WorldWideScience

Sample records for majors xesa earth

  1. Development of an Interdisciplinary Undergraduate Major in The Earth System, Environment and Society

    Science.gov (United States)

    Wuebbles, D. J.

    2003-12-01

    Humanity faces great challenges in the 21st Century to understand and limit our impact on the Earth System. To address these challenges, it is essential to understand the nature and implications of environmental change, and the complexity of the Earth system. We need to educate citizens that have the background to make new developments in understanding technical aspects of the Earth System, and to develop an understanding the interactions between society and the Earth System sufficient to make informed policy choices. Traditional disciplinary departments and majors don't fully address this; teaching and research talent in the study of the Earth System is spread over many disciplinary-oriented departments. At the University of Illinois, we are currently developing a new cross-disciplinary undergraduate major being called The Earth system, environment and Society. This development is co-sponsored by a number of departments centered in the College of Liberal Arts & Sciences (but including other departments throughout the university). Our intention is that this major will be a catalyst for bringing together the many disciplines involved in Earth System Science education. The curriculum and course for study will focus on the science and human dimensions of the Earth system, with special emphasis on the processes and issues related to the environment across a range of spatial scales from local and regional to global. Along with meeting the requirements expected of all students in a liberal arts and sciences major, students in The Earth System, Environment and Society major will be required to complete a core set of courses designed to introduce students to all of the different components of the Earth System (students will choose from course options in both the sciences and the social sciences). After completing the core courses, students will then focus their studies on one of the two options within the major, Science of the Earth System (this option will emphasize the

  2. Spatial abilities, Earth science conceptual understanding, and psychological gender of university non-science majors

    Science.gov (United States)

    Black, Alice A. (Jill)

    Research has shown the presence of many Earth science misconceptions and conceptual difficulties that may impede concept understanding, and has also identified a number of categories of spatial ability. Although spatial ability has been linked to high performance in science, some researchers believe it has been overlooked in traditional education. Evidence exists that spatial ability can be improved. This correlational study investigated the relationship among Earth science conceptual understanding, three types of spatial ability, and psychological gender, a self-classification that reflects socially-accepted personality and gender traits. A test of Earth science concept understanding, the Earth Science Concepts (ESC) test, was developed and field tested from 2001 to 2003 in 15 sections of university classes. Criterion validity was .60, significant at the .01 level. Spearman/Brown reliability was .74 and Kuder/Richardson reliability was .63. The Purdue Visualization of Rotations (PVOR) (mental rotation), the Group Embedded Figures Test (GEFT) (spatial perception), the Differential Aptitude Test: Space Relations (DAT) (spatial visualization), and the Bem Inventory (BI) (psychological gender) were administered to 97 non-major university students enrolled in undergraduate science classes. Spearman correlations revealed moderately significant correlations at the .01 level between ESC scores and each of the three spatial ability test scores. Stepwise regression analysis indicated that PVOR scores were the best predictor of ESC scores, and showed that spatial ability scores accounted for 27% of the total variation in ESC scores. Spatial test scores were moderately or weakly correlated with each other. No significant correlations were found among BI scores and other test scores. Scantron difficulty analysis of ESC items produced difficulty ratings ranging from 33.04 to 96.43, indicating the percentage of students who answered incorrectly. Mean score on the ESC was 34

  3. Moving Closer to EarthScope: A Major New Initiative for the Earth Sciences*

    Science.gov (United States)

    Simpson, D.; Blewitt, G.; Ekstrom, G.; Henyey, T.; Hickman, S.; Prescott, W.; Zoback, M.

    2002-12-01

    EarthScope is a scientific research and infrastructure initiative designed to provide a suite of new observational facilities to address fundamental questions about the evolution of continents and the processes responsible for earthquakes and volcanic eruptions. The integrated observing systems that will comprise EarthScope capitalize on recent developments in sensor technology and communications to provide Earth scientists with synoptic and high-resolution data derived from a variety of geophysical sensors. An array of 400 broadband seismometers will spend more than ten years crossing the contiguous 48 states and Alaska to image features that make up the internal structure of the continent and underlying mantle. Additional seismic and electromagnetic instrumentation will be available for high resolution imaging of geological targets of special interest. A network of continuously recording Global Positioning System (GPS) receivers and sensitive borehole strainmeters will be installed along the western U.S. plate boundary. These sensors will measure how western North America is deforming, what motions occur along faults, how earthquakes start, and how magma flows beneath active volcanoes. A four-kilometer deep observatory bored directly into the San Andreas fault will provide the first opportunity to observe directly the conditions under which earthquakes occur, to collect fault rocks and fluids for laboratory study, and to monitor continuously an active fault zone at depth. All data from the EarthScope facilities will be openly available in real-time to maximize participation from the scientific community and to provide on-going educational outreach to students and the public. EarthScope's sensors will revolutionize observational Earth science in terms of the quantity, quality and spatial extent of the data they provide. Turning these data into exciting scientific discovery will require new modes of experimentation and interdisciplinary cooperation from the Earth

  4. Agriculture production as a major driver of the Earth system exceeding planetary boundaries

    Directory of Open Access Journals (Sweden)

    Bruce M. Campbell

    2017-12-01

    Full Text Available We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or "safe limits": land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone depletion, atmospheric aerosol loading, and introduction of novel entities. Two planetary boundaries have been fully transgressed, i.e., are at high risk, biosphere integrity and biogeochemical flows, and agriculture has been the major driver of the transgression. Three are in a zone of uncertainty i.e., at increasing risk, with agriculture the major driver of two of those, land-system change and freshwater use, and a significant contributor to the third, climate change. Agriculture is also a significant or major contributor to change for many of those planetary boundaries still in the safe zone. To reduce the role of agriculture in transgressing planetary boundaries, many interventions will be needed, including those in broader food systems.

  5. The Big Crunch: A Hybrid Solution to Earth and Space Science Instruction for Elementary Education Majors

    Science.gov (United States)

    Cervato, Cinzia; Kerton, Charles; Peer, Andrea; Hassall, Lesya; Schmidt, Allan

    2013-01-01

    We describe the rationale and process for the development of a new hybrid Earth and Space Science course for elementary education majors. A five-step course design model, applicable to both online and traditional courses, is presented. Assessment of the course outcomes after two semesters indicates that the intensive time invested in the…

  6. A survey of 16 rare Earth elements in the major foods in China.

    Science.gov (United States)

    Jiang, Ding Guo; Yang, Jie; Zhang, Shuo; Yang, Da Jin

    2012-06-01

    The aim of this survey was to investigate the level of contamination of the most consumed foods in China with 16 rare earth elements (REEs), and to provide the basic data for establishing and revising food safety standards for REEs. Sixteen REEs in foods were measured by inductively coupled plasma-mass spectrometry (ICP-MS) in the labs of the Centers for Disease Control and Prevention of four provinces and two municipalities, during 2009-2010. 1 231 samples were analyzed and 19 121 concentration data of 16 REEs were collected. The REEs levels in the investigated foods varied significantly. The concentrations of cerium (Ce), dysprosium (Dy), yttrium (Y), lanthanum (La), and neodymium (Nd) were relatively high, while the remaining eleven REEs were at low levels. The mean values of total rare earth element oxides (REOs) in cereals, fresh vegetables, fresh aquatic products, fresh meats and eggs varied from 0.052 mg/kg to 0.337 mg/kg. 16 REEs in the major foods were at very low contamination levels in the investigated regions. Copyright © 2012 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  7. Fertiliser characterisation: Major, trace and rare earth elements

    International Nuclear Information System (INIS)

    Otero, N.; Vitoria, L.; Soler, A.; Canals, A.

    2005-01-01

    In recent years, there has been increasing concern regarding the chemical impact of agricultural activities on the environment so it is necessary to identify contaminants, and/or characterise the sources of contamination. In this study, a comprehensive chemical characterisation of 27 fertilisers of different types used in Spain has been conducted; major, minor and trace elements were determined, including rare earth elements. Results show that compound fertilisers used for fertigation or foliar application have low content of heavy metals, whereas fertilisers used for basal and top dressing have the highest content of both REE and other heavy metals. REE patterns of fertilisers have been determined in order for them to be used as tracers of fertilisers in future environmental studies. Furthermore in this work REE patterns of fertilisers are used as tracers of the source of phosphate in compound fertilisers, distinguishing between phosphorite and carbonatite derived fertilisers. Fertilisers from carbonatites have higher contents of REE, Sr, Ba and Th whereas fertilisers from phosphorites have higher contents of metals of environmental concern, such as Cd, U and As; and the sum of the heavy metals is higher. Some of the analysed fertilisers have Cd concentrations that exceed maximum values established in some countries and can be expected to produce long-term soil accumulation. Furthermore, other elements such as U, As and Cr are 10-50 times higher in concentration than those of Cd, but there is no legislation regarding them, therefore it is necessary to regulate fertiliser compositions in order to achieve environmental protection of soils and waters

  8. Inaugeral lecture - Meteorite impacts on Earth and on the Earth ...

    African Journals Online (AJOL)

    There is some controversial evidence for the theory that the first life on Earth itself may have been transported here on meteorites from Mars. The possibility of a major meteorite impact on Earth in the near future emphasizes the dramatic nature of these recent discoveries, which are having deep impacts in the Earth sciences ...

  9. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  10. Rare earths 1998 market update

    International Nuclear Information System (INIS)

    Tourre, J.M.

    1998-01-01

    The rare earth industry has always been a world of rapid change with the emergence of new markets, new ores and new players, as well as the disappearance of old applications. Rare earth based products are used in a great diversity of applications such as hard disk drives, CD drives, batteries, capacitors, pigments, ceramics, polishing powders, fuel cells, flints, catalyst converter, fluid cracking catalysts, etc. South East Asia holds the largest share of the known reserve of rare earth ores and is one of the major markets for rare earth compounds; in the last ten years, China has become the largest producer of rare earth intermediates as well as an important exporter of separated rare earth elements. Today, China has approximately 150 factories producing rare earth compounds, most of which are experiencing financial difficulties due to the lack of knowledge of true market needs, lack of control of their distribution channels and production over-capacity. Recently the Chinese rare earth producers have recognized the situation and efforts are underway to rationalize rare earth production. Japan has dominated many of the major application markets, and is by far the largest market for metal and alloy products. This will remain the case for the next five years; however, new countries are emerging as significant users of rare earth products such as Korea, Taiwan and Malaysia. During the last ten years rare earth producers adjusted to several radical changes that affected the raw materials, the application mix and the price structure. New producers have emerged, especially from China; some have subsequently stopped their activities while others have focused their efforts in a specific market segment

  11. Earth Science Informatics - Overview

    Science.gov (United States)

    Ramapriyan, H. K.

    2017-01-01

    Over the last 10-15 years, significant advances have been made in information management, there are an increasing number of individuals entering the field of information management as it applies to Geoscience and Remote Sensing data, and the field of informatics has come to its own. Informatics is the science and technology of applying computers and computational methods to the systematic analysis, management, interchange, and representation of science data, information, and knowledge. Informatics also includes the use of computers and computational methods to support decision making and applications. Earth Science Informatics (ESI, a.k.a. geoinformatics) is the application of informatics in the Earth science domain. ESI is a rapidly developing discipline integrating computer science, information science, and Earth science. Major national and international research and infrastructure projects in ESI have been carried out or are on-going. Notable among these are: the Global Earth Observation System of Systems (GEOSS), the European Commissions INSPIRE, the U.S. NSDI and Geospatial One-Stop, the NASA EOSDIS, and the NSF DataONE, EarthCube and Cyberinfrastructure for Geoinformatics. More than 18 departments and agencies in the U.S. federal government have been active in Earth science informatics. All major space agencies in the world, have been involved in ESI research and application activities. In the United States, the Federation of Earth Science Information Partners (ESIP), whose membership includes over 180 organizations (government, academic and commercial) dedicated to managing, delivering and applying Earth science data, has been working on many ESI topics since 1998. The Committee on Earth Observation Satellites (CEOS)s Working Group on Information Systems and Services (WGISS) has been actively coordinating the ESI activities among the space agencies.The talk will present an overview of current efforts in ESI, the role members of IEEE GRSS play, and discuss

  12. Sintered cobalt-rare earth intermetallic product

    International Nuclear Information System (INIS)

    Benz, M.C.

    1975-01-01

    A process is described for preparing novel sintered cobalt--rare earth intermetallic products which can be magnetized to form permanent magnets having stable improved magnetic properties. A cobalt--rare earth metal alloy is formed having a composition which at sintering temperature falls outside the composition covered by the single Co 5 R intermetallic phase on the rare earth richer side. The alloy contains a major amount of the Co 5 R intermetallic phase and a second solid CoR phase which is richer in rare earth metal content than the Co 5 R phase. The specific cobalt and rare earth metal content of the alloy is substantially the same as that desired in the sintered product. The alloy, in particulate form, is pressed into compacts and sintered to the desired density. The sintered product is comprised of a major amount of the Co 5 R solid intermetallic phase and up to about 35 percent of the product of the second solid CoR intermetallic phase which is richer in rare earth metal content than the Co 5 R phase

  13. Ancient and Medieval Earth in Armenia

    Science.gov (United States)

    Farmanyan, S. V.

    2015-07-01

    Humankind has always sought to recognize the nature of various sky related phenomena and tried to give them explanations. The purpose of this study is to identify ancient Armenians' pantheistic and cosmological perceptions, world view, notions and beliefs related to the Earth. The paper focuses on the structure of the Earth and many other phenomena of nature that have always been on a major influence on ancient Armenians thinking. In this paper we have compared the term Earth in 31 languages. By discussing and comparing Universe structure in various regional traditions, myths, folk songs and phraseological units we very often came across to "Seven Heavens" (Seven heavens is a part of religious cosmology found in many major religions such as Islam, Judaism, Hinduism and Christianity (namely Catholicism) and "Seven Earths". Armenians in their turn divided Earth and Heavens into seven layers. And in science too, both the Earth and the Heavens have 7 layers. The Seven Heavens refer to the layers of our atmosphere. The Seven Earths refer to the layers of the Earth (from core to crust), as well as seven continents. We conclude that the perception of celestial objects varies from culture to culture and preastronomy had a significant impact on humankind, particularly on cultural diversities.

  14. Earth before life.

    Science.gov (United States)

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-09

    A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome includes the age of the Earth are consistent with observed data. The appearance of life after the formation of the Earth is consistent with the data set under examination.

  15. Seismic rehabilitation and analysis of Chaohe earth dam

    Science.gov (United States)

    Fu, Lei; Zeng, Xiangwu

    2005-12-01

    Stability of earth dams during earthquakes has been a major concern for geotechnical engineers in seismic active regions. Liquefaction induced slope failure occurred at the upstream slope of a major earth dam in the suburb of Beijing, China, during the 1976 Tangshan Earthquake. The gravelly soil with loose initial condition liquefied under relatively small ground vibration. In recent years, a major seismic rehabilitation project was carried out on a similar earth dam nearby using dumped quarry stone. Seismic stability analysis was carried out using model test, finite element simulation, and pseudo-static slope stability program after taking into account the influence of excess pore pressure.

  16. Earthing: Health Implications of Reconnecting the Human Body to the Earth's Surface Electrons

    International Nuclear Information System (INIS)

    Chevalier, G.; Chevalier, G.; Sinatra, S.T.; Oschman, J.L.; Sokal, K.; Sokal, P.

    2012-01-01

    Environmental medicine generally addresses environmental factors with a negative impact on human health. However, emerging scientific research has revealed a surprisingly positive and overlooked environmental factor on health: direct physical contact with the vast supply of electrons on the surface of the Earth. Modern lifestyle separates humans from such contact. The research suggests that this disconnect may be a major contributor to physiological dysfunction and un wellness. Reconnection with the Earth's electrons has been found to promote intriguing physiological changes and subjective reports of well-being. Earthing (or grounding) refers to the discovery of benefits including better sleep and reduced pain from walking barefoot outside or sitting, working, or sleeping indoors connected to conductive systems that transfer the Earth's electrons from the ground into the body. This paper reviews the earthing research and the potential of earthing as a simple and easily accessed global modality of significant clinical importance

  17. Rare earth industries: Upstream business

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many factors contribute to the rush to invest in the unprecedented revival of rare earths. One major reason has to do with the rapidly growing world demand. The other reason relates to the attractive price of rare earths which is projected to stay strong in the coming years. This is because supply is predicted to have difficulty keeping pace with demand. Experts believe a major driver of global rare earths demand is the forecasted expansion in the green economy. Climate change is a major driver of the green economy. With climate change, there is concern that the uncontrolled emission of the greenhouse gases, especially carbon dioxide, can lead to catastrophic consequences for the world. This has been documented in countless studies and reports. Another important driver of the green economy is the growing shortfall in many resources. The world is now experiencing declines in key resources to meet a growing global demand. With more than 6 billion people now in the world and growing, the pressure exerted on global resources including energy, water and food is a major concern. Recent demand surge in China and India has dented the supply position of major world resources. The much quoted Stern Report from the UK has warned that, unless immediate steps are taken to reduce greenhouse gas emissions, it may be a costly exercise to undertake the corrections later. Since energy use, especially fossil fuels, is a major contributor to climate change, greener options are being sought. Add to that the fact that the fossil energy resources of the world are declining, the need to seek alternatives becomes even more urgent. One option is to change to renewable energy sources. These include such potentials as solar, wind and biomass. Rare earths have somehow become a critical feature of the technologies in such renewable. Another option is to improve the efficient use of energy in transport, buildings and all the other energy intensive industries. Again the technologies in

  18. Next-generation Digital Earth.

    Science.gov (United States)

    Goodchild, Michael F; Guo, Huadong; Annoni, Alessandro; Bian, Ling; de Bie, Kees; Campbell, Frederick; Craglia, Max; Ehlers, Manfred; van Genderen, John; Jackson, Davina; Lewis, Anthony J; Pesaresi, Martino; Remetey-Fülöpp, Gábor; Simpson, Richard; Skidmore, Andrew; Wang, Changlin; Woodgate, Peter

    2012-07-10

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google Earth, and the functionality of this first generation of virtual globes, are reviewed against the Gore vision. Meanwhile, developments in technology continue, the era of "big data" has arrived, the general public is more and more engaged with technology through citizen science and crowd-sourcing, and advances have been made in our scientific understanding of the Earth system. However, although Google Earth stimulated progress in communicating the results of science, there continue to be substantial barriers in the public's access to science. All these factors prompt a reexamination of the initial vision of Digital Earth, and a discussion of the major elements that should be part of a next generation.

  19. Estimates of the magnitudes of major marine mass extinctions in earth history

    Science.gov (United States)

    Stanley, Steven M.

    2016-10-01

    Procedures introduced here make it possible, first, to show that background (piecemeal) extinction is recorded throughout geologic stages and substages (not all extinction has occurred suddenly at the ends of such intervals); second, to separate out background extinction from mass extinction for a major crisis in earth history; and third, to correct for clustering of extinctions when using the rarefaction method to estimate the percentage of species lost in a mass extinction. Also presented here is a method for estimating the magnitude of the Signor-Lipps effect, which is the incorrect assignment of extinctions that occurred during a crisis to an interval preceding the crisis because of the incompleteness of the fossil record. Estimates for the magnitudes of mass extinctions presented here are in most cases lower than those previously published. They indicate that only ˜81% of marine species died out in the great terminal Permian crisis, whereas levels of 90-96% have frequently been quoted in the literature. Calculations of the latter numbers were incorrectly based on combined data for the Middle and Late Permian mass extinctions. About 90 orders and more than 220 families of marine animals survived the terminal Permian crisis, and they embodied an enormous amount of morphological, physiological, and ecological diversity. Life did not nearly disappear at the end of the Permian, as has often been claimed.

  20. Estimates of the magnitudes of major marine mass extinctions in earth history.

    Science.gov (United States)

    Stanley, Steven M

    2016-10-18

    Procedures introduced here make it possible, first, to show that background (piecemeal) extinction is recorded throughout geologic stages and substages (not all extinction has occurred suddenly at the ends of such intervals); second, to separate out background extinction from mass extinction for a major crisis in earth history; and third, to correct for clustering of extinctions when using the rarefaction method to estimate the percentage of species lost in a mass extinction. Also presented here is a method for estimating the magnitude of the Signor-Lipps effect, which is the incorrect assignment of extinctions that occurred during a crisis to an interval preceding the crisis because of the incompleteness of the fossil record. Estimates for the magnitudes of mass extinctions presented here are in most cases lower than those previously published. They indicate that only ∼81% of marine species died out in the great terminal Permian crisis, whereas levels of 90-96% have frequently been quoted in the literature. Calculations of the latter numbers were incorrectly based on combined data for the Middle and Late Permian mass extinctions. About 90 orders and more than 220 families of marine animals survived the terminal Permian crisis, and they embodied an enormous amount of morphological, physiological, and ecological diversity. Life did not nearly disappear at the end of the Permian, as has often been claimed.

  1. Baltic Earth - Earth System Science for the Baltic Sea Region

    Science.gov (United States)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  2. Study on Yen Phu rare earth ore concentrate treatment technology and separation of major heavy rare earth elements by solvent extraction method

    International Nuclear Information System (INIS)

    Le Ba Thuan; Pham Quang Trung; Vu Lap Lai

    2003-01-01

    1. Yenphu rare earth ore concentrate treatment by alkali under pressure: On the base of studying mineral and chemical compositions of Yenphu rare earth ore concentrate containing 28% TREO and conditions for digestion of ore concentrate by alkali under pressure such as ore concentrate/ NaOH ratio, alkali concentration, pressure and temperature at bench scale (100 gram and 5 kg per batch), the optimal conditions for decomposition of REE ore concentrate have been determined. The yield of the decomposition stage is about 90%. The studies on alkali washing, REE leaching by HCl, pH for leaching process, and iron and radioactive impurities removing by Na 2 S + Na 2 PO 4 have been carried out. The obtained results show that mixture of Na 2 S 5% + Na2PO 4 1% is effective in iron and radioactive impurities removing. The obtained REE oxides get purity of > 99% and meet the need of solvent extraction (SX) individual separation of rare earth elements. The schema for recovery of REEs from Yenphu REE ore concentrate by alkali decomposition under high pressure has been proposed. 2. Fractionation of Yenphu rare earth mixture into subgroups by solvent extraction with PC88A: On the base of simulation program, the parameters for fractional process of rare earths mixture into subgroups by solvent extraction with PC88A have been proposed and determined by experimental verification on mixer-settler set. According to this process, rare earths mixture fractionated into yttrium and light subgroups. In their turn, the light subgroup was separated into light (La, Ce, Pr, Nd) and middle (Sm, Eu, Gd) subgroups. The average yield of the process reached value > 95%. The composition of light subgroup meets the needs for individual separation of Gd, Eu, and Sm. 3. Separation and purification of yttrium: The process for recovery of yttrium consists of two stages: upgrade to get high quality Y concentrate by PC88A and purification by Aliquat 336 in NH 4 SCN-NH 4 Cl medium. The process parameter for

  3. The Australian Computational Earth Systems Simulator

    Science.gov (United States)

    Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.

    2001-12-01

    Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic

  4. Sediment geochronology and geochemical behavior of major and rare earth elements in the Oualidia Lagoon in the western Morocco

    International Nuclear Information System (INIS)

    Mejjad, N.; El-Hammoumi, O.; Fekri, A.; Laissaoui, A.; Benmansour, M.; Bounouira, H.; Benkdad, A.; Bounakhla, M.; Benbrahim, S.; Bouthir, F.Z.

    2016-01-01

    Naturally occurring radionuclides and 137 Cs were measured in a sediment core and surface deposit collected from the bed channel of the Oualidia Lagoon located in the western Morocco. Major and rare earth elements (REE) profiles were determined by instrumental NAA technique. 210 Pb and 137 Cs were used to establish the sedimentation chronology over the last decades by using conventional models. 210 Pb displayed relatively higher concentrations and rate of supply to the sediment than typical levels found in other coastal areas in Morocco. REE ratios and Ce anomalies showed that the direct incorporation of particles from seawater to the bed sediment is the most important, followed by the terrigenous component. (author)

  5. Earth Science Enterprise Technology Strategy

    Science.gov (United States)

    1999-01-01

    NASA's Earth Science Enterprise (ESE) is dedicated to understanding the total Earth system and the effects of natural and human-induced changes on the global environment. The goals of ESE are: (1) Expand scientific knowledge of the Earth system using NASA's unique vantage points of space, aircraft, and in situ platforms; (2) Disseminate information about the Earth system; and (3) Enable the productive use of ESE science and technology in the public and private sectors. ESE has embraced the NASA Administrator's better, faster, cheaper paradigm for Earth observing missions. We are committed to launch the next generation of Earth Observing System (EOS) missions at a substantially lower cost than the EOS first series. Strategic investment in advanced instrument, spacecraft, and information system technologies is essential to accomplishing ESE's research goals in the coming decades. Advanced technology will play a major role in shaping the ESE fundamental and applied research program of the future. ESE has established an Earth science technology development program with the following objectives: (1) To accomplish ESE space-based and land-based program elements effectively and efficiently; and (2) To enable ESE's fundamental and applied research programs goals as stated in the NASA Strategic Plan.

  6. Rare earths: occurrence, production and applications

    International Nuclear Information System (INIS)

    Murthy, T.K.S.; Mukherjee, T.K.

    2002-01-01

    The mining and processing of rare earth minerals, particularly of monazite, began in a modest way in 1880s for commercialized production of mantle for gas lighting. For all major applications up to mid-twentieth century- production of lighter flints, misch metal as a metallurgical alloying agent, colouring, decolourizing and polishing agents for glass, petroleum cracking catalysts and arc-carbons, unseparated or partially separated rare earths were adequate. These applications continue till today. With the development and industrial application of powerful techniques like ion exchange and solvent extraction for the separation of rare earths, the decades after 1960 saw increasing utilization of the specific properties of the individual rare earths. Some of these advanced technological applications include: special glass for optical systems including camera lenses, phosphors for colour television, cathode ray tubes and fluorescent lighting, X-ray intensification screens, high intensity permanent magnets, electro optical devices, lasers, hydrogen storage materials, hydride rechargeable batteries, photomagnetic data storage systems, autoexhaust catalysts, special ceramics of unusual toughness, artificial diamonds and nonpoisonous plastic colorants. The topics covered in the book include rare earths: their story identity, rare earth resources, processing of ores and recovery of mixed rare earths products, separation and purification of rare earths, nonmetallic applications of rare earths, rare earth metals: production and applications, rare earth alloys and their applications, analysis of rare earth, processing of rare earth resources in India by Indian Rare Earth Ltd. and availability and market conditions

  7. Earth Sciences Division annual report 1990

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  8. Agriculture production as a major driver of the earth system exceeding planetary boundaries

    DEFF Research Database (Denmark)

    Campbell, Bruce Morgan; Beare, Douglas J.; Bennett, Elena M.

    2017-01-01

    We explore the role of agriculture in destabilizing the Earth system at the planetary scale, through examining nine planetary boundaries, or “safe limits”: land-system change, freshwater use, biogeochemical flows, biosphere integrity, climate change, ocean acidification, stratospheric ozone...

  9. Some major aspects of the chemical behavior of rare earth oxides: An overview

    International Nuclear Information System (INIS)

    Bernal, S.; Blanco, G.; Calvino, J.J.; Omil, J.A. Perez; Pintado, J.M.

    2006-01-01

    The chemical behavior of sesquioxides and higher rare earth oxides is briefly reviewed. In the first case processes implying no change in the lanthanoid oxidation state are considered, whereas in the second one the analysis is focused on their redox behavior

  10. Earth and planetary sciences

    International Nuclear Information System (INIS)

    Wetherill, G.W.; Drake, C.L.

    1980-01-01

    The earth is a dynamic body. The major surface manifestation of this dynamism has been fragmentation of the earth's outer shell and subsequent relative movement of the pieces on a large scale. Evidence for continental movement came from studies of geomagnetism. As the sea floor spreads and new crust is formed, it is magnetized with the polarity of the field at the time of its formation. The plate tectonics model explains the history, nature, and topography of the oceanic crust. When a lithospheric plate surmounted by continental crust collides with an oceanic lithosphere, it is the denser oceanic lithosphere that is subducted. Hence the ancient oceans have vanished and the knowledge of ancient earth will require deciphering the complex continental geological record. Geochemical investigation shows that the source region of continental rocks is not simply the depleted mantle that is characteristic of the source region of basalts produced at the oceanic ridges. The driving force of plate tectonics is convection within the earth, but much remains to be learned about the convection and interior of the earth. A brief discussion of planetary exploration is given

  11. Rare earth, major and trace element composition of Leg 127 sediments

    Science.gov (United States)

    Murray, R.W.; Buchholtz ten Brink, Marilyn R.; Brumsack, Hans-Juergen; Gerlach, David C.; Russ III, G. Price

    1992-01-01

    The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the final preserved chemistry of Japan Sea sediments are evaluated by investigating the rare earth element (REE), major element, and trace element concentrations in 59 squeeze-cake whole-round and 27 physical-property sample residues from Sites 794, 795, and 797, cored during ODP Leg 127. The most important variation in sedimentary chemical composition is the increase in SiO2 concentration through the Pliocene diatomaceous sequences, which dilutes most other major and trace element components by various degrees. This biogenic input is largest at Site 794 (Yamato Basin), moderately developed at Site 797 (Yamato Basin), and of only minor importance at Site 795 (Japan Basin), potentially reflecting basinal contrasts in productivity with the Yamato Basin recording greater biogenic input than the Japan Basin and with the easternmost sequence of Site 794 lying beneath the most productive waters. There are few systematic changes in solid-phase chemistry resulting from the opal-A/opal-CT or opal-CT/quartz silica phase transformations. Most major and trace element concentrations are controlled by the aluminosilicate fraction of the sediment, although the effects of diagenetic silica phases and manganese carbonates are of localized importance. REE total abundances (IREE) in the Japan Sea are strongly dependent upon the paleoceanographic position of a given site with respect to terrigenous and biogenic sources. REE concentrations at Site 794 overall correspond well to aluminosilicate chemical indices and are strongly diluted by SiO2 within the upper Miocene-Pliocene diatomaceous sequence. Eu/Eu* values at Site 794 reach a maximum through the diatomaceous interval as well, most likely suggesting an association of Eu/Eu* with the siliceous component, or reflecting slight incorporation of a detrital feldspar phase. XREE at Site 795 also is affiliated strongly

  12. Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.

    Science.gov (United States)

    Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila

    2015-05-01

    Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.

  13. Earth Sciences Division collected abstracts: 1979

    International Nuclear Information System (INIS)

    Henry, A.L.; Schwartz, L.L.

    1980-01-01

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division

  14. Earth Sciences Division, collected abstracts, 1978

    International Nuclear Information System (INIS)

    Taasevigen, D.K.; Henry, A.L.; Madsen, S.K.

    1979-01-01

    Abstracts of papers, internal reports, and talks presented during 1978 at national and international meetings by members of the Earth Sciences Division of the Lawrence Livermore Laboratory are compiled. The arrangement is alphabetical (by author). For any given report, a bibliographic reference appears under the name of each coauthor. A topical index at the end provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division

  15. EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters

    Science.gov (United States)

    McDaris, J. R.; Dahlman, L.; Barstow, D.

    2007-12-01

    Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by

  16. Earth Institute at Columbia University ADVANCE Program: Addressing Needs for Women in Earth and Environmental Sciences

    Science.gov (United States)

    Bell, R. E.; Cane, M.; Mutter, J.; Miller, R.; Pfirman, S.; Laird, J.

    2004-12-01

    The Earth Institute has received a major NSF ADVANCE grant targeted at increasing the participation and advancement of women scientists and engineers in the Academy through institutional transformation. The Earth Institute at Columbia University includes 9 research institutes including Lamont-Doherty Earth Observatory, Center for Environmental Research and Conservation (CERC), Center for International Earth Science Information Network (CIESIN), International Research Institute (IRI) for Climate Prediction, Earth Engineering Center, NASA-Goddard Institute for Space Studies, Center for Risks and Hazards, Center for Globalization and Sustainable Development, and Center for Global Health and Economic Development and six academic departments including Ecology, Evolution and Environmental Biology (E3B, School of Arts and Sciences), Earth and Environmental Engineering (DEEE, School of Engineering and Applied Sciences), Department of Environmental Health (School of Public Health), Department of Earth and Environmental Sciences (DEES, School of Arts and Sciences), Department of International and Public Affairs (School of International and Policy Affairs), and Barnard College Department of Environmental Science. The Earth Institute at Columbia University's ADVANCE program is based both on a study of the status of women at Columbia and research on the progression of women in science elsewhere. The five major targets of the Columbia ADVANCE program are to (1) change the demographics of the faculty through intelligent hiring practices, (2) provide support to women scientists through difficult life transitions including elder care and adoption or birth of a child, (3) enhance mentoring and networking opportunities, (4) implement transparent promotion procedures and policies, and (5) conduct an institutional self study. The Earth Institute ADVANCE program is unique in that it addresses issues that tend to manifest themselves in the earth and environmental fields, such as extended

  17. Dust: A major environmental hazard on the earth's moon

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, G.; Vaniman, D.; Lehnert, B.

    1990-01-01

    On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

  18. Music Education and the Earth Sciences

    Science.gov (United States)

    Beauregard, J. L.

    2011-12-01

    Capturing the interest of non-science majors in science classes can be very difficult, no matter what type of science course it is. At Berklee College of Music, this challenge is especially daunting, as all students are majoring in some type of music program. To engage the Berklee students, I am trying to link the material in Earth science courses to music. The connection between Earth science and music is made in several different ways within the curriculum of each class, with the main connection via a final project. For their projects, students can use any creative outlet (or a standard presentation) to illustrate a point related to the course. Many students have chosen to compose original music and perform it for the class. Some examples of their work will be presented. These original compositions allow students to relate course material to their own lives. Additionally, since many of these students will enter professional careers in the performance and recording industries, the potential exists for them to expose large audiences to the issues of Earth sciences through music.

  19. Volcanic eruptions are cooling the earth

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2005-01-01

    The article discusses how volcanic eruptions may influence the climate. The environmental impacts both on the earth surface and the atmosphere are surveyed. Some major eruptions in modern times are mentioned

  20. Locating center of mass of earth and geostationary satellites

    International Nuclear Information System (INIS)

    Qureshi, A.; Marvi, M.

    2014-01-01

    CoM (Center of Mass) of earth is a very important factor which can play a major role in satellite communication and related earth sciences. The CoM of earth is assumed to be around equator due to geometrical shape of earth. However, no technical method is available in the literature which can justify the presence of CoM of earth around equator. Therefore, in this research work the CoM of earth has been located theoretically with the help of mathematical relations. It also presents the mathematical justification against the assumption that equator is the CoM of earth. The effect of calculated CoM of earth on geostationary satellites has also been discussed. The CoM of earth has been found mathematically by using land to ocean ratios and the data is collected from the Google earth software. The final results are accurate with an approximate error of 1%. (author)

  1. Earth Sciences Division annual report 1990

    International Nuclear Information System (INIS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science. Samir M Zaid. Articles written in Journal of Earth System Science. Volume 126 Issue 4 June 2017 pp 50. Provenance of coastal dune sands along Red Sea, Egypt · Samir M Zaid · More Details Abstract Fulltext PDF. Texture, mineralogy, and major and trace element ...

  3. Recovery of rare earths from red mud

    International Nuclear Information System (INIS)

    Bautista, R.G.

    1992-01-01

    The prospect for the recovery of rare earths from red mud, the bauxite tailings from the production of alumina is examined. The Jamaican red mud by far has the higher trace concentrations of lanthanum, cerium, neodymium, and yttrium. Scandium is also present. The dissolution of the rare earth is a major extraction problem because of the large volume of other materials. The recovery processes that have been proposed include the production of co-products such as iron, alumina, and titanium concentrates, with the rare earths going with the titanium. In this paper a critical examination of the possible processes are presented with the recommended research projects to be carried out

  4. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    Science.gov (United States)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  5. THE MAJOR GEOEFFECTIVE SOLAR ERUPTIONS OF 2012 MARCH 7: COMPREHENSIVE SUN-TO-EARTH ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Patsourakos, S.; Nindos, A.; Kouloumvakos, A. [University of Ioannina, Department of Physics, Section of Astrogeophysics, Ioannina (Greece); Georgoulis, M. K.; Gontikakis, C.; Moraitis, K.; Syntelis, P. [Research Center for Astronomy and Applied Mathematics, Academy of Athens, Athens (Greece); Vourlidas, A. [Space Physics Division, Applied Physics Laboratory, Johns Hopkins University, Laurel, MD (United States); Sarris, T.; Anagnostopoulos, G.; Iliopoulos, A. C.; Pavlos, G.; Sarafopoulos, D. [Democritus University of Thrace, Department of Electrical and Computer Engineering, Xanthi (Greece); Anastasiadis, A.; Tsironis, C. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece); Chintzoglou, G. [School of Physics, Astronomy and Computational Sciences, George Mason University, 4400 University Drive, MSN 6A2, Fairfax, VA 22030 (United States); Daglis, I. A.; Katsavrias, C. [Department of Physics, University of Athens (Greece); Hatzigeorgiu, N. [University of California, Berkeley, Space Sciences Laboratory, Berkeley, CA 94720-7450 (United States); Nieves-Chinchilla, T. [IACS/CUA at NASA Goddard Space Flight Center Heliospheric Physics Lab, Greenbelt, MD 20771 (United States); and others

    2016-01-20

    During the interval 2012 March 7–11 the geospace experienced a barrage of intense space weather phenomena including the second largest geomagnetic storm of solar cycle 24 so far. Significant ultra-low-frequency wave enhancements and relativistic-electron dropouts in the radiation belts, as well as strong energetic-electron injection events in the magnetosphere were observed. These phenomena were ultimately associated with two ultra-fast (>2000 km s{sup −1}) coronal mass ejections (CMEs), linked to two X-class flares launched on early 2012 March 7. Given that both powerful events originated from solar active region NOAA 11429 and their onsets were separated by less than an hour, the analysis of the two events and the determination of solar causes and geospace effects are rather challenging. Using satellite data from a flotilla of solar, heliospheric and magnetospheric missions a synergistic Sun-to-Earth study of diverse observational solar, interplanetary and magnetospheric data sets was performed. It was found that only the second CME was Earth-directed. Using a novel method, we estimated its near-Sun magnetic field at 13 R{sub ⊙} to be in the range [0.01, 0.16] G. Steep radial fall-offs of the near-Sun CME magnetic field are required to match the magnetic fields of the corresponding interplanetary CME (ICME) at 1 AU. Perturbed upstream solar-wind conditions, as resulting from the shock associated with the Earth-directed CME, offer a decent description of its kinematics. The magnetospheric compression caused by the arrival at 1 AU of the shock associated with the ICME was a key factor for radiation-belt dynamics.

  6. Loan officers' perceptions concerning earth-sheltered housing: risk, complexity, and advantage

    Energy Technology Data Exchange (ETDEWEB)

    Hanzai-Kashi, A; Combs, E R

    1984-01-01

    The lack of available financing is a major impediment to the construction of earth-sheltered housing. A broad-based study of lending institutions, this study describes the perceptions of loan officers toward earth-sheltered housing and their perception of their institution's lending policies in terms of their concerns. The survey finds that a majority of the loan officers perceive more stringent terms and larger down payments for earth-sheltered housing because of their concerns for financial risk, complexity, and relative advantage. Methods to reduce the risk and complexity and to increase the relative advantage would involve marketing research, certification and warranty programs, secondary mortgages markets, and other techniques. 8 references, 5 tables.

  7. Major, trace and rate earth elements in sediments of the Julian Adame-Alatorre dam by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Mireles, F.; Pinedo, J. L.; Davila, J. I.; Oliva, J. E.; Speakman, R. J.; Glascock, M. D.

    2010-10-01

    The rapid industrial development in regions of Mexico during recent years has had the side effect of introducing toxic metals, fertilizers, and pesticides into the ecosystem. Sediment cores were collected from eight locations around the Julian Adame-Alatorre dam located in Municipality of Villanueva in the Zacatecas State, Mexico. The cores were analyzed for 32 major, trace, and rare earth elements (As, La, Lu, Nd, Sm, U, Yb, Ce, Co, Cr, Cs, Eu, Fe, Hf, Rb, Sb, Sc, Sr, Ta, Tb, Th, Zn, Zr, Al, Ba, Ca, Dy, K, Mn, Na, Ti, V) in order to estimate the health risk. The samples were analyzed by instrument neutron activation analysis using thermal neutron fluxes of 8 x 10 13 and 5 x 10 13 n cm -2 s -1 for short and long irradiations, respectively. The results of the contamination levels for elements such as As, Ba, Cr, Fe, Mn, Ta, V, and Zn were compared with the Mexican regulations and the guidelines of US EPA. (Author)

  8. Using The Global Positioning System For Earth Orbiter and Deep Space Network

    Science.gov (United States)

    Lichten, Stephen M.; Haines, Bruce J.; Young, Lawrence E.; Dunn, Charles; Srinivasan, Jeff; Sweeney, Dennis; Nandi, Sumita; Spitzmesser, Don

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-earth, and even deep space (interplanetary) tracking.

  9. Marine Aerosol Precursor Emissions for Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Maltrud, Mathew Einar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-25

    Dimethyl sulfide (DMS) is generated by marine ecosystems and plays a major role in cloud formation over the ocean. Currently, Earth System Models use imposed flux of DMS from the ocean to the atmosphere that is independent of the climate state. We have added DMS as a prognostic variable to the Community Earth System Model (CESM) that depends on the distribution of phytoplankton species, and thus changes with climate.

  10. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel; Vettier, Ludovic; Määttänen, Anni, E-mail: benjamin.fleury@latmos.ipsl.fr [Université Versailles St-Quentin, Sorbonne Universités, UPMC Univ. Paris 06, CNRS/INSU, LATMOS-IPSL, 11 Boulevard d’Alembert, F-78280 Guyancourt (France)

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Water was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.

  11. PROCESS FOR SEPARATING AMERICIUM AND CURIUM FROM RARE EARTH ELEMENTS

    Science.gov (United States)

    Baybarz, R.D.; Lloyd, M.H.

    1963-02-26

    This invention relates to methods of separating americium and curium values from rare earth values. In accordance with the invention americium, curium, and rare earth values are sorbed on an anion exchange resin. A major portion of the rare earth values are selectively stripped from the resin with a concentrated aqueous solution of lithium chloride, and americium, curium, and a minor portion of rare earth values are then stripped from the resin with a dilute aqueous solution of lithium chloride. The americium and curium values are further purified by increasing the concentration of lithium chloride in the solution to at least 8 molar and selectively extracting rare earth values from the resulting solution with a monoalkylphosphoric acid. (AEC)

  12. Earth mortars and earth-lime renders

    Directory of Open Access Journals (Sweden)

    Maria Fernandes

    2008-01-01

    Full Text Available Earth surface coatings play a decorative architectural role, apart from their function as wall protection. In Portuguese vernacular architecture, earth mortars were usually applied on stone masonry, while earth renders and plasters were used on indoors surface coatings. Limestone exists only in certain areas of the country and consequently lime was not easily available everywhere, especially on granite and schist regions where stone masonry was a current building technique. In the central west coast of Portugal, the lime slaking procedure entailed slaking the quicklime mixed with earth (sandy soil, in a pit; the resulting mixture would then be combined in a mortar or plaster. This was also the procedure for manufactured adobes stabilized with lime. Adobe buildings with earth-lime renderings and plasters were also traditional in the same region, using lime putty and lime wash for final coat and decoration. Classic decoration on earth architecture from the 18th-19th century was in many countries a consequence of the François Cointeraux (1740-1830 manuals - Les Cahiers d'Architecture Rurale" (1793 - a French guide for earth architecture and building construction. This manual arrived to Portugal in the beginning of XIX century, but was never translated to Portuguese. References about decoration for earth houses were explained on this manual, as well as procedures about earth-lime renders and ornamentation of earth walls; in fact, these procedures are exactly the same as the ones used in adobe buildings in this Portuguese region. The specific purpose of the present paper is to show some cases of earth mortars, renders and plasters on stone buildings in Portugal and to explain the methods of producing earth-lime renders, and also to show some examples of rendering and coating with earth-lime in Portuguese adobe vernacular architecture.

  13. Mission operations update for the restructured Earth Observing System (EOS) mission

    Science.gov (United States)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  14. An Overview of Rare Earth Science and Technology

    Science.gov (United States)

    Gschneidner, Karl, Jr.

    2012-02-01

    Currently rare earth science and technology is robust: this includes all the major branches of science -- biochemistry, chemistry, materials and physics. There are, however, currently some anomalies and distortions especially in the technology and applications sector of the rare earth field, which is caused by the dominance of China on the sales of rare earths and rare earth containing products. For the past 5 to 10 years ˜95% of rare earths utilized in commerce came from China. Although Chinese actions have lead to sudden and large price spikes and export embargoes, the rare earths are still available but at a higher cost. The start up of production in 2011 at mines in the USA and Australia will alleviate this situation in about two years. Basic and applied research on the condensed matter physics/materials science has hardly been impacted by these events, but new research opportunities are opening up especially with regard to the USA's military and energy security. Magnets seems to be the hottest topic, but research on battery materials, phosphors and catalysts are also (or should be) strongly considered.

  15. Earth Sciences annual report, 1987

    International Nuclear Information System (INIS)

    Younker, L.W.; Donohue, M.L.; Peterson, S.J.

    1988-12-01

    The Earth Sciences Department at Lawrence Livermore National Laboratory conducts work in support of the Laboratory's energy, defense, and research programs. The Department is organized into ten groups. Five of these -- Nuclear Waste Management, Fossil Energy, Containment, Verification, and Research -- represent major programmatic activities within the Department. Five others -- Experimental Geophysics, Geomechanics, Geology/Geological Engineering, Geochemistry, and Seismology/Applied Geophysics -- are major disciplinary areas that support these and other laboratory programs. This report summarizes work carried out in 1987 by each group and contains a bibliography of their 1987 publications

  16. Increasing Diversity in the Earth Sciences (IDES) - An Oregon Effort

    Science.gov (United States)

    de Silva, S. L.; Duncan, R. A.; Wright, D. J.; de Silva, L.; Guerrero, E. F.

    2011-12-01

    The IDES (Increasing Diversity in Earth Sciences) Program is the first partnership of its kind in the state of Oregon targeted at broadening participation in the Earth Science enterprise. Funded by the National Science Foundation Opportunities to Enhance Diversity in the Geosciences program (NSF-OEDG), this partnership involves community colleges, a research university with major strengths in Earth Science research and education and an institutionalized commitment to enhancing diversity, state and federal agencies, centers of informal education, and the Oregon Space Grant Consortium, IDES has two integrated goals: 1) to increase the number of students from under-represented groups who pursue careers in Earth Science research and education, and 2) to strengthen the understanding of Earth Sciences and their relevance to society among broad and diverse segments of the population. Built around the best practices of tiered mentoring, interactive student cohort, research and education internships, and financial support, this 4-year program recruits 10 to 12 students (mainly rising juniors) each year from science majors at Oregon State University and five Oregon community colleges. The program is reaching its goals by: a) training participants in the application of geospatial to Earth Science problems of personal relevance b) immersing participants in a two-year mentored research project that involves summer internships with academic units, state and federal agencies, and centers for informal education in Oregon. c) exposing, educating, and involving participants in the breadth of Earth Science careers through contact with Earth Science professionals through mentors, a professional internship, and a learning community that includes a speaker series. d) instilling an understanding of context and relevance of the Earth Science Enterprise to the participants, their families, their communities, and the general public. We report on the first two years of this program during

  17. Beyond seismic interferometry: imaging the earth's interior with virtual sources and receivers inside the earth

    Science.gov (United States)

    Wapenaar, C. P. A.; Van der Neut, J.; Thorbecke, J.; Broggini, F.; Slob, E. C.; Snieder, R.

    2015-12-01

    Imagine one could place seismic sources and receivers at any desired position inside the earth. Since the receivers would record the full wave field (direct waves, up- and downward reflections, multiples, etc.), this would give a wealth of information about the local structures, material properties and processes in the earth's interior. Although in reality one cannot place sources and receivers anywhere inside the earth, it appears to be possible to create virtual sources and receivers at any desired position, which accurately mimics the desired situation. The underlying method involves some major steps beyond standard seismic interferometry. With seismic interferometry, virtual sources can be created at the positions of physical receivers, assuming these receivers are illuminated isotropically. Our proposed method does not need physical receivers at the positions of the virtual sources; moreover, it does not require isotropic illumination. To create virtual sources and receivers anywhere inside the earth, it suffices to record the reflection response with physical sources and receivers at the earth's surface. We do not need detailed information about the medium parameters; it suffices to have an estimate of the direct waves between the virtual-source positions and the acquisition surface. With these prerequisites, our method can create virtual sources and receivers, anywhere inside the earth, which record the full wave field. The up- and downward reflections, multiples, etc. in the virtual responses are extracted directly from the reflection response at the surface. The retrieved virtual responses form an ideal starting point for accurate seismic imaging, characterization and monitoring.

  18. Earth before life

    OpenAIRE

    Marzban, Caren; Viswanathan, Raju; Yurtsever, Ulvi

    2014-01-01

    Background A recent study argued, based on data on functional genome size of major phyla, that there is evidence life may have originated significantly prior to the formation of the Earth. Results Here a more refined regression analysis is performed in which 1) measurement error is systematically taken into account, and 2) interval estimates (e.g., confidence or prediction intervals) are produced. It is shown that such models for which the interval estimate for the time origin of the genome i...

  19. Broad plumes rooted at the base of the Earth's mantle beneath major hotspots.

    Science.gov (United States)

    French, Scott W; Romanowicz, Barbara

    2015-09-03

    Plumes of hot upwelling rock rooted in the deep mantle have been proposed as a possible origin of hotspot volcanoes, but this idea is the subject of vigorous debate. On the basis of geodynamic computations, plumes of purely thermal origin should comprise thin tails, only several hundred kilometres wide, and be difficult to detect using standard seismic tomography techniques. Here we describe the use of a whole-mantle seismic imaging technique--combining accurate wavefield computations with information contained in whole seismic waveforms--that reveals the presence of broad (not thin), quasi-vertical conduits beneath many prominent hotspots. These conduits extend from the core-mantle boundary to about 1,000 kilometres below Earth's surface, where some are deflected horizontally, as though entrained into more vigorous upper-mantle circulation. At the base of the mantle, these conduits are rooted in patches of greatly reduced shear velocity that, in the case of Hawaii, Iceland and Samoa, correspond to the locations of known large ultralow-velocity zones. This correspondence clearly establishes a continuous connection between such zones and mantle plumes. We also show that the imaged conduits are robustly broader than classical thermal plume tails, suggesting that they are long-lived, and may have a thermochemical origin. Their vertical orientation suggests very sluggish background circulation below depths of 1,000 kilometres. Our results should provide constraints on studies of viscosity layering of Earth's mantle and guide further research into thermochemical convection.

  20. GRACE, time-varying gravity, Earth system dynamics and climate change

    Science.gov (United States)

    Wouters, B.; Bonin, J. A.; Chambers, D. P.; Riva, R. E. M.; Sasgen, I.; Wahr, J.

    2014-11-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography.

  1. NASA'S Earth Science Data Stewardship Activities

    Science.gov (United States)

    Lowe, Dawn R.; Murphy, Kevin J.; Ramapriyan, Hampapuram

    2015-01-01

    NASA has been collecting Earth observation data for over 50 years using instruments on board satellites, aircraft and ground-based systems. With the inception of the Earth Observing System (EOS) Program in 1990, NASA established the Earth Science Data and Information System (ESDIS) Project and initiated development of the Earth Observing System Data and Information System (EOSDIS). A set of Distributed Active Archive Centers (DAACs) was established at locations based on science discipline expertise. Today, EOSDIS consists of 12 DAACs and 12 Science Investigator-led Processing Systems (SIPS), processing data from the EOS missions, as well as the Suomi National Polar Orbiting Partnership mission, and other satellite and airborne missions. The DAACs archive and distribute the vast majority of data from NASA’s Earth science missions, with data holdings exceeding 12 petabytes The data held by EOSDIS are available to all users consistent with NASA’s free and open data policy, which has been in effect since 1990. The EOSDIS archives consist of raw instrument data counts (level 0 data), as well as higher level standard products (e.g., geophysical parameters, products mapped to standard spatio-temporal grids, results of Earth system models using multi-instrument observations, and long time series of Earth System Data Records resulting from multiple satellite observations of a given type of phenomenon). EOSDIS data stewardship responsibilities include ensuring that the data and information content are reliable, of high quality, easily accessible, and usable for as long as they are considered to be of value.

  2. Near-Earth asteroids: Metals occurrence, extraction, and fabrication

    Science.gov (United States)

    Westfall, Richard

    Near-earth asteroids occur in three principle types of orbits: Amor, Apollo, and Aten. Amor asteroids make relatively close (within 0.3 AU) approaches to the earth's orbit, but do not actually overlap it. Apollo asteroids spend most of their time outside the earth's orbital path, but at some point of close approach to the sun, they cross the orbit of the earth. Aten asteroids are those whose orbits remain inside the earth's path for the majority of their time, with semi-major axes less than 0.1 AU. Near-earth orbit asteroids include: stones, stony-irons, irons, carbonaceous, and super-carbonaceous. Metals within these asteroids include: iron, nickel, cobalt, the platinum group, aluminum, titanium, and others. Focus is on the extraction of ferrous and platinum group metals from the stony-iron asteroids, and the iron asteroids. Extraction of the metal fraction can be accomplished through the use of tunnel-boring-machines (TBM) in the case of the stony-irons. The metals within the story-iron asteroids occur as dispersed granules, which can be separated from the stony fraction through magnetic and gaseous digestion separation techniques. The metal asteroids are processes by drilling and gaseous digestion or by gaseous digestion alone. Manufacturing of structures, housings, framing networks, pressure vessels, mirrors, and other products is accomplished through the chemical vapor deposition (CVD) of metal coating on advanced composites and on the inside of contour-defining inflatables (CDI). Metal coatings on advanced composites provide: resistance to degradation in the hostile environments of space; superior optical properties; superior heat dissipation; service as wear coatings; and service as evidential coatings. Metal coatings on the inside of CDI produce metal load-bearing products. Fibers such as graphite, kevlar, glass, ceramic, metal, etc., can be incorporated in the metal coatings on the inside of CDI producing metal matrix products which exhibit high strength

  3. Major, trace and rate earth elements in sediments of the Julian Adame-Alatorre dam by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mireles, F.; Pinedo, J. L.; Davila, J. I.; Oliva, J. E. [Universidad Autonoma de Zacatecas, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Speakman, R. J. [Museum Conservation Institute, Smithsonian Institution, Suitland, MD 20746 (United States); Glascock, M. D., E-mail: fmireles@uaz.edu.m [Research Reactor Center, University of Missouri, Columbia, MO 65211 (United States)

    2010-10-15

    The rapid industrial development in regions of Mexico during recent years has had the side effect of introducing toxic metals, fertilizers, and pesticides into the ecosystem. Sediment cores were collected from eight locations around the Julian Adame-Alatorre dam located in Municipality of Villanueva in the Zacatecas State, Mexico. The cores were analyzed for 32 major, trace, and rare earth elements (As, La, Lu, Nd, Sm, U, Yb, Ce, Co, Cr, Cs, Eu, Fe, Hf, Rb, Sb, Sc, Sr, Ta, Tb, Th, Zn, Zr, Al, Ba, Ca, Dy, K, Mn, Na, Ti, V) in order to estimate the health risk. The samples were analyzed by instrument neutron activation analysis using thermal neutron fluxes of 8 x 10{sup 13} and 5 x 10{sup 13} n cm{sup -2} s{sup -1} for short and long irradiations, respectively. The results of the contamination levels for elements such as As, Ba, Cr, Fe, Mn, Ta, V, and Zn were compared with the Mexican regulations and the guidelines of US EPA. (Author)

  4. Rare earths production and marketing opportunities

    International Nuclear Information System (INIS)

    Falconnet, P.G.

    1988-01-01

    The rare earths (RE) market is relatively small. The total production during 1968 was only 10000 tons (REO) which rose to 27000 tons (REO) during 1985. The three major areas of application, which are volume market for ceric rare earths are catalysts, glass ceramics and metallurgy. Among the other uses of rare earths, the permanent magnets, lamp phosphors and fine ceramics have registered significant growth in RE consumption. Monazite and bastnasite are the main natural source for rare earths and processing of these for one of the rare earths in high demand leads to over production of some others not in demand, thus creating a balance problem. The growth in RE market has always been influenced by the technology shifts and product substitution. For example, the RE consumption during 1974/76 for desulfurization of steel had substantially decreased due to the usage of calcium. Similarly, 1985 had witnessed a drastic cut in the use of REs in fluid cracking due to the introduction of stabilized zeolites which contain less REO. Thus, the overall compound growth rate of demand was only 3.9 % per year during the period 1970-1985. At present, 37 % of the rare earths production goes to the glass/ceramics industry, 33 % for catalyst and 25 % to metallurgy. The price of REs constantly shows a downward trend. This trend coupled with the rapid changes taking place in the various technological fields, demands greater flexibility and high marketing skills from the RE producers. The key factor for future expansion of RE market will be the development of 'high volume' application of ceric rare earths. (author) 2 figs., 8 tabs

  5. Using the Global Positioning System for Earth Orbiter and Deep Space Tracking

    Science.gov (United States)

    Lichten, Stephen M.

    1994-01-01

    The Global Positioning System (GPS) can play a major role in supporting orbit and trajectory determination for spacecraft in a wide range of applications, including low-Earth, high-Earth, and even deep space (interplanetary) tracking. This paper summarizes recent results demonstrating these unique and far-ranging applications of GPS.

  6. GRACE, time-varying gravity, Earth system dynamics and climate change

    International Nuclear Information System (INIS)

    Wouters, B; Bonin, J A; Chambers, D P; Riva, R E M; Sasgen, I; Wahr, J

    2014-01-01

    Continuous observations of temporal variations in the Earth's gravity field have recently become available at an unprecedented resolution of a few hundreds of kilometers. The gravity field is a product of the Earth's mass distribution, and these data—provided by the satellites of the Gravity Recovery And Climate Experiment (GRACE)—can be used to study the exchange of mass both within the Earth and at its surface. Since the launch of the mission in 2002, GRACE data has evolved from being an experimental measurement needing validation from ground truth, to a respected tool for Earth scientists representing a fixed bound on the total change and is now an important tool to help unravel the complex dynamics of the Earth system and climate change. In this review, we present the mission concept and its theoretical background, discuss the data and give an overview of the major advances GRACE has provided in Earth science, with a focus on hydrology, solid Earth sciences, glaciology and oceanography. (review article)

  7. Orbital Noise in the Earth System and Climate Fluctuations

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  8. In Brief: European Earth science network for postdocs

    Science.gov (United States)

    Showstack, Randy

    2008-12-01

    The European Space Agency (ESA) has launched a new initiative called the Changing Earth Science Network, to support young scientists undertaking leading-edge research activities aimed at advancing the understanding of the Earth system. The initiative will enable up to 10 young postdoctoral researchers from the agency's member states to address major scientific challenges by using Earth observation (EO) satellite data from ESA and its third-party missions. The initiative aims to foster the development of a network of young scientists in Europe with a good knowledge of the agency and its EO programs. Selected candidates will have the option to carry out part of their research in an ESA center as a visiting scientist. The deadline to submit proposals is 16 January 2009. Selections will be announced in early 2009. The Changing Earth Science Network was developed as one of the main programmatic components of ESA's Support to Science Element, launched in 2008. For more information, visit http://www.esa.int/stse.

