG gels when read with a fast optical CT scanner can provide full 3D dose distributions in less than 30 min post-irradiation. LMG micelle gels scanned with a 633 nm light source are a promising system for quantitative water- or tissue-equivalent 3D dose verification in the 5-100 Gy dose range. These gels are useful for the scanning of larger volume dosimeters (i.e. >15 cm diameter) since they are easily prepared with inexpensive ingredients

  4. The cardiac anesthetic index of isoflurane in green iguanas.

    Science.gov (United States)

    Mosley, Craig A E; Dyson, Doris; Smith, Dale A

    2003-06-01

    To determine the cardiac anesthetic index (CAI) of isoflurane in green iguanas and whether butorphanol affected the CAI. Prospective randomized controlled trial. 7 healthy mature iguanas. In 5 iguanas, CAI was determined after induction of anesthesia with isoflurane alone, and in 5 iguanas, CAI was determined after induction of anesthesia with isoflurane and IM administration of butorphanol (1 mg/kg [0.45 mg/lb]). Three iguanas underwent both treatments. Animals were equilibrated for 20 minutes at 1.5 times the minimum alveolar concentration (MAC) of isoflurane and observed for evidence of cardiovascular arrest. If there was no evidence of cardiovascular arrest, end-tidal isoflurane concentration was increased by 20%, and animals were allowed to equilibrate for another 20 minutes. This process was repeated until cardiovascular arrest occurred or vaporizer output could no longer be consistently increased. The CAI was calculated by dividing the highest end-tidal isoflurane concentration by the MAC. None of the iguanas developed cardiovascular arrest and all survived. Mean +/- SD highest end-tidal isoflurane concentration during anesthesia with isoflurane alone (9.2 +/- 0.60%) was not significantly different from mean concentration during anesthesia with isoflurane and butorphanol (9.0 +/- 0.43%). The CAI was > 4.32. Results suggest that the CAI of isoflurane in green iguanas is > 4.32 and not affected by administration of butorphanol. Isoflurane appears to be a safe anesthetic in green iguanas.

  5. The Influence of Proactive Green Innovation and Reactive Green Innovation on Green Product Development Performance: The Mediation Role of Green Creativity

    OpenAIRE

    Yu-Shan Chen; Tai-Wei Chang; Chun-Yu Lin; Pi-Yu Lai; Kuan-Hung Wang

    2016-01-01

    This study fills the research gap in the exploration of the relationships between both proactive and reactive green innovations and green product development performance, and examines the mediating effect of green creativity. Structural equation modeling (SEM) is utilized to test the hypotheses. From the sample of 146 valid respondents, the results show that proactive green innovation positively affects green creativity and green product development performance, and green creativity positivel...

  6. Green Tea Catechin Consumption Enhances Exercise-Induced Abdominal Fat Loss

    Science.gov (United States)

    Aim: This study evaluated the influence of a green tea catechin beverage on body composition and fat distribution in overweight and obese adults during exercised-induced weight loss. Methods: Participants (N=132) were randomly assigned to receive a 500 mL beverage containing approximately 625 mg of...

  7. Metaphysical green

    DEFF Research Database (Denmark)

    Earon, Ofri

    2011-01-01

    to adapt to urban environment. It explores the potential of Sensation of Green in the city. The paper questions whether the Sensation of Green could introduce a new spectrum of greens, beside the real green. It develops the term of metaphysical green – does green have to be green or can it be only...

  8. Protective effects of Mengshan green tea and hawk tea against UV-ray irradiation

    International Nuclear Information System (INIS)

    Chen Xiaoming; Ren Zhenglong; Zhang Huaiyu; Tang Zongxiang; Luo Peigao

    2005-01-01

    A group of cultured normal human skin-derived fibroblasts was used as the cell model to investigate protective and repair effects of aqueous extracts of Mengshan green tea and Hawk tea against 320-400 nm UV-ray irradiation, with the methods of MTT colorimetry and LDH release. It was found that the aqueous extracts had strong protective effect on fibroblasts against the UV-rays with dose dependence. There were no significant differences between the two kinds of tea aqueous extracts in a higher concentration of 5 mg/mL, whereas at lower concentrations of 2.5 and 1.25 mg/mL the, green tea aqueous extract was less effective than the hawk-tea aqueous extract in protecting fibroblasts from the UV-ray damage. Meanwhile, it was discovered that the green tea and hawk-tea aqueous extract could repair damages induced by the UV irradiation with dose dependence. But there were no statistically significant differences between the two kinds of aqueous extract. The effects may be related to antioxidant effect of tea polyphenol. (authors)

  9. Uptake of Cationic Dyes from Aqueous Solution by Biosorption Using Granulized Annona squmosa Seed

    Directory of Open Access Journals (Sweden)

    T. Santhi

    2009-01-01

    Full Text Available A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A sample of granulized Annona squmosa seeds had been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB, methylene red (MR and malachite green (MG. The effects of various experimental parameters (e.g., contact time, dye concentration, adsorbent dose and pH were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 5, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir model in the case of MB sorption and the Freundlich model for all three dyes sorption. The biosorption processes followed the pseudo first order rate kinetics. The results in this study indicated that granulized Annona squmosa seed was an attractive candidate for removing cationic dyes from the dye wastewater.

  10. Pharmacokinetics of meloxicam following intravenous and oral administration in green iguanas (Iguana iguana).

    Science.gov (United States)

    Divers, Stephen J; Papich, Mark; McBride, Michael; Stedman, Nancy L; Perpinan, David; Koch, Thomas F; Hernandez, Sonia M; Barron, G Heather; Pethel, Melinda; Budsberg, Steven C

    2010-11-01

    To determine pharmacokinetics of meloxicam in healthy green iguanas following PO and IV administration and assess potential toxicity. 21 healthy green iguanas (Iguana iguana). To assess pharmacokinetics, 13 iguanas were administered a single dose (0.2 mg/kg) of meloxicam PO and, 14 days later, the same dose IV. To assess potential toxicity, 4 iguanas were given meloxicam at a dosage of 1 or 5 mg/kg, PO, every 24 hours for 12 days, and results of histologic examination were compared with results for another 4 iguanas given a single dose of meloxicam (0.2 mg/kg). There were no significant differences between PO and IV administration with regard to terminal half-life (mean ± SD, 12.96 ± 8.05 hours and 9.93 ± 4.92 hours, respectively), mean area under the curve to the last measured concentration (5.08 ± 1.62 μg•h/mL and 5.83 ± 2.49 μg•h/mL), volume of distribution (745 ± 475 mL/kg and 487 ± 266 mL/kg), or clearance (40.17 ± 10.35 mL/kg/h and 37.17 ± 16.08 mL/kg/h). Maximum plasma concentration was significantly greater following IV (0.63 ± 0.17 μg/mL) versus PO (0.19 ± 0.07 μg/mL) administration. Time from administration to maximum plasma concentration and mean residence time were significantly longer following PO versus IV administration. Daily administration of high doses (1 or 5 mg/kg) for 12 days did not induce any histologic changes in gastric, hepatic, or renal tissues. Results suggested that administration of meloxicam at a dose of 0.2 mg/kg IV or PO in green iguanas would result in plasma concentrations > 0.1 μg/mL for approximately 24 hours.

  11. TL and OSL properties of Mn2+-doped MgGa2O4 phosphor

    Science.gov (United States)

    Luchechko, A.; Zhydachevskyy, Ya; Maraba, D.; Bulur, E.; Ubizskii, S.; Kravets, O.