  9. EarthScope Education and Outreach: Accomplishments and Emerging Opportunities

    Science.gov (United States)

    Robinson, S.; Ellins, K. K.; Semken, S. C.; Arrowsmith, R.

    2014-12-01

    EarthScope's Education and Outreach (E&O) program aims to increase public awareness of Earth science and enhance geoscience education at the K-12 and college level. The program is distinctive among major geoscience programs in two ways. First, planning for education and public engagement occurred in tandem with planning for the science mission. Second, the NSF EarthScope program includes funding support for education and outreach. In this presentation, we highlight key examples of the program's accomplishments and identify emerging E&O opportunities. E&O efforts have been collaboratively led by the EarthScope National Office (ESNO), IRIS, UNAVCO, the EarthScope Education and Outreach Subcommittee (EEOSC) and PI-driven EarthScope projects. Efforts by the EEOSC, guided by an EarthScope Education and Outreach Implementation Plan that is periodically updated, focus EarthScope E&O. EarthScope demonstrated early success in engaging undergraduate students (and teachers) in its mission through their involvement in siting USArray across the contiguous U.S. Funded E&O programs such as TOTLE, Illinois EarthScope, CEETEP (for K-12), InTeGrate and GETSI (for undergraduates) foster use of freely available EarthScope data and research findings. The Next Generation Science Standards, which stress science and engineering practices, offer an opportunity for alignment with existing EarthScope K-12 educational resources, and the EEOSC recommends focusing efforts on this task. The EEOSC recognizes the rapidly growing use of mobile smart devices by the public and in formal classrooms, which bring new opportunities to connect with the public and students. This will capitalize on EarthScope's already prominent social media presence, an effort that developed to accomplish one of the primary goals of the EarthScope E&O Implementation Plan to "Create a high-profile public identity for EarthScope" and to "Promote science literacy and understanding of EarthScope among all audiences through

  10. Technology thrusts for future Earth science applications

    Science.gov (United States)

    Habib, Shahid

    2001-02-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Historically, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, mass and volume. These missions have taken much longer to implement due to technology development time, and have carried a large suite of instruments on a large spacecraft. NASA is now facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific measurement needs for remote sensing have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall mission life cycle by developing technologies that are independent of the mission implementation cycle. The major redirection of early investment in the critical technologies should eventually have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, allow for a rapid response to measurement needs, and enable frequent missions making a wider variety of earth science measurements. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  11. Technology Thrust for Future Earth Science Applications

    Science.gov (United States)

    Habib, Shahid

    2000-01-01

    This paper presents NASA's recent direction to invest in the critical science instrument and platform technologies in order to realize more reliable, frequent and versatile missions for future Earth Science measurements. Traditionally, NASA's Earth Science Enterprise has developed and flown science missions that have been large in size, weight and volume. These missions have taken much longer implementation due to technology development time and have carried a large suite of instruments on a large-size spacecraft. NASA is also facing an era where the budget for the future years is more or less flat and the possibility for any major new start does not vividly appear on the horizon. Unfortunately, the scientific goals have not shrunk to commensurate with the budget constraints. In fact, the challenges and scientific appetite in search of answers to a score of outstanding questions have been gradually expanding. With these factors in mind, for the last three years NASA has been changing its focus to concentrate on how to take advantage of smaller missions by relying on industry, and minimizing the overall life cycle by infusing technologies that are being developed independently of any planned mission's implementation cycle. The major redirection of early investment in the critical technologies should have its rewards and significantly reduce the mission development period. Needless to say, in the long run this approach should save money, minimize risk, promote or encourage partnering, and allow for more frequent missions or earth science measurements to occur. This paper gives an overview of some of the identified crucial technologies and their intended applications for meeting the future Earth Science challenges.

  12. An Earth-sized planet with an Earth-like density.

    Science.gov (United States)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W; Molinari, Emilio; Udry, Stéphane; Bonomo, Aldo S; Buchhave, Lars A; Charbonneau, David; Cosentino, Rosario; Dressing, Courtney D; Dumusque, Xavier; Figueira, Pedro; Fiorenzano, Aldo F M; Gettel, Sara; Harutyunyan, Avet; Haywood, Raphaëlle D; Horne, Keith; Lopez-Morales, Mercedes; Lovis, Christophe; Malavolta, Luca; Mayor, Michel; Micela, Giusi; Motalebi, Fatemeh; Nascimbeni, Valerio; Phillips, David; Piotto, Giampaolo; Pollacco, Don; Queloz, Didier; Rice, Ken; Sasselov, Dimitar; Ségransan, Damien; Sozzetti, Alessandro; Szentgyorgyi, Andrew; Watson, Christopher A

    2013-11-21

    Recent analyses of data from the NASA Kepler spacecraft have established that planets with radii within 25 per cent of the Earth's (R Earth symbol) are commonplace throughout the Galaxy, orbiting at least 16.5 per cent of Sun-like stars. Because these studies were sensitive to the sizes of the planets but not their masses, the question remains whether these Earth-sized planets are indeed similar to the Earth in bulk composition. The smallest planets for which masses have been accurately determined are Kepler-10b (1.42 R Earth symbol) and Kepler-36b (1.49 R Earth symbol), which are both significantly larger than the Earth. Recently, the planet Kepler-78b was discovered and found to have a radius of only 1.16 R Earth symbol. Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth and implies a composition of iron and rock.

  13. Towards earth AntineutRino TomograpHy (EARTH)

    NARCIS (Netherlands)

    De Meijer, R. J.; Smit, F. D.; Brooks, F. D.; Fearick, R. W.; Wortche, H. J.; Mantovani, F.

    2006-01-01

    The programme Earth AntineutRino TomograpHy (EARTH) proposes to build ten underground facilities each hosting a telescope. Each telescope consists of many detector modules, to map the radiogenic heat sources deep in the interior of the Earth by utilising direction sensitive geoneutrino detection.

  14. Solar Power Beaming: From Space to Earth

    Energy Technology Data Exchange (ETDEWEB)

    Rubenchik, A M; Parker, J M; Beach, R J; Yamamoto, R M

    2009-04-14

    Harvesting solar energy in space and power beaming the collected energy to a receiver station on Earth is a very attractive way to help solve mankind's current energy and environmental problems. However, the colossal and expensive 'first step' required in achieving this goal has to-date stifled its initiation. In this paper, we will demonstrate that recent advance advances in laser and optical technology now make it possible to deploy a space-based system capable of delivering 1 MW of energy to a terrestrial receiver station, via a single unmanned commercial launch into Low Earth Orbit (LEO). Figure 1 depicts the overall concept of our solar power beaming system, showing a large solar collector in space, beaming a coherent laser beam to a receiving station on Earth. We will describe all major subsystems and provide technical and economic discussion to support our conclusions.

  15. Determination of rare earth impurities in thorium by spectrographic methods

    Energy Technology Data Exchange (ETDEWEB)

    Wray, L W

    1957-08-15

    A method for determining rare earth impurities in thorium in the fractional ppm range is described. Before spectrographic examination is possible, the impurities must be freed from the thorium matrix. This is accomplished by removing the bulk of the thorium by extraction with TBP-CCl{sub 4} and the remainder by extraction with TTA-C{sub 6}H{sub 6}. This results in a consistent recovery of rare earths of about 85% with an average sensitivity of 0.2 ppm. The experimental error is within 10%. Details of the procedure are given together with working curves for the major neutron absorbing rare earths; i.e. dysprosium, europium, gadolinium and samarium. (author)

  16. Challenges to modeling the Sun-Earth System: A Workshop Summary

    Science.gov (United States)

    Spann, James F.

    2006-01-01

    This special issue of the Journal of' Atmospheric and Solar-Terrestrial Physics is a compilation of 23 papers presented at The 2004 Huntsville Modeling Workshop: Challenges to Modeling thc San-Earth System held in Huntsville, AB on October 18-22, 2004. The title of the workshop appropriately captures the theme of what was presented and discussed by the 120 participants. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA living with a star (LWS) programs. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales inn time and space. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress

  17. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  18. Satellite measurements of the earth's crustal magnetic field

    Science.gov (United States)

    Schnetzler, C. C.

    1989-01-01

    The literature associated with the Magsat mission has evaluated the capabilities and limitations of satellite measurements of the earth's crustal magnetic field, and demonstrated that there exists a 300-3000 km magnetic field, related to major features in the earth's crust, which is primarily caused by induction. Due to its scale and sensitivity, satellite data have been useful in the development of models for such large crustal features as subduction zones, submarine platforms, continental accretion boundaries, and rifts. Attention is presently given to the lack of agreement between laboratory and satellite estimates of lower crustal magnetization.

  19. Nuclear methods: applications to Earth sciences

    International Nuclear Information System (INIS)

    Segovia, N.

    1994-01-01

    The discovery of radioactivity phenomenon occurred almost 100 years ago, in 1896, and constituted the base for new perspectives in many disciplines, including the Earth sciences. The initial works in this field, during the first quarter of the Century, established that the series of radioactive decay of long lifetime Uranium 238, Uranium 235 and Thorium 232 present radioactive isotopes of several elements which are physically and chemically different. The chemical differentiation of the Earth during its evolution has concentrated in the crust the major part of the radioactive materials. The application of radioactive in balance which occur as a consequence of chemical and physical differences, has evolve quickly, and the utilization of natural radioactive isotopes can be detach in two major headings: geologic clocks and tracers. The applications cover a wide spectra of geological, oceanographical, volcanic, hydrological, paleoclimatic and archaeological problems. In this paper, a description of radioactive phenomenon is presented, as well as the chemical and physical properties of the natural radioactive elements, the measurement methods and, finally, some examples of the uses in chronology and as radioactive tracers will be presented, doing an emphasis of some results obtained in Mexico. (Author)

  20. Earth's transmission spectrum from lunar eclipse observations.

    Science.gov (United States)

    Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L

    2009-06-11

    Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum.

  1. Near Earth Objects - a threat and an opportunity

    Science.gov (United States)

    Tate, Jonathan R.

    2003-05-01

    In the past decade the hazard posed to the Earth by Near Earth Objects (NEOs) has generated considerable scientific and public interest. A number of major films, television programmes and media reports have brought the issue to public attention. From an educational perspective an investigation into NEOs and the effects of impacts on the Earth forms a topical and dynamic basis for study in a huge range of subjects, not just scientific. There are clear routes to chemistry, physics, mathematics and biology, but history, psychology, geography, palaeontology and geology are just a selection of other subjects involved. A number of projects have been established, mainly in the USA, to determine the extent of the hazard, and to develop ways of countering it, but the present situation is far from satisfactory. Current detection and follow-up programmes are underfunded and lack international coordination.

  2. An Earth-sized planet in the habitable zone of a cool star.

    Science.gov (United States)

    Quintana, Elisa V; Barclay, Thomas; Raymond, Sean N; Rowe, Jason F; Bolmont, Emeline; Caldwell, Douglas A; Howell, Steve B; Kane, Stephen R; Huber, Daniel; Crepp, Justin R; Lissauer, Jack J; Ciardi, David R; Coughlin, Jeffrey L; Everett, Mark E; Henze, Christopher E; Horch, Elliott; Isaacson, Howard; Ford, Eric B; Adams, Fred C; Still, Martin; Hunter, Roger C; Quarles, Billy; Selsis, Franck

    2014-04-18

    The quest for Earth-like planets is a major focus of current exoplanet research. Although planets that are Earth-sized and smaller have been detected, these planets reside in orbits that are too close to their host star to allow liquid water on their surfaces. We present the detection of Kepler-186f, a 1.11 ± 0.14 Earth-radius planet that is the outermost of five planets, all roughly Earth-sized, that transit a 0.47 ± 0.05 solar-radius star. The intensity and spectrum of the star's radiation place Kepler-186f in the stellar habitable zone, implying that if Kepler-186f has an Earth-like atmosphere and water at its surface, then some of this water is likely to be in liquid form.

  3. Problem of simulating the Earth's induction effects in modeling polar magnetic substorms

    International Nuclear Information System (INIS)

    Mareschal, M.

    1976-01-01

    A major problem encountered in trying to model the current system associated with a polar magnetic substorm from ground-based magnetic observations is the difficulty of adequately evaluating the earth's induction effects. Two methods for simulating these effects are reviewed here. Method 1 simply reduces the earth to a perfect conductor and leads to very simple field equations. Method 2 considers the earth as a ''horizontally'' layered body of finite conductivity but requires a large amount of computational time. The performances of both methods are compared when the substorm current system can be approximated by an infinitely long electrojet flowing over a flat earth. In this case it appears that for most substorm modeling problems it is sufficient to treat the earth as a perfect conductor. The depth of this perfect conductor below the earth's surface should be selected in function of the source frequency content

  4. Rare earths: Market disruption, innovation, and global supply chains

    Science.gov (United States)

    Eggert, Roderick; Wadia, Cyrus; Anderson, Corby; Bauer, Diana; Fields, Fletcher; Meinert, Lawrence D.; Taylor, Patrick

    2016-01-01

    Rare earths, sometimes called the vitamins of modern materials, captured public attention when their prices increased more than ten-fold in 2010 and 2011. As prices fell between 2011 and 2016, rare earths receded from public view—but less visibly they became a major focus of innovative activity in companies, government laboratories and universities. Geoscientists worked to better understand the resource base and improve our knowledge about mineral deposits that will be mines in the future. Process engineers carried out research that is making primary production and recycling more efficient. Materials scientists and engineers searched for substitutes that will require fewer or no rare earths while providing properties comparable or superior to those of existing materials. As a result, even though global supply chains are not significantly different now than they were before the market disruption, the innovative activity motivated by the disruption likely will have far-reaching, if unpredictable, consequences for supply chains of rare earths in the future.

  5. Capturing near-Earth asteroids around Earth

    Science.gov (United States)

    Hasnain, Zaki; Lamb, Christopher A.; Ross, Shane D.

    2012-12-01

    The list of detected near-Earth asteroids (NEAs) is constantly growing. NEAs are likely targets for resources to support space industrialization, as they may be the least expensive source of certain needed raw materials. The limited supply of precious metals and semiconducting elements on Earth may be supplemented or even replaced by the reserves floating in the form of asteroids around the solar system. Precious metals make up a significant fraction NEAs by mass, and even one metallic asteroid of ˜1km size and fair enrichment in platinum-group metals would contain twice the tonnage of such metals already harvested on Earth. There are ˜1000 NEAs with a diameter of greater than 1 km. Capturing these asteroids around the Earth would expand the mining industry into an entirely new dimension. Having such resources within easy reach in Earth's orbit could provide an off-world environmentally friendly remedy for impending terrestrial shortages, especially given the need for raw materials in developing nations. In this paper, we develop and implement a conceptually simple algorithm to determine trajectory characteristics necessary to move NEAs into capture orbits around the Earth. Altered trajectories of asteroids are calculated using an ephemeris model. Only asteroids of eccentricity less than 0.1 have been studied and the model is restricted to the ecliptic plane for simplicity. We constrain the time of retrieval to be 10 years or less, based on considerations of the time to return on investment. For the heliocentric phase, constant acceleration is assumed. The acceleration required for transporting these asteroids from their undisturbed orbits to the sphere of influence of the Earth is the primary output, along with the impulse or acceleration necessary to effect capture to a bound orbit once the Earth's sphere of influence is reached. The initial guess for the constant acceleration is provided by a new estimation method, similar in spirit to Edelbaum's. Based on the

  6. Observed tidal braking in the earth/moon/sun system

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  7. Optimal Safety EarthingEarth Electrode Sizing Using A ...

    African Journals Online (AJOL)

    In this paper a deterministic approach in the sizing of earth electrode using the permissible touch voltage criteria is presented. The deterministic approach is effectively applied in the sizing of the length of earth rod required for the safe earthing of residential and facility buildings. This approach ensures that the earthing ...

  8. Earth Science Data Education through Cooking Up Recipes

    Science.gov (United States)

    Weigel, A. M.; Maskey, M.; Smith, T.; Conover, H.

    2016-12-01

    One of the major challenges in Earth science research and applications is understanding and applying the proper methods, tools, and software for using scientific data. These techniques are often difficult and time consuming to identify, requiring novel users to conduct extensive research, take classes, and reach out for assistance, thus hindering scientific discovery and real-world applications. To address these challenges, the Global Hydrology Resource Center (GHRC) DAAC has developed a series of data recipes that novel users such as students, decision makers, and general Earth scientists can leverage to learn how to use Earth science datasets. Once the data recipe content had been finalized, GHRC computer and Earth scientists collaborated with a web and graphic designer to ensure the content is both attractively presented to data users, and clearly communicated to promote the education and use of Earth science data. The completed data recipes include, but are not limited to, tutorials, iPython Notebooks, resources, and tools necessary for addressing key difficulties in data use across a broad user base. These recipes enable non-traditional users to learn how to use data, but also curates and communicates common methods and approaches that may be difficult and time consuming for these users to identify.

  9. Earth's Decelerating Tectonic Plates

    Energy Technology Data Exchange (ETDEWEB)

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  10. Bridging the Gap between Earth Science and Students: An Integrated Approach using NASA Earth Science Climate Data

    Science.gov (United States)

    Alston, Erica J.; Chambers, Lin H.; Phelps, Carrie S.; Oots, Penny C.; Moore, Susan W.; Diones, Dennis D.

    2007-01-01

    Under the auspices of the Department of Education's No Child Left Behind (NCLB) Act, beginning in 2007 students will be tested in the science area. There are many techniques that educators can employ to teach students science. The use of authentic materials or in this case authentic data can be an engaging alternative to more traditional methods. An Earth science classroom is a great place for the integration of authentic data and science concepts. The National Aeronautics and Space Administration (NASA) has a wealth of high quality Earth science data available to the general public. For instance, the Atmospheric Science Data Center (ASDC) at NASA s Langley Research Center houses over 800 Earth science data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic factors that influence global climate; however, a major hurdle in using authentic data is the size of the data and data documentation. To facilitate the use of these data sets for educational purposes, the Mentoring and inquirY using NASA Data on Atmospheric and Earth science for Teachers and Amateurs (MY NASA DATA) project has been established to systematically support educational activities at all levels of formal and informal education. The MY NASA DATA project accomplishes this by reducing these large data holdings to microsets that are easily accessible and explored by K-12 educators and students though the project's Web page. MY NASA DATA seeks to ease the difficulty in understanding the jargon-heavy language of Earth science. This manuscript will show how MY NASA DATA provides resources for NCLB implementation in the science area through an overview of the Web site, the different microsets available, the lesson plans and computer tools, and an overview of educational support mechanisms.

  11. Modeling Earth Albedo for Satellites in Earth Orbit

    DEFF Research Database (Denmark)

    Bhanderi, Dan; Bak, Thomas

    2005-01-01

    Many satellite are influences by the Earthøs albedo, though very few model schemes exist.in order to predict this phenomenon. Earth albedo is often treated as noise, or ignored completely. When applying solar cells in the attitude hardware, Earth albedo can cause the attitude estimate to deviate...... with as much as 20 deg. Digital Sun sensors with Earth albedo correction in hardware exist, but are expensive. In addition, albedo estimates are necessary in thermal calculations and power budgets. We present a modeling scheme base4d on Eartht reflectance, measured by NASA's Total Ozone Mapping Spectrometer......, in which the Earth Probe Satellite has recorded reflectivity data daily since mid 1996. The mean of these data can be used to calculate the Earth albedo given the positions of the satellite and the Sun. Our results show that the albedo varies highly with the solar angle to the satellite's field of view...

  12. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models.

    Science.gov (United States)

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-10-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to be able to communicate with surface personnel after a major accident-hence, the interest in TTE communications. To determine the likelihood of establishing a TTE communication link, it would be ideal to be able to predict the apparent conductivity of the overburden above underground mines. In this paper, all 94 mine TTE measurement data collected by Bureau of Mines in the 1970s and early 1980s, are analyzed for the first time to determine the apparent conductivity of the overburden based on three different models: a homogenous half-space model, a thin sheet model, and an attenuation factor or Q-factor model. A statistical formula is proposed to estimate the apparent earth conductivity for a specific mine based on the TTE modeling results given the mine depth and signal frequency.

  13. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    Science.gov (United States)

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  14. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Trichinopoly Group (later redesignated as Garudamangalam) has unconformable relationship with underlying Uttatur Group and is divided into lower Kulakanattam Formation and upper Anaipadi Formation. These calcareous sandstones are analysed major, trace and rare earth elements (REEs) to find out CIA, CIW, ...

  15. Visualizing Three-dimensional Slab Geometries with ShowEarthModel

    Science.gov (United States)

    Chang, B.; Jadamec, M. A.; Fischer, K. M.; Kreylos, O.; Yikilmaz, M. B.

    2017-12-01

    Seismic data that characterize the morphology of modern subducted slabs on Earth suggest that a two-dimensional paradigm is no longer adequate to describe the subduction process. Here we demonstrate the effect of data exploration of three-dimensional (3D) global slab geometries with the open source program ShowEarthModel. ShowEarthModel was designed specifically to support data exploration, by focusing on interactivity and real-time response using the Vrui toolkit. Sixteen movies are presented that explore the 3D complexity of modern subduction zones on Earth. The first movie provides a guided tour through the Earth's major subduction zones, comparing the global slab geometry data sets of Gudmundsson and Sambridge (1998), Syracuse and Abers (2006), and Hayes et al. (2012). Fifteen regional movies explore the individual subduction zones and regions intersecting slabs, using the Hayes et al. (2012) slab geometry models where available and the Engdahl and Villasenor (2002) global earthquake data set. Viewing the subduction zones in this way provides an improved conceptualization of the 3D morphology within a given subduction zone as well as the 3D spatial relations between the intersecting slabs. This approach provides a powerful tool for rendering earth properties and broadening capabilities in both Earth Science research and education by allowing for whole earth visualization. The 3D characterization of global slab geometries is placed in the context of 3D slab-driven mantle flow and observations of shear wave splitting in subduction zones. These visualizations contribute to the paradigm shift from a 2D to 3D subduction framework by facilitating the conceptualization of the modern subduction system on Earth in 3D space.

  16. Digital Earth - A sustainable Earth

    Science.gov (United States)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  17. Earth Conductivity Estimation from Through-the-Earth Measurements of 94 Coal Mines Using Different Electromagnetic Models

    OpenAIRE

    Yan, Lincan; Waynert, Joseph; Sunderman, Carl

    2014-01-01

    Through-the-Earth (TTE) communication systems require minimal infrastructure to operate. Hence, they are assumed to be more survivable and more conventional than other underground mine communications systems. This survivability is a major advantage for TTE systems. In 2006, Congress passed the Mine Improvement and New Emergency Response Act (MINER Act), which requires all underground coal mines to install wireless communications systems. The intent behind this mandate is for trapped miners to...

  18. Incorporating Geoethics in Introductory Earth System Science Courses

    Science.gov (United States)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  19. Low-energy near Earth asteroid capture using Earth flybys and aerobraking

    Science.gov (United States)

    Tan, Minghu; McInnes, Colin; Ceriotti, Matteo

    2018-04-01

    Since the Sun-Earth libration points L1 and L2 are regarded as ideal locations for space science missions and candidate gateways for future crewed interplanetary missions, capturing near-Earth asteroids (NEAs) around the Sun-Earth L1/L2 points has generated significant interest. Therefore, this paper proposes the concept of coupling together a flyby of the Earth and then capturing small NEAs onto Sun-Earth L1/L2 periodic orbits. In this capture strategy, the Sun-Earth circular restricted three-body problem (CRTBP) is used to calculate target Lypaunov orbits and their invariant manifolds. A periapsis map is then employed to determine the required perigee of the Earth flyby. Moreover, depending on the perigee distance of the flyby, Earth flybys with and without aerobraking are investigated to design a transfer trajectory capturing a small NEA from its initial orbit to the stable manifolds associated with Sun-Earth L1/L2 periodic orbits. Finally, a global optimization is carried out, based on a detailed design procedure for NEA capture using an Earth flyby. Results show that the NEA capture strategies using an Earth flyby with and without aerobraking both have the potential to be of lower cost in terms of energy requirements than a direct NEA capture strategy without the Earth flyby. Moreover, NEA capture with an Earth flyby also has the potential for a shorter flight time compared to the NEA capture strategy without the Earth flyby.

  20. Norfolk State University Research Experience in Earth System Science

    Science.gov (United States)

    Chaudhury, Raj

    2002-01-01

    The truly interdisciplinary nature of Earth System Science lends itself to the creation of research teams comprised of people with different scientific and technical backgrounds. In the annals of Earth System Science (ESS) education, the lack of an academic major in the discipline might be seen as a barrier to the involvement of undergraduates in the overall ESS-enterprise. This issue is further compounded at minority-serving institutions by the rarity of departments dedicated to Atmospheric Science, Oceanography or even the geosciences. At Norfolk State University, a Historically Black College, a six week, NASA-supported, summer undergraduate research program (REESS - Research Experience in Earth System Science) is creating a model that involves students with majors in diverse scientific disciplines in authentic ESS research coupled with a structured education program. The project is part of a wider effort at the University to enhance undergraduate education by identifying specific areas of student weaknesses regarding the content and process of science. A pre- and post-assessment test, which is focused on some fundamental topics in global climate change, is given to all participants as part of the evaluation of the program. Student attitudes towards the subject and the program's approach are also surveyed at the end of the research experience. In 2002, 11 undergraduates participated in REESS and were educated in the informed use of some of the vast remote sensing resources available through NASA's Earth Science Enterprise (ESE). The program ran from June 3rd through July 12, 2002. This was the final year of the project.

  1. Earth Observations from Space: The First 50 Years of Scientific Achievements

    Science.gov (United States)

    2008-01-01

    Observing Earth from space over the past 50 years has fundamentally transformed the way people view our home planet. The image of the "blue marble" is taken for granted now, but it was revolutionary when taken in 1972 by the crew on Apollo 17. Since then the capability to look at Earth from space has grown increasingly sophisticated and has evolved from simple photographs to quantitative measurements of Earth properties such as temperature, concentrations of atmospheric trace gases, and the exact elevation of land and ocean. Imaging Earth from space has resulted in major scientific accomplishments; these observations have led to new discoveries, transformed the Earth sciences, opened new avenues of research, and provided important societal benefits by improving the predictability of Earth system processes. This report highlights the scientific achievements made possible by the first five decades of Earth satellite observations by space-faring nations. It follows on a recent report from the National Research Council (NRC) entitled Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, also referred to as the "decadal survey." Recognizing the increasing need for space observations, the decadal survey identifies future directions and priorities for Earth observations from space. This companion report was requested by the National Aeronautics and Space Administration (NASA) to highlight, through selected examples, important past contributions of Earth observations from space to our current understanding of the planet.

  2. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Space weather prediction involves advance forecasting of the magnitude and onset time of major geomagneticstorms on Earth. In this paper, we discuss the development of an artificial neural network-basedmodel to study the precursor leading to intense and moderate geomagnetic storms, following halo coronalmass ...

  3. Major ion chemistry of the Son River, India: Weathering processes ...

    Indian Academy of Sciences (India)

    Major ion chemistry of the Son River, India: Weathering processes, dissolved fluxes and water quality assessment. Chinmaya Maharana, Sandeep Kumar Gautam,. Abhay Kumar Singh and Jayant K Tripathi. J. Earth Syst. Sci. 124(6) cO Indian Academy of Sciences. Supplementary data ...

  4. Axial focusing of energy from a hypervelocity impact on earth

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-12-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth`s surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth`s interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes.

  5. Impacts and tectonism in Earth and moon history of the past 3800 million years

    Science.gov (United States)

    Stothers, Richard B.

    1992-01-01

    The moon's surface, unlike the Earth's, displays a comparatively clear record of its past bombardment history for the last 3800 Myr, the time since active lunar tectonism under the massive premare bombardment ended. From Baldwin's (1987) tabulation of estimated ages for a representative sample of large lunar craters younger than 3800 Ma, six major cratering episodes can be discerned. These six bombardment episodes, which must have affected the Earth too, appear to match in time the six major episodes of orogenic tectonism on Earth, despite typical resolution errors of +/- 100 Myr and the great uncertainties of the two chronologies. Since more highly resolved events during the Cenozoic and Mesozoic Eras suggest the same correlation, it is possible that large impacts have influenced plate tectonics and other aspects of geologic history, perhaps by triggering flood basalt eruptions.

  6. Rare earths

    Energy Technology Data Exchange (ETDEWEB)

    Cranstone, D A

    1979-01-01

    Rare earth elements are commonly extracted from the minerals monazite, bastnaesite, and xenotine. New uses for these elements are constantly developing; they have found applications in glass polishing, television tube phosphors, high-strength low-alloy steels, magnets, catalysts, refractory ceramics, and hydrogen sponge alloys. In Canada, rare earths have been produced as byproducts of the uranium mining industry, but there was no production of rare earths in 1978 or 1979. The world sources of and markets for the rare earth elements are discussed.

  7. ISS EarthKam: Taking Photos of the Earth from Space

    Science.gov (United States)

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  8. Building A Collaborative And Distributed E&O Program For EarthScope

    Science.gov (United States)

    Hall-Wallace, M. K.; Boyd, T.; Richard, G.; Ellins, K.; Meertens, C.; Semken, S.; Taber, J.; Benthien, M.; Wald, L.; Marvinney, R.

    2003-12-01

    EarthScope's education and outreach (E&O) mission is to ensure that the EarthScope experiment creates as its legacy a public more knowledgeable and understanding of the scientific and societal contributions made by the EarthScope experiment and Earth science. It will fulfill this commitment by developing and disseminating programs and products that utilize the data, models, technology and discoveries of EarthScope. The EarthScope Education and Outreach Network (EON), consisting of local EON alliances, the EarthScope facilities, partner organizations and a coordinating office, will facilitate this E&O mission. The local EON alliances, which will vary in size and purpose to respond quickly and to meet the specific needs in a region, will carry out the bulk of the effort. Thus, EarthScope EON can provide customized services that engage culturally, economically and geographically diverse audiences at the national and local scales. The EarthScope facilities and research community will provide access to data, models, and visualization tools for educational purposes. Partnerships with other national and local science education and outreach programs at colleges, universities, research facilities and professional societies within the EarthScope community as well as relevant programs at museums and parks, state geologic surveys and emergency management agencies, and K-12 schools are critical to EON's success. These partnerships will allow EON to use existing resources, networks and expertise to gear up quickly and efficiently. As EON develops, it will reciprocate by contributing new resources and expertise to the partnerships that help improve public understanding of Earth systems overall and promote effective application of EarthScope discoveries. In this presentation, we will outline major programs and products envisioned for EarthScope, plans for evaluating those programs locally and nationally, and mechanisms for collaborating with existing E&O programs.

  9. Examples of the nonlinear dynamics of ballistic capture and escape in the earth-moon system

    Science.gov (United States)

    Belbruno, Edward A.

    1990-01-01

    An example of a trajectory is given which is initially captured in an elliptic resonant orbit about the earth and then ballistically escapes the earth-moon system. This is demonstrated by a numerical example in three-dimensions using a planetary ephemeris. Another example shows a mechanism of how an elliptic orbit about the earth can increase its energy by performing a complex nonlinear transition to an elliptic orbit of a larger semi-major axis. Capture is also considered. An application of ballistic capture at the moon via an unstable periodic orbit using the four-body sun-earth-moon-S/C interaction is described.

  10. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    Rare earth germanates attract close attention both as an independent class of compounds and analogues of a widely spread class of natural and synthetic minerals. The methods of rare earth germanate synthesis (solid-phase, hydrothermal) are considered. Systems on the basis of germanium and rare earth oxides, phase diagrams, phase transformations are studied. Using different chemical analysese the processes of rare earth germanate formation are investigated. IR spectra of alkali and rare earth metal germanates are presented, their comparative analysis being carried out. Crystal structures of the compounds, lattice parameters are studied. Fields of possible application of rare earth germanates are shown

  11. Rare earth sulfates

    International Nuclear Information System (INIS)

    Komissarova, L.N.; Shatskij, V.M.; Pokrovskij, A.N.; Chizhov, S.M.; Bal'kina, T.I.; Suponitskij, Yu.L.

    1986-01-01

    Results of experimental works on the study of synthesis conditions, structure and physico-chemical properties of rare earth, scandium and yttrium sulfates, have been generalized. Phase diagrams of solubility and fusibility, thermodynamic and crystallochemical characteristics, thermal stability of hydrates and anhydrous sulfates of rare earths, including normal, double (with cations of alkali and alkaline-earth metals), ternary and anion-mixed sulfates of rare earths, as well as their adducts, are considered. The state of ions of rare earths, scandium and yttrium in aqueous sulfuric acid solutions is discussed. Data on the use of rare earth sulfates are given

  12. Space-Based Remote Sensing of the Earth: A Report to the Congress

    Science.gov (United States)

    1987-01-01

    The commercialization of the LANDSAT Satellites, remote sensing research and development as applied to the Earth and its atmosphere as studied by NASA and NOAA is presented. Major gaps in the knowledge of the Earth and its atmosphere are identified and a series of space based measurement objectives are derived. The near-term space observations programs of the United States and other countries are detailed. The start is presented of the planning process to develop an integrated national program for research and development in Earth remote sensing for the remainder of this century and the many existing and proposed satellite and sensor systems that the program may include are described.

  13. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 5. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log–ratio transformation of major-element data. Surendra P Verma Mirna Guevara Salil Agrawal. Volume 115 Issue 5 October 2006 ...

  14. A major light rare-earth element (LREE) resource in the Khanneshin carbonatite complex, southern Afghanistan

    Science.gov (United States)

    Tucker, Robert D.; Belkin, Harvey E.; Schulz, Klaus J.; Peters, Stephen G.; Horton, Forrest; Buttleman, Kim; Scott, Emily R.

    2012-01-01

    The rapid rise in world demand for the rare-earth elements (REEs) has expanded the search for new REE resources. We document two types of light rare-earth element (LREE)-enriched rocks in the Khanneshin carbonatite complex of southern Afghanistan: type 1 concordant seams of khanneshite-(Ce), synchysite-(Ce), and parisite-(Ce) within banded barite-strontianite alvikite, and type 2 igneous dikes of coarse-grained carbonatite, enriched in fluorine or phosphorus, containing idiomorphic crystals of khanneshite-(Ce) or carbocernaite. Type 1 mineralized barite-strontianite alvikite averages 22.25 wt % BaO, 4.27 wt % SrO, and 3.25 wt % ∑ LREE2O3 (sum of La, Ce, Pr, and Nd oxides). Type 2 igneous dikes average 14.51 wt % BaO, 5.96 wt % SrO, and 3.77 wt % ∑ LREE2O3. A magmatic origin is clearly indicated for the type 2 LREE-enriched dikes, and type 1 LREE mineralization probably formed in the presence of LREE-rich hydrothermal fluid. Both types of LREE mineralization may be penecontemporaneous, having formed in a carbonate-rich magma in the marginal zone of the central vent, highly charged with volatile constituents (i.e., CO2, F, P2O5), and strongly enriched in Ba, Sr, and the LREE. Based on several assumptions, and employing simple geometry for the zone of LREE enrichment, we estimate that at least 1.29 Mt (million metric tonnes) of LREE2O3 is present in this part of the Khanneshin carbonatite complex.

  15. Digital Earth – A sustainable Earth

    International Nuclear Information System (INIS)

    Mahavir

    2014-01-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth

  16. Mineralogy of the rare earth elements

    International Nuclear Information System (INIS)

    Clark, A.M.

    1984-01-01

    This paper contains mineralogic properties of the rare earth elements (REE). Notes are given on total REE abundances, distribution patterns, and modes of occurrence. References are confined as far as possible to papers containing usable REE data. The minerals are grouped alphabetically within each major cationic group. The paper includes an alphabetic table of mineral names, chemical formulas, crystal system and section number. It functions as a handy entrance to the mineralogic and bibliographic paper. (G.J.P.)

  17. Fascinating world of rare earth research

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.

    1977-01-01

    The first part of this paper concerns some of the notable events which occurred early in the author's career as a rare earther and some of the major events which took place in the two decades 1950 to 1970. The notable changes and advances in the rare earth research world since the 1971 Durham Conference are described in the second and largest part of the paper. The final portion is concerned with actinide developments since 1971

  18. Why Earth Science?

    Science.gov (United States)

    Smith, Michael J.

    2004-01-01

    This article briefly describes Earth science. The study of Earth science provides the foundation for an understanding of the Earth, its processes, its resources, and its environment. Earth science is the study of the planet in its entirety, how its lithosphere, atmosphere, hydrosphere, and biosphere work together as systems and how they affect…

  19. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 115; Issue 5. Volume 115, Issue 5. October 2006, pages 485-613. pp 485-528. Discriminating four tectonic settings: Five new geochemical diagrams for basic and ultrabasic volcanic rocks based on log–ratio transformation of major-element data · Surendra P Verma ...

  20. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 112; Issue 3. Volume 112 ... pp 315-329. Flexure of the Indian plate and intraplate earthquakes .... Four major NW-SE trending active faults are mapped in the Kutch region. They define .... Behaviour of masonry structures during the Bhuj earthquake of January 2001.

  1. Geophysical and geochemical models of the Earth's shields and rift zones

    International Nuclear Information System (INIS)

    Chung, D.H.

    1977-01-01

    This report summarizes a collection of, synthesis of, and speculation on the geophysical and geochemical models of the earth's stable shields and rift zones. Two basic crustal types, continental and oceanic, and two basic mantle types, stable and unstable, are described. It is pointed out that both the crust and upper mantle play a strongly interactive role with surface geological phenomena ranging from the occurrence of mountains, ocean trenches, oceanic and continental rifts to geographic distributions of earthquakes, faults, and volcanoes. On the composition of the mantle, there is little doubt regarding the view that olivine constitutes a major fraction of the mineralogy of the earth's upper mantle. Studies are suggested to simulate the elasticity and composition of the earth's lower crust and upper mantle

  2. Earth observation from the manned low Earth orbit platforms

    Science.gov (United States)

    Guo, Huadong; Dou, Changyong; Zhang, Xiaodong; Han, Chunming; Yue, Xijuan

    2016-05-01

    The manned low Earth orbit platforms (MLEOPs), e.g., the U.S. and Russia's human space vehicles, the International Space Station (ISS) and Chinese Tiangong-1 experimental space laboratory not only provide laboratories for scientific experiments in a wide range of disciplines, but also serve as exceptional platforms for remote observation of the Earth, astronomical objects and space environment. As the early orbiting platforms, the MLEOPs provide humans with revolutionary accessibility to the regions on Earth never seen before. Earth observation from MLEOPs began in early 1960s, as a part of manned space flight programs, and will continue with the ISS and upcoming Chinese Space Station. Through a series of flight missions, various and a large amount of Earth observing datasets have been acquired using handheld cameras by crewmembers as well as automated sophisticated sensors onboard these space vehicles. Utilizing these datasets many researches have been conducted, demonstrating the importance and uniqueness of studying Earth from a vantage point of MLEOPs. For example, the first, near-global scale digital elevation model (DEM) was developed from data obtained during the shuttle radar topography mission (SRTM). This review intends to provide an overview of Earth observations from MLEOPs and present applications conducted by the datasets collected by these missions. As the ISS is the most typical representative of MLEOPs, an introduction to it, including orbital characteristics, payload accommodations, and current and proposed sensors, is emphasized. The advantages and challenges of Earth observation from MLEOPs, using the ISS as an example, is also addressed. At last, a conclusive note is drawn.

  3. Check-Up of Planet Earth at the Turn of the Millennium: Contribution of EOS-Terra to a New Phase in Earth Sciences

    Science.gov (United States)

    Kaufman, Yoram

    1999-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical developments that brought to the Terra mission, its objectives and example of application to biomass burning.

  4. Earth Rotation

    Science.gov (United States)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  5. Axial focusing of energy from a hypervelocity impact on earth

    International Nuclear Information System (INIS)

    Boslough, M.B.; Chael, E.P.; Trucano, T.G.; Crawford, D.A.

    1994-01-01

    We have performed computational simulations to determine how energy from a large hypervelocity impact on the Earth's surface would couple to its interior. Because of the first-order axial symmetry of both the impact energy source and the stress-wave velocity structure of the Earth, a disproportionate amount of energy is dissipated along the axis defined by the impact point and its antipode (point opposite the impact). For a symmetric and homogeneous Earth model, all the impact energy that is radiated as seismic waves into the Earth at a given takeoff angle (ray parameter), independent of azimuthal direction, is refocused (minus attenuation) on the axis of symmetry, regardless of the number of reflections and refractions it has experienced. Material on or near the axis of symmetry experiences more strain cycles with much greater amplitude than elsewhere, and therefore experiences more irreversible heating. The focusing is most intense in the upper mantle, within the asthenosphere, where seismic energy is most effectively converted to heat. For a sufficiently energetic impact, this mechanism might generate enough local heating to create an isostatic instability leading to uplift, possibly resulting in rifting, volcanism, or other rearrangement of the interior dynamics of the planet. These simulations demonstrate how hypervelocity impact energy can be transported to the Earth's interior, supporting the possibility of a causal link between large impacts on Earth and major internally-driven geophysical processes

  6. An Earth-sized planet with an Earth-like density

    DEFF Research Database (Denmark)

    Pepe, Francesco; Cameron, Andrew Collier; Latham, David W.

    2013-01-01

    significantly larger than the Earth. Recently, the planet Kepler-78b was discovered(8) and found to have a radius of only 1.16R(circle plus). Here we report that the mass of this planet is 1.86 Earth masses. The resulting mean density of the planet is 5.57 g cm(-3), which is similar to that of the Earth...

  7. NATO Advanced Research Workshop on Earth Rotation : Solved and Unsolved Problems

    CERN Document Server

    1986-01-01

    The idea for organl.zl.ng an Advanced Research Workshop entirely devoted to the Earth rotation was born in 1983 when Professor Raymond Hide suggested this topic to the special NATO panel of global transport mechanism in the Geosciences. Such a specialized meeting did not take place since the GEOP research conference on the rotation of the Earth and polar motion which was held at the Ohio State University (USA) in 1973. In the last ten years, highly precise measurements of the Earth's rotation parameters and new global geophysical data have become available allowing major advance to be made in the under­ standing of the various irregularities affecting the Earth's rotation. The aim of the workshop was to bring together scientists who have made important contributions in this field during the last decade both at the observational and geophysical interpretation levels. The confe­ rence was divided into four main topics. The first session was dedicated to the definition, implementation and maintenance of the te...

  8. Bringing Earth Magnetism Research into the High School Physics Classroom

    Science.gov (United States)

    Smirnov, A. V.; Bluth, G.; Engel, E.; Kurpier, K.; Foucher, M. S.; Anderson, K. L.

    2015-12-01

    We present our work in progress from an NSF CAREER project that aims to integrate paleomagnetic research and secondary school physics education. The research project is aimed at quantifying the strength and geometry of the Precambrian geomagnetic field. Investigation of the geomagnetic field behavior is crucial for understanding the mechanisms of field generation, and the development of the Earth's atmosphere and biosphere, and can serve as a focus for connecting high-level Earth science research with a standard physics curriculum. High school science teachers have participated in each summer field and research component of the project, gaining field and laboratory research experience, sets of rock and mineral samples, and classroom-tested laboratory magnetism activities for secondary school physics and earth science courses. We report on three field seasons of teacher field experiences and two years of classroom testing of paleomagnetic research materials merged into physics instruction on magnetism. Students were surveyed before and after dedicated instruction for both perceptions and attitude towards earth science in general, then more specifically on earth history and earth magnetism. Students were also surveyed before and after instruction on major earth system and magnetic concepts and processes, particularly as they relate to paleomagnetic research. Most students surveyed had a strongly positive viewpoint towards the study of Earth history and the importance of studying Earth Sciences in general, but were significantly less drawn towards more specific topics such as mineralogy and magnetism. Students demonstrated understanding of Earth model and the basics of magnetism, as well as the general timing of life, atmospheric development, and magnetic field development. However, detailed knowledge such as the magnetic dynamo, how the magnetic field has changed over time, and connections between earth magnetism and the development of an atmosphere remained largely

  9. VARIABILITY OF WATER AND OXYGEN ABSORPTION BANDS IN THE DISK-INTEGRATED SPECTRA OF EARTH

    International Nuclear Information System (INIS)

    Fujii, Yuka; Suto, Yasushi; Turner, Edwin L.

    2013-01-01

    We study the variability of major atmospheric absorption features in the disk-integrated spectra of Earth with future application to Earth-analogs in mind, concentrating on the diurnal timescale. We first analyze observations of Earth provided by the EPOXI mission, and find 5%-20% fractional variation of the absorption depths of H 2 O and O 2 bands, two molecules that have major signatures in the observed range. From a correlation analysis with the cloud map data from the Earth Observing Satellite (EOS), we find that their variation pattern is primarily due to the uneven cloud cover distribution. In order to account for the observed variation quantitatively, we consider a simple opaque cloud model, which assumes that the clouds totally block the spectral influence of the atmosphere below the cloud layer, equivalent to assuming that the incident light is completely scattered at the cloud top level. The model is reasonably successful, and reproduces the EPOXI data from the pixel-level EOS cloud/water vapor data. A difference in the diurnal variability patterns of H 2 O and O 2 bands is ascribed to the differing vertical and horizontal distribution of those molecular species in the atmosphere. On Earth, the inhomogeneous distribution of atmospheric water vapor is due to the existence of its exchange with liquid and solid phases of H 2 O on the planet's surface on a timescale short compared with atmospheric mixing times. If such differences in variability patterns were detected in spectra of Earth-analogs, it would provide the information on the inhomogeneous composition of their atmospheres.

  10. Major Gravitational Phenomena Explained by the Micro-Quanta Paradigm

    Directory of Open Access Journals (Sweden)

    Michelini M.

    2010-01-01

    Full Text Available Some major problems of physics, which remained unsolved within classical and relativistic gravitation theories, are explained adopting the quantum gravity interaction descending from the micro-quanta paradigm. The energy source of the gravitational power $P_{gr}$, which heats and contracts the Bok's gas globules harbouring the future stars, is identified and defined as well as the gravitational power generated on the solid/fluid planets. Calculations are carried out to make the comparison between $P_{gr}$ predicted for the solar giant planets and the measured infrared radiation power $P_{int}$ coming from the interior. The case of planets with solid crust (Earth, etc. requires a particular attention due to the threat to stability produced by the thermal dilatation. An analysis is done of the Earth's planetary equilibrium which may be attained eliminating the temperature rise through the migration of hot internal magma across the crust fractured by earthquakes. The temperatures observed up to 420,000 years ago in Antartica through Vostok and Epica ice cores suggest the possibility that the Earth gravitational power $P_{gr}$ may be radiated in space through these temperature cycles (Glacial Eras. In this general frame the Earth's high seismicity and the dynamics of Plate tectonics may find their origin.

  11. Transverse and Longitudinal Doppler Effects of the Sunbeam Spectra and Earth-Self Rotation and Orbital Velocities, the Mass of the Sun and Others

    OpenAIRE

    Nam, Sang Boo

    2009-01-01

    The transverse and longitudinal Doppler effects of the sunbeam spectra are shown to result in the earth parameters such as the earth-self rotation and revolution velocities, the earth orbit semi-major axis, the earth orbital angular momentum, the earth axial tilt, the earth orbit eccentricity, the local latitude and the mass of the sun. The sunbeam global positioning scheme is realized, including the earth orbital position. PACS numbers: 91.10.Fc, 95.10.Km, 91.10.Da, 91.10.Jf.

  12. Red-emitting alkaline-earth rare-earth pentaoxometallates powders ...

    Indian Academy of Sciences (India)

    Moisture-insensitive metal carboxylates that are mostly liquids at room temperature have been first applied to ... alkaline-earth ion, or possibly even a rare-earth ion and alkali metal ... sion spectra of the powders were recorded on a fluorescent.

  13. Spheres of Earth: An Introduction to Making Observations of Earth Using an Earth System's Science Approach. Student Guide

    Science.gov (United States)

    Graff, Paige Valderrama; Baker, Marshalyn (Editor); Graff, Trevor (Editor); Lindgren, Charlie (Editor); Mailhot, Michele (Editor); McCollum, Tim (Editor); Runco, Susan (Editor); Stefanov, William (Editor); Willis, Kim (Editor)

    2010-01-01

    Laboratory (ISAL) at NASA s Johnson Space Center (JSC) work with astronauts onboard the International Space Station (ISS) who take images of Earth. Astronaut photographs, sometimes referred to as Crew Earth Observations, are taken using hand-held digital cameras onboard the ISS. These digital images allow scientists to study our Earth from the unique perspective of space. Astronauts have taken images of Earth since the 1960s. There is a database of over 900,000 astronaut photographs available at http://eol.jsc.nasa.gov . Images are requested by ISAL scientists at JSC and astronauts in space personally frame and acquire them from the Destiny Laboratory or other windows in the ISS. By having astronauts take images, they can specifically frame them according to a given request and need. For example, they can choose to use different lenses to vary the amount of area (field of view) an image will cover. Images can be taken at different times of the day which allows different lighting conditions to bring out or highlight certain features. The viewing angle at which an image is acquired can also be varied to show the same area from different perspectives. Pointing the camera straight down gives you a nadir shot. Pointing the camera at an angle to get a view across an area would be considered an oblique shot. Being able to change these variables makes astronaut photographs a unique and useful data set. Astronaut photographs are taken from the ISS from altitudes of 300 - 400 km (approx.185 to 250 miles). One of the current cameras being used, the Nikon D3X digital camera, can take images using a 50, 100, 250, 400 or 800mm lens. These different lenses allow for a wider or narrower field of view. The higher the focal length (800mm for example) the narrower the field of view (less area will be covered). Higher focal lengths also show greater detail of the area on the surface being imaged. There are four major systems or spheres of Earth. They are: Atmosphere, Biosphere, Hydrosphe, and

  14. Earth - South America (first frame of Earth Spin Movie)

    Science.gov (United States)

    1990-01-01

    This color image of the Earth was obtained by Galileo at about 6:10 a.m. Pacific Standard Time on Dec. 11, 1990, when the spacecraft was about 1.3 million miles from the planet during the first of two Earth flybys on its way to Jupiter. The color composite used images taken through the red, green and violet filters. South America is near the center of the picture, and the white, sunlit continent of Antarctica is below. Picturesque weather fronts are visible in the South Atlantic, lower right. This is the first frame of the Galileo Earth spin movie, a 500- frame time-lapse motion picture showing a 25-hour period of Earth's rotation and atmospheric dynamics.

  15. International Year of Planet Earth - Accomplishments, Activities, Challenges and Plans in Mexico

    Science.gov (United States)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Alaniz-Alvarez, S.

    2009-12-01

    The International Year of Planet Earth started as a joint initiative by UNESCO and IUGS with the participation of several geosciences organizations, and developed into a major international geosciences program for the triennium 2007-2009, with the inclusion and participation of national and regional committees. In this presentation we focus on current activities and plans in our country and the participation in international activities. Mexican community has been part of international programs since the International Geophysical Year, continuing through its participation in other programs, e.g., Upper Mantle, Geodynamics, Lithosphere, IHY, IPY and eGY. IYPE activities have concentrated in publications, OneGeology, radio/TV programs, organization of conferences, meetings and outreach events. A book series on Earth Science Experiments for Children has been edited, with first books published on “Atmospheric Pressure and Free Fall of Objects”, “Light and Colors”, “Standing on Archimedes”, “Foucault and Climate” and “Earth and its Waves “. Books are distributed to schools, with tens of thousand copies distributed nationwide and new editions underway. Other publications include leaflets, books and special El Faro issues (edited by the National University) and articles in other journals. In 2007 the AGU Joint Assembly with international participation from US, Canada, Europe and Latin America was held in Acapulco. Current plans include an electronic open-access journal, additional publications of the Planet Earth series, articles and special issues in journals and magazines, plus events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Biodiversity. Mexico City metropolitan area, with > 22 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management

  16. The Contribution of GGOS to Understanding Dynamic Earth Processes

    Science.gov (United States)

    Gross, Richard

    2017-04-01

    Geodesy is the science of the Earth's shape, size, gravity and rotation, including their evolution in time. Geodetic observations play a major role in the solid Earth sciences because they are fundamental for the understanding and modeling of Earth system processes. Changes in the Earth's shape, its gravitational field, and its rotation are caused by external forces acting on the Earth system and internal processes involving mass transfer and exchange of angular and linear momentum. Thus, variations in these geodetic quantities of the Earth reflect and constrain mechanical and thermo-dynamic processes in the Earth system. Mitigating the impact on human life and property of natural hazards such as earthquakes, volcanic eruptions, debris flows, landslides, land subsidence, sea level change, tsunamis, floods, storm surges, hurricanes and extreme weather is an important scientific task to which geodetic observations make fundamental contributions. Geodetic observations can be used to monitor the pre-eruptive deformation of volcanoes and the pre-seismic deformation of earthquake fault zones, aiding in the issuance of volcanic eruption and earthquake warnings. They can also be used to rapidly estimate earthquake fault motion, aiding in the modeling of tsunami genesis and the issuance of tsunami warnings. Geodetic observations are also used in other areas of the Earth sciences, not just the solid Earth sciences. For example, geodesy contributes to atmospheric science by supporting both observation and prediction of the weather by geo-referencing meteorological observing data and by globally tracking change in stratospheric mass and lower tropospheric water vapor fields. Geodetic measurements of refraction profiles derived from satellite occultation data are routinely assimilated into numerical weather prediction models. Geodesy contributes to hydrologic studies by providing a unique global reference system for measurements of: sub-seasonal, seasonal and secular movements

  17. The impact of earth resources exploration from space

    Science.gov (United States)

    Nordberg, W.

    1976-01-01

    Remote sensing of the earth from satellite systems such as Landsat, Nimbus, and Skylab has demonstrated the potential influence of such observations on a number of major human concerns. These concerns include the management of food, water and fiber resources, the exploration and management of mineral and energy resources, the protection of the environment, the protection of life and property, and improvements in shipping and navigation.

  18. Magnetic Fields of the Earth and Mars a Comparison and Discussion

    Science.gov (United States)

    Taylor, Patrick T.

    2004-01-01

    In several aspects the magnetic fields of the Earth and Mars are similar but also different. In the past both bodies had planetary magnetic fields but while they Earth's field remains today the Martian ceased to operate, at some unknown time in the past, leaving this planet without a main or core field. This fact resulted in the interaction between the solar and interplanetary magnetic fields with the surfaces of these planets being very different. In addition, Mars has large crustal magnetic anomalies, nearly ten times larger than those on the Earth. Since crustal magnetic anomalies are the product of the thickness of the layer of magnetization, both the magnetizing material and the thickness of the layer of this material must be very different on Mars than Earth. Furthermore, the martian anomalies can only be produced by remanent or fossil magnetization, in contrast with the Earth where both induced and remanent magnetization are producing these anomalies. Crustal magnetic anomalies on the Earth are mainly produced by single-domain, irontitanium oxides, in the form of magnetite being the most common on Mars the main magnetic mineral(s) are unknown. The thickness of the martian magnetized layer in comparison with the Earth remains a major area for research. Determining the paleopole position for the Earth has been done by some of the earliest paleomagnetic researchers. Since we do not have oriented martian rock samples determining the paleopoles for Mars has been done by fitting a magnetization vector to individual magnetic anomalies. Several groups have worked on this problem with somewhat differing results.

  19. Migration of Small Bodies and Dust to Near-Earth Space

    Science.gov (United States)

    Ipatov, S. I.; Mather, J. C.

    Computer simulations of the orbital evolution of Jupiter-family comets (JFCs), resonant asteroids, and asteroidal, kuiperoidal, and cometary dust particles were made. The gravitational influence of planets (exclusive of Pluto and sometimes of Mercury) was taken into account. For dust particles we also considered radiation pressure, Poynting-Robertson drag, and solar wind drag. A few JFCs got Earth-crossing orbits with semi-major axes adisintegrated into mini-comets and dust during a smaller part of their dynamical lifetimes if these lifetimes are not small. The obtained results show that during the accumulation of the giant planets the total mass of icy bodies delivered to the Earth could be about the mass of water in Earth's oceans. In our runs for dust particles, the values of the ratio β between the radiation pressure force and the gravitational force varied from 0.0004 to 0.4 (for silicates, such values correspond to particle diameters between 1000 and 1 microns). For β >0.01 the collision probabilities of dust particles with the terrestrial planets during lifetimes of particles were considerably greater for larger asteroidal and cometary particles. At β ≥ 0.1 and β ≤ 0.001 some asteroidal particles migrated beyond Jupiter's orbit. The peaks in the distribution of migrating asteroidal dust particles with semi-major axis corresponding to the n:(n+1) resonances with Earth and Venus and the gaps associated with the 1:1 resonances with these planets are more pronounced for larger particles. Several our papers on this problem were put in http://arXiv.org/format/astro-ph/ (e.g., 0305519, 0308448, 0308450). This work was supported by INTAS (00-240) and NASA (NAG5-10776).

  20. Building a Dashboard of the Planet with Google Earth and Earth Engine

    Science.gov (United States)

    Moore, R. T.; Hancher, M.

    2016-12-01

    In 2005 Google Earth, a popular 3-D virtual globe, was first released. Scientists immediately recognized how it could be used to tell stories about the Earth. From 2006 to 2009, the "Virtual Globes" sessions of AGU included innovative examples of scientists and educators using Google Earth, and since that time it has become a commonplace tool for communicating scientific results. In 2009 Google Earth Engine, a cloud-based platform for planetary-scale geospatial analysis, was first announced. Earth Engine was initially used to extract information about the world's forests from raw Landsat data. Since then, the platform has proven highly effective for general analysis of georeferenced data, and users have expanded the list of use cases to include high-impact societal issues such as conservation, drought, disease, food security, water management, climate change and environmental monitoring. To support these use cases, the platform has continuously evolved with new datasets, analysis functions, and user interface tools. This talk will give an overview of the latest Google Earth and Earth Engine functionality that allow partners to understand, monitor and tell stories about of our living, breathing Earth. https://earth.google.com https://earthengine.google.com

  1. The Coalition for Publishing Data in the Earth and Space Sciences

    Science.gov (United States)

    Lehnert, Kerstin; Hanson, Brooks; Cutcher-Gershenfeld, Joel

    2015-04-01

    Scholarly publishing remains a key high-value point in making data available and will for the foreseeable future be tied to the availability of science data. Data need to be included in or released as part of publications to make the science presented in an article reproducible, and most publishers have statements related to the inclusion of data, recognizing that such release enhances the value and is part of the integrity of the research. Unfortunately, practices for reporting and documenting data in the scientific literature are inconsistent and inadequate, and the vast majority of data submitted along with publications is still in formats and forms of storage that make discovery and reuse difficult or impossible. Leading earth and space science repositories on the other hand are eager and set up to provide persistent homes for these data, and also ensure quality, enhancing their value, access, and reusability. Unfortunately only a small fraction of the data associated with scientific publications makes it to these data facilities. Connecting scholarly publication more firmly with data facilities is essential in meeting the expectations of open, accessible and useful data as aspired by all stakeholders and expressed in position statements, policies, and guidelines. To strengthen these connections, a new initiative was launched in Fall 2014 at a conference that brought together major publishers, data facilities, and consortia in the Earth and space sciences, as well as governmental, association, and foundation funders. The aim of this initiative is to foster consensus and consistency among publishers, editors, funders, and data repositories on how data that are part of scholarly publications should be curated and published, and guide the development of practical resources based on those guidelines that will help authors and publishers support open data policies, facilitate proper data archiving, and support the linking of data to publications. The most relevant

  2. The Near-Earth Orbital Debris Problem and the Challenges for Environment Remediation

    Science.gov (United States)

    Liou, Jer-Chyi

    2012-01-01

    The near-Earth space environment has been gradually polluted with orbital debris (OD) since the beginning of space activities 55 years ago. Although this problem has been known to the research community for decades, the public was, in general, unaware of the issue until the anti-satellite test conducted by China in 2007 and the collision between Cosmos 2251 and the operational Iridium 33 in 2009. The latter also underlined the potential of an ongoing collision cascade effect (the "Kessler Syndrome") in the low Earth orbit (LEO, the region below 2000 km altitude). Recent modeling results have indicated that mitigation measures commonly adopted by the international space community will be insufficient to stabilize the LEO debris population. To better limit the OD population increase, more aggressive actions must be considered. There are three options for OD environment remediation-removal of large/massive intact objects to address the root cause of the OD population growth problem, removal of 5-mm-to-1 cm debris to mitigate the main mission-ending threats for the majority of operational spacecraft, and prevention of major debris-generating collisions as a temporary means to slow down the OD population increase. The technology, engineering, and cost challenges to carry out any of these three options are monumental. It will require innovative ideas, game-changing technologies, and major collaborations at the international level to address the OD problem and preserve the near-Earth environment for future generations.

  3. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  4. The radial speed-expansion speed relation for Earth-directed CMEs

    Science.gov (United States)

    Mäkelä, P.; Gopalswamy, N.; Yashiro, S.

    2016-05-01

    Earth-directed coronal mass ejections (CMEs) are the main drivers of major geomagnetic storms. Therefore, a good estimate of the disturbance arrival time at Earth is required for space weather predictions. The STEREO and SOHO spacecraft were viewing the Sun in near quadrature during January 2010 to September 2012, providing a unique opportunity to study the radial speed (Vrad)-expansion speed (Vexp) relationship of Earth-directed CMEs. This relationship is useful in estimating the Vrad of Earth-directed CMEs, when they are observed from Earth view only. We selected 19 Earth-directed CMEs observed by the Large Angle and Spectrometric Coronagraph (LASCO)/C3 coronagraph on SOHO and the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/COR2 coronagraph on STEREO during January 2010 to September 2012. We found that of the three tested geometric CME models the full ice-cream cone model of the CME describes best the Vrad-Vexp relationship, as suggested by earlier investigations. We also tested the prediction accuracy of the empirical shock arrival (ESA) model proposed by Gopalswamy et al. (2005a), while estimating the CME propagation speeds from the CME expansion speeds. If we use STEREO observations to estimate the CME width required to calculate the Vrad from the Vexp measurements, the mean absolute error (MAE) of the shock arrival times of the ESA model is 8.4 h. If the LASCO measurements are used to estimate the CME width, the MAE still remains below 17 h. Therefore, by using the simple Vrad-Vexp relationship to estimate the Vrad of the Earth-directed CMEs, the ESA model is able to predict the shock arrival times with accuracy comparable to most other more complex models.

  5. The Lifeworld Earth and a Modelled Earth

    Science.gov (United States)

    Juuti, Kalle

    2014-01-01

    The goal of this paper is to study the question of whether a phenomenological view of the Earth could be empirically endorsed. The phenomenological way of thinking considers the Earth as a material entity, but not as an object as viewed in science. In the learning science tradition, tracking the process of the conceptual change of the shape of the…

  6. Optimization and Feasibility Analysis of Satellite Earth Station Power System Using Homer

    Directory of Open Access Journals (Sweden)

    Hassen T. Dorrah

    2012-06-01

    Full Text Available Satellite earth stations which located in remote areas are one of many applications powered by the renewable energy sources. Ground system consists of ground station and control centers working together to support the spacecraft and the data user. Earth station consists of major subsystems, transmitter, receiver, antenna, tracking equipment, terrestrial interface equipment and power supply. Power subsystem is an important part that required for supplying the earth station with electrical power to continue communicating with its remote sensing satellite. This paper deals with simulation and optimal sizing of earth station power system using HOMER software. A combination of two energy sources (solar, and wind to provide a continuous electric power production is used to determine the optimum system operation. Three system configurations are compared with respect to the total net present cost (NPC and levelized cost of energy (COE. Also, economical study will be analyzed for energy demand and sensitivity analysis will be performed.

  7. Atmospheric acceleration and Earth-expansion deceleration of the Earth rotation

    Directory of Open Access Journals (Sweden)

    Wenbin Shen

    2017-11-01

    Full Text Available Previous studies suggest that tidal friction gives rise to the secular deceleration of the Earth rotation by a quantity of about 2.25 ms/cy. Here we just consider additional contributions to the secular Earth rotation deceleration. Atmospheric solar semi-diurnal tide has a small amplitude and certain amount of phase lead. This periodic global air-mass excess distribution exerts a quasi-constant torque to accelerate the Earth's spin rotation. Using an updated atmospheric tide model, we re-estimate the amounts of this atmospheric acceleration torque and corresponding energy input, of which the associated change rate in LOD (length of day is −0.1 ms/cy. In another aspect, evidences from space-geodesy and sea level rise observations suggest that Earth expands at a rate of 0.35 mm/yr in recent decades, which gives rise to the increase of LOD at rate of 1.0 ms/cy. Hence, if the previous estimate due to the tidal friction is correct, the secular Earth rotation deceleration due to tidal friction and Earth expansion should be 3.15 ms/cy.

  8. THE OCCURRENCE RATE OF EARTH ANALOG PLANETS ORBITING SUN-LIKE STARS

    International Nuclear Information System (INIS)

    Catanzarite, Joseph; Shao, Michael

    2011-01-01

    Kepler is a space telescope that searches Sun-like stars for planets. Its major goal is to determine η Earth , the fraction of Sun-like stars that have planets like Earth. When a planet 'transits' or moves in front of a star, Kepler can measure the concomitant dimming of the starlight. From analysis of the first four months of those measurements for over 150,000 stars, Kepler's Science Team has determined sizes, surface temperatures, orbit sizes, and periods for over a thousand new planet candidates. In this paper, we characterize the period probability distribution function of the super-Earth and Neptune planet candidates with periods up to 132 days, and find three distinct period regimes. For candidates with periods below 3 days, the density increases sharply with increasing period; for periods between 3 and 30 days, the density rises more gradually with increasing period, and for periods longer than 30 days, the density drops gradually with increasing period. We estimate that 1%-3% of stars like the Sun are expected to have Earth analog planets, based on the Kepler data release of 2011 February. This estimate of η Earth is based on extrapolation from a fiducial subsample of the Kepler planet candidates that we chose to be nominally 'complete' (i.e., no missed detections) to the realm of the Earth-like planets, by means of simple power-law models. The accuracy of the extrapolation will improve as more data from the Kepler mission are folded in. Accurate knowledge of η Earth is essential for the planning of future missions that will image and take spectra of Earth-like planets. Our result that Earths are relatively scarce means that a substantial effort will be needed to identify suitable target stars prior to these future missions.

  9. Rare earths

    International Nuclear Information System (INIS)

    1984-01-01

    The conference was held from September 12 to 13, 1984 in Jetrichovice, Czechoslovakia. The participants heard 16 papers of which 4 were inputted in INIS. These papers dealt with industrial separation processes of rare earths, the use of chemical methods of separation from the concentrate of apatite and bastnesite, the effect of the relative permittivity of solvents in the elution of rare earth elements from a cation exchanger, and the determination of the content of different rare earth elements using X-ray fluorescence analysis and atomic absorption spectroscopy. (E.S.)

  10. Early Earth(s) Across Time and Space

    Science.gov (United States)

    Mojzsis, S.

    2014-04-01

    The geochemical and cosmochemical record of our solar system is the baseline for exploring the question: "when could life appear on a world similar to our own?" Data arising from direct analysis of the oldest terrestrial rocks and minerals from the first 500 Myr of Earth history - termed the Hadean Eon - inform us about the timing for the establishment of a habitable silicate world. Liquid water is the key medium for life. The origin of water, and its interaction with the crust as revealed in the geologic record, guides our exploration for a cosmochemically Earth-like planets. From the time of primary planetary accretion to the start of the continuous rock record on Earth at ca. 3850 million years ago, our planet experienced a waning bolide flux that partially or entirely wiped out surface rocks, vaporized oceans, and created transient serpentinizing atmospheres. Arguably, "Early Earths" across the galaxy may start off as ice planets due to feeble insolation from their young stars, occasionally punctuated by steam atmospheres generated by cataclysmic impacts. Alternatively, early global environments conducive to life spanned from a benign surface zone to deep into crustal rocks and sediments. In some scenarios, nascent biospheres benefit from the exogenous delivery of essential bio-elements via leftovers of accretion, and the subsequent establishment of planetary-scale hydrothermal systems. If what is now known about the early dynamical regime of the Earth serves as any measure of the potential habitability of worlds across space and time, several key boundary conditions emerge. These are: (i) availability and long-term stability of liquid water; (ii) presence of energy resources; (iii) accessibility of organic raw materials; (iv) adequate inventory of radioisotopes to drive internal heating; (v) gross compositional parameters such as mantle/core mass ratio, and (vi) P-T conditions at or near the surface suitable for sustaining biological activity. Life could

  11. Earth Exploration Toolbook Workshops: Web-Conferencing and Teleconferencing Professional Development Bringing Earth Science Data Analysis and Visualization Tools to K-12 Teachers and Students

    Science.gov (United States)

    McAuliffe, C.; Ledley, T.

    2008-12-01

    The Earth Exploration Toolbook (EET) Workshops Project provides a mechanism for teachers and students to have successful data-using educational experiences. In this professional development project, teachers learn to use National Science Digital Library (NSDL), the Digital Library for Earth System Education (DLESE), and an Earth Exploration Toolbook (EET) chapter. In an EET Data Analysis Workshop, participants walk through an Earth Exploration Toolbook (EET) chapter, learning basic data analysis techniques and discussing ways to use Earth science datasets and analysis tools with their students. We have offered twenty-eight Data Analysis Workshops since the project began. The total number of participants in the twenty-eight workshops to date is three hundred eleven, which reflects one hundred eighty different teachers participating in one or more workshops. Our workshops reach middle and high school teachers across the United States at schools with lower socioeconomic levels and at schools with large numbers of minority students. Our participants come from thirty-eight different states including Alaska, Maine, Florida, Montana, and many others. Eighty-six percent of our participants are classroom teachers. The remaining fourteen percent are staff development specialists, university faculty, or outreach educators working with teachers. Of the classroom teachers, one third are middle school teachers (grades 6 to 8) and two thirds are high school teachers (grades 9 to 12.) Thirty-four percent of our participants come from schools where minority populations are the majority make up of the school. Twenty-five percent of our participants are at schools where the majority of the students receive free or reduced cost lunches. Our professional development workshops are helping to raise teachers' awareness of both the Digital Library for Earth System Education (DLESE) and the National Science Digital Library (NSDL). Prior to taking one of our workshops, forty-two percent of

  12. How do we know about Earth's history? Constructing the story of Earth's geologic history by collecting and interpreting evidence based scenarios.

    Science.gov (United States)

    Ruthford, Steven; DeBari, Susan; Linneman, Scott; Boriss, Miguel; Chesbrough, John; Holmes, Randall; Thibault, Allison

    2013-04-01

    Beginning in 2003, faculty from Western Washington University, Skagit Valley Community College, local public school teachers, and area tribal college members created an innovative, inquiry based undergraduate geology curriculum. The curriculum, titled "Energy and Matter in Earth's Systems," was supported through various grants and partnerships, including Math and Science Partnership and Noyce Teacher Scholarship grants from the National Science Foundation. During 2011, the authors wrote a geologic time unit for the curriculum. The unit is titled, "How Do We Know About Earth's History?" and has students actively investigate the concepts related to geologic time and methods for determining age. Starting with reflection and assessment of personal misconceptions called "Initial Ideas," students organize a series of events into a timeline. The unit then focuses on the concepts of relative dating, biostratigraphy, and historical attempts at absolute dating, including uniformitarianism, catastrophism, Halley and Joly's Salinity hypothesis, and Kelvin's Heat Loss model. With limited lecture and text, students then dive into current understandings of the age of the Earth, which include radioactive decay rates and radiometric dating. Finally, using their newfound understanding, students investigate a number of real world scenarios and create a timeline of events related to the geologic history of the Earth. The unit concludes with activities that reinforce the Earth's absolute age and direct students to summarize what they have learned by reorganizing the timeline from the "Initial Ideas" and sharing with the class. This presentation will include the lesson materials and findings from one activity titled, "The Earth's Story." The activity is located midway through the unit and begins with reflection on the question, "What are the major events in the Earth's history and when did they happen?" Students are directed to revisit the timeline of events from the "Initial Ideas

  13. Rare earths and rare earth alloys electrolytic preparation process and device for this process

    International Nuclear Information System (INIS)

    Seon, F.; Barthole, G.

    1986-01-01

    Electrolysis of a molten salt of rare earth or rare earth alloy for preparation of the metal or alloy is described. The molten salt bath comprises at least a rare earth chloride, at least an alkaline or alkaline earth chloride and at least an alkaline or alkaline earth fluoride [fr

  14. Improved model of the Earth's gravitational field: GEM-T1

    International Nuclear Information System (INIS)

    Marsh, J.G.; Lerch, F.J.; Christodoulidis, D.C.

    1987-07-01

    Goddard Earth Model T1 (GEM-T1), which was developed from an analysis of direct satellite tracking observations, is the first in a new series of such models. GEM-T1 is complete to degree and order 36. It was developed using consistent reference parameters and extensive earth and ocean tidal models. It was simultaneously solved for gravitational and tidal terms, earth orientation parameters, and the orbital parameters of 580 individual satellite arcs. The solution used only satellite tracking data acquired on 17 different satellites and is predominantly based upon the precise laser data taken by third generation systems. In all, 800,000 observations were used. A major improvement in field accuracy was obtained. For marine geodetic applications, long wavelength geoidal modeling is twice as good as in earlier satellite-only GEM models. Orbit determination accuracy has also been substantially advanced over a wide range of satellites that have been tested

  15. International Year of Planet Earth - Activities and Plans in Mexico

    Science.gov (United States)

    Alaniz-Alvarez, S.; Urrutia-Fucugauchi, J.

    2007-12-01

    IYPE started as a joint initiative by UNESCO and IUGS with participation of several geosciences organizations, and has developed into a major program in geosciences with inclusion of national committees. In this presentation we focus on current activities and plans in our country, and in the international activities. IYPE activities have concentrated in publications and organization of conferences and meetings. A book series on Earth Science Experiments for Children has been defined, with the first books published on "Atmospheric Pressure and Free Fall of Objects" and "Light and Colors". Following books are on "Standing on Archimedes" and "Foucault and the Climate". Books are distributed free to school children, with more than 10,000 copies given of first volume. Other publications include the special issues of El Faro science magazine edited by the National University, with last issue published and distributed electronically and in hard copies this August. Special events include Conference of IYPE Executive Director presented during the International Day of Science Museums in late May in Science Museum Universum. This was followed by a Planet Earth Week in the University. Current plans include an electronic open-access publication, additional publications of the Planet Earth series, articles and special issues in journals and magazines, and events on selected themes from the IYPE science program, particularly on Megacities, Hazards, Resources and Life. The metropolitan area of Mexico City, with around 20 million inhabitants presents special challenges, being at high altitude within an active tectonic and volcanic area requiring major efforts in water supply, water control, rains and waste disposal and management. Involvement in international activities includes translation into Spanish of IYPE publications and the participation in programs and activities. In addition to activities in the different countries, we consider that IYPE should result in initiatives for

  16. Focusing the EarthScope for a broader audience: Advancing geoscience education with interactive kiosks

    Science.gov (United States)

    Smith-Konter, B. R.; Solis, T.

    2012-12-01

    A primary objective of the EarthScope Education and Outreach program is to transform technical science into teachable products for a technologically thriving generation. One of the most challenging milestones of scientific research, however, is often the translation of a technical result into a clear teachable moment that is accessible to a broader audience. As 4D multimedia now dominate most aspects of our social environment, science "teaching" now also requires intervention of visualization technology and animation to portray research results in an inviting and stimulating manner. Following the Incorporated Research Institutions for Seismology (IRIS)'s lead in developing interactive Earth science kiosk multimedia (bundled in a free product called Active Earth), we have made a major effort to construct and install customized EarthScope-themed touch screen kiosks in local communities. These kiosks are helping to educate a broader audience about EarthScope's unique instrumentation and observations using interactive animations, games, and virtual field trips. We are also developing new kiosk content that reflect career stories showcasing the personal journeys of EarthScope scientists. To truly bring the interactive aspect of our EarthScope kiosk media into the classroom, we have collaborated with local teachers to develop a one-page EarthScope TerraMap activity worksheet that guides students through kiosk content. These activities are shaping a new pathway for how teachers teach and students learn about planet Earth and its fantastic EarthScope - one click (and touch) at a time.

  17. Orbital Noise of the Earth Causes Intensity Fluctuation in the Geomagnetic Field

    Science.gov (United States)

    Liu, Han-Shou; Kolenkiewicz, R.; Wade, C., Jr.

    2003-01-01

    Orbital noise of Earth's obliquity can provide an insight into the core of the Earth that causes intensity fluctuations in the geomagnetic field. Here we show that noise spectrum of the obliquity frequency have revealed a series of frequency periods centered at 250-, 1OO-, 50-, 41-, 30-, and 26-kyr which are almost identical with the observed spectral peaks from the composite curve of 33 records of relative paleointensity spanning the past 800 kyr (Sint-800 data). A continuous record for the past two million years also reveals the presence of the major 100 kyr periodicity in obliquity noise and geomagnetic intensity fluctuations. These results of correlation suggest that obliquity noise may power the dynamo, located in the liquid outer core of the Earth, which generates the geomagnetic field.

  18. Scientific Visualization & Modeling for Earth Systems Science Education

    Science.gov (United States)

    Chaudhury, S. Raj; Rodriguez, Waldo J.

    2003-01-01

    Providing research experiences for undergraduate students in Earth Systems Science (ESS) poses several challenges at smaller academic institutions that might lack dedicated resources for this area of study. This paper describes the development of an innovative model that involves students with majors in diverse scientific disciplines in authentic ESS research. In studying global climate change, experts typically use scientific visualization techniques applied to remote sensing data collected by satellites. In particular, many problems related to environmental phenomena can be quantitatively addressed by investigations based on datasets related to the scientific endeavours such as the Earth Radiation Budget Experiment (ERBE). Working with data products stored at NASA's Distributed Active Archive Centers, visualization software specifically designed for students and an advanced, immersive Virtual Reality (VR) environment, students engage in guided research projects during a structured 6-week summer program. Over the 5-year span, this program has afforded the opportunity for students majoring in biology, chemistry, mathematics, computer science, physics, engineering and science education to work collaboratively in teams on research projects that emphasize the use of scientific visualization in studying the environment. Recently, a hands-on component has been added through science student partnerships with school-teachers in data collection and reporting for the GLOBE Program (GLobal Observations to Benefit the Environment).

  19. The "Earth Physics" Workshops Offered by the Earth Science Education Unit

    Science.gov (United States)

    Davies, Stephen

    2012-01-01

    Earth science has a part to play in broadening students' learning experience in physics. The Earth Science Education Unit presents a range of (free) workshops to teachers and trainee teachers, suggesting how Earth-based science activities, which show how we understand and use the planet we live on, can easily be slotted into normal science…

  20. New Earth-abundant Materials for Large-scale Solar Fuels Generation.

    Science.gov (United States)

    Prabhakar, Rajiv Ramanujam; Cui, Wei; Tilley, S David

    2018-05-30

    The solar resource is immense, but the power density of light striking the Earth's surface is relatively dilute, necessitating large area solar conversion devices in order to harvest substantial amounts of power for renewable energy applications. In addition, energy storage is a key challenge for intermittent renewable resources such as solar and wind, which adds significant cost to these energies. As the majority of humanity's present-day energy consumption is based on fuels, an ideal solution is to generate renewable fuels from abundant resources such as sunlight and water. In this account, we detail our recent work towards generating highly efficient and stable Earth-abundant semiconducting materials for solar water splitting to generate renewable hydrogen fuel.

  1. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study.

    Science.gov (United States)

    Vuković, Gordana; Aničić Urošević, Mira; Pergal, Miodrag; Janković, Milan; Goryainova, Zoya; Tomašević, Milica; Popović, Aleksandar

    2015-12-01

    In areas with moderate to continental climates, emissions from residential heating system lead to the winter air pollution peaks. The EU legislation requires only the monitoring of airborne concentrations of particulate matter, As, Cd, Hg, Ni, and B[a]P. Transition metals and rare earth elements (REEs) have also arisen questions about their detrimental health effects. In that sense, this study examined the level of extensive set of air pollutants: 16 polycyclic aromatic hydrocarbons (PAHs), and 41 major elements, trace elements, and REEs using Sphagnum girgensohnii moss bag technique. During the winter of 2013/2014, the moss bags were exposed across Belgrade (Serbia) to study the influence of residential heating system to the overall air quality. The study was set as an extension to our previous survey during the summer, i.e., non-heating season. Markedly higher concentrations of all PAHs, Sb, Cu, V, Ni, and Zn were observed in the exposed moss in comparison to the initial values. The patterns of the moss REE concentrations normalized to North American Shale Composite and Post-Archean Australian Shales were identical across the study area but enhanced by anthropogenic activities. The results clearly demonstrate the seasonal variations in the moss enrichment of the air pollutants. Moreover, the results point out a need for monitoring of air quality during the whole year, and also of various pollutants, not only those regulated by the EU Directive.

  2. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    Science.gov (United States)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  3. Beautiful Earth: Inspiring Native American students in Earth Science through Music, Art and Science

    Science.gov (United States)

    Casasanto, V.; Rock, J.; Hallowell, R.; Williams, K.; Angell, D.; Beautiful Earth

    2011-12-01

    The Beautiful Earth program, awarded by NASA's Competitive Opportunities in Education and Public Outreach for Earth and Space Science (EPOESS), is a live multi-media performance at partner science centers linked with hands-on workshops featuring Earth scientists and Native American experts. It aims to inspire, engage and educate diverse students in Earth science through an experience of viewing the Earth from space as one interconnected whole, as seen through the eyes of astronauts. The informal education program is an outgrowth of Kenji Williams' BELLA GAIA Living Atlas Experience (www.bellagaia.com) performed across the globe since 2008 and following the successful Earth Day education events in 2009 and 2010 with NASA's DLN (Digital Learning Network) http://tinyurl.com/2ckg2rh. Beautiful Earth takes a new approach to teaching, by combining live music and data visualizations, Earth Science with indigenous perspectives of the Earth, and hands-on interactive workshops. The program will utilize the emotionally inspiring multi-media show as a springboard to inspire participants to learn more about Earth systems and science. Native Earth Ways (NEW) will be the first module in a series of three "Beautiful Earth" experiences, that will launch the national tour at a presentation in October 2011 at the MOST science museum in collaboration with the Onandaga Nation School in Syracuse, New York. The NEW Module will include Native American experts to explain how they study and conserve the Earth in their own unique ways along with hands-on activities to convey the science which was seen in the show. In this first pilot run of the module, 110 K-12 students with faculty and family members of the Onandaga Nations School will take part. The goal of the program is to introduce Native American students to Earth Sciences and STEM careers, and encourage them to study these sciences and become responsible stewards of the Earth. The second workshop presented to participants will be the

  4. Earth's Coming of Age: Isotopically Tracking the Global Transformation from the Hadean to the Geologically Modern Earth

    Science.gov (United States)

    Bennett, V. C.; Nutman, A. P.

    2017-12-01

    Some of the strongest direct evidence that documents fundamental changes in the chemistry and organisation of Earth's interior derives from radiogenic isotopic compositions that include both long-lived (particularly 176Lu-176Hf and 147Sm-143Nd) and short-lived, i.e., now extinct parent isotope, systems (182Hf-182W, 146Sm-142Nd). Changes in patterns of isotopic evolution are linked to changes in mantle dynamics such that tracking these signatures in geologically well-characterised rocks can be used to discover the the nature and evolution of tectonic processes. Over the past decade, intensive geochemical investigations by various groups focussing on the oldest (> 4.0 Ga to 3.6 Ga) rock record, as preserved in several localities, have revealed isotopic distinctions in the early Earth compared with those in Proterozoic and younger rocks. For example, whilst the major and trace element compositions of Eoarchean gneisses have analogs in younger rocks in accord with a continuum of crust formation processes, radiogenic isotopic signatures from both long and short half-life decay schemes record an image of the Earth in transition from early differentiation processes, likely associated with planetary accretion and formation, to more modern style characterised by plate tectonics. The emerging image is that many Eoarchean rocks possess extinct nuclide anomalies in the form of 142Nd and 182Hf isotopic signatures that are absent in modern terrestrial samples; these signatures are evidence of chemical fractionation processes occuring within the first ca. 10-300 million years of Solar System history. In addition, viewing the global database, patterns of long-half life isotope signatures i.e., 143Nd and 176Hf differ from those seen in younger (modern Earth.

  5. Using News Media Databases (LexisNexis) To Identify Relevant Topics For Introductory Earth Science Classes

    Science.gov (United States)

    Cervato, C.; Jach, J. Y.; Ridky, R.

    2003-12-01

    Introductory Earth science courses are undergoing pedagogical changes in universities across the country and are focusing more than ever on the non-science majors. Increasing enrollment of non-science majors in these introductory Earth science courses demands a new look at what is being taught and how the content can be objectively chosen. Assessing the content and effectiveness of these courses requires a quantitative investigation of introductory Earth science topics and their relevance to current issues and concerns. Relevance of Earth science topics can be linked to improved students' attitude toward science and a deeper understanding of concepts. We have used the Internet based national news search-engine LexisNexis Academic Universe (http://www.lexisnexis.org/) to select the occurrence of Earth science terms over the last 12 months, five and ten years both regionally and nationally. This database of term occurrences is being used to examine how Earth sciences have evolved in the news through the last 10 years and is also compared with textbook contents and course syllabi from randomly selected introductory earth science courses across the nation. These data constitute the quantitative foundation for this study and are being used to evaluate the relevance of introductory earth science course content. The relevance of introductory course content and current real-world issues to student attitudes is a crucial factor when considering changes in course curricula and pedagogy. We have examined students' conception of the nature of science and attitudes towards science and learning science using a Likert-scale assessment instrument in the fall 2002 Geology 100 classes at Iowa State University. A pre-test and post-test were administered to see if the students' attitudes changed during the semester using as reference a control group comprised of geoscience undergraduate and graduate students, and faculty. The results of the attitude survey have been analyzed in terms

  6. Raising awareness for research on earth walls, and earth scientific aspects

    Science.gov (United States)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk; Baas, Henk; Groenewoudt, Bert; Peen, Charlotte

    2013-04-01

    A conference to raise awareness In the Netherlands, little research on earth walls has been done. To improve attention for earth walls, a number of organisations, including Geoheritage NL, organized a conference at the RCE, the Cultural Heritage Agency of the Netherlands. The conference* presented a state-of-the-art of research done. The book with the presentations, and extra case studies added, was published in December 2012. The book concludes with a research action list, including earth science research, and can be downloaded freely from the internet. It has English summaries. The earth science aspects Historical earth walls do not only add cultural value to a landscape, but also geodiversity value. Apart from geomorphological aspects, the walls contain information about past land- and climate conditions: - They cover up a former topography, a past landscape. A relevant source of scientific information where lands are levelled, as is the case in many parts of The Netherlands; - The soil formation under the earth wall is a reference soil. The soil formation in the top of the wall gives insight in the rate of soil formation in relationship with the age and parent material of the wall; - The soil profiles of different age have ecological significance. Older walls with a more pronounced soil formation often hold forest flora that has disappeared from the surrounding environment, such as historical bush or tree species, autogenetic DNA material or a specific soil fauna; - The materials in the earth walls tell about the process of wall-building. Paleosols and sedimentary structures in the earth walls, in the gullies and colluvial fans along the walls contain information about past land management and climate. - The eroded appearance of the earth walls is part of their history, and contain information about past management and land conditions, has ecological relevance, for example for insects, and is often visually more interesting. Insight in the rates of erosion are

  7. The Earth Observing System Terra Mission

    Science.gov (United States)

    Kaufman, Yoram J.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. After the launch in Dec. 16 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution better than 1 km on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical perspective of the Terra mission and the key new elements of the mission. We expect to have first images that demonstrate the most innovative capability from EOS Terra 5 instruments: MODIS - 1.37 micron cirrus cloud channel; 250m daily coverage for clouds and vegetation change; 7 solar channels for land and aerosol studies; new fire channels; Chlorophyll fluorescence; MISR - first 9 multi angle views of clouds and vegetation; MOPITT - first global CO maps and C114 maps; ASTER - Thermal channels for geological studies with 15-90 m resolution.

  8. Spatial Dynamics of the Communities and the Role of Major Countries in the International Rare Earths Trade: A Complex Network Analysis.

    Science.gov (United States)

    Wang, Xibo; Ge, Jianping; Wei, Wendong; Li, Hanshi; Wu, Chen; Zhu, Ge

    2016-01-01

    Rare earths (RE) are critical materials in many high-technology products. Due to the uneven distribution and important functions for industrial development, most countries import RE from a handful of suppliers that are rich in RE, such as China. However, because of the rapid growth of RE exploitation and pollution of the mining and production process, some of the main suppliers have gradually tended to reduce the RE production and exports. Especially in the last decade, international RE trade has been changing in the trade community and trade volume. Based on complex network theory, we built an unweighted and weighted network to explore the evolution of the communities and identify the role of the major countries in the RE trade. The results show that an international RE trade network was dispersed and unstable because of the existence of five to nine trade communities in the unweighted network and four to eight trade communities in the weighted network in the past 13 years. Moreover, trade groups formed due to the great influence of geopolitical relations. China was often associated with the South America and African countries in the same trade group. In addition, Japan, China, the United States, and Germany had the largest impacts on international RE trade from 2002 to 2014. Last, some policy suggestions were highlighted according to the results.

  9. Spatial Dynamics of the Communities and the Role of Major Countries in the International Rare Earths Trade: A Complex Network Analysis.

    Directory of Open Access Journals (Sweden)

    Xibo Wang

    Full Text Available Rare earths (RE are critical materials in many high-technology products. Due to the uneven distribution and important functions for industrial development, most countries import RE from a handful of suppliers that are rich in RE, such as China. However, because of the rapid growth of RE exploitation and pollution of the mining and production process, some of the main suppliers have gradually tended to reduce the RE production and exports. Especially in the last decade, international RE trade has been changing in the trade community and trade volume. Based on complex network theory, we built an unweighted and weighted network to explore the evolution of the communities and identify the role of the major countries in the RE trade. The results show that an international RE trade network was dispersed and unstable because of the existence of five to nine trade communities in the unweighted network and four to eight trade communities in the weighted network in the past 13 years. Moreover, trade groups formed due to the great influence of geopolitical relations. China was often associated with the South America and African countries in the same trade group. In addition, Japan, China, the United States, and Germany had the largest impacts on international RE trade from 2002 to 2014. Last, some policy suggestions were highlighted according to the results.

  10. Extraction of rare earths from iron-rich rare earth deposits

    OpenAIRE

    Bisaka, K.; Thobadi, I.C.; Pawlik, C.

    2017-01-01

    Rare earth metals are classified as critical metals by the United Nations, as they have found wide application in the fabrication of magnets, particularly those used in green energy technologies which mitigate global warming. Processing of ores containing rare earth elements is complex, and differs according to the nature of each ore. In the conventional process, run of mine (ROM) ores are processed in a physical separation plant to produce a concentrate from which rare earth elements are ext...

  11. Earth rotation, station coordinates and orbit determination from satellite laser ranging

    Science.gov (United States)

    Murata, Masaaki

    The Project MERIT, a special program of international colaboration to Monitor Earth Rotation and Intercompare the Techniques of observation and analysis, has come to an end with great success. Its major objective was to evaluate the ultimate potential of space techniques such as VLBI and satellite laser ranging, in contrast with the other conventional techniques, in the determination of rotational dynamics of the earth. The National Aerospace Laboratory (NAL) has officially participated in the project as an associate analysis center for satellite laser technique for the period of the MERIT Main Campaign (September 1983-October 1984). In this paper, the NAL analysis center results are presented.

  12. Xe isotopic constraints on cycling of deep Earth volatiles

    Science.gov (United States)

    Parai, R.; Mukhopadhyay, S.

    2017-12-01

    The modern deep Earth volatile budget reflects primordial volatiles delivered during accretion, radiogenic ingrowth of volatile species (e.g., 40Ar produced by 40K decay), outgassing in association with mantle processing, and regassing via subduction. The noble gases are unique volatile tracers in that they are chemically inert, but are thought to be trapped within hydrous alteration phases in downwelling lithologies. Noble gases thus provide a tracer of volatile transport between the deep Earth and surface reservoirs. Constraints on the fluxes of noble gases between deep Earth and surface reservoirs over time can accordingly be used to provide insight into temperature conditions at subduction zones, limits on volatile cycling, and the evolving distribution of major volatile species in terrestrial reservoirs over time. Xe isotope systematics in mantle-derived rocks show that 80-90% of the mantle Xe budget is derived from recycling of atmospheric Xe, indicating that atmospheric Xe is retained in subducting slabs beyond depths of magma generation in subduction zones over Earth history. We present an integrated model of Xe cycling between the mantle and atmosphere in association with mantle processing over Earth history. We test a wide variety of outgassing and regassing rates and take the evolution of the atmospheric Xe isotopic composition [e.g., 1] into account. Models in which the deep Earth transitions from a net outgassing to net regassing regime best satisfy Xe isotopic constraints from mantle-derived rocks [2-6]. [1] Avice et al., 2017; Nature Communications, 8; [2] Mukhopadhyay, 2012, Nature 486, 101-104; [3] Parai et al., 2012, EPSL 359-360, 227-239; [4] Parai and Mukhopadhay, 2015, G-cubed 16, 719-735; [5] Peto et al., 2013, EPSL 369-370, 13-23; [6] Tucker et al., 2012, EPSL 355-356, 244-254.

  13. China's rare-earth industry

    Science.gov (United States)

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  14. The use of rare earth radiotracers in the study of solvent extraction kinetics

    International Nuclear Information System (INIS)

    Lim, T.M.; Tran, T.

    1993-01-01

    The suitability of rare earth radionuclides as tracers in research and industry are assessed. In general, the most desirable characteristics of radiotracers for process studies are a half-life in the range 5-200 days, a high yield, high energy γ-emission and low cost of production. The majority of rare earths have at least one radionuclide with acceptable characteristics. The application of radiotracers to the study of kinetics of rare earth solvent extraction have been studied using a modified Lewis cell. Terbium-160 was selected as the most suitable rare earth radionuclide for our experiments. Samples of both aqueous and organic phases were continuous withdrawn, monitored using an automated γ-counting system based on two sodium iodide detectors and then pumped back to the Lewis cell. Excellent results were obtained and the rate of extraction was shown to be first order with respect to the terbium concentration. 6 refs., 1 tab., 7 figs

  15. Mission to Planet Earth

    International Nuclear Information System (INIS)

    Wilson, G.S.; Backlund, P.W.

    1992-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the earth and how it works as a system. Increased understanding of the earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment. 8 refs

  16. Mission to Planet Earth

    Science.gov (United States)

    Tilford, Shelby G.; Asrar, Ghassem; Backlund, Peter W.

    1994-01-01

    Mission to Planet Earth (MTPE) is NASA's concept for an international science program to produce the understanding needed to predict changes in the Earth's environment. NASA and its interagency and international partners will place satellites carrying advanced sensors in strategic Earth orbits to gather multidisciplinary data. A sophisticated data system will process and archive an unprecedented amount of information about the Earth and how it works as a system. Increased understanding of the Earth system is a basic human responsibility, a prerequisite to informed management of the planet's resources and to the preservation of the global environment.

  17. Challenges in Modeling the Sun-Earth System

    Science.gov (United States)

    Spann, James

    2004-01-01

    The transfer of mass, energy and momentum through the coupled Sun-Earth system spans a wide range of scales in time and space. While profound advances have been made in modeling isolated regions of the Sun-Earth system, minimal progress has been achieved in modeling the end-to-end system. Currently, end-to-end modeling of the Sun-Earth system is a major goal of the National Space Weather and NASA Living With a Star (LWS) programs. The uncertainty in the underlying physics responsible for coupling contiguous regions of the Sun-Earth system is recognized as a significant barrier to progress. Our limited understanding of the underlying coupling physics is illustrated by the following example questions: how does the propagation of a typical CME/solar flare influence the measured properties of the solar wind at 1 AU? How does the solar wind compel the dynamic response of the Earth's magnetosphere? How is variability in the ionosphere-thermosphere system coupled to magnetospheric variations? Why do these and related important questions remain unanswered? What are the primary problems that need to be resolved to enable significant progress in comprehensive modeling of the Sun-Earth system? Which model/technique improvements are required and what new data coverage is required to enable full model advances? This poster opens the discussion for how these and other important questions can be addressed. A workshop scheduled for October 8-22, 2004 in Huntsville, Alabama, will be a forum for identifying ana exploring promising new directions and approaches for characterizing and understanding the system. To focus the discussion, the workshop will emphasize the genesis, evolution, propagation and interaction of high-speed solar wind streamers or CME/flares with geospace and the subsequent response of geospace from its outer reaches in the magnetosphere to the lower edge of the ionosphere-mesosphere-thermosphere. Particular emphasis will be placed on modeling the coupling aspects

  18. Evolution of the Oxidation State of the Earth's Mantle

    Science.gov (United States)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.

  19. EarthServer: Cross-Disciplinary Earth Science Through Data Cube Analytics

    Science.gov (United States)

    Baumann, P.; Rossi, A. P.

    2016-12-01

    The unprecedented increase of imagery, in-situ measurements, and simulation data produced by Earth (and Planetary) Science observations missions bears a rich, yet not leveraged potential for getting insights from integrating such diverse datasets and transform scientific questions into actual queries to data, formulated in a standardized way.The intercontinental EarthServer [1] initiative is demonstrating new directions for flexible, scalable Earth Science services based on innovative NoSQL technology. Researchers from Europe, the US and Australia have teamed up to rigorously implement the concept of the datacube. Such a datacube may have spatial and temporal dimensions (such as a satellite image time series) and may unite an unlimited number of scenes. Independently from whatever efficient data structuring a server network may perform internally, users (scientist, planners, decision makers) will always see just a few datacubes they can slice and dice.EarthServer has established client [2] and server technology for such spatio-temporal datacubes. The underlying scalable array engine, rasdaman [3,4], enables direct interaction, including 3-D visualization, common EO data processing, and general analytics. Services exclusively rely on the open OGC "Big Geo Data" standards suite, the Web Coverage Service (WCS). Conversely, EarthServer has shaped and advanced WCS based on the experience gained. The first phase of EarthServer has advanced scalable array database technology into 150+ TB services. Currently, Petabyte datacubes are being built for ad-hoc and cross-disciplinary querying, e.g. using climate, Earth observation and ocean data.We will present the EarthServer approach, its impact on OGC / ISO / INSPIRE standardization, and its platform technology, rasdaman.References: [1] Baumann, et al. (2015) DOI: 10.1080/17538947.2014.1003106 [2] Hogan, P., (2011) NASA World Wind, Proceedings of the 2nd International Conference on Computing for Geospatial Research

  20. Impact of major coronal mass ejections on geo-space during September 7 -- 13, 2005

    Science.gov (United States)

    Wang, Y.; Xue, X.; Shen, C.; Ye, P.; Wang, S.; Zhang, J.

    2006-05-01

    We have analyzed five major CMEs originating from NOAA active region (AR) 808 during the period of September 7 to 13, 2005, when the AR 808 rotated from the east limb to near solar meridian. Several factors that affect the probability of the CMEs' encounter with the Earth are demonstrated. The solar and interplanetary observations suggest that the 2nd and 3rd CMEs, originating from E67 and E47 respectively, encountered the Earth, while the 1st CME originating from E77 missed the Earth, and the last two CMEs, originating from E39 and E10 respectively, probably only grazed the Earth. Based on our ice-cream cone model (Xue et al. 2005a) and CME deflection model (Wang et al. 2004b), we find that the CME span angle and deflection are important for the probability of encountering. The large span angles make middle two CMEs hit the Earth, though their source locations were not close to the solar central meridian. The significant deflection makes the first CME totally missed the Earth though it also had wide span angle. The deflection may also make the last CME nearly missed the Earth though it originated close to the disk center. We suggest that, in order to effectively predict whether a CME will encounter the Earth, the factors of the CME source location, the span angle, and the interplanetary deflection should all be taken into account.

  1. Alignment of Learning Goals, Assessments and Curricula in an Earth Sciences Program to Prepare the Geoscience Workforce for the 21st Century

    Science.gov (United States)

    Mogk, D. W.; Schmitt, J.

    2013-12-01

    The Dept. of Earth Sciences, Montana State University, recently completed a comprehensive revision of its undergraduate curriculum to meet challenges and opportunities in training the next generation geoscience workforce. The department has 280 undergraduate majors in degree options that include: geology, geography (physical and human), snow science, paleontology and GIS/planning. We used a 'backward design' approach by first considering the profile of a student leaving our program: what should they know and be able to do, in anticipation of professional development for traditional (exploration, environmental, regulatory agencies) and non-traditional (planning, policy, law, business, teaching) jobs or for further training in graduate school. We adopted an Earth system approach to be better aligned with contemporary approaches to Earth science and to demonstrate the connections between sub-disciplines across the curriculum. Learning sequences were designed according to Bloom's Taxonomy to develop higher level thinking skills (starting from observations and progressing to descriptions, interpretations, applications, integration of multiple lines of evidence, synthetic and analytical thinking and evaluation). Central themes are reinforced in multiple classes: history and evolution of the Earth system, composition and architecture of Earth, surface of Earth and the 'critical zone' and human dimensions. The cornerstones of the curriculum are strong background in cognate sciences, geologic 'habits of mind', an emphasis on geologic processes and field instruction. Ancillary learning goals include development of quantitative, communication, and interpersonal skills; use of Earth data and modeling; systems thinking; research and research-like experiences; and applications to societal issues. The first year course of study includes a slate of courses to explore the Earth system, primarily to engage and recruit students to the major. Second year studies are foundational for

  2. Magnesium isotopic composition of the Earth and chondrites

    Science.gov (United States)

    Teng, Fang-Zhen; Li, Wang-Ye; Ke, Shan; Marty, Bernard; Dauphas, Nicolas; Huang, Shichun; Wu, Fu-Yuan; Pourmand, Ali

    2010-07-01

    To constrain further the Mg isotopic composition of the Earth and chondrites, and investigate the behavior of Mg isotopes during planetary formation and magmatic processes, we report high-precision (±0.06‰ on δ 25Mg and ±0.07‰ on δ 26Mg, 2SD) analyses of Mg isotopes for (1) 47 mid-ocean ridge basalts covering global major ridge segments and spanning a broad range in latitudes, geochemical and radiogenic isotopic compositions; (2) 63 ocean island basalts from Hawaii (Kilauea, Koolau and Loihi) and French Polynesia (Society Island and Cook-Austral chain); (3) 29 peridotite xenoliths from Australia, China, France, Tanzania and USA; and (4) 38 carbonaceous, ordinary and enstatite chondrites including 9 chondrite groups (CI, CM, CO, CV, L, LL, H, EH and EL). Oceanic basalts and peridotite xenoliths have similar Mg isotopic compositions, with average values of δ 25Mg = -0.13 ± 0.05 (2SD) and δ 26Mg = -0.26 ± 0.07 (2SD) for global oceanic basalts ( n = 110) and δ 25Mg = -0.13 ± 0.03 (2SD) and δ 26Mg = -0.25 ± 0.04 (2SD) for global peridotite xenoliths ( n = 29). The identical Mg isotopic compositions in oceanic basalts and peridotites suggest that equilibrium Mg isotope fractionation during partial melting of peridotite mantle and magmatic differentiation of basaltic magma is negligible. Thirty-eight chondrites have indistinguishable Mg isotopic compositions, with δ 25Mg = -0.15 ± 0.04 (2SD) and δ 26Mg = -0.28 ± 0.06 (2SD). The constancy of Mg isotopic compositions in all major types of chondrites suggest that primary and secondary processes that affected the chemical and oxygen isotopic compositions of chondrites did not significantly fractionate Mg isotopes. Collectively, the Mg isotopic composition of the Earth's mantle, based on oceanic basalts and peridotites, is estimated to be -0.13 ± 0.04 for δ 25Mg and -0.25 ± 0.07 for δ 26Mg (2SD, n = 139). The Mg isotopic composition of the Earth, as represented by the mantle, is similar to chondrites

  3. Space tourism: from earth orbit to the moon

    Science.gov (United States)

    Collins, P.

    Travel to and from the lunar surface has been known to be feasible since it was first achieved 34 years ago. Since that time there has been enormous progress in related engineering fields such as rocket propulsion, materials and avionics, and about 1 billion has been spent on lunar science and engineering research. Consequently there are no fundamental technical problems facing the development of lunar tourism - only business and investment problems. The outstanding problem is to reduce the cost of launch to low Earth orbit. Recently there has been major progress towards overturning the myth that launch costs are high because of physical limits. Several "X Prize" competitor vehicles currently in test-flight are expected to be able to perform sub-orbital flights at approximately 1/1,000 of the cost of Alan Shepard's similar flight in 1961. This activity could have started 30 years ago if space agencies had had economic rather than political objectives. A further encouraging factor is that the demand for space tourism seems potentially limitless. Starting with sub-orbital flights and growing through orbital activities, travel to the Moon will offer further unique attractions. In every human culture there is immense interest in the Moon arising from millennia of myths. In addition, bird-like flying sports, first described by Robert Heinlein, will become another powerful demand factor. Roundtrips of 1 to 2 weeks are very convenient for travel companies; and the radiation environment will permit visitors several days of surface activity without significant health risks. The paper also discusses economic aspects of lunar tourism, including the benefits it will have for those on Earth. Lunar economic development based on tourism will have much in common with economic development on Earth based on tourism: starting from the fact that many people spontaneously wish to visit popular places, companies in the tourism industry invest to sell a growing range of services to ever

  4. Experimental aspects of ion acceleration and transport in the Earth's magnetosphere

    International Nuclear Information System (INIS)

    Young, D.T.

    1985-01-01

    Major particle population within the Earth's magnetosphere have been studied via ion acceleration processes. Experimental advances over the past ten to fifteen years have demonstrated the complexity of the processes. A review is given here for areas where composition experiments have expanded perception on magnetospheric phenomena. 64 refs., 6 figs., 1 tab

  5. International Space Station Earth Observations Working Group

    Science.gov (United States)

    Stefanov, William L.; Oikawa, Koki

    2015-01-01

    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  6. NASA's Earth Observatory: 16 Years of Communicating with and for Scientists

    Science.gov (United States)

    Ward, K.; Carlowicz, M. J.; Allen, J.; Voiland, A.; Przyborski, P.; Hansen, K.; Stevens, J.

    2015-12-01

    For the past 16 years NASA's Earth Observatory website has featured stories that are driven by strong visualization and in-depth reporting and storytelling. The Earth Observatory Image of the Day is published 365 days a year and is a syndication staple for major news outlets, science-related publications, blogs and social media outlets. The daily publication pace requires that we cover a wide range of topics within NASA's portfolio of Earth science research. To meet our deadlines, and to do so competently and with the authority that a NASA-branded publication warrants, we have developed relationships with scientists from throughout the agency who both provide us with ideas for stories and review our content for accuracy. This symbiotic relationship insures that the Earth Observatory has a quality product that is syndicated, repurposed and sourced throughout popular media, resulting in science content reaching the public that might not otherwise be reported. We will discuss how we have developed our relationships and processes over the years, how we work with scientists to see the potential stories in their data, and how we package and promote these stories and visualizations for maximum exposure and reuse.

  7. Towards Big Earth Data Analytics: The EarthServer Approach

    Science.gov (United States)

    Baumann, Peter

    2013-04-01

    Big Data in the Earth sciences, the Tera- to Exabyte archives, mostly are made up from coverage data whereby the term "coverage", according to ISO and OGC, is defined as the digital representation of some space-time varying phenomenon. Common examples include 1-D sensor timeseries, 2-D remote sensing imagery, 3D x/y/t image timeseries and x/y/z geology data, and 4-D x/y/z/t atmosphere and ocean data. Analytics on such data requires on-demand processing of sometimes significant complexity, such as getting the Fourier transform of satellite images. As network bandwidth limits prohibit transfer of such Big Data it is indispensable to devise protocols allowing clients to task flexible and fast processing on the server. The EarthServer initiative, funded by EU FP7 eInfrastructures, unites 11 partners from computer and earth sciences to establish Big Earth Data Analytics. One key ingredient is flexibility for users to ask what they want, not impeded and complicated by system internals. The EarthServer answer to this is to use high-level query languages; these have proven tremendously successful on tabular and XML data, and we extend them with a central geo data structure, multi-dimensional arrays. A second key ingredient is scalability. Without any doubt, scalability ultimately can only be achieved through parallelization. In the past, parallelizing code has been done at compile time and usually with manual intervention. The EarthServer approach is to perform a samentic-based dynamic distribution of queries fragments based on networks optimization and further criteria. The EarthServer platform is comprised by rasdaman, an Array DBMS enabling efficient storage and retrieval of any-size, any-type multi-dimensional raster data. In the project, rasdaman is being extended with several functionality and scalability features, including: support for irregular grids and general meshes; in-situ retrieval (evaluation of database queries on existing archive structures, avoiding data

  8. Basic Earth's Parameters as estimated from VLBI observations

    Directory of Open Access Journals (Sweden)

    Ping Zhu

    2017-11-01

    Full Text Available The global Very Long Baseline Interferometry observation for measuring the Earth rotation's parameters was launched around 1970s. Since then the precision of the measurements is continuously improving by taking into account various instrumental and environmental effects. The MHB2000 nutation model was introduced in 2002, which is constructed based on a revised nutation series derived from 20 years VLBI observations (1980–1999. In this work, we firstly estimated the amplitudes of all nutation terms from the IERS-EOP-C04 VLBI global solutions w.r.t. IAU1980, then we further inferred the BEPs (Basic Earth's Parameters by fitting the major nutation terms. Meanwhile, the BEPs were obtained from the same nutation time series using a BI (Bayesian Inversion. The corrections to the precession rate and the estimated BEPs are in an agreement, independent of which methods have been applied.

  9. Fuel optimization for low-thrust Earth-Moon transfer via indirect optimal control

    Science.gov (United States)

    Pérez-Palau, Daniel; Epenoy, Richard

    2018-02-01

    The problem of designing low-energy transfers between the Earth and the Moon has attracted recently a major interest from the scientific community. In this paper, an indirect optimal control approach is used to determine minimum-fuel low-thrust transfers between a low Earth orbit and a Lunar orbit in the Sun-Earth-Moon Bicircular Restricted Four-Body Problem. First, the optimal control problem is formulated and its necessary optimality conditions are derived from Pontryagin's Maximum Principle. Then, two different solution methods are proposed to overcome the numerical difficulties arising from the huge sensitivity of the problem's state and costate equations. The first one consists in the use of continuation techniques. The second one is based on a massive exploration of the set of unknown variables appearing in the optimality conditions. The dimension of the search space is reduced by considering adapted variables leading to a reduction of the computational time. The trajectories found are classified in several families according to their shape, transfer duration and fuel expenditure. Finally, an analysis based on the dynamical structure provided by the invariant manifolds of the two underlying Circular Restricted Three-Body Problems, Earth-Moon and Sun-Earth is presented leading to a physical interpretation of the different families of trajectories.

  10. Earth

    CERN Document Server

    Carter, Jason

    2017-01-01

    This curriculum-based, easy-to-follow book teaches young readers about Earth as one of the eight planets in our solar system in astronomical terms. With accessible text, it provides the fundamental information any student needs to begin their studies in astronomy, such as how Earth spins and revolves around the Sun, why it's uniquely suitable for life, its physical features, atmosphere, biosphere, moon, its past, future, and more. To enhance the learning experience, many of the images come directly from NASA. This straightforward title offers the fundamental information any student needs to sp

  11. Origin of Volatiles in Earth: Indigenous Versus Exogenous Sources Based on Highly Siderophile, Volatile Siderophile, and Light Volatile Elements

    Science.gov (United States)

    Righter, K.; Danielson, L.; Pando, K. M.; Marin, N.; Nickodem, K.

    2015-01-01

    Origin of Earth's volatiles has traditionally been ascribed to late accretion of material after major differentiation events - chondrites, comets, ice or other exogenous sources. A competing theory is that the Earth accreted its volatiles as it was built, thus water and other building blocks were present early and during differentiation and core formation (indigenous). Here we discuss geochemical evidence from three groups of elements that suggests Earth's volatiles were acquired during accretion and did not require additional sources after differentiation.

  12. Using NASA Space Imaging Technology to Teach Earth and Sun Topics

    Science.gov (United States)

    Verner, E.; Bruhweiler, F. C.; Long, T.

    2011-12-01

    We teach an experimental college-level course, directed toward elementary education majors, emphasizing "hands-on" activities that can be easily applied to the elementary classroom. This course, Physics 240: "The Sun-Earth Connection" includes various ways to study selected topics in physics, earth science, and basic astronomy. Our lesson plans and EPO materials make extensive use of NASA imagery and cover topics about magnetism, the solar photospheric, chromospheric, coronal spectra, as well as earth science and climate. In addition we are developing and will cover topics on ecosystem structure, biomass and water on Earth. We strive to free the non-science undergraduate from the "fear of science" and replace it with the excitement of science such that these future teachers will carry this excitement to their future students. Hands-on experiments, computer simulations, analysis of real NASA data, and vigorous seminar discussions are blended in an inquiry-driven curriculum to instill confident understanding of basic physical science and modern, effective methods for teaching it. The course also demonstrates ways how scientific thinking and hands-on activities could be implemented in the classroom. We have designed this course to provide the non-science student a confident basic understanding of physical science and modern, effective methods for teaching it. Most of topics were selected using National Science Standards and National Mathematics Standards that are addressed in grades K-8. The course focuses on helping education majors: 1) Build knowledge of scientific concepts and processes; 2) Understand the measurable attributes of objects and the units and methods of measurements; 3) Conduct data analysis (collecting, organizing, presenting scientific data, and to predict the result); 4) Use hands-on approaches to teach science; 5) Be familiar with Internet science teaching resources. Here we share our experiences and challenges we face while teaching this course.

  13. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    Science.gov (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  14. Plant litter dynamics in the forest-stream interface: precipitation is a major control across tropical biomes

    OpenAIRE

    Tonin, Alan M.; Gon?alves, Jos? F.; Bambi, Paulino; Couceiro, Sheyla R. M.; Feitoza, Lorrane A. M.; Fontana, Lucas E.; Hamada, Neusa; Hepp, Luiz U.; Lezan-Kowalczuk, V?nia G.; Leite, Gustavo F. M.; Lemes-Silva, Aurea L.; Lisboa, Leonardo K.; Loureiro, Rafael C.; Martins, Renato T.; Medeiros, Adriana O.

    2017-01-01

    Riparian plant litter is a major energy source for forested streams across the world and its decomposition has repercussions on nutrient cycling, food webs and ecosystem functioning. However, we know little about plant litter dynamics in tropical streams, even?though the tropics occupy 40% of the Earth?s land surface. Here we investigated spatial and temporal (along a year cycle) patterns of litter inputs and storage in multiple streams of three tropical biomes in Brazil (Atlantic forest, Ama...

  15. The ClearEarth Project: Preliminary Findings from Experiments in Applying the CLEARTK NLP Pipeline and Annotation Tools Developed for Biomedicine to the Earth Sciences

    Science.gov (United States)

    Duerr, R.; Thessen, A.; Jenkins, C. J.; Palmer, M.; Myers, S.; Ramdeen, S.

    2016-12-01

    The ability to quickly find, easily use and effortlessly integrate data from a variety of sources is a grand challenge in Earth sciences, one around which entire research programs have been built. A myriad of approaches to tackling components of this challenge have been demonstrated, often with some success. Yet finding, assessing, accessing, using and integrating data remains a major challenge for many researchers. A technology that has shown promise in nearly every aspect of the challenge is semantics. Semantics has been shown to improve data discovery, facilitate assessment of a data set, and through adoption of the W3C's Linked Data Platform to have improved data integration and use at least for data amenable to that paradigm. Yet the creation of semantic resources has been slow. Why? Amongst a plethora of other reasons, it is because semantic expertise is rare in the Earth and Space sciences; the creation of semantic resources for even a single discipline is labor intensive and requires agreement within the discipline; best practices, methods and tools for supporting the creation and maintenance of the resources generated are in flux; and the human and financial capital needed are rarely available in the Earth sciences. However, other fields, such as biomedicine, have made considerable progress in these areas. The NSF-funded ClearEarth project is adapting the methods and tools from these communities for the Earth sciences in the expectation that doing so will enhance progress and the rate at which the needed semantic resources are created. We discuss progress and results to date, lessons learned from this adaptation process, and describe our upcoming efforts to extend this knowledge to the next generation of Earth and data scientists.