    2018-04-01

    The oxide MgGa2O4 spinel ceramics doped with Mn2+ ions was synthesized by a solid-state reaction at 1200 °C in air. The activator concentration was equal 0.05 mol% of MnO. Phase purity of the synthesized samples was analyzed by X-ray diffraction technique. This spinel ceramics show efficient green emission in the range from 470 to 550 nm with a maximum at about 505 nm under UV or X-ray excitations, which is due to Mn2+ ions. MgGa2O4: Mn2+ exhibits intense thermoluminescence (TL) and optically stimulated luminescence (OSL) after influence of ionizing radiation. Are complex nature of the TL glow curves is associated with a significant number of structural defects that are responsible for the formation of shallow and deep electron traps. In this work, time-resolved OSL characteristics of the samples exposed to beta particles are reported for the first time. A light from green LED was used for optical stimulation. Obtained TL and OSL results suggest MgGa2O4:Mn2+ as perspective material for further research and possible application in radiation dosimetry.

  12. Green synthesis of silver nanoparticles using tannins

    Science.gov (United States)

    Raja, Pandian Bothi; Rahim, Afidah Abdul; Qureshi, Ahmad Kaleem; Awang, Khalijah

    2014-09-01

    Colloidal silver nanoparticles were prepared by rapid green synthesis using different tannin sources as reducing agent viz. chestnut (CN), mangrove (MG) and quebracho (QB). The aqueous silver ions when exposed to CN, MG and QB tannins were reduced which resulted in formation of silver nanoparticles. The resultant silver nanoparticles were characterized using UV-Visible, X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), and transmission electron microscopy (TEM) techniques. Furthermore, the possible mechanism of nanoparticles synthesis was also derived using FT-IR analysis. Spectroscopy analysis revealed that the synthesized nanoparticles were within 30 to 75 nm in size, while XRD results showed that nanoparticles formed were crystalline with face centered cubic geometry.

  13. Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus.

    Science.gov (United States)

    Qiu, Miao; Wu, Chu; Ren, Gerui; Liang, Xinle; Wang, Xiangyang; Huang, Jianying

    2014-07-15

    The antifungal activity and effect of high-molecular weight chitosan (H-chitosan), low-molecular weight chitosan (L-chitosan) and carboxymethyl chitosan (C-chitosan) coatings on postharvest green asparagus were evaluated. L-chitosan and H-chitosan efficiently inhibited the radial growth of Fusarium concentricum separated from postharvest green asparagus at 4 mg/ml, which appeared to be more effective in inhibiting spore germination and germ tube elongation than that of C-chitosan. Notably, spore germination was totally inhibited by L-chitosan and H-chitosan at 0.05 mg/ml. Coated asparagus did not show any apparent sign of phytotoxicity and maintained good quality over 28 days of cold storage, according to the weight loss and general quality aspects. Present results inferred that chitosan could act as an attractive preservative agent for postharvest green asparagus owing to its antifungal activity and its ability to stimulate some defense responses during storage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Wash fastness improvement of malachite green-dyed cotton fabrics ...

    Indian Academy of Sciences (India)

    Administrator

    Nano-size features of both silica and titania nanosols are predicted to enhance the wash fastness of ... The cotton fabric was obtained from traditional market and was previously tested to contain fully cellulose ..... The authors acknowledge financial support of DP2M,. Directorate General of Higher Education, Indonesia,.

  15. Wash fastness improvement of malachite green-dyed cotton fabrics

    Indian Academy of Sciences (India)

    Volume 37 Issue 6 October 2014 pp 1419-1426 ... The effect of silica on the characteristics of nanosols composite of TiO2–SiO2 was studied. ... has also shown remarkable antibacterial activity over Staphylococcus aureus and Escherichia coli.

  16. Wash fastness improvement of malachite green-dyed cotton fabrics ...

    Indian Academy of Sciences (India)

    Administrator

    3Faculty of Industrial Engineering, Universitas Islam Indonesia, Yogyakarta, Indonesia. MS received 23 December 2012; 14 March .... All spectra exhibit similar pattern of single broad absorption peak indicating the occurrence .... precursor containing silica nanosols only due to the pre- ferred interaction between the dye and ...

  17. Color-tunable and highly thermal stable Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haiming; Zhang, Haoran; Liu, Yingliang [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Lei, Bingfu, E-mail: tleibf@scau.edu.cn [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Deng, Jiankun [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China); Liu, Wei-Ren [Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City, Taiwan (China); Zeng, Yuan; Zheng, Lingling; Zhao, Minyi [Guangdong Provincial Engineering Technology Research Center for Optical Agricultural, College of Materials and Energy, South China Agricultural University, Guangzhou 510642 (China)

    2017-06-01

    Tb{sup 3+} activated Sr{sub 2}MgAl{sub 22}O{sub 36} phosphor was prepared by a high-temperature solid-state reaction route. The X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy were used to characterize the as-prepared samples. The Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} phosphors show intense green light emission under UV excitation. The phosphor exhibit two groups of emission lines from about 370 to 700 nm, which originating from the characteristic {sup 5}D{sub 3}-{sup 7}F{sub J} and {sup 5}D{sub 4}-{sup 7}F{sub J} transitions of the Tb{sup 3+} ion, respectively. The cross-relaxation mechanism between the {sup 5}D{sub 3} and {sup 5}D{sub 4} emission was investigated and discussed. The emission colors of these phosphors can be tuned from bluish-green to green by adjusting the Tb{sup 3+} doping concentration. Furthermore, the thermal quenching temperature (T{sub 1/2}) is higher than 500 K. The excellent thermal stability and color-tunable luminescent properties suggest that the developed material is a promising green-emitting phosphor candidate for optical devices. - Highlights: • A Color-tunable emitting phosphor Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} was prepared successfully via high-temperature solid-state reaction. • The photoluminescence of Sr{sub 2}MgAl{sub 22}O{sub 36}:Tb{sup 3+} shows highly thermal stable. • The cross-relaxation mechanism between the {sup 5}D{sub 3} and {sup 5}D{sub 4} emission was investigated and discussed.

  18. The Influence of Environmental Friendliness on Green Trust: The Mediation Effects of Green Satisfaction and Green Perceived Quality

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2015-07-01

    Full Text Available As global green trends became more prevalent, green marketing also developed into an important issue. Although prior literature explored the main factors affecting green trust, it was inconclusive as to how environmental friendliness could affect the green trust in green marketing. This study aims to focus on the positive influence of environmental friendliness on green trust, and explore the mediation effects of green satisfaction and green perceived quality. This study undertakes an empirical study by means of questionnaire survey. The respondents are consumers who have experience purchasing green products. This study applies structural equation modeling (SEM to test the hypotheses. The findings of this study indicate that (1 environmental friendliness has a significant positive impact on green satisfaction, green perceived quality, and green trust; (2 both green satisfaction and green perceived quality positively affect green trust; and (3 green satisfaction and green perceived quality partially mediate the positive relationship between environmental friendliness and green trust.

  19. Selenoamino Acid-Enriched Green Pea as a Value-Added Plant Protein Source for Humans and Livestock.

    Science.gov (United States)

    Garousi, Farzaneh; Domokos-Szabolcsy, Éva; Jánószky, Mihály; Kovács, Andrea Balláné; Veres, Szilvia; Soós, Áron; Kovács, Béla

    2017-06-01

    Selenium deficiency in various degrees affects around 15% of the world's population, contributing to a variety of health problems. In this study, we examined the accumulation and biotransformation of soil applied Se-supplementation (sodium selenite and sodium selenate forms) at different concentrations, along with growth and yield formation of green pea, in a greenhouse experiment. Biotransformation of inorganic Se was evaluated using HPLC-ICP-MS for Se-species separation in the above ground parts of green pea. Results showed 3 mg kg -1 Se IV increased green pea growth biomarkers and also caused an increase in protein content in leaves by 17%. Selenomethionine represented 65% of the total selenium content in shoots, but was lower in pods and seeds (54 and 38%, respectively). Selenomethionine was the major species in all plant parts and the only organic selenium form in the lower Se IV concentration range. Elevating the dose of Se IV (≥30 mg kg -1 ) triggered detrimental effects on growth and protein content and caused higher accumulation of inorganic Se in forms of Se VI and Se IV . Selenocysteine, another organic form of proteinogenic amino acid, was determined when Se IV (≥10 mg kg -1 ) was applied in higher concentrations. Thus, agronomic biofortification using the appropriate chemical form and concentration of Se will have positive effects on green pea growth and its enriched shoots and seeds provide a value-added protein source for livestock and humans with significant increased selenomethionine.

  20. Green power certification: environmental and consumer protection benefits of the Green-e programme

    Energy Technology Data Exchange (ETDEWEB)

    Wingate, M.; Hamrin, J. [Center for Resource Solutions (United States); Rabago, K. [Rocky Mountain Inst. (United States); Wiser, R. [Lawrence Berkeley National Lab. (United States)

    2000-06-01

    This article gives details of the Green-e environmental certification programme which certifies electricity generated from renewable energy sources in the US. This first non-profit certification programme originally was set up for California, and has now spread to other regions. The objectives of the Green-e programme, the need for the electricity product to meet minimum criteria to qualify, marketer requirements, verification of product claims, administration of the programme, and the second year programme results are discussed. The way in which the Green-e programme fits in with other programmes such as those set up by the state and federal customer protection agencies to help consumers select environmentally superior power is described.

  1. NMR Confirmation and HPLC Quantification of Javamide-I and Javamide-II in Green Coffee Extract Products Available in the Market.

    Science.gov (United States)

    Park, Jae B

    2017-01-01

    Javamide-I/javamide-II are phenolic amides found in coffee. Recent reports suggested that they may contain several biological activities related to human health. Therefore, there is emergent interest about their quantities in coffee-related products. Green coffee extract is a powder extract made of unroasted green coffee beans, available as a dietary supplement. However, there is little information about the amounts of javamide-I/javamide-II in green coffee extract products in the market. Therefore, in this paper, javamide-I/javamide-II were extracted from green coffee extract products and their identifications were confirmed by NMR. After that, the amounts of javamide-I/javamide-II were individually quantified from seven different green coffee extract samples using the HPLC method coupled to an electrochemical detector. The HPLC method provided accurate and reliable measurement of javamide-I/javamide-II with excellent peak resolution and low detection limit. In all seven green coffee extract samples, javamide-II was found to be between 0.28 and 2.96 mg/g, but javamide-I was detected in only five samples in the concentration levels of 0.15-0.52 mg/g, suggesting that green coffee extract products contain different amounts of javamide-I/javamide-II. In summary, javamide-I/javamide-II can be found in green coffee extract products sold in the market, but their amounts are likely to be comparatively different in between green coffee extract brands.

  2. Teor de fluoretos em infusões de chá verde (Camellia sinensis Fluoride content in green tea infusions (Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Márcia Reto

    2008-01-01

    Full Text Available The aim of this work was to study the influence of green tea consumption on fluoride ingestion. The extraction conditions of fluorides from green tea infusions were defined and nine brands of green tea available in Portugal were analyzed. The quantification of fluorides in the green tea was preceded by the implementation and validation of the potentiometric method (commercial fluoride selective electrode. The concentration of fluorides in the samples ranged from 0. 8 to 2. 0 mg L-1.

  3. Role of green tea on nicotine toxicity on liver and lung of mice ...

    African Journals Online (AJOL)

    DR_Mohsen

    2012-01-26

    Jan 26, 2012 ... formation of lipid peroxidative products (Zhen et al.,. 2007). Antioxidant .... mg/kg green tea for three weeks showing normal lung structure with ..... injury in experimental model of carrageenan induced pleurisy in mice. Resp.

  4. Effect of nickel doping on the photocatalytic activity of ZnO thin films under UV and visible light

    International Nuclear Information System (INIS)

    Kaneva, Nina V.; Dimitrov, Dimitre T.; Dushkin, Ceco D.

    2011-01-01

    Nanostructured ZnO thin films with different concentrations of Ni 2+ doping (0, 1, 5, 10 and 15 wt.%) are prepared by the sol-gel method for the first time. The thin films are prepared from zinc acetate, 2-methoxyethanol and monoethanolamine on glass substrates by using dip coating method. The films comprise of ZnO nanocrystallites with hexagonal crystal structure, as revealed by X-ray diffraction. The film surface is with characteristic ganglia-like structure as observed by Scanning Electron Microscopy. Furthermore, the Ni-doped films are tested with respect to the photocatalysis in aqueous solutions of malachite green upon UV-light illumination, visible light and in darkness. The initial concentration of malachite green and the amount of catalyst are varied during the experiments. It is found that increasing of the amount of Ni 2+ ions with respect to ZnO generally lowers the photocatalytic activity in comparison with the pure ZnO films. Nevertheless, all films exhibit a substantial activity under both, UV and visible light and in darkness as well, which is promising for the development of new ZnO photocatalysts by the sol-gel method.

  5. Investigation of common fluorophores for the detection of nitrated explosives by fluorescence quenching

    International Nuclear Information System (INIS)

    Meaney, Melissa S.; McGuffin, Victoria L.

    2008-01-01

    Previous studies have indicated that nitrated explosives may be detected by fluorescence quenching of pyrene and related compounds. The use of pyrene, however, invokes numerous health and waste disposal hazards. In the present study, ten safer fluorophores are identified for quenching detection of target nitrated compounds. Initially, Stern-Volmer constants are measured for each fluorophore with nitrobenzene and 4-nitrotoluene to determine the sensitivity of the quenching interaction. For quenching constants greater than 50 M -1 , sensitivity and selectivity are investigated further using an extended set of target quenchers. Nitromethane, nitrobenzene, 4-nitrotoluene, and 2,6-dinitrotoluene are chosen to represent nitrated explosives and their degradation products; aniline, benzoic acid, and phenol are chosen to represent potential interfering compounds. Among the fluorophores investigated, purpurin, malachite green, and phenol red demonstrate the greatest sensitivity and selectivity for nitrated compounds. Correlation of the quenching rate constants for these fluorophores to Rehm-Weller theory suggests an electron-transfer quenching mechanism. As a result of the large quenching constants, purpurin, malachite green, and phenol red are the most promising for future detection of nitrated explosives via fluorescence quenching

  6. The green building envelope : Vertical greening

    NARCIS (Netherlands)

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  7. Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Liting Zhao

    2016-05-01

    Full Text Available Propolis contains a variety of bioactive components and possesses many biological properties. This study was designed to evaluate potential effects of Brazilian green propolis on glucose metabolism and antioxidant function in patients with type 2 diabetes mellitus (T2DM. In the 18-week randomized controlled study, enrolled patients with T2DM were randomly assigned to Brazilian green propolis group (900 mg/day (n = 32 and control group (n = 33. At the end of the study, no significant difference was found in serum glucose, glycosylated hemoglobin, insulin, aldose reductase or adiponectin between the two groups. However, serum GSH and total polyphenols were significantly increased, and serum carbonyls and lactate dehydrogenase activity were significantly reduced in the Brazilian green propolis group. Serum TNF-α was significantly decreased, whereas serum IL-1β and IL-6 were significantly increased in the Brazilian green propolis group. It is concluded that Brazilian green propolis is effective in improving antioxidant function in T2DM patients.