  16. The Path from Large Earth Science Datasets to Information

    Science.gov (United States)

    Vicente, G. A.

    2013-12-01

    The NASA Goddard Earth Sciences Data (GES) and Information Services Center (DISC) is one of the major Science Mission Directorate (SMD) for archiving and distribution of Earth Science remote sensing data, products and services. This virtual portal provides convenient access to Atmospheric Composition and Dynamics, Hydrology, Precipitation, Ozone, and model derived datasets (generated by GSFC's Global Modeling and Assimilation Office), the North American Land Data Assimilation System (NLDAS) and the Global Land Data Assimilation System (GLDAS) data products (both generated by GSFC's Hydrological Sciences Branch). This presentation demonstrates various tools and computational technologies developed in the GES DISC to manage the huge volume of data and products acquired from various missions and programs over the years. It explores approaches to archive, document, distribute, access and analyze Earth Science data and information as well as addresses the technical and scientific issues, governance and user support problem faced by scientists in need of multi-disciplinary datasets. It also discusses data and product metrics, user distribution profiles and lessons learned through interactions with the science communities around the world. Finally it demonstrates some of the most used data and product visualization and analyses tools developed and maintained by the GES DISC.

  17. Linkages between the Urban Environment and Earth's Climate System

    Science.gov (United States)

    Shepherd, J. Marshall; Jin, Menglin

    2003-01-01

    Urbanization is one of the extreme cases of land use change. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025 60% of the world s population will live in cities (UNFP, 1999). Though urban areas are local in scale, human activity in urban environments has impacts at local, to global scale by changing atmospheric composition; impacting components of the water cycle; and modifying the carbon cycle 2nd ecosystems. For example, urban dwellers are undoubtedly familiar with "high" ozone pollution days, flash flooding in city streets, or heat stress on summer days. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s weather, oceans, and land work together and the influence of the urban environment on this climate system is critical. This paper highlights some of the major and current issues involving interactions between urban environments and the Earth's climate system. It also captures some of the most current thinking and findings of the authors and key experts in the field.

  18. Giant Impacts on Earth-Like Worlds

    Science.gov (United States)

    Kohler, Susanna

    2016-05-01

    Earth has experienced a large number of impacts, from the cratering events that may have caused mass extinctions to the enormous impact believed to have formed the Moon. A new study examines whether our planets impact history is typical for Earth-like worlds.N-Body ChallengesTimeline placing the authors simulations in context of the history of our solar system (click for a closer look). [Quintana et al. 2016]The final stages of terrestrial planet formation are thought to be dominated by giant impacts of bodies in the protoplanetary disk. During this stage, protoplanets smash into one another and accrete, greatly influencing the growth, composition, and habitability of the final planets.There are two major challenges when simulating this N-body planet formation. The first is fragmentation: since computational time scales as N^2, simulating lots of bodies that split into many more bodies is very computationally intensive. For this reason, fragmentation is usually ignored; simulations instead assume perfect accretion during collisions.Total number of bodies remaining within the authors simulations over time, with fragmentation included (grey) and ignored (red). Both simulations result in the same final number of bodies, but the ones that include fragmentation take more time to reach that final number. [Quintana et al. 2016]The second challengeis that many-body systems are chaotic, which means its necessary to do a large number of simulations to make statistical statements about outcomes.Adding FragmentationA team of scientists led by Elisa Quintana (NASA NPP Senior Fellow at the Ames Research Center) has recently pushed at these challenges by modeling inner-planet formation using a code that does include fragmentation. The team ran 140 simulations with and 140 without the effects of fragmentation using similar initial conditions to understand how including fragmentation affects the outcome.Quintana and collaborators then used the fragmentation-inclusive simulations to

  19. Rare earth octacyanomolybdates(4)

    International Nuclear Information System (INIS)

    Zubritskaya, D.I.; Sergeeva, A.N.; Pisak, Yu.V.

    1980-01-01

    Optimal conditions for synthesis of rare-earth octacyanomolybdates(4) of the Ln 4 [Mo(CN) 8 ] 3 xnH 2 O composition (where Ln is a rare-earth element, other than Pr, Pm, Lu, Tb) have been worked out. The synthesis has been accomplished by neutralization with octacianomolybdic acid with rare-earth carbonates. The composition and structure of the compounds synthesized have been studied by infrared-spectroscopy. It has been established that rare-earth octacyanomolybdates(4) form three isostructural groups

  20. Rare earths as a future resource

    International Nuclear Information System (INIS)

    Cornell, D.H.

    1988-01-01

    The fourteen rare earth or lanthanide elements have recently emerged as an important natural resource because of the rapidly growing demand in the electronic, chemical and metallurgical industries. The Symposium on rare earth elements as a future resource presented a multidisciplinary review of rare earth chemistry, geology, beneficiation, industrial applications and marketing. Papers by experts in many fields were presented on the following topics: chemical properties of the rare earth elements; the analysis of rare earth elements and minerals; beneficiation and extraction of rare earth elements; economic geochemistry and mineralogy of rare earths; present industrial uses of rare earth elements; the role of rare earth elements in high-temperature superconductors; the technical application of high-temperature superconductors; supply and demand for rare earth products - now and in the future, and the geology of rare earth deposits

  1. The search for Near Earth Objects - why dark skies are critically important

    Science.gov (United States)

    Wainscoat, Richard

    2015-08-01

    Impact of Earth by asteroids is perhaps the only natural disaster that can be prevented. If an asteroid that will impact Earth can be identified sufficiently early, it is possible to modify its orbit to eliminate the impact. As a consequence, a major effort is presently underway to identify Near Earth Objects (NEOs) that may present a threat to Earth. The impact of a 20-meter diameter object near Chelyabinsk, Russia, provided a spectacular reminder of the threat that these objects present. Although no deaths were caused, injuries and a large amount of property damage were caused.The search for NEOs is mostly funded by NASA. The principal search telescopes are the Pan-STARRS telescopes, located on Haleakala, Maui, Hawaii, and the Catalina Sky Survey, located near Tucson, Arizona. Both of these locations are seriously threatened by light pollution. A new survey, ATLAS, will commence shortly, with one telescope located on Haleakala, Maui, and the other telescope located on Mauna Loa, Hawaii (which is less threatened).Artificial light (i.e., light pollution) at these observing sites raises the sky background, and makes faint objects harder or impossible to see.Searches for Near Earth Objects typically use very broad passbands in order to obtain the maximum amount of light. These passbands typically stretch from 400 to 820 nm. As such, they are very vulnerable to the changes in lighting that are occurring across the globe, with widespread introduction of blue-rich white lighting. It is critically important in all of these locations to limit the amount of blue light that is so readily scattered by the atmosphere.A network of followup telescopes, spread across the planet, play a crucial role in the discovery of NEOs. After a new NEO is identified by the survey telescopes such as Pan-STARRS and Catalina, additional observations must be secured to establish its orbit, and in order to determine whether it poses a threat to Earth. The majority of these followup telescopes are

  2. A new model of the Earth system nitrogen cycle: how plates and life affect the atmosphere

    Science.gov (United States)

    Johnson, B. W.; Goldblatt, C.

    2017-12-01

    Nitrogen is the main component of Earth's atmosphere. It plays a key role in the evolution of the biosphere and surface of Earth [1]. There are contrasting views, however, on how N has evolved on the surface of the Earth over time. Some modeling efforts [e.g., 2] indicate a steady-state level of N in the atmosphere over geologic time, while geochemical [e.g., 3], other proxies [e.g., 4], and more recent models [5] indicate the mass of N in the atmosphere can change dramatically over Earth history. This conundrum, and potential solutions to it, present distinct interpretations of the history of Earth, and teleconnections between the surface and interior of the planet have applications to other terrestrial bodies as well. To help investigate this conundrum, we have constructed an Earth-system N cycle box model. To our knowledge, this is the most capable model for addressing evolution of the N reservoirs of Earth through time. The model combines biologic and geologic processes, driven by a mantle cooling history, to more fully describe the N cycle through geologic history. In addition to a full biologic N cycle (fixing, nitrification, denitrification), we also dynamically solve for PO4 through time and we have a prescribed O2 history. Results indicate that the atmosphere of Earth could have experienced major changes in mass over geologic time. Importantly, the amount of N in the atmosphere today appears to be directly related to the total N budget of the silicate Earth. For example, high initial atmospheric mass, suggested as a solution to the Faint Young Sun Paradox [1], is drawn down over time. This supports work that indicates the mantle has significantly more N than the atmosphere does today [6]. Contrastingly, model runs with low total N result in a crash in atmospheric mass. In nearly all model runs the bulk silicate Earth contains the majority of the planet's N. [1] Goldblatt et al. (2009) Nat. Geosci., 2, 891-896. [2] Berner, R. (2006) Geology., 34, 413

  3. Pyrethroid resistance discovered in a major agricultural pest in southern Australia: the redlegged earth mite Halotydeus destructor (Acari: Penthaleidae).

    Science.gov (United States)

    Umina, Paul A

    2007-12-01

    The redlegged earth mite (Halotydeus destructor Tucker) is an important pest of field crops and pastures. Control of this pest relies heavily on chemicals, with few genuine alternatives presently available. Pesticide responses of H. destructor from the field with reported chemical control failures were compared with mites from susceptible 'control' populations. Toxicology bioassays were conducted on adult mites across multiple generations. Very high levels of resistance to two synthetic pyrethroids, bifenthrin and alpha-cypermethrin, were detected in this species for the first time. For bifenthrin, LC(50) estimates showed a difference in resistance of greater than 240 000-fold. Resistance to alpha-cypermethrin was almost 60 000-fold. This resistance was shown to be heritable, persisting after several generations of culturing. There was no evidence that resistance to organophosphorus chemicals had evolved, which is likely to be a direct consequence of the history of chemical applications these mites have experienced. These results highlight the need for more judicious management decisions in order to control pest species in a sustainable manner. The implications of these findings in regard to the management and future research of the redlegged earth mite are discussed. Copyright (c) 2007 Society of Chemical Industry.

  4. DAsHER CD: Developing a Data-Oriented Human-Centric Enterprise Architecture for EarthCube

    Science.gov (United States)

    Yang, C. P.; Yu, M.; Sun, M.; Qin, H.; Robinson, E.

    2015-12-01

    One of the biggest challenges that face Earth scientists is the resource discovery, access, and sharing in a desired fashion. EarthCube is targeted to enable geoscientists to address the challenges by fostering community-governed efforts that develop a common cyberinfrastructure for the purpose of collecting, accessing, analyzing, sharing and visualizing all forms of data and related resources, through the use of advanced technological and computational capabilities. Here we design an Enterprise Architecture (EA) for EarthCube to facilitate the knowledge management, communication and human collaboration in pursuit of the unprecedented data sharing across the geosciences. The design results will provide EarthCube a reference framework for developing geoscience cyberinfrastructure collaborated by different stakeholders, and identifying topics which should invoke high interest in the community. The development of this EarthCube EA framework leverages popular frameworks, such as Zachman, Gartner, DoDAF, and FEAF. The science driver of this design is the needs from EarthCube community, including the analyzed user requirements from EarthCube End User Workshop reports and EarthCube working group roadmaps, and feedbacks or comments from scientists obtained by organizing workshops. The final product of this Enterprise Architecture is a four-volume reference document: 1) Volume one is this document and comprises an executive summary of the EarthCube architecture, serving as an overview in the initial phases of architecture development; 2) Volume two is the major body of the design product. It outlines all the architectural design components or viewpoints; 3) Volume three provides taxonomy of the EarthCube enterprise augmented with semantics relations; 4) Volume four describes an example of utilizing this architecture for a geoscience project.

  5. EarthN: A new Earth System Nitrogen Model

    OpenAIRE

    Johnson, Benjamin W.; Goldblatt, Colin

    2018-01-01

    The amount of nitrogen in the atmosphere, oceans, crust, and mantle have important ramifications for Earth's biologic and geologic history. Despite this importance, the history and cycling of nitrogen in the Earth system is poorly constrained over time. For example, various models and proxies contrastingly support atmospheric mass stasis, net outgassing, or net ingassing over time. In addition, the amount available to and processing of nitrogen by organisms is intricately linked with and prov...

  6. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  7. Simultaneous determination of dysprosium, holmium and erbium in high purity rare earth oxides by second order derivative spectrophotometry

    International Nuclear Information System (INIS)

    Anbu, M.; Prasada Rao, T.; Iyer, C. S. P.; Damodaran, A. D.

    1996-01-01

    High purity individual rare earth oxides are increasingly used as major components in lasers (Y 2 O 3 ), phosphors (YVO 3 , Eu 2 O 3 ), magnetic bubble memory films (Gd 2 O 3 ) and refractive-index lenses and fibre optics (La 2 O 3 ). The determination of individual lanthanides in high purity rare earth oxides is a more important and difficult task. This paper reports the utilization of higher order derivative spectrophotometry for the simultaneous determination of dysprosium, holmium and erbium in high purity rare earth oxides. The developed procedure is simple, reliable and allows the determination of 0.001 to 0.2% of dysprosium, holmium and erbium in several rare earth. (author). 9 refs, 2 figs, 2 tabs

  8. A comprehensive mission to planet Earth: Woods Hole Space Science and Applications Advisory Committee Planning Workshop

    Science.gov (United States)

    1991-01-01

    The NASA program Mission to Planet Earth (MTPE) is described in this set of visuals presented in Massachusetts on July 29, 1991. The problem presented in this document is that the earth system is changing and that human activity accelerates the rate of change resulting in increased greenhouse gases, decreasing levels of stratospheric ozone, acid rain, deforestation, decreasing biodiversity, and overpopulation. Various national and international organizations are coordinating global change research. The complementary space observations for this activity are sun-synchronous polar orbits, low-inclination, low altitude orbits, geostationary orbits, and ground measurements. The Geostationary Earth Observatory is the major proposed mission of MTPE. Other proposed missions are EOS Synthetic Aperture Radar, ARISTOTELES Magnetic Field Experiment, and the Global Topography Mission. Use of the NASA DC-8 aircraft is outlined as carrying out the Airborne Science and Applications Program. Approved Earth Probes Program include the Total Ozone Mapping Spectrometer (TOMS). Other packages for earth observation are described.

  9. Initial Results of On-Line Earth System Science Course Offerings at the University of Nebraska-Omaha Through the Earth System Science Education Alliance

    Science.gov (United States)

    Shuster, R. D.; Grandgenett, N. F.; Schnase, W. L.; Hamersky, S.; Moshman, R.

    2008-12-01

    The University of Nebraska at Omaha has been offering on-line Earth System Science coursework to teachers in Nebraska since 2002. UNO was one of the initial members in the Earth Systems Science Education Alliance (ESSEA) and has offered three different ESSEA courses, with nearly 200 students having taken ESSEA courses at UNO for graduate credit. Our experiences in delivering this coursework have involved both teachers who have received a stipend to take the course and those who have paid their own tuition and fees and received graduate credit for the course. We will report on the online behavior of teachers from both populations and also discuss pros and cons of each approach. UNO has also experimented with different approaches in the support and management of the course, including using undergraduate majors as content experts. This improves access of teachers to content-related feedback and is a positive experience for the undergraduate major. Feedback surveys from earlier ESSEA offerings indicate a strongly positive perception of the courses by the teachers enrolled in the coursework. Project impact has been documented in teacher projects, quotes, and lessons associated with the coursework activities. We will also describe online course modules being developed within the UNO online course efforts, including one focusing on the global amphibian crisis.

  10. Role of light satellites in the high-resolution Earth observation domain

    Science.gov (United States)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  11. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  12. Comparison of the distribution of large magmatic centers on Earth, Venus, and Mars

    Science.gov (United States)

    Crumpler, L. S.

    1993-01-01

    Volcanism is widely distributed over the surfaces of the major terrestrial planets: Venus, Earth, and Mars. Anomalous centers of magmatic activity occur on each planet and are characterized by evidence for unusual concentrations of volcanic centers, long-lived activity, unusual rates of effusion, extreme size of volcanic complexes, compositionally unusual magmatism, and evidence for complex geological development. The purpose of this study is to compare the characteristics and distribution of these magmatic anomalies on Earth, Venus, and Mars in order to assess these characteristics as they may relate to global characteristics and evolution of the terrestrial planets.

  13. Modernizing Earth and Space Science Modeling Workflows in the Big Data Era

    Science.gov (United States)

    Kinter, J. L.; Feigelson, E.; Walker, R. J.; Tino, C.

    2017-12-01

    Modeling is a major aspect of the Earth and space science research. The development of numerical models of the Earth system, planetary systems or astrophysical systems is essential to linking theory with observations. Optimal use of observations that are quite expensive to obtain and maintain typically requires data assimilation that involves numerical models. In the Earth sciences, models of the physical climate system are typically used for data assimilation, climate projection, and inter-disciplinary research, spanning applications from analysis of multi-sensor data sets to decision-making in climate-sensitive sectors with applications to ecosystems, hazards, and various biogeochemical processes. In space physics, most models are from first principles, require considerable expertise to run and are frequently modified significantly for each case study. The volume and variety of model output data from modeling Earth and space systems are rapidly increasing and have reached a scale where human interaction with data is prohibitively inefficient. A major barrier to progress is that modeling workflows isn't deemed by practitioners to be a design problem. Existing workflows have been created by a slow accretion of software, typically based on undocumented, inflexible scripts haphazardly modified by a succession of scientists and students not trained in modern software engineering methods. As a result, existing modeling workflows suffer from an inability to onboard new datasets into models; an inability to keep pace with accelerating data production rates; and irreproducibility, among other problems. These factors are creating an untenable situation for those conducting and supporting Earth system and space science. Improving modeling workflows requires investments in hardware, software and human resources. This paper describes the critical path issues that must be targeted to accelerate modeling workflows, including script modularization, parallelization, and

  14. Project Earth Science

    CERN Document Server

    Holt, Geoff

    2011-01-01

    Project Earth Science: Astronomy, Revised 2nd Edition, involves students in activities that focus on Earth's position in our solar system. How do we measure astronomical distances? How can we look back in time as we gaze across vast distances in space? How would our planet be different without its particular atmosphere and distance to our star? What are the geometries among Earth, the Moon, and the Sun that yield lunar phases and seasons? Students explore these concepts and others in 11 teacher-tested activities.

  15. Major Gravitational Phenomena Explained by the Micro-Quanta Paradigm

    Directory of Open Access Journals (Sweden)

    Michelini M.

    2010-01-01

    Full Text Available Some major problems of physics, which remained unsolved within classical and rel- ativistic gravitation theories, are explained adopting the quantum gravity interaction descending from the micro-quanta paradigm. The energy source of the gravitational power P g r , which heats and contracts the Bok’s gas globules harbouring the future stars, is identified and defined as well as the gravitational power generated on the solid / fluid planets. Calculations are carried out to make the comparison between P g r predicted for the solar giant planets and the measured infrared radiation power P int coming from the interior. The case of planets with solid crust (Earth, etc. requires a particular attention due to the threat to stability produced by the thermal dilatation. An analysis is done of the Earth’s planetary equilibrium which may be attained eliminating the temperature rise through the migration of hot internal magma across the crust fractured by earth- quakes. The temperatures observed up to 420,000 years ago in Antartica through Vostok and Epica ice cores suggest the possibility that the Earth gravitational power P g r may be radiated in space through these temperature cycles (Glacial Eras. In this general frame the Earth’s high seismicity and the dynamics of Plate tectonics may find their origin.

  16. Heavy mineral survey for rare earths in the Northern part of Palawan

    International Nuclear Information System (INIS)

    Reyes, R.Y.; Santos, G.P.; Magsambol, W.N.; Ramos, A.F.; Petrache, C.A.; Tabora, E.U.

    1992-01-01

    A reconnaissance geochemical survey for rare earths was carried out over the northern half of Palawan with considerable success. The survey represents the first systematic geochemical exploration effort to look for indigenous rare earth resources in the Philippines. Total area covered was about 5,000 sq km. The survey entailed the systematic collection of 740 heavy mineral panned concentrate and stream sediment samples along streams and rivers. The average sampling density was about one set of sample per 2-15 sq km. A total of 218 heavy mineral samples were analyzed for lathanum, cerium, praseodymium, neodymium and yttrium. Analysis of stream sediments for rare earths was discontinued due to the high detection limit of the X-ray fluorescence spectrometer. Results of the survey clearly indicated the effectiveness of heavy mineral sampling for rare earths at the reconnaissance level of exploration. Six anomalous and well-defined areas of interest were delineated for possible rare earth mineralization. Three priority zones were further outlined from the six prospective areas for possible follow-up surveys. Mineralogical examination of heavy minerals revealed the presence of major allanite and minor monazite as the potential hosts of rare earths in the priority zone number one. Gray monazite was identified in the priority zone number two as the rare earth mineral. Minute specks and grains of gold were visibly present in some of the heavy mineral samples taken in this area. A combined mineralization of rare earths and gold in this area is a possibility. The discovery of the first gray nodular monazite in Palawan may extend the age of the oldest rocks in the Philippines to Lower Paleozoic. A separate study to establish the age of the oldest rocks in the country is likewise necessary. (auth.). 27 refs.; 6 figs.; 8 tabs

  17. Studies with the EC-Earth seamless Earth system prediction model

    NARCIS (Netherlands)

    Hazeleger, W.; Bintanja, R.

    2012-01-01

    EC-Earth is a new Earth System Model (ESM) based on the operational seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF). Climate and weather forecasting applications share a common ancestry and are build on the same physical principles. The emerging concept of

  18. Penguin heat-retention structures evolved in a greenhouse Earth

    OpenAIRE

    Thomas, Daniel B.; Ksepka, Daniel T.; Fordyce, R. Ewan

    2010-01-01

    Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humer...

  19. Tidal effects on Earth, Planets, Sun by far visiting moons

    Science.gov (United States)

    Fargion, Daniele

    2016-07-01

    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  20. Cratering record in the inner solar system: Implications for earth

    International Nuclear Information System (INIS)

    Barlow, N.G.

    1988-01-01

    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters

  1. Public Access to NASA's Earth Science Data

    Science.gov (United States)

    Behnke, J.; James, N.

    2013-12-01

    Many steps have been taken over the past 20 years to make NASA's Earth Science data more accessible to the public. The data collected by NASA represent a significant public investment in research. NASA holds these data in a public trust to promote comprehensive, long-term Earth science research. Consequently, NASA developed a free, open and non-discriminatory policy consistent with existing international policies to maximize access to data and to keep user costs as low as possible. These policies apply to all data archived, maintained, distributed or produced by NASA data systems. The Earth Observing System Data and Information System (EOSDIS) is a major core capability within NASA Earth Science Data System Program. EOSDIS is designed to ingest, process, archive, and distribute data from approximately 90 instruments. Today over 6800 data products are available to the public through the EOSDIS. Last year, EOSDIS distributed over 636 million science data products to the user community, serving over 1.5 million distinct users. The system supports a variety of science disciplines including polar processes, land cover change, radiation budget, and most especially global climate change. A core philosophy of EOSDIS is that the general user is best served by providing discipline specific support for the data. To this end, EOSDIS has collocated NASA Earth science data with centers of science discipline expertise, called Distributed Active Archive Centers (DAACs). DAACs are responsible for data management, archive and distribution of data products. There are currently twelve DAACs in the EOSDIS system. The centralized entrance point to the NASA Earth Science data collection can be found at http://earthdata.nasa.gov. Over the years, we have developed several methods for determining needs of the user community including use of the American Customer Satisfaction Index survey and a broad metrics program. Annually, we work with an independent organization (CFI Group) to send this

  2. Rare Earth Elements: Overview of Mining, Mineralogy, Uses, Sustainability and Environmental Impact

    Directory of Open Access Journals (Sweden)

    Nawshad Haque

    2014-10-01

    Full Text Available Rare earths are used in the renewable energy technologies such as wind turbines, batteries, catalysts and electric cars. Current mining, processing and sustainability aspects have been described in this paper. Rare earth availability is undergoing a temporary decline due mainly to quotas being imposed by the Chinese government on export and action taken against illegal mining operations. The reduction in availability coupled with increasing demand has led to increased prices for rare earths. Although the prices have come down recently, this situation is likely to be volatile until material becomes available from new sources or formerly closed mines are reopened. Although the number of identified deposits in the world is close to a thousand, there are only a handful of actual operating mines. Prominent currently operating mines are Bayan Obo in China, Mountain Pass in the US and recently opened Mount Weld in Australia. The major contributor to the total greenhouse gas (GHG footprint of rare earth processing is hydrochloric acid (ca. 38%, followed by steam use (32% and electricity (12%. Life cycle based water and energy consumption is significantly higher compared with other metals.

  3. GSA's Teacher Advocate Program - getting teachers to be advocates for Earth Science

    Science.gov (United States)

    Lewis, G. B.

    2011-12-01

    After parents, teachers are they most influential people when it comes to students leaning about their world. However, when it comes to Earth science, the vast majority of our teachers have little to no Earth science training and lack the resources to run exciting and challenging classes on Earth science topics for their students. The Geological Society of America (GSA) is committed to reversing that trend by developing easy to use resources and training teachers on how to use them in their classrooms. Through a program called the Teacher Advocate Program (TAP), GSA has already had teachers using Earth science materials with over 6 million students (1.3 million a year). Formally established in 2003, TAP aims to raise the number of teachers who are advocates for geoscience in their classrooms, schools and school districts by providing those teachers with: Low cost teaching resources that provide them with teaching notes, teaching materials (images, models etc) and usable class room activities. Low cost training opportunities for teachers on how to use TAP materials. In-field experiences for teachers to provide them with teaching materials and insights.

  4. The International Year of Planet Earth (2007-2009):Earth Sciences for Society

    Institute of Scientific and Technical Information of China (English)

    Eduardo F.J.de Mulder; Ted Nield; Edward Derbyshire

    2006-01-01

    Natural disasters like the 2004 tsunami bear graphic testimony to the Earth's incredible power. More effective use of geoscientific knowledge can save lives and protect property. Such knowledge also enables us to satisfy, in a sustainable manner,the growing need for Earth's resources by an expanding human population. Such knowledge is readily available in the practical experience and publications of some half a million Earth scientists all over the world, a professional community that is ready and willing to contribute to a safer, healthier and wealthier society if called upon by politicians and decision makers. Professional guidance by Earth scientists is available in many aspects of everyday life including, for example, identification of the best areas for urban expansion, sites to avoid for waste disposal, the location of new underground fresh water resources, and where certain toxic agents implicated in Earth-related diseases may be located, etc.The International Year of Planet Earth (2007-2009) aims to build on existing knowledge and make it more available for the improvement of everyday life, especially in the less developed countries, as expressed in the Year's subtitle: Earth sciences for Society. Ambitious outreach and science programmes constitute the backbone of the International Year, now politically endorsed by all 191 member states of the United Nations Organisation which has proclaimed 2008, the central year of the triennium, as the UN Year of Planet Earth. This paper describes who is behind the initiative,how it will work, and how the political process leading to United Nations proclamation proceeded. It also describes the financial and organisational aspects of the International Year, sets out the commitments necessary for the realization of the Year's ambitions by all nations, and explains how the raising of US$ 20 million will be approached.

  5. Earth BioGenome Project: Sequencing life for the future of life.

    Science.gov (United States)

    Lewin, Harris A; Robinson, Gene E; Kress, W John; Baker, William J; Coddington, Jonathan; Crandall, Keith A; Durbin, Richard; Edwards, Scott V; Forest, Félix; Gilbert, M Thomas P; Goldstein, Melissa M; Grigoriev, Igor V; Hackett, Kevin J; Haussler, David; Jarvis, Erich D; Johnson, Warren E; Patrinos, Aristides; Richards, Stephen; Castilla-Rubio, Juan Carlos; van Sluys, Marie-Anne; Soltis, Pamela S; Xu, Xun; Yang, Huanming; Zhang, Guojie

    2018-04-24

    Increasing our understanding of Earth's biodiversity and responsibly stewarding its resources are among the most crucial scientific and social challenges of the new millennium. These challenges require fundamental new knowledge of the organization, evolution, functions, and interactions among millions of the planet's organisms. Herein, we present a perspective on the Earth BioGenome Project (EBP), a moonshot for biology that aims to sequence, catalog, and characterize the genomes of all of Earth's eukaryotic biodiversity over a period of 10 years. The outcomes of the EBP will inform a broad range of major issues facing humanity, such as the impact of climate change on biodiversity, the conservation of endangered species and ecosystems, and the preservation and enhancement of ecosystem services. We describe hurdles that the project faces, including data-sharing policies that ensure a permanent, freely available resource for future scientific discovery while respecting access and benefit sharing guidelines of the Nagoya Protocol. We also describe scientific and organizational challenges in executing such an ambitious project, and the structure proposed to achieve the project's goals. The far-reaching potential benefits of creating an open digital repository of genomic information for life on Earth can be realized only by a coordinated international effort.

  6. OpenEarth : Using Google Earth as outreach for NCK's data

    NARCIS (Netherlands)

    de Boer, G.J.; Baart, F.; Bruens, A.; Damsma, T.; van Geer, P.; Grasmeijer, B.; den Heijer, C.; van Koningsveld, M.; Santinelli, G.

    2012-01-01

    In 2003 various projects at Deltares and the TU-Delft merged their toolboxes for marine and coastal science and engineering into one toolbox, culminating in 2008 in an open source release, known as OpenEarthTools (OET). OpenEarth adopts the wikipedia approach to growth: web 2.0 crowd sourcing. All

  7. The earth's gravitational field

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    . But to say that gravity acts downwards is not correct. Gravity acts down, no matter where you stand on the Earth. It is better to say that on Earth gravity pulls objects towards the centre of the Earth. So no matter where you are on Earth all objects fall... pull than objects at the poles. In combination, the equatorial bulge and the effects of centrifugal force mean that sea-level gravitational acceleration increases from about 9.780 m/s² at the equator to about 9.832 m/s² at the poles, so an object...

  8. Sun-Earth Scientists and Native Americans Collaborate on Sun-Earth Day

    Science.gov (United States)

    Ng, C. Y.; Lopez, R. E.; Hawkins, I.

    2004-12-01

    Sun-Earth Connection scientists have established partnerships with several minority professional societies to reach out to the blacks, Hispanics and Native American students. Working with NSBP, SACNAS, AISES and NSHP, SEC scientists were able to speak in their board meetings and national conferences, to network with minority scientists, and to engage them in Sun-Earth Day. Through these opportunities and programs, scientists have introduced NASA research results as well indigenous views of science. They also serve as role models in various communities. Since the theme for Sun-Earth Day 2005 is Ancient Observatories: Timeless Knowledge, scientists and education specialists are hopeful to excite many with diverse backgrounds. Sun-Earth Day is a highly visible annual program since 2001 that touches millions of students and the general public. Interviews, classroom activities and other education resources are available on the web at sunearthday.nasa.gov.

  9. Earth and Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kosygin, Yu A

    1986-12-01

    Rocks, the age of which according to certain data exceeds considerably the recognized age of the Earth and approximates the age of the Universe, have been detected on the Earth. There is a necessity to coordinate the geological data with cosmological structures.

  10. Earth science developments in support of waste isolation

    International Nuclear Information System (INIS)

    Duguid, J.O.

    1981-01-01

    Earth science issues in geologic waste isolation can be subdivided into smaller questions that are resolvable. This approach provides a mechanism for focusing research on topics of definable priority and monitoring progress through the status of issue resolution. The status of resolution of major issues in borehole sealing, interpretation of groundwater hydrology, geochemistry, and repository performance assessment is presented. The Waste Terminal Storage Program has reached a point where the selection of sites, underground testing, and emplacement of waste can proceed on a well-defined schedule

  11. Near Earth Objects

    DEFF Research Database (Denmark)

    Wolff, Stefan

    2006-01-01

    , Near Earth Objects: Asteroids and comets following paths that bring them near the Earth. NEOs have collided with the Earth since its formation, some causing local devastation, some causing global climate changes, yet the threat from a collision with a near Earth object has only recently been recognised...... and accepted. The European Space Agency mission Gaia is a proposed space observatory, designed to perform a highly accurate census of our galaxy, the Milky Way, and beyond. Through accurate measurement of star positions, Gaia is expected to discover thousands of extra-solar planets and follow the bending...... of starlight by the Sun, and therefore directly observe the structure of space-time. This thesis explores several aspects of the observation of NEOs with Gaia, emphasising detection of NEOs and the quality of orbits computed from Gaia observations. The main contribution is the work on motion detection...

  12. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  13. The Chinese Society of Rare Earth is Studying The Feasibility of Marketing Rare Earth Futures

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Lin Donglu,secretary-general of the Chinese Society of Rare Earth recently said,the Chinese Society of Rare Earth undertook the research on subject of the National Social Science Fund Foundation on the reform of Chinese rare earth trading pricing mechanism on promoting RMB globalization,and is focusing on studying the feasibility of marketing rare earth futures variety.

  14. Analysis of Critical Earth Observation Priorities for Societal Benefit

    Science.gov (United States)

    Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.

    2011-12-01

    To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel

  15. Rare earth germanates

    International Nuclear Information System (INIS)

    Bondar', I.A.; Vinogradova, N.V.; Dem'yanets, L.N.

    1983-01-01

    From the viewpoint of structural chemistry and general regularities controlling formation reactions of compounds and phases in melts, solid and gaseous states, recent achievements in the chemistry of rare earth germanates are generalized. Methods of synthesizing germanates, systems on the base of germanium oxides and rare earths are considered. The data on crystallochemical characteristics are tabulated. Individual compounds of scandium germanate are also characterized. Processes of germanate formation using the data of IR-spectroscopy, X-ray phase analysis are studied. The structure and morphotropic series of rare earth germanates and silicates are determined. Fields of their present and possible future application are considered

  16. Preparing new Earth Science teachers via a collaborative program between Research Scientists and Educators

    Science.gov (United States)

    Grcevich, Jana; Pagnotta, Ashley; Mac Low, Mordecai-Mark; Shara, Michael; Flores, Kennet; Nadeau, Patricia A.; Sessa, Jocelyn; Ustunisik, Gokce; Zirakparvar, Nasser; Ebel, Denton; Harlow, George; Webster, James D.; Kinzler, Rosamond; MacDonald, Maritza B.; Contino, Julie; Cooke-Nieves, Natasha; Howes, Elaine; Zachowski, Marion

    2015-01-01

    The Master of Arts in Teaching (MAT) Program at the American Museum of Natural History is a innovative program designed to prepare participants to be world-class Earth Science teachers. New York State is experiencing a lack of qualified Earth Science teachers, leading in the short term to a reduction in students who successfully complete the Earth Science Regents examination, and in the long term potential reductions in the number of students who go on to pursue college degrees in Earth Science related disciplines. The MAT program addresses this problem via a collaboration between practicing research scientists and education faculty. The faculty consists of curators and postdoctoral researchers from the Departments of Astrophysics, Earth and Planetary Sciences, and the Division of Paleontology, as well as doctoral-level education experts. During the 15-month, full-time program, students participate in a residency program at local urban classrooms as well as taking courses and completing field work in astrophysics, geology, earth science, and paleontology. The program targets high-needs schools with diverse populations. We seek to encourage, stimulate interest, and inform the students impacted by our program, most of whom are from traditionally underrepresented backgrounds, about the rich possibilities for careers in Earth Science related disciplines and the intrinsic value of the subject. We report on the experience of the first and second cohorts, all of whom are now employed in full time teaching positions, and the majority in high needs schools in New York State.

  17. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  18. 2016 Earth System Grid Federation Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-05-10

    The Earth System Grid Federation (ESGF) experienced a major setback in June 2015, when it experienced a security incident that brought all systems to a halt for more than half a year. However, federation developers and management committee members turned the incident into an opportunity to dramatically upgrade the system security and functionality and to develop planning and policy documents to guide ESGF evolution and success. Moreover, despite the incident, ESGF developer working teams continue to make strong and significant progress on various enhancement projects that will help ensure ESGF can meet the needs of the climate community in the coming years.

  19. Geomagnetic field of earth

    International Nuclear Information System (INIS)

    Delipetrev, Marjan; Delipetrev, Blagoj; Panovska, Sanja

    2008-01-01

    In this paper is introduced the theory of geomagnetic field of the Earth. A homogenous and isotropic sphere is taken for a model of Earth with a bar magnet at its center as a magnetic potential. The understanding of the real origin of geomagnetic field produced from differential rotation of inner core with respect to the outer core of Earth is here presented. Special attention is given to the latest observed data of the established net of geomagnetic repeat stations in the Republic of Macedonia. Finally, the maps of elements of geomagnetic field and the equation for calculation of normal magnetic field of Earth are provided. (Author)

  20. Earth Sciences Division Research Summaries 2002-2003

    International Nuclear Information System (INIS)

    Bodvarsson, G.S.

    2003-01-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental

  1. Earth Sciences Division Research Summaries 2002-2003

    Energy Technology Data Exchange (ETDEWEB)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4

  2. Rare earth minerals and resources in the world

    Energy Technology Data Exchange (ETDEWEB)

    Kanazawa, Yasuo [Human Resource Department, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba 305-8568 (Japan)]. E-mail: y.kanazawa@aist.go.jp; Kamitani, Masaharu [Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8567 (Japan)

    2006-02-09

    About 200 rare earth (RE) minerals are distributed in a wide variety of mineral classes, such as halides, carbonates, oxides, phosphates, silicates, etc. Due to the large ionic radii and trivalent oxidation state, RE ions in the minerals have large coordination numbers (c.n.) 6-10 by anions (O, F, OH). Light rare earth elements (LREEs) tend to occupy the larger sites of 8-10 c.n. and concentrate in carbonates and phosphates. On the other hand, heavy rare earth elements (HREEs) and Y occupy 6-8 c.n. sites and are abundant in oxides and a part of phosphates. Only a few mineral species, such as bastnaesite (Ce,La)(CO{sub 3})F, monazite (Ce,La)PO{sub 4}, xenotime YPO{sub 4}, and RE-bearing clay have been recovered for commercial production. Bayan Obo, China is the biggest RE deposit in the world. One of probable hypotheses for ore geneses is that the deposit might be formed by hydrothermal replacement of carbonate rocks of sedimentary origin. The hydrothermal fluid may be derived from an alkaline-carbonatite intrusive series. Following Bayan Obo, more than 550 carbonatite/alkaline complex rocks constitute the majority of the world RE resources. The distribution is restricted to interior and marginal regions of continents, especially Precambrian cratons and shields, or related to large-scale rift structures. Main concentrated areas of the complexes are East African rift zones, northern Scandinavia-Kola peninsula, eastern Canada and southern Brazil. Representative sedimentary deposits of REE are placer- and conglomerate-types. The major potential countries are Australia, India, Brazil, and Malaysia. Weathered residual deposits have been formed under tropical and sub-tropical climates. Bauxite and laterite nickel deposit are the representative. Ion adsorption clay without radioactive elements is known in southern China. Weathering processes concentrate REE in a particular clay mineral-layer in the weathered crusts whose source were originally REE-rich rocks like granite

  3. Rare earth minerals and resources in the world

    International Nuclear Information System (INIS)

    Kanazawa, Yasuo; Kamitani, Masaharu

    2006-01-01

    About 200 rare earth (RE) minerals are distributed in a wide variety of mineral classes, such as halides, carbonates, oxides, phosphates, silicates, etc. Due to the large ionic radii and trivalent oxidation state, RE ions in the minerals have large coordination numbers (c.n.) 6-10 by anions (O, F, OH). Light rare earth elements (LREEs) tend to occupy the larger sites of 8-10 c.n. and concentrate in carbonates and phosphates. On the other hand, heavy rare earth elements (HREEs) and Y occupy 6-8 c.n. sites and are abundant in oxides and a part of phosphates. Only a few mineral species, such as bastnaesite (Ce,La)(CO 3 )F, monazite (Ce,La)PO 4 , xenotime YPO 4 , and RE-bearing clay have been recovered for commercial production. Bayan Obo, China is the biggest RE deposit in the world. One of probable hypotheses for ore geneses is that the deposit might be formed by hydrothermal replacement of carbonate rocks of sedimentary origin. The hydrothermal fluid may be derived from an alkaline-carbonatite intrusive series. Following Bayan Obo, more than 550 carbonatite/alkaline complex rocks constitute the majority of the world RE resources. The distribution is restricted to interior and marginal regions of continents, especially Precambrian cratons and shields, or related to large-scale rift structures. Main concentrated areas of the complexes are East African rift zones, northern Scandinavia-Kola peninsula, eastern Canada and southern Brazil. Representative sedimentary deposits of REE are placer- and conglomerate-types. The major potential countries are Australia, India, Brazil, and Malaysia. Weathered residual deposits have been formed under tropical and sub-tropical climates. Bauxite and laterite nickel deposit are the representative. Ion adsorption clay without radioactive elements is known in southern China. Weathering processes concentrate REE in a particular clay mineral-layer in the weathered crusts whose source were originally REE-rich rocks like granite and

  4. Magnetic field of the Earth

    Science.gov (United States)

    Popov, Aleksey

    2013-04-01

    The magnetic field of the Earth has global meaning for a life on the Earth. The world geophysical science explains: - occurrence of a magnetic field of the Earth it is transformation of kinetic energy of movements of the fused iron in the liquid core of Earth - into the magnetic energy; - the warming up of a kernel of the Earth occurs due to radioactive disintegration of elements, with excretion of thermal energy. The world science does not define the reasons: - drift of a magnetic dipole on 0,2 a year to the West; - drift of lithospheric slabs and continents. The author offers: an alternative variant existing in a world science the theories "Geodynamo" - it is the theory « the Magnetic field of the Earth », created on the basis of physical laws. Education of a magnetic field of the Earth occurs at moving the electric charge located in a liquid kernel, at rotation of the Earth. At calculation of a magnetic field is used law the Bio Savara for a ring electric current: dB = . Magnetic induction in a kernel of the Earth: B = 2,58 Gs. According to the law of electromagnetic induction the Faradey, rotation of a iron kernel of the Earth in magnetic field causes occurrence of an electric field Emf which moves electrons from the center of a kernel towards the mantle. So of arise the radial electric currents. The magnetic field amplifies the iron of mantle and a kernel of the Earth. As a result of action of a radial electric field the electrons will flow from the center of a kernel in a layer of an electric charge. The central part of a kernel represents the field with a positive electric charge, which creates inverse magnetic field Binv and Emfinv When ?mfinv = ?mf ; ?inv = B, there will be an inversion a magnetic field of the Earth. It is a fact: drift of a magnetic dipole of the Earth in the western direction approximately 0,2 longitude, into a year. Radial electric currents a actions with the basic magnetic field of a Earth - it turn a kernel. It coincides with laws

  5. Safety aspects in rare earths recovery

    International Nuclear Information System (INIS)

    Bhattacharya, R.

    2014-01-01

    Recovery of rare earths involves mining of beach sands, mineral separation to obtain monazite and its chemical processing to obtain rare earth composites. The composites are then subjected to further chemical treatment to obtain individual rare earths. Although the separated out rare earths are not radioactive, the process for recovery of rare earths involve both radiological as well as conventional hazards. This paper highlights the safety aspects in the mining, mineral separation and chemical processing of monazite to obtain rare earths

  6. Our Mission to Planet Earth: A guide to teaching Earth system science

    Science.gov (United States)

    1994-01-01

    Volcanic eruptions, hurricanes, floods, and El Nino are naturally occurring events over which humans have no control. But can human activities cause additional environmental change? Can scientists predict the global impacts of increased levels of pollutants in the atmosphere? Will the planet warm because increased levels of greenhouse gases, produced by the burning of fossil fuels, trap heat and prevent it from being radiated back into space? Will the polar ice cap melt, causing massive coastal flooding? Have humans initiated wholesale climatic change? These are difficult questions, with grave implications. Predicting global change and understanding the relationships among earth's components have increased in priority for the nation. The National Aeronautics and Space Administration (NASA), along with many other government agencies, has initiated long-term studies of earth's atmosphere, oceans, and land masses using observations from satellite, balloon, and aircraft-borne instruments. NASA calls its research program Mission to Planet Earth. Because NASA can place scientific instruments far above earth's surface, the program allows scientists to explore earth's components and their interactions on a global scale.

  7. Solar Flare Five-Day Predictions from Quantum Detectors of Dynamical Space Fractal Flow Turbulence: Gravitational Wave Diminution and Earth Climate Cooling

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2014-10-01

    Full Text Available Space speed fluctuations, which have a 1 / f spectrum, are shown to be the cause of solar flares. The direction and magnitude of the space flow has been detected from numer- ous different experimental techniques, and is close to the normal to the plane of the ecliptic. Zener diode data shows that the fluctuations in the space speed closely match the Sun Solar Cycle 23 flare count, and reveal that major solar flares follow major space speed fluctuations by some 6 days. This implies that a warning period of some 5 days in predicting major solar flares is possible using such detectors. This has significant conse- quences in being able to protect various spacecraft and Earth located electrical systems from the subsequent arrival of ejected plasma from a solar flare. These space speed fluctuations are the actual gravitational waves, and have a significant magnitude. This discovery is a significant application of the dynamical space phenomenon and theory. We also show that space flow turbulence impacts on the Earth’s climate, as such tur- bulence can input energy into systems, which is the basis of the Zener Diode Quantum Detector. Large scale space fluctuations impact on both the sun and the Earth, and as well explain temperature correlations with solar activity, but that the Earth temperatures are not caused by such solar activity. This implies that the Earth climate debate has been missing a key physical process. Observed diminishing gravitational waves imply a cooling epoch for the Earth for the next 30 years.

  8. The Bepicolombo Mercury Planetary Orbiter (MPO Solar Array Design, Major Developments and Qualification

    Directory of Open Access Journals (Sweden)

    Loehberg A.

    2017-01-01

    The MPO solar generator is composed of one wing consisting of three panels and provides an average power output up to 1800W during the nominal 1 Earth year mission around Mercury. The wing design is characterised by temperature reduction measures. The flight wing has already passed the majority of the environmental test program.

  9. NASA's Earth Science Enterprise: Future Science Missions, Objectives and Challenges

    Science.gov (United States)

    Habib, Shahid

    1998-01-01

    NASA has been actively involved in studying the planet Earth and its changing environment for well over thirty years. Within the last decade, NASA's Earth Science Enterprise has become a major observational and scientific element of the U.S. Global Change Research Program. NASA's Earth Science Enterprise management has developed a comprehensive observation-based research program addressing all the critical science questions that will take us into the next century. Furthermore, the entire program is being mapped to answer five Science Themes (1) land-cover and land-use change research (2) seasonal-to-interannual climate variability and prediction (3) natural hazards research and applications (4) long-term climate-natural variability and change research and (5) atmospheric ozone research. Now the emergence of newer technologies on the horizon and at the same time continuously declining budget environment has lead to an effort to refocus the Earth Science Enterprise activities. The intent is not to compromise the overall scientific goals, but rather strengthen them by enabling challenging detection, computational and space flight technologies those have not been practically feasible to date. NASA is planning faster, cost effective and relatively smaller missions to continue the science observations from space for the next decade. At the same time, there is a growing interest in the world in the remote sensing area which will allow NASA to take advantage of this by building strong coalitions with a number of international partners. The focus of this presentation is to provide a comprehensive look at the NASA's Earth Science Enterprise in terms of its brief history, scientific objectives, organization, activities and future direction.

  10. An Expert System toward Buiding An Earth Science Knowledge Graph

    Science.gov (United States)

    Zhang, J.; Duan, X.; Ramachandran, R.; Lee, T. J.; Bao, Q.; Gatlin, P. N.; Maskey, M.

    2017-12-01

    In this ongoing work, we aim to build foundations of Cognitive Computing for Earth Science research. The goal of our project is to develop an end-to-end automated methodology for incrementally constructing Knowledge Graphs for Earth Science (KG4ES). These knowledge graphs can then serve as the foundational components for building cognitive systems in Earth science, enabling researchers to uncover new patterns and hypotheses that are virtually impossible to identify today. In addition, this research focuses on developing mining algorithms needed to exploit these constructed knowledge graphs. As such, these graphs will free knowledge from publications that are generated in a very linear, deterministic manner, and structure knowledge in a way that users can both interact and connect with relevant pieces of information. Our major contributions are two-fold. First, we have developed an end-to-end methodology for constructing Knowledge Graphs for Earth Science (KG4ES) using existing corpus of journal papers and reports. One of the key challenges in any machine learning, especially deep learning applications, is the need for robust and large training datasets. We have developed techniques capable of automatically retraining models and incrementally building and updating KG4ES, based on ever evolving training data. We also adopt the evaluation instrument based on common research methodologies used in Earth science research, especially in Atmospheric Science. Second, we have developed an algorithm to infer new knowledge that can exploit the constructed KG4ES. In more detail, we have developed a network prediction algorithm aiming to explore and predict possible new connections in the KG4ES and aid in new knowledge discovery.

  11. Earth science big data at users' fingertips: the EarthServer Science Gateway Mobile

    Science.gov (United States)

    Barbera, Roberto; Bruno, Riccardo; Calanducci, Antonio; Fargetta, Marco; Pappalardo, Marco; Rundo, Francesco

    2014-05-01

    The EarthServer project (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, aims at establishing open access and ad-hoc analytics on extreme-size Earth Science data, based on and extending leading-edge Array Database technology. The core idea is to use database query languages as client/server interface to achieve barrier-free "mix & match" access to multi-source, any-size, multi-dimensional space-time data -- in short: "Big Earth Data Analytics" - based on the open standards of the Open Geospatial Consortium Web Coverage Processing Service (OGC WCPS) and the W3C XQuery. EarthServer combines both, thereby achieving a tight data/metadata integration. Further, the rasdaman Array Database System (www.rasdaman.com) is extended with further space-time coverage data types. On server side, highly effective optimizations - such as parallel and distributed query processing - ensure scalability to Exabyte volumes. In this contribution we will report on the EarthServer Science Gateway Mobile, an app for both iOS and Android-based devices that allows users to seamlessly access some of the EarthServer applications using SAML-based federated authentication and fine-grained authorisation mechanisms.

  12. Communicating The Need For Earth Literacy Across The Curriculum

    Science.gov (United States)

    Herbstrith, K. G.

    2015-12-01

    California needs 11 trillion gallons of water to relieve the current drought, according to NASA, and there is 1.5 million tons of debris floating across the Pacific Ocean, a side effect of the 2011 earthquake and tsunami that struck Japan. These are merely two examples of the types of massive, global issues that students in high school and college will face in the coming years and decades. With an eye towards preparing students to learn the necessary skills to solve these problems head on, The InTeGrate (Interdisciplinary Teaching about Earth for a Sustainable Future) project is developing a new breed of teaching materials that can be utilized in general education courses, teacher preparation courses, core courses within geoscience majors, and courses designed for other majors including environmental studies, social science, engineering, and other sciences. To interest faculty, educators, and students, we must communicate the need for Earth literacy not just to the general public, but also to other educators across disciplinary fields. To this end, the InTeGrate project is utilizing both macro and micro level communication strategies with key stakeholders, partnering organizations, targeted professional development, a variety of social media platforms, and educators across fields and institutional types. This combination allows us to capitalize on personal interactions while linking them into a communication network that can scale.

  13. Seismological evidence for a localized mushy zone at the Earth?s inner core boundary

    OpenAIRE

    Tian, Dongdong; Wen, Lianxing

    2017-01-01

    Although existence of a mushy zone in the Earth?s inner core has been hypothesized several decades ago, no seismic evidence has ever been reported. Based on waveform modeling of seismic compressional waves that are reflected off the Earth?s inner core boundary, here we present seismic evidence for a localized 4?8?km thick zone across the inner core boundary beneath southwest Okhotsk Sea with seismic properties intermediate between those of the inner and outer core and of a mushy zone. Such a ...

  14. The Earth Information Exchange: A Portal for Earth Science From the ESIP Federation

    Science.gov (United States)

    Wertz, R.; Hutchinson, C.; Hardin, D.

    2006-12-01

    The Federation of Earth Science Information Partners is a unique consortium of more than 90 organizations that collect, interpret and develop applications for remotely sensed Earth Observation Information. Included in the ESIP network are NASA, NOAA and USGS data centers, research universities, government research laboratories, supercomputer facilities, education resource providers, information technology innovators, nonprofit organizations and commercial enterprises. The consortium's work is dedicated to providing the most up-to-date, science-based information to researchers and decision-makers who are working to understand and address the environmental, economic and social challenges facing our planet. By increasing the use and usability of Earth observation data and linking it with decision-making tools, the Federation partners leverage the value of these important data resources for the betterment of society and our planet. To further the dissemination of Earth Science data, the Federation is developing the Earth Information Exchange (EIE). The EIE is a portal that will provide access to the vast information holdings of the members' organizations in one web-based location and will provides a robust marketplace in which the products and services needed to use and understand this information can be readily acquired. Since the Federation membership includes the federal government's Earth observing data centers, we believe that the impact of the EIE on Earth science research and education and environmental policy making will be profound. In the EIE, Earth observation data, products and services, are organized by the societal benefits categories defined by the international working group developing the Global Earth Observation System of Systems (GEOSS). The quality of the information is ensured in each of the Exchange's issue areas by maintaining working groups of issue area researchers and practitioners who serve as stewards for their respective communities. The

  15. Rare earths and actinides

    International Nuclear Information System (INIS)

    Coqblin, B.

    1982-01-01

    This paper reviews the different properties of rare-earths and actinides, either as pure metals or as in alloys or compounds. Three different cases are considered: (i) First, in the case of 'normal' rare-earths which are characterized by a valence of 3, we discuss essentially the magnetic ordering, the coexistence between superconductivity and magnetism and the properties of amorphous rare-earth systems. (ii) Second, in the case of 'anomalous' rare-earths, we distinguish between either 'intermediate-valence' systems or 'Kondo' systems. Special emphasis is given to the problems of the 'Kondo lattice' (for compounds such as CeAl 2 ,CeAl 3 or CeB 6 ) or the 'Anderson lattice' (for compounds such as TmSe). The problem of neutron diffraction in these systems is also discussed. (iii) Third, in the case of actinides, we can separate between the d-f hybridized and almost magnetic metals at the beginning of the series and the rare-earth like the metals after americium. (orig.)

  16. Flooding Effect on Earth Walls

    Directory of Open Access Journals (Sweden)

    Meysam Banimahd

    2010-12-01

    Full Text Available Earth building is a sustainable, environmentally friendly and economical method of construction that has been used worldwide for many centuries. For the past three decades, earth has seen a revival as a building material for a modern construction method due to its benefits in terms of low carbon content, low cost and energy involved during construction, as well as the fact that it is a sustainable technology of building. Climate change is influencing precipitation levels and patterns around the world, and as a consequence, flood risk is increasing rapidly. When flooding occurs, earth buildings are exposed to water by submersion, causing an increase in the degree of saturation of the earth structures and therefore a decrease of the suction between particles. This study investigated the effect of cycles of flooding (consecutive events of flooding followed by dry periods on earth walls. A series of characterization tests were carried out to obtain the physical and mechanical properties of the studied earth material. In a second stage, Flooding Simulation Tests (FST were performed to explore the earth walls’ response to repeated flooding events. The results obtained for the tested earth wall/samples with reinforced material (straw reveal hydraulic hysteresis when wall/samples are subject to cycles of wetting and drying.

  17. Voyager Interactive Web Interface to EarthScope

    Science.gov (United States)

    Eriksson, S. C.; Meertens, C. M.; Estey, L.; Weingroff, M.; Hamburger, M. W.; Holt, W. E.; Richard, G. A.

    2004-12-01

    Visualization of data is essential in helping scientists and students develop a conceptual understanding of relationships among many complex types of data and keep track of large amounts of information. Developed initially by UNAVCO for study of global-scale geodynamic processes, the Voyager map visualization tools have evolved into interactive, web-based map utilities that can make scientific results accessible to a large number and variety of educators and students as well as the originally targeted scientists. A portal to these map tools can be found at: http://jules.unavco.org. The Voyager tools provide on-line interactive data visualization through pre-determined map regions via a simple HTML/JavaScript interface (for large numbers of students using the tools simultaneously) or through student-selectable areas using a Java interface to a Generic Mapping Tools (GMT) engine. Students can access a variety of maps, satellite images, and geophysical data at a range of spatial scales for the earth and other planets of the solar system. Students can also choose from a variety of base maps (satellite mosaics, global topography, geoid, sea-floor age, strain rate and seismic hazard maps, and others) and can then add a number of geographic and geophysical overlays, for example coastlines, political boundaries, rivers and lakes, earthquake and volcano locations, stress axes, and observed and model plate motion, as well as deformation velocity vectors representing a compilation of over 5000 geodetic measurements from around the world. The related educational website, "Exploring our Dynamic Planet", (http://www.dpc.ucar.edu/VoyagerJr/jvvjrtool.html) incorporates background materials and curricular activities that encourage students to explore Earth processes. One of the present curricular modules is designed for high school students or introductory-level undergraduate non-science majors. The purpose of the module is for students to examine real data to investigate how plate

  18. A problem in gravimetric method for the determination of rare earth elements as oxide after the fluoride separation

    International Nuclear Information System (INIS)

    Takada, Kunio

    1979-01-01

    For the gravimetric determination of lanthanum, it was precipitated as fluoride and converted to oxide by igniting (ca. 930 0 C) in a town gas flame. However, the oxidation of lanthanum fluoride by ignition was incomplete, the major part of the precipitate being converted to oxyfluoride (LaOF) and a mixture of oxide and oxyfluoride resulted. Therefore, analytical results were generally (5 -- 7)% higher than theoretically expected. The lanthanum fluoride became converted into the oxide by repeating ignition (ca. 1070 0 C) three times, each for (30 -- 40)min. However, the weight was lower than that of the corresponding sesquioxide, La 2 O 3 . Except for ytterbium and lutetium, gravimetric results as oxides for the other rare earth elements (Y, Pr, Nd, Sm, Eu and Gd) were higher than theoretical values. Therefore, the precipitation of the rare earth elements as fluoride and the subsequent determination as oxide by ignition of the fluoride could not be recommended as the gravimetric method for the rare earths. In order to obtain accurate results for major to minor amounts of the rare earth elements, an EDTA titration at pH 6 should be used after the dissolution of fluoride in acid, if the fluoride precipitation separation is involved. (author)

  19. Development of an earth pressure model for design of earth retaining structures in piedmont soil.

    Science.gov (United States)

    2008-10-01

    Anecdotal evidence suggests that earth pressure in Piedmont residual soils is typically over estimated. Such estimates of earth pressure impact the design of earth retaining structures used on highway projects. Thus, the development of an appropriate...