  8. Development of a loop-mediated isothermal amplification method for rapid mass-screening of sand flies for Leishmania infection.

    Science.gov (United States)

    Nzelu, Chukwunonso O; Gomez, Eduardo A; Cáceres, Abraham G; Sakurai, Tatsuya; Martini-Robles, Luiggi; Uezato, Hiroshi; Mimori, Tatsuyuki; Katakura, Ken; Hashiguchi, Yoshihisa; Kato, Hirotomo

    2014-04-01

    Entomological monitoring of Leishmania infection in leishmaniasis endemic areas offers epidemiologic advantages for predicting the risk and expansion of the disease, as well as evaluation of the effectiveness of control programs. In this study, we developed a highly sensitive loop-mediated isothermal amplification (LAMP) method for the mass screening of sand flies for Leishmania infection based on the 18S rRNA gene. The LAMP technique could detect 0.01 parasites, which was more sensitive than classical PCR. The method was robust and could amplify the target DNA within 1h from a crude sand fly template without DNA purification. Amplicon detection could be accomplished by the newly developed colorimetric malachite green (MG)--mediated naked eye visualization. Pre-addition of MG to the LAMP reaction solution did not inhibit amplification efficiency. The field applicability of the colorimetric MG-based LAMP assay was demonstrated with 397 field-caught samples from the endemic areas of Ecuador and eight positive sand flies were detected. The robustness, superior sensitivity, and ability to produce better visual discriminatory reaction products than existing LAMP fluorescence and turbidity assays indicated the field potential usefulness of this new method for surveillance and epidemiological studies of leishmaniasis in developing countries. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Effect of Trimeresurus albolabris (green pit viper) venom on mean ...

    African Journals Online (AJOL)

    An in vitro study was conducted by mixing small amounts of green pit viper venom with blood and observing changes. At a concentration of 10 mg crude venom, red blood cells (RBC) osmotic fragility slightly increased. RBC morphology changed to spherical shape which was compatible with what was observed in scanning ...

  10. Green Tea Protects Testes against Atrazine-induced Toxicity in Rat

    Directory of Open Access Journals (Sweden)

    Reza Kheirandish

    2017-06-01

    Full Text Available Background: Atrazine (ATZ is a common herbicide in agriculture for control of grass and broad-leaved weeds. It persists in the environment and causes reproductive problems in both human and animals. The present study was aimed at protective effect of green tea against ATZ toxicity in the reproductive system of male rats. Methods: The present study was performed in Veterinary School, Shahid Bahonar University of Kerman in 2016. ATZ and treatment groups received ATZ daily 200 mg/kg BW orally for 14 d. In addition, 0.2% methanolic green tea extract was administrated in the treatment group. Results: In histopathologic investigation, number of germinal layers reduced in the most seminiferous tubules in the ATZ group and spermatids were absence. Necrotic spermatocytes, spermatids, and spermatozoa were evident in the testicular tubules. In the morphometric measurements, tubular diameter, germinal epithelium height, and meiosis index decreased significantly. Conclusion: Green tea extract had reduced testicular toxicity of atrazine significantly. ATZ induces toxicity through oxidative damage and green tea extract can protect the testes due to antioxidant activity of its polyphenols especially flavonoids.

  11. GREEN MANAGEMENT: THE REALITY OF BEING GREEN IN BUSINESS

    OpenAIRE

    Tran, Ben

    2009-01-01

    Green management and going green are not as clear cut and easy as hyped by the general media. While going ecologically green is indeed beneficial and appropriate, the process and procedure of becoming green is anything but easy. Firstly, turning green is largely not a legal requirement, but a voluntary process. Thus, even though LEED (which is by far the more publicly known green certification standard) governs the certification of the green management effort, it is not a compulsory condition...

  12. Unusual structures of MgF5- superhalogen anion

    Science.gov (United States)

    Anusiewicz, Iwona; Skurski, Piotr

    2007-05-01

    The vertical electron detachment energies (VDE) of three MgF5- anions were calculated at the outer valence Green function level with the 6-311 + G(3df) basis sets. This species was found to form unusual geometrical structures each of which corresponds to an anionic state exhibiting superhalogen nature. The global minimum structure was described as a system in which two central magnesium atoms are linked via symmetrical triangle formed by three fluorine atoms. Extremely large electron binding energies of these anions (exceeding 8.5 eV in all cases) were predicted and discussed.

  13. Larvicidal activity and in vitro effects of green tea (Camellia sinensis L. water infusion

    Directory of Open Access Journals (Sweden)

    Žabar, A.

    2013-12-01

    Full Text Available In this study green tea water infusion was tested on Drosophila melanogaster wild-type larvae in vivo, also an in vitro antihemolytic and hemolytic tests were performed. Three different concentrations were used 7.5 mg/ml, 37.5 mg/ml and 75 mg/ml, the lowest dose representing the recommended dose followed by five times and ten times higher doses. Effect of these three concentrations was monitored and tested in vivo on Drosophila melanogaster (Meigen, 1830 wt (wild type larval development and surviving. All three concentrations showed toxic effect for larvae, with toxicity being increased in dose – depended manner. The time needed for larvae to fully develop was delayed. This decrease of developmental time was in dose – dependent manner, too. Amount of hemolysis caused by the lowest concentration was very small when compared with the percent of spontaneous hemolysis. Other two higher concentrations, 37.5 mg/ml and 75 mg/ml, showed higher hemolytic effect. During the four hour incubation period percent of hemolysis grew in time – dependent manner. The highest hemolytic effect was recorded for the concentration of 37.5 mg/ml. Antihemolytic test showed that the lowest concentration had the highest inhibitory effect to H2O2 induced hemolysis. The 37.5 mg/ml and 75 mg/ml concentrations had lower inhibitory effect when compared with the dose of 7.5 mg/ml. According to our study it can be concluded that the high concentrations of green tea water infusion exhibit larvicidal activity against D. melanogaster larvae, don't have protective effect to RBC membrane and cause greater hemolysis.

  14. Photocatalytic decolorization of basic dye by TiO2 nanoparticle in photoreactor

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn1

    2012-04-01

    Full Text Available Photocatalytic decolorization of rhodamine B (RB and malachite green (MG basic dyes in aqueous solution wasevaluated using TiO2 powder as a semiconductor photocatalyst under UV black light irradiation. A 0.5 L batch photoreactorcontaining dyeing solution was installed in a stainless steel chamber with air cooling under irradiation. The TiO2 powder wascharacterized by XRD observation and it was shown that the nanoparticles could be identified as 73 nm anatase crystals. Theeffects of operational parameters such as light intensity (0-114 W/m2, initial dye concentration (10-30 mg/L, and TiO2 powderloading (0.5-1.5 g/L on the decolorization of dye samples were examined. The photocatalytic decolorization rate depended onthe pollutant’s structure, such that the MG dye could be removed faster than the RB dye. Decolorization efficiency (% of thephotocatalytic system increased with increasing TiO2 loading and light intensity; however, it decreased with increasing initialdye concentration. A loading of 1.5 g TiO2/L, initial dye concentration of 20 mg/L, and light intensity of 114 W/m2 were foundto yield the highest removal efficiency of dye solution based on time requirement. The kinetics are of first order and dependon the TiO2 powder loading and dye structure. The research had a perfect application foreground.