  20. Impact of major volcanic eruptions on stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  1. THE PRECAMBRIAN HISTORY OF THE ORIGIN AND EVOLUTION OF THE SOLAR SYSTEM AND EARTH. PART 1

    Directory of Open Access Journals (Sweden)

    M. I. Kuz’min

    2014-01-01

    Full Text Available The paper provides a review of early stages of development the Solar System and the geological history of Earth with reference to the latest data on the origin of the Solar System and the formation of the first continental rocks and results of studies of zircon, the oldest mineral so far dated on Earth. The formation of the Solar System from a gas-and-dust nebula is estimated to have begun 4.568 billion years ago. Ice was formed 1.5 million years later; it concentrated at the periphery of the system and served as the material for the largest planets, Jupiter and Saturn. In the central areas of the system, asteroids with diameters of about 10 km were formed. Their small bodies were composed of the basic material of the solar nebula, as evidenced by carbonaceous chondrite, CI, which composition is similar to the composition of the Sun, with the exception of hydrogen, helium, and volatile components that served as the main material for peripheral planets of the Solar System. Due to collision and partial merger of such small bodies, the formation of embryos of the terrestrial planets was initiated. Gravity made such embryos to cluster into larger bodies. After 7 million years, large asteroids and planet Mars were formed. It took 11 million years to form Planet Earth with a mass of 63 %, and 30 million years to form 93 % of its mass. Almost from the beginning of the formation of the Earth, short-lived radionuclides, 26Al and 60Fe, caused warming up of the small planetary bodies which led to the formation of their cores. During the initial stages, small magma reservoirs were formed, and molten iron particles gathered in the centres of the planetary bodies. As suggested by the ratio of 182W/184W, the major part of the core was formed within 20 million years, while its full mass accumulated completely within the next 50 million years. In 30–40 million years after the creation of the Solar System, the Earth collided with a cosmic body which mass was

  2. Earth as art three

    Science.gov (United States)

    ,

    2010-01-01

    For most of us, deserts, mountains, river valleys, coastlines even dry lakebeds are relatively familiar features of the Earth's terrestrial environment. For earth scientists, they are the focus of considerable scientific research. Viewed from a unique and unconventional perspective, Earth's geographic attributes can also be a surprising source of awe-inspiring art. That unique perspective is space. The artists for the Earth as Art Three exhibit are the Landsat 5 and Landsat 7 satellites, which orbit approximately 705 kilometers (438 miles) above the Earth's surface. While studying the images these satellites beam down daily, researchers are often struck by the sheer beauty of the scenes. Such images inspire the imagination and go beyond scientific value to remind us how stunning, intricate, and simply amazing our planet's features can be. Instead of paint, the medium for these works of art is light. But Landsat satellite sensors don't see light as human eyes do; instead, they see radiant energy reflected from Earth's surface in certain wavelengths, or bands, of red, green, blue, and infrared light. When these different bands are combined into a single image, remarkable patterns, colors, and shapes emerge. The Earth as Art Three exhibit provides fresh and inspiring glimpses of different parts of our planet's complex surface. The images in this collection were chosen solely based on their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation only for your viewing pleasure. Enjoy!

  3. Formation and growth of embryos of the Earth-Moon system

    Science.gov (United States)

    Ipatov, Sergei I.

    2016-07-01

    Galimov and Krivtsov [1] made computer simulations of the formation of the embryos of the Earth and the Moon as a result of contraction of a rarefied condensation. The angular momentum needed for such contraction could not be acquired during formation of the condensation from a protoplanetary disk. Using the formulas presented in [2], we obtained that the angular momentum of the present Earth-Moon system could be acquired at a collision of two rarefied condensations with a total mass not smaller than 0.1M_{e}, where M_{e} is the Earth mass. In principle, the angular momentum of the condensation needed for formation of the Earth-Moon system could be acquired by accumulation only of small objects, but for such model, the parental condensations of Venus and Mars could also get the angular momentum that was enough for formation of large satellites. Probably, the condensations that contracted and formed the embryos of the terrestrial planets other than the Earth did not collide with massive condensations, and therefore they did not get a large enough angular momentum needed to form massive satellites. The embryos formed as a result of contraction of the condensation grew by accumulation of solid planetesimals. The mass of the rarefied condensation that was a parent for the embryos of the Earth and the Moon could be relatively small (0.02M_{e} or even less), if we take into account the growth of the angular momentum of the embryos at the time when they accumulated planetesimals. There could be also the second main collision of the parental rarefied condensation with another condensation, at which the radius of the Earth's embryo condensation was smaller than the semi-major axis of the orbit of the Moon's embryo. The second main collision (or a series of similar collisions) could change the tilt of the Earth to its present value. For large enough eccentricities of planetesimals, the effective radii of proto-Earth and proto-Moon were proportional to r (where r is the

  4. Behavior of rare earth elements in coexisting manganese macronodules, micronodules, and sediments from the central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Pattan, J.N.; Colley, S.; Higgs, N.C.

    Associated manganese macronodules, micronodules, and sediments from the Central Indian Basin (CIB) were analyzed for major, trace, and rare earth elements (REE) to understand REE carrier phases and their fractionation pattern among three...

  5. Penguin heat-retention structures evolved in a greenhouse Earth.

    Science.gov (United States)

    Thomas, Daniel B; Ksepka, Daniel T; Fordyce, R Ewan

    2011-06-23

    Penguins (Sphenisciformes) inhabit some of the most extreme environments on Earth. The 60+ Myr fossil record of penguins spans an interval that witnessed dramatic shifts in Cenozoic ocean temperatures and currents, indicating a long interplay between penguin evolution and environmental change. Perhaps the most celebrated example is the successful Late Cenozoic invasion of glacial environments by crown clade penguins. A major adaptation that allows penguins to forage in cold water is the humeral arterial plexus, a vascular counter-current heat exchanger (CCHE) that limits heat loss through the flipper. Fossil evidence reveals that the humeral plexus arose at least 49 Ma during a 'Greenhouse Earth' interval. The evolution of the CCHE is therefore unrelated to global cooling or development of polar ice sheets, but probably represents an adaptation to foraging in subsurface waters at temperate latitudes. As global climate cooled, the CCHE was key to invasion of thermally more demanding environments associated with Antarctic ice sheets.

  6. COMPASS Final Report: Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER)

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.

    2009-01-01

    In this study, the Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team completed a design for a multi-asteroid (Nereus and 1996 FG3) sample return capable spacecraft for the NASA In-Space Propulsion Office. The objective of the study was to support technology development and assess the relative benefits of different electric propulsion systems on asteroid sample return design. The design uses a single, heritage Orion solar array (SA) (approx.6.5 kW at 1 AU) to power a single NASA Evolutionary Xenon Thruster ((NEXT) a spare NEXT is carried) to propel a lander to two near Earth asteroids. After landing and gathering science samples, the Solar Electric Propulsion (SEP) vehicle spirals back to Earth where it drops off the first sample s return capsule and performs an Earth flyby to assist the craft in rendezvousing with a second asteroid, which is then sampled. The second sample is returned in a similar fashion. The vehicle, dubbed Near Earth Asteroids Rendezvous and Sample Earth Returns (NEARER), easily fits in an Atlas 401 launcher and its cost estimates put the mission in the New Frontier s (NF's) class mission.

  7. EarthServer - 3D Visualization on the Web

    Science.gov (United States)

    Wagner, Sebastian; Herzig, Pasquale; Bockholt, Ulrich; Jung, Yvonne; Behr, Johannes

    2013-04-01

    EarthServer (www.earthserver.eu), funded by the European Commission under its Seventh Framework Program, is a project to enable the management, access and exploration of massive, multi-dimensional datasets using Open GeoSpatial Consortium (OGC) query and processing language standards like WCS 2.0 and WCPS. To this end, a server/client architecture designed to handle Petabyte/Exabyte volumes of multi-dimensional data is being developed and deployed. As an important part of the EarthServer project, six Lighthouse Applications, major scientific data exploitation initiatives, are being established to make cross-domain, Earth Sciences related data repositories available in an open and unified manner, as service endpoints based on solutions and infrastructure developed within the project. Clients technology developed and deployed in EarthServer ranges from mobile and web clients to immersive virtual reality systems, all designed to interact with a physically and logically distributed server infrastructure using exclusively OGC standards. In this contribution, we would like to present our work on a web-based 3D visualization and interaction client for Earth Sciences data using only technology found in standard web browsers without requiring the user to install plugins or addons. Additionally, we are able to run the earth data visualization client on a wide range of different platforms with very different soft- and hardware requirements such as smart phones (e.g. iOS, Android), different desktop systems etc. High-quality, hardware-accelerated visualization of 3D and 4D content in standard web browsers can be realized now and we believe it will become more and more common to use this fast, lightweight and ubiquitous platform to provide insights into big datasets without requiring the user to set up a specialized client first. With that in mind, we will also point out some of the limitations we encountered using current web technologies. Underlying the EarthServer web client

  8. Transit and radial velocity survey efficiency comparison for a habitable zone Earth

    International Nuclear Information System (INIS)

    Burke, Christopher J.; McCullough, P. R.

    2014-01-01

    Transit and radial velocity searches are two techniques for identifying nearby extrasolar planets to Earth that transit bright stars. Identifying a robust sample of these exoplanets around bright stars for detailed atmospheric characterization is a major observational undertaking. In this study we describe a framework that answers the question of whether a transit or radial velocity survey is more efficient at finding transiting exoplanets given the same amount of observing time. Within the framework we show that a transit survey's window function can be approximated using the hypergeometric probability distribution. We estimate the observing time required for a transit survey to find a transiting Earth-sized exoplanet in the habitable zone (HZ) with an emphasis on late-type stars. We also estimate the radial velocity precision necessary to detect the equivalent HZ Earth-mass exoplanet that also transits when using an equal amount of observing time as the transit survey. We find that a radial velocity survey with σ rv ∼ 0.6 m s –1 precision has comparable efficiency in terms of observing time to a transit survey with the requisite photometric precision σ phot ∼ 300 ppm to find a transiting Earth-sized exoplanet in the HZ of late M dwarfs. For super-Earths, a σ rv ∼ 2.0 m s –1 precision radial velocity survey has comparable efficiency to a transit survey with σ phot ∼ 2300 ppm.

  9. NASA Earth Exchange (NEX)

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA Earth Exchange (NEX) represents a new platform for the Earth science community that provides a mechanism for scientific collaboration and knowledge sharing....

  10. a Walk Through Earth's Time

    Science.gov (United States)

    Turrin, B. D.; Turrin, M.

    2012-12-01

    After "What is this rock?" the most common questions that is asked of Geologists is "How old is this rock/fossil?" For geologists considering ages back to millions of years is routine. Sorting and cataloguing events into temporal sequences is a natural tendency for all humans. In fact, it is an everyday activity for humans, i.e., keeping track of birthdays, anniversaries, appointments, meetings, AGU abstract deadlines etc… However, the time frames that are most familiar to the non scientist (seconds, minutes, hours, days, years) generally extend to only a few decades or at most centuries. Yet the vast length of time covered by Earth's history, 4.56 billion years, greatly exceeds these timeframes and thus is commonly referred to as "Deep Time". This is a challenging concept for most students to comprehend as it involves temporal and abstract thinking, yet it is key to their successful understanding of numerous geologic principles. We have developed an outdoor learning activity for general Introductory Earth Science courses that incorporates several scientific and geologic concepts such as: linear distance or stratigraphic thickness representing time, learning about major events in Earth's history and locating them in a scaled temporal framework, field mapping, abstract thinking, scaling and dimensional analysis, and the principles of radio isotopic dating. The only supplies needed are readily available in local hardware stores i.e. a 300 ft. surveyor's tape marked in feet, and tenths and hundredths of a foot, and the student's own introductory geology textbook. The exercise employs a variety of pedagogical learning modalities, including traditional lecture-based, the use of Art/Drawing, use of Visualization, Collaborative learning, and Kinesthetic and Experiential learning. Initially the students are exposed to the concept of "Deep Time" in a short conventional introductory lecture; this is followed by a 'field day'. Prior to the field exercise, students work with

  11. Using EarthLabs to Enhance Earth Science Curriculum in Texas

    Science.gov (United States)

    Chegwidden, D. M.; Ellins, K. K.; Haddad, N.; Ledley, T. S.

    2012-12-01

    As an educator in Texas, a state that values and supports an Earth Science curriculum, I find it essential to educate my students who are our future voting citizens and tax payers. It is important to equip them with tools to understand and solve the challenges of solving of climate change. As informed citizens, students can help to educate others in the community with basic knowledge of weather and climate. They can also help to dispose of the many misconceptions that surround the climate change, which is perceived as a controversial topic. As a participant in a NSF-sponsored Texas Earth and Space (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to develop and test education resources for the EarthLabs climate literacy collection. I am involved in the multiple phases of the project, including reviewing labs that comprise the Climate, Weather and Biosphere module during the development phase, pilot teaching the module with my students, participating in research, and delivering professional development to other Texas teachers to expose them to the content found in the module and to encourage them to incorporate it into their teaching. The Climate, Weather and the Biosphere module emphasizes different forms of evidence and requires that learners apply different inquiry-based approaches to build the knowledge they need to develop as climate literate citizens. My involvement with the EarthLabs project has strengthened my overall knowledge and confidence to teach about Earth's climate system and climate change. In addition, the project has produced vigorous classroom discussion among my students as well as encouraged me to collaborate with other educators through our delivery of professional development to other teachers. In my poster, I will share my experiences, describe the impact the curriculum has made on my students, and report on challenges and valuable lessons gained by

  12. The Earth is a Planet Too!

    Science.gov (United States)

    Cairns, Brian

    2014-01-01

    When the solar system formed, the sun was 30 dimmer than today and Venus had an ocean. As the sun brightened, a runaway greenhouse effect caused the Venus ocean to boil away. At times when Earth was younger, the sun less bright, and atmospheric CO2 less, Earth froze over (snowball Earth). Earth is in the sweet spot today. Venus is closer to sun than Earth is, but cloud-covered Venus absorbs only 25 of incident sunlight, while Earth absorbs 70. Venus is warmer because it has a thick carbon dioxide atmosphere causing a greenhouse effect of several hundred degrees. Earth is Goldilocks choice among the planets, the one that is just right for life to exist. Not too hot. Not too cold. How does the Earth manage to stay in this habitable range? Is there a Gaia phenomenon keeping the climate in bounds? A nice idea, but it doesnt work. Today, greenhouse gas levels are unprecedented compared to the last 450,000 years.

  13. Solar Photoelectrochemical Energy Conversion using Earth-Abundant Nanomaterials

    Science.gov (United States)

    Lukowski, Mark A.

    Although the vast majority of energy consumed worldwide is derived from fossil fuels, the growing interest in making cleaner alternative energies more economically viable has motivated recent research efforts aimed to improve photovoltaic, wind, and biomass power generation. Clean power generation also requires clean burning fuels, such as H2 and O2, so that energy can still be provided on demand at all times, despite the intermittent nature inherent to solar or wind power. My research has focused on the rational approach to synthesizing earth-abundant nanomaterials with applications in the generation of clean alternative fuels and understanding the structure-property relationships which directly influence their performance. Herein, we describe the development of low-cost, earth-abundant layered metal chalcogenides as high-performance electrocatalysts for hydrogen evolution, and hematite photoanodes for photoelectrochemical oxygen evolution. This work has revealed a particularly interesting concept where catalytic performance can be enhanced by controlling the phase behavior of the material and taking advantage of previously unexploited properties to overcome the challenges traditionally limiting the performance of these layered materials for hydrogen evolution catalysis.

  14. Modeling the earth system

    Energy Technology Data Exchange (ETDEWEB)

    Ojima, D. [ed.

    1992-12-31

    The 1990 Global Change Institute (GCI) on Earth System Modeling is the third of a series organized by the Office for Interdisciplinary Earth Studies to look in depth at particular issues critical to developing a better understanding of the earth system. The 1990 GCI on Earth System Modeling was organized around three themes: defining critical gaps in the knowledge of the earth system, developing simplified working models, and validating comprehensive system models. This book is divided into three sections that reflect these themes. Each section begins with a set of background papers offering a brief tutorial on the subject, followed by working group reports developed during the institute. These reports summarize the joint ideas and recommendations of the participants and bring to bear the interdisciplinary perspective that imbued the institute. Since the conclusion of the 1990 Global Change Institute, research programs, nationally and internationally, have moved forward to implement a number of the recommendations made at the institute, and many of the participants have maintained collegial interactions to develop research projects addressing the needs identified during the two weeks in Snowmass.

  15. The earth's hydrological cycle

    CERN Document Server

    Bonnet, R-M; Calisto, M; Destouni, G; Gurney, R; Johannessen, J; Kerr, Y; Lahoz, WA; Rast, M

    2014-01-01

    This book gives a comprehensive presentation of our present understanding of the Earth's Hydrological cycle and the problems, consequences and impacts that go with this topic. Water is a central component in the Earth's system. It is indispensable for life on Earth in its present form and influences virtually every aspect of our planet's life support system. On relatively short time scales, atmospheric water vapor interacts with the atmospheric circulation and is crucial in forming the Earth's climate zones. Water vapor is the most powerful of the greenhouse gases and serves to enhance the tropospheric temperature. The dominant part of available water on Earth resides in the oceans. Parts are locked up in the land ice on Greenland and Antarctica and a smaller part is estimated to exist as groundwater. If all the ice over the land and all the glaciers were to melt, the sea level would rise by some 80 m. In comparison, the total amount of water vapor in the atmosphere is small; it amounts to ~ 25 kg/m2, or the ...

  16. The Earth System Model

    Science.gov (United States)

    Schoeberl, Mark; Rood, Richard B.; Hildebrand, Peter; Raymond, Carol

    2003-01-01

    The Earth System Model is the natural evolution of current climate models and will be the ultimate embodiment of our geophysical understanding of the planet. These models are constructed from components - atmosphere, ocean, ice, land, chemistry, solid earth, etc. models and merged together through a coupling program which is responsible for the exchange of data from the components. Climate models and future earth system models will have standardized modules, and these standards are now being developed by the ESMF project funded by NASA. The Earth System Model will have a variety of uses beyond climate prediction. The model can be used to build climate data records making it the core of an assimilation system, and it can be used in OSSE experiments to evaluate. The computing and storage requirements for the ESM appear to be daunting. However, the Japanese ES theoretical computing capability is already within 20% of the minimum requirements needed for some 2010 climate model applications. Thus it seems very possible that a focused effort to build an Earth System Model will achieve succcss.

  17. Earth observations from space: History, promise, and reality. Executive summary

    Science.gov (United States)

    1995-01-01

    In this report the Committee on Earth Studies (CES), a standing committee of the Space Studies Board (SSB) within the National Research Council (NRC), reviews the recent history (nominally from 1981 to 1995) of the U.S. earth observations programs that serve civilian needs. The principal observations programs examined are those of NASA and the National Oceanic and Atmospheric Administration (NOAA). The Air Force' s Defense Meteorological Satellite Program (DMSP) is discussed, but only from the perspective of its relationship to civil needs and the planned merger with the NOAA polar-orbiting system. The report also reviews the interfaces between the earth observations satellite programs and the major national and international environmental monitoring and research programs. The monitoring and research programs discussed are the U.S. Global Change Research Program (USGCRP), the International Geosphere-Biosphere Program (IGBP), the World Climate Research Program (WCRP), related international scientific campaigns, and operational programs for the sharing and application of environmental data. The purpose of this report is to provide a broad historical review and commentary based on the views of the CES members, with particular emphasis on tracing the lengthy record of advisory committee recommendations. Any individual topic could be the subject of an extended report in its own right. Indeed, extensive further reviews are already under way to that end. If the CES has succeeded in the task it has undertaken. This report will serve as a useful starting point for any such more intensive study. The report is divided into eight chapters: ( I ) an introduction, (2) the evolution of the MTPE, (3) its relationship to the USGCRP, (4) applications of earth observations data, (5) the role that smaller satellites can play in research and operational remote sensing, (6) earth system modeling and information systems, (7) a number of associated activities that contribute to the MTPE

  18. A high-orbit collimating infrared earth simulator

    International Nuclear Information System (INIS)

    Zhang Guoyu; Jiang Huilin; Fang Yang; Yu Huadong; Xu Xiping; Wang, Lingyun; Liu Xuli; Huang Lan; Yue Shixin; Peng Hui

    2007-01-01

    The earth simulator is the most important testing equipment ground-based for the infrared earth sensor, and it is also a key component in the satellite controlling system. for three orbit heights 18000Km, 35786Km and 42000Km, in this paper we adopt a project of collimation and replaceable earth diaphragm and develop a high orbit collimation earth simulator. This simulator can afford three angles 15.19 0 , 17.46 0 and 30.42 0 , resulting simulating the earth on the ground which can be seen in out space by the satellite. In this paper we introduce the components, integer structure, and the earth's field angles testing method of the earth simulator in detail. Germanium collimation lens is the most important component in the earth simulator. According to the optical configuration parameter of Germanium collimation lens, we find the location and size of the earth diaphragm and the hot earth by theoretical analyses and optics calculation, which offer foundation of design in the study of the earth simulator. The earth angle is the index to scale the precision of earth simulator. We test the three angles by experiment and the results indicate that three angles errors are all less than ±0.05 0

  19. Nimbus-3/HRIR Level 2 Earth's Cloud Cover and Temperature of Cloud Tops and Terrain Features V001

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nimbus High Resolution Infrared Radiometer (HRIR) was originally designed to perform two major functions: First, to map the Earth's cloud cover at night to...

  20. Training the next generation of Space and Earth Science Engineers and Scientists through student design and development of an Earth Observation Nanosatellite, AlbertaSat-1

    Science.gov (United States)

    Lange, B. A.; Bottoms, J.

    2011-12-01

    This presentation addresses the design and developmental process of a Nanosatellite by an interdisciplinary team of undergraduate and graduate students at the University of Alberta. The Satellite, AlbertaSat-1, is the University of Alberta's entry in the Canadian Satellite Design Challenge (CDSC); an initiative to entice Canadian students to contribute to space and earth observation technologies and research. The province of Alberta, while home to a few companies, is very limited in its space industry capacity. The University of Alberta reflects this fact, where one of the major unifying foci of the University is oil, the provinces greatest resource. For students at the U of A, this lack of focus on astronautical, aerospace and space/earth observational research limits their education in these industries/disciplines. A fully student operated project such as AlbertaSat-1 provides this integral experience to almost every discipline. The AlbertaSat-1 team is comprised of students from engineering, physics, chemistry, earth and atmospheric science, business, and computer science. While diverse in discipline, the team is also diverse in experience, spanning all levels from 1st year undergraduate to experienced PhD. Many skill sets are required and the diverse group sees that this is covered and all opinions voiced. Through immersion in the project, students learn quickly and efficiently. The necessity for a flawless product ensures that only the highest quality of work is presented. Students participating must research and understand their own subsystem as well as all others. This overall system view provides the best educational tool, as students are able to see the real impacts of their work on other subsystems. As the project is completely student organized, the participants gain not only technical engineering, space and earth observational education, but experience in operations and financial management. The direct exposure to all aspects of the space and earth

  1. Astrobiology and the Possibility of Life on Earth and Elsewhere…

    Science.gov (United States)

    Cottin, Hervé; Kotler, Julia Michelle; Bartik, Kristin; Cleaves, H. James; Cockell, Charles S.; de Vera, Jean-Pierre P.; Ehrenfreund, Pascale; Leuko, Stefan; Ten Kate, Inge Loes; Martins, Zita; Pascal, Robert; Quinn, Richard; Rettberg, Petra; Westall, Frances

    2017-07-01

    Astrobiology is an interdisciplinary scientific field not only focused on the search of extraterrestrial life, but also on deciphering the key environmental parameters that have enabled the emergence of life on Earth. Understanding these physical and chemical parameters is fundamental knowledge necessary not only for discovering life or signs of life on other planets, but also for understanding our own terrestrial environment. Therefore, astrobiology pushes us to combine different perspectives such as the conditions on the primitive Earth, the physicochemical limits of life, exploration of habitable environments in the Solar System, and the search for signatures of life in exoplanets. Chemists, biologists, geologists, planetologists and astrophysicists are contributing extensively to this interdisciplinary research field. From 2011 to 2014, the European Space Agency (ESA) had the initiative to gather a Topical Team of interdisciplinary scientists focused on astrobiology to review the profound transformations in the field that have occurred since the beginning of the new century. The present paper is an interdisciplinary review of current research in astrobiology, covering the major advances and main outlooks in the field. The following subjects will be reviewed and most recent discoveries will be highlighted: the new understanding of planetary system formation including the specificity of the Earth among the diversity of planets, the origin of water on Earth and its unique combined properties among solvents for the emergence of life, the idea that the Earth could have been habitable during the Hadean Era, the inventory of endogenous and exogenous sources of organic matter and new concepts about how chemistry could evolve towards biological molecules and biological systems. In addition, many new findings show the remarkable potential life has for adaptation and survival in extreme environments. All those results from different fields of science are guiding our

  2. ICP-AES determination of rare earths in zirconium with prior chemical separation of the matrix

    International Nuclear Information System (INIS)

    Rajeswari, B.; Dhawale, B.A.; Page, A.G.; Sastry, M.D.

    2002-01-01

    Zirconium being one of the most important material in nuclear industry used as a fuel cladding in reactors and an additive in advanced fuels necessitates its characterization for trace metallic contents. Zirconium, as refractory in nature as the rare earth elements, has a complex spectrum comprising of several emission lines. Rare earths, which are high neutron absorbers have to be analysed at very low limits. Hence, to achieve the desired limits, the major matrix has to be separated prior to rare earth determination. The present paper describes the method developed for the separation of rare earths from zirconium by solvent extraction using Trioctyl Phosphine Oxide (TOPO) as the extractant followed by their determination using Inductively Coupled Plasma - Atomic Emission Spectrometric (ICP-AES) method. Initially, radiochemical studies were carried out using known amounts of gamma active tracers of 141 Ce, 152-154 Eu, 153 Gd and 95 Zr for optimisation of extraction conditions using Tl- activated NaI detector. The optimum conditions at 0.5 M TOPO/xylene in 6 M HCl so as to achieve a quantitative recovery of rare earth analytes alongwith a near total extraction of zirconium in the organic phase, was further extended to carry out the studies using ICP-AES method. The recovery of rare earths was found to be quantitative within experimental error with a precision better than 10% RSD. (author)

  3. Raman scattering of rare earth hexaborides

    International Nuclear Information System (INIS)

    Ogita, Norio; Hasegawa, Takumi; Udagawa, Masayuki; Iga, Fumitoshi; Kunii, Satoru

    2009-01-01

    Raman scattering spectra were measured for the rare-earth hexaborides RB 6 (R = Ce, Gd, or Dy). All Raman-active phonons due to B 6 vibrations were observed in the range 600 - 1400 cm -1 . Anomalous peaks were detected below 200 cm -1 , which correspond to vibrations of rare-earth ion excited by second-order Raman scattering process. The intensity and energy of the rare-earth mode decrease with decreasing temperature. This suggests that the rare-earth ion vibrates in a shallow and anharmonic potential due to the boron cage. Using the reported values of mean square displacement of rare-earth ion, we estimated the anharmonic contribution for the rare-earth vibrations.

  4. The Earth's Plasmasphere

    Science.gov (United States)

    Gallagher, D. L.

    2015-01-01

    The Earth's plasmasphere is an inner part of the magneteosphere. It is located just outside the upper ionosphere located in Earth's atmosphere. It is a region of dense, cold plasma that surrounds the Earth. Although plasma is found throughout the magnetosphere, the plasmasphere usually contains the coldest plasma. Here's how it works: The upper reaches of our planet's atmosphere are exposed to ultraviolet light from the Sun, and they are ionized with electrons that are freed from neutral atmospheric particles. The results are electrically charged negative and positive particles. The negative particles are electrons, and the positive particles are now called ions (formerly atoms and molecules). If the density of these particles is low enough, this electrically charged gas behaves differently than it would if it were neutral. Now this gas is called plasma. The atmospheric gas density becomes low enough to support the conditions for a plasma around earth at about 90 kilometers above Earth's surface. The electrons in plasma gain more energy, and they are very low in mass. They move along Earth's magnetic field lines and their increased energy is enough to escape Earth's gravity. Because electrons are very light, they don't have to gain too much kinetic energy from the Sun's ultraviolet light before gravity loses its grip on them. Gravity is not all that holds them back, however. As more and more electrons begin to escape outward, they leave behind a growing net positive electric charge in the ionosphere and create a growing net negative electric charge above the ionosphere; an electric field begins to develop (the Pannekoek-Rosseland E-field). Thus, these different interacting charges result in a positively charged ionosphere and negatively charged region of space above it. Very quickly this resulting electric field opposed upward movement of the electrons out of the ionosphere. The electrons still have this increased energy, however, so the electric field doesn't just

  5. Earth formation porosity log

    International Nuclear Information System (INIS)

    Smith, H.D.; Smith, M.P.; Schultz, W.E.

    1977-01-01

    A method for determining the porosity of earth formations in the vicinity of a cased well borehole is described, comprising the steps of: irradiating the earth formations in the vicinity of the cased well borehole with fast neutrons from a source of fast neutrons passed into the borehole; and generating a signal representative of the fast neutron population present in the well borehole at a location in the borehole, the signal is functionally related to the porosity of the earth formations in the vicinity of the borehole

  6. Origin of the earth and moon

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1981-01-01

    The composition of the Earth's interior and its bearing on the Earth's origin are discussed. It seems likely that the terrestrial planets formed by the accretion of solid planetisimals from the nebula of dust and gas left behind during the formation of the Sun. The scenario proposed is simpler than others. New evidence based upon a comparison of siderophile element abundances in the Earth's mantle and in the Moon imply that the Moon was derived from the Earth's mantle after the Earth's core had segregated

  7. Dartmouth College Earth Sciences Mobile Field Program

    Science.gov (United States)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  8. Rare metal and rare earth pegmatites of Western India

    International Nuclear Information System (INIS)

    Maithani, P.B.; Nagar, R.K.

    1999-01-01

    Rajasthan Mica Belt in western India is one of the three major mica-producing Proterozoic pegmatite belts of India, the others being in Bihar and Andhra Pradesh. The pegmatites of these mica belts, in general, are associated with the rare metal (RM) and rare earth element (REE)-bearing minerals like columbite-tantalite, beryl, lepidolite and other multiple oxides. RM-REE pegmatites of Gujarat are devoid of commercially workable mica. These pegmatites are geologically characterised in this paper, based on their association with granite plutons geochemistry, and RM and REE potential. In addition to RM and RE-bearing pegmatites, granites of the Umedpur area, Gujarat also show anomalous concentration (0.97 wt%) of rare metals (6431 ppm Nb, 1266 ppm Ta, 454 ppm Sn, 173 ppm W), (1098 ppm Ce 1.36% Y 2 O 3 ) rare earths, and uranium (0.40% eU 3 O 8 ). Eluvial concentrations in the soil and panned concentrate (0.04-0.28 wt%) analysed up to 7.4%Nb 2 O 5 , 836 ppm Ta, and 1.31% Y. Discrete columbite-tantalite and betafite have been identified in these concentrates in addition to other minerals like zircon, rutile, sphene and xenotime. This area with discrete RM R EE mineral phases could be significant as a non-pegmatite source for rare metal and rare earths. (author)

  9. The search for Infrared radiation prior to major earthquakes

    Science.gov (United States)

    Ouzounov, D.; Taylor, P.; Pulinets, S.

    2004-12-01

    This work describes our search for a relationship between tectonic stresses and electro-chemical and thermodynamic processes in the Earth and increases in mid-IR flux as part of a possible ensemble of electromagnetic (EM) phenomena that may be related to earthquake activity. Recent analysis of continuous ongoing long- wavelength Earth radiation (OLR) indicates significant and anomalous variability prior to some earthquakes. The cause of these anomalies is not well understood but could be the result of a triggering by an interaction between the lithosphere-hydrosphere and atmospheric related to changes in the near surface electrical field and gas composition prior to the earthquake. The OLR anomaly covers large areas surrounding the main epicenter. We have use the NOAA IR data to differentiate between the global and seasonal variability and these transient local anomalies. Indeed, on the basis of a temporal and spatial distribution analysis, an anomaly pattern is found to occur several days prior some major earthquakes. The significance of these observations was explored using data sets of some recent worldwide events.

  10. Factors Affecting Student Success with a Google Earth-Based Earth Science Curriculum

    Science.gov (United States)

    Blank, Lisa M.; Almquist, Heather; Estrada, Jen; Crews, Jeff

    2016-01-01

    This study investigated to what extent the implementation of a Google Earth (GE)-based earth science curriculum increased students' understanding of volcanoes, earthquakes, plate tectonics, scientific reasoning abilities, and science identity. Nine science classrooms participated in the study. In eight of the classrooms, pre- and post-assessments…

  11. STS-39 Earth observation of Earth's limb at sunset shows atmospheric layers

    Science.gov (United States)

    1991-01-01

    STS-39 Earth observation taken aboard Discovery, Orbiter Vehicle (OV) 103, shows the Earth's limb at sunset with numerous atmospheric scattering layers highlighted. The layers consist of fine particles suspended in very stable layers of the atmosphere. The layers act as a prism for the sunlight.

  12. Unique Non-Keplerian Orbit Vantage Locations for Sun-Earth Connection and Earth Science Vision Roadmaps

    Science.gov (United States)

    Folta, David; Young, Corissa; Ross, Adam

    2001-01-01

    The purpose of this investigation is to determine the feasibility of attaining and maintaining unique non-Keplerian orbit vantage locations in the Earth/Moon environment in order to obtain continuous scientific measurements. The principal difficulty associated with obtaining continuous measurements is the temporal nature of astrodynamics, i.e., classical orbits. This investigation demonstrates advanced trajectory designs to meet demanding science requirements which cannot be met following traditional orbital mechanic logic. Examples of continuous observer missions addressed include Earth pole-sitters and unique vertical libration orbits that address Sun-Earth Connection and Earth Science Vision roadmaps.

  13. K-Band Phased Array Developed for Low- Earth-Orbit Satellite Communications

    Science.gov (United States)

    Anzic, Godfrey

    1999-01-01

    Future rapid deployment of low- and medium-Earth-orbit satellite constellations that will offer various narrow- to wide-band wireless communications services will require phased-array antennas that feature wide-angle and superagile electronic steering of one or more antenna beams. Antennas, which employ monolithic microwave integrated circuits (MMIC), are perfectly suited for this application. Under a cooperative agreement, an MMIC-based, K-band phased-array antenna is being developed with 50/50 cost sharing by the NASA Lewis Research Center and Raytheon Systems Company. The transmitting array, which will operate at 19 gigahertz (GHz), is a state-of-the-art design that features dual, independent, electronically steerable beam operation ( 42 ), a stand-alone thermal management, and a high-density tile architecture. This array can transmit 622 megabits per second (Mbps) in each beam from Earth orbit to small Earth terminals. The weight of the total array package is expected to be less than 8 lb. The tile integration technology (flip chip MMIC tile) chosen for this project represents a major advancement in phased-array engineering and holds much promise for reducing manufacturing costs.

  14. Launching an EarthCube Interoperability Workbench for Constructing Workflows and Employing Service Interfaces

    Science.gov (United States)

    Fulker, D. W.; Pearlman, F.; Pearlman, J.; Arctur, D. K.; Signell, R. P.

    2016-12-01

    A major challenge for geoscientists—and a key motivation for the National Science Foundation's EarchCube initiative—is to integrate data across disciplines, as is necessary for complex Earth-system studies such as climate change. The attendant technical and social complexities have led EarthCube participants to devise a system-of-systems architectural concept. Its centerpiece is a (virtual) interoperability workbench, around which a learning community can coalesce, supported in their evolving quests to join data from diverse sources, to synthesize new forms of data depicting Earth phenomena, and to overcome immense obstacles that arise, for example, from mismatched nomenclatures, projections, mesh geometries and spatial-temporal scales. The full architectural concept will require significant time and resources to implement, but this presentation describes a (minimal) starter kit. With a keep-it-simple mantra this workbench starter kit can fulfill the following four objectives: 1) demonstrate the feasibility of an interoperability workbench by mid-2017; 2) showcase scientifically useful examples of cross-domain interoperability, drawn, e.g., from funded EarthCube projects; 3) highlight selected aspects of EarthCube's architectural concept, such as a system of systems (SoS) linked via service interfaces; 4) demonstrate how workflows can be designed and used in a manner that enables sharing, promotes collaboration and fosters learning. The outcome, despite its simplicity, will embody service interfaces sufficient to construct—from extant components—data-integration and data-synthesis workflows involving multiple geoscience domains. Tentatively, the starter kit will build on the Jupyter Notebook web application, augmented with libraries for interfacing current services (at data centers involved in EarthCube's Council of Data Facilities, e.g.) and services developed specifically for EarthCube and spanning most geoscience domains.

  15. Recovery of rare earth minerals, with emphasis on flotation process

    International Nuclear Information System (INIS)

    Houot, R.; Cuif, J.P.; Mottot, Y.; Samama, J.C.

    1991-01-01

    Bastnasite and monazite are the two major minerals used commercially to supply most of the rare earths. Monazite is often a by-product of the concentration of heavy minerals of zirconium and titanium in beach sands. Thus, the methods of concentration are gravity (spirals, Reichert cones and shaking tables), ending with magnetism, electrostatic and in certain cases, flotation. The two main deposits of bastnasite are Mountain Pass (U.S.A.) and Bayan Obo (China). The rock bastnasite content is within 15% and the recovery of rare earth minerals is made through flotation. The flowsheets are complex enough because the existence of accompanying minerals such as quartz, iron components, barite, fluorite, calcite, etc. The conditioning is done by heating and the frequently employed collector is a fatty acid associated with selective agents, as sodium silicate or fluosilicate, lignin sulphonate, sodium carbonate, aluminium salts, etc. Recent studies tempt to introduce the use of phosphoric esters, dicarboxilic, sulphonic and/or sulphosuccinic acids. Concentrates with 60% REO are then treated with acidic solution to eliminate residual calcite. The possibility of obtaining products enriched with rare earths are also noted: these are ores of uranium (Elliot Lake), pyrochlore, apatite, and other complex ores with euxenite, fergusonite or loparite. (author) 10 figs., 6 tabs., 57 refs

  16. Using a dynamic, introductory-level volcanoes class as a means to introduce non-science majors to the geosciences

    Science.gov (United States)

    Cook, G. W.

    2012-12-01

    At the University of California, San Diego, I teach a quarter-long, introductory Earth Science class titled "Volcanoes," which is, in essence, a functional class in volcanology designed specifically for non-majors. This large-format (enrollment ~ 85), lecture-based class provides students from an assortment of backgrounds an opportunity to acquire much-needed (and sometimes dreaded) area credits in science, while also serving as an introduction to the Earth Science major at UCSD (offered through Scripps Institution of Oceanography). The overall goal of the course is to provide students with a stimulating and exciting general science option that, using an inherently interesting topic, introduces them to the fundamentals of geoscience. A secondary goal is to promote general science and geoscience literacy among the general population of UCSD. Student evaluations of this course unequivocally indicate a high degree of learning and interest in the material. The majority of students in the class (>80%) are non-science majors and very few students (degree-seeking students. In addition, only a handful of students have typically had any form of geology class beyond high school level Earth Science. Consequently, there are challenges associated with teaching the class. Perhaps most significantly, students have very little background—background that is necessary for understanding the processes involved in volcanic eruptions. Second, many non-science students have built-in anxieties with respect to math and science, anxieties that must be considered when designing curriculum and syllabi. It is essential to provide the right balance of technical information while remaining in touch with the audience. My approach to the class involves a dynamic lecture format that incorporates a wide array of multimedia, analogue demonstrations of volcanic processes, and small-group discussions of topics and concepts. In addition to teaching about volcanoes—a fascinating subject in and of

  17. Simplify and Accelerate Earth Science Data Preparation to Systemize Machine Learning

    Science.gov (United States)

    Kuo, K. S.; Rilee, M. L.; Oloso, A.

    2017-12-01

    Data preparation is the most laborious and time-consuming part of machine learning. The effort required is usually more than linearly proportional to the varieties of data used. From a system science viewpoint, useful machine learning in Earth Science likely involves diverse datasets. Thus, simplifying data preparation to ease the systemization of machine learning in Earth Science is of immense value. The technologies we have developed and applied to an array database, SciDB, are explicitly designed for the purpose, including the innovative SpatioTemporal Adaptive-Resolution Encoding (STARE), a remapping tool suite, and an efficient implementation of connected component labeling (CCL). STARE serves as a universal Earth data representation that homogenizes data varieties and facilitates spatiotemporal data placement as well as alignment, to maximize query performance on massively parallel, distributed computing resources for a major class of analysis. Moreover, it converts spatiotemporal set operations into fast and efficient integer interval operations, supporting in turn moving-object analysis. Integrative analysis requires more than overlapping spatiotemporal sets. For example, meaningful comparison of temperature fields obtained with different means and resolutions requires their transformation to the same grid. Therefore, remapping has been implemented to enable integrative analysis. Finally, Earth Science investigations are generally studies of phenomena, e.g. tropical cyclone, atmospheric river, and blizzard, through their associated events, like hurricanes Katrina and Sandy. Unfortunately, except for a few high-impact phenomena, comprehensive episodic records are lacking. Consequently, we have implemented an efficient CCL tracking algorithm, enabling event-based investigations within climate data records beyond mere event presence. In summary, we have implemented the core unifying capabilities on a Big Data technology to enable systematic machine learning in

  18. Earth as a Tool for Astrobiology—A European Perspective

    Science.gov (United States)

    Martins, Zita; Cottin, Hervé; Kotler, Julia Michelle; Carrasco, Nathalie; Cockell, Charles S.; de la Torre Noetzel, Rosa; Demets, René; de Vera, Jean-Pierre; d'Hendecourt, Louis; Ehrenfreund, Pascale; Elsaesser, Andreas; Foing, Bernard; Onofri, Silvano; Quinn, Richard; Rabbow, Elke; Rettberg, Petra; Ricco, Antonio J.; Slenzka, Klaus; Stalport, Fabien; ten Kate, Inge L.; van Loon, Jack J. W. A.; Westall, Frances

    2017-07-01

    Scientists use the Earth as a tool for astrobiology by analyzing planetary field analogues (i.e. terrestrial samples and field sites that resemble planetary bodies in our Solar System). In addition, they expose the selected planetary field analogues in simulation chambers to conditions that mimic the ones of planets, moons and Low Earth Orbit (LEO) space conditions, as well as the chemistry occurring in interstellar and cometary ices. This paper reviews the ways the Earth is used by astrobiologists: (i) by conducting planetary field analogue studies to investigate extant life from extreme environments, its metabolisms, adaptation strategies and modern biosignatures; (ii) by conducting planetary field analogue studies to investigate extinct life from the oldest rocks on our planet and its biosignatures; (iii) by exposing terrestrial samples to simulated space or planetary environments and producing a sample analogue to investigate changes in minerals, biosignatures and microorganisms. The European Space Agency (ESA) created a topical team in 2011 to investigate recent activities using the Earth as a tool for astrobiology and to formulate recommendations and scientific needs to improve ground-based astrobiological research. Space is an important tool for astrobiology (see Horneck et al. in Astrobiology, 16:201-243, 2016; Cottin et al., 2017), but access to space is limited. Complementing research on Earth provides fast access, more replications and higher sample throughput. The major conclusions of the topical team and suggestions for the future include more scientifically qualified calls for field campaigns with planetary analogy, and a centralized point of contact at ESA or the EU for the organization of a survey of such expeditions. An improvement of the coordinated logistics, infrastructures and funding system supporting the combination of field work with planetary simulation investigations, as well as an optimization of the scientific return and data processing

  19. The radioactive earth

    International Nuclear Information System (INIS)

    Plant, J.A.; Saunders, A.D.

    1996-01-01

    Uranium, thorium and potassium are the main elements contributing to natural terrestrial radioactivity. The isotopes 238 U, 235 U, 232 Th and 40 K decay with half-lives so long that significant amounts remain in the earth, providing a continuing source of heat. The slow decay of these isotopes also provides the basis for radiometric age dating and isotopic modelling of the evolution of the earth and its crust. There is a complex interplay between their heat production and the processes involved in crust formation. Phenomena such as volcanism, earthquakes, and large-scale hydrothermal activity associated with ore deposition reflect the dissipation of heat energy from the earth, much of which is derived from natural radioactivity. The higher levels of radioactive elements during the early history of the earth resulted in higher heat flow. All three of the radioactive elements are strongly partitioned into the continental crust, but within the crust their distribution is determined by their different chemical properties. The behaviour of U, which has two commonly occurring oxidation states, is more complex than that of Th and K. Uranium deposits are diverse, and are mostly associated with granites, acid volcanics, or detrital sedimentary rocks. The most important U deposits economically are unconformity-type ores of Proterozoic age, in which U is enriched by up to 5 x 10 6 with respect to bulk earth values. In some cases natural radioactivity can be of environmental concern. The most significant risk is posed by accumulations of radon, the gaseous daughter product of U. (author)

  20. Geohistory. Global evolution of the earth

    Energy Technology Data Exchange (ETDEWEB)

    Ozima, Minoru

    1987-01-01

    A full understanding of the earth's evolution can be achieved only by considering it as a continuous process starting with the birth of the solar system. This book traces the evolution of the earth, mainly on the basis of radiogenic isotopes from long half-life parent elements, and discusses it in terms of the latest developments in astrophysical theory, which impose unique constraints on the earth's origin and early evolution. By its 'historical' nature, geohistorical study also offers a unique approach to forecasting the future of the earth, yielding useful clues for the understanding of environmental problems, such as radioactive waste disposal. This book aims to provide an outline of global evolution of the planet earth for students of general science and for earth scientists.

  1. What can earth tide measurements tell us about ocean tides or earth structure?

    Science.gov (United States)

    Baker, T. F.

    1978-01-01

    Current experimental problems in Earth tides are reviewed using comparisons of tidal gravity and tilt measurements in Europe with loading calculations are examples. The limitations of present day instrumentation and installation techniques are shown as well as some of the ways in which they can be improved. Many of the geophysical and oceanographic investigations that are possible with Earth tide measurements are discussed with emphasis on the percentage accuracies required in the measurements in order to obtain new information about Earth or its oceans.

  2. EARTH FROM SPACE

    Indian Academy of Sciences (India)

    Table of contents. EARTH FROM SPACE · Slide 2 · Earth System · Slide 4 · Global water cycle · Slide 6 · Slide 7 · Direct Observations of Recent Climate Change · Slide 9 · Slide 10 · Snow cover and Arctic sea ice are decreasing · Polar Melting & Global Heat Transport · Antarctica: Melting and Thickening · Slide 14 · Slide 15.

  3. Visualizing Earth Materials

    Science.gov (United States)

    Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.

    2016-12-01

    Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can

  4. Polar vortices on Earth and Mars: A comparative study of the climatology and variability from reanalyses.

    Science.gov (United States)

    Mitchell, D M; Montabone, L; Thomson, S; Read, P L

    2015-01-01

    Polar vortices on Mars provide case-studies to aid understanding of geophysical vortex dynamics and may help to resolve long-standing issues regarding polar vortices on Earth. Due to the recent development of the first publicly available Martian reanalysis dataset (MACDA), for the first time we are able to characterise thoroughly the structure and evolution of the Martian polar vortices, and hence perform a systematic comparison with the polar vortices on Earth. The winter atmospheric circulations of the two planets are compared, with a specific focus on the structure and evolution of the polar vortices. The Martian residual meridional overturning circulation is found to be very similar to the stratospheric residual circulation on Earth during winter. While on Earth this residual circulation is very different from the Eulerian circulation, on Mars it is found to be very similar. Unlike on Earth, it is found that the Martian polar vortices are annular, and that the Northern Hemisphere vortex is far stronger than its southern counterpart. While winter hemisphere differences in vortex strength are also reported on Earth, the contrast is not as large. Distinctions between the two planets are also apparent in terms of the climatological vertical structure of the vortices, in that the Martian polar vortices are observed to decrease in size at higher altitudes, whereas on Earth the opposite is observed. Finally, it is found that the Martian vortices are less variable through the winter than on Earth, especially in terms of the vortex geometry. During one particular major regional dust storm on Mars (Martian year 26), an equatorward displacement of the vortex is observed, sharing some qualitative characteristics of sudden stratospheric warmings on Earth.

  5. Earth's Trojan asteroid.

    Science.gov (United States)

    Connors, Martin; Wiegert, Paul; Veillet, Christian

    2011-07-27

    It was realized in 1772 that small bodies can stably share the same orbit as a planet if they remain near 'triangular points' 60° ahead of or behind it in the orbit. Such 'Trojan asteroids' have been found co-orbiting with Jupiter, Mars and Neptune. They have not hitherto been found associated with Earth, where the viewing geometry poses difficulties for their detection, although other kinds of co-orbital asteroid (horseshoe orbiters and quasi-satellites) have been observed. Here we report an archival search of infrared data for possible Earth Trojans, producing the candidate 2010 TK(7). We subsequently made optical observations which established that 2010 TK(7) is a Trojan companion of Earth, librating around the leading Lagrange triangular point, L(4). Its orbit is stable over at least ten thousand years.

  6. Co-Seismic Mass Dislocation and its Effect on Earth's Rotation and Gravity

    Science.gov (United States)

    Chao, B. F.; Gross, R. S.

    2002-01-01

    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the shaking that is the earthquake, leaves behind permanent (step-function-like) dislocations in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field (in terms of spherical harmonic Stokes coefficients). The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross (1987). The calculation uses the normal mode summation scheme, applied to nearly twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Central Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies. For example, earthquakes conspire to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to nudge the Earth rotation pole towards approximately 140 degrees E, roughly opposite to the observed polar drift direction. The geophysical significance and implications will be further studied.

  7. Assessing the Impact of Earth Radiation Pressure Acceleration on Low-Earth Orbit Satellites

    Science.gov (United States)

    Vielberg, Kristin; Forootan, Ehsan; Lück, Christina; Kusche, Jürgen; Börger, Klaus

    2017-04-01

    The orbits of satellites are influenced by several external forces. The main non-gravitational forces besides thermospheric drag, acting on the surface of satellites, are accelerations due to the Earth and Solar Radiation Pres- sure (SRP and ERP, respectively). The sun radiates visible and infrared light reaching the satellite directly, which causes the SRP. Earth also emits and reflects the sunlight back into space, where it acts on satellites. This is known as ERP acceleration. The influence of ERP increases with decreasing distance to the Earth, and for low-earth orbit (LEO) satellites ERP must be taken into account in orbit and gravity computations. Estimating acceler- ations requires knowledge about energy emitted from the Earth, which can be derived from satellite remote sensing data, and also by considering the shape and surface material of a satellite. In this sensitivity study, we assess ERP accelerations based on different input albedo and emission fields and their modelling for the satellite missions Challenging Mini-Satellite Payload (CHAMP) and Gravity Recovery and Climate Experiment (GRACE). As input fields, monthly 1°x1° products of Clouds and the Earth's Radiant En- ergy System (CERES), L3 are considered. Albedo and emission models are generated as latitude-dependent, as well as in terms of spherical harmonics. The impact of different albedo and emission models as well as the macro model and the altitude of satellites on ERP accelerations will be discussed.

  8. HABEBEE: habitability of eyeball-exo-Earths.

    Science.gov (United States)

    Angerhausen, Daniel; Sapers, Haley; Citron, Robert; Bergantini, Alexandre; Lutz, Stefanie; Queiroz, Luciano Lopes; da Rosa Alexandre, Marcelo; Araujo, Ana Carolina Vieira

    2013-03-01

    Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.

  9. Hopanoid-producing bacteria in the Red Sea include the major marine nitrite-oxidizers

    KAUST Repository

    Kharbush, Jenan J

    2018-04-10

    Hopanoids, including the extended side chain-containing bacteriohopanepolyols (BHPs), are bacterial lipids found abundantly in the geological record and across Earth\\'s surface environments. However, the physiological roles of this biomarker remain uncertain, limiting interpretation of their presence in current and past environments. Recent work investigating the diversity and distribution of hopanoid producers in the marine environment implicated low-oxygen regions as important loci of hopanoid production, and data from marine oxygen minimum zones (OMZs) suggested that the dominant hopanoid producers in these environments are nitrite-utilizing organisms, revealing a potential connection between hopanoid production and the marine nitrogen cycle. Here we use metagenomic data from the Red Sea to investigate the ecology of hopanoid producers in an environmental setting that is biogeochemically distinct from those investigated previously. The distributions of hopanoid production and nitrite oxidation genes in the Red Sea are closely correlated, and the majority of hopanoid producers are taxonomically affiliated with the major marine nitrite oxidizers, Nitrospinae and Nitrospirae. These results suggest that the relationship between hopanoid production and nitrite oxidation is conserved across varying biogeochemical conditions in dark ocean microbial ecosystems.

  10. Pull vs. Push: How OmniEarth Delivers Better Earth Observation Information to Subscribers

    Science.gov (United States)

    Fish, C.; Slagowski, S.; Dyrud, L.; Fentzke, J.; Hargis, B.; Steerman, M.

    2015-04-01

    Until very recently, the commercialization of Earth observation systems has largely occurred in two ways: either through the detuning of government satellites or the repurposing of NASA (or other science) data for commercial use. However, the convergence of cloud computing and low-cost satellites is enabling Earth observation companies to tailor observation data to specific markets. Now, underserved constituencies, such as agriculture and energy, can tap into Earth observation data that is provided at a cadence, resolution and cost that can have a real impact to their bottom line. To connect with these markets, OmniEarth fuses data from a variety of sources, synthesizes it into useful and valuable business information, and delivers it to customers via web or mobile interfaces. The "secret sauce" is no longer about having the highest resolution imagery, but rather it is about using that imagery - in conjunction with a number of other sources - to solve complex problems that require timely and contextual information about our dynamic and changing planet. OmniEarth improves subscribers' ability to visualize the world around them by enhancing their ability to see, analyze, and react to change in real time through a solutions-as-a-service platform.

  11. Connecting Earth Systems: Developing Holistic Understanding through the Earth-System-Science Model

    Science.gov (United States)

    Gagnon, Valoree; Bradway, Heather

    2012-01-01

    For many years, Earth science concepts have been taught as thematic units with lessons in nice, neat chapter packages complete with labs and notes. But compartmentalized Earth science no longer exists, and implementing teaching methods that support student development of holistic understandings can be a time-consuming and difficult task. While…

  12. Metallothermic reduction of rare earth oxides

    International Nuclear Information System (INIS)

    Sharma, R.A.

    1986-01-01

    Rare earth oxides can be reduced to rare earth metals by a novel, high yield, metallothermic process. The oxides are dispersed in a suitable, molten, calcium chloride bath along with sodium metal. The sodium reacts with the calcium chloride to produce calcium metal which reduces the rare earth oxides to rare earth metals. The metals are collected in a discrete layer in the reaction vessel

  13. Earthing the human body influences physiologic processes.

    Science.gov (United States)

    Sokal, Karol; Sokal, Pawel

    2011-04-01

    This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments: Five (5) experiments are presented: experiment 1-effect of earthing on calcium-phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2-effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3-effect of earthing on thyroid function (N = 12); experiment 4-effect of earthing on glucose concentration (N = 12); experiment 5-effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium-phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems.

  14. Rare earth industries: Strategies for Malaysia

    International Nuclear Information System (INIS)

    2011-01-01

    Evidently, many reports cite Malaysia as having reasonably substantial amounts of rare earths elements. In fact, based on the rare earths found in the residual tin deposits alone, Malaysia has about 30,000 tonnes. This does not take into account unmapped deposits which experts believe may offer more tonnages of rare earths. Brazil which is reported to have about 48,000 tonnes has announced plans to invest aggressively in the rare earths business. China has on record the largest reserves with about 36 million tonnes. This explains why China has invested heavily in the entire value chain of the rare earths business. Chinas committed investment in rare earths started many years ago when the country's foremost leaders proclaimed the strategic position of rare earths in the world economy. That forecast is now a reality where the rise in the green high-tech economy is seen driving global demand for rare earths in a big way. Malaysia needs to discover and venture into new economic growth areas. This will help fuel the country's drive to achieve a high income status by 2020 as articulated in the New Economic Model (NEM) and the many supporting Economic Transformation Plans that the Government has recently launched. Rare earths may be the new growth area for Malaysia. However, the business opportunities should not just be confined to the mining, extraction and production of rare earths elements alone if Malaysia is to maximise benefits from this industry. The industry's gold mine is in the downstream products. This is also the sector that China wants to expand. Japan which now controls about 50 % of the global market for downstream rare earths-based high-tech components is desperately looking for partners to grow their stake in the business. Malaysia needs to embark on the right strategies in order to build the rare earths industry in the country. What are the strategies? (author)

  15. Who Uses Earth Observations? User Types in Group on Earth Observations

    Science.gov (United States)

    Fontaine, K. S.

    2011-12-01

    How can we communicate concepts in the physical sciences unless we know our audience? The Group on Earth Observations (GEO) User Interface Committee (UIC) has a responsibility within GEO to support and advocate for the user community in the development of Global Earth Observations System of Systems (GEOSS) and related work. As part of its efforts, the UIC has been working on developing a taxonomy that can be used to characterize the broad spectrum of users of GEOSS and its data, services, and applications. The user type taxonomy is designed to be broad and flexible but aims at describing the needs of the users GEOSS is going to serve. These user types represent a continuum of users of Earth observations from research through to decision support activities, and it includes organizations that use GEOSS as a tool to provide data and services for customers and consumers of the information. The classification scheme includes factors about skills and capacity for using Earth observations, sophistication level, spatial resolution, latency, and frequency of data. As part of the effort to develop a set of User Types, the GEO UIC foresees that those inside and outside GEO can use the typologies to understand how to engage users at a more effective level. This talk presents the GEOSS User Type taxonomy, explaining the development and highlights of key feedback. The talk will highlight possible ways to use the User Type taxonomy to communicate concepts and promote the use of Earth observations to a wide variety of users.