  15. Thermal expansion coefficients of obliquely deposited MgF2 thin films and their intrinsic stress.

    Science.gov (United States)

    Jaing, Cheng-Chung

    2011-03-20

    This study elucidates the effects of columnar angles and deposition angles on the thermal expansion coefficients and intrinsic stress behaviors of MgF2 films with columnar microstructures. The behaviors associated with temperature-dependent stresses in the MgF2 films are measured using a phase-shifting Twyman-Green interferometer with a heating stage and the application of a phase reduction algorithm. The thermal expansion coefficients of MgF2 films at various columnar angles were larger than those of glass substrates. The intrinsic stress in the MgF2 films with columnar microstructures was compressive, while the thermal stress was tensile. The thermal expansion coefficients of MgF2 films with columnar microstructures and their intrinsic stress evidently depended on the deposition angle and the columnar angle.

  16. Studies on the complexes of some triphenylmethane dyes with chromium, molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Malik, W U; Bembi, Ramesh; Bhargava, P P; Singh, R [Roorkee Univ. (India). Dept. of Chemistry

    1978-01-01

    Crystal violet, malachite green and fuchsine react with potassium chromate, sodium molybdate and sodium tungstate in 1N H/sub 2/SO/sub 4/ give 1:1 metal ligand complexes. However, in the case of chromate only an addition product with these cationic dyes is obtained. Infrared spectra of the isolated complexes show that the dyes are bound to the metal through the nitrogen atom.

  17. Studies in photo chromic behavior of some potassium hexacyanoferrate (2)-dye systems

    International Nuclear Information System (INIS)

    Taneja, Hanshu; Paliwala, Mukesh; Kumara Anil; Singh Sadhana; Ameta, Suresh C.; Ameta, Rameshwar

    2009-01-01

    The photo chromic behavior of potassium hexacyanoferrate (2)-fuchsin basic and potassium hexacyanoferrate (2)-malachite green systems was investigated in detail. The effect of variation of various parameters, like ph, light intensity, concentration of dyes, and concentration of potassium hexacyanoferrate(2), on the rates of forward and backward reactions of these systems has been observed. Based on experimental data, a tentative mechanism has also been proposed. (author)

  18. Green Tea Extract (Camellia sinensis L. Effects on Uric Acid Levels on Hyperuricemia Rats (Rattus norvegicus

    Directory of Open Access Journals (Sweden)

    Putranty Widha Nugraheni

    2017-09-01

    Full Text Available Uric acid is the end product of purine degradation. When uric acid levels exceed normal limits, it will build up and cause hyperuricemia. Allopurinol is one of the most effective and common medicine for hyperuricemia, but it brings serious side effects, therefore it is needed alternative therapy for hyperuricemia. One plant that may be expected to low uric acid levels is green tea (Camellia sinensis L., that contains many antioxidants polyphenols, especially flavonoids. Flavonoid has strong antioxidant properties, act as free radical and metal scavengers, and also xanthine oxidase (XOD inhibitors. This study investigates the potential of green tea using various doses of 150 mg/kg, 300 mg/kg, and 600 mg/kg of body weight in 24 white male rats (Rattus norvegicus Wistar strain that has been received high purine diet in 60 consecutive days. This study used DHBSA methods to measure uric acid levels in blood serum and urine that excreted 8 hours before surgery. Green tea extract that contains polyphenol can inhibit XOD activities, therefore, it leads to decrease uric acid level in blood and increase the excretion through urine by modulating urate gene transporter. A therapy with 600 mg/kg body weight of GTE is the most effective dose to decrease uric acid levels in serum and to increase excretion of exceeding uric acid significantly (p < 0.01, from One Way ANOVA and Tukey analysis.

  19. Sustainable green urban planning: the Green Credit Tool

    NARCIS (Netherlands)

    Cilliers, E.J.; Diemont, E.; Stobbelaar, D.J.; Timmermans, W.

    2010-01-01

    Purpose – The Green Credit Tool is evaluated as a method to quantify the value of green-spaces and to determine how these green-space-values can be replaced or compensated for within urban spatial planning projects. Design/methodology/approach – Amersfoort Local Municipality created the Green Credit

  20. Fungal Microbiomes Associated with Green and Non-Green Building Materials.

    Science.gov (United States)

    Coombs, Kanistha; Vesper, Stephen; Green, Brett J; Yermakov, Mikhail; Reponen, Tiina

    2017-01-01

    Water-damaged buildings can lead to fungal growth and occupant health problems. Green building materials, derived from renewable sources, are increasingly utilized in construction and renovations. However, the question as to what fungi will grow on these green compared to non-green materials, after they get wet, has not been adequately studied. By determining what fungi grow on each type of material, the potential health risks can be more adequately assessed. In this study, we inoculated green and non-green pieces of ceiling tile, composite board, drywall, and flooring with indoor dust containing a complex mixture of naturally occurring fungi. The materials were saturated with water and incubated for two months in a controlled environment. The resulting fungal microbiomes were evaluated using ITS amplicon sequencing. Overall, the richness and diversity of the mycobiomes on each pair of green and non-green pieces were not significantly different. However, different genera dominated on each type of material. For example, Aspergillus spp. had the highest relative abundance on green and non-green ceiling tiles and green composite boards, but Peniophora spp. dominated the non-green composite board. In contrast, Penicillium spp. dominated green and non-green flooring samples. Green gypsum board was dominated by Phialophora spp. and Stachybotrys spp., but non-green gypsum board by Myrothecium spp. These data suggest that water-damaged green and non-green building materials can result in mycobiomes that are dominated by fungal genera whose member species pose different potentials for health risks.

  1. Chemical bath deposited Mg{sub x}Zn{sub 1−x}S(O) thin films and their photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Inamdar, Akbar I.; Han, Jaeseok; Jo, Yongcheol; Kim, Jongmin; Pawar, S.M. [Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Yuldashev, Shavkat U. [Quantum-Functional Semiconductor Research Centre, Dongguk University, Seoul100-715 (Korea, Republic of); Kim, Hyungsang, E-mail: hskim@dongguk.edu [Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of); Im, Hyunsik, E-mail: hyunsik7@dongguk.edu [Division of Physics and Semiconductor Science, Dongguk University, Seoul 100-715 (Korea, Republic of)

    2015-12-15

    A zinc sulfide (ZnS) specimen was intentionally doped with transition metal (Mg-donor) elements using a chemical bath deposition (CBD) technique. Both the un-doped and the magnesium (Mg)-doped ZnS samples were confirmed to have hexagonal wurtzite ZnS crystal structure. The XRD patterns showed no characteristic peak for Mg indicating that the Mg{sup 2+} ions had been incorporated into ZnS(O) lattice sites. In contrast to un-doped samples, Mg doping resulted in changes in the morphological features of the spherical clusters which resulted in porous, spongy vermicular structures. The energy band gap of the Mg{sub x}Zn{sub 1−x}S(O) film was slightly larger than that for the ZnS(O) film. A photoluminescence study revealed that the emissions were near violet–blue–green in color. The emission characteristics consist of two components; emission in the near violet and in visible region. That is the first is between 4160 and 4400 Å and the second is at 5190 Å, and these are associated with the donor–acceptor transitions with sulfur vacancies as acceptors and the magnesium related defects (trap states) in the samples respectively. - Highlights: • Mg{sub x}Zn{sub 1−x}S(O) films are grown using a chemical bath deposition (CBD) technique. • Energy band widening and morphological changes are observed after Mg doping. • A PL study revealed that the emissions are near violet–blue–green in color. • The emissions are associated with the sulfur vacancies and Mg trap states.