  16. Rare earth industries: Downstream business

    International Nuclear Information System (INIS)

    2011-01-01

    The value chain of the rare earths business involves mining, extraction, processing, refining and the manufacture of an extensive range of downstream products which find wide applications in such industries including aerospace, consumer electronics, medical, military, automotive, renewable wind and solar energy and telecommunications. In fact the entire gamut of the high-tech industries depends on a sustainable supply of rare earths elements. The explosive demand in mobile phones is an excellent illustration of the massive potential that the rare earths business offers. In a matter of less than 20 years, the number of cell phones worldwide has reached a staggering 5 billion. Soon, going by the report of their growth in sales, the world demand for cell phones may even exceed the global population. Admittedly, the rare earths business does pose certain risks. Top among the risks are the health and safety risks. The mining, extraction and refining of rare earths produce residues and wastes which carry health and safety risks. The residues from the extraction and refining are radioactive, while their effluent waste streams do pose pollution risks to the receiving rivers and waterways. But, as clearly elaborated in a recent report by IAEA experts, there are technologies and systems available to efficiently mitigate such risks. The risks are Rare Earth manageable. However, it is crucial that the risk and waste management procedures are strictly followed and adhered to. This is where effective monitoring and surveillance throughout the life of all such rare earths facilities is crucial. Fortunately, Malaysia's regulatory standards on rare earths follow international standards. In some areas, Malaysia's regulatory regime is even more stringent than the international guidelines. (author)

  17. Learning More About Our Earth: An Exploration of NASA's Contributions to Earth Science Through Remote Sensing Technologies

    Science.gov (United States)

    Lindsay, Francis

    2017-01-01

    NASA is commonly known for its pioneering work in space exploration and the technological advancements that made access to space possible. NASA is now increasingly known for the agency's research and technologies that support the Earth sciences. This is a presentation focusing on NASA's Earth science efforts told mostly through the technological innovations NASA uses to achieve a greater understanding of the Earth, making it possible to explore the Earth as a system. Enabling this science is NASA's fleet of over two dozen Earth science spacecraft, supported by aircraft, ships and ground observations. NASA's Earth Observing System (EOS) is a coordinated series of polar-orbiting and low inclination satellites for long-term global observations of the land surface, biosphere, solid Earth, atmosphere, and oceans. With the launching of the three flagship satellite missions, Terra, Aqua and Aura, beginning in 1999, NASA's initial Mission to Planet Earth made it possible to measure aspects of the environment that touch the lives of every person around the world. NASA harnessing the unique space-based platform means, fortunately, no planet is better studied than the one we actually live on.

  18. Earth Without Life: A Systems Model of a Global Abiotic Nitrogen Cycle.

    Science.gov (United States)

    Laneuville, Matthieu; Kameya, Masafumi; Cleaves, H James

    2018-03-20

    Nitrogen is the major component of Earth's atmosphere and plays important roles in biochemistry. Biological systems have evolved a variety of mechanisms for fixing and recycling environmental nitrogen sources, which links them tightly with terrestrial nitrogen reservoirs. However, prior to the emergence of biology, all nitrogen cycling was abiological, and this cycling may have set the stage for the origin of life. It is of interest to understand how nitrogen cycling would proceed on terrestrial planets with comparable geodynamic activity to Earth, but on which life does not arise. We constructed a kinetic mass-flux model of nitrogen cycling in its various major chemical forms (e.g., N 2 , reduced (NH x ) and oxidized (NO x ) species) between major planetary reservoirs (the atmosphere, oceans, crust, and mantle) and included inputs from space. The total amount of nitrogen species that can be accommodated in each reservoir, and the ways in which fluxes and reservoir sizes may have changed over time in the absence of biology, are explored. Given a partition of volcanism between arc and hotspot types similar to the modern ones, our global nitrogen cycling model predicts a significant increase in oceanic nitrogen content over time, mostly as NH x , while atmospheric N 2 content could be lower than today. The transport timescales between reservoirs are fast compared to the evolution of the environment; thus atmospheric composition is tightly linked to surface and interior processes. Key Words: Nitrogen cycle-Abiotic-Planetology-Astrobiology. Astrobiology 18, xxx-xxx.

  19. Greenhouse Earth: A Traveling Exhibition

    International Nuclear Information System (INIS)

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a ''demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a ''satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change

  20. Ocean FEST and TECH: Inspiring Hawaii's Students to Pursue Ocean, Earth and Environmental Science Careers

    Science.gov (United States)

    Bruno, B. C.; Wren, J. L.; Ayau, J. F.

    2013-12-01

    Ocean TECH (Technology Expands Career Horizons) is a new initiative funded by NSF/GeoEd to stimulate interest in ocean, earth and environmental science careers - and the college majors that lead to such careers - among Hawaii's underrepresented students in grades 6-14. The Ocean TECH project features hands-on ocean science and technology and interactions with career professionals. Ocean TECH builds upon Ocean FEST (Families Exploring Science Together), a previous NSF/OEDG project aimed at teaching fun hands-on science in culturally and locally relevant ways to Hawaii's elementary school students and their families. Ocean FEST was rigorously evaluated (including cognitive pre-testing developed in partnership with external evaluators) and shown to be successful both in teaching science content and changing attitudes toward ocean, earth and environmental science careers. Over the course of the four-year grant, Ocean FEST reached 20,99 students and adults, including 636 classroom teachers and other volunteers who assisted with program delivery, most of whom were from underrepresented groups. For more info on Ocean FEST: http://oceanfest.soest.hawaii.edu/ Ocean TECH events have various formats, but common themes include: (1) Using technology as a hook to engage students in ocean, earth and environmental science. (2) Bringing middle school through community college students to college campuses, where they engage in hands-on science activities and learn about college majors. (3) Drawing direct links between the students' hands-on science activities and the research currently occurring at the UH Manoa's School of Ocean and Earth Science and Technology (SOEST), such as C-MORE and HOT research. (4) Respecting and valuing students' local knowledge and experiences. (5) Explicitly showing, through concrete examples, how becoming an ocean, earth or environmental scientist addresses would beneit Hawaii (6) Having graduate students from diverse backgrounds serve as instructors and

  1. The earth and the moon

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    The moon is the only body in the solar system outside of the Earth that has been visited by humans. More than 440 pounds of lunar material are brought by NASA and Soviet space missions to Earth for study. The information gleaned about the moon from this relatively small pile of rocks is mind-boggling and stands as the greatest proof that Martian planetary science would be greatly enhanced by returning samples to Earth. Compositional studies of lunar rocks show that the moon and the Earth are made of similar material, and because lunar material has not been reworked through erosion and plate te

  2. Rare earth-iron-boron premanent magnets

    International Nuclear Information System (INIS)

    Ghendehari, M.H.

    1988-01-01

    This patent describes a method for producing rare earth-iron-boron permanent magnets containing added rare earth oxide, comprising the steps of: (a) mixing a particulate alloy containing at least one rare earth metal, iron, and boron with at least one particulate rare earth oxide; (b) aligning magnetic domains of the mixture in a magnetic field; (c) compacting the aligned mixture to form a shape; and (d) sintering the compacted shape

  3. The industry of metallic rare earths (R.E.)

    International Nuclear Information System (INIS)

    Poirier, P.

    1979-01-01

    The following subjects are discussed: rare earths resources (rare earths abondance and world reserves, main ores). Rare earths separation and purification (ionic exchange, solvent extraction). Metallic rare earths and their mixtures, metallothermic reduction of oxides or fluorides (Ca, Mg, Al, Si or rare earth metals), Co-reduction process for intermetallic compounds (SmCo 5 ). Industrial applications of metallic rare earths (traditional applications such as flints, nodular cast iron, steel refining, magnesium industrie, applications under development such as rare earths/cobalt magnets, LaNi 5 for hydrogen storage, special alloys (automotive post combustion), magnetostrictive alloys). Economical problems: rare earth are elements relatively abundant and often at easily accessible prices. However, this group of 15 elements are liable to certain economical restraints. It is difficult to crack ore for only one rare earth. Availability of one given rare earth must be associated with the other corresponding rare earths to absorb all the other rare earths in other applications. Rare-earth industry has a strong expanding rate. 20% per year average for 6 years with Rhone-Poulenc. Thanks to their exceptional, specific characteristics rare earths have a bright future particularly for their metals

  4. Rigidly framed earth retaining structures thermal soil structure interaction of buildings supporting unbalanced lateral earth pressures

    CERN Document Server

    Aboumoussa, Walid

    2014-01-01

    Structures placed on hillsides often present a number of challenges and a limited number of economical choices for site design. An option sometimes employed is to use the building frame as a retaining element, comprising a Rigidly Framed Earth Retaining Structure (RFERS). The relationship between temperature and earth pressure acting on RFERS, is explored in this monograph through a 4.5 year monitoring program of a heavily instrumented in service structure. The data indicated that the coefficient of earth pressure behind the monitored RFERS had a strong linear correlation with temperature. The study also revealed that thermal cycles, rather than lateral earth pressure, were the cause of failure in many structural elements. The book demonstrates that depending on the relative stiffness of the retained soil mass and that of the structural frame, the developed lateral earth pressure, during thermal expansion, can reach magnitudes several times larger than those determined using classical earth pressure theories....

  5. Sally Ride EarthKAM - Automated Image Geo-Referencing Using Google Earth Web Plug-In

    Science.gov (United States)

    Andres, Paul M.; Lazar, Dennis K.; Thames, Robert Q.

    2013-01-01

    Sally Ride EarthKAM is an educational program funded by NASA that aims to provide the public the ability to picture Earth from the perspective of the International Space Station (ISS). A computer-controlled camera is mounted on the ISS in a nadir-pointing window; however, timing limitations in the system cause inaccurate positional metadata. Manually correcting images within an orbit allows the positional metadata to be improved using mathematical regressions. The manual correction process is time-consuming and thus, unfeasible for a large number of images. The standard Google Earth program allows for the importing of KML (keyhole markup language) files that previously were created. These KML file-based overlays could then be manually manipulated as image overlays, saved, and then uploaded to the project server where they are parsed and the metadata in the database is updated. The new interface eliminates the need to save, download, open, re-save, and upload the KML files. Everything is processed on the Web, and all manipulations go directly into the database. Administrators also have the control to discard any single correction that was made and validate a correction. This program streamlines a process that previously required several critical steps and was probably too complex for the average user to complete successfully. The new process is theoretically simple enough for members of the public to make use of and contribute to the success of the Sally Ride EarthKAM project. Using the Google Earth Web plug-in, EarthKAM images, and associated metadata, this software allows users to interactively manipulate an EarthKAM image overlay, and update and improve the associated metadata. The Web interface uses the Google Earth JavaScript API along with PHP-PostgreSQL to present the user the same interface capabilities without leaving the Web. The simpler graphical user interface will allow the public to participate directly and meaningfully with EarthKAM. The use of

  6. Cosmic rays and Earth's climate

    DEFF Research Database (Denmark)

    Svensmark, Henrik

    2000-01-01

    During the last solar cycle the Earth's cloud cover underwent a modulation in phase with the cosmic ray flux. Assuming that there is a causal relationship between the two, it is expected and found that the Earth's temperature follows more closely decade variations in cosmic ray flux than other...... solar activity parameters. If the relationship is real the state of the Heliosphere affects the Earth's climate....

  7. Sun-Earth Day, 2001

    Science.gov (United States)

    Adams, Mitzi L.; Mortfield, P.; Hathaway, D. H.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    To promote awareness of the Sun-Earth connection, NASA's Marshall Space Flight Center, in collaboration with the Stanford SOLAR Center, sponsored a one-day Sun-Earth Day event on April 27, 2001. Although "celebrated" on only one day, teachers and students from across the nation, prepared for over a month in advance. Workshops were held in March to train teachers. Students performed experiments, results of which were shared through video clips and an internet web cast. Our poster includes highlights from student experiments (grades 2 - 12), lessons learned from the teacher workshops and the event itself, and plans for Sun-Earth Day 2002.

  8. Earthing the Human Body Influences Physiologic Processes

    Science.gov (United States)

    Sokal, Karol

    2011-01-01

    Abstract Objectives This study was designed to answer the question: Does the contact of the human organism with the Earth via a copper conductor affect physiologic processes? Subjects and experiments Five (5) experiments are presented: experiment 1—effect of earthing on calcium–phosphate homeostasis and serum concentrations of iron (N = 84 participants); experiment 2—effect of earthing on serum concentrations of electrolytes (N = 28); experiment 3—effect of earthing on thyroid function (N = 12); experiment 4—effect of earthing on glucose concentration (N = 12); experiment 5—effect of earthing on immune response to vaccine (N = 32). Subjects were divided into two groups. One (1) group of people was earthed, while the second group remained without contact with the Earth. Blood and urine samples were examined. Results Earthing of an electrically insulated human organism during night rest causes lowering of serum concentrations of iron, ionized calcium, inorganic phosphorus, and reduction of renal excretion of calcium and phosphorus. Earthing during night rest decreases free tri-iodothyronine and increases free thyroxine and thyroid-stimulating hormone. The continuous earthing of the human body decreases blood glucose in patients with diabetes. Earthing decreases sodium, potassium, magnesium, iron, total protein, and albumin concentrations while the levels of transferrin, ferritin, and globulins α1, α2, β, and γ increase. These results are statistically significant. Conclusions Earthing the human body influences human physiologic processes. This influence is observed during night relaxation and during physical activity. Effect of the earthing on calcium–phosphate homeostasis is the opposite of that which occurs in states of weightlessness. It also increases the activity of catabolic processes. It may be the primary factor regulating endocrine and nervous systems. PMID:21469913

  9. Change in Water Cycle- Important Issue on Climate Earth System

    Science.gov (United States)

    Singh, Pratik

    climate forecasts. Aqua is a major mission of the Earth Observing System (EOS), an international program centered in NASA's Earth Science Enterprise to study the Earth in detail from the unique vantage point of space. Focused on key measurements identified by a consensus of U.S. and international scientists, EOS is further enabling studies of the complex interactions amongst the Earth's land, ocean, air, ice and biological systems. Aqua's contributions to monitoring water in the Earth's environment will involve all six of Aqua's instruments: the Atmospheric Infrared Sounder (AIRS), the Advanced Microwave Sounding Unit (AMSU), the Humidity Sounder for Brazil (HSB), the Advanced Microwave Scanning Radiometer- Earth Observing System (AMSR-E), the Moderate Resolution Imaging Spectroradiometer (MODIS), and Clouds and the Earth's Radiant Energy System (CERES). Frozen water in the oceans, in the form of sea ice, will be examined with both AMSR-E and MODIS data, the former allowing routine monitoring of sea ice at a coarse resolution and the latter providing greater spatial resolution but only under cloud-free conditions. Sea ice can insulate the underlying liquid water against heat loss to the often frigid overlying polar atmosphere and also reflects sunlight that would otherwise be available to warm the ocean. AMSR-E measurements will allow the routine derivation of sea ice concentrations in both polar regions, through taking advantage of the marked contrast in microwave emissions of sea ice and liquid water. This will continue, with improved resolution and accuracy, a 22-year satellite record of changes in the extent of polar ice. MODIS, with its finer resolution, will permit the identification of individual ice flows, when unobscured by clouds. AMSR-E and MODIS will also provide monitoring, the AIRS/AMSU/HSB combination will provide more-accurate space-based measurements of atmospheric temperature and water vapor than have ever been obtained before, with the highest vertical

  10. The Earth's Biosphere

    Science.gov (United States)

    2002-01-01

    In the last five years, scientists have been able to monitor our changing planet in ways never before possible. The Sea-viewing Wide Field-of-View Sensor (SeaWiFS), aboard the OrbView-2 satellite, has given researchers an unprecedented view of the biological engine that drives life on Earth-the countless forms of plants that cover the land and fill the oceans. 'There is no question the Earth is changing. SeaWiFS has enabled us, for the first time, to monitor the biological consequences of that change-to see how the things we do, as well as natural variability, affect the Earth's ability to support life,' said Gene Carl Feldman, SeaWiFS project manager at NASA's Goddard Space Flight Center, Greenbelt, Md. SeaWiFS data, based on continuous daily global observations, have helped scientists make a more accurate assessment of the oceans' role in the global carbon cycle. The data provide a key parameter in a number of ecological and environmental studies as well as global climate-change modeling. The images of the Earth's changing land, ocean and atmosphere from SeaWiFS have documented many previously unrecognized phenomena. The image above shows the global biosphere from June 2002 measured by SeaWiFS. Data in the oceans is chlorophyll concentration, a measure of the amount of phytoplankton (microscopic plants) living in the ocean. On land SeaWiFS measures Normalized Difference Vegetation Index, an indication of the density of plant growth. For more information and images, read: SeaWiFS Sensor Marks Five Years Documenting Earth'S Dynamic Biosphere Image courtesy SeaWiFS project and copyright Orbimage.

  11. Chemical analysis of rare earth elements

    International Nuclear Information System (INIS)

    Tsukahara, Ryoichi; Sakoh, Takefumi; Nagai, Iwao

    1994-01-01

    Recently attention has been paid to ICP-AES or ICP-MS, and the reports on the analysis of rare earth elements by utilizing these methods continue to increase. These reports have become to take about 30% of the reports on rare earth analysis, and this is because these methods are highly sensitive to rare earth elements, and also these methods have spread widely. In ICP-AES and ICP-MS, mostly solution samples are measured, therefore, solids must be made into solution. At the time of quantitatively determining the rare earth elements of low concentration, separation and concentration are necessary. Referring to the literatures reported partially in 1990 and from 1991 to 1993, the progress of ICP-AES and ICP-MS is reported. Rare earth oxides and the alloys containing rare earth elements are easily decomposed with acids, but the decomposition of rocks is difficult, and its method is discussed. The separation of the rare earth elements from others in geochemical samples, cation exchange process is frequently utilized. Also solvent extraction process has been studied. For the separation of rare earth elements mutually, chromatography is used. The spectral interference in spectral analysis was studied. The comparison of these methods with other methods is reported. (K.I)

  12. Radiation environment of the earth

    International Nuclear Information System (INIS)

    Furukawa, Masahide

    2003-01-01

    The radiation environment of the earth consists of natural and artificial radiation. This paper explains the distribution and some exposure examples of natural radiation and the relation between life and natural radiation. The earth was born before about 46 hundreds of millions of years. In the present earth, there are some natural radiations with long half-life originated by the earth. They are 232 Th (141 hundreds of millions of years of half-life), 238 U (45 hundreds of millions of years of half-life) and 40 K (13 hundreds of millions of years of half-life). Natural radiation (α-, β-, and γ-ray) from natural radionuclides exists everywhere in the earth. Natural radio nuclides are heat source of the earth, which is about 0.035 μcal/g/y. γ-ray from them is called as ''the earth's crust γ-ray'', which is about 55 nGy/h average of the world and about 50 nGy/h in Japan. The distribution of γ-ray is depended on the kinds of soil and rock. 222 Rn and 230 Rn are rare gases and the concentration of them in a room is larger than outside. Natural radiations originated from the cosmos are proton, ionizing components, neutron component with muon and electron, 3 H, 14 C and 10 Be. Effect of cosmic rays on birth of life, change of temperature, amount of cloud and ultra resistant cell are stated. (S.Y.)

  13. Magnetic Storms at Mars and Earth

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Falkenberg, Thea Vilstrup

    In analogy with magnetic storms at the Earth, periods of significantly enhanced global magnetic activity also exist at Mars. The extensive database of magnetic measurements from Mars Global Surveyor (MGS), covering almost an entire solar cycle, is used in combination with geomagnetic activity...... indices at Earth to compare the occurrence of magnetic storms at Mars and Earth. Based on superposed epochs analysis the time-development of typical magnetic storms at Mars and Earth is described. In contradiction to storms at Earth, most magnetic storms at Mars are found to be associated...... with heliospheric current sheet crossings, where the IMF changes polarity. While most storms at the Earth occur due to significant southward excursions of the IMF associated with CMEs, at Mars most storms seem to be associated with the density enhancement of the heliospheric current sheet. Density enhancements...

  14. Maintaining the momentum of Open Search in Earth Science Data discovery

    Science.gov (United States)

    Newman, D. J.; Lynnes, C.

    2013-12-01

    Federated Search for Earth Observation data has been a hallmark of EOSDIS (Earth Observing System Data and Information System) for two decades. Originally, the EOSDIS Version 0 system provided both data-collection-level and granule/file-level search in the mid 1990s with EOSDIS-specific socket protocols and message formats. Since that time, the advent of several standards has helped to simplify EOSDIS federated search, beginning with HTTP as the transfer protocol. Most recently, OpenSearch (www.opensearch.org) was employed for the EOS Clearinghouse (ECHO), based on a set of conventions that had been developed within the Earth Science Information Partners (ESIP) Federation. The ECHO OpenSearch API has evolved to encompass the ESIP RFC and the Open Geospatial Consortium (OGC) Open Search standard. Uptake of the ECHO Open Search API has been significant and has made ECHO accessible to client developers that found the previous ECHO SOAP API and current REST API too complex. Client adoption of the OpenSearch API appears to be largely driven by the simplicity of the OpenSearch convention. This simplicity is thus important to retain as the standard and convention evolve. For example, ECHO metrics indicate that the vast majority of ECHO users favor the following search criteria when using the REST API, - Spatial - bounding box, polygon, line and point - Temporal - start and end time - Keywords - free text Fewer than 10% of searches use additional constraints, particularly those requiring a controlled vocabulary, such as instrument, sensor, etc. This suggests that ongoing standardization efforts around OpenSearch usage for Earth Observation data may be more productive if oriented toward improving support for the Spatial, Temporal and Keyword search aspects. Areas still requiring improvement include support of - Concrete requirements for keyword constraints - Phrasal search for keyword constraints - Temporal constraint relations - Terminological symmetry between search URLs

  15. Earth Observation from Space - The Issue of Environmental Sustainability

    Science.gov (United States)

    Durrieu, Sylvie; Nelson, Ross F.

    2013-01-01

    Remote sensing scientists work under assumptions that should not be taken for granted and should, therefore, be challenged. These assumptions include the following: 1. Space, especially Low Earth Orbit (LEO), will always be available to governmental and commercial space entities that launch Earth remote sensing missions. 2. Space launches are benign with respect to environmental impacts. 3. Minimization of Type 1 error, which provides increased confidence in the experimental outcome, is the best way to assess the significance of environmental change. 4. Large-area remote sensing investigations, i.e. national, continental, global studies, are best done from space. 5. National space missions should trump international, cooperative space missions to ensure national control and distribution of the data products. At best, all of these points are arguable, and in some cases, they're wrong. Development of observational space systems that are compatible with sustainability principles should be a primary concern when Earth remote sensing space systems are envisioned, designed, and launched. The discussion is based on the hypothesis that reducing the environmental impacts of thedata acquisition step,which is at the very beginning of the information streamleading to decision and action, will enhance coherence in the information streamand strengthen the capacity of measurement processes to meet their stated functional goal, i.e. sustainable management of Earth resources. We suggest that unconventional points of view should be adopted and when appropriate, remedial measures considered that could help to reduce the environmental footprint of space remote sensing and of Earth observation and monitoring systems in general. This article discusses these five assumptions inthe contextof sustainablemanagementof Earth's resources. Takingeachassumptioninturn,we find the following: (1) Space debris may limit access to Low Earth Orbit over the next decades. (2) Relatively speaking, given

  16. Overview of naturally occurring Earth materials and human health concerns

    Science.gov (United States)

    Ernst, W. G.

    2012-10-01

    , lead, chromium, and cadmium. Also noted are health effects of natural disasters, and an obligatory future sustainable consumption of natural resources. Not treated are the overwhelming adverse effects of malnutrition, lack of potable water, inadequate sanitation, fossil fuel usage, mining, manufacturing, and agricultural pollution, or environmental pathogens, nor are the important impacts of complex mixtures of Earth materials considered. With rise of the worldwide information network, economic globalization, and the industrial thrust of Developing Nations, the achievement of natural resource sustainability has emerged as a strategic imperative. Accompanying increased rates of Earth materials consumption and attendant environmental change, substantially improved, universal public health will require a major global effort, integrating collaborations among geoscientists, medical researchers, and epidemiologists. Governments and NGOs must provide important support of such cooperative efforts, and both health and Earth scientists must cross disciplinary and national boundaries.

  17. Orbital and Landing Operations at Near-Earth

    Science.gov (United States)

    Scheeres, D. J.

    1995-01-01

    Orbital and landing operations about near-Earth asteroids are different than classical orbital operations about large bodies. The major differences lie with the small mass of the asteroid, the lower orbital velocities, the larger Solar tide and radiation pressure perturbations, the irregular shape of the asteroid and the potential for non-uniform rotation of the asteroid. These differences change the nature of orbits about an asteroid to where it is often common to find trajectories that evolve from stable, near-circular orbits to crashing or escaping orbits in a matter of days. The understanding and control of such orbits is important if a human or robotic presence at asteroids is to be commonplace in the future.

  18. Complex demodulation in VLBI estimation of high frequency Earth rotation components

    Science.gov (United States)

    Böhm, S.; Brzeziński, A.; Schuh, H.

    2012-12-01

    The spectrum of high frequency Earth rotation variations contains strong harmonic signal components mainly excited by ocean tides along with much weaker non-harmonic fluctuations driven by irregular processes like the diurnal thermal tides in the atmosphere and oceans. In order to properly investigate non-harmonic phenomena a representation in time domain is inevitable. We present a method, operating in time domain, which is easily applicable within Earth rotation estimation from Very Long Baseline Interferometry (VLBI). It enables the determination of diurnal and subdiurnal variations, and is still effective with merely diurnal parameter sampling. The features of complex demodulation are used in an extended parameterization of polar motion and universal time which was implemented into a dedicated version of the Vienna VLBI Software VieVS. The functionality of the approach was evaluated by comparing amplitudes and phases of harmonic variations at tidal periods (diurnal/semidiurnal), derived from demodulated Earth rotation parameters (ERP), estimated from hourly resolved VLBI ERP time series and taken from a recently published VLBI ERP model to the terms of the conventional model for ocean tidal effects in Earth rotation recommended by the International Earth Rotation and Reference System Service (IERS). The three sets of tidal terms derived from VLBI observations extensively agree among each other within the three-sigma level of the demodulation approach, which is below 6 μas for polar motion and universal time. They also coincide in terms of differences to the IERS model, where significant deviations primarily for several major tidal terms are apparent. An additional spectral analysis of the as well estimated demodulated ERP series of the ter- and quarterdiurnal frequency bands did not reveal any significant signal structure. The complex demodulation applied in VLBI parameter estimation could be demonstrated a suitable procedure for the reliable reproduction of

  19. Earth as art 4

    Science.gov (United States)

    ,

    2016-03-29

    Landsat 8 is the latest addition to the long-running series of Earth-observing satellites in the Landsat program that began in 1972. The images featured in this fourth installment of the Earth As Art collection were all acquired by Landsat 8. They show our planet’s diverse landscapes with remarkable clarity.Landsat satellites see the Earth as no human can. Not only do they acquire images from the vantage point of space, but their sensors record infrared as well as visible wavelengths of light. The resulting images often reveal “hidden” details of the Earth’s land surface, making them invaluable for scientific research.As with previous Earth As Art exhibits, these Landsat images were selected solely for their aesthetic appeal. Many of the images have been manipulated to enhance color variations or details. They are not intended for scientific interpretation—only for your viewing pleasure. What do you see in these unique glimpses of the Earth’s continents, islands, and coastlines?

  20. Space Geodesy: The Cross-Disciplinary Earth science (Vening Meinesz Medal Lecture)

    Science.gov (United States)

    Shum, C. K.

    2012-04-01

    remain, notably in the discrepancies of contributions from the ice-reservoirs (ice-sheet and mountain glaciers/ice caps) and our knowledge in the solid Earth glacial isostatic adjustment (GIA), to the present-day and 20th Century global sea-level rise. Here we report our use of contemporary space geodetic observations and novel methodologies to address a few of the open Earth science questions, including the potential quantifications of the major geophysical contributions to or causing present-day global sea-level rise, and the subsequent narrowing of the current sea-level budget discrepancy.

  1. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    NARCIS (Netherlands)

    Steenhuisen, Frits; Wilson, Simon J.

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important

  2. The influence of global warming in Earth rotation speed

    Directory of Open Access Journals (Sweden)

    R. Abarca del Rio

    1999-06-01

    Full Text Available The tendency of the atmospheric angular momentum (AAM is investigated using a 49-year set of monthly AAM data for the period January 1949-December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976-1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere-earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD. The AAM rise is significant to the budget of angular momentum of the global atmosphere-earth system; its value in milliseconds/century (ms/cy is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy. The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949-1997, the global marine + land-surface temperature increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere's dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.Key words. Meteorology and atmospheric dynamics (general circulation · Geodesy

  3. The influence of global warming in Earth rotation speed

    Directory of Open Access Journals (Sweden)

    R. Abarca del Rio

    Full Text Available The tendency of the atmospheric angular momentum (AAM is investigated using a 49-year set of monthly AAM data for the period January 1949-December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976-1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere-earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD. The AAM rise is significant to the budget of angular momentum of the global atmosphere-earth system; its value in milliseconds/century (ms/cy is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy. The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949-1997, the global marine + land-surface temperature increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere's dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.

    Key words. Meteorology and atmospheric dynamics (general circulation · Geodesy

  4. The Earth System Course at the University of Oklahoma: Science and Pedagogy Aimed at Pre-service Teachers

    Science.gov (United States)

    Postawko, S.; Soreghan, M.; Marek, E.

    2005-12-01

    Traditionally, education majors at the University of Oklahoma took either Introduction to Physical Geology or Introduction to Meteorology to fulfill their physical sciences requirement. Science education majors were required to take both courses. These courses are large-enrollment lecture type courses, with required lab sections taught by graduate teaching assistants. Beginning in 1997, faculty from the Colleges of Education and Geosciences at the University of Oklahoma began working together to provide effective earth science education for pre-service teachers. The first step in this collaboration was the development of a new course on The Earth System that focuses on Earth as a whole rather than on the more narrow focus of either the geology or meteorology courses. The new course, which was taught for the first time in the Spring of 2001, covers a number of major themes related to Earth Science, including the Carbon Cycle, Earth Materials, Plate Tectonics, Atmosphere and Oceans. The particular concepts within each theme were chosen based on two criteria: 1) alignment with content advocated by national (NSES) and state (Priority Academic Student Skills-PASS) standards; and 2) they are amenable to a learning cycle pedagogical approach. Besides an interdisciplinary approach to the content, the new course features pedagogical innovations. In lieu of independent laboratory and lecture times, we scheduled two class periods of longer duration, so that active learning, involving hands-on activities and experiments were possible throughout each class period. The activities modeled the learning-cycle approach with an exploration, concept invention, and an expansion phase (Marek and Cavallo, 1997). Therefore, the pre-service teachers experienced the learning cycle in practice prior to learning the theory in their upper division "methods" course. In the first 3 years that the course was taught, students were given surveys early in the semester and at the end of the semester

  5. Dimension of the Earth's general ellipsoid

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Raděj, K.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2002-01-01

    Roč. 91, č. 1 (2002), s. 31-41 ISSN 0167-9295 Institutional research plan: CEZ:AV0Z1003909 Keywords : Earth's dimensions * Earth's ellipsoid * fundamental constants Subject RIV: DE - Earth Magnetism, Geodesy, Geography Impact factor: 1.364, year: 2002

  6. Advancing the Agenda. IAEA Technical Co-operation in support of the Earth Summit's Agenda 21

    International Nuclear Information System (INIS)

    Garner, Andy W.; Wedekind, Lothar

    2001-09-01

    The Earth Summit took place in September 2002 in Johannesburg, South Africa to discuss the far-reaching goals of Agenda 21 - an ambitious and comprehensive plan of action covering all spheres of social, economic, and human development affecting our environment. The Summit - officially named the World Summit on Sustainable Development - was expected to attract more than 60,000 national and international delegates, including heads of State and leaders of major organizations and institutes. Agenda 21 was among the documents that governments adopted at the first Earth Summit in 1992, officially known as the UN Conference on Environment and Development, held in Rio de Janeiro, Brazil

  7. The international earth observing system: a cultural debate about earth sciences from space

    NARCIS (Netherlands)

    Menenti, M.

    1996-01-01

    This paper gives an overview of the International Earth Observing System, i.e. the combined earth observation programmes of space agencies worldwide and of the relevance of advanced space-borne sensor systems to the study and understanding of interactions between land surface and atmosphere. The

  8. The relationship between orbital, earth-based, and sample data for lunar landing sites

    Science.gov (United States)

    Clark, P. E.; Hawke, B. R.; Basu, A.

    1990-01-01

    Results are reported of a detailed examination of data available for the Apollo lunar landing sites, including the Apollo orbital measurements of six major elements derived from XRF and gamma-ray instruments and geochemical parameters derived from earth-based spectral reflectivity data. Wherever orbital coverage for Apollo landing sites exist, the remote data were correlated with geochemical data derived from the soil sample averages for major geological units and the major rock components associated with these units. Discrepancies were observed between the remote and the soil-anlysis elemental concentration data, which were apparently due to the differences in the extent of exposure of geological units, and, hence, major rock eomponents, in the area sampled. Differences were observed in signal depths between various orbital experiments, which may provide a mechanism for explaining differences between the XRF and other landing-site data.

  9. Spaceborne observations of a changing Earth - Contribution from ESÁ s operating and approved satellite missions.

    Science.gov (United States)

    Johannessen, J. A.

    2009-04-01

    The overall vision for ESÁs Earth Observation activities is to play a central role in developing the global capability to understand planet Earth, predict changes, and mitigate negative effects of global change on its populations. Since Earth observation from space first became possible more than forty years ago, it has become central to monitoring and understanding how the dynamics of the Earth System work. The greatest progress has been in meteorology, where space-based observations have become indispensable, but it is now also progressively penetrating many of the fields making up Earth sciences. Exploiting Earth observation from space presents major multidisciplinary challenges to the researches working in the Earth sciences, to the technologists who build the state-of-the-art sensors, and to the scientists interpreting measurements made of processes occurring on or within the Earth's surface and in its atmosphere. The scientific community has shown considerable imagination in rising to these challenges, and in exploiting the latest technological developments to measure from space the complex processes and interactions that occur in the Earth System. In parallel, there has been significant progress in developing computer models that represent the many processes that make up the Earth System, and the interactions and feedback between them. Success in developing this holistic view is inextricably linked to the data provided by Earth Observation systems. Satellites provide the fundamental, consistent, regular and global measurements needed to drive, parameterise, test and improve those Earth System models. These developments, together with changes in society's awareness of the need for information on a changing world, have repetitively supported the decisions on how ESA can best focus its resources, and those of the European community that it serves, in order to address critical issues in Earth System science. Moreover, it is a fact that many operational

  10. The ab initio simulation of the Earth's core.

    Science.gov (United States)

    Alfè, D; Gillan, M J; Vocadlo, L; Brodholt, J; Price, G D

    2002-06-15

    The Earth has a liquid outer and solid inner core. It is predominantly composed of Fe, alloyed with small amounts of light elements, such as S, O and Si. The detailed chemical and thermal structure of the core is poorly constrained, and it is difficult to perform experiments to establish the properties of core-forming phases at the pressures (ca. 300 GPa) and temperatures (ca. 5000-6000 K) to be found in the core. Here we present some major advances that have been made in using quantum mechanical methods to simulate the high-P/T properties of Fe alloys, which have been made possible by recent developments in high-performance computing. Specifically, we outline how we have calculated the Gibbs free energies of the crystalline and liquid forms of Fe alloys, and so conclude that the inner core of the Earth is composed of hexagonal close packed Fe containing ca. 8.5% S (or Si) and 0.2% O in equilibrium at 5600 K at the boundary between the inner and outer cores with a liquid Fe containing ca. 10% S (or Si) and 8% O.

  11. Rare earth elements: end use and recyclability

    Science.gov (United States)

    Goonan, Thomas G.

    2011-01-01

    Rare earth elements are used in mature markets (such as catalysts, glassmaking, lighting, and metallurgy), which account for 59 percent of the total worldwide consumption of rare earth elements, and in newer, high-growth markets (such as battery alloys, ceramics, and permanent magnets), which account for 41 percent of the total worldwide consumption of rare earth elements. In mature market segments, lanthanum and cerium constitute about 80 percent of rare earth elements used, and in new market segments, dysprosium, neodymium, and praseodymium account for about 85 percent of rare earth elements used. Regardless of the end use, rare earth elements are not recycled in large quantities, but could be if recycling became mandated or very high prices of rare earth elements made recycling feasible.

  12. NASA's Earth Science Data Systems

    Science.gov (United States)

    Ramapriyan, H. K.

    2015-01-01

    NASA's Earth Science Data Systems (ESDS) Program has evolved over the last two decades, and currently has several core and community components. Core components provide the basic operational capabilities to process, archive, manage and distribute data from NASA missions. Community components provide a path for peer-reviewed research in Earth Science Informatics to feed into the evolution of the core components. The Earth Observing System Data and Information System (EOSDIS) is a core component consisting of twelve Distributed Active Archive Centers (DAACs) and eight Science Investigator-led Processing Systems spread across the U.S. The presentation covers how the ESDS Program continues to evolve and benefits from as well as contributes to advances in Earth Science Informatics.

  13. Detecting Water on Super-Earths Using JAVST

    Science.gov (United States)

    Deming, D.

    2010-01-01

    Nearby lower train sequence stars host a class of planets known as Super-Earths, that have no analog in our own solar system. Super-Earths are rocky and/or icy planets with masses up to about 10 Earth masses, They are expected to host atmospheres generated by a number of processes including accretion of chondritic material. Water vapor should be a common constituent of super-Earth atmospheres, and may be detectable in transiting super-Earths using transmission spectroscopy during primar y eclipse, and emission spectroscopy at secondary eclipse. I will discuss the prospects for super-Earth atmospheric measurements using JWST.

  14. Earth and Space Science Ph.D. Class of 2003 Report released

    Science.gov (United States)

    Keelor, Brad

    AGU and the American Geological Institute (AGI) released on 26 July an employment study of 180 Earth and space science Ph.D. recipients who received degrees from U.S. universities in 2003. The AGU/AGI survey asked graduates about their education and employment, efforts to find their first job after graduation, and experiences in graduate school. Key results from the study include: The vast majority (87%) of 2003 graduates found work in the Earth and space sciences, earning salaries commensurate with or slightly higher than 2001 and 2002 salary averages. Most (64%) graduates were employed within academia (including postdoctoral appointments), with the remainder in government (19%), industry (10%), and other (7%) sectors. Most graduates were positive about their employment situation and found that their work was challenging, relevant, and appropriate for someone with a Ph.D. The percentage of Ph.D. recipients accepting postdoctoral positions (58%) increased slightly from 2002. In contrast, the fields of physics and chemistry showed significant increases in postdoctoral appointments for Ph.D.s during the same time period. As in previous years, recipients of Ph.D.s in the Earth, atmospheric, and ocean sciences (median age of 32.7 years) are slightly older than Ph.D. recipients in most other natural sciences (except computer sciences), which is attributed to time taken off between undergraduate and graduate studies. Women in the Earth, atmospheric,and ocean sciences earned 33% of Ph.D.s in the class of 2003, surpassing the percentage of Ph.D.s earned by women in chemistry (32%) and well ahead of the percentage in computer sciences (20%), physics (19%), and engineering (17%). Participation of other underrepresented groups in the Earth, atmospheric, and ocean sciences remained extremely low.

  15. How Big is Earth?

    Science.gov (United States)

    Thurber, Bonnie B.

    2015-08-01

    How Big is Earth celebrates the Year of Light. Using only the sunlight striking the Earth and a wooden dowel, students meet each other and then measure the circumference of the earth. Eratosthenes did it over 2,000 years ago. In Cosmos, Carl Sagan shared the process by which Eratosthenes measured the angle of the shadow cast at local noon when sunlight strikes a stick positioned perpendicular to the ground. By comparing his measurement to another made a distance away, Eratosthenes was able to calculate the circumference of the earth. How Big is Earth provides an online learning environment where students do science the same way Eratosthenes did. A notable project in which this was done was The Eratosthenes Project, conducted in 2005 as part of the World Year of Physics; in fact, we will be drawing on the teacher's guide developed by that project.How Big Is Earth? expands on the Eratosthenes project by providing an online learning environment provided by the iCollaboratory, www.icollaboratory.org, where teachers and students from Sweden, China, Nepal, Russia, Morocco, and the United States collaborate, share data, and reflect on their learning of science and astronomy. They are sharing their information and discussing their ideas/brainstorming the solutions in a discussion forum. There is an ongoing database of student measurements and another database to collect data on both teacher and student learning from surveys, discussions, and self-reflection done online.We will share our research about the kinds of learning that takes place only in global collaborations.The entrance address for the iCollaboratory is http://www.icollaboratory.org.

  16. Interacting with Petabytes of Earth Science Data using Jupyter Notebooks, IPython Widgets and Google Earth Engine

    Science.gov (United States)

    Erickson, T. A.; Granger, B.; Grout, J.; Corlay, S.

    2017-12-01

    The volume of Earth science data gathered from satellites, aircraft, drones, and field instruments continues to increase. For many scientific questions in the Earth sciences, managing this large volume of data is a barrier to progress, as it is difficult to explore and analyze large volumes of data using the traditional paradigm of downloading datasets to a local computer for analysis. Furthermore, methods for communicating Earth science algorithms that operate on large datasets in an easily understandable and reproducible way are needed. Here we describe a system for developing, interacting, and sharing well-documented Earth Science algorithms that combines existing software components: Jupyter Notebook: An open-source, web-based environment that supports documents that combine code and computational results with text narrative, mathematics, images, and other media. These notebooks provide an environment for interactive exploration of data and development of well documented algorithms. Jupyter Widgets / ipyleaflet: An architecture for creating interactive user interface controls (such as sliders, text boxes, etc.) in Jupyter Notebooks that communicate with Python code. This architecture includes a default set of UI controls (sliders, dropboxes, etc.) as well as APIs for building custom UI controls. The ipyleaflet project is one example that offers a custom interactive map control that allows a user to display and manipulate geographic data within the Jupyter Notebook. Google Earth Engine: A cloud-based geospatial analysis platform that provides access to petabytes of Earth science data via a Python API. The combination of Jupyter Notebooks, Jupyter Widgets, ipyleaflet, and Google Earth Engine makes it possible to explore and analyze massive Earth science datasets via a web browser, in an environment suitable for interactive exploration, teaching, and sharing. Using these environments can make Earth science analyses easier to understand and reproducible, which may

  17. Laurel Clark Earth Camp: Building a Framework for Teacher and Student Understanding of Earth Systems

    Science.gov (United States)

    Colodner, D.; Buxner, S.; Schwartz, K.; Orchard, A.; Titcomb, A.; King, B.; Baldridge, A.; Thomas-Hilburn, H.; Crown, D. A.

    2013-04-01

    Laurel Clark Earth Camp is designed to inspire teachers and students to study their world through field experiences, remote sensing investigations, and hands on exploration, all of which lend context to scientific inquiry. In three different programs (for middle school students, for high school students, and for teachers) participants are challenged to understand Earth processes from the perspectives of both on-the ground inspection and from examination of satellite images, and use those multiple perspectives to determine best practices on both a societal and individual scale. Earth Camp is a field-based program that takes place both in the “natural” and built environment. Middle School Earth Camp introduces students to a variety of environmental science, engineering, technology, and societal approaches to sustainability. High School Earth Camp explores ecology and water resources from southern Arizona to eastern Utah, including a 5 day rafting trip. In both camps, students compare environmental change observed through repeat photography on the ground to changes observed from space. Students are encouraged to utilize their camp experience in considering their future course of study, career objectives, and lifestyle choices. During Earth Camp for Educators, teachers participate in a series of weekend workshops to explore relevant environmental science practices, including water quality testing, biodiversity surveys, water and light audits, and remote sensing. Teachers engage students, both in school and after school, in scientific investigations with this broad based set of tools. Earth Stories from Space is a website that will assist in developing skills and comfort in analyzing change over time and space using remotely sensed images. Through this three-year NASA funded program, participants will appreciate the importance of scale and perspective in understanding Earth systems and become inspired to make choices that protect the environment.

  18. Hands On Earth Science.

    Science.gov (United States)

    Weisgarber, Sherry L.; Van Doren, Lisa; Hackathorn, Merrianne; Hannibal, Joseph T.; Hansgen, Richard

    This publication is a collection of 13 hands-on activities that focus on earth science-related activities and involve students in learning about growing crystals, tectonics, fossils, rock and minerals, modeling Ohio geology, geologic time, determining true north, and constructing scale-models of the Earth-moon system. Each activity contains…

  19. Earth Sciences Division Research Summaries 2006-2007

    International Nuclear Information System (INIS)

    DePaolo, Donald; DePaolo, Donald

    2008-01-01

    , climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope

  20. Earth Sciences Division Research Summaries 2006-2007

    Energy Technology Data Exchange (ETDEWEB)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    , climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we

  1. Recovering heavy rare earth metals from magnet scrap

    Science.gov (United States)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    2017-08-08

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  2. Google Earth: A Virtual Globe for Elementary Geography

    Science.gov (United States)

    Britt, Judy; LaFontaine, Gus

    2009-01-01

    Originally called Earth Viewer in 2004, Google Earth was the first virtual globe easily available to the ordinary user of the Internet. Google Earth, at earth.google.com, is a free, 3-dimensional computer model of Earth, but that means more than just a large collection of pretty pictures. It allows the viewer to "fly" anywhere on Earth "to view…

  3. Properties of an Earth-like planet orbiting a Sun-like star: Earth observed by the EPOXI mission.

    Science.gov (United States)

    Livengood, Timothy A; Deming, L Drake; A'hearn, Michael F; Charbonneau, David; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Meadows, Victoria S; Robinson, Tyler D; Seager, Sara; Wellnitz, Dennis D

    2011-11-01

    NASA's EPOXI mission observed the disc-integrated Earth and Moon to test techniques for reconnoitering extrasolar terrestrial planets, using the Deep Impact flyby spacecraft to observe Earth at the beginning and end of Northern Hemisphere spring, 2008, from a range of ∼1/6 to 1/3 AU. These observations furnish high-precision and high-cadence empirical photometry and spectroscopy of Earth, suitable as "ground truth" for numerically simulating realistic observational scenarios for an Earth-like exoplanet with finite signal-to-noise ratio. Earth was observed at near-equatorial sub-spacecraft latitude on 18-19 March, 28-29 May, and 4-5 June (UT), in the range of 372-4540 nm wavelength with low visible resolving power (λ/Δλ=5-13) and moderate IR resolving power (λ/Δλ=215-730). Spectrophotometry in seven filters yields light curves at ∼372-948 nm filter-averaged wavelength, modulated by Earth's rotation with peak-to-peak amplitude of ≤20%. The spatially resolved Sun glint is a minor contributor to disc-integrated reflectance. Spectroscopy at 1100-4540 nm reveals gaseous water and carbon dioxide, with minor features of molecular oxygen, methane, and nitrous oxide. One-day changes in global cloud cover resulted in differences between the light curve beginning and end of ≤5%. The light curve of a lunar transit of Earth on 29 May is color-dependent due to the Moon's red spectrum partially occulting Earth's relatively blue spectrum. The "vegetation red edge" spectral contrast observed between two long-wavelength visible/near-IR bands is ambiguous, not clearly distinguishing between the verdant Earth diluted by cloud cover versus the desolate mineral regolith of the Moon. Spectrophotometry in at least one other comparison band at short wavelength is required to distinguish between Earth-like and Moon-like surfaces in reconnaissance observations. However, measurements at 850 nm alone, the high-reflectance side of the red edge, could be sufficient to

  4. EOS Reference Handbook 1999: A Guide to NASA's Earth Science Enterprise and the Earth Observing System

    Science.gov (United States)

    King, M. D. (Editor); Greenstone, R. (Editor)

    2000-01-01

    The content of this handbook includes Earth Science Enterprise; The Earth Observing System; EOS Data and Information System (EOSDIS); Data and Information Policy; Pathfinder Data Sets; Earth Science Information Partners and the Working Prototype-Federation; EOS Data Quality: Calibration and Validation; Education Programs; International Cooperation; Interagency Coordination; Mission Elements; EOS Instruments; EOS Interdisciplinary Science Investigations; and Points-of-Contact.

  5. Next-generation digital earth

    NARCIS (Netherlands)

    Goodchild, M.F.; Guo, H.; Annoni, A.; Bian, L.; Bie, de K.; Campbell, F.; Craglia, M.; Ehlers, M.; Genderen, van J.; Skidmore, A.K.; Wang, C.; Woodgate, P.

    2012-01-01

    A speech of then-Vice President Al Gore in 1998 created a vision for a Digital Earth, and played a role in stimulating the development of a first generation of virtual globes, typified by Google Earth, that achieved many but not all the elements of this vision. The technical achievements of Google

  6. iSTEM: Celebrating Earth Day with Sustainability

    Science.gov (United States)

    Sibley, Amanda; Kurz, Terri L.

    2014-01-01

    Earth Day is celebrated annually on April 22. Teachers often commemorate Earth Day with their classes by planting trees, discussing important conservation topics (such as recycling or preventing pollution), and encouraging students to take care of planet Earth. To promote observance of Earth Day in an intermediate elementary school classroom, this…

  7. Defect structure of cubic solid solutions of alkaline earth and rare earth fluorides

    NARCIS (Netherlands)

    DenHartog, HW

    1996-01-01

    In this paper we will consider the disorder in some cubic solid solutions consisting of one of the alkaline earth fluorides and one of the rare earth fluorides. This is an attractive group of model materials, because these materials have a rather simple overall cubic structure. We will discuss the

  8. Keeping Earth at work: Using thermodynamics to develop a holistic theory of the Earth system

    Science.gov (United States)

    Kleidon, Axel

    2010-05-01

    The Earth system is unique among terrestrial planets in that it is maintained in a state far from thermodynamic equilibrium. Practically all processes are irreversible in their nature, thereby producing entropy, and these would act to destroy this state of disequilibrium. In order to maintain disequilibrium in steady state, driving forces are required that perform the work to maintain the Earth system in a state far from equilibrium. To characterize the functioning of the Earth system and the interactions among its subsystems we need to consider all terms of the first and second law of thermodynamics. While the global energy balance is well established in climatology, the global entropy and work balances receive little, if any, attention. Here I will present first steps in developing a holistic theory of the Earth system including quantifications of the relevant terms that is based on the first and second laws of thermodynamics. This theory allows us to compare the significance of different processes in driving and maintaining disequilibrium, allows us to explore interactions by investigating the role of power transfer among processes, and specifically illustrate the significance of life in driving planetary disequilibrium. Furthermore, the global work balance demonstrates the significant impact of human activity and it provides an estimate for the availability of renewable sources of free energy within the Earth system. Hence, I conclude that a holistic thermodynamic theory of the Earth system is not just some academic exercise of marginal use, but essential for a profound understanding of the Earth system and its response to change.

  9. The Crew Earth Observations Experiment: Earth System Science from the ISS

    Science.gov (United States)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  10. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  11. Dust in the Earth system: the biogeochemical linking of land, air and sea.

    Science.gov (United States)

    Ridgwell, Andy J

    2002-12-15

    Understanding the response of the Earth's climate system to anthropogenic perturbation has been a pressing priority for society since the late 1980s. However, recent years have seen a major paradigm shift in how such an understanding can be reached. Climate change demands analysis within an integrated 'Earth-system' framework, taken to encompass the suite of interacting physical, chemical, biological and human processes that, in transporting and transforming materials and energy, jointly determine the conditions for life on the whole planet. This is a highly complex system, characterized by multiple nonlinear responses and thresholds, with linkages often between apparently disparate components. The interconnected nature of the Earth system is wonderfully illustrated by the diverse roles played by atmospheric transport of mineral 'dust', particularly in its capacity as a key pathway for the delivery of nutrients essential to plant growth, not only on land, but perhaps more importantly, in the ocean. Dust therefore biogeochemically links land, air and sea. This paper reviews the biogeochemical role of mineral dust in the Earth system and its interaction with climate, and, in particular, the potential importance of both past and possible future changes in aeolian delivery of the micro-nutrient iron to the ocean. For instance, if, in the future, there was to be a widespread stabilization of soils for the purpose of carbon sequestration on land, a reduction in aeolian iron supply to the open ocean would occur. The resultant weakening of the oceanic carbon sink could potentially offset much of the carbon sequestered on land. In contrast, during glacial times, enhanced dust supply to the ocean could have 'fertilized' the biota and driven atmospheric CO(2) lower. Dust might even play an active role in driving climatic change; since changes in dust supply may affect climate, and changes in climate, in turn, influence dust, a 'feedback loop' is formed. Possible feedback

  12. COMUNICA Project: a commitment for strategic communication on Earth Sciences

    Science.gov (United States)

    Cortes-Picas, Jordi; Diaz, Jordi; Fernandez-Turiel, Jose-Luis

    2016-04-01

    The Institute of Earth Sciences Jaume Almera (ICTJA-CSIC) has just celebrated its 50-year anniversary last year. It is a reference research center on Earth Sciences both national and international level. The Institute includes 4 research groups which focus their scientific activity on the structure and dynamics of the Earth, the environmental changes in the geological record, geophysical and geochemical modelling and crystallography and optical properties. Only when large geological disasters happens, mainly earthquakes and volcanic eruptions, some interaction between ICTJA-CSIC researchers and traditional media occurs, which is limited by the fact that the aim of the Institute is the scientific research and it has no responsibilities in the area of civil protection. This relationship reduces the knowledge of our activity to the general public. To overcome this situation, the ICTJA-CSIC has decided to take an active role in the social dissemination of geological and geophysical knowledge. Thus, the ICTJA-CSIC has launched the COMUNICA Project. The project is aimed to increase the social visibility of the ICTJA-CSIC and to promote the outreach of researchers. Therefore ICTJA-CSIC has created the Communication Unit, which is in charge of designing communication strategies to give to different audiences (media, students of secondary and higher education, general public) an overview of the scientific and institutional activity of the ICTJA-CSIC. A global communication plan is being designed to define the strategic actions, both internal and external. An important role has been reserved for digital channels, to promote ICTJA-CSIC activity on social networks such as Twitter, Facebook or Youtube, besides making a major effort in the renovation and maintenance of the corporate website. A strong effort will be done to collect and spread through press releases the major scientific milestones achieved by the researchers, to promote the interest of mass media. Communication

  13. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon.

    Science.gov (United States)

    Rollat, Alain; Guyonnet, Dominique; Planchon, Mariane; Tuduri, Johann

    2016-03-01

    This paper proposes a forecast of certain rare earth flows in Europe at the 2020 horizon, based on an analysis of trends influencing various actors of the rare earth industry along the value chain. While 2020 is indicated as the forecast horizon, the analysis should be considered as more representative of the next decade. The rare earths considered here are used in applications that are important for a low-carbon energy transition and/or have a significant recycling potential: NdFeB magnets (Pr, Nd, Dy), NiMH batteries (Pr, Nd) and fluorescent lamp phosphors (Eu, Tb, Y). An analysis of major trends affecting the rare earth industry in Europe along the value chain (including extraction, separation, fabrication, manufacture, use and recycling), helps to build a scenario for a material flow analysis of these rare earths in Europe. The scenario assumes in particular that during the next decade, there exists a rare earth mine in production in Europe (with Norra Kärr in Sweden as a most likely candidate) and also that recycling is in line with targets proposed in recent European legislation. Results are presented in the form of Sankey diagrams which help visualize the various flows for the three applications. For example, calculations forecast flows from extraction to separation of Pr, Nd and Dy for magnet applications in Europe, on the order of 310 tons, 980 tons and 80 tons rare earth metal resp., while recycled flows are 35 tons, 110 tons and 30 tons resp. Calculations illustrate how the relative contribution of recycling to supply strongly depends on the situation with respect to demand. Considering the balance between supply and demand, it is not anticipated any significant shortage of rare earth supply in Europe at the 2020 horizon, barring any new geopolitical crisis involving China. For some heavy rare earths, supply will in fact largely outweigh demand, as for example Europium due to the phasing out of fluorescent lights by LEDs. Copyright © 2016 Elsevier Ltd

  14. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform

    Science.gov (United States)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut

    2016-04-01

    The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development

  15. Comparison of Freshmen's Cognitive Frame about 'Crisis of the Earth' upon Taking the Earth Science 1 in High School

    Science.gov (United States)

    Chung, Duk Ho; Park, Seon Ok

    2016-04-01

    The purpose of this study is to demonstrate if freshmen's cognitive frame about 'Crisis of the Earth' upon taking the Earth science 1I in high school reflects the school curriculum. The data was collected from 67 freshmen who'd graduated high school in formal education. They expressed 'Crisis of the Earth' as a painting with explanation and then we extracted units of meaning from paintings, respectively. We analyzed the words and frame using the Semantic Network Analysis. The result is as follows; First, as every participant forms the cognitive frame for the crisis of the Earth, it is shown that they connect each part which that composes the global environment and realize it as the changing relation with interaction. Secondly, forming a cognitive frame regarding crisis of the Earth, both groups connect it with human endeavor. Especially, it seems that the group of participants who finished Earth Science 1 fully reflects the course of the formal education. It is necessary to make the students recognize it from a universal point of view, not only from the Earth. Also, much effort is required in order to enlighten about the appropriateness regarding problem-solving of the Earth and expand their mind as time changes. Keywords : Earth Science 1, cognitive frame, crisis of the earth, semantic network analysis

  16. Discover Earth: an earth system science program for libraries and their communities

    Science.gov (United States)

    Dusenbery, P.

    2011-12-01

    The view from space has deepened our understanding of Earth as a global, dynamic system. Instruments on satellites and spacecraft, coupled with advances in ground-based research, have provided us with astonishing new perspectives of our planet. Now more than ever, enhancing the public's understanding of Earth's physical and biological systems is vital to helping citizens make informed policy decisions especially when they are faced with the consequences of global climate change. While the focus for education reform is on school improvement, there is considerable research that supports the role that out-of-school experiences can play in student achievement. Libraries provide an untapped resource for engaging underserved youth and their families in fostering an appreciation and deeper understanding of science and technology topics. The Space Science Institute's National Center for Interactive Learning (NCIL) in partnership with the American Library Association (ALA), the Lunar and Planetary Institute (LPI), and the National Girls Collaborative Project (NGCP) have received funding from NSF to develop a national project called the STAR Library Education Network: a hands-on learning program for libraries and their communities (or STAR-Net for short). STAR stands for Science-Technology, Activities and Resources. STAR-Net includes two exhibitions: Discover Earth and Discover Tech. The Discover Earth exhibition will focus on local earth science topics-such as weather, water cycle, and ecosystem changes-as well as a global view of our changing planet. The main take-away message (or Big Idea) for this exhibition is that the global environment changes - and is changed by - the host community's local environment. The project team is testing whether this approach will be a good strategy for engaging the public, especially in rural America. This presentation will provide an overview of the Discover Earth project and how it is integrating climate change ideas into the exhibit

  17. Effects on the atmosphere of a major nuclear exchange

    International Nuclear Information System (INIS)

    1985-01-01

    The Committee on the Atmospheric Effects of Nuclear Explosions addressed the following charge: (1) determine the manner in which the atmosphere of the earth would be modified by a major exchange of nuclear weapons and, insofar as the current state of knowledge and understanding permits, give a quantitative description of the more important of the changes; and (2) recommend research and exploratory work appropriate to a better understanding of the question. Recent calculations by different investigators suggest that the climatic effects from a major nuclear exchange could be large in scale. Although there are enormous uncertainties involved in the calculations, the committee believes that long-term climatic effects with severe implications for the biosphere could occur, and these effects should be included in any analysis of the consequences of nuclear war. The estimates are necessarily rough and can only be used as a general indication of the seriousness of what might occur

  18. What is the Emerging Knowledge of the Early Earth from the Oldest (>3.6 Ga) Rocks?

    Science.gov (United States)

    Bennett, V. C.; Nutman, A. P.

    2016-12-01

    Eoarchean to Hadean rocks are direct samples of early Earth chemistry and conditions and provide the ground-truth for models of early Earth formation, environments and evolution. Intensive investigations by many groups reveal rocks of this age comprise only one millionth of Earth's surface and are found in 9 areas of varying extent distributed worldwide. This record is of variable fidelity however, owing to metamorphic overprinting. The majority of the oldest rocks are high grade gneisses with protoliths from mid-crustal levels; the more rare supracrustal assemblages reflect early Earth's surface conditions and processes. First-order observations from supracrustal sequences at several localities and from 3.6 Ga to ≥3.9 Ga in age provide abundant evidence of liquid water at the Earth's surface with pillow basalts and chemical sedimentary rocks in the form of cherts, banded Fe formations and carbonates. Trace element patterns of these sedimentary rocks strongly resemble modern seawater compositions, except for the absence of redox sensitive Ce anomalies. Evidence for early life remains controversial and is mainly in the form of stable isotopic signatures of C and Fe. Our recent work from newly-discovered, exceptionally well-preserved 3.7 Ga sedimentary rocks and the deformed unconformity they rest on has provided the first evidence of Eoarchean intense weathering and shallow water sedimentary processes. Whilst the major and trace element compositions of Eoarchean gneisses have analogs in younger rocks in accord with a continuum of crust formation processes, radiogenic isotopic signatures from both long and short half-life decay schemes record an image of the Earth in transition from early differentiation processes, likely associated with planetary accretion and formation, to more modern styles. Most Eoarchean rocks possess extinct nuclide anomalies in the form of 142Nd and 182W isotopic signatures that are absent in modern terrestrial samples, and developed from

  19. Rare earth metals-primary resources and prospects of processing secondary resources in India

    International Nuclear Information System (INIS)

    Pandey, B.D.

    2015-01-01

    The importance of Rare earth metals (REMs) in modern technological applications is associated with their spectroscopic and magnetic properties. The occurrence of rare earths in mixed form is commonly reported and their separation to the individual metal is a challenging task because of the similar chemical properties. The economical processing of the primary ores of rare earths is limited to a few countries and their supply at the international level is currently dominated by China. Hence assessing the present scenario of the primary resources of rare earths vis-à-vis their applications and demand is crucial at this stage, besides looking at the alternate resources to ensure availability of REMs; such aspects are covered in the manuscript. In view of the environmental concerns in the processing of ores such as monazite, xenotime, bastnasite, etc, and increasing demand of REMs, corresponding increase in demand of the raw materials has been recorded. It is therefore, necessary to utilize the end-of the-life rare earth containing materials as a rich resource by developing an appropriate recycling technology, which is emerging as a high priority area. To recover the REMs, major secondary resources such as electronic wastes, industrial wastes, spent catalysts and magnets, and phosphors powder, etc, have been considered for now. This will not only open the prospects of utilizing the wastes containing REMs, but will also limit the imports while lowering the production cost and decreasing the load on the primary reserves. The paper also examines the efficient recycling methods to recover a fairly good amount of rare earths which are relevant to India in view of the limited exploitation of the ores. Recovery of REMs from secondary resources using mechanical treatment followed by hydrometallurgical methods is prevalent and the same is reviewed in some detail. The recent R and D work pursued at CSIR-NML to extract (leaching and metal separation using some phosphatic reagents

  20. Introducing Earth's Orbital Eccentricity

    Science.gov (United States)

    Oostra, Benjamin

    2015-01-01

    Most students know that planetary orbits, including Earth's, are elliptical; that is Kepler's first law, and it is found in many science textbooks. But quite a few are mistaken about the details, thinking that the orbit is very eccentric, or that this effect is somehow responsible for the seasons. In fact, the Earth's orbital eccentricity is…

  1. NASA's Earth science flight program status

    Science.gov (United States)

    Neeck, Steven P.; Volz, Stephen M.

    2010-10-01

    NASA's strategic goal to "advance scientific understanding of the changing Earth system to meet societal needs" continues the agency's legacy of expanding human knowledge of the Earth through space activities, as mandated by the National Aeronautics and Space Act of 1958. Over the past 50 years, NASA has been the world leader in developing space-based Earth observing systems and capabilities that have fundamentally changed our view of our planet and have defined Earth system science. The U.S. National Research Council report "Earth Observations from Space: The First 50 Years of Scientific Achievements" published in 2008 by the National Academy of Sciences articulates those key achievements and the evolution of the space observing capabilities, looking forward to growing potential to address Earth science questions and enable an abundance of practical applications. NASA's Earth science program is an end-to-end one that encompasses the development of observational techniques and the instrument technology needed to implement them. This includes laboratory testing and demonstration from surface, airborne, or space-based platforms; research to increase basic process knowledge; incorporation of results into complex computational models to more fully characterize the present state and future evolution of the Earth system; and development of partnerships with national and international organizations that can use the generated information in environmental forecasting and in policy, business, and management decisions. Currently, NASA's Earth Science Division (ESD) has 14 operating Earth science space missions with 6 in development and 18 under study or in technology risk reduction. Two Tier 2 Decadal Survey climate-focused missions, Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) and Surface Water and Ocean Topography (SWOT), have been identified in conjunction with the U.S. Global Change Research Program and initiated for launch in the 2019

  2. Earth-Affecting Solar Causes Observatory (EASCO): a mission at the Sun-Earth L5

    DEFF Research Database (Denmark)

    Gopalswamy, Nat; Davila, Joseph M.; Auchère, Frédéric

    2011-01-01

    Observatory (STEREO) missions, but these missions lacked some key measurements: STEREO did not have a magnetograph; SOHO did not have in-situ magnetometer. SOHO and other imagers such as the Solar Mass Ejection Imager (SMEI) located on the Sun-Earth line are also not well-suited to measure Earth-directed CMEs....... The Earth-Affecting Solar Causes Observatory (EASCO) is a proposed mission to be located at the Sun-Earth L5 that overcomes these deficiencies. The mission concept was recently studied at the Mission Design Laboratory (MDL), NASA Goddard Space Flight Center, to see how the mission can be implemented....... The study found that the scientific payload (seven remote-sensing and three in-situ instruments) can be readily accommodated and can be launched using an intermediate size vehicle; a hybrid propulsion system consisting of a Xenon ion thruster and hydrazine has been found to be adequate to place the payload...

  3. Definition of Earth Resources Policy and Management Problems in California

    Science.gov (United States)

    Churchman, C. W.

    1972-01-01

    The activities of the Social Sciences Group in solving earth resources management problems as related to social factors, are reported. Major efforts of the Group revolved around identifying potential users of ERTS data, ascertain the user's needs, and assay the organizational impacts of new and technologically advanced sources of information. Attempts were also made to develop a linear programming model to be used in decision making with respect to resources being observed by ERTS and other remote sensing vehicles. The cost effectiveness of solving these management problems is discussed.

  4. Characteristics of solar and heliospheric ion populations observed near earth

    International Nuclear Information System (INIS)

    Gloeckler, G.

    1984-01-01

    The composition and spectra of ions in solar-energetic-particle and energetic-storm-particle events, of diffuse ions upstream of the earth bow shock, and of ions in deep-geomagnetic-tail plasmoids are characterized in a summary of in situ observations. Data are presented in graphs and tables, and remarkable similarities are noted in the distribution functions of the heliospheric ion populations. The solar wind, acting through acceleration mechanisms associated with shocks and turbulence, is identified as the major plasma source of suprathermal and energetic particles. 33 references

  5. SinoProbe - A Multidisciplinary Research Program of Earth Sciences in China (Invited)

    Science.gov (United States)

    Dong, S.; Li, T.

    2010-12-01

    China occupies a large region of central and eastern Asia and holds keys to resolving several first-order problems in Earth Sciences. Besides the importance in Earth Science research, the rapid growth of Chinese economy also demands a comprehensive and systematic evaluation of its natural resources and the impacts of geohazards on its societal development. In order to address the above issues, the Chinese government had initiated a new multidisciplinary research project in Earth Sciences - the SinoProbe Program. Its fundamental goal is to determine the three-dimensional structure, composition distribution, and geological evolution of the Chinese continental lithosphere. The results of the SinoProbe Program are expected to have broad impacts on the Chinese society and economy. In particular, the program will greatly enhance our current understanding on (1) the forming and distribution of mineral resources in the nation, (2) the locations and recurrence histories of major active fault zones capable of generating large earthquakes in highly populated regions, and (3) the distribution of major hazard-prone regions induced by geological processes. In 2009, more than 720 investigators and 70 engineers from Chinese institutions are currently involved with the research program. Sinoprobe hope that the joint forces by Chinese and international researchers will bring in modern approaches, new analytical tools, and advanced exploration technology into the successful operation of the program. In past year, 1,960km long seismic reflection profiling with broadband seismological studies and MT surveys separated from 6 profiles in China continent have completed. MT array coved the North China craton by 1°×1° network and 3-D exploration in larger ore deposits in selected area were carried out. A scientific drilling area operated in Tibet. We started to establish a geochemical reference framework for the values of 76 elements in a grid network with data-point spacing of 160 km in

  6. HfO2 - rare earth oxide systems in the region with high content of rare earth oxide

    International Nuclear Information System (INIS)

    Shevchenko, A.V.; Lopato, L.M.

    1982-01-01

    Using the methods of annealing and hardenings (10 2 -10 4 deg/s cooling rate) and differential thermal analysis elements of state diagrams of HfO 2 - rare earth oxide (rare earths-La, Pr, Nd, Sm, Gd, Tb, Dy, Y, Er, Yb, Lu, Sc) systems from 1800 deg C up to melting in the range of 60-100 mol% rare earth oxide concentration were constructed. Regularities of HfQ 2 addition effect on high-temperature polymorphic transformations of rare earth oxides were studied. Results of investigation were discussed from viewpoint of crystal chemistry

  7. A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.

    Science.gov (United States)

    Kostadinov, Tihomir; Gilb, Roy

    2013-04-01

    Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry

  8. Behaviour of Rare Earth Elements during the Earth's core formation

    Science.gov (United States)

    Faure, Pierre; Bouhifd, Mohamed Ali; Boyet, Maud; Hammouda, Tahar; Manthilake, Geeth

    2017-04-01

    Rare Earth Elements (REE) are classified in the refractory group, which means that they have a high temperature condensation and their volatility-controlled fractionation is limited to high-temperature processes. Anomalies have been measured for Eu, Yb and Sm, which are the REE with the lowest condensation temperatures in CAIs and chondrules (e.g. [1]). REE are particularly abundant in the sulfides of enstatite chondrites, 100 to 1000 times the CI value [e.g. 2,3], proving that these elements are not strictly lithophile under extremely reducing conditions. However by investigating experimentally the impact of Earth's core formation on the behavior of Sm and Nd, we have shown the absence of fractionation between Sm and Nd during the segregation of the metallic phase [4]. Recently, Wohlers and Wood [5] proposed that Nd and Sm could be fractionated in presence of a S-rich alloy phase. However, their results were obtained at pressure and temperature conditions below the plausible conditions of the Earth's core formation. Clearly, large pressure range needs to be covered before well-constrained model can be expected. Furthermore, our preliminary metal-silicate partitioning results show that Ce and Eu have higher metal/silicate partition coefficients than their neighboring elements, and that the presence of sulphur enhances the relative difference between partition coefficients. In this presentation, we will present and discuss new metal-silicate partition coefficients of all REE at a deep magma ocean at pressures ranging from those of the uppermost upper mantle ( 5 GPa) to a maximum pressure expected in the range of 20 GPa, temperatures ranging from 2500 to about 3000 K, and oxygen fugacities within IW-1 to IW-5 (1 to 5 orders of magnitude lower than the iron-wüstite buffer). We will discuss the effect of S, as well as the effect of H2O on the behaviour of REE during the Earth's core formation: recent models suggest that contrary to currently accepted beliefs, the

  9. Production of rare earth-silicon-iron alloys

    International Nuclear Information System (INIS)

    Mehra, O.K.; Bose, D.K.; Gupta, C.K.

    1987-01-01

    At Metallurgy Division, BARC, improved procedures for producing rare earth-silicon alloys have been investigated. In these methods, reduction of mixed rare earth oxide by a ferro-silicon and aluminium mixture in combination with CaO-MgO flux/CaO-CaF 2 flux have been tried to prepare an alloy product with a higher rare earth recovery at a higher rare earth content than the present commercial production method. The rare earth recovery using CaO-CaF 2 was 85 per cent while in the case of CaO-MgO flux it was 76 per cent. The corresponding rare earth contents in the alloy correspond to 40 per cent and 55 per cent by weight respectively. (author)

  10. Earth Systems Science: An Analytic Framework

    Science.gov (United States)

    Finley, Fred N.; Nam, Younkeyong; Oughton, John

    2011-01-01

    Earth Systems Science (ESS) is emerging rapidly as a discipline and is being used to replace the older earth science education that has been taught as unrelated disciplines--geology, meteorology, astronomy, and oceanography. ESS is complex and is based on the idea that the earth can be understood as a set of interacting natural and social systems.…

  11. Earth Science Literacy: Building Community Consensus

    Science.gov (United States)

    Wysession, M.; Ladue, N.; Budd, D.; Campbell, K.; Conklin, M.; Lewis, G.; Raynolds, R.; Ridky, R.; Ross, R.; Taber, J.; Tewksbury, B.; Tuddenham, P.

    2008-12-01

    During 2008, the Earth Sciences Literacy Initiative (ESLI) constructed a framework of earth science "Big Ideas" and "Supporting Concepts". Following the examples of recent literacy efforts in the ocean, atmosphere and climate research communities, ESLI has distilled the fundamental understandings of the earth science community into a document that all members of the community will be able to refer to when working with educators, policy-makers, the press and members of the general public. This document is currently in draft form for review and will be published for public distribution in 2009. ESLI began with the construction of an organizing committee of a dozen people who represent a wide array of earth science backgrounds. This group then organized and ran two workshops in 2008: a 2-week online content workshop and a 3-day intensive writing workshop. For both workshops, participants were chosen so as to cover the full breadth of earth science related to the solid earth, surficial processes, and fresh-water hydrology. The asynchronous online workshop included 350 scientists and educators participating from around the world and was a powerful way to gather ideas and information while retaining a written record of all interactions. The writing workshop included 35 scientists, educators and agency representatives to codify the extensive input of the online workshop. Since September, 2008, drafts of the ESLI literacy framework have been circulated through many different channels to make sure that the document accurately reflects the current understandings of earth scientists and to ensure that it is widely accepted and adopted by the earth science communities.

  12. USGEO Common Framework For Earth Observation Data

    Science.gov (United States)

    Walter, J.; de la Beaujardiere, J.; Bristol, S.

    2015-12-01

    The United States Group on Earth Observations (USGEO) Data Management Working Group (DMWG) is an interagency body established by the White House Office of Science and Technology Policy (OSTP). The primary purpose of this group is to foster interagency cooperation and collaboration for improving the life cycle data management practices and interoperability of federally held earth observation data consistent with White House documents including the National Strategy for Civil Earth Observations, the National Plan for Civil Earth Observations, and the May 2013 Executive Order on Open Data (M-13-13). The members of the USGEO DMWG are working on developing a Common Framework for Earth Observation Data that consists of recommended standards and approaches for realizing these goals as well as improving the discoverability, accessibility, and usability of federally held earth observation data. These recommendations will also guide work being performed under the Big Earth Data Initiative (BEDI). This talk will summarize the Common Framework, the philosophy behind it, and next steps forward.

  13. Earth current monitoring circuit for inductive loads

    CERN Document Server

    Montabonnet, V; Thurel, Y; Cussac, P

    2010-01-01

    The search for higher magnetic fields in particle accelerators increasingly demands the use of superconducting magnets. This magnet technology has a large amount of magnetic energy storage during operation at relatively high currents. As such, many monitoring and protection systems are required to safely operate the magnet, including the monitoring of any leakage of current to earth in the superconducting magnet that indicates a failure of the insulation to earth. At low amplitude, the earth leakage current affects the magnetic field precision. At a higher level, the earth leakage current can additionally generate local losses which may definitively damage the magnet or its instrumentation. This paper presents an active earth fault current monitoring circuit, widely deployed in the converters for the CERN Large Hadron Collider (LHC) superconducting magnets. The circuit allows the detection of earth faults before energising the circuit as well as limiting any eventual earth fault current. The electrical stress...

  14. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  15. Convergent evidence for widespread rock nitrogen sources in Earth's surface environment.

    Science.gov (United States)

    Houlton, B Z; Morford, S L; Dahlgren, R A

    2018-04-06

    Nitrogen availability is a pivotal control on terrestrial carbon sequestration and global climate change. Historical and contemporary views assume that nitrogen enters Earth's land-surface ecosystems from the atmosphere. Here we demonstrate that bedrock is a nitrogen source that rivals atmospheric nitrogen inputs across major sectors of the global terrestrial environment. Evidence drawn from the planet's nitrogen balance, geochemical proxies, and our spatial weathering model reveal that ~19 to 31 teragrams of nitrogen are mobilized from near-surface rocks annually. About 11 to 18 teragrams of this nitrogen are chemically weathered in situ, thereby increasing the unmanaged (preindustrial) terrestrial nitrogen balance from 8 to 26%. These findings provide a global perspective to reconcile Earth's nitrogen budget, with implications for nutrient-driven controls over the terrestrial carbon sink. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. SCOSTEP: Understanding the Climate and Weather of the Sun-Earth System

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2011-01-01

    The international solar-terrestrial physics community had recognized the importance of space weather more than a decade ago, which resulted in a number of international collaborative activities such as the Climate and Weather of the Sun Earth System (CAWSES) by the Scientific Committee on Solar Terrestrial Physics (SCOSTEP). The CAWSES program is the current major scientific program of SCOSTEP that will continue until the end of the year 2013. The CAWSES program has brought scientists from all over the world together to tackle the scientific issues behind the Sun-Earth connected system and explore ways of helping the human society. In addition to the vast array of space instruments, ground based instruments have been deployed, which not only filled voids in data coverage, but also inducted young scientists from developing countries into the scientific community. This paper presents a summary of CAWSES and other SCOSTEP activities that promote space weather science via complementary approaches in international scientific collaborations, capacity building, and public outreach.

  17. Carbon stocks and fluxes in the high latitudes: using site-levelbreak data to evaluate Earth system models

    DEFF Research Database (Denmark)

    Chadburn, S. E.; Krinner, G.; Porada, P.

    2017-01-01

    from northward expansion of vegetation under climate warming. Here we evaluate the simulation of tundra carbon stocks and fluxes in three land surface schemes that each form part of major Earth system models (JSBACH, Germany; JULES, UK; ORCHIDEE, France). We use a site-level approach in which...

  18. Rare earth mobility in hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Cornell, D.H.; Schade, J.; Scheepers, R.; Watkeys, M.K.

    1988-01-01

    Rocks and ores which form by magmatic processes display a range of chondrite-normalised rare earth profiles. One REE (rare earth elements) profile feature which seems unrelated to magmatic processes is the birdwing profile, in which both heavy and light rare earths are enriched relative to the middle rare earths. Birdwing rare earth profiles are an easily identified geochemical anomaly. It is proposed that rare earth geochemistry could be applied in geochemical prospecting for ore formed by hydrothermal processes. 5 figs

  19. Sc, Y, La-Lu - Rare Earth Elements

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    At present extensive efforts are being made in completing work on system number Rare Earth Elements. Part A is devoted to the occurrence of these elements on the earth and in the universe. Part B deals with the pure metals; the 7 volumes published cover the description of the separation from the raw materials, the preparation of pure metals,their uses and toxicology, the physical properties of nuclei, atoms, molecules, and isotopes; in addition the behavior of ions in solution and the electrochemical behavior of rare earth elements are described. The compounds are described in Part C. Part D with 6 volumes has been devoted to the description of coordination compounds and is completed. The volume ''Rare Earth Elements C 10'' deals with the rare earth tellurides, oxide tellurides, tellurates, telluride halides, tellurate halides, sulfide tellurides, selenide tellurides, and alkali rare earth tellurates. Another topic of this volume are the compounds of the rare earth elements with polonium. So far as meaningful and in accordance with all earlier volumes of ''Rare Earth Elements'' Series C, comparative data are presented in sections preceding treatment of the individual compounds and systems

  20. Earth thermics

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, M

    1960-01-01

    The thermodynamics of the Earth are described, including terrestrial heat flow, internal temperatures and thermal history. The value of the geothermal gradient has been considered to be 3/sup 0/C/100 m but measured values are slightly different. The values of terrestrial heat flow are relatively constant and are calculated be about 2.3 x 10 to the minus 6 cal/cm/sup 2/ sec (2.3 HFU). The Earth's internal temperature can be calculated from the adiabatic temperature gradient of adiabatic expansion. Using Simon's equation No. 9, a value of 2100-2500/sup 0/C is obtained, this is much lower than it was previously thought to be. The value of 2.3 HFU can easily be obtained from this internal temperature figure.

  1. Non-rocket Earth-Moon transport system

    Science.gov (United States)

    Bolonkin, Alexander

    2003-06-01

    This paper proposes a new transportation system for travel between Earth and Moon. This transportation system uses mechanical energy transfer and requires only minimal energy, using an engine located on Earth. A cable directly connects a pole of the Earth through a drive station to the lunar surface_ The equation for an optimal equal stress cable for complex gravitational field of Earth-Moon has been derived that allows significantly lower cable masses. The required strength could be provided by cables constructed of carbon nanotubes or carbon whiskers. Some of the constraints on such a system are discussed.

  2. The Earth is flat when personally significant experiences with the sphericity of the Earth are absent.

    Science.gov (United States)

    Carbon, Claus-Christian

    2010-07-01

    Participants with personal and without personal experiences with the Earth as a sphere estimated large-scale distances between six cities located on different continents. Cognitive distances were submitted to a specific multidimensional scaling algorithm in the 3D Euclidean space with the constraint that all cities had to lie on the same sphere. A simulation was run that calculated respective 3D configurations of the city positions for a wide range of radii of the proposed sphere. People who had personally experienced the Earth as a sphere, at least once in their lifetime, showed a clear optimal solution of the multidimensional scaling (MDS) routine with a mean radius deviating only 8% from the actual radius of the Earth. In contrast, the calculated configurations for people without any personal experience with the Earth as a sphere were compatible with a cognitive concept of a flat Earth. 2010 Elsevier B.V. All rights reserved.

  3. Sensing Planet Earth - Chalmers' MOOCs on Earth observation

    Science.gov (United States)

    Hobiger, Thomas; Stöhr, Christian; Murtagh, Donal; Forkman, Peter; Galle, Bo; Mellquist, Johan; Soja, Maciej; Berg, Anders; Carvajal, Gisela; Eriksson, Leif; Haas, Rüdiger

    2016-04-01

    An increasing number of universities around the globe produce and conduct Massive Open Online Courses (MOOCs). In the beginning of 2016, Chalmers University of Technology ran two MOOCs on the topic of Earth observations on the edX platform. Both four week long courses were at introductory level and covered topics related to solid Earth, atmosphere, biosphere, hydrosphere and cryosphere. It was discussed how one can measure and trace global change and use remote sensing tools for disaster monitoring. Research has attempted to assess the learners' motivations to participate in MOOCs, but there is a need for further case studies about motivations, opportunities and challenges for teachers engaging in MOOC development. In our presentation, we are going to report about the experiences gained from both the MOOC production and the actual course run from the instructors' perspective. After brief introduction to MOOCs in general and at Chalmers in particular, we share experiences and challenges of developing lecture and assessment material, the video production and coordination efforts between and within different actors involved in the production process. Further, we reflect upon the actual run of the course including course statistics and feedback from the learners. We discuss issues such as learner activation and engagement with the material, teacher-learner and student-student interaction as well as the scalability of different learning activities. Finally, we will present our lessons-learned and conclusions on the applicability of MOOCs in the field of Earth science teaching.

  4. External Fuel Tank, Clouds and Earth Limb

    Science.gov (United States)

    1991-01-01

    It's fuel consumed, the expendable external fuel tank was jettisoned moments earlier from the Space Shuttle Atlantis and now begins its plunge back to Earth (20.5N, 36.0W). Backdropped against the void of space and the thin blue line of the Earth's airglow above the Earth Limb, the harshness of the blackness of space is softened by the fleeciness of Earth's cloud cover below.

  5. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  6. Co-Seismic Mass Displacement and its Effect on Earth's Rotation and Gravity

    Science.gov (United States)

    Chao, B. F.; Gross, R. S.

    2004-01-01

    Mantle processes often involve large-scale mass transport, ranging from mantle convection, tectonic motions, glacial isostatic adjustment, to tides, atmospheric and oceanic loadings, volcanism and seismicity. On very short time scale of less than an hour, co-seismic event, apart from the "shaking" that is the earthquake, leaves behind permanent (step-function-like) displacements in the crust and mantle. This redistribution of mass changes the Earth's inertia tensor (and hence Earth's rotation in both length-of-day and polar motion), and the gravity field. The question is whether these effects are large enough to be of any significance. In this paper we report updated calculation results based on Chao & Gross. The calculation uses the normal mode summation scheme, applied to over twenty thousand major earthquakes that occurred during 1976-2002, according to source mechanism solutions given by the Harvard Centroid Moment Tensor catalog. Compared to the truly large ones earlier in the century, the earthquakes we study are individually all too small to have left any discernible signature in geodetic records of Earth rotation or global gravity field. However, their collective effects continue to exhibit an extremely strong statistical tendencies, conspiring to decrease J2 and J22 while shortening LOD, resulting in a rounder and more compact Earth. Strong tendency is also seen in the earthquakes trying to "nudge" the Earth rotation pole towards approx. 140 deg.E, roughly opposite to the observed polar drift direction. Currently, the Gravity Recovery And Climate Experiment (GRACE) is measuring the time-variable gravity to high degree and order with unprecedented accuracy. Our results show that great earthquakes such as the 1960 Chilean or 1964 Alaskan events cause gravitational field changes that are large enough to be detected by GRACE.

  7. Rare earth elements behavior in Peruibe black mud

    International Nuclear Information System (INIS)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da

    2015-01-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  8. Rare earth elements behavior in Peruibe black mud

    Energy Technology Data Exchange (ETDEWEB)

    Torrecilha, Jefferson K.; Carvalho, Leandro P.; Gouvea, Paulo F.M.; Silva, Paulo S.C. da, E-mail: jeffkoy@usp.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Rare earth elements in sediments have been used as powerful tools for environmental studies because of their behavior during geochemical processes and are also widely accepted as reliable provenance tracers because they are largely water-immobile and thus behave conservatively during sedimentary processes. The Peruibe Black Mud (PBM) is a sedimentary deposit originated from the interactions of marine sediments and organic matter in an estuarine environment that originates a peloid currently used for medicinal purposes. The objective of this study was to examine rare earth elements pattern distribution in the Peruibe black mud sedimentary deposit as a proxy for its geochemical development. Elemental ratios such as LaN/YbN, Th/U and La/Th were determined and a normalization of the mean rare earth elements concentrations in the samples related to NASC indicates that the light (La to Eu) rare earth elements present values close to the unity while the heavy (Tb to Lu) rare earth elements are depleted related to NASC. It can be observed that the light rare earth elements present enrichment values slightly enriched over the unity while the heavy rare earth elements present values generally below the unity reflecting the enrichment of the light rare earth elements over the heavy rare earth. Rare earth elements concentrations determined in Peruibe black mud samples showed a distribution similar to that found in the NASC for the light rare earth elements and depleted for the heavy rare earth elements. (author)

  9. Determination of rare earth, major and trace elements in authigenic fraction of Andaman Sea (Northeastern Indian Ocean) sediments by inductively coupled plasma-mass spectrometry

    Digital Repository Service at National Institute of Oceanography (India)

    Alagarsamy, R.; You, C.-F.; Nath, B.N.; SijinKumar, A.V.

    Downcore variation of rare earth elements (REEs) in the authigenic Fe-Mn oxides of a sediment core (covering a record of last approx. 40 kyr) from the Andaman Sea, a part of the Indian Ocean shows distinctive positive Ce and Eu anomalies...

  10. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  11. Earth System Science Education Modules

    Science.gov (United States)

    Hall, C.; Kaufman, C.; Humphreys, R. R.; Colgan, M. W.

    2009-12-01

    information into words that are understandable and useful for policy makers and other stakeholders. The inability of scientists to effectively communicate with the public has been highlighted as a major reason for the anti-science attitude of a large segment of the public. This module, unlike other ESSEA modules, addresses this problem by first, investigating a global change environmental problem using Earth System Science methodologies, then developing several solutions to that problem, and finally writing a position paper for the policy makers to use. These three hands-on, real-world modules that engage students in authentic research share similar goals: 1) to use global change data sets to examine controversial environmental problems; 2) to use an earth system science approach to understand the complexity of global problems; and 3) to help students understand the political complexity of environmental problems where there is a clash between economic and ecological problems. The curriculum will meet National Standards in science, geography, math, etc.

  12. Immersive Earth: Teaching Earth and Space with inexpensive immersive technology

    Science.gov (United States)

    Reiff, P. H.; Sumners, C.; Law, C. C.; Handron, K.

    2003-12-01

    In 1995 we pioneered "Space Update", the Digital Library for the rest of us", software that was so simple that a child could use it without a keyboard and yet would allow one-click updating of the daily earth and space science images without the dangers of having an open web browser on display. Thanks to NASA support, it allowed museums and schools to have a powerful exhibit for a tiny price. Over 40,000 disks in our series have been distributed so far to educators and the public. In 2003, with our partners we are again revolutionizing educational technology with a low-cost hardware and software solution to creating and displaying immersive content. Recently selected for funding as part of the REASoN competition, Immersive Earth is a partnership of scientists, museums, educators, and content providers. The hardware consists of a modest projector with a special fisheye lens to be used in an inflatable dome which many schools already have. This, coupled with a modest personal computer, can now easily project images and movies of earth and space, allows training students in 3-D content at a tiny fraction of the cost of a cave or fullscale dome theater. Another low-cost solution is the "Imove" system, where spherical movies can play on a personal computer, with the user changing the viewing direction with a joystick. We were the first to create immersive earth science shows, remain the leader in creating educational content that people want to see. We encourage people with "allsky" images or movies to bring it and see what it looks like inside a dome! Your content could be in our next show!

  13. The Sun and Earth

    Science.gov (United States)

    Gopalswamy, Natchimuthuk

    2012-01-01

    Thus the Sun forms the basis for life on Earth via the black body radiation it emits. The Sun also emits mass in the form of the solar wind and the coronal mass ejections (CMEs). Mass emission also occurs in the form of solar energetic particles (SEPs), which happens during CMEs and solar flares. Both the mass and electromagnetic energy output of the Sun vary over a wide range of time scales, thus introducing disturbances on the space environment that extends from the Sun through the entire heliosphere including the magnetospheres and ionospheres of planets and moons of the solar system. Although our habitat is located in the neutral atmosphere of Earth, we are intimately connected to the non-neutral space environment starting from the ionosphere to the magnetosphere and to the vast interplanetary space. The variability of the solar mass emissions results in the interaction between the solar wind plasma and the magnetospheric plasma leading to huge disturbances in the geospace. The Sun ionizes our atmosphere and creates the ionosphere. The ionosphere can be severely disturbed by the transient energy input from solar flares and the solar wind during geomagnetic storms. The complex interplay between Earth's magnetic field and the solar magnetic field carried by the solar wind presents varying conditions that are both beneficial and hazardous to life on earth. This seminar presents some of the key aspects of this Sun-Earth connection that we have learned since the birth of space science as a scientific discipline some half a century ago.

  14. Propagation Velocity of Solid Earth Tides

    Science.gov (United States)

    Pathak, S.

    2017-12-01

    One of the significant considerations in most of the geodetic investigations is to take into account the outcome of Solid Earth tides on the location and its consequent impact on the time series of coordinates. In this research work, the propagation velocity resulting from the Solid Earth tides between the Indian stations is computed. Mean daily coordinates for the stations have been computed by applying static precise point positioning technique for a day. The computed coordinates are used as an input for computing the tidal displacements at the stations by Gravity method along three directions at 1-minute interval for 24 hours. Further the baseline distances are computed between four Indian stations. Computation of the propagation velocity for Solid Earth tides can be done by the virtue of study of the concurrent effect of it in-between the stations of identified baseline distance along with the time consumed by the tides for reaching from one station to another. The propagation velocity helps in distinguishing the impact at any station if the consequence at a known station for a specific time-period is known. Thus, with the knowledge of propagation velocity, the spatial and temporal effects of solid earth tides can be estimated with respect to a known station. As theoretically explained, the tides generated are due to the position of celestial bodies rotating about Earth. So the need of study is to observe the correlation of propagation velocity with the rotation speed of the Earth. The propagation velocity of Solid Earth tides comes out to be in the range of 440-470 m/s. This velocity comes out to be in a good agreement with the Earth's rotation speed.

  15. Earth evolution as a thermal system

    Science.gov (United States)

    Tang, C.

    2014-12-01

    After fifty years of plate-tectonic theory, the reasons why earth sometime freezed as a snowball or sometime became lethally hot resulting in mass extinction remain enigmatic. This article proposes a new hypothesis on Earth evolution. The unbalance of heat between the input and output is considered as the driving force for the Earth evolution, the lithospheric expansion and associated uplift are the triggers, the self-organized progressive failure leading to collapse of the Earth are the amplifier, and the global scale response in terms of volcanism and magmatism is the globalizer. This shallow process of lithosphere may reach a critical state with a positive feedback loop, and result in the formation of no-plume original Large Igneous Provinces (NPOLIP) in a top-down pattern. Endothermic phase changes during de-compressive melting remove heat from and cool their surroundings, including the upper parts of the lithosphere. The huge loss of Earth's heat during eruption of LIPs, together with the endothermic cooling, may put the thermal cycle to an end and a new start of the cycle initiates. In summary, Earth drives itself to evolve in terms of thermal cycles. Global cooling and warming are the two stages of the many cycles during the Earth evolution. Glaciations are the extreme result of global cooling, whereas the LIPs, sometime accompanied with remarkable sea level dropping, are the extreme result of global warming, with a long recovering age, the interglacialstage, between them. They come and go as thermal cycle evolves, with climate warming, being caused by Earth itself rather than by external forces or human activities, as the most attractive prediction.

  16. THEORETICAL TRANSIT SPECTRA FOR GJ 1214b AND OTHER 'SUPER-EARTHS'

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Alex R.; Burrows, Adam S., E-mail: arhowe@astro.princeton.edu, E-mail: burrows@astro.princeton.edu [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States)

    2012-09-10

    We present new calculations of transit spectra of super-Earths that allow for atmospheres with arbitrary proportions of common molecular species and haze. We test this method with generic spectra, reproducing the expected systematics and absorption features, then apply it to the nearby super-Earth GJ 1214b, which has produced conflicting observational data, leaving the questions of a hydrogen-rich versus hydrogen-poor atmosphere and the water content of the atmosphere ambiguous. We present representative transit spectra for a range of classes of atmosphere models for GJ 1214b. Our analysis supports a hydrogen-rich atmosphere with a cloud or haze layer, although a hydrogen-poor model with {approx}<10% water is not ruled out. Several classes of models are ruled out, however, including hydrogen-rich atmospheres with no haze, hydrogen-rich atmospheres with a haze of {approx}0.01 {mu}m tholin particles, and hydrogen-poor atmospheres with major sources of absorption other than water. We propose an observational test to distinguish hydrogen-rich from hydrogen-poor atmospheres. Finally, we provide a library of theoretical transit spectra for super-Earths with a broad range of parameters to facilitate future comparison with anticipated data.

  17. Long-distance migration of radon within the earth

    International Nuclear Information System (INIS)

    Fleischer, R.L.; Mogro-Campero, A.

    1976-01-01

    There is need for identification and understanding of methods for locating subsurface uranium. A major hope for definitive recognition of ore at depths of more than a few meters is the measurement of the near surface emanation of 222 Rn, the sole distinctive gaseous product of the decay of uranium. Scattered observations suggest that radon can migrate through the earth for distances of greater than or equal to 100 m. A model is proposed in which convective flow of subsurface air or water through a porous medium is induced by the geothermal gradient. Several of the predictions of the model are consistent with observations at a uranium ore deposit in New Mexico

  18. Sun-Earth Day Connects History, Culture and Science

    Science.gov (United States)

    Cline, T.; Thieman, J.

    2003-12-01

    The NASA Sun-Earth Connection Education forum annually promotes and event called Sun-Earth Day: a national celebration of the Sun, the space around the Earth (geospace), and how all of it affects life on our planet. For the past 3 years this event has provided a venue by which classrooms, museums, planetaria, and at NASA centers have had a sensational time sharing stories, images, and activities related to the Sun-Earth connections and the views o fthe Sun from Earth. Each year we select a different theme by which NASA Space Science can be further related to cross-curricular activities. Sun-Earth Day 2002, "Celebrate the Equinox", drew parallels between Native American Cultures and NASA's Sun-Earth Connection research via cultural stories, interviews, web links, activities and Native American participation. Sun-Earth Day 2003, "Live From the Aurora", shared the beauty of the Aurora through a variety of activities and stories related to perspectives of Northern Peoples. Sun-Earth Day 2004 will share the excitement of the transit of Venus through comparisons of Venus with Earth and Mars, calculations of the distances to nearby stars, and the use of transits to identify extra-solar planets. Finally, Sun-Earth Day 2005 will bring several of these themes together by turning our focus to the history and culture surrounding ancient observatories such as Chaco Canyon, Machu Picchu, and Chichen Itza.

  19. Looking at the earth from space

    Science.gov (United States)

    Geller, Marvin A.

    1988-01-01

    Some of the scientific accomplishments attained in observing the earth from space are discussed. A brief overview of findings concerning the atmosphere, the oceans and sea ice, the solid earth, and the terrestrial hydrosphere and biosphere is presented, and six examples are examined in which space data have provided unique information enabling new knowledge concerning the workings of the earth to be derived. These examples concern stratospheric water vapor, hemispheric differences in surface and atmosphere parameters, Seasat altimeter mesoscale variability, variability of Antarctic sea ice, variations in the length of day, and spaceborne radar imaging of ancient rivers. Future space observations of the earth are briefly addressed.

  20. Earth-Atmospheric Coupling Prior to Strong Earthquakes Analyzed by IR Remote Sensing Data

    Science.gov (United States)

    Freund, F.; Ouzounov, D.

    2001-12-01

    Earth-atmosphere interactions during major earthquakes (M>5) are the subject of this study. A mechanism has recently been proposed to account for the appearance of hole-type electronic charge carriers in rocks subjected to transient stress [Freund, 2000]. If such charge carriers are activated in the crust prior to large earthquakes, the predictable consequences are: injection of currents into the rocks, low frequency electromagnetic emission, changes in ground potentials, corona discharges with attendant light emission from high points at the surface of the Earth, and possibly an enhanced emission in the 8-12 μ m region similar to the thermal emission observed during laboratory rock deformation experiments [Geng et al., 1999]. Using data from MODIS (Moderate Resolution Imaging Spectroradiometer) and ASTER (Advanced Spaceborne Thermal Emission & Reflection radiometer) onboard NASA's TERRA satellite launched in Dec. 1999 we have begun analyzing vertical atmospheric profiles, land surface and kinetic temperatures. We looked for correlations between atmospheric dynamics and solid Earth processes prior to the Jan. 13, 2001 earthquake in El Salvador (M=7.6) and the Jan. 26, 2001 Gujarat earth-quake in India (M=7.7). With MODIS covering the entire Earth every 1-2 days in 36 wavelength bands (20 visible and 16 infrared) at different spatial resolutions (250 m, 500 m, and 1 km) we find evidence for a thermal anomaly pattern related to the pre-seismic activity. We also find evidence for changes in the aerosol content and atmospheric instability parameters, possibly due to changes in the ground potential that cause ion emission and lead to the formation of a thin near-ground aerosol layer. We analyze the aerosol content, atmospheric pressure, moisture profile and lifted index.

  1. Earth Surface Processes, Landforms and Sediment Deposits

    Science.gov (United States)

    Bridge, John; Demicco, Robert

    Earth surface processes, landforms and sediment deposits are intimately related - involving erosion of rocks, generation of sediment, and transport and deposition of sediment through various Earth surface environments. These processes, and the landforms and deposits that they generate, have a fundamental bearing on engineering, environmental and public safety issues; on recovery of economic resources; and on our understanding of Earth history. This unique textbook brings together the traditional disciplines of sedimentology and geomorphology to explain Earth surface processes, landforms and sediment deposits in a comprehensive and integrated way. It is the ideal resource for a two-semester course in sedimentology, stratigraphy, geomorphology, and Earth surface processes from the intermediate undergraduate to beginning graduate level. The book is also accompanied by a website hosting illustrations and material on field and laboratory methods for measuring, describing and analyzing Earth surface processes, landforms and sediments.

  2. Earth Science Education in Morocco

    Science.gov (United States)

    Bouabdelli, Mohamed

    1999-05-01

    The earth sciences are taught in twelve universities in Morocco and in three other institutions. In addition there are three more earth science research institutions. Earth science teaching has been taking place since 1957. The degree system is a four-year degree, split into two two-year blocks and geology is taught within the geology-biology programme for the first part of the degree. 'Classical' geology is taught in most universities, although applied geology degrees are also on offer in some universities. Recently-formed technical universities offer a more innovative approach to Earth Science Education. Teaching is in French, although school education is in Arabic. There is a need for a reform of the curriculum, although a lead is being taken by the technical universities. A new geological mapping programme promises new geological and mining discoveries in the country and prospects of employment for geology graduates.

  3. Perbandingan intensitas warna CPO dengan menggunakan Bleaching Earth (BE) dan Spent Bleaching Earth (SBE) di PT. SMART Tbk.

    OpenAIRE

    Aritonang, Dwi Christina

    2016-01-01

    Comparative studies have been conducted on the effect of bleaching earth quality bleachibility power on CPO (crude palm oil). by using the tool Lovibond Tintometer model of F in PT Smart Tbk Medan – Belawan.From experiments obtained initial color with the CPO 20R - 20Y after addition Bleaching Earth and spent bleaching earth with the CPO each - each 10,2R - 20Y and 17.3R - 20Y . The results showed that purification using Bleaching Earth better than the purification of Spent Bleaching Earh ...

  4. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  5. Student Learning of Complex Earth Systems: Conceptual Frameworks of Earth Systems and Instructional Design

    Science.gov (United States)

    Scherer, Hannah H.; Holder, Lauren; Herbert, Bruce

    2017-01-01

    Engaging students in authentic problem solving concerning environmental issues in near-surface complex Earth systems involves both developing student conceptualization of Earth as a system and applying that scientific knowledge using techniques that model those used by professionals. In this first paper of a two-part series, we review the state of…

  6. LIMNOLOGICAL OPTOMETRY: EXAMINING EARTH'S EYE

    Science.gov (United States)

    In Thoreau's Walden, a lake is described as the landscape's most expressive feature and the earth's eye. Collectively, scientists are charged by society to assess, monitor, and remedy maladies of earth's eye in the same way optometrists maintain the health of the human eye. This ...

  7. Rare earth oxide aero- and xerogels. Tuning porosity and catalytic properties

    International Nuclear Information System (INIS)

    Neumann, Bjoern

    2013-11-01

    Heterogeneous catalysts to this day are still largely developed on the basis of trial and error. This is due to the great difficulty of creating custom-designed structures at the nanometer scale using traditional preparation methods. In the course of recent rapid developments in the material sciences, however, it has become possible to create materials with custom-designed properties from the macroscopic down into the nanometer range. The purpose of the present study was to make use of this potential for catalysis. The task was to modify the porosity and composition of selected rare earth oxides that promise well as catalysts with the goal of obtaining good results in terms of oxidative reactions and oxidative coupling. One major focus was on chemical sol-gel methods and in particular on what is referred to as the epoxide addition method. Extensive work was put into the characterisation and catalytic testing of aerogels and xerogels of pure rare earth oxides as well as of hybrid systems of rare earth oxides and aluminium oxide. Furthermore, thin xerogel films and macroporous monoliths were produced, the latter using a direct foaming method. The results of this work confirm the high potential of sol-gel chemistry for making porous materials of variable and controllable porosity and composition available for heterogeneous catalysis and creating more powerful catalysts. [de

  8. Remote Earth Terminals in the Health, Education, Telecommunications Network. Satellite Technology Demonstration, Technical Report No. 0423.

    Science.gov (United States)

    Braunstein, Jean; And Others

    The major purpose of the Health, Education, Telecommunications experiment was to demonstrate the feasibility of distributing video materials to a large number of low-cost earth terminals located in rural areas. The receivers are of two types: one-way video receivers for the reception of video programs, and two-way voice/data terminals which permit…

  9. Tafoni - A Llink Between Mars and Earth

    Science.gov (United States)

    Iacob, R. H.; Iacob, C. E.

    2013-12-01

    Remarkable rock erosion structures on the planetary surface, tafoni represent an important instrument for investigating the specific environmental conditions causing such rock formations. From simple cavities to refined honeycomb or other intricate patterns, tafoni are a reflection of the complex interaction between the rock structure and the environmental factors. On the genesis of tafoni, there is no unique breakdown mechanism at work, but a multitude of physical and chemical processes developing over time. However, some of these formation mechanisms are typically predominant. Tafoni can be found on a variety of rock substrates, from sandstone and vesicular lava rocks to granite and basalt, and in a variety of environments, from wet coastal areas to the extreme dry zones of hot deserts, high plateaus or frozen lands of Antarctica. During various NASA missions, tafoni were also identified on rock formations on Mars. Comparative study of the environmental conditions leading to the formation of tafoni on Earth and Mars can help explain past and present surface erosion mechanisms on the Red Planet. The mechanisms responsible for tafoni formation on Earth include wind erosion, exfoliation, frost shattering, and, in the majority of cases, salt weathering. Microclimate variations of temperature, evaporation of salt water, disaggregation of mineral grains, as well as sandblasting, are among most common contributors that initiate the pitting of the rock surface, giving way to further development of tafoni alveoli, cavities and other erosion patterns. Dissolution of calcium carbonates and siliceous cements, or hydration of feldspars, are representative examples of tafoni erosion involving rain water, sea water or air moisture. Live organisms and biochemical processes are significant contributors to the formation and evolution of tafoni, especially in humid or water reach environments. In many instances, tafoni reflect erosion mechanism specific to environmental conditions

  10. Teaching earth science

    Science.gov (United States)

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  11. The Rare Earth Magnet Industry and Rare Earth Price in China

    Directory of Open Access Journals (Sweden)

    Ding Kaihong

    2014-07-01

    Full Text Available In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  12. The Rare Earth Magnet Industry and Rare Earth Price in China

    Science.gov (United States)

    Ding, Kaihong

    2014-07-01

    In the past four years, the price of rare earth metal fluctuates sharply for many reasons. Currently, it has become more stable and more reasonable. This presentation is focused on the effect about the rare earth metal price. Some motor manufacturers have shifted from rare earth permanent magnet to ferrite magnet. Many motor manufacturers changed the design for the motor cooling system to make the motor function at a lower temperature. Thus the consumption of Dy can be markedly reduced. As for manufacturer of NdFeB magnet, we are also trying to optimize our process to reduce to dependence of HREE such as Dy and Tb. HS process have been introduced to solve the problem. With more and more people focusing and engaging on the REE industry, the price of REE will be more transparent without too many fluctuations. China is considering the problems of balancing the environment, energy sources, and labor sources. The application field about NdFeB such as wind turbine generator, HEV/EV, FA /OA is flourishing.

  13. Rare Earth Metals: Resourcefulness and Recovery

    Science.gov (United States)

    Wang, Shijie

    2013-10-01

    When we appreciate the digital revolution carried over from the twentieth century with mobile communication and the Internet, and when we enjoy our high-tech lifestyle filled with iDevices, hybrid cars, wind turbines, and solar cells in this new century, we should also appreciate that all of these advanced products depend on rare earth metals to function. Although there are only 136,000 tons of annual worldwide demand, (Cho, Rare Earth Metals, Will We Have Enough?)1 rare earth metals are becoming such hot commodities on international markets, due to not only to their increasing uses, including in most critical military hardware, but also to Chinese growth, which accounts for 95% of global rare earth metal production. Hence, the 2013 technical calendar topic, planned by the TMS/Hydrometallurgy and Electrometallurgy Committee, is particularly relevant, with four articles (including this commentary) contributed to the JOM October Issue discussing rare earth metals' resourcefulness and recovery.

  14. ELF-VLF communications through-the-Earth

    Science.gov (United States)

    Buettner, H. M.; Burke, G. J.; Didwall, E. M.; Holladay, G.; Lytle, R. J.

    1985-06-01

    We use computer models and experiments to explore the feasibility of communication between points underground and on the Earth's surface. Emphasis is placed on ELF-VLF electromagnetic propagation through the Earth; nominally, we investigated propagation in the 200 Hz-30 kHz frequency range. The computer modeling included calculations of the fields of a point electric or magnetic source in a homogeneous half space or a stratified Earth. Initial results for an insulated antenna of finite length are also considered. The experiments involved through-the-Earth transmissions at two locations in Pennsylvania, both of which had large formations of limestone. Initial results indicate that information rates as high as kbits/s may be possible for subsurface depths of 300 m or less. Accuracy of these estimates depends on the electromagnetic propagation constants of the rock, the noise characteristics, and modulation scheme. Although a nuisance for evaluating through-the-Earth propagation, the existence of subsurface metal conductors can improve the transmission character of the site.

  15. Preparation of rare earth fluorides from apatite concentrate

    International Nuclear Information System (INIS)

    Mulyarchuk, I.F.; Voloshchenko, M.V.; Zen'kovich, E.G.; Sumenkova, V.V.; AN Ukrainskoj SSR, Kiev. Inst. Problem Lit'ya)

    1980-01-01

    The processes of preparation of the rare earths element sum from apatite concentrate of the Khibins, connected with preliminary extraction of rare earth phosphates from nitric acid extract using solvent extraction or direct precipitation from the extract by solution of potassium and ammonium fluorides. The sequence of the processes of the first variant is the following: solvent extraction of rare earths by tributylphosphate from clarified nitric acid extract of apatite with subsequent reextraction of rare earths with water and precipitation of rare earth phosphates from aqueous solution during neutralization by ammonia. In case of fluoride preparation from rare earth phosphate the main attention is paid to precipitation and filtration of fluorides. Technological scheme and cost price of industry for the production of 1800 t of rare earth trifluorides a year are calculated. When taking account of TBP losses according to its solubility the industry cost price is 1O times lower the modern cost of rare earth fluorides

  16. Preparation, analysis, and release of simulated interplanetary grains into low earth orbit

    International Nuclear Information System (INIS)

    Stephens, J.R.; Strong, I.B.; Kunkle, T.D.

    1985-01-01

    Astronomical observations which reflect the optical and dynamical properties of interstellar and interplanetary grains are the primary means of identifying the shape, size, and the chemistry of extraterrestrial grain materials and is a major subject of this workshop. Except for recent samplings of extraterrestrial particles in near-Earth orbit and in the stratosphere, observations have been the only method of deducing the properties of extraterrestrial particles. Terrestrial laboratory experiments typically seek not to reproduce astrophysical conditions but to illuminate fundamental dust processes and properties which must be extrapolated to interesting astrophysical conditions. In this report, we discuss the formation and optical characterization of simulated interstellar and interplanetary dust with particular emphasis on studying the properties on irregularly shaped particles. We also discuss efforts to develop the techniques to allow dust experiments to be carried out in low-Earth orbit, thus extending the conditions under which dust experiments may be performed. The objectives of this study are threefold: (1) Elucidate the optical properties, including scattering and absorption, of simulated interstellar grains including SiC, silicates, and carbon grains produced in the laboratory. (2) Develop the capabilities to release grains and volatile materials into the near-Earth environment and study their dynamics and optical properties. (3) Study the interaction of released materials with the near-Earth environment to elucidate grain behavior in astrophysical environments. Interaction of grains with their environment may, for example, lead to grain alignment or coagulation, which results in observable phenomena such as polarization of lighter or a change of the scattering properties of the grains

  17. Implementation of methane cycling for deep time, global warming simulations with the DCESS Earth System Model (Version 1.2)

    DEFF Research Database (Denmark)

    Shaffer, Gary; Villanueva, Esteban Fernández; Rondanelli, Roberto

    2017-01-01

    Geological records reveal a number of ancient, large and rapid negative excursions of carbon-13 isotope. Such excursions can only be explained by massive injections of depleted carbon to the Earth System over a short duration. These injections may have forced strong global warming events, sometimes....... With this improved DCESS model version and paleo-reconstructions, we are now better armed to gauge the amounts, types, time scales and locations of methane injections driving specific, observed deep time, global warming events......., or from warming-induced dissociation of methane hydrate, a solid compound of methane and water found in ocean sediments. As a consequence of the ubiquity and importance of methane in major Earth events, Earth System models should include a comprehensive treatment of methane cycling but such a treatment...

  18. Geo-neutrinos and earth's interior

    International Nuclear Information System (INIS)

    Fiorentini, Gianni; Lissia, Marcello; Mantovani, Fabio

    2007-01-01

    The deepest hole that has ever been dug is about 12 km deep. Geochemists analyze samples from the Earth's crust and from the top of the mantle. Seismology can reconstruct the density profile throughout all Earth, but not its composition. In this respect, our planet is mainly unexplored. Geo-neutrinos, the antineutrinos from the progenies of U, Th and 40 K decays in the Earth, bring to the surface information from the whole planet, concerning its content of natural radioactive elements. Their detection can shed light on the sources of the terrestrial heat flow, on the present composition, and on the origins of the Earth. Geo-neutrinos represent a new probe of our planet, which can be exploited as a consequence of two fundamental advances that occurred in the last few years: the development of extremely low background neutrino detectors and the progress on understanding neutrino propagation. We review the status and the prospects of the field

  19. A journey through Earth climates

    International Nuclear Information System (INIS)

    Ramstein, Gilles; Brunet, Michel

    2015-01-01

    The author proposes a history of climates all along Earth's history, describes how cold and warm periods have been alternating during these billions of years. He also tries to highlight lessons learned from this long evolution of climate in order to better understand the current global warming. He discusses whether this disruption is unique in Earth's history, and how it threatens our environment and therefore our survival. The chapters describe how Earth could escape a global glaciation, the thermal regulation by greenhouse effect gases in a world without oxygen, the empowerment of oxygen and the first thermal accident, a new oxygenated and warm world, the second accident or how Earth entered and escaped from periods of total glaciation, the possible stabilisation, the succession of deregulations, crisis and extinctions, the slow way down to the cold, the various paleo-indicators during the Quaternary, the high frequency oscillations of climate during the last million of years, and the uncertain projections

  20. Charting a Course to Earth System Science Literacy

    Science.gov (United States)

    Karsten, J. L.; Koch, L.; Ridky, R.; Wei, M.; Ladue, N.

    2008-12-01

    Public literacy of fundamental ideas in Earth System Science (ESS) is immensely important, both because of its relevance to the daily lives of individual citizens and the role played by informed policy decisions related to water, energy, climate change, and hazards in securing our Nation's well-being and prosperity. The National Science Education Standards (NRC, 1996) argued that topics which comprise ESS also have tremendous value in providing context and meaning for the teaching of Biology, Chemistry, and Physics concepts and their applications, thereby serving the goals of the America COMPETES Act. Yet, as documented in the 2006 Program for International Student Assessment (PISA) results, the U.S. continues to lag significantly behind other developed nations in science literacy. A major obstacle to improving public ESS literacy, specifically, and strengthening science literacy, in general, is the fact that fewer than 30% of students in U.S. high schools take any courses related to ESS. Often, these courses are taught by teachers with limited preparation in this content area. A new grass-roots movement within the geoscience research and education communities, fueled by interagency collaboration, is seeking to overcome these obstacles and steer a new course for ESS education in the Nation. The Earth System Science Literacy Initiative (ESSLI) builds on recent efforts within portions of the geosciences community to reach consensus on what defines scientific literacy within their fields. Individual literacy frameworks now exist for the ocean, atmospheric science, Earth science, and climate topic areas, and others are under development. The essential principles and fundamental concepts articulated in these frameworks provide consistent core messages that can be delivered and reinforced not only through formal education channels, but also through informal education activities and the media, thereby avoiding the inherent obstacles of the formal education setting

  1. Process for lead removal from rare earth

    International Nuclear Information System (INIS)

    Bollat, A.; Sabot, J.L.

    1987-01-01

    An aqueous solution of rare earth chlorides and lead chlorides, with a chloride concentration of at least 2 moles/liter and a pH between 2 and 4, is extracted by an alkylphosphonic acid ester and rare earth(s) is (are) recovered from the organic phase [fr

  2. The origin of the moon and the early history of the earth - a chemical model. Part 2: The earth

    International Nuclear Information System (INIS)

    O'Neill, H.St.C.

    1991-01-01

    The geochemical implications for the earth of a giant impact model for the origin of the earth-moon system are discussed, using a mass balance between three components: the proto-earth, the Impactor, and a late veneer. It is argued that the proto-earth accretes from material resembling a high temperature condensate from the solar nebula. Core formation takes place under very reducing conditions, resulting in the mantle of the proto-earth being completely stripped of all elements more siderophile than Fe, and partly depleted in the barely siderophile elements V, Cr, and perhaps Si. The Impactor then collides with the proto-earth, causing vaporisation of both the Impactor and a substantial portion of the earth's mantle. Most of this material recondenses to the earth, but some forms the moon. The Impactor adds most of the complement of the siderophile elements of the present mantle in an oxidized form. The oxidation state of the mantle is set near to its present, oxidized level. Finally, the addition of a late veneer, of composition similar to that of the H-group ordinary chondrites, accounts for the complement of the highly siderophile elements of the present mantle. The model accounts at least semi-quantitatively for the siderophile element abundances of the present mantle. Implications for the composition of the earth's core are discussed; the model predicts that neither S, O, nor Si should be present in sufficient quantities to provide the required light element in the core, whose identity, therefore, remains enigmatic

  3. Contextualizing Earth Science Professional Development Courses for Geoscience Teachers in Boston: Earth Science II (Solid Earth)

    Science.gov (United States)

    Pringle, M. S.; Kamerer, B.; Vugrin, M.; Miller, M.