  2. 28-Day oral (gavage) toxicity studies of green tea catechins prepared for beverages in rats.

    Science.gov (United States)

    Chengelis, Christopher P; Kirkpatrick, Jeannie B; Regan, Karen S; Radovsky, Ann E; Beck, Melissa J; Morita, Osamu; Tamaki, Yasushi; Suzuki, Hiroyuki

    2008-03-01

    The beneficial health effects associated with drinking green tea are widely considered to be due primarily to tea catechins. Heat treatment of marketed green tea beverages for sterilization causes epimerization and/or polymerization of tea catechins. Safety studies on heat-treated tea catechins are limited. The objective of the present study was to evaluate potential adverse effects, if any, of two standardized green tea catechin (GTC) preparations: one that underwent heat sterilization (GTC-H) and one that was not heat-sterilized (GTC-UH). A decaffeinated preparation of the GTC-H (GTC-HDC) was also evaluated to ascertain if any effects were due to caffeine. The GTC preparations were administered to rats once daily at levels up to 2000 mg/kg/day for 28 days. There were no deaths attributable to the GTC preparations. The clinical condition of the animals, functional observational battery, motor activity, clinical pathology evaluations, organ weights, and gross necropsy findings were unaffected by any of the GTC preparations. GTC-HDC or GTC-UH dosing had no effects on body weights or microscopic findings, whereas lower body weights and food consumption were observed in the 1000 and 2000 mg/kg/day GTC-H group males. The no observed-adverse-effect level (NOAEL) for localized gastric effects for GTC-H was 1000 mg/kg/day. No other target organs were identified. Thus, the NOAEL for systemic toxicity following oral administration was 2000 mg/kg/day for GTC-H, GTC HDC, and GTC-UH under the conditions of this study.

  3. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    Science.gov (United States)

    Kumar, Danith; Yadav, L. S. Reddy; Lingaraju, K.; Manjunath, K.; Suresh, D.; Prasad, Daruka; Nagabhushana, H.; Sharma, S. C.; Naika, H. Raja; Chikkahanumantharayappa, Nagaraju, G.

    2015-06-01

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm-1 indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV -Vis spectrum was found to be in the range 5.40-5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  4. Enzim Papain: Aspek Green Chemistry pada Reaksi Knoevenagel

    Directory of Open Access Journals (Sweden)

    Laurentius Haryanto

    2015-08-01

    Full Text Available Green chemistry aspect is the chemical approach that has been studied in the past two decades. One of the principles is the development of green synthesis process that is friendly for the environment. This research showed that papain can be used as catalyst for Knoevenagel reaction with 3 kinds of substituted-benzaldehyde and malononitrile as substrates in aqueous medium. The best reaction condition with 80% yield was reached by utilizing of 25 mg papain/mmol substrate. Reaction was conducted at ambient temperature and pressure for 30 min. Products were yellowish to yellow needle crystals and successfully characterized by melting point, UV-Vis, IR, mass spectra, and 13C & 1H-NMR, named as 2-(4-hydroxybenzylidene-malononitrile; 2-(3-hydroxybenzylidene-malononitrile; and 2-(4-hydroxy-3-methoxybenzylidene-malononitrile.

  5. Green Building Pro-Environment Behaviors: Are Green Users Also Green Buyers?

    Directory of Open Access Journals (Sweden)

    Xiaohuan Xie

    2017-09-01

    Full Text Available Pro-environment behaviors play a key role in advancing the development of green buildings. This study investigated the link between two green building pro-environment behaviors that require dissimilar resources: energy savings that do not require money in order to be more environmentally friendly and willingness to pay that involves economic resources including spending money in order to be more environmentally friendly. This study points out that the two pro-environment behaviors can be positively linked to each other. People who behave in an environmentally friendly manner at work would also be likely to pay an extra cost for a green building when buying a new home. The consistency of the two pro-environment behaviors can be explained by their common environmental beliefs: limits to growth and eco-crisis. The green building movement should prioritize pro-environmental behaviors and associated environmental beliefs to support green building policies, guidelines, and tools.

  6. Effect of film roughness in Fe/MgO/Fe magnetic tunnel junctions: model calculations

    Energy Technology Data Exchange (ETDEWEB)

    Edalati Boostan, Saeideh; Heiliger, Christian [I. Physikalisches Institut, Justus Liebig University Giessen, D-35392 (Germany); Moradi, Hosein [Department of Physics,Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2011-07-01

    We calculate how interface roughness affects the tunneling magnetoresistance (TMR) in Fe/MgO/Fe (100) junctions. The used method is based on a single-band tight-binding (SBTB) approximation employing the Green's function formalism. We investigate the influence of disorder at the TMR ratio. Thereby, the disorder is modeled by considering different occupation probabilities of Fe and MgO at interface sites. We calculate the current densities for parallel and anti-parallel configurations for different disorders. The results show that the roughness decreases the TMR that match well with experimental observations.

  7. Effect of Green Tea Extract in Reducing Genotoxic Injuries of Cell Phone Microwaves on Bone Marrow

    Directory of Open Access Journals (Sweden)

    Zahra Zahedifar

    2013-11-01

    Full Text Available Background: Green tea (Camellia sinensis extract is rich source of natural antioxidants specially catechin that is quickly absorbed into the body and it has cancer protective, anti microbial and anti inflammation effects. In this study has been studied role of green tea extract against genotoxic damage induced by cell phone microwaves on bone marrow polychromatic erythrocytes of adult male Balb/C mouse.Materials and Methods: In this experimental study 40 mouse were divided into five groups, control animals were located under natural condition, sham -exposed animals were prepared by experimental condition without cell phone waves radiation. Experimental 1 group that irradiated at cell phones for 4 days (3 hours/day and experimental 2 groups were injected intraperitoneal 100 mg/kg green tea extract for 5 days and experimental 3 group that irradiated at active mobile phones for 4 days (3 hours/day and were injected intraperitoneal 100 mg/kg green tea extract for 5 days. After treatment period micronucleus test was evaluated in polychromatic erythrocytes on bone marrow. The quantitative data was analyzed by ANOVA and Tukey test with using of SPSS-13 software at the level of p<0.05.Results: Based on this study, treatment with extracts of green tea decreased micronucleus frequency in bone marrow polychromatic erythrocytes of Balb/C mouse that irradiated at cell phone microwave (0.92±0.129, (p<0.001.Conclusion: Cell phone microwaves (940 MHz increased micronucleus on bone marrow polychromatic erythrocytes of male Balb/C mouse, but green tea had inhibitory effect and it decreased the average number of micronucleus.

  8. Utilisation aspects of ashes and green liquor dregs from an integrated semichemical pulp and board mill

    Energy Technology Data Exchange (ETDEWEB)

    Manskinen, K.