    2009-12-01

    Earth Science II: The Solid Earth -- Earth History and Planetary Science -- is the second of two Earth Science courses, and one of eleven graduate level science Contextualized Content Courses (CCC), that have been developed by the Boston Science Partnership as part of an NSF-funded Math Science Partnership program. A core goal of these courses is to provide high level science content to middle and high school teachers while modeling good instructional practices directly tied to the Boston Public Schools and Massachusetts science curriculum frameworks. All of these courses emphasize hands-on, lab-based, inquiry-driven, student-centered lessons. The Earth Science II team aimed to strictly adhere to ABC (Activity Before Concept) and 5E/7E models of instruction, and limited lecture or teacher-centered instruction to the later “Explanation” stages of all lessons. We also introduced McNeill and Krajick’s Claim-Evidence-Reasoning (CER) model of scientific explanation for middle school classroom discourse, both as a powerful scaffold leading to higher levels of accountable talk in the classroom, and to model science as a social construct. Daily evaluations, dutifully filled out by the course participants and diligently read by the course instructors, were quite useful in adapting instruction to the needs of the class on a real-time basis. We find the structure of the CCC teaching teams - university-based faculty providing expert content knowledge, K-12-based faculty providing age appropriate pedagogies and specific links to the K-12 curriculum - quite a fruitful, two-way collaboration. From the students’ perspective, one of the most useful takeaways from the university-based faculty was “listening to experts model out loud how they reason,” whereas some of the more practical takeaways (i.e., lesson components directly portable to the classroom?) came from the K-12-based faculty. The main takeaways from the course as a whole were the promise to bring more hands

  4. Earth's earliest biosphere: Its origin and evolution

    International Nuclear Information System (INIS)

    Schopf, J.W.

    1983-01-01

    Some of the subjects discussed are related to the early biogeologic history, the nature of the earth prior to the oldest known rock record, the early earth and the Archean rock record, the prebiotic organic syntheses and the origin of life, Precambrian organic geochemistry, the biochemical evolution of anaerobic energy conversion, the isotopic inferences of ancient biochemistries, Archean stromatolites providing evidence of the earth's earliest benthos, Archean microfossils, the geologic evolution of the Archean-Early Proterozoic earth, and the environmental evolution of the Archean-Early Proterozoic earth. Other topics examined are concerned with geochemical evidence bearing on the origin of aerobiosis, biological and biochemical effects of the development of an aerobic environment, Early Proterozoic microfossils, the evolution of earth's earliest ecosystems, and geographic and geologic data for processed rock samples. Attention is given to a processing procedure for abiotic samples and calculation of model atmospheric compositions, and procedures of organic geochemical analysis

  5. Teaching and Learning about the Earth. ERIC Digest.

    Science.gov (United States)

    Lee, Hyonyong

    This ERIC Digest investigates the earth and space science guidelines of the National Science Education Standards. These guidelines are frequently referred to as the earth system and include components such as plate tectonics, the water cycle, and the carbon cycle. This Digest describes the development of earth systems science and earth systems…

  6. Educating the Public about Deep-Earth Science

    Science.gov (United States)

    Cronin, V. S.

    2010-12-01

    The nature of Earth’s interior is an active frontier of scientific research. Much of our current understanding of sub-crustal Earth is based on knowledge acquired in the last 2-3 decades, made possible by public funding and by dense seismic arrays, satellite remote sensing, increases in computer power that enable use of enhanced numerical techniques, improved theoretical and experimental knowledge of high PT mineral physics and chemistry, and a vigorous scientific community that has been trained to take advantage of these opportunities. An essential component of science is effective communication; therefore, providing for public education about science is a responsibility of the research community. Current public understanding of Earth’s interior is meager at best. In pre-college texts and in non-technical mass media, Earth's interior is typically visualized as an onion or baseball of concentric different-colored shells along whose upper surface "crustal" plates move like packages on conveyor belts of convecting mantle. Or the crust is thought to float on a molten mantle, as in the 19th century ideas of William Lowthian Green. Misconceptions about Earth that are brought to the undergraduate classroom must be confronted frankly and replaced by current understanding based on good science. Persistent ignorance has consequences. What do we want the public to know? First, the public should understand that knowledge of Earth's interior is important, not irrelevant. The public should know that deep-Earth processes result in Earth's dynamic magnetic field. Deep-Earth processes affect how radiation from the Sun reaches Earth, consequently affecting the atmosphere, the oceans, and the viability of life on Earth. The composition and differentiated structure of Earth's interior is a result of the early accretionary history of Earth and the Earth-Moon system. The public should also know that lithospheric tectonics, with all of its consequences (dynamic topography, volcanoes

  7. Earth Observing System Covariance Realism Updates

    Science.gov (United States)

    Ojeda Romero, Juan A.; Miguel, Fred

    2017-01-01

    This presentation will be given at the International Earth Science Constellation Mission Operations Working Group meetings June 13-15, 2017 to discuss the Earth Observing System Covariance Realism updates.

  8. Thermochemistry of rare-earth trifluorides

    International Nuclear Information System (INIS)

    Kim, K.Y.; Johnson, C.E.

    1981-01-01

    Using the most recent crystallographic data, the Born-Lande equation was employed to calculate lattice energies of the rare-earth trifluorides. The excellent agreement ( 0 sub(f)(MX 3 ,c,298.15K) can be estimated. The magnitude of the monotonic change of ΔH 0 sub(f)(MX 3 ) for the rare-earth trihalides series (14 4f electrons) is comparable to the energy change between Sc and Ti in which only one 3d electron is added. This energy change is consistent with the chemical evidence that the electrons in the f-orbitals of rare earths contribute negligibly to the bonding. (author)

  9. Near-Earth Objects. Chapter 27

    Science.gov (United States)

    Harris, Alan W.; Drube, Line; McFadden, Lucy A.; Binzel, Richard P.

    2014-01-01

    A near-Earth object (NEO) is an asteroid or comet orbiting the Sun with a perihelion distance of less than 1.3 Astronomical Units (AU) (1 AU, an astronomical unit, is the mean distance between the Earth and the Sun, around 150 million kilometers). If the orbit of an NEO can bring it to within 0.05 AU of the Earth's orbit, and it is larger than about 120 meters, it is termed a potentially hazardous object (PHO); an object of this size is likely to survive passage through the atmosphere and cause extensive damage on impact. (The acronyms NEA and PHO are used when referring specifically to asteroids.)

  10. In search of future earths: assessing the possibility of finding Earth analogues in the later stages of their habitable lifetimes.

    Science.gov (United States)

    O'Malley-James, Jack T; Greaves, Jane S; Raven, John A; Cockell, Charles S

    2015-05-01

    Earth will become uninhabitable within 2-3 Gyr as a result of the increasing luminosity of the Sun changing the boundaries of the habitable zone (HZ). Predictions about the future of habitable conditions on Earth include declining species diversity and habitat extent, ocean loss, and changes to geochemical cycles. Testing these predictions is difficult, but the discovery of a planet that is an analogue to future Earth could provide the means to test them. This planet would need to have an Earth-like biosphere history and to be approaching the inner edge of the HZ at present. Here, we assess the possibility of finding such a planet and discuss the benefits of analyzing older Earths. Finding an old-Earth analogue in nearby star systems would be ideal, because this would allow for atmospheric characterization. Hence, as an illustrative example, G stars within 10 pc of the Sun are assessed as potential old-Earth-analog hosts. Six of these represent good potential hosts. For each system, a hypothetical Earth analogue is placed at locations within the continuously habitable zone (CHZ) that would allow enough time for Earth-like biosphere development. Surface temperature evolution over the host star's main sequence lifetime (assessed by using a simple climate model) is used to determine whether the planet would be in the right stage of its late-habitable lifetime to exhibit detectable biosignatures. The best candidate, in terms of the chances of planet formation in the CHZ and of biosignature detection, is 61 Virginis. However, planet formation studies suggest that only a small fraction (0.36%) of G stars in the solar neighborhood could host an old-Earth analogue. If the development of Earth-like biospheres is rare, requiring a sequence of low-probability events to occur, biosphere evolution models suggest they are rarer still, with only thousands being present in the Galaxy as a whole.

  11. Common Earth Science Misconceptions in Science Teaching

    Science.gov (United States)

    King, Chris

    2012-01-01

    A survey of the Earth science content of science textbooks found a wide range of misconceptions. These are discussed in this article with reference to the published literature on Earth science misconceptions. Most misconceptions occurred in the "sedimentary rocks and processes" and "Earth's structure and plate tectonics"…

  12. New dynamic system suggested for earth expansion

    Energy Technology Data Exchange (ETDEWEB)

    Fitzpatrick, J [Asuncion Nacional Univ. (Paraguay). Inst. de Ciencias

    1972-01-01

    It is here suggested that there may have been much more radioactive materials in the deep interior of the earth than bitherto supposed. Trapped heat being generated in the interior would provide a mechanism for earth expansion. An assumption of heat generation in the deep interior of the earth of the order of 0,5 X 10-13 calories per second, per cubic centimeter, would provide sufficient thermal expansion to account for approximately 0.1 mm. change in the radius of the earth per year.

  13. Big Earth Data Initiative: Metadata Improvement: Case Studies

    Science.gov (United States)

    Kozimor, John; Habermann, Ted; Farley, John

    2016-01-01

    Big Earth Data Initiative (BEDI) The Big Earth Data Initiative (BEDI) invests in standardizing and optimizing the collection, management and delivery of U.S. Government's civil Earth observation data to improve discovery, access use, and understanding of Earth observations by the broader user community. Complete and consistent standard metadata helps address all three goals.

  14. RoboEarth: connecting robots worldwide

    NARCIS (Netherlands)

    Zweigle, O.; Molengraft, van de M.J.G.; D'Andrea, R.; Häussermann, K.

    2009-01-01

    In this paper, we present the core concept and the benefits of an approach called RoboEarth which will be highly beneficial for future robotic applications in science and industry. RoboEarth is a world-wide platform which robots can use to exchange position and map information as well as

  15. Venus and the Archean Earth: Thermal considerations

    International Nuclear Information System (INIS)

    Sleep, N.H.

    1989-01-01

    The Archean Era of the Earth is not a direct analog of the present tectonics of Venus. In this regard, it is useful to review the state of the Archean Earth. Most significantly, the temperature of the adiabatic interior of the Earth was 200 to 300 C hotter than the current temperature. Preservation biases limit what can be learned from the Archean record. Archean oceanic crust, most of the planetary surface at any one time, has been nearly all subducted. More speculatively, the core of the Earth has probably cooled more slowly than the mantle. Thus the temperature contrast above the core-mantle boundary and the vigor of mantle plumes has increased with time on the Earth. The most obvious difference between Venus and the present Earth is the high surface temperature and hence a low effective viscosity of the lithosphere. In addition, the temperature contrast between the adiabatic interior and the surface, which drives convection, is less on Venus than on the Earth. It appears that the hot lithosphere enhanced tectonics on the early Venus significantly enough that its interior cooled faster than the Earth's. The best evidence for a cool interior of Venus comes from long wavelength gravity anomalies. The low interior temperatures retard seafloor spreading on Venus. The high surface temperatures on Venus enhance crustal deformation. That is, the lower crust may become ductile enough to permit significant flow between the upper crust and the mantle. There is thus some analogy to modern and ancient areas of high heat flow on the Earth. Archean crustal blocks typically remained stable for long intervals and thus overall are not good analogies to the deformation style on Venus

  16. The ongoing educational anomaly of earth science placement

    Science.gov (United States)

    Messina, P.; Speranza, P.; Metzger, E.P.; Stoffer, P.

    2003-01-01

    The geosciences have traditionally been viewed with less "aCademic prTstige" than other science curricula. Among the results of this perception are depressed K-16 enrollments, Earth Science assignments to lower-performing students, and relegation of these classes to sometimes under-qualified educators, all of which serve to confirm the widely-held misconceptions. An Earth Systems course developed at San Jos??e State University demonstrates the difficulty of a standard high school Earth science curriculum, while recognizing the deficiencies in pre-college Earth science education. Restructuring pre-college science curricula so that Earth Science is placed as a capstone course would greatly improve student understanding of the geosciences, while development of Earth systems courses that infuse real-world and hands-on learning at the college level is critical to bridging the information gap for those with no prior exposure to the Earth sciences. Well-crafted workshops for pre-service and inservice teachers of Earth Science can heIp to reverse the trends and unfortunate "sTatus" in geoscience education.

  17. Enhanced pinning in mixed rare earth-123 films

    Science.gov (United States)

    Driscoll, Judith L [Los Alamos, NM; Foltyn, Stephen R [Los Alamos, NM

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  18. Thermodynamics of rare earths in steelmaking

    International Nuclear Information System (INIS)

    Vahed, A.; Kay, D.A.R.

    1976-01-01

    The standard free energies of formation of the oxides, sulfides and oxysulfides of cerium and lanthanum under steelmaking conditions have been calculated and used to predict the behavior of rare earths in steelmaking. Deoxidation and desulfurization constants, expressed in terms of Henrian activities, have been used to construct a precipitation diagram which indicates the sequence of rare earth inclusion formation. An enrichment of lanthanum in (RE)-oxysulfide and cerium in (RE)-sulfide is predicted. It is also predicted that rare earths should be able to reduce the soluble oxygen and sulfur contents of liquid steel well below the contents presently found in most industrial and laboratory practices. A simple method of calculating steelmaking additions for complete rare earth control of inclusion composition is presented

  19. Volatile accretion history of the Earth.

    Science.gov (United States)

    Wood, B J; Halliday, A N; Rehkämper, M

    2010-10-28

    It has long been thought that the Earth had a protracted and complex history of volatile accretion and loss. Albarède paints a different picture, proposing that the Earth first formed as a dry planet which, like the Moon, was devoid of volatile constituents. He suggests that the Earth's complement of volatile elements was only established later, by the addition of a small veneer of volatile-rich material at ∼100 Myr (here and elsewhere, ages are relative to the origin of the Solar System). Here we argue that the Earth's mass balance of moderately volatile elements is inconsistent with Albarède's hypothesis but is well explained by the standard model of accretion from partially volatile-depleted material, accompanied by core formation.

  20. Smarter Earth Science Data System

    Science.gov (United States)

    Huang, Thomas

    2013-01-01

    The explosive growth in Earth observational data in the recent decade demands a better method of interoperability across heterogeneous systems. The Earth science data system community has mastered the art in storing large volume of observational data, but it is still unclear how this traditional method scale over time as we are entering the age of Big Data. Indexed search solutions such as Apache Solr (Smiley and Pugh, 2011) provides fast, scalable search via keyword or phases without any reasoning or inference. The modern search solutions such as Googles Knowledge Graph (Singhal, 2012) and Microsoft Bing, all utilize semantic reasoning to improve its accuracy in searches. The Earth science user community is demanding for an intelligent solution to help them finding the right data for their researches. The Ontological System for Context Artifacts and Resources (OSCAR) (Huang et al., 2012), was created in response to the DARPA Adaptive Vehicle Make (AVM) programs need for an intelligent context models management system to empower its terrain simulation subsystem. The core component of OSCAR is the Environmental Context Ontology (ECO) is built using the Semantic Web for Earth and Environmental Terminology (SWEET) (Raskin and Pan, 2005). This paper presents the current data archival methodology within a NASA Earth science data centers and discuss using semantic web to improve the way we capture and serve data to our users.

  1. The Sun-earth Imbalance radiometer for a direct measurement of the net heating of the earth

    Science.gov (United States)

    Dewitte, Steven; Karatekin, Özgür; Chevalier, Andre; Clerbaux, Nicolas; Meftah, Mustapha; Irbah, Abdanour; Delabie, Tjorven

    2015-04-01

    It is accepted that the climate on earth is changing due to a radiative energy imbalance at the top of the atmosphere, up to now this radiation imbalance has not been measured directly. The measurement is challenging both in terms of space-time sampling of the radiative energy that is leaving the earth and in terms of accuracy. The incoming solar radiation and the outgoing terrestrial radiation are of nearly equal magnitude - of the order of 340 W/m² - resulting in a much smaller difference or imbalance of the order of 1 W/m². The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar and the outgoing terrestrial radiation with the same instrument. Based on our 30 year experience of measuring the Total Solar Irradiance with the Differential Absolute RADiometer (DIARAD) type of instrument and on our 10 year experience of measuring the Earth Radiation Budget with the Geostationary Earth Radiation Budget (GERB) instrument on Meteosat Second Generation, we propose an innovative constellation of Sun-earth IMBAlance (SIMBA) radiometer cubesats with the ultimate goal to measure the Sun-earth radiation imbalance. A first Simba In Orbit Demonstration satellite is scheduled for flight with QB50 in 2015. It is currently being developed as ESA's first cubesat through an ESA GSTP project. In this paper we will give an overview of the Simba science objectives and of the current satellite and payload development status.

  2. Grid for Earth Science Applications

    Science.gov (United States)

    Petitdidier, Monique; Schwichtenberg, Horst

    2013-04-01

    decrease uncertainties by increasing the probability of occurrence and to create large database devoted for future satellite instrument. Some limitations are related to the combination of databases-outside the grid infrastructure like ESGF (Earth System Grid Federation) and grid compute resources; and to real-time applications that need resource reservation in order to insure results at given time. However some solutions have been developed. The major lesson we learnt with Grid is the impact of e-collaboration among various scientific technical domains on the development of ES research in Europe.

  3. Korea Earth Observation Satellite Program

    Science.gov (United States)

    Baek, Myung-Jin; Kim, Zeen-Chul

    via Korea Aerospace Research Institute (KARI) as the prime contractor in the area of Korea earth observation satellite program to enhance Korea's space program development capability. In this paper, Korea's on-going and future earth observation satellite programs are introduced: KOMPSAT- 1 (Korea Multi Purpose Satellite-1), KOMPSAT-2 and Communication, Broadcasting and Meteorological Satellite (CBMS) program. KOMPSAT-1 satellite successfully launched in December 1999 with Taurus launch vehicle. Since launch, KOMPSAT-1 is downlinking images of Korea Peninsular every day. Until now, KOMPSAT-1 has been operated more than 2 and half years without any major hardware malfunction for the mission operation. KOMPSAT-1 payload has 6.6m panchromatic spatial resolution at 685 km on-orbit and the spacecraft bus had NASA TOMS-EP (Total Ozone Mapping Spectrometer-Earth Probe) spacecraft bus heritage designed and built by TRW, U.S.A.KOMPSAT-1 program was international co-development program between KARI and TRW funded by Korean Government. be launched in 2004. Main mission objective is to provide geo-information products based on the multi-spectral high resolution sensor called Multi-Spectral Camera (MSC) which will provide 1m panchromatic and 4m multi-spectral high resolution images. ELOP of Israel is the prime contractor of the MSC payload system and KARI is the total system prime contractor including spacecraft bus development and ground segment. KARI also has the contract with Astrium of Europe for the purpose of technical consultation and hardware procurement. Based on the experience throughout KOMPSAT-1 and KOMPSAT-2 space system development, Korea is expecting to establish the infrastructure of developing satellite system. Currently, KOMPSAT-2 program is in the critical design stage. are scheduled to launch in 2008 and in 2014, respectively. The mission of CBMS consists of two areas. One is of space technology test for the communications mission, and the other is of a real

  4. A rocky composition for an Earth-sized exoplanet.

    Science.gov (United States)

    Howard, Andrew W; Sanchis-Ojeda, Roberto; Marcy, Geoffrey W; Johnson, John Asher; Winn, Joshua N; Isaacson, Howard; Fischer, Debra A; Fulton, Benjamin J; Sinukoff, Evan; Fortney, Jonathan J

    2013-11-21

    Planets with sizes between that of Earth (with radius R Earth symbol) and Neptune (about 4R Earth symbol) are now known to be common around Sun-like stars. Most such planets have been discovered through the transit technique, by which the planet's size can be determined from the fraction of starlight blocked by the planet as it passes in front of its star. Measuring the planet's mass--and hence its density, which is a clue to its composition--is more difficult. Planets of size 2-4R Earth symbol have proved to have a wide range of densities, implying a diversity of compositions, but these measurements did not extend to planets as small as Earth. Here we report Doppler spectroscopic measurements of the mass of the Earth-sized planet Kepler-78b, which orbits its host star every 8.5 hours (ref. 6). Given a radius of 1.20 ± 0.09 R Earth symbol and a mass of 1.69 ± 0.41 R Earth symbol, the planet's mean density of 5.3 ± 1.8 g cm(-3) is similar to Earth's, suggesting a composition of rock and iron.

  5. Cosmology and the expanding Earth hypothesis

    International Nuclear Information System (INIS)

    Tryon, E.P.

    1983-01-01

    The standard model of cosmology is briefly presented, together with a recent conjecture that the initial matter in the universe might have been spontaneously created from nothing as a result of relativistic quantum physics. The possibility of Earth expansion from a continuing creation of matter is then considered. A critique is presented of efforts to relate Earth expansion to the Hubble expansion of the universe. Possible changes in Earth radius as a result of diminishing gravity are also discussed

  6. Venus tectonics: another Earth or another Mars

    International Nuclear Information System (INIS)

    McGill, G.E.

    1979-01-01

    The presence of presumably primordial large craters has led to the suggestion that Venus may have a thick lithosphere like that of Mars despite its similarities to Earth in size and density. However, crust and upper mantle temperatures on Venus are very likely higher than on Earth so that a dry Venus could have a lithosphere with a thickness similar to that of Earth. If a trace of volatiles is present in the mantle, the lithosphere of Venus could be thinner. Due to the absence of liquid water, erosion and deposition will be much slower on Venus than on Earth, favoring retention of primordial cratered surfaces on portions of the crust that have not been destroyed or buried by tectonic and volcanic activity. Geochemical models of solar system origin and petrological considerations suggest that K is about as abundant in Venus as in Earth. The abundance of 40 Ar in the atmosphere of Venus lies somewhere between the Earth value and one-tenth of the Earth value. Because erosional liberation of 40 Ar on Venus will be relatively inefficient, this range for 40 Ar abundance at least permits an active tectonic history, and if the 40 Ar abundance is towards the high end of the range, it may well require an active tectonic history. Thus we are not constrained to a Mars-like model of Venus tectonics by craters and possible mantle dryness; an Earth-like model is equally probable

  7. Theory of Rare-Earth Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A mean-field random alloy theory combined with a simple calculation of the exchange interaction J(c,Q) is shown to quantitatively account for the phase diagrams for alloys of rare-earth metals with Y, Lu, Sc, and other rare-earth metals. A concentration-dependent J(c,Q) explains the empirical 2...

  8. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  9. Age of the earth and solar system

    International Nuclear Information System (INIS)

    Manhes, G.

    1977-01-01

    The history of chemical element formation and radiochronology is given. The study of Pb isotope composition evolution enables to estimate the age of the earth. A series of galena of known ages was measured. By means of a model, it is possible to determine the initial isotope composition of Pb on the earth and the age of the earth. On the other hand, the analysis of stony meteorites provides a Pb isotope composition higher than the earth value. A comparison of the data shows a fundamental transition at 4.55 10 9 years [fr

  10. Processing of monazite at the rare earth division,Udyogamandal

    International Nuclear Information System (INIS)

    Narayanan, N.S.; Thulasidoss, S.; Ramachandran, T.V.; Swaminathan, T.V.; Prasad, K.R.

    1988-01-01

    The processing techniques adopted at the Rare Earth Division of the Indian Rare Earths Limited at Udyogamandal, for the production of rare earth compounds of various compositions and purity grades are reviewed. Over 100 different compounds are produced and marketed, and these include mixed rare earths chloride, crude thorium concentrate, cerium oxide, cerium hydrate, rare earths carbonate, didymium salts and individual rare earth oxides and salts. Also, the trisodium phosphate obtained as byproduct in the processing of monazite, is recovered and marketed. The process scheme for monazite essentially involves alkaline digestion of ground monazite, removal of the by-product trisodium phosphate, separation of thorium through preferential dissolution of rare earths hydroxide in hydrochloric acid under controlled pH and temperature conditions followed by purification, and evaporation of the chloride solution to yield pure rare earths chloride. Part of the chloride is utilised for the production of individual rare earth compounds after separation by solvent extraction and ion exchange processes. Individual rare earth compounds of 99.99 %+ purity are regularly produced to cater to the demand within the country. (author) 8 figs., 1 tab

  11. Thermodynamics of the Earth

    International Nuclear Information System (INIS)

    Stacey, Frank D

    2010-01-01

    Applications of elementary thermodynamic principles to the dynamics of the Earth lead to robust, quantitative conclusions about the tectonic effects that arise from convection. The grand pattern of motion conveys deep heat to the surface, generating mechanical energy with a thermodynamic efficiency corresponding to that of a Carnot engine operating over the adiabatic temperature gradient between the heat source and sink. Referred to the total heat flux derived from the Earth's silicate mantle, the efficiency is 24% and the power generated, 7.7 x 10 12 W, causes all the material deformation apparent as plate tectonics and the consequent geological processes. About 3.5% of this is released in seismic zones but little more than 0.2% as seismic waves. Even major earthquakes are only localized hiccups in this motion. Complications that arise from mineral phase transitions can be used to illuminate details of the motion. There are two superimposed patterns of convection, plate subduction and deep mantle plumes, driven by sources of buoyancy, negative and positive respectively, at the top and bottom of the mantle. The patterns of motion are controlled by the viscosity contrasts (>10 4 : 1) at these boundaries and are self-selected as the least dissipative mechanisms of heat transfer for convection in a body with very strong viscosity variation. Both are subjects of the thermodynamic efficiency argument. Convection also drives the motion in the fluid outer core that generates the geomagnetic field, although in that case there is an important energy contribution by compositional separation, as light solute is rejected by the solidifying inner core and mixed into the outer core, a process referred to as compositional convection. Uncertainty persists over the core energy balance because thermal conduction is a drain on core energy that has been a subject of diverse estimates, with attendant debate over the need for radiogenic heat in the core. The geophysical approach to

  12. Application of AMS radiocarbon in earth system science studies

    International Nuclear Information System (INIS)

    Kang, Dong Jin; Park, Mi Kyung; Kim, Kyung Ryul

    2001-01-01

    Radiocarbon, a cosmic ray-produced isotope, is one of the most important tracers in Earth system sciences. The strong involvement of carbon in the biosphere and its half life of 5720 years are reflected in appropriate applications in archeology, as well as in the Earth system sciences. Radiocarbon dating had an important turning point in 1977 with the discovery that mass spectrometry with tandem acceleration could be used to measure C-14. This new technique, known as AMS or accelerator mass spectrometry reduced the required sample size to the order of mg, three orders of magnitude smaller than for conventional techniques, thus opening the range of applicability of C-14 studies to a much wider range of samples. However, the application has been complicated by two major activities of human beings on a global scale: the extensive usage of fossil fuel since the industrial revolution and nuclear testing in the atmosphere, which have influenced the natural balance of radiocarbon in the atmosphere. However, the separation of bomb-produced carbon from natural background carbon has produced a very fruitful understanding of the global carbon cycle and the conveyor belt system in the ocean, which will be essential for understanding global environmental problems, such as global warming, in the coming century. Carbon cycle studies in Korea have been made since the early 1990s. The studies include monitoring of CO 2 concentrations in the atmosphere, stable isotope studies, and carbon cycle studies in the sea around Korea. The opening of ths AMS facility at Seoul National University (SNU) will enhance carbon studies in Earth system sciences greatly in the future

  13. The population of natural Earth satellites

    Science.gov (United States)

    Granvik, Mikael; Vaubaillon, Jeremie; Jedicke, Robert

    2012-03-01

    We have for the first time calculated the population characteristics of the Earth’s irregular natural satellites (NESs) that are temporarily captured from the near-Earth-object (NEO) population. The steady-state NES size-frequency and residence-time distributions were determined under the dynamical influence of all the massive bodies in the Solar System (but mainly the Sun, Earth, and Moon) for NEOs of negligible mass. To this end, we compute the NES capture probability from the NEO population as a function of the latter’s heliocentric orbital elements and combine those results with the current best estimates for the NEO size-frequency and orbital distribution. At any given time there should be at least one NES of 1-m diameter orbiting the Earth. The average temporarily-captured orbiter (TCO; an object that makes at least one revolution around the Earth in a co-rotating coordinate system) completes (2.88 ± 0.82) rev around the Earth during a capture event that lasts (286 ± 18) d. We find a small preference for capture events starting in either January or July. Our results are consistent with the single known natural TCO, 2006 RH120, a few-meter diameter object that was captured for about a year starting in June 2006. We estimate that about 0.1% of all meteors impacting the Earth were TCOs.

  14. Universities Earth System Scientists Program

    Science.gov (United States)

    Estes, John E.

    1995-01-01

    This document constitutes the final technical report for the National Aeronautics and Space Administration (NASA) Grant NAGW-3172. This grant was instituted to provide for the conduct of research under the Universities Space Research Association's (USRA's) Universities Earth System Scientist Program (UESSP) for the Office of Mission to Planet Earth (OMTPE) at NASA Headquarters. USRA was tasked with the following requirements in support of the Universities Earth System Scientists Programs: (1) Bring to OMTPE fundamental scientific and technical expertise not currently resident at NASA Headquarters covering the broad spectrum of Earth science disciplines; (2) Conduct basic research in order to help establish the state of the science and technological readiness, related to NASA issues and requirements, for the following, near-term, scientific uncertainties, and data/information needs in the areas of global climate change, clouds and radiative balance, sources and sinks of greenhouse gases and the processes that control them, solid earth, oceans, polar ice sheets, land-surface hydrology, ecological dynamics, biological diversity, and sustainable development; (3) Evaluate the scientific state-of-the-field in key selected areas and to assist in the definition of new research thrusts for missions, including those that would incorporate the long-term strategy of the U.S. Global Change Research Program (USGCRP). This will, in part, be accomplished by study and evaluation of the basic science needs of the community as they are used to drive the development and maintenance of a global-scale observing system, the focused research studies, and the implementation of an integrated program of modeling, prediction, and assessment; and (4) Produce specific recommendations and alternative strategies for OMTPE that can serve as a basis for interagency and national and international policy on issues related to Earth sciences.

  15. Eutectic melting temperature of the lowermost Earth's mantle

    Science.gov (United States)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings

  16. Rare Earth Polyoxometalates.

    Science.gov (United States)

    Boskovic, Colette

    2017-09-19

    Longstanding and important applications make use of the chemical and physical properties of both rare earth metals and polyoxometalates of early transition metals. The catalytic, optical, and magnetic features of rare earth metal ions are well-known, as are the reversible multielectron redox and photoredox capabilities of polyoxomolybdates and polyoxotungstates. The combination of rare earth ions and polyoxometalates in discrete molecules and coordination polymers is of interest for the unique combination of chemical and physical properties that can arise. This Account surveys our efforts to synthesize and investigate compounds with rare earth ions and polyoxometalates (RE-POMs), sometimes with carboxylate-based organic coligands. Our general synthetic approach is "bottom-up", which affords well-defined nanoscale molecules, typically in crystalline form and amenable to single-crystal X-ray diffraction for structure determination. Our particular focus is on elucidation of the physical properties conferred by the different structural components with a view to ultimately being able to tune these properties chemically. For this purpose, we employ a variety of spectroscopic, magnetochemical, electrochemical, and scattering techniques in concert with theoretical modeling and computation. Studies of RE-POM single-molecule magnets (SMMs) have utilized magnetic susceptibility, inelastic neutron scattering, and ab initio calculations. These investigations have allowed characterization of the crystal field splitting of the rare earth(III) ions that is responsible for the SMM properties of slow magnetic relaxation and magnetization quantum tunneling. Such SMMs are promising for applications in quantum computing and molecular spintronics. Photophysical measurements of a family of hybrid RE-POMs with organic ligands have afforded insights into sensitization of Tb(III) and Eu(III) emission through both organic and polyoxometalate chromophores in the same molecule. Detailed

  17. Teaching Waves with Google Earth

    Science.gov (United States)

    Logiurato, Fabrizio

    2012-01-01

    Google Earth is a huge source of interesting illustrations of various natural phenomena. It can represent a valuable tool for science education, not only for teaching geography and geology, but also physics. Here we suggest that Google Earth can be used for introducing in an attractive way the physics of waves. (Contains 9 figures.)

  18. Evaluation of Rare Earth Element Extraction from North Dakota Coal-Related Feed Stocks

    Science.gov (United States)

    Laudal, Daniel A.

    The rare earth elements consist of the lanthanide series of elements with atomic numbers from 57-71 and also include yttrium and scandium. Due to their unique properties, rare earth elements are crucial materials in an incredible array of consumer goods, energy system components and military defense applications. However, the global production and entire value chain for rare earth elements is dominated by China, with the U.S. currently 100% import reliant for these critical materials. Traditional mineral ores including previously mined deposits in the U.S., however, have several challenges. Chief among these is that the content of the most critical and valuable of the rare earths are deficient, making mining uneconomical. Further, the supply of these most critical rare earths is nearly 100% produced in China from a single resource that is only projected to last another 10 to 20 years. The U.S. currently considers the rare earths market an issue of national security. It is imperative that alternative domestic sources of rare earths be identified and methods developed to produce them. Recently, coal and coal byproducts have been identified as one of these promising alternative resources. This dissertation details a study on evaluation of the technical and economic feasibility of rare earth element recovery from North Dakota lignite coal and lignite-related feedstocks. There were four major goals of this study: i) identify lignite or lignite-related feedstocks with total rare earth element content above 300 parts per million, a threshold dictated by the agency who funded this research as the minimum for economic viability, ii) determine the geochemistry of the feedstocks and understand the forms and modes of occurrence of the rare earth elements, information necessary to inform the development of extraction and concentration methods, iii) identify processing methods to concentrate the rare earth elements from the feedstocks to a target of two weight percent, a value

  19. The earths innermost core

    International Nuclear Information System (INIS)

    Nanda, J.N.

    1989-01-01

    A new earth model is advanced with a solid innermost core at the centre of the Earth where elements heavier than iron, over and above what can be retained in solution in the iron core, are collected. The innermost core is separated from the solid iron-nickel core by a shell of liquid copper. The innermost core has a natural vibration measured on the earth's surface as the long period 26 seconds microseisms. The earth was formed initially as a liquid sphere with a relatively thin solid crust above the Byerly discontinuity. The trace elements that entered the innermost core amounted to only 0.925 ppm of the molten mass. Gravitational differentiation must have led to the separation of an explosive thickness of pure 235 U causing a fission explosion that could expel beyond the Roche limit a crustal scab which would form the centre piece of the moon. A reservoir of helium floats on the liquid copper. A small proportion of helium-3, a relic of the ancient fission explosion present there will spell the exciting magnetic field. The field is stable for thousands of years because of the presence of large quantity of helium-4 which accounts for most of the gaseous collisions that will not disturb the atomic spin of helium-3 atoms. This field is prone to sudden reversals after long periods of stability. (author). 14 refs

  20. Lithospheric controls on magma composition along Earth's longest continental hotspot track.

    Science.gov (United States)

    Davies, D R; Rawlinson, N; Iaffaldano, G; Campbell, I H

    2015-09-24

    Hotspots are anomalous regions of volcanism at Earth's surface that show no obvious association with tectonic plate boundaries. Classic examples include the Hawaiian-Emperor chain and the Yellowstone-Snake River Plain province. The majority are believed to form as Earth's tectonic plates move over long-lived mantle plumes: buoyant upwellings that bring hot material from Earth's deep mantle to its surface. It has long been recognized that lithospheric thickness limits the rise height of plumes and, thereby, their minimum melting pressure. It should, therefore, have a controlling influence on the geochemistry of plume-related magmas, although unambiguous evidence of this has, so far, been lacking. Here we integrate observational constraints from surface geology, geochronology, plate-motion reconstructions, geochemistry and seismology to ascertain plume melting depths beneath Earth's longest continental hotspot track, a 2,000-kilometre-long track in eastern Australia that displays a record of volcanic activity between 33 and 9 million years ago, which we call the Cosgrove track. Our analyses highlight a strong correlation between lithospheric thickness and magma composition along this track, with: (1) standard basaltic compositions in regions where lithospheric thickness is less than 110 kilometres; (2) volcanic gaps in regions where lithospheric thickness exceeds 150 kilometres; and (3) low-volume, leucitite-bearing volcanism in regions of intermediate lithospheric thickness. Trace-element concentrations from samples along this track support the notion that these compositional variations result from different degrees of partial melting, which is controlled by the thickness of overlying lithosphere. Our results place the first observational constraints on the sub-continental melting depth of mantle plumes and provide direct evidence that lithospheric thickness has a dominant influence on the volume and chemical composition of plume-derived magmas.

  1. A Spitzer search for transits of radial velocity detected super-Earths

    Energy Technology Data Exchange (ETDEWEB)

    Kammer, J. A.; Knutson, H. A.; Desert, J.-M. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Howard, A. W. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Laughlin, G. P.; Fortney, J. J. [Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Deming, D. [Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States); Todorov, K. O. [Institute for Astronomy, ETH Zürich, CH-8093 Zürich (Switzerland); Agol, E. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Burrows, A. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Showman, A. P. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States); Lewis, N. K., E-mail: jkammer@caltech.edu [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2014-02-01

    Unlike hot Jupiters or other gas giants, super-Earths are expected to have a wide variety of compositions, ranging from terrestrial bodies like our own to more gaseous planets like Neptune. Observations of transiting systems, which allow us to directly measure planet masses and radii and constrain atmospheric properties, are key to understanding the compositional diversity of the planets in this mass range. Although Kepler has discovered hundreds of transiting super-Earth candidates over the past 4 yr, the majority of these planets orbit stars that are too far away and too faint to allow for detailed atmospheric characterization and reliable mass estimates. Ground-based transit surveys focus on much brighter stars, but most lack the sensitivity to detect planets in this size range. One way to get around the difficulty of finding these smaller planets in transit is to start by choosing targets that are already known to host super-Earth sized bodies detected using the radial velocity (RV) technique. Here we present results from a Spitzer program to observe six of the most favorable RV-detected super-Earth systems, including HD 1461, HD 7924, HD 156668, HIP 57274, and GJ 876. We find no evidence for transits in any of their 4.5 μm flux light curves, and place limits on the allowed transit depths and corresponding planet radii that rule out even the most dense and iron-rich compositions for these objects. We also observed HD 97658, but the observation window was based on a possible ground-based transit detection that was later ruled out; thus the window did not include the predicted time for the transit detection recently made by the Microvariability and Oscillations of Stars space telescope.

  2. Sequential Imaging of Earth by Astronauts: 50 Years of Global Change

    Science.gov (United States)

    Evans, Cynthia A.

    2009-01-01

    For nearly 50 years, astronauts have collected sequential imagery of the Earth. In fact, the collection of astronaut photography comprises one of the earliest sets of data (1961 to present) available to scientists to study the regional context of the Earth s surface and how it changes. While today s availability of global high resolution satellite imagery enables anyone with an internet connection to examine specific features on the Earth s surface with a regional context, historical satellite imagery adds another dimension (time) that provides researchers and students insight about the features and processes of a region. For example, one of the geographic areas with the longest length of record contained within the astronaut photography database is the lower Nile River. The database contains images that document the flooding of Lake Nasser (an analog to today s flooding behind China s Three Gorges Dam), the changing levels of Lake Nasser s water with multiyear cycles of flood and drought, the recent flooding and drying of the Toshka Lakes, as well as urban growth, changes in agriculture and coastal subsidence. The imagery database allows investigations using different time scales (hours to decades) and spatial scales (resolutions and fields of view) as variables. To continue the imagery collection, the astronauts on the International Space Station are trained to understand basic the Earth Sciences and look for and photograph major events such as tropical storms, landslides, and volcanic eruptions, and document landscapes undergoing change (e.g., coastal systems, cities, changing forest cover). We present examples of selected sequences of astronaut imagery that illustrate the interdependence of geological processes, climate cycles, human geography and development, and prompt additional questions about the underlying elements of change.

  3. Preparing rare earth-silicon-iron-aluminum alloys

    International Nuclear Information System (INIS)

    Marchant, J.D.; Morrice, E.; Herve, B.P.; Wong, M.M.

    1980-01-01

    As part of its mission to assure the maximum recovery and use of the Nation's mineral resources, the Bureau of Mines, investigated an improved procedure for producing rare earth-silicon alloys. For example, a charge consisting of 681 grams of mixed rare-earth oxides, 309 grams of ferrosilicon (75 wt-pct Si), and 182 grams of aluminum metal along with a flux consisting of 681 grams of CaO and 45 grams of MgO was reacted at 1500 0 C in an induction furnace. Good slag-metal separation was achieved. The alloy product contained, in weight-percent, 53 RE, 28 Si, 11 Fe, and 4 Al with a rare earth recovery of 80 pct. In current industrial practice rare earth recoveries are usually about 60 pct in alloy products that contain approximately 30 wt-pct each of rare earths and silicon. Metallurgical evaluations showed the alloys prepared in this investigation to be as effective in controlling the detrimental effect of sulfur in steel and cast iron as the commercial rare earth-silicon-iron alloys presently used in the steel industry

  4. Design and Calculation of an Earth Electrode

    CERN Document Server

    Gómez, J

    2000-01-01

    People using electrical installations have to be protected against electrical shock. For purposes of protection a distinction is made between direct and indirect contact. Direct contact is contact with a live conductor. Protection is provided by the insulation of cables or the screening of live parts. An indirect contact happens when someone touches exposed metal parts which are not intended to carry current but have become live as a result of a fault. In this case metallic parts raise the metal to a dangerous potential (contact voltage). Here protection is provided by connecting the exposed metal part (i.e. the case of the electrical machine) to the earthing point of the installation. A protective device will disconnect the circuit as soon as a fault current flows to earth. The earth fault value will depend on the impedance of the path taken by the fault current, which is known as the earth fault loop. The resistance of the earth electrode plays an important role in the final impedance of the earth fault loo...

  5. EarthCube - Earth System Bridge: Spanning Scientific Communities with Interoperable Modeling Frameworks

    Science.gov (United States)

    Peckham, S. D.; DeLuca, C.; Gochis, D. J.; Arrigo, J.; Kelbert, A.; Choi, E.; Dunlap, R.

    2014-12-01

    In order to better understand and predict environmental hazards of weather/climate, ecology and deep earth processes, geoscientists develop and use physics-based computational models. These models are used widely both in academic and federal communities. Because of the large effort required to develop and test models, there is widespread interest in component-based modeling, which promotes model reuse and simplified coupling to tackle problems that often cross discipline boundaries. In component-based modeling, the goal is to make relatively small changes to models that make it easy to reuse them as "plug-and-play" components. Sophisticated modeling frameworks exist to rapidly couple these components to create new composite models. They allow component models to exchange variables while accommodating different programming languages, computational grids, time-stepping schemes, variable names and units. Modeling frameworks have arisen in many modeling communities. CSDMS (Community Surface Dynamics Modeling System) serves the academic earth surface process dynamics community, while ESMF (Earth System Modeling Framework) serves many federal Earth system modeling projects. Others exist in both the academic and federal domains and each satisfies design criteria that are determined by the community they serve. While they may use different interface standards or semantic mediation strategies, they share fundamental similarities. The purpose of the Earth System Bridge project is to develop mechanisms for interoperability between modeling frameworks, such as the ability to share a model or service component. This project has three main goals: (1) Develop a Framework Description Language (ES-FDL) that allows modeling frameworks to be described in a standard way so that their differences and similarities can be assessed. (2) Demonstrate that if a model is augmented with a framework-agnostic Basic Model Interface (BMI), then simple, universal adapters can go from BMI to a

  6. International Year of Planet Earth Cooperating with Other Years in 2007-2009

    Science.gov (United States)

    de Mulder, E. F.

    2006-05-01

    After its inception in 2001, the International Year of Planet Earth was proclaimed for 2008 by the UN General Assembly in December 2005. The UN Year will be in the core of a triennium, starting in January 2007 and closing by the end of 2009. Through UN proclamation, it has gained the political support by 191 UN nations. The International Year of Planet Earth was initiated by the International Union of Geological Sciences (IUGS) finding UNESCO's Earth Sciences Division ready as co-initiator. It enjoys the backing of all relevant IUGS's sister unions in ICSU, including IUGG, IGU, IUSS, ISPRS and INQUA among its 12 Founding Partners and AGI, AAPG and AIPG as major USA based international geoscientific organizations. Moreover, the initiative is supported by 26 more geoscientific and other relevant bodies. The aim of the Year, encapsulated in its subtitle Earth sciences for Society, is to build awareness of the relationship between humankind and Planet Earth, and to demonstrate that geoscientists are key players in creating a balanced, sustainable future for both. In this respect it aims to convince politicians to apply the wealth of geodata and information in day-to-day policy making. The International Year includes a Science and an Outreach Programme, both of equal financial size. The ten Science Themes (Groundwater, Hazards, Health, Climate, Resources, Deep Earth, Ocean, Megacities, Soils, and Life) in the Science Programme were selected for their societal impact, their potential for outreach, as well as their multidisciplinary nature and high scientific potential. Brochures with key questions and invitations for scientists to submit project proposals have been printed for each Theme and can be downloaded from www.yearofplanetearth.org. The same bottom-up mode is applied for the Outreach Programme which will operate as a funding body, receiving bids for financial support - for anything from web-based educational resources to commissioning works of art that will help

  7. Characterizing the Purple Earth: Modeling the globally integrated spectral variability of the Archean Earth

    International Nuclear Information System (INIS)

    Sanromá, E.; Pallé, E.; López, R.; Montañés-Rodríguez, P.; Parenteau, M. N.; Kiang, N. Y.; Gutiérrez-Navarro, A. M.

    2014-01-01

    Ongoing searches for exoplanetary systems have revealed a wealth of planets with diverse physical properties. Planets even smaller than the Earth have already been detected and the efforts of future missions are aimed at the discovery, and perhaps characterization, of small rocky exoplanets within the habitable zone of their stars. Clearly, what we know about our planet will be our guideline for the characterization of such planets. However, the Earth has been inhabited for at least 3.8 Gyr and its appearance has changed with time. Here, we have studied the Earth during the Archean eon, 3.0 Gyr ago. At that time, one of the more widespread life forms on the planet was purple bacteria. These bacteria are photosynthetic microorganisms and can inhabit both aquatic and terrestrial environments. Here, we use a radiative transfer model to simulate the visible and near-infrared radiation reflected by our planet, taking into account several scenarios regarding the possible distribution of purple bacteria over continents and oceans. We find that purple bacteria have a reflectance spectrum that has a strong reflectivity increase, similar to the red edge of leafy plants, although shifted redward. This feature produces a detectable signal in the disk-averaged spectra of our planet, depending on cloud amount and purple bacteria concentration/distribution. We conclude that by using multi-color photometric observations, it is possible to distinguish between an Archean Earth in which purple bacteria inhabit vast extensions of the planet and a present-day Earth with continents covered by deserts, vegetation, or microbial mats.

  8. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Jiangang; Annis, James; /Fermilab

    2010-10-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digital Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of {approx}100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you

  9. Flying across Galaxy Clusters with Google Earth: additional imagery from SDSS co-added data

    International Nuclear Information System (INIS)

    Hao, Jiangang; Annis, James

    2010-01-01

    Galaxy clusters are spectacular. We provide a Google Earth compatible imagery for the deep co-added images from the Sloan Digital Sky Survey and make it a tool for examing galaxy clusters. Google Earth (in sky mode) provides a highly interactive environment for visualizing the sky. By encoding the galaxy cluster information into a kml/kmz file, one can use Google Earth as a tool for examining galaxy clusters and fly across them freely. However, the resolution of the images provided by Google Earth is not very high. This is partially because the major imagery google earth used is from Sloan Digital Sky Survey (SDSS) (SDSS collaboration 2000) and the resolutions have been reduced to speed up the web transferring. To have higher resolution images, you need to add your own images in a way that Google Earth can understand. The SDSS co-added data are the co-addition of ∼100 scans of images from SDSS stripe 82 (Annis et al. 2010). It provides the deepest images based on SDSS and reach as deep as about redshift 1.0. Based on the co-added images, we created color images in a way as described by Lupton et al. (2004) and convert the color images to Google Earth compatible images using wcs2kml (Brewer et al. 2007). The images are stored at a public server at Fermi National Accelerator Laboratory and can be accessed by the public. To view those images in Google Earth, you need to download a kmz file, which contains the links to the color images, and then open the kmz file with your Google Earth. To meet different needs for resolutions, we provide three kmz files corresponding to low, medium and high resolution images. We recommend the high resolution one as long as you have a broadband Internet connection, though you should choose to download any of them, depending on your own needs and Internet speed. After you open the downloaded kmz file with Google Earth (in sky mode), it takes about 5 minutes (depending on your Internet connection and the resolution of images you want

  10. In the Red Shadow of the Earth

    Science.gov (United States)

    Hughes, Stephen W.; Hosokawa, Kazuyuki; Carroll, Joshua; Sawell, David; Wilson, Colin

    2015-01-01

    A technique is described for calculating the brightness of the atmosphere of the Earth that shines into the Earth's umbra during a total lunar eclipse making the Moon red. This "Rim of Fire" is due to refracted unscattered light from all the sunrises and sunsets rimming the Earth. In this article, a photograph of the totally eclipsed…

  11. Earth Science: It's All about the Processes

    Science.gov (United States)

    King, Chris

    2013-01-01

    Readers of the draft new English primary science curriculum (DfE, 2012) might be concerned to see that there is much more detail on the Earth science content than previously in the United Kingdom. In this article, Chris King, a professor of Earth Science Education at Keele University and Director of the Earth Science Education Unit (ESEU),…

  12. Modeling and analysis of solar wind generated contributions to the near-Earth magnetic field

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne; Moretto, T.; Rastatter, L.

    2006-01-01

    Solar wind generated magnetic disturbances are currently one of the major obstacles for improving the accuracy in the determination of the magnetic field due to sources internal to the Earth. In the present study a global MHD model of solar wind magnetosphere interaction is used to obtain...... a physically consistent, divergence-free model of ionospheric, field-aligned and magnetospheric currents in a realistic magnetospheric geometry. The magnetic field near the Earth due to these currents is analyzed by estimating and comparing the contributions from the various parts of the system, with the aim...... of identifying the most important aspects of the solar wind disturbances in an internal field modeling context. The contribution from the distant magnetospheric currents is found to consist of two, mainly opposing, contributions from respectively the dayside magnetopause currents and the cross-tail current...

  13. Creating the Public Connection: Interactive Experiences with Real-Time Earth and Space Science Data

    Science.gov (United States)

    Reiff, Patricia H.; Ledley, Tamara S.; Sumners, Carolyn; Wyatt, Ryan

    1995-01-01

    The Houston Museum of Natural Sciences is less than two miles from Rice University, a major hub on the Internet. This project links these two institutions so that NASA real-time data and imagery can flow via Rice to the Museum where it reaches the public in the form of planetarium programs, computer based interactive kiosks, and space and Earth science problem solving simulation. Through this program at least 200,000 visitors annually (including every 4th and 7th grader in the Houston Independent School District) will have direct exposure to the Earth and space research being conducted by NASA and available over the Internet. Each information conduit established between Rice University and the Houston Museum of Natural Science will become a model for public information dissemination that can be replicated nationally in museums, planetariums, Challenger Centers, and schools.

  14. Earth-ionosphere cavity

    International Nuclear Information System (INIS)

    Tran, A.; Polk, C.

    1976-01-01

    To analyze ELF wave propagation in the earth-ionosphere cavity, a flat earth approximation may be derived from the exact equations, which are applicable to the spherical cavity, by introducing a second-order or Debye approximation for the spherical Hankel functions. In the frequency range 3 to 30 Hz, however, the assumed conditions for the Debye approximation are not satisfied. For this reason an exact evaluation of the spherical Hankel functions is used to study the effects of the flat earth approximation on various propagation and resonance parameters. By comparing the resonance equation for a spherical cavity with its flat earth counterpart and by assuming that the surface impedance Z/sub i/ at the upper cavity boundary is known, the relation between the eigenvalue ν and S/sub v/, the sine of the complex angle of incidence at the lower ionosphere boundary, is established as ν(ν + 1) = (kaS/sub v/) 2 . It is also shown that the approximation ν(ν + 1) approximately equals (ν + 1/2) 2 which was used by some authors is not adequate below 30 Hz. Numerical results for both spherical and planar stratification show that (1) planar stratification is adequate for the computation of the lowest three ELF resonance frequencies to within 0.1 Hz; (2) planar stratification will lead to errors in cavity Q and wave attenuation which increase with frequency; (3) computation of resonance frequencies to within 0.1 Hz requires the extension of the lower boundary of the ionosphere to a height where the ratio of conduction current to displacement current, (sigma/ωepsilon 0 ), is less than 0.3; (4) atmospheric conductivity should be considered down to ground level in computing cavity Q and wave attenuation

  15. Clouds and the earth's radiation balance

    Energy Technology Data Exchange (ETDEWEB)

    Schmetz, J; Raschke, E

    1986-01-01

    Cloud formation mechanisms and cloud effects must be known for all regions of the earth for two important purposes of weather and climate research: First, the circulation characteristics of the atmosphere can be defined and understood only if the energy transfer between the atmosphere and the earth's surface is known; secondly, the energy transfer calculations should be as realistic as possible. The article discusses the influence of clouds on the radiation balance of the earth/atmosphere radiation balance, and the effects on weather and climate.

  16. Geohistory: Global evolution of the earth

    International Nuclear Information System (INIS)

    Ozima, M.

    1987-01-01

    This book traces the evolution of the Earth, mainly on the basis of radiogenic isotopes from half-life parent elements, and discusses it in terms of the latest developments in astrophysical theory, which impose unique constraints on the origin and early evolution of the earth. Owing to its historical nature, this geohistorical study offers an approach to forecasting the future of the Earth yielding clues for the understanding of environmental problems, such as radioactive waste to disposal and climate changes due to CO/sub 2/ increase

  17. Sun, Earth and Sky

    CERN Document Server

    Lang, Kenneth R

    2006-01-01

    This Second Edition of Sun, Earth and Sky updates the popular text by providing comprehensive accounts of the most recent discoveries made by five modern solar spacecraft during the past decade. Their instruments have used sound waves to peer deep into the Sun’s inner regions and measure the temperature of its central nuclear reactor, and extended our gaze far from the visible Sun to record energetic outbursts that threaten Earth. Breakthrough observations with the underground Sudbury Neutrino Observatory are also included, which explain the new physics of ghostly neutrinos and solve the problematic mismatch between the predicted and observed amounts of solar neutrinos. This new edition of Sun, Earth and Sky also describes our recent understanding of how the Sun’s outer atmosphere is heated to a million degrees, and just where the Sun’s continuous winds come from. As humans we are more intimately linked with our life-sustaining Sun than with any other astronomical object, and the new edition therefore p...

  18. Rare earth industry in India

    International Nuclear Information System (INIS)

    Singh, D.S.

    2016-01-01

    Rare Earths (RE) comprises of 17 elements i.e. elements from atomic No. 57-71 (lanthanide series) along with yttrium (atomic No. 39) and scandium (atomic No. 21). They exhibit special electronic, magnetic, optical and catalytic properties. The first 7 elements in the lanthanide series from atomic Nos. 57 to 63 (La to Eu) are called Light Rare Earths (LRE), while the remaining elements from atomic Nos. 64 to 71 (Gd to Lu) are grouped as Heavy Rare Earths (HRE). Scandium and Yttrium have properties similar to HRE. The concentration of the REs in the earth's crust is as high as some other elements including that of copper. The only difference is that REs do not occur as separate minerals amenable for easy exploration and mining and are widely distributed across the earth's surface, hence they are called as REs. Resources In India, monazite has been the principal source of RE. It occurs in association with other heavy minerals, such as ilmenite, rutile, zircon etc. in the beach sands and inland placer deposits. The monazite content in this assemblage varies from negligible quantity to as high as 5%. As per AMD resource estimation, the reported resource of monazite in India is about 11.93 million tons which corresponds with about 6.9 million tons of RE oxides. Although India possesses large deposits of monazite, the heavier RE are not present in sufficient quantities in this mineral. (author)

  19. Applicability of neutrino beams to Earth exploration

    International Nuclear Information System (INIS)

    Dolgoshein, B.A.; Kalinovskij, A.N.

    1985-01-01

    The projects on applicability of neutrino beams from high energy accelerators for geological exploration and study of the Earth structure are discussed. The GENIUS (Geological Exploration by Neutrino Induced Underground Sound) project is among them. It covers detecting and studying space-time characteristics of acoustic signal arising in case of neutrino interaction with Earth depth rocks discussed. The GEMINI (Geological Exploration with Muons Induced by neutrino interactions) project represents one more possibility for using geotron neutrino beam for the purpose of geological exploration. The GEOSCAN project represents the possibility for applying high energy neutrino beams for the purpose of the Earth translusence to determine the changes in the density of internal part of the Earth. The necessity of detailed investigations of the problem of applicability of neutrino beams in the field of the Earth exploration is pointed out

  20. Lunar Science from and for Planet Earth

    Science.gov (United States)

    Pieters, M. C.; Hiesinger, H.; Head, J. W., III

    2008-09-01

    in the inner solar system and the environment under which early life was able to survive. We learned that the long-lived heat producing elements are concentrated on the lunar nearside and a major geologic event must have occurred very early during the evolution of the crust and mantle to accomplish this. We learned that significant volatile deposits occur at both lunar poles and may have resulted in water ice in their permanently shadowed regions. The embers then fire from this small influx of new information and understanding in the 1990s set the stage for the next generation of lunar exploration. International Lunar Exploration: The Golden Age In 2003 ESA launched what was to become a highly successful technology demonstration mission to the Moon, SMART-1. This small pathfinder has now been followed by some of the most sophisticated remote sensing robotic missions ever sent to the Moon. The SELENE/KAGUYA mission from JAXA and the Chang'E mission from China were launched in 2007 and are successfully returning remarkable data to Earth with unprecedented resolution and detail. The Chandrayaan-1 mission of ISRO with a complement of modern Indian as well foreign instruments is set to launch in 2008. The LRO/LCROSS pair of NASA will be next, followed by NASA's GRAIL geophysics mission in 2010. It is fitting that Earth's neighbour, which harbours so many secrets about our own origins and place in the universe, is now being explored independently by a virtual armada originating from space-faring nations across the Earth. The opportunities for peaceful coordination and cooperation abound, both at the personal scientist-to-scientist level as well as at the national policy level. The next 50 years of exploration of the Earth-Moon system will be truly remarkable with the new foundation of knowledge brought forth by this golden age of lunar exploration.