    2013-09-01

    This thesis investigated the properties of bottom and fly ashes originating from a bubbling fluidised bed boiler (120 MW) using two different fuel mixtures (i.e. Fuel mixture A: coal, wood and peat; and B: wood and peat) and of the green liquor dregs originating from the associated semichemical pulp and board mill in relation to the potential utilisation of these residues from various aspects. The total concentrations of As, Cd, Cr, Cu, Ni, Pb, Zn and Hg in the bottom ashes were lower than the maximum allowable concentrations for these elements in forest fertilisers. The total Ca concentrations in bottom ashes A (2.4%; d.w.) and B (3.4%; d.w.) were lower than the legal requirement of 6.0% (d.w.) for ash used as a forest fertiliser. The total Ca concentrations in fly ashes A (6.4%; d.w.) and B (11.0%; d.w.) were higher than the minimum limit value of 6.0% (d.w.), but the concentration of As in fly ashes A (46.9 mg/kg d.w.) and B (41.3 mg/kg; d.w.) exceeded the maximum limit value of 40 mg/kg (d.w.). Only bottom ash B could be used as a forest fertiliser, provided some additional Ca is used. The bottom ashes both fulfilled the Finnish regulations on waste recovery in earth construction. Due to the elevated total concentration of PAH (23 mg/kg; d.w.) and extractable concentrations of Mo (3.9 mg/kg; d.w.) and Se (0.2 mg/kg; d.w.) in fly ash A, this residue cannot be used in covered structures. Due to the elevated concentration of PAH (90 mg/kg; d.w.) in fly ash B, this residue cannot be used in covered and paved structures. However, the utilisation of these residues as an earth construction agent is still possible, but an environmental permit would be required. According to the sequential extraction studies, extractable concentrations of most of the elements in the fly ash A were higher than those in the bottom ash A. The extractability of various elements, both in the bottom and fly ashes A, varied widely. Most of the elements did not occur as readily soluble and

  9. Performance analysis and experimental study on rainfall water purification with an extensive green roof matrix layer in Shanghai, China.

    Science.gov (United States)

    Guo, Jiankang; Zhang, Yanting; Che, Shengquan

    2018-02-01

    Current research has validated the purification of rainwater by a substrate layer of green roofs to some extent, though the effects of the substrate layer on rainwater purification have not been adequately quantified. The present study set up nine extensive green roof experiment combinations based on the current conditions of precipitation characteristics observed in Shanghai, China. Different rain with pollutants were simulated, and the orthogonal design L9 (33) test was conducted to measure purification performance. The purification influences of the extensive green roof substrate layer were quantitatively analyzed in Shanghai to optimize the thickness, proportion of substrate, and sodium polyacrylate content. The experimental outcomes resulted in ammonium nitrogen (NH 4 + -N), lead (Pb), and zinc (Zn) removal of up to 93.87%, 98.81%, and 94.55% in the artificial rainfall, respectively, and NH 4 + -N, Pb, and Zn event mean concentration (EMC) was depressed to 0.263 mg/L, 0.002 mg/L and 0.018 mg/L, respectively, which were all well below the pollutant concentrations of artificial rainfall. With reference to the rainfall chemical characteristics of Shanghai, a combination of a 200 mm thickness, proportions of 1:1:2 of Loam: Perlite: Cocopeat and 2 g/L sodium polyacrylate content was suggested for the design of an extensive green roof substrate to purify NH 4 + -N, Pb and Zn.

  10. Kinetic method for determination of iodide ion ultramicroamounts

    International Nuclear Information System (INIS)

    Barkauskas, Yu.K.; Ramanauskas, Eh.I.

    1980-01-01

    A kinetic method for iodides ultramicroamount determination from their catalytic effect on oxidation of malachite green with chloramine B in the presence of acetone at pH 5.78+-0.3 is developed. The induction period of the reaction is determined from a change in the redox potential of the system. The induction period is proportional to the iodides concentration. Determination limit of iodides is equal to 4 μg iodide per 100 l of solution. More than 10 5 -multiple amounts of K + , Na + , NH 4+ , Ba 2 + , Al 3 + , Cu 2 + , Mg 2 + , SO 4 2 - , Cl - , MoO 4 2 - , NO 3- , ClO 3- , IO 3- , IO 4- , ClO 4- , BrO 3- ; 10 5 -10 3 -multiple amounts of Cr 3 + , Fe 3 + , Sn 2 + , S 2 - , MnO 4- , NO 2- etc. do not interfere with the determination, while 10-multiple amounts of SCN, 0.2-multiple quantities of Ag + , Hg 2 2 + do

  11. Study on transferring improved green fluorescent protein gene into wheat via low energy Ar+ implantation

    International Nuclear Information System (INIS)

    Wu Lifang; Li Hong; Song Daojun

    2000-01-01

    An improved GFP gene (mGFP4) was introduced into mature embryo cells of wheat cultivars Wan 9210 and Wanmai 32 via low energy ion beam-mediated delivery technique. Resistant calli were selected on medium containing paromomycin (100-140 mg/L). Five green plants were regenerated from resistant calli of Wan 9210 derived from 387 implated mature embryos. 32 green plants were obtained from 776 irradiated mature embryos in Wanmai 32. No green plant was regenerated from calli of 200 non-transformed embryos. PCR assays of 37 green plants showed that they all obtained the expected size of amplified DNA fragment (600 bp). Southern blot of 4 well-developed green plants confirmed stable integration of GFP gene into wheat genome. The average transformation frequencies of Wan 9210 and Wanmai 32 were 1.3% and 4.1%, respectively, according to the results of PCR assays

  12. Novel colorimetric method overcoming phosphorus interference during trace arsenic analysis in soil solution.

    Science.gov (United States)

    Makris, Konstantinos C; Punamiya, Pravin; Sarkar, Dibyendu; Datta, Rupali

    2008-02-01

    A sensitive (method detection limit, 2.0 microg As L(-1)) colorimetric determination of trace As(v) and As(iii) concentrations in the presence of soluble phosphorus (P) concentrations in soil/water extracts is presented. The proposed method modifies the malachite green method (MG) originally developed for P in soil and water. Our method relies upon the finding that As(iii) and As(v) do not develop the green color during P analysis using the MG method. When an optimum concentration of ascorbic acid (AA) is added to a sample containing up to 15 times P > As (microM) concentrations, the final sample absorbance due to P will be equal to that of As(v) molecules. The soluble As concentration can then be quantified by the concentration difference between the mixed oxyanion (As + P) absorbance (proposed method) and the MG method absorbance that measures only P. Our method is miniaturized using a 96-well microplate UV-VIS reader that utilizes minute reagent and sample volumes (120 and 200 microL sample(-1), respectively), thus, minimizing waste and offering flexibility in the field. Our method was tested in a suite of As-contaminated soils that successfully measured both As and P in soil water extracts and total digests. Mean% As recoveries ranged between 84 and 117%, corroborating data obtained with high-resolution inductively-coupled plasma mass-spectrometry. The performance of the proposed colorimetric As method was unaffected by the presence of Cu, Zn, Pb, Ni, Fe, Al, Si, and Cr in both neutral and highly-acidic (ca. pH 2) soil extracts. Data from this study provide the proof of concept towards creating a field-deployable, portable As kit.

  13. Green thunderstorms

    Science.gov (United States)

    Gallagher, Frank Woolsey, III

    Many people around the world have observed green light apparently emanating from severe thunderstorms, but until recently there has been no scientific study of the phenomenon. Green thunderstorms have been observed from time to time in association with deep convection or severe weather events. Some skeptics who have not personally observed a green thunderstorm suggest that they are some kind of illusion. The existence of green thunderstorms has been objectively demonstrated by recording spectra of light from thunderstorms using a handheld spectrophotometer. During the spring and summer of 1995 and the spring of 1996 numerous storms were observed and spectra of the light emanating from these storms were recorded. Observations were made both at the ground and aboard research aircraft. Furthermore, time series of spectra were recorded as the observed color of some storms changed from dark blue to a bluish-green. Several hypotheses have been advanced to explain the occurrence of green light in connection with severe storms. Fankhauser gave some observational support to the belief that green light from thunderstorms is possible and believed that the source of the light is from the blue sky penetrating thin regions in the clouds. Fraser believes that light from the setting sun, in combination with the process of scattering by atmospheric molecules, creates the green light associated with severe weather and the thunderstorm acts only as a black backdrop. Unfortunately, no cloud illuminated by the sun is black and the green airlight produced by the Fraser theory is in reality overwhelmed by light reflected by the cloud. Often the unusual coloration has been attributed to hail or to reflection of light from foliage on the ground. The quantitative measurements made during the observation period fail to support these assumptions. We have observed thunderstorms to be green over ground that was not green and we have observed blue thunderstorms over ground that was green

  14. Green shipping management

    CERN Document Server

    Lun, Y H Venus; Wong, Christina W Y; Cheng, T C E

    2016-01-01

    This book presents theory-driven discussion on the link between implementing green shipping practices (GSP) and shipping firm performance. It examines the shipping industry’s challenge of supporting economic growth while enhancing environmental performance. Consisting of nine chapters, the book covers topics such as the conceptualization of green shipping practices (GSPs), measurement scales for evaluating GSP implementation, greening capability, greening and performance relativity (GPR), green management practice, green shipping network, greening capacity, and greening propensity. In view of the increasing quest for environment protection in the shipping sector, this book provides a good reference for firms to understand and evaluate their capability in carrying out green operations on their shipping activities.

  15. Radioprotective effects saffron and its combination with green tea against γ-radiation-induced DNA damage in Swiss albino mice

    International Nuclear Information System (INIS)

    Koul, Apurva; Abraham, Suresh K.

    2016-01-01

    Protective effects of aqueous extract of saffron (dried stigmas of Crocus sativus L.) alone and its combination with green tea against γ-radiation-induced genotoxicity and oxidative stress were investigated in Swiss albino mice. Saffron (40 mg/kg bw) alone and in combination with green tea (40 mg/kg bw) were orally administered to mice for six consecutive days, followed by exposure to γ-radiation (2.25 Gy) on 6 th day after final feeding. Antigenotoxic effect of saffron was assayed using micronucleus test in bone marrow cells which showed a significant decrease in the number of micronucleated PCEs in saffron alone and its combination with green tea pre-treated animals when compared with the radiation alone treated animals. Saffron alone and its combination with green tea pre-treated animals showed a significant decrease in lipid peroxidation levels with a significant increase in the activity of antioxidant defense system enzymes, viz. acetylcholine esterase, glutathione-S-transferase, catalase, glutathione peroxidase, glutathione reductase and non-enzymatic antioxidant (GSH), when compared with the radiation alone treated animals. Our results suggested that saffron in combination with green tea exhibits radioprotective effects against γ-radiation induced DNA damage and oxidative stress in Swiss albino mice. (author)

  16. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Danith; Chikkahanumantharayappa [Dept. of Physics, Vivekananda First grade College, Bangalore - 560055 (India); Yadav, L. S. Reddy; Nagaraju, G., E-mail: nagarajugn@rediffmail.com [Dept of Chemistry, Siddaganga Institute of Technology, Tumkur, Karnataka-572103 (India); Lingaraju, K.; Naika, H. Raja [Dept. of Environmental Science, Tumkur University, Tumkur, Karnataka-572103 (India); Manjunath, K. [Centre for Nano and Material Sciences, Jain University, Jakkasandra, Karnataka-562112 (India); Suresh, D. [Dept. of Chemistry, Tumkur University, Tumkur, Karnataka-572103 (India); Prasad, Daruka [Dept. of Physics, BMS Institute of Technology, Bangalore-560064 (India); Nagabhushana, H. [CNR Rao Center for Advanced Materials, Tumkur University, Tumkur, Karnataka-572103 (India); Sharma, S. C. [Chattisgarh Swami Vivekananda Technological University, Bhilai, Chattisgarh-490009 (India)

    2015-06-24

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm{sup −1} indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV –Vis spectrum was found to be in the range 5.40–5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation.

  17. Combustion synthesis of MgO nanoparticles using plant extract: Structural characterization and photoluminescence studies

    International Nuclear Information System (INIS)

    Kumar, Danith; Chikkahanumantharayappa; Yadav, L. S. Reddy; Nagaraju, G.; Lingaraju, K.; Naika, H. Raja; Manjunath, K.; Suresh, D.; Prasad, Daruka; Nagabhushana, H.; Sharma, S. C.

    2015-01-01

    Magnesium oxide nanoparticles (MgO Nps) have been successfully synthesized via solution combustion method using Parthenium plant extract as fuel for the first time. Powder X-ray diffraction (PXRD) pattern reveal that product belongs to the cubic phase (Periclase). FTIR spectrum shows the band at 822 cm −1 indicates the formation of cubic periclase MgO. The optical band gap of MgO Nps estimated from UV –Vis spectrum was found to be in the range 5.40–5.45 eV. SEM images showed that, the product is agglomerated and particle in nature. Photoluminescence (PL) studies shows violet emission at 390 nm, blue emission at 470 nm and green emission at 550 nm. MgO Nps shows good photocatalytic activity for the degradation of methylene blue (MB) dye under UV/Sun light irradiation

  18. Green Consumerism : an Eco-Friendly Behaviour Form Through The Green Product Consumption and Green Marketing

    Directory of Open Access Journals (Sweden)

    Wiwik Handayani

    2017-09-01

    Full Text Available This research is referred to analyse the influence of consumer attitude of green product towards purchase intention. The consumer attitude of green product is a psychological tendencies that is expressed by evaluating a certain entity with some advantage or disadvantage considerations. The problem of this research is the low of cunsumer awareness to consume green product, because the lack to comprehend the importance of green product usage for health and eco-friendly. The purpose of this research is to test the influence of consumer attitude of green products towards purchase intention. Hypothesis testing using Partial Least Square (PLS. The result of analysis show that there is influence among consumer attitude of green product towards consumer purchase intention significantly.

  19. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    In recent years, many states have developed and implemented green solutions for defense. Building on these initiatives NATO formulated the NATO Green Defence Framework in 2014. The framework provides a broad basis for cooperation within the Alliance on green solutions for defense. This report aims...... to inform and support the further development of green solutions by unfolding how green technologies and green strategies have been developed and used to handle current security challenges. The report, initially, focuses on the security challenges that are being linked to green defense, namely fuel...... consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number...

  20. Brilliant Green Dye Elimination from Water Using Psidium guajava Leaves and Solanum tuberosum Peels as Adsorbents in Environmentally Benign Way

    Directory of Open Access Journals (Sweden)

    Rabia Rehman

    2015-01-01

    Full Text Available The aim of this study is to check the feasibility of Psidium guajava (Guava leaves and peels of Solanum tuberosum (Potato as biosorbents in removal of Brilliant Green (BG in batch mode. Surface analysis of biosorbents was done by FT-IR and quantitatively analyzed by Boehm titration. The removal of dye was confirmed by UV-VIS spectroscopy. Isothermal modeling was studied by using Langmuir, Freundlich, and Temkin isotherms. Various isothermal parameters for adsorption of Brilliant Green such as qm=1.075 mg/g, 1.173 mg/g ΔG°=-3.397, and −2.397 KJ/mol were noted for Solanum tuberosum peels (PP and Psidium guajava leaves (GL, respectively. Similarly pH, moisture content, and various metals were quantitatively analyzed. Results showed that leaves of Psidium guajava were more effective for removal of Brilliant Green